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Water fluxes and sediment load from clayey, 
subsurface drained agricultural fields are 
potentially harmful to surface waters due to 
dissolved nutrients in water and adsorbed 
nutrients on sediment particles. Until now, 
only a few comprehensive tools existed that 
could be used to estimate water balance in a 
whole field section and sediment loads via 
surface runoff and drainflow. Simulation of 
water flow in clayey soils is difficult due to  
the preferential flow in macropores and the 
dynamic nature of the soil itself. A new 
numerical model called FLUSH is 
introduced in the thesis and tested with data 
from two clayey, subsurface drained 
agricultural fields in southern Finland. The 
most important new feature of the model is 
the possibility to simulate transport of 
suspended sediment from the field surface 
to subsurface drains via preferential flow 
pathways. Objectives of the thesis are to 
produce mechanistic descriptions for water 
flow and soil erosion phenomena and to 
develop efficient numerical solution 
algorithms. 
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Abstract 
Soil erosion in clayey, subsurface drained agricultural fields in Finland can cause problems 
due to the export of suspended sediment and sediment-bound nutrients into nearby 
waterways. Suspended sediment is transported from the field via two main hydrological 
pathways: 1) surface runoff and 2) preferential flow in macropores to subsurface drains. In 
clayey fields especially, the sediment load via the subsurface drains can be a considerable part 
of the annual load. The mechanisms contributing to the sediment load during the growing 
season and the following autumn were quantified with a new numerical model (FLUSH) 
developed in the study, using sample data from two clayey, subsurface drained field sections 
in southern Finland. 

The simulated field was computationally divided into two-dimensional overland and three-
dimensional subsurface domains. Existing mechanistic approaches were applied to describe 
both surface and subsurface domain processes in the model. A dual-permeability model can 
simultaneously simulate flow in both soil matrix and macropore systems. The model supports 
simulation of suspended sediment transport in macropores, drainage systems, soil swelling 
and shrinkage processes and the effects of cropping and tillage operations on water and 
sediment yields. A new pentadiagonal matrix algorithm-based solution was developed to 
directly solve subsurface flow in both pore systems. A custom time integration method was 
derived to run the solution algorithms with different time steps in concurrent fashion. All the 
finite volume-based partial differential equation solution algorithms were parallelised with 
the OpenMP application interface. Computational grids, created with an automatic grid 
generation system, were used to test the effects of grid resolution on results. 

The numerical model successfully described water flow and soil erosion in the study fields  
indicating that the hypothesised mechanisms for water flow and soil erosion were 
appropriate. The simulation results confirmed that preferential flow has a profound impact  
on field-scale hydrology. Runoff distribution between surface runoff and drainflow changed in  
the autumn due to tillage operations and soil swelling. Soil erosivity also increased after 
autumn tillage. In the simulations, hydraulic erosion was the primary process leading to high 
erosion rates in the Sjökulla field. In the Hovi field, lack of surface runoff notably lowered the  
sediment loads. Simulations with 1-D and 2-D grids indicated that the application of a 3-D 
model to undulating, clayey, subsurface drained fields was well justified. Tests with spatial  
variation of macroporosity presented evidence that the spatial variability of soil properties 
has a notable effect on runoff and sediment loads. 

Keywords agricultural field, clay, drainage, erosion, overland flow, prefrential flow, dual-
permeability model, soil shrinkage and swelling,e 3-D model, OpenMP, FLUSH 
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Tiivistelmä 
Salaojitetuilla savipelloilla tapahtuva eroosio voi aiheuttaa ongelmia vesistöissä pellolta 
kulkeutuvan kiintoaineen ja kiintoaineeseen sitoutuneiden ravinteiden takia. Kiintoaine 
kulkeutuu pelloilta pääasiassa pinta- ja salaojavalunnan mukana. Salaojiin kiintoaine 
kulkeutuu pellon muokkauskerroksesta makrohuokoskäytäviä pitkin. Etenkin savipelloilla 
salaojien kautta kulkeutuva kiintoainekuorma saattaa olla merkittävä osa vuotuisesta 
kokonaiskuormasta. Valuntaan ja kiintoainekuormaan vaikuttavia mekanismeja tutkittiin 
työssä kehitetyllä numeerisella laskentamallilla (FLUSH). Mallinnuksessa käytettiin apuna 
mittaustuloksia kahdelta suomalaiselta salaojitetulta savipellolta. 

Simuloitava pelto jaetaan laskentamallissa kaksiulotteiseen pintaosaan ja kolmiulotteiseen 
maaperäosaan. Olemassa olevia teoreettisia menetelmiä käytettiin kuvaamaan virtaus- ja 
eroosioprosesseja pinta- ja maaperäosissa. Monihuokosmalli kuvaa virtausta erikseen 
maamatriisissa ja makrohuokosissa. Mallilla on myös mahdollista simuloida kiintoaineen 
kulkeutumista maan pinnalla ja makrohuokosten kautta salaojiin, samoin kuin saven 
kutistumista ja paisumista sekä viljelyn aiheuttamia muutoksia pellolla. Työssä kehitettiin 
uusi pentadiagonaaliseen matriisialgoritmiin perustuva menetelmä, jolla voidaan ratkaista 
suoraan maa- ja pohjavesivirtaus kahdessa huokossysteemissä. Kehitetty 
aikaintegrointimenetelmä maksimoi laskenta-algoritmien rinnakkaisen toiminnan. Kaikki 
osittaisdifferentiaaliyhtälöiden numeeriset ratkaisut on toteutettu 
kontrollitilavuusmentelmällä ja ne on hajautettu OpenMP ohjelmistorajapinnan avulla. 
Laskentaverkot luodaan järjestelmässä automaattisesti mikä helpottaa resoluution 
vaikutuksen arvioimista laskentatuloksissa. 

Onnistuneet valunta- ja kiintoainesimulaatiot tutkimusalueilla vahvistavat käsitystä että 
malli sisältää tarvittavat veden virtausta ja eroosiota kuvaavat prosessit. Tuloksien mukaan 
oikovirtauksella oli suuri merkitys peltomittakaavan vesitaseeseen. Valunnan jakautuminen 
pinta- ja salaojavalunnan välille muuttui ja maan eroosioherkkyys kasvoi syksyllä kynnön 
jälkeen. Pintavirtailun aiheuttama hydraulinen eroosio oli tärkein syy suuriin 
kiintoainekuormiin Sjökullan pellolla. Pintavirtailun puute Hovin pellolla taas pienensi 
kiintoainekuormaa merkittävästi. Simulaatiot yksi-, kaksi- ja kolmiulotteisilla 
laskentaverkoilla osoittivat että kolmiulotteisen mallin käyttö kumpuilevilla, salaojitetuilla 
savipelloilla on perusteltua. Mallitulosten mukaan alueellisesti vaihtelevalla 
makrohuokoisuudella oli merkittävä vaikutus valuntaan ja kiintoainekuormaan. 
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VW [L3] Volume of water 
v [L T-1] Subsurface flow velocity 
w [L3 L-3] Relative volumetric proportion of the macropore 

system 
wS [-] Particle settling coefficient 
x [L] Coordinate of the horizontal position 
Y [-] Transport capacity equation parameter (Yalin 1963) 
YCR [-] Ordinate of Shields diagram 
y [L] Coordinate of the horizontal position 
z [L] Coordinate of the vertical position 
zCR [L] Layer elevation (Bronswijk 1988) 
zL [L] Layer depth in saturated state (Bronswijk 1988) 
zR [L] Depth of the root zone 
zS [L] Soil surface elevation 

 

There are variations of the above symbols with the letters F, M, X, Y and Z 

attached in the text. The F and M represent local variables of the same type 

in the soil macropore and matrix systems, respectively. X, Y and Z stand for 

directional components of the variables. 
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1. Introduction 

Soil erosion is defined as loosening, dissolving and removal of earth or 

rock materials from any part of the surface (e.g. Aksoy and Kavvas 2005). 

Foster and Mayer (1972) describe erosion as a process of detachment and 

transport of soil materials by wind, rainfall, runoff and ice. In recent 

centuries, human population has increased exponentially, placing most of 

the suitable land under intensive cultivation and exposing the underlying 

top soil to the erosive forces of the elements. The problems caused by 

erosion vary geographically, and range from loss of available top soil for 

agriculture to sedimentation and eutrophication of waterways. Several 

different factors have an impact on erosion risk including climate, type of 

soil, topography, erosion prevention methods and crop types (Morgan 

2005). The problem associated with soil erosion in northern Europe is 

usually not the actual soil loss itself, but the adverse effects of adsorbed 

nutrients, heavy metals and pesticides in surface waters (Kirkby 2006). 

1.1 Background 

In Finland, agriculture is concentrated in the southern and western parts 

of the country due to milder weather and more cultivable soils. In this 

region, clay soils are common in agricultural fields (e.g. Soinne 2002, 

Alakukku et al. 2010a). Although erosion occurs during peak runoff events 

in Finland, soil loss itself is not regionally a serious problem. Sediment 

loads vary between 0.03–3.3 t ha-1 a-1 in agricultural catchments while 

being considerably lower (0.02–0.2 t ha-1 a-1) in forested catchments 

(Maasilta et al. 1980, Tattari and Rekolainen 2006). In clayey soils, most of 

the phosphorus (P) lost with surface runoff is adsorbed on sediment 

particles (Turtola and Paajanen 1995, Øygarden 1997, Uusitalo et al. 2001, 

2007, Paasonen-Kivekäs et al. 2008). Of nitrogen (N) compounds, nitrate 

(NO3-) is water soluble while ammonium ions (NH4+) are adsorbed partly 

on soil particles. P load from agriculture is estimated to be 62% and N load 

51% of the total human induced load to water courses (Nyroos et al. 2006). 
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About 90% of these losses are assumed to originate from field cultivation. 

Total annual load of N from arable land varies between 8 and 20 kg ha-1 a-1 

and the total annual P load is between 0.9 and 1.8 kg ha-1 a-1 (Vuorenmaa 

2002). P is considered to be the main cause of eutrophication in Finnish 

inland water bodies (e.g. Rekolainen et al. 2006). 

Subsurface drains were installed in Finnish fields at the beginning of the 

1920s to accelerate drainage and to facilitate crop cultivation on larger 

continuous fields (Aarrevaara 1993). Nowadays, 75 % of arable lands are 

subsurface drained in the southern and southwestern parts of the country 

(Finnish Field Drainage Association 2011). Several studies in Finland (e.g. 

Uusitalo et al. 2001, Turtola et al. 2007, Paasonen-Kivekäs et al. 2008, 

Vakkilainen et al. 2010) and in other Nordic countries (e.g. Ulén 1995, 

Øygarden et al. 1997, Laubel et al. 1999) on fine-textured soils suggest that 

considerable amounts of eroded soil can be transported from the fields via 

subsurface drains. According to future climate change scenarios, total 

particulate P losses will decrease in agricultural lands in Finland (Kallio et 

al. 1997, Puustinen et al. 2010). However, Vakkilainen et al. (2010) have 

reported that lack of frost, snow and vegetation during warm winters 

increases erosion and sediment load via subsurface drains. Initially, the 

sediment leaching via drains was attributed to deficient drainage 

workmanship and internal erosion in macropores (e.g. Øygarden et al. 

1997). Cesium-137 measurements on clayey fields (Laubel et al. 1999, 

Uusitalo et al. 2001) indicate that most of the soil material transported 

through subsurface drains originates from the soil surface layer. In low 

permeable soils, suspended particles are assumed to move with preferential 

flow via macropores (McKay et al. 1993, Jacobsen et al. 1997, Øygarden et 

al. 1997) and drain trench backfill material down to the drain lines.  

The Finnish Environment Institute (FEI) has prepared Water Protection 

Outlines for the Finnish Council of States up to the year 2015 (Finland’s 

Environmental Administration 2007). According to this study, the current 

means, which include legislative, economic and educational measures, have 

not had the desired effect on the reduction of nutrient loads from 

agricultural fields (Aakkula et al. 2010, Väisänen and Puustinen 2010). 

Eutrophication is still the main concern of surface water protection. 

Farming subsidies should be directed to efficient protection measures in 

problem areas with the highest load potentials.  The impact of conservation 

methods on loads are difficult to predict, as they have to be practised for 

several years before their effectiveness can be evaluated (e.g. Nyroos et al. 

2006). The actual implementation of protective measures can be costly 

because some conservation methods, e.g. buffer zones and wetlands require 

extensive construction projects and reserve land from cultivation. 
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1.2 Research problem 

In order to assess nutrient loads from clayey, subsurface drained 

agricultural fields, both water flow and soil erosion regimes have to be 

understood. Because N compounds are for the most part water soluble, 

transport of N depends on water movement in the field. P compounds, on 

the other hand, are partly in soluble and partly in adsorbed forms. 

Additional P is released from the adsorbed state as the concentration in the 

soil solution decreases. Thus, P load from fields depends on both flow and 

erosion processes. Two pathways were identified earlier for the sediment 

load: 1) surface runoff and 2) subsurface drains. Unfortunately, only limited 

tools are available to investigate the mechanisms of soil erosion and 

sediment loss via surface runoff and especially via subsurface drainflow. 

Thus, identification of risk areas and development of efficient conservation 

strategies remains difficult. 

Runoff in clayey, subsurface drained agricultural fields is generated via 

three main pathways 1) surface runoff, 2) drainflow and 3) groundwater 

flow. In clayey fields surface runoff is generated either by Hortonian 

(Horton 1933) or Dunne type mechanisms (Dunne 1978). Hortonian 

surface runoff is triggered by the limited infiltration capacity of soils during 

precipitation events, while Dunne type mechanism is activated when the 

shallow groundwater table rises to the surface of the field and completely 

saturates the soil. Overland runoff is then initiated either by precipitation 

or soil water exfiltration. Subsurface drainflow is generated when the 

groundwater level rises above the drain level. Groundwater flow is governed 

by the pressure difference between the surrounding open ditch and water in 

the soil. It is also possible that in the underlying soil or rock there are 

permeable layers that conduct water away from the field as deep 

groundwater flow. Distribution of runoff between the three main 

components is difficult to predict due to the complex nature of clayey soils. 

Clay particles are the most chemically and physically active soil fraction 

due to their high specific surface area and mineral composition (Hillel 

1998). A leaf-like form is typical for clay minerals and they form slate-type 

structures when stacked together (Hillel 1998). Thinning of water film 

around clay soil particles increases aggregate formation and leads 

eventually to crack formation due to volume decrease of the clay soil matrix 

(e.g. Bronswijk 1991). The opposite, i.e. thickening of water film between 

clay particles, induces swelling of the matrix. Clay soil can lose structural 

integrity and liquefy under moist conditions, increasing susceptibility to 

erosion. The non-linear volumetric change can be measured in laboratory 

and represented as a soil shrinkage characteristic curve (SSCC). Three or 
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four different shrinkage stages can usually be identified including 1) 

structural shrinkage (not always present), 2) proportional shrinkage (or 

normal shrinkage), 3) residual shrinkage and 4) zero shrinkage (e.g. 

Bronswijk 1988, Peng and Horn 2005). Shrinkage cracks act as storage for 

water and pathways for preferential flow and solute transport. During dry 

seasons, cracks can reach to considerable depths; e.g. Alakukku (1996a, b) 

and Alakukku et al. (2010a) observed crack depths of at least 0.6–0.7 m in 

Finnish clayey fields. Because clay soil matrix conducts water poorly, 

cracking and swelling can markedly influence hydraulic conductivity of soil 

(Messing and Jarvis 1990). The most common clay minerals in Finnish 

clayey soils are mica, chlorite, vermiculite and some smectite (Sippola 

1974). The shrinkage and swelling properties of Finnish clay soils are 

conservative (Rasa et al. 2009) compared to those of some other clay 

minerals, e.g. halloysite, montmorillonite and kaolinite (Hillel 1998). 

Due to the low conductivity of the clay soil matrix, water percolation 

through the unsaturated soil layers to the groundwater table occurs in 

preferential flow paths including earthworm tunnels, plant root conduits, 

shrinkage cracks and drain trench backfill material (e.g. Bouma et al. 1977, 

Bouma and Dekker 1978, Bouma and Wösten 1979, Germann and Beven 

1981a, Beven and Germann 1982, Booltink and Bouma 1991, Bronswijk et 

al. 1995, Nuutinen and Butt 2003, Alakukku et al. 2010a). Horizontal 

preferential flow can occur in the tillage layer above the compressed tillage 

pan (e.g. Beven and Germann 1982, Shipitalo et al. 2004). In preferential 

flow, water moves faster in certain parts of the soil profile resulting in an 

uneven wetting front. An important characteristic of preferential flow is the 

non-equilibrium nature of the flow. Water moving in the macropores does 

not have time to equilibrate with the slow moving water in the bulk of the 

soil matrix (Šimůnek et al. 2003). 

Most of the annual sediment load in Finland is caused by spring snow 

melt and autumn rains. Soil erosion is mainly caused by 1) hydraulic shear 

forces of the overland flow acting on the particles on the field surface and by 

2) impacts of rain drops. Flow erosion can be further partitioned into rill 

and interrill components. Another mechanism proposed by Aura et al. 

(2006) for clay soils is diffusion erosion that also occurs in standing water. 

Due to electrostatic and van der Waals’ forces between individual clay 

particles, erodibility of clayey soil can be lower than expected from the 

particle size distribution (e.g. Soinne 2002, Klepsch et al. 2005). Cohesive 

soils are eroded in larger aggregates rather than in elementary particles 

(Meyer et al. 1980) and mechanistic approaches devised for larger particles 

may not function properly. However, there are no widely accepted 

alternative theories for describing clay soil erosion (Taskinen and Bruen 
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2007b). According to Laubel et al. (1999) and Uusitalo et al. (2001), most of 

the soil material in the drain water originates from the field surface. 

Suspended sediment is transported by preferential flow in soil macropores 

to subsurface drains (McKay et al. 1993 and Jacobsen et al. 1997). A certain 

amount of filtering may occur in the macropores (Turtola and Paajanen 

1995, Jacobsen et al. 1997, Turtola et al. 2007). However, Turtola and 

Paajanen (1995), Uusitalo et al. (2001) and Paasonen-Kivekäs et al. (2008) 

found out that the sediment concentration in subsurface drainflow was 

approximately the same as in surface runoff. 

Crop cultivation has a profound effect on both hydrology and erosion in 

agricultural fields. In Finland, almost half of the annual precipitation is 

used by crops through transpiration (Vakkilainen 1982). Crops decrease 

overland flow velocity by increasing surface roughness and increase 

infiltration rate by introducing additional macropores into the soil. The 

roots of typical crop species grown in Finland including, e.g. spring wheat, 

winter wheat and winter rye can reach down to depths of 0.75, 1.0 and 0.75 

m, respectively (e.g. Linnér et al. 2006). Heavy machinery used in crop 

sowing, harvesting and tillage operations in the fields affects both water 

movement and soil erosion. Vakkilainen (1980), Aura (1983) and Alakukku 

(1996a, b) reported that compaction by heavy machines had long-term 

negative effects on macroporosity and hydraulic conductivity of soil. 

According to Alakukku (1996a, b), macropores are more sensitive to 

compaction in mineral soils than in organic soils. The effects of tillage on 

hydraulic conductivity and macroporosity of the profile are somewhat 

mixed. Results by Beven and Germann (1982), Ulén (1997), Kladivko 

(2001), Koskiaho et al. (2002) and Puustinen et al. (2005) indicated that 

conventional tillage can decrease conductivity of the soil profile. However, 

recent studies have presented evidence that conservation tilled fine-

textured soils have lower hydraulic conductivity and infiltration rates 

compared to conventional tillage (Turtola et al. 2007). The variability of 

tillage effects on soil structure can be associated with differences in soil 

surface sealing, temporary water storage capacity and flow-active 

macropores made by fauna (Turtola et al. 2007). 

The topography of the field can also have a large impact on the erosivity of 

the overland flow. In undulating fields, overland flow tends to converge into 

rills increasing erosivity of the flow compared to uniform, shallow, sheet-

like flow (Morgan 2005). While overland flow and erosion are essentially 

two-dimensional (2-D) processes, subsurface flow and transport occur in 

three spatial dimensions (3-D). In contrast to the tillage layer flow, 

preferential flow via shrinkage cracks and biopores down to subsurface 

drains is essentially vertically one-dimensional (1-D). The funnelling type of 
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preferential flow in the soil layer over the compressed tillage pan is 2-D 

(Shipitalo et al. 2004). Description of the temporal dimension provides 

additional challenges. Overland flow and erosion, preferential flow and 

particle transport in macropores, and slow seepage in the clay soil matrix all 

occur in different time scales. Regardless of the differences between the 

time scales, the processes interact and are dependent on each other. 

1.3 Research objectives, scope of the research and hypotheses 

Simulation of water balance in clayey, subsurface drained agricultural 

fields is challenging due to preferential flow in macropores and the dynamic 

nature of the macropores themselves. The efforts of this study are 

concentrated on: 1) water balance and 2) soil erosion in clayey, subsurface 

drained fields. The first objective is to study and quantify specific 

hydrological processes including preferential flow, soil shrinkage and 

swelling and drainage systems. Also, the effect of spatial variation of 

topography and soil properties on the water balance is studied. 

The second objective is to investigate the suitability of existing theoretical 

erosion models to describe and quantify transport of solids in clayey soils. 

The role of hydrology in the distribution of sediment load between surface 

runoff and drainflow is of special interest in this study. The transport of 

sediment to subsurface drains has been previously studied mainly by 

measuring sediment concentrations in the drainage waters. However, 

theoretical and quantitative analyses of the mechanisms responsible for the 

transport of sediment from the field surface to the drains are scarce. The 

effect of crop cultivation on hydrological and soil erosion processes is also 

included, albeit with a pragmatic approach. Different processes in the field 

are not investigated separately but are combined into a single holistic model 

of an agricultural field. The model describes the effects of different 

processes and interactions between them in field-scale rather than in plot 

or point scale. By basing the model on physical principles instead of 

empirical dependencies derived from data, the system can be applied to 

different problem areas with minimal modifications. The model is intended 

as a solid foundation for nutrient models. 

Due to the complexity of nature, the scope of the study is narrowed in 

several places. While the nutrient loads are the main motivation to conduct 

the study, the study itself focuses only on the carrier media and processes 

associated with them, i.e. water flow and soil erosion. The lack of heat 

related processes in the model restricts the application of the model to 

periods when the temperature stays above 0.0 °C, i.e. soil freezing and 

thawing and snow processes are not included in the model. Transport of 
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gaseous substances is not considered either. It is thought that air can 

always escape from soil or re-enter when water pressure increases above or 

decreases below air entry point. Only a simplified description of 

evapotranspiration (ET) is adopted here. Potential evapotranspiration 

(PET) is approximated with the Penman-Monteith approach (Monteith 

1981) and the Class-A evaporation pan results (Vakkilainen 1982). 

The following formal hypotheses were formulated to condense the main 

directions of the research: 

1. Preferential flow via macropores has a major impact on 

runoff dynamics and water balance in clayey, subsurface 

drained agricultural fields. 

2. Mechanisms of preferential flow can be represented, and the 

related mass fluxes can be quantified using computational 

methods presented in the literature. 

3. The sediment load via subsurface drains in the studied clayey 

fields can be simulated when the sediment load is assumed 

to originate from the tillage layer of the fields. 

4. A distributed problem domain, including separate 2-D 

overland and 3-D subsurface domains with different process 

descriptions, is required for a holistic simulation of water 

flow and soil erosion in undulating, clayey, subsurface 

drained agricultural fields. 

While there is empirical evidence available that supports hypotheses 1 and 

3 (e.g. Uusitalo et al. 2001, Turtola et al. 2007, Paasonen-Kivekäs et al. 

2008, Vakkilainen et al. 2010), no previous mechanistic models were found 

that could be used to describe the relevant processes at field-scale when 

both topography and soil properties vary. This implies that the process 

descriptions are not well known warranting further research. In erosion 

models, there seems to be a complete void regarding models that can 

simulate sediment transport in macropores to the subsurface drains. A 

model that is able to simulate these phenomena is presented in this thesis. 

1.4 Research methods 

Computational modelling is the primary tool used to investigate and 

quantify the problems outlined above. Simulation is a powerful tool to study 

complex systems with several interacting processes. A model contains a 

logical hypothesis for a phenomenon and cause and effect relationships that 

can be difficult to decipher from empirical data. The disadvantages are that 

models still need data for calibration and validation and the problems are 
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usually complex, excluding the possibility of simple direct answers. Hillel 

(1998) argued that the current holistic approach in environmental 

modelling calls for increasingly complex models, and when the complexity 

increases the models may become less comprehensible and harder to test. 

Zheng and Bennet (2002), on the other hand, defended the use of advanced 

models because the most important use of simulation models is not 

predictive calculation, but the investigative process itself. The authors noted 

that only simulation models provide a quantitative framework for 

integrating the expertise from a myriad of different fields together, which 

facilitates assessing whether data from the studied environmental system 

and the corresponding process descriptions support each other. 

The approach to environmental modelling presented by Refsgaard and 

Henriksen (2004) has been adopted here. A model is divided into 

conceptual, numerical and computational parts. The conceptual model 

prescribes the characteristics and interactions of the processes constituting 

the system as well as the general mathematical equations describing each 

process. The numerical model encompasses numerical solutions to the 

mathematical representations. The computational model is the numerical 

model applied to a specific case study with data. Environmental models are 

inherently open because the systems contain many uncertainties and their 

true behavior cannot be fully confirmed (Refsgaard and Henriksen 2004). 

The new philosophy for modelling environmental systems rejects the idea 

that only one optimal model may be found for a given case, because 

universal verification and validation of the model in all temporal and spatial 

scales is impossible (Refsgaard and Henriksen 2004). Instead, models 

should be validated against data which is independent of the calibration 

data and model predictions should be associated with uncertainty 

assessments that take into account the uncertainty of the model structure 

and parameters (Beven and Binley 1992). 

According to the problem definition, both processes in the field surface 

and below the surface have to be represented, including overland flow and 

erosion and subsurface flow and transport. Simulation of preferential flow 

and transport and soil shrinkage and swelling processes are also required. 

Several earlier studies demonstrate that models lacking preferential flow 

and transport processes are not well-suited for describing flow and solute 

transport in structured soils (e.g. Koivusalo et al. 1999, Vogel et al. 2000, 

Šimůnek et al. 2003, Gerke and Köhne 2004, Jauhiainen 2004, Gärdenäs et 

al. 2006, Räsänen 2009). All processes need not to be explicitly defined 

because some of them can readily be described with a suitable 

parameterisation, e.g. tillage layer flow. In addition, drainage, as well as the 

effect of crops and tillage operations needs to be taken into account. 
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Description of the Dunne type overland flow initiation mechanism requires 

the model to be continuous in time instead of being an event based model. 

Because of the inclusion of Dunne type overland flow initiation mechanism, 

the model must be dynamic and continuous instead of steady-state and 

single event-based. A literature review was conducted to assess the current 

state of available models (Section 2). The most important findings of these 

earlier studies are condensed below. 

As the literature review shows, most of the recent field-scale erosion 

modelling in Finland has been conducted with the CREAMS model (Knisel 

1980, in Finland, e.g. Kauppi 1982) or its derivatives GLEAMS (Leonard et 

al. 1987, in Finland, e.g. Knisel and Turtola 2000) and ICECREAM (e.g. 

Posch and Rekolainen 1993, Rekolainen and Posch 1993, Kallio et al. 1997, 

Rekolainen et al. 1999, Rankinen et al. 2001, Tattari and Bärlund 2001, 

Tattari et al. 2001, Bärlund et al. 2005, Yli-Halla et al. 2005, Kändler 2006, 

Nyholm 2006, Paasonen-Kivekäs et al. 2006, Schmieder 2008, Bärlund et 

al. 2009, Jaakkola 2009). A few process-based studies have also been 

published in Finland, e.g. Taskinen (2002) and Taskinen and Bruen 

(2007a, b). All the CREAMS model variants are based on empirical 

regression equations derived from data measured in the USA. However, 

Finnish soils and climate are different and this has caused problems in 

model applications in earlier studies (Kauppi 1982, Knisel and Turtola 

2000, Tattari et al. 2001, Paasonen-Kivekäs et al. 2006). The most glaring 

problem with the CREAMS, GLEAMS and ICECREAM models is the lack of 

a proper description for subsurface drains. Only two previous conceptual 

erosion models were found that can simulate both overland erosion and 

suspended sediment transport to subsurface drains: a modified ICECREAM 

model by Larsson et al. (2007) and PSYCHIC by Davison et al. (2008). 

Approximately half of the reviewed field-scale, process-based models were 

event-based and thus unsuitable for the study. Some of the continuous 

process-based models including WEPP (USDA 1995), LISEM (De Roo et al. 

1996a, b), SHESED (Wicks and Bathurst 1996, Abbot et al. 1986a, b) and 

the model by Sharda and Singh (1994) use integrated soil- and groundwater 

flow models to improve the prediction of overland flow initiation. However, 

there appeared to be no process-based models that have the preferential 

flow and transport simulation capabilities required in the current study. 

A large body of research exists on preferential flow and transport 

phenomena and because they are an important part of the proposed system, 

an extensive part of the literature review (Section 2) is dedicated to the 

topic. The reviewed preferential flow models can be divided roughly into 

four groups according to how they treat the pore space in soil: 1) single pore 

system (e.g. Peters and Klavetter 1988, Mohanty et al. 1997, Ross and 
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Smettem 2000, Laine-Kaulio 2008), 2) dual-porosity (e.g. Coats and Smith 

1964, Pruess et al. 1999, Šimůnek et al. 2006), 3) dual-permeability (e.g. 

Hoogmoed and Bouma 1980, Gerke and van Genuchten 1993a, Larsbo and 

Jarvis 2003, Karvonen and Paasonen-Kivekäs 2007) and 4) multi-

permeability models (e.g. Steenhuis et al. 1990, Wilson et al. 1992, Gwo et 

al. 1995, Hendriks et al. 1999). Single pore system models simulate 

preferential flow and transport in one mobile pore system. Dual-porosity 

models divide the total pore space into mobile and immobile parts, while in 

dual- and multi-permeability models all the pore systems are mobile. 

According to Šimůnek et al. (2003), single pore system models do not 

emulate true preferential flow well, while multi-permeability system 

approaches can be computationally demanding and difficult to 

parameterise (e.g. Ray et al. 1997, Schwarz et al. 2000). Dual-porosity 

approaches were shown to be less realistic than dual-permeability 

approaches by Gärdenäs et al. (2006). Dual-permeability models can be 

further divided into conceptual, gravity-based and Darcian approaches 

according to how preferential flow is simulated in the macropore system. 

The gravity-based approaches for preferential flow might be suitable for 

forest soils (e.g. Bronstert and Plate 1997) but in agricultural fields, 

subsurface drains create pressure-driven flow fields which have to be 

handled with Darcian approaches (e.g. Karvonen 1988, Aura 1995 and 

Köhne et al. 2006). Several authors argued in their studies that 1-D 

preferential flow and transport models were not robust enough to simulate 

subsurface flow and solute transport and recommended use of 2-D profile 

models or 3-D models (e.g. Bronstert and Plate 1997, Mohanty et al. 1998, 

Gerke and Köhne 2004, Köhne et al. 2006, Hintikka et al. 2008). However, 

for example Hintikka et al. (2008) lamented that there are very few 2-D and 

3-D models available that support preferential flow and transport. Three 3-

D soil and groundwater flow and substance transport models were found 

that could simulate preferential flow and transport including the 

HILLFLOW (Bronstert and Plate 1997), TOUGH2 (Pruess et al. 1999) and 

HYDRUS 3-D (e.g. Šimůnek et al. 2006) models. Preferential flow in the 

HILLFLOW model uses a gravity-based approach. The HYDRUS 3-D and 

TOUGH2 models use the dual-porosity concept. 

While soil swelling and shrinkage models have been included in several 

earlier models, most notably in the FLOCR (Bronswijk 1988), MACRO (e.g. 

Larsbo and Jarvis 2003) and SWAP (e.g. Kroes et al. 2008) models, they 

are all restricted to 1-D simulations. Jussila (2007) presented a complex 2-

D model that simulated deformation of a bentonite shell used to encase 

used fuel rods from nuclear reactors. Unfortunately, the scale of the model 

is not suitable for the larger environmental systems simulated here. 
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Previous studies that integrated soil shrinkage and swelling processes to a 

simulation model operating in three spatial dimensions were not found. 

The reasoning behind the selection of numerical methods and model 

components is detailed below according to the presented literature review 

summary presented above (see the full literature review in Section 2). Even 

though no models were found that could be directly applied to the problem 

under study, it was evident from the review that a new custom model could 

be built based on the approaches used in earlier studies. Process-based 

models are usually based on partial differential equations (PDEs) 

representing governing flow and transport processes. Analytical solutions 

to PDEs are available only for special cases with simple domain geometry 

(e.g. Tracy 1995, 2007, 2008). General solutions applicable to any generic 

domain are derived with distributed numerical methods. According to the 

literature review, the most straightforward way is to divide the simulated 

field into separate 2-D overland and 3-D subsurface domains. This 

approach mirrors reality most accurately and the existing body of research 

in the two, somewhat separate, areas of research (soil erosion and 

subsurface flow and transport) can be applied as such.  

According to the models reviewed, there are relatively established ways to 

simulate different flow and transport processes in the field. Description of 

overland flow is usually based on the Saint Venant equations (e.g. Nord and 

Esteves 2005) or one of their simplified forms (e.g. kinematic wave or 

diffuse wave approaches) (e.g. Smith and Woolhiser 1971, Smith et al. 1995, 

De Roo et al. 1996a, b, Taskinen and Bruen 2007a). The diffuse wave 

approach (e.g. by Johnson et al. 2000) takes both elevation and water 

depth components into account enabling water to fill up larger surface 

depressions. Bulk of the process-based erosion models are built around the 

sediment continuity equation coupled with erosion process descriptions. 

The most suitable theoretical model for subsurface flow and transport that 

includes preferential flow and transport processes seems to be the dual-

permeability model (Schwarz et al. 2000, Gärdenäs et al. 2006, Köhne et al. 

2006). For agricultural fields, the most popular approach to simulate 

subsurface flow is the Richards equation (Richards 1931). The equation 

supports gravity, capillary forces and pressure-driven flow in unsaturated 

and saturated soils. Transport of sediment in soils can be simulated with 

the advection-dispersion equation (ADE) (e.g. Bear 1979) by considering 

sediment as a solute. Finally, the SWAP model (e.g. Kroes et al. 2008) 

appears to have the most complete model for simulating shrinkage and 

swelling of clay soils. 

A new simulation model is built using code and algorithms presented 

earlier in Karvonen (1988), Taskinen (2002) and Warsta (2005, 2007) as 
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guidelines. The results from the model are compared against theoretical 

cases and data from two subsurface drained, clayey agricultural fields in 

southern Finland. No new measurements were conducted in the study 

because there were several suitable data sets already available.  A special 

concern is the computational burden of running simulations with this 

complex model. Different optimisation methods are investigated to keep 

the simulation times as short as possible. The objective is to use the model 

on desktop computers. 

In addition to the hypotheses presented above, three research questions 

on computational modelling are formulated: 1) How can processes 

operating in different temporal scales be combined? 2) What is the effect of 

computational grid resolution on results and is it possible to achieve 

resolution-independent results? 3) Is it possible to accelerate the 

performance of the numerical model with special algorithms and hardware? 

1.5 Structure of the study 

The Introduction (Section 1) presents the motivation (Sections 1.1 and 

1.2), the objectives and hypotheses (Section 1.3) and the outline of the 

proposed computational model (Section 1.4). The reasoning behind the 

selection of various model components (Section 1.4) is based on the 

Literature review (Section 2). Objective of the Literature review (Section 2) 

is to evaluate published models that are relevant for this study. Applied 

modelling studies or empirical studies are not considered in Section 2. The 

Model description section (Section 3) literally describes the proposed 

model. The presented algorithms are also theoretically tested in this 

section. However, to make Section 3 as clear and straightforward as 

possible the reasoning behind the component selection was presented 

already in Section 1.4. In the Model application section (Section 4), the 

model is tested with data from two clayey, subsurface drained agricultural 

fields in southern Finland. The Discussion section (Section 5) strives to 

analyse the results presented in Section 4 and to connect them to existing 

literature. Section 5 is organised around the hypotheses presented in 

Section 1.3. A separate Conclusions section (Section 6) lists the major 

findings and the thesis concludes with a brief summary section (Section 7). 
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2. Literature review 

The literature review section provides an overview on computational 

methods for modelling water flow and soil erosion in clayey, subsurface 

drained agricultural fields. The main focus is on dynamic, 2-D and 3-D 

spatially distributed approaches. The studies are presented in a rough 

chronological order to illustrate the development of different methods. The 

review is divided into three parts: 1) Agrohydrological features, 2) 

Preferential flow and transport in soils and 3) Soil erosion. The literature 

about analytical models and specific numerical methods is presented 

alongside the numerical model in Section 3. The reasoning behind the 

selection of the different components in the developed model is presented 

in Section 1.4. 

2.1  Agrohydrological features 

Agrohydrological features section presents the basic elements required to 

model clayey, subsurface drained agricultural fields including 1) 

representation of water retention curves (WRC) and unsaturated hydraulic 

conductivity, 2) modelling soil swelling and shrinkage, 3) simulation of 

subsurface drains and 4) simulation of evapotranspiration. 

Groundwater flow and solute transport modelling are relatively young 

research fields (Zheng and Bennet 2002). The fundamental law for 

saturated flow in porous media was derived by Darcy (1856) from sand 

column experiments performed in Dijon, France. Buckingham (1907 cited 

by Nimmo and Landa 2005) extended Darcy’s law into unsaturated 

conditions by identifying the two main soil properties governing 

unsaturated flow: WRC and unsaturated hydraulic conductivity. Richards 

(1931) conducted experiments with unsaturated soils and discovered that 

unsaturated flow is driven by capillary forces. The origin of the advection-

dispersion equation is more difficult to trace. Skopp and Warrick (1974) 

and van Genuchten and Wierenga (1976) noted that Lapidus and 

Amundsen (1952) had derived an analytical solution for advective and 
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effective diffusive transport and linear adsorption. The study of dispersion 

phenomenon continued intensively through the 1950s to 1970s (Bear 1979). 

In the 1970s, macroscopic heterogeneity of soil was identified as the 

primary cause for dispersion (e.g. Schwartz 1977). 

2.1.1 Unsaturated hydraulic conductivity and WRC 

After Buckingham (1907), several attempts were made to describe WRC 

and hydraulic conductivity of unsaturated soils. Mualem (1976) divided the 

methods into two groups. The first group is based on the assumption that 

relative hydraulic conductivity is a power function of effective saturation of 

soil and includes models, e.g. by Averjanov (1950), Irmay (1954), Brooks 

and Corey (1964) and Boreli and Vachaud (1966). The second group derives 

hydraulic conductivity in unsaturated soils from WRC and it includes 

models by, e.g. Childs and Collis-George (1950), Burdine (1953), Wyllie and 

Gardner (1958) and Farrel and Larson (1972). An early review of various 

models developed for predicting hydraulic conductivity in unsaturated soils 

was presented by Brutsaert (1967). 

Andersson (1969) measured a large selection of WRCs and hydraulic 

conductivities of different soil types. Based on the texture of soil, an 

appropriate empirical representation of the curve can be selected. Mualem 

(1976) derived a compact general integral formula for WRC from the Childs 

and Collis-George (1950) model. The curve still had to be solved with 

numerical methods. Van Genuchten (1980) derived a closed-form equation 

to replace the general integral terms in Mualem’s formula and thus created 

a simple analytical equation for WRC. Kosugi (1994, 1999) presented a 

closed-form formula for soils with log-normal pore size distribution. 

Jauhiainen (2004) developed a closed-form method for determining WRCs 

from particle size distribution curves (PSDC). 

2.1.2 Soil swelling and shrinkage 

Modelling flow of water and transport of solutes in swelling clay soils is 

complicated because hydraulic conductivity of soil changes according to the 

moisture state of the soil. The changes in hydraulic conductivity are caused 

by crack networks that form and disappear with soil moisture changes (e.g. 

Bronswijk 1991). The volume change of soil matrix as a function of soil 

moisture change can be represented with soil shrinkage characteristic 

curves (SSCC). The curves can be measured in laboratory with different 

methods as shown by, e.g. Lauritzen and Stewart (1941) and Berndt and 

Coughlan (1976). Similarly to parametric WRCs (e.g. van Genuchten 1980), 

several parametric SSCCs have been developed to represent void ratio of 
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soil as an analytical function of its moisture ratio. The void ratio e [L3 L-3] 

and the moisture ratio ϑ [L3 L-3] are defined as follows: 

 
(1) 

 
(2) 

where VV [L3] is the volume of voids, VSOL [L3] is the volume of solids and 

VW [L3] is the volume of water. The volume changes are converted into 1-D, 

2-D, or 3-D shrinkage or swelling using the geometry factor or the 

distribution factor for crack formation and subsidence (Bronswijk 1990). 

The soil shrinkage and swelling system is embedded, in turn, into a soil 

moisture flow model.  

The soil swelling and shrinkage review section is divided into two parts: 1) 

Soil shrinkage characteristic curves and 2) Soil shrinkage systems in 

models. An earlier review of SSCCs was published by, e.g. Cornelis et al. 

(2006). 

Soil shrinkage characteristic curves 

Kim et al. (1992) derived a parametric SSCC for marine clay soils by 

combining linear and exponential functions. Proportional shrinkage is 

represented with a linear function, whereas the residual and zero shrinkage 

are described with an inverse of exponential function. The model does not 

consider structural shrinkage. The following equation was presented by the 

authors to represent SSCC: 

 (3) 

where αK, βK and γK [-] are fitting parameters and ϑS [L3 L-3] is the 

moisture ratio at the soil saturation point. 

Chertkov (2000, 2003) proposed a model based on statistical analogy 

between crack networks (Chertkov and Ravina 1998) and the probabilistic 

microstructure of a matrix consisting solely of clay particles. The 

proportional shrinkage part was modified by Cornelis et al. (2006) for soils 

in general: 

 (4) 

where ω [-] is a model coefficient, ϑA [L3 L-3] is the moisture ratio 

corresponding to the end of residual shrinkage, ϑB [L3 L-3] is the moisture 

ratio at the air entry point and ϑL [L3 L-3] is the liquid limit point for clay 

soil. Parameter σ [L3 L-3] is the intercept of SSCC in the proportional zone: 

 (5) 
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where eR [L3 L-3] is the residual void ratio corresponding to moisture 

ratios below ϑA. The value of e equals ϑ above moisture ratio ϑB. SSCC (Eq. 

4) was ranked best by Cornelis et al. (2006) in their review. 

In their model, Peng and Horn (2005) took advantage of the fact that 

shrinkage curves have the same sigmoidal shape as WRC. SSCC was 

represented with an inverted Mualem-van Genuchten (MVG) WRC 

(Mualem 1976, van Genuchten 1980). A single equation is used to describe 

all the shrinkage zones including the structural shrinkage zone: 

 (6) 

where eS [L3 L-3] is the void ratio at saturation water content point and 

αMVG [L-1], nMVG [-] and mMVG [-] are MVG WRC parameters. The parameter 

αMVG is related to the inverse of a characteristic pore radius and nMVG to the 

pore size distribution (e.g. Gärdenäs et al. 2006). The Peng and Horn 

(2005) model raises hopes of a unified approach for representing WRC and 

SSCC. The WRC and SSCC pair could be further extended by including 

PSDC in the chain (PSDC->WRC->SSCC). 

Soil shrinkage systems in models 

The FLOCR model developed by Bronswijk (1988) and Oostindie and 

Bronswijk (1992), simulates water flow and dynamic crack formation in a 1-

D soil column. The shrinkage parameters (moisture and void ratios) are 

presented in a table format as a function of pressure head. The volume 

change calculated with the shrinkage parameters is distributed with the 

geometry factor rS [-] between the change of depth ΔzCR [L] and the change 

of crack volume ΔVCR [L3] of the layer: 

 (7) 

 (8) 

where zL [L] is the layer depth in saturated state and V1 and V2 [L3] are the 

volumes of the soil layers before and after shrinking or swelling. 

Jarvis and Leeds-Harrison (1990) extended the model proposed by Jarvis 

and Leeds-Harrison (1987) and Jarvis (1989b) by adding swelling and 

shrinkage processes to the system. In the resulting CRACK model, the 1-D 

soil profile is divided into discrete layers each containing cube-shaped 

aggregates of equal size, separated by planar cracks. The crack porosity is 

calculated as a function of the bulk soil water status and the slope of SSCC. 

The crack width and aggregate surface area is calculated from the geometry 

when the crack porosity and aggregate size are known. 
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In the MACRO model (e.g. Larsbo and Jarvis 2003), the 1-D soil profile is 

treated as macroscopically rigid, i.e. the total porosity and the layer 

thickness are held constant. Macroporosity is calculated with a linear 

function of soil moisture in the matrix, i.e. SSCC is considered to be linear. 

Macroporosity value is used directly in the hydraulic conductivity function 

of the macropores.  

Novák et al. (2000) extended the 1-D HYDRUS-ET model (Ŝimůnek et al. 

1997) with the FRACTURE submodel. The crack porosity is calculated 

directly as a linear function of soil water content similar to the MACRO 

model. Additional parameters required are specific length of cracks per unit 

soil area and depth of cracks. The same assumptions are adopted about the 

rigidity of the soil layers as in the MACRO model. 

Jussila (2007) presented a complex swelling model for bentonite clay 

cylinders used to encase spent fuel rods from nuclear reactors. The model 

features unsaturated moisture, heat and gas flows coupled to deformation 

of the medium. 

The SWAP model (e.g. Kroes et al. 2008) includes several options 

regarding soil swelling and shrinkage modelling including combined 

simulation of dynamic macroporosity and static macroporosity. For clayey 

soils, the model uses the SSCC of Kim et al. (1992) and for peaty soils the 

model of Hendriks (2004).  

2.1.3 Subsurface drains 

The subsurface drain description is an integral part of models targeted at 

simulation of water flow in clayey fields. Different conceptual and steady-

state approaches, as well as methods used in distributed systems are briefly 

reviewed. An extensive review on the topic was compiled earlier by Feddes 

(1988). 

Development of steady-state equations to aid the design of parallel field 

drainage systems started in the first half of the 20th century. Hooghoudt 

(1940) presented a steady-state drainage equation for homogenous soils 

and soils with two distinct layers. In the latter case, the top layer is highly 

permeable while the bottom layer is poorly permeable. Ernst (1962) derived 

an equation for soils with a poorly permeable layer above a highly 

permeable substratum and a modified version for a case with two 

permeable layers below the drain level. Ernst (1975) combined the 

Hooghoudt (1940) and Ernst (1962) approaches into a single equation 

applicable to all the presented cases. van Beers (1976) has presented 

derivations and application examples for all three equations. 

The Hooghoudt and Ernst’s equations have been included in several 

conceptual and distributed models. The Hooghoudt equation is available, 
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e.g. in DRAINMOD (Skaggs 1980), WEPP (e.g. Savabi 1993), 2D-

CROPWATN (Karvonen and Paasonen-Kivekäs 2007) and in models by 

Koivusalo et al. (1999) and Abbaspour et al. (2001). The Ernst equation is 

used in the FLOCR model (Bronswijk 1988, Oostindie and Bronswijk 1992, 

Hendriks et al. 1999). In the SWAP model (e.g. Kroes et al. 2008), the user 

can choose between Hooghoudt variants and Ernst equations according to 

the problem at hand. Subsurface drainflow in the MACRO model (e.g. 

Larsbo and Jarvis 2003) is calculated in two parts. Flux from the saturated 

layers above the drains is calculated with a seepage potential theory for 

layered soils (Youngs 1980, Leeds-Harrison et al. 1986). Flux to drains from 

below is calculated with the Hooghoudt equation. The seepage potential 

theory is also used in the CRACK-NP model (Armstrong et al. 2000). 

In distributed models, drains are usually modelled in a more 

straightforward way than in steady-state approaches because the soil layers 

and pressure distributions are taken into account by the model. Fipps et al. 

(1986) tested four different methods for representing subsurface drains in a 

finite element-based numerical solution of the Richards equation: 1) 

multimode approach with model drain, 2) single node approach with 

specified flux, 3) the specified head approach and 4) the resistance 

adjustment approach. In the resistance adjustment method, the 

conductivity at the drains is adjusted by a factor determined from the ratio 

of the effective radius of the drain to the size of the elements surrounding 

the drain node. The problem with methods 1) and 3) is that a large amount 

of nodes is needed in the vicinity of the drain for realistic results, while 

methods 2) and 4) also worked with coarse grids. Fipps and Skaggs (1989) 

investigated the effect of slope and different boundary conditions on 

drainage of hillsides with the same model as Fipps et al. (1986). Small 

slopes (< 0.15) had little effect on drainflow rates and water table depths in 

the central region of the slope. The study confirmed that drainage theory 

developed for flat land applications can be applied to the interior drains on 

small slopes. 

Karvonen (1988) made a thorough comparison between 1) a 2-D finite 

element-based approach with a progressively denser grid near the drain, 2) 

an analytical model and 3) a 1-D approximation. The author concluded that 

there are no major benefits to be gained from the more complicated 

modelling of the drain geometry compared to simpler approaches, due to 

uncertainty with available field data. Aura (1995) modelled subsurface 

drains in a 2-D finite element network by setting the node containing the 

drain and the surrounding gravel envelope nodes at constant atmospheric 

pressure. In the HYDRUS model (e.g. Šimůnek et al. 2006), the drains can 
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be simulated with a resistance adjustment or as seepage faces at the drain 

perimeter. 

2.1.4 Evapotranspiration 

Literature on modelling actual evapotranspiration (ET) is only presented 

briefly because it is not the main topic of the thesis. The process has a 

notable impact on the water balance during the growing season. 

Penman (1948) presented an equation that described evaporation from an 

open water surface and lysimeters as a function of daily mean temperature, 

wind speed, relative humidity and solar radiation. Monteith (1965, 1981) 

extended the Penman (1948) model to estimate actual evaporation from 

vegetated areas. Other methods to calculate PET include, e.g. the Makkink 

(Makkink 1957), Haude (Haude 1958), Allen (e.g. Allen et al. 1994) and 

Mikkelsen-Olesen (Mikkelsen and Olesen 1991 cited by Christiansen et al. 

2004) approaches. Tamm (2002) found out that both Penman-Monteith 

and Priestley-Taylor (Priestley and Taylor 1972) methods can be used to 

derive PET values in Estonian conditions. PET can also be approximated 

from the water loss measured from evaporation pans, although the results 

from the pans have to be corrected with experimental multipliers 

(Vakkilainen 1982). 

In distributed simulation models, the calculated PET value is usually first 

divided into potential evaporation (PE) and potential transpiration (PT) 

with approaches based on leaf area index (LAI) or soil cover fraction. 

Methods for dividing PET into PE and PT components were presented by, 

e.g. Karvonen (1988), Larsbo and Jarvis (2003) and Kroes et al. (2008). 

The PT part is then divided into the root zone, uniformly or according to a 

root mass distribution. The root distribution R [-] can be modelled with an 

exponential function (Feddes et al. 1974, Gerwitz and Page 1974 cited by 

Jarvis 1989a): 

 
(9) 

where fR [-] is an empirical root distribution parameter, Δzi [L] is the 

thickness of the layer i, zR [L] is the depth of the root zone and zi [L] is the 

depth of the layer i at its midpoint below the surface. The root mass 

distribution in the model by Karvonen (1988) is obtained from the crop 

growth model included in the system. In the HYDRUS model (e.g. Šimůnek 

et al. 2006), Ri is prescribed as an external input. 

If soil is too dry or wet it is possible that the full PT value cannot be 

extracted by plants. Feddes et al. (1978) proposed a dimensionless stress 

factor αF [-] that could be used in a root uptake function S [T-1]: 
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 (10) 

where TM [L T-1] is the PT rate. The αF factor is a piecewise linear function 

of pressure head h [L] (Fig. 1). Transpiration stops when h rises above the 

threshold pressure head h1 or falls below the pressure head h4 (wilting 

point)(Fig. 1). 

 

Figure 1. Dimensionless reduction factor αF of potential transpiration as a function of 
absolute soil pressure head (Feddes et al. 1978). 

The factor αF by Feddes et al. (1978) has been widely used in models, e.g. 

in the model by Karvonen (1988), FLOCR (Hendriks et al. 1999), HYDRUS 

(e.g. Šimůnek et al. 2006) and SWAP (e.g. Kroes et al. 2008). The original 

FLOCR model takes transpiration only from the top layer of the profile and 

is thus suited only for plants with shallow root depths (Bronswijk 1988, 

Oostindie and Bronswijk 1992). Jarvis (1989a) presented a root water 

uptake model that allows stress-induced reductions in water uptake in one 

part of the root zone to be compensated by enhanced flow rates from other 

parts which still contain available water. Stress indices are calculated for 

each layer in the root zone with a threshold type function. The system is 

used in the MACRO model (e.g. Larsbo and Jarvis 2003). 

Evaporation from the field surface is restricted by the moisture state of 

the soil. In the SWAP model (e.g. Kroes et al. 2008), Darcy’s law is used to 

calculate the maximum evaporation rate. In Karvonen’s (1988) model, 

evaporation is integrated into the top boundary condition. When the 

pressure head at the soil surface is below vapour pressure in the 

atmosphere, the surface is treated as a prescribed head boundary for 

evaporation. When the pressure head of the surface is above atmospheric 

equilibrium and below zero pressure, the surface is treated as a flux 

boundary for infiltration. The model does not consider higher pressure 

heads than zero at the surface, indicating that surface ponding is neglected. 

A similar method is used in the HYDRUS model (e.g. Šimůnek et al. 2006). 
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2.2 Preferential flow and transport in soils 

Interest in the study of preferential flow has increased dramatically since 

the 1980s, as evidenced by the rapid growth in the number of papers 

published on the subject (Jarvis 2007). Both theoretical and numerical 

models, aimed at simulating preferential flow and solute transport in 

structured soils, are reviewed. The studies are divided here into three 

categories: 1) Single pore system models, 2) Dual-porosity models and 3) 

Dual- and multi-permeability models. The different mass exchange 

approaches used in the models to exchange water and solutes between pore 

systems are also reviewed. Earlier reviews have been published on the topic 

by, e.g. Beven and Germann (1982), van Genuchten and Dalton (1986), 

Brusseau and Rao (1990), Feyen et al. (1998), Nieber (2001), Šimůnek et al. 

(2003), Klepsch et al. (2005), Gerke (2006) and Clothier et al. (2008). A 

separate discussion section on the different preferential flow approaches is 

included at the end of the section. 

2.2.1 Single pore system models 

Several models adopt a single pore system concept but use different 

approaches to simulate preferential flow. Soil water flow is based on the 

Richards equation in all of the models presented in this section. Peters and 

Klavetter (1988) assumed that the pressure heads in the macropore and soil 

matrix systems are in instantaneous equilibrium, but the hydraulic 

properties of soil are the weighted average of both systems: 

 
(11) 

where w [L3 L-3] is the relative volumetric proportion of the macropore 

system, z [L] is the vertical coordinate, t is the time [T] and CW [L-1] and K 

[L T-1] are the differential water capacities and unsaturated hydraulic 

conductivities, respectively, for matrix (M) and macropore systems (F). 

Mohanty et al. (1997) devised a model which uses piecewise-continuous 

hydraulic functions that account for the rapid increase in the hydraulic 

conductivity near the saturation point: 

 (12) 

where h* [L] is the critical pressure head where the flow changes from 

capillary dominated flow to macropore flow, K* [L T-1] is the hydraulic 

conductivity corresponding to h* and λ is a fitting parameter [L-1]. 

In an approach by Ross and Smettem (2000), pressure head and water 

content are uncoupled and an additional equation is used to describe the 
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change of water content in soil. Pressure is then able to propagate more 

rapidly into soil, followed by rising water content. 

 (13) 

where θ [L3 L-3] is the volumetric water content, the superscripts η and 

η+1 [-] are the new and old computation time steps, respectively, in the 

numerical time discretisation, θE [L3 L-3] is the equilibrium water content 

from the water retention function, Δt [T] is the time step and ι [T] is the 

equilibrium time constant. 

2.2.2 Dual-porosity models 

In dual-porosity models, the soil or rock matrix works as a reservoir and 

forms the immobile pore system. The actual flow and solute transport 

occurs in the macropore domain which forms the mobile pore system 

(Šimůnek et al. 2003). The matrix and macropore domains are connected 

with mass exchange functions for water and solutes with various 

formulations. The dual-porosity term is slightly ambiguous in the literature. 

For example, Gerke (2006) groups early models used in petroleum 

reservoirs and groundwater exploitation (e.g. Duguid and Lee 1977, Bibby 

1981) to this group, even though they may have two conducting pore 

systems. 

Discrete, gravity driven, macropore flow models 

Theoretical models reviewed in this section use gravity-based approaches 

to describe flow in the mobile pore system consisting of one or several 

discrete macropores, such as cracks or wormholes. With the exception of 

CRACK-NP, the models do not support the computation of solute transport.  

Edwards et al. (1979) developed a numerical model to simulate non-

capillary infiltration through a circular, vertical macropore in the soil. 

Precipitation in the model is initially directed into the soil matrix as 

infiltration. Additional water is directed into the macropore or lost as 

surface runoff when the infiltration capacity of the macropore is exceeded. 

Infiltration into the soil matrix from macropore walls is calculated with the 

Richards equation which is solved numerically with a finite difference 

method in a cylindrical coordinate system. The authors found out that 

macropore diameter, depth and horizontal spacing had a strong influence 

on infiltration and runoff results. 

Ruan and Illangesekare (1998) used a similar approach to simulate the 

effect of circular macropores on the generation of overland flow. They 

investigated the effect of hillslope and depression scale topography on 
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macropore flow activation. A rising water level in the analytically generated 

depressions activated new macropores. Water depths started to change at 

the hillslope scale after the depressions filled up and overland flow started. 

The sensitivity analysis showed that macropore and overland flow were 

more sensitive to the macroporosity of the soil and less sensitive to the 

microtopographic variations. 

Léonard et al. (2001) developed and tested an event-based model to 

simulate the effect of spatially distributed large circular macropores on 

surface runoff. The modelling results showed that small heterogeneities, 

such as macropores or areas where the crust is destroyed, can have a high 

impact on runoff generation. 

Jarvis and Leeds-Harrison (1987) extended a previously developed 1-D 

model of water movement in drained clay soil (Leeds-Harrison et al. 1986) 

with a crack flow component. Infiltration into the soil matrix is calculated 

with the Philip’s (1957) equation. Water flow in parallel cracks is calculated 

with a modified version of Childs’ (1969): 

 (14) 

where q [L T-1] is the soil fluid flux density, ρW [M L-3] is the density of 

water, g [L T-2] is the acceleration due to gravity, μ [M L-1 T-1] is the dynamic 

viscosity of water, dW [L] is the crack width, SE [L3 L-3] is the relative water 

content (Eq. 43) in the cracks and ϕ [-] is an empirical constant. The 

authors emphasised that horizontal water uptake during fast descending 

crack flow was a major component of the water balance, unlike in the model 

by Hoogmoed and Bouma (1980) where the horizontal infiltration was not 

important. 

Jarvis (1989b) and Jarvis and Leeds-Harrison (1990) extended the model 

by Jarvis and Leeds-Harrison (1987) with transpiration, continuous 

exchange of water between the pore systems and dynamic treatment of 

cracks. The resulting CRACK model was applied to a grass field site in 

Bedford, England. The authors concluded that water balance in clay soils 

may be predicted with accuracy from water uptake by roots and the rapid 

flow in the cracks. The CRACK model was extended later with leaching of 

nitrates and pesticides (CRACK-NP) by Armstrong et al. (2000). 

Volume averaged flow and transport models 

Theoretical models and applied modelling studies presented in this 

section use Darcy or the Richards equation for water flow and advection, 

dispersion, or a combination of the two processes for solute transport in the 

mobile pore system. 
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Coats and Smith (1964) presented a theoretical dual-porosity transport 

model using ADE to describe 1-D solute transport in the inter-aggregate 

space: 

 
(15) 

 
(16) 

where c [M L-3] is the solute concentration in soil (F refers to the 

macropore and M to the matrix pore systems), D [L2 T-1] is the dispersion 

coefficient, v [L T-1] is the subsurface flow velocity and ΓS [M L-3 T-1] is the 

solute exchange rate between the pore systems. 

Skopp and Warrick (1974) described a dual-porosity solute transport 

model with advection as the only transport mechanism in the mobile region 

and molecular diffusion as the exchange mechanism between the mobile 

and immobile regions. The proposed equations were solved with an 

analytical approach. The model was used to describe breakthrough curves 

of calcium replacing magnesium and picloram herbicide displacement. The 

results of picloram simulations were not so successful, which was attributed 

to the complex adsorption properties of the organic compounds. 

Van Genuchten and Wierenga (1976) extended the model of Coats and 

Smith (1964) to sorbing porous media. The analytical model derived by the 

authors reproduced the long tailing effect common with flow through 

unsaturated, aggregated, sorbing media and the early breakthrough of 

chemicals in the effluent. 

Sudicky (1990) applied the finite element Laplace transform (FELT) 

method to solve transport of solutes in dual-porosity media including 

parallel slabs and spherical blocks. The solution is divided into three steps. 

First, a Laplace transform operator is applied to the dual-porosity transport 

equations (Eqs. 15 and 16). Finite element discretisation and solution is 

then used to obtain concentrations in the Laplace space (Gallo et al. 1996). 

Finally, an inversion of the solution in the Laplace domain is used to obtain 

concentrations in the time domain. The concentrations at any future time 

point can be obtained without the use of time disretisation with the 

approach. Analytical solutions were used to check the validity of the results. 

Gallo et al. (1996) noted that the FELT technique for solute transport is 

only applicable to problems with constant velocity and saturation fields. 

The TOUGH2 model is capable of modelling 1-D, 2-D and 3-D saturated 

and unsaturated flow, as well as multi-phase and multi-component 

chemical transport in porous and fractured media (Pruess et al. 1999). The 

dual-porosity approach in the model is based on the classical Warren and 
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Root (1963) concept, i.e. water flows only in the fractures and the matrix 

blocks act as immobile reservoirs. However, it is possible to embed several 

matrix blocks inside each other to simulate the slow saturation of the 

blocks. 

The HYDRUS software package is a commercial model for simulating 1-D, 

2-D and 3-D movement of water, heat and multiple solutes in variably-

saturated media (e.g. Vogel et al. 1996, Ŝimůnek et al. 1997, Šimůnek et al. 

2006). The spatial components of the PDEs are solved implicitly with a 

finite element method, with options for several different 2-D and 3-D 

element shapes. Preferential flow is simulated with the dual-porosity 

concept, and the Richards equation and ADE are used to simulate water 

flow and solute transport in the mobile pore system. It is possible to 

simulate chemical reactions, e.g. nitrogen processes, with the reactive 

transport model (e.g. Räsänen 2009). Several different boundary 

conditions are supported including Dirichlet, Neumann and specified 

gradient-type boundary conditions. 

2.2.3 Dual- and multi-permeability models 

Dual- and multi-permeability models divide the total pore volume into 

two or more pore systems which all conduct water and solutes and 

exchange water according to a specified scheme. 

Conceptual dual-permeability models 

Conceptual dual-permeability models include two mobile pore systems of 

which at least one is described in a non-mechanistic way. Flow in the soil 

matrix is calculated with the Richards equation if not mentioned otherwise. 

Hoogmoed and Bouma (1980) combined two existing models (van Keulen 

and van Beek 1971, van der Ploeg and Benecke 1974) to simulate the flow of 

water in cracked clayey soil. Data from heavy clay soils from the 

Netherlands reported by Bouma et al. (1978) were used to verify the 

dynamic simulations. Due to the short duration (< 1.0 d) of the experiment, 

the cracks were treated as static. Flow in the soil matrix is calculated with 

the Richards equation using a measured hydraulic conductivity-pressure 

relation. When the soil surface water depth exceeds a threshold of 2.0 mm 

the additional water is directed to the cracks. Water in the cracks is moved 

directly from the soil surface to a specified depth. The advantage of this 

simplified approach is that only a single set of hydraulic parameters is 

needed. Horizontal infiltration into crack walls is calculated with a 

simplified Richards equation with measured diffusivity-volumetric water 
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content relation. The wetted surface area in the cracks is also based on 

measurements. 

Bronswijk (1988) and Oostindie and Bronswijk (1992) developed the 

FLOCR model by adding a dynamic cracking and subsidence model into the 

FLOWEX model (Wind and Van Doorne 1975). Data on clay soil from a 

Dutch basin were used to test the model. In the FLOWEX model, water 

starts to infiltrate laterally into crack walls only at the bottom of the crack 

and thus no infiltration into the matrix occurs during the rapid vertical 

flow. The model supports a maximum of five different soil types and 30 

computational layers. 

Novák et al. (2000) developed the FRACTURE submodel for the 1-D, 

single pore system HYDRUS-ET model and tested the system with several 

theoretical scenarios, using soil data from Trnava experimental site in 

Slovakia. Water flow into cracks is initiated after the surface water depth 

threshold (1.0 mm) is exceeded. Water that does not infiltrate into the soil 

matrix or does not fit into the cracks is considered surface runoff. Water 

infiltrating into the cracks is directly transferred to the saturated zone 

below. Novák et al. (2000) noted that the infiltration rate from the cracks 

into the soil matrix accelerated after the cracks started to fill up. This was 

due to the increased wetted surface area and pressure gradient. The 

infiltration capacity of soil without cracks was less than half of the 

infiltration capacity of soil with cracks. 

Abbaspour et al. (2001) extended the SWMS_2D model (Simunek et al. 

1994) by adding a macropore system and an additional Hooghoudt drain 

boundary condition. In the resulting M-2D model, overland water 

infiltrates first into the top surface cells. When the top cells fill up, the 

excess water is directed to the macropore cells. Flow in the macropore 

system is 1-D, non-capillary and laminar, and solute transport is purely 

advective. Solute transport in the soil matrix is calculated with ADE. The M-

2D model was tested with data from a subsurface drained experimental site 

in Zurich, Switzerland. The macropore system and Hooghoudt drain 

boundary condition improved simulation of concentration peaks and water 

table level dynamics markedly. 

The SWAP model is a free 1-D model for simulating water flow and 

transport of heat and solutes in the vadose zone (e.g. Kroes et al. 2008). 

Preferential flow is simulated with a conceptual approach. Water 

infiltrating into macropores is instantaneously added to the water storage at 

the bottom of the macropores. The structure of the macropore system is 

described by three properties: continuity, persistency and horizontal 

distribution. Macropores are divided into main bypass and internal 

catchment domains according to their vertical and horizontal continuity. 
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The main bypass flow domain forms a network of continuous macropores 

to subsurface drains, while the internal catchment domain is formed of 

disconnected macropores that end at different depths in the profile. Water 

can be exchanged between soil matrix and macropores via infiltration and 

exfiltration schemes. Different schemes are used for low soil moisture 

conditions and wet conditions. 

Larsson et al. (2007) extended the ICECREAM model with several new 

processes including macropore flow, particle transport in macropores and a 

new description for particle detachment on the field surface. Infiltration 

into macropores is assumed to occur only if the water content of the two top 

layers exceeds an assigned threshold water content value. Water and 

suspended particles in macropores are channelled directly to the 

groundwater reservoir without interaction with the soil matrix. The flux of 

suspended particles is reduced by sieving processes such as mechanical 

trapping and sedimentation in the macropores. Subsurface drainflow is 

extracted from the groundwater reservoir. 

Karvonen and Paasonen-Kivekäs (2007) presented the 2D-CROPWATN 

model that simulates water flow in a 2-D soil profile in a sloping field. The 

original CROPWATN model (Karvonen and Kleemola 1995) is loosely based 

on the DRAINMOD model (Skaggs 1980). In contrast to the DRAINMOD 

model, the profile in 2D-CROPWATN does not have to be in a hydraulic 

equilibrium. The model includes a non-equilibrium water storage that is 

filled up with excess water infiltrating into the soil matrix or macropores. 

Water from the storage can discharge to either pore system (matrix or 

macropores). Other differences are that the soil matrix and macropore 

systems are simulated separately, and soil moisture state can be calculated 

in two separate layers. 

Gravity driven dual-permeability models 

The models in this section use gravity-based approaches, e.g. the 

kinematic or diffuse wave approximations of the general shallow water 

equations to calculate flow in the macropore system. In the kinematic wave 

approximation, the Saint Venant equations are simplified by neglecting the 

local inertia, the convective inertia, the pressure gradient and the 

momentum source terms. In the diffuse wave approximation, the water 

pressure gradient is included in the momentum equation. Water movement 

in the soil matrix is calculated with the Richards equation if not stated 

otherwise. 

Beven and Germann (1981) used the Childs (1969) approach with 

different macropore geometries to derive a general kinematic wave type 

model for flow in macropores. The model was applied to several theoretical 
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scenarios, including the relative effect of macropores in soils with different 

soil matrix hydraulic conductivities. The effect of macropore flow was 

greatest in soils with intermediate hydraulic conductivities. If the matrix 

conductivity was low diffusion from macropores to matrix was slow while 

the volume of the macropores was insignificant compared to the volume of 

precipitation. On the other hand, a matrix with high conductivity quickly 

masked out the effect of macropores. 

Germann and Beven (1985) devised a kinematic wave type approach to 

model a single square pulse moving in an undisturbed block of soil. It was 

assumed that a uniform macropore system existed throughout the soil 

block in which the pulse can travel with a piston type movement. 

 
(17) 

 (18) 

 
(19) 

where CK [L T-1] is the kinematic wave velocity, r [T-1] is the macropore 

sorbance as a decrease of volume flux density per unit depth, b [L T-1] is the 

macropore conductance parameter and l [-] is the kinematic wave 

exponent. 

MIKE-SHE is a commercial modelling system developed by the Danish 

Hydraulic Institute (DHI). The model includes 1-D unsaturated and 3-D 

saturated subsurface flow simulation approaches. Solute transport 

processes are described with ADE. Preferential flow is provided as an 

optional add-on and is described with the kinematic wave simplification. 

Macropore flow is initiated when the prescribed pressure threshold in the 

soil matrix is exceeded. MIKE-SHE can be combined with the DAISY model 

(Abrahamsen and Hansen 2000) to include pesticides and crop-related 

processes in the model (Christiansen et al. 2004). 

The MACRO model is a free 1-D model for simulation of water flow and 

solute transport in field soils (e.g. Jarvis 1994, Jarvis and Larsson 1998, 

Larsbo and Jarvis 2003). Vertical water movement in the macropore 

system is solved with the kinematic wave approach, i.e. capillarity is 

assumed to be negligible. Flow in the pore systems is separately treated in 

the numerical solution. The matrix system is solved with a fully implicit 

scheme while the macropore system is solved with an iterative implicit 

method called interval halving (Larsbo and Jarvis 2003). 

Bronstert and Plate (1997) presented a comprehensive modelling system 

HILLFLOW for 2-D or 3-D simulation of runoff generation and soil 
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moisture dynamics in hillslopes and micro-catchments. In the HILLFLOW 

model, infiltration into the soil matrix at the surface is calculated with the 

method of Feddes et al. (1978). Matrix water dynamics are solved with 

etiher potential flow theory or with a quasi-explicit solution of the Richards 

equation. Infiltration into macropores is initiated when the soil matrix 

infiltration capacity is exceeded. Lateral macropore flow is called 

subsurface storm flow in the model and is calculated with the diffuse wave 

approximation. Subsurface storm flow is initiated when more water is 

infiltrating into macropores from the surface than is infiltrating from 

macropores to the soil matrix. The model was tested with data from several 

small forested catchments in Germany. The authors concluded that a 

realistic representation of the prevailing hydrological conditions requires 

that lateral fluxes are included in simulation models. 

RZWQM or Root Zone Water Quality Model is a free 1-D water flow and 

agro-chemical transport model developed by the Agricultural Systems 

Research Unit of the United States Department of Agriculture (USDA) (e.g. 

RZWQM Team 1998). The flow in macropores is calculated using 

Poiseuille’s law assuming gravity flow. Water infiltrates into macropores 

only from the field surface. However, water can be absorbed from 

macropores to the soil matrix. A dead end macropore system in the model 

can store water after the matrix system is saturated. 

Darcian dual-permeability models 

Darcian dual-permeability models include theoretical models and model 

applications which use volume averaged Darcy or Richards equations to 

model flow in both pore systems. Pure solute transport models using two 

ADEs to describe transport in soil matrix and macropores are also included 

in this category. 

Skopp et al. (1981) constructed a 1-D dual-permeability model by coupling 

to ADEs together with an interaction coefficient. Total porosity of soil is 

divided between macro- or inter-aggregate and matrix or intra-aggregate 

porosities. The theoretical model is as follows: 

 
(20) 

 
(21) 

Skopp et al. (1981) presented an analytical solution based on the regular 

perturbation theory for the equations for slow interactions and showed that 

for rapid interactions the model simplified into a single ADE. Gerke and 

van Genuchten (1993a) noted that the approach is still limited to steady-
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state transport, while the analytical solution is only valid for relatively slow 

interaction between the pore systems. 

Othmer et al. (1991) presented a 1-D, unsaturated water flow model using 

a set of two Richards equations coupled with a source/sink term. The 

measured WRC was split into two parts and the resulting bimodal model 

was used for the two pore systems. The theoretical model is as follows: 

 
(22) 

 
(23) 

where ΓW [T-1] is the water exchange rate between the pore systems. The 

model was tested with soil samples from Neuenkirchen, Germany. The 

hydraulic functions have to be well defined in the wet range to accurately 

approximate the properties of the macropore system with this approach 

(Gerke and van Genuchten 1993a). 

Gerke and van Genuchten (1993a) proposed a theoretical 1-D model for 

flow of water and solute transport in unsaturated soil or rock using the 

Richards equations and unsaturated ADEs for the soil matrix and 

macropore systems. Instead of using a bimodal WRC such as in Othmer et 

al. (1991), separate parameterisations were applied to both pore systems. 

The authors also presented a 1-D finite element-based numerical solution 

for the problem. The discretised flow equations of the soil matrix and 

macropore systems were solved simultaneously with Gaussian elimination 

using LU decomposition (seven-diagonal matrix) and back substitution 

(Gerke and van Genuchten 1993a). The authors noted that the 

simultaneous solution was more stable than iterating between the pore 

systems. 

The dual-permeability model of Gerke and van Genuchten (1993a) was 

extended to two spatial dimensions by Ray et al. (1997). An element 

averaged fluid exchange term between the pore systems was introduced to 

balance the oscillatory behaviour encountered with high advective exchange 

rates in the original model. The model was used to evaluate the theoretical 

impacts of agricultural practices including conventional and conservation 

tillage on solute leaching. The macropore system was parameterised with 

the hydraulic properties of coarse sand. 

Vogel et al. (2000) presented the theoretical model of Gerke and van 

Genuchten (1993a) in a general form and derived a 2-D, numerical, finite 

element-based solution to the equations. Five theoretical furrow irrigation 

scenarios were compared with the model: 1) a single pore system having 
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uniform hydraulic properties, 2) a single pore system with randomly 

distributed hydraulic conductivity, 3) a dual-permeability system with 

uniform hydraulic properties, 4) a dual-permeability system with randomly 

distributed fracture hydraulic conductivity and 5) a dual-permeability 

system with randomly distributed matrix hydraulic conductivities. The 

dual-permeability systems with spatial variability produced the most rapid 

solute leaching rates. 

Novak et al. (2003) assessed metolachlor herbicide losses via subsurface 

drainflow in structured soil in France with the mechanistic, stochastic 

AgriFlux model (Banton et al. 1997). AgriFlux allows the use of statistical 

variability of the parameters using the Monte Carlo approach. Because of 

the stochastic approach, two physical domains can be juxtaposed to reflect 

the matrix and macropore systems. However, the method does not support 

exchange of water and solutes between the pore systems. Subsurface water 

flow is determined from the cubic approximation of the unsaturated 

hydraulic conductivity. The PDEs are solved numerically with the 

integrated finite difference method. The results suggested that the main 

factors involved in metolachlor transport in the field site were soil 

macroporosity and sorption kinetics. 

Gärdenäs et al. (2006) compared several conceptually different ways to 

model preferential flow and transport of a pesticide into subsurface drains 

with the HYDRUS 2-D model. The models were applied to a strongly 

undulating, glacial till field site under cultivation in Sweden. The authors 

used four different model configurations: 1) an equilibrium flow model 

using the composite hydraulic conductivity function of Vogel and Císlerová 

(1988) and ADE for solute transport, 2) an equilibrium flow model and 

mobile-immobile solute transport model (van Genuchten and Wierenga 

1976), 3) a dual-porosity model (e.g. Šimůnek et al. 2003) and 4) a dual-

permeability model (a specially developed version of HYDRUS 2-D). The 

modelled 2-D field section was approximately 50 m wide and 3 m deep and 

contained three subsurface drains. The most interesting result was that 

none of the models captured the flow and transport processes very well with 

the measured and approximated soil properties. Dual-porosity and dual-

permeability models were able to capture the dynamics of the measured 

pesticide concentration, while the models using equilibrium flow 

approaches produced too low concentration peaks, occurring too late. 

Multi-permeability flow and transport models 

Multi-permeability models have three or more pore systems that are 

either mobile or immobile. Steenhuis et al. (1990) developed a 1-D, 

preferential flow and transport model with an arbitrary number of pore 
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systems. The hydraulic conductivity in a pore system cell is calculated as a 

linear function of the water content. The hydraulic conductivity in each 

successive pore system is a constant integer multiple of the previous 

system. The value of hydraulic gradient between cells is assumed to remain 

constant near unity, while matric potential gradient is not considered. The 

time for water to travel the cell height in the pore system with the largest 

pores is the shortest time interval in the model and it is used as the basic 

computational time step. Solute transport inside a pore system and 

exchange between the pore systems are simulated with advection only. The 

model was tested against laboratory column data. 

Wilson et al. (1992) extended the model by Smettem and Kirkby (1990) to 

a flow system consisting of micro-, meso- and macropore systems. WRC 

was modelled in a piece-wise manner across the pore systems. Fermi 

functions were used for the macropore system and a combination of Fermi 

functions with MVG model for the meso- and micropore systems. The 

model was fitted to data from A, B and C soil horizons from a forested site. 

When soil was saturated, flow occurred through all the three pore systems, 

but most rapidly through macropores. For soil conditions below saturation 

but above field capacity, flow occurred predominantly through meso- and 

micropores. For soil water conditions below field capacity, flow occurred 

only in the micropores. The division between macro- and mesopore systems 

was assumed to take place at 0.1 m suction. 

Skopp and Gardner (1992) extended the solute transport model by Skopp 

et al. (1981) to handle continuous velocity distributions instead of two 

discrete velocities in two pore systems. Strictly speaking, the pore system 

model is continuous because the total porosity is not divided into discrete 

systems as in the other models presented here. The geometric model 

incorporates a distribution of velocities and the exchange of solutes across 

regions of differing velocities. The transport of solutes across velocity 

regions is assumed to behave as a diffusion-type process. The authors 

emphasised that to understand solute movement parallel to the average 

flow direction, an analysis of orthogonal transport across regions of varying 

velocities is needed. 

Gwo et al. (1995) presented a theoretical, 1-D, multi-permeability model 

using three separate pore systems to simulate flow and transport in micro-, 

meso- and macropores extending the model by Wilson et al. (1992). The 

numerical models MURF and MURT were developed to simulate flow and 

transport in a laboratory setup where a tracer was injected into a soil 

column under steady flow conditions. The Richards equation and ADE were 

used in every pore system. The new model (Gwo et al. 1995) consistently 

fitted the data at least as well as the tested dual-porosity and single porosity 
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models. Results suggested that the pore systems behaved differently under 

different degrees of saturation, similar to the results published by Wilson et 

al. (1992). 

Hendriks et al. (1999) combined the FLOCR model (Bronswijk 1988) with 

the ANIMO nutrient transport model (e.g. Rijtema and Kroes 1991) to 

simulate bromide and nitrogen transport in a clayey subsurface drained 

experimental plot. The FLOCR (v.3.0) model divides the macropore system 

into a maximum of five separate parts at different hierarchical levels. The 

states and fluxes of the macropore systems are lumped together into one 

system for ANIMO. Solute transport in ANIMO is simulated with ADE in 

both soil matrix and macropore systems. The model was tested only in wet, 

swollen conditions. The authors underlined that before drawing further 

conclusions, the model should be tested in both dry conditions with 

shrinkage cracks and wet conditions with only permanent macropores 

present. 

Šimůnek and van Genuchten (2008) described different non-equilibrium 

flow and solute transport simulation methods in the HYDRUS 1-D software 

package. In addition to single porosity, dual-porosity and dual-permeability 

models, HYDRUS 1-D includes a dual-permeability model in which the soil 

matrix is further partitioned into mobile and immobile pore systems. This 

is accomplished by replacing the matrix pore system with a dual-porosity 

model. The software also includes additional non-equilibrium chemical 

models, but they are not further considered here. 

2.2.4 Mass exchange between pore systems 

Mass exchange formulations used to transfer water and solutes between 

pore systems are important parts of dual-porosity and dual- and multi-

permeability flow and transport models. In most of the models, the 

exchange of water and solutes is described with a linear, time-independent 

mass exchange function. The exchange of water is usually based on pressure 

head or water content difference between the pore systems while the 

exchange of solutes depends on concentration differences coupled with 

advective solute transport. 

The rate of mass exchange between the pore systems controls the non-

equilibrium characteristics of the flow and transport phenomenon. A single 

ADE equation seems to represent well homogenous media or media 

composed of several interacting pore systems with high mass exchange 

rates (e.g. van Genuchten and Wierenga 1976). Skopp et al. (1981) noted 

that while high exchange rates between pore systems are the nature of 

homogenous soils, decreased exchange rates characterise structured soils. 

The authors postulated that decreased exchange rates may be due to 
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channelling of the flow or to the presence of low permeable clay skins on 

aggregates. Skopp and Gardner (1992) and Gwo et al. (1995) found out that 

intra-pore system dispersion became smaller than the overall dispersion of 

the medium in models with several pore systems, because part of the 

dispersion was due to the inter-pore system mass exchange. Thus, the 

studies suggest that mass exchange is one of the components of the 

macroscopic dispersion phenomenon. 

Linear mass exchange approaches 

Othmer et al. (1991) applied the following pressure head based 

formulation for exchange of water between pore systems: 

 
(24) 

where KA [L T-1] is the hydraulic conductivity at the matrix-macropore 

interface and dA [L] is the aggregate radii of both pore systems. KA is a 

function of the water content θA [L3 L-3] and the pressure head hA [L] in the 

interface. KA is set equal to the lowest hydraulic conductivity of the two pore 

systems. Gerke and van Genuchten (1993a) derived a similar approach in 

their model: 

 (25) 

where αW [L-1 T-1] is the first order water exchange coefficient. Gerke and 

van Genuchten (1993a) developed an expression for αW with a scaling 

procedure: 

 
(26) 

where β [-] is the geometry coefficient, d [L] is the characteristic radius or 

half width of the matrix structure and γW [-] is the scaling coefficient. 

Macropore geometry coefficient β can be thought of as the ratio of the 

effective surface area of macropores to the volume of the soil matrix (Gerke 

and van Genuchten 1996). The first order approximate and the exact 

solution to the diffusion problem are matched together with γW (e.g. Eq. 

26). In principal, values for the parameter β could be derived by measuring 

macropore shapes and sizes and applying the method presented by Gerke 

and van Genuchten (1996). The same applies to the parameter d. In 

practice, the parameters are commonly calibrated in model application 

studies. The method by Gerke and van Genuchten (1993a) (Eq. 26) is 

applied in several studies (e.g. Ray et al. 1997, Schwarzt et al. 2000, Vogel 

et al. 2000, Abbaspour et al. 2001, Haws et al. 2005). Gwo et al. (1996) 
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used the following approach to describe water exchange in their three pore 

system model: 

 
(27) 

where i and j [-] are pore system indices. The first order mass exchange 

coefficient αW (Eq. 27) is based on the approach by Duguid and Lee (1977) 

defined as follows: 

 
(28) 

where ε [L3 L-3] is the porosity of the pore system i and dS and dR [L] are 

the half dimensions of soil and rock blocks, respectively. In the MACRO 

model, the exchange of water is based on the difference between the 

saturated and prevailing volumetric water contents of the soil matrix 

(Larsbo and Jarvis 2003): 

 
(29) 

where DW [L T-1] is the effective water diffusivity and θS [L3 L-3] is the 

saturated water content. Šimůnek et al. (2001) adopted a similar approach 

but used effective volumetric water contents in soil matrix and macropores 

instead and a lumped αW term. Other options to calculate exchange of water 

between macropores and soil matrix include the Green and Ampt (1911) 

model (e.g. Novák et al. 2000, Cameira et al. 2000) and Phillip’s (1957) 

equation (e.g. Jarvis and Leeds-Harrison 1990, Hendriks et al. 1999). 

Equivalent solute exchange functions exist for the presented water 

exchange functions. Van Genuchten and Wierenga (1976) and Skopp et al. 

(1981) applied diffusion based models to represent solute exchange. Gerke 

and van Genuchten (1993a) included both diffusive and advective exchange 

processes in their their dual-permeability transport model. Some authors, 

e.g. Sudicky (1990) and Hendriks et al. (1999) applied the Fick’s law to 

calculate solute exchange between the pore systems. The solute exchange 

between the pore systems is not discussed further because sediment, which 

is represented as a solute in this thesis, is constrained into the macropore 

system and cannot enter the matrix system. 

Non-linear mass exchange approaches 

The principal difficulty in applying models with several interacting pore 

systems is the non-linear mass exchange at the wetting front and the 

tendency to over-predict solute adsorption equilibrium (Zimmerman et al. 
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1993). Fitted mass exchange coefficients seem to represent a lumped 

process resulting from the combined effects of intra-aggregate diffusion and 

local flow variations (Schwarz et al. 2000). According to Gerke and van 

Genuchten (1996), linear exchange terms yield relatively good 

approximations, except near the infiltration front. To overcome this 

limitation non-linear approaches have been developed, e.g. Dykhuizen 

(1990), Zimmerman et al. (1993) and Zimmerman et al. (1996). 

2.2.5 Discussion on preferential flow models 

Even though models with several pore systems seem to be able to describe 

preferential flow and transport in structured soils, a few new problems arise 

from this methodology. 

Brusseau and Rao (1990) noted that in order to apply models with several 

pore systems, knowledge on the size and shape distributions of aggregates 

is required. Steenhuis et al. (1990) criticised that the division of pore space 

into only two systems is unrealistic. According to the author, this leads to 

arbitrarily defined parameters that are difficult to determine. Wilson et al. 

(1992) pointed out the arbitrariness of dividing soil pores into multiple pore 

regions when there are no clear boundaries. Gwo et al. (1995) argued that it 

is possible to divide the total soil porosity into systems according to 

measurable tension ranges, even though it would be better to associate the 

pore domains to geological features. However, Šimůnek et al. (2003) came 

to a conclusion that single pore system models cannot simulate true 

preferential flow. 

One of the drawbacks of dual- and multi-region models is the number of 

parameters to be estimated from usually limited laboratory or field data 

(Gerke and van Genuchten 1993a). For non-reactive solutes, classical ADE 

requires three parameters, while a dual-porosity and a multi-region models 

require five and 13 parameters, respectively (Gwo et al. 1995). The large 

number of tunable parameters in dual-permeability and multi-region 

models enables better mathematical description of experimental data than 

low number of parameters in single-region models. However, e.g. Jarvis et 

al. (2008) decided that the model by van Genuchten and Wierenga (1976) 

was over-parameterised for their problem and opted to switch to a simpler 

empirical model. It is questionable whether the solutions of such complex 

models are unique and whether fitted model parameters actually reflect the 

effective transport processes in the soil (Schwarz et al. 2000). In addition, 

measuring hydraulic parameters for the macropore system (e.g. WRC) can 

be difficult (Wilson et al. 1992). 

Yet another issue related to multi-region concepts is the difference 

between local-scale and field-scale, or small vs. large scale heterogeneities. 
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Representative elementary volume (REV) is used to describe material 

properties of porous media in volume averaged flow and transport models. 

The problem with the REV concept is that each soil parameter may have a 

unique temporal and spatial scale and the soil parameters may exhibit a 

systematic change in one direction or another (Hillel 1998). Due to the 

interaction between micro- and macropore domains, REV for micropores 

should be of the same order as that of the macropores (e.g. Beven and 

Germann 1981). However, large interblock cracks in clayey soils are objects 

with indefinite REV, at least in the vertical direction (Chertkov and Ravina 

2002). Thus, large scale features of geological signature should be 

separated from small scale features applicable to dual- and multi-pore 

system approaches (Gwo et al. 1995). 

A selected group of preferential flow models is presented in Table 1. 

Table 1. Examples of reviewed preferential flow and transport models. Abbreviations used: 
Stor. rout. = storage routing, Concep. = conceptual and Diff. wave = Diffuse wave. 

Model: Dimensions: Macropore 
flow: 

Macropore 
transport: 

Matrix flow: Matrix 
transport: 

2D-CROPWATN 2-D Stor. rout. - Stor. rout. - 
AgriFlux 1-D Richards ADE Richards ADE 
ANIMO 1-D - ADE - ADE 
CRACK 1-D Childs - Concep. - 
DUAL 1-D Richards ADE Richards ADE 

FLOCR 1-D Concep. - Richards - 
HILLFLOW 2/3-D Diff. wave - Richards - 

HYDRUS 2/3-D 2/3-D Richards ADE Storage Storage 
ICECREAM 1-D Concep. Concep. Concep. Concep. 

M-2D 2-D Concep. Advection Richards ADE 
MACRO 1-D Kin. wave ADE Richards ADE 

MIKE SHE 3-D Kin. wave ADE Richards ADE 
MURF/MURT 1-D Richards ADE Richards ADE 

RZWQM 1-D Poiseuille ADE Richards ADE 
SWAP 1-D Concep. Concep. Richards ADE 

TOUGH2 3-D Richards ADE Storage Storage 

2.3 Overland flow and erosion 

In contrast to preferential water flow models, a large number of 

established erosion models are available for different scales that are based 

on physical principles. Several lumped and distributed field-scale models 

are reviewed here. The models are divided into two categories: 1) 

conceptual and universal soil loss equation (USLE)-based erosion models 

and 2) process-based, distributed erosion models. Models in the first group 

use regression or similar type equations derived from experimental data. 

USLE-based erosion models are important to this study because the bulk of 

the erosion modelling in Finland (Section 1.4) has been conducted with 

such models. The models in the second group are usually composed of a 

sediment continuity equation coupled to erosion processes including the 

effect of raindrops, flowing water, deposition of particles and transport 
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capacity of the flow. The models reviewed here include only advective 

sediment transport, i.e. dispersive transport is omitted. Detailed 

presentation of erosion equations is left out from this section (see textbooks 

by e.g. Foster 1982, Morgan 2005 for a review on the topic). 

It is assumed here that overland flow is one of the main drivers of soil 

erosion and overland flow models are reviewed alongside the erosion 

models (see descriptions of runoff generation mechanisms in Section 1.2). 

In conceptual models, surface runoff is simulated with different 

approaches, e.g. the Soil Conservation Service (SCS) curve number method 

(USDA 1972), the unit hydrograph theory (Dooge 1959) and transfer 

functions (e.g. Koivusalo and Karvonen 1995). In distributed models, in 

turn, overland flow is simulated with the Saint Venant equations or with 

one of their simplified forms, such as kinematic wave or diffuse wave 

equations (Section 2.2.3.2). Infiltration is usually simulated with 

approaches such as Green and Ampt (1911), Philip (1957) or with a fully-

fledged soil and groundwater flow model. Previous erosion model reviews 

were published, e.g. by Jetten et al. (1999), Aksoy and Kavvas (2005), 

Jetten and Favis-Mortlock (2006) and Borah et al. (2008). 

2.3.1 USLE based and conceptual erosion models 

CREAMS (Knisel 1980) is a conceptual, daily simulation model for 

estimating runoff, erosion and sediment transport and plant nutrient and 

pesticide loss from field-sized areas. A field is defined as a management 

unit having 1) single land use, 2) homogenous soils, 3) spatially uniform 

rainfall and 4) a single set of management practices. The field is structured 

from three basic elements: overland flow area, concentrated (channel) flow 

and impoundment (pond). Runoff is simulated either with the SCS curve 

number method or with an infiltration-model, depending on the time 

resolution of the precipitation data (daily or hourly). Water moving through 

soil layers is modelled with a simple capacity approach. The erosion model 

is based on USLE but it is extended with surface runoff transport capacity. 

The GLEAMS model was developed as a management-oriented CREAMS 

model that incorporated a component for vertical flux of pesticides 

(Leonard et al. 1987). The soil erosion model is derived from the USLE 

equation with added rill and inter-rill processes, rain drop splash erosion 

and sediment transport capacity simulation. Sediment transport capacity is 

simulated with a modified Yalins equation (Yalin 1963). Knisel and Turtola 

(2000) applied an external model to approximate the sediment load via 

subsurface drains, with daily percolation values obtained from GLEAMS. 

 The ICECREAM model is another CREAMS variant modified to Nordic 

conditions by Rekolainen and Posch (1993, 1994) and Posch and 
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Rekolainen (1993). The authors added processes for snow accumulation, 

snowmelt and soil frost and modified the crop growth submodel. The 

USLE-based erosion model in ICECREAM includes the same erosion 

components as GLEAMS. The difference between the ICECREAM and 

GLEAMS models is that the former only considers surface response of 

phosphorus while the latter can be used to simulate subsurface processes as 

well. Larsson et al. (2007) presented a modified version of the ICECREAM 

model that also includes transport of sediment and phosphorus to 

subsurface drains via preferential flow paths. 

PSYCHIC is a conceptual phosphorus and erosion model presented by 

Davison et al. (2008). The model was designed to work both with 

catchment and field-scales and uses a monthly time step. Hydrology in the 

model is simulated with the Mean Climate Drainage Model (MCDM, 

Anthony 2003) that simulates water balances for different UK land use 

types. Surface runoff is based on the Green and Ampt model, storm profile 

information and surface storage, which is calculated with the empirical 

method of Onstad (1984). Sediment loss is estimated roughly due to the 

monthly time step with a modified Morgan-Morgan-Finney model (Morgan 

2001). The erosion model is comprised of raindrop splash erosion and 

surface runoff shear stress components. The effect of soil cohesivity on 

erosion can be approximated with the model. Sediment produced in the 

field is lost via surface runoff and subsurface drainflow when drains are 

present. A simple attenuation multiplier is introduced to simulate the 

filtering effect of soil on load via drains. 

2.3.2 Distributed, process-based erosion models 

The Water Erosion Prediction Project (WEPP) was initiated by USDA to 

develop a new process-oriented computer model that simulates plant 

growth, overland and subsurface hydrology, erosion and weather 

parameters in field-sized areas and hillslopes (USDA 1995). The WEPP 

model simulates the fluctuation of the groundwater table and can thus be 

used to simulate Dunne type saturation excess overland flow in poorly 

drained soils (Savabi 1993). The model includes processes for subsurface 

drainage following Skaggs (1980). Infiltration is calculated with the 

modified Green and Ampt model and overland flow is calculated with the 

kinematic wave approach. For erosion simulation, WEPP uses a steady 

state, 1-D sediment continuity equation coupled with rill and interrill 

processes. Soil detachment in interrill areas is modelled as a function of 

rainfall intensity and runoff rate, while delivery of interrill sediment to rills 

is a function of slope and surface roughness. 
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KINEROS2 is a dynamic and distributed event-based model that treats 

catchments as an assembly of 1-D rectilinear surfaces and channels. 

Overland flow is solved with the kinematic wave approach. Infiltration is 

simulated with a function combining the Green and Ampt and Smith and 

Parlange models (Smith et al. 1995). In addition, KINEROS2 includes a 

possibility to divide the soil profile into two layers to enable more complex 

infiltration schemes. The erosion model is composed of rainsplash and 

hydraulic erosion components. Transport capacity description is derived 

from the Engelund and Hansen method (Engelund and Hansen 1967). 

KINEROS2 (Smith et al. 1995) is an improved version of the original 

KINEROS model by Woolhiser et al. (1990). In particular, KINEROS2 

features simulation of several particle sizes and has improved infiltration 

simulation capabilities compared with the older version. 

The EUROSEM model was developed to improve erosion risk evaluation 

and the design of erosion control measures in European conditions 

(Morgan et al. 1998). EUROSEM is linked to the water and sediment 

routing structure of the KINEROS model (Smith et al. 1999) or the MIKE 

SHE model. In addition, EUROSEM includes explicit consideration of rill 

and interrill flow, improved simulation of plant cover effects, and takes into 

account the influence of rock fragments on infiltration. The erosion model 

includes hydraulic and splash erosion components and an empirical 

transport capacity approach derived from a large number of shallow water 

experimental flow observations. Rills are essentially presented as 

trapezoidal channels. The depth and width of the rills at each point are 

changed according to erosion and deposition processes. Deposition and 

erosion by flow and splash detachment can occur at any point on either the 

rill or interrill areas. Depression storage is calculated with a unique 

empirical regression equation as a function of ratio of line segment length 

drawn directly between two end points, and line segment drawn over all the 

microtopographic irregularities. 

The LISEM model (De Roo et al. 1996a, b) is an event-based process 

model which is one of the first models to be completely incorporated into a 

GIS framework. Hydrological and hydraulic processes incorporated in the 

model include rainfall, interception, surface storage in micro depressions, 

2-D overland flow and 1-D channel flow (the kinematic wave 

approximation), infiltration (the Richards equation and the Green and 

Ampt model options) and 1-D vertical movement of water in soil (the 

Richards equation). The time step lengths in the soil water model are 

adjusted according to the simulated pressure head changes and the 

equations are solved with the Thomas (tridiagonal matrix) algorithm. The 

MVG model or look-up tables are used for WRCs. Erosion processes include 
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soil detachment by rainfall and throughfall, detachment by overland flow 

and simulation of transport capacity of the flow. The raindrop splash 

detachment is calculated as a function of soil aggregate stability, rainfall 

kinetic energy and depth of overland water layer. The transport capacity of 

overland flow is modelled as a function of unit stream power. Flow 

detachment and deposition simulation in rill and interrill areas is similar to 

the EUROSEM model. LISEM also includes options for modelling subpixel 

features such as roads, wheel tracks and channels. 

SHESED is a dynamic, continuous and 2-D distributed erosion model 

component (Wicks and Bathurst 1996) for the SHE hydrological modelling 

system (Abbot et al. 1986a, b). The model is also applicable to larger 

catchment areas (> 1.0 km2). The SHE model includes simulation of 

overland, channel and subsurface water movement. Importantly, it is able 

to simulate overland flow produced by both Dunne and Hortonian 

mechanisms. SHESED includes simulation of raindrop impacts, leaf drip, 

sheet type hydraulic erosion (without rilling) and transport of eroded 

material by overland flow. The model can also simulate erosion of bed 

material, transport of sediment and entrainment of material in channels. 

The SHESED model contains an intricate raindrop splash erosion 

component that takes into account the controlling effects of rain intensity, 

water depth at the surface and overland shielding factors, such as canopy 

and ground cover. 

EROSION 3D (Werner 1995) is an event-based, 2-D distributed erosion 

model for small watersheds that can be integrated into GIS systems such as 

ArcInfo, IDRISI or GRASS (Schmidt et al. 1999). A modified lowest 

neighbor routing algorithm (O’Callaghan and Mark 1984) is used to route 

overland flow and sediment load from upland areas towards the catchment 

outlet. Infiltration is calculated with the Green and Ampt model. The 

infiltration model is modified with a simple empirical correction factor to 

account for the effects of tillage practices and soil textures on erodivity of 

soil. The EROSION 3D model includes simulation of soil erosion by 

overland flow and rain drops, settling of particles and simulation of 

transport capacity. In spite of the model name, which is related to the 3-D 

visualisation tools included in the system, the model does not include 

subsurface internal erosion or transport of sediment to the subsurface 

drains components. 

CASC2D-SED is an event-based, 2-D distributed erosion model for 

predicting soil erosion during single event storms (Johnson et al. 2000). 

The model can be interfaced with GIS software. Like SHESED, the 

CASC2D-SED model is also applicable to larger catchments (> 1.0 km2). 

Water flow in the model is computed with the CASC2D model (Julien et al. 
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1995) which calculates 2-D overland flow and 1-D channel flow with the 

diffuse wave approximation. Infiltration is simulated with the Green and 

Ampt model. The CASC2D-SED model consists of empirical sediment 

transport capacity equations developed in the USA, coupled with a 

sediment continuity equation. Raindrop, rill and interrill erosion are 

simulated as a lumped process. The sediment transport equations use USLE 

parameters to account for the effects of soil erodibility, cultivation practices 

and erosion prevention methods. Upland erosion is divided into three 

particle size classes (sand, silt and clay). 

Taskinen (2002) and Taskinen and Bruen (2007a, b) presented an 

erosion model that includes event-based, 2-D distributed, overland flow, 

soil erosion and phosphorus transport components. Overland flow is solved 

with the kinematic wave approximation. Infiltration is simulated either 

with the Green and Ampt model or the Corradini et al. (1997) method. 

Baseflow is simulated with a linear reservoir approach. The erosion model 

is composed of sheet-type hydraulic and rain drop splash erosion schemes 

similar to the SHESED model, combined with particle settling and 

transport capacity simulation. Particle settling velocity is based on the 

Stokes’ law. Transport capacity is described with either the modified Yalins 

equation or with the Engelund-Hansen method. The equations are solved in 

the model with either implicit or explicit schemes. 

PSEM_2D is an event-based, 2-D distributed, overland flow and erosion 

model meant for plot-sized areas and small fields (Nord and Esteves 2005). 

Overland flow is solved with the full Saint Venant equations with an explicit 

finite difference MacCormack scheme while the friction slopes are 

approximated with the Darcy-Weisbach equations. Infiltration is calculated 

with the Green and Ampt model. Soil erosion is simulated with a sediment 

continuity equation coupled with sheet-type hydraulic erosion and raindrop 

splash components. The soil surface is divided into original and buffer soil 

layers. Raindrop impacts detach particles from the original soil layer and 

deposit them on the buffer layer. The critical shear stress of the particles on 

the buffer layer is lower than in the original layer and the sediment is thus 

more easily detached by overland flow. PSEM_2D does not include rill or 

interrill division with erosion, and supports only one sediment size class. 

The performance of the model was tested against literature data with good 

results (Nord and Esteves 2005). 

Sharda and Singh (1994) developed a continuous, 1-D overland flow and 

erosion model. The PDEs are solved with an implicit finite element method 

(FEM). Overland flow is represented with the kinematic wave 

approximation and infiltration into soil with a 1-D Richards equation. 

Onstad’s (1984) model is used to compute depression storage. Soil erosion 
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is simulated with a 1-D sediment continuity equation combined with rill 

and interrill erosion components. The model simulates only one particle 

size, because, according to the authors, cohesive particles are usually 

removed in aggregates and not in primary fractions. Sediment transport 

capacity is simulated with the Yalins equation. The authors tested four time 

integration schemes and evaluated their computational efficiency, 

convergence and stability through L2 and Chebycheff norms (Prenter 1975). 

The numerical schemes tested included explicit, Crank-Nicolson, implicit 

and predictor-corrector schemes. The norms were obtained by comparing 

hydrographs of analytical kinematic wave (Lighthill and Whitham 1955, 

Handerson and Wooding 1964) and numerical solutions. Sharda and Singh 

(1994) found out that the predictor-corrector scheme was the best 

numerical scheme for time integration for FEM in this application, while 

the implicit scheme yielded almost comparable results. 

2.3.3 Discussion on overland erosion models 

The USLE equation was originally designed to simulate annual sediment 

loads, and not sediment loads from single precipitation events (e.g. Morgan 

2005). While CREAMS and WEPP models can simulate individual storm 

events, they produce only total storm sediment loss because the overland 

flow conditions are considered to be steady-state (Morgan et al. 1998). The 

ICECREAM model, developed for Finnish conditions, retains the same 

hydrology component as the CREAMS model (Tattari et al. 2001). The 

problem is that the design of erosion control measures requires information 

on timing and volume of peak runoff events during individual rain storms. 

The application of USLE-based models in Europe has been somewhat 

difficult due to differences in climatic conditions, land use and soil types 

compared to the USA (Jetten and Favis-Mortlock 2006). When applying 

the CREAMS model in Finland, Kauppi (1982) estimated excessively high 

loads compared to the measurements. While the cumulative annual 

simulation results of Knisel and Turtola (2000) with the GLEAMS model 

were good, the monthly results showed a serious mismatch when compared 

to the observed values. Tattari et al. (2001) had to manipulate the 

regression equations in the ICECREAM model to improve their results in 

Finnish conditions. Paasonen-Kivekäs et al. (2006) experienced problems 

with the ICECREAM model in simulating high erosion rates in the autumn 

at a clayey field in Finland. The authors also recommended recalibration of 

the model with measurements conducted in Nordic conditions. 

Previous studies have not conclusively shown whether single event or 

continuous simulations are more effective. Morgan et al. (1998) argued that 

continuous erosion simulations are not needed because 1) they require large 



Literature review 
 

65 
 

amounts of input data (e.g. weather and land-use), 2) they are sensitive to 

modelling soil water dynamics and evapotranspiration and 3) they simulate 

a large number of small events that do not produce significant runoff or soil 

loss and thus waste computational resources. On the other hand, several 

authors underline the importance of simulating the hydrological regime 

properly before attempting to simulate soil erosion. Wicks and Bathurst 

(1996) used the SHESED model to simulate single events and found that 

the principle problem was the lack of antecedent soil moisture conditions 

and infiltration data. Smith et al. (1999) and Schmidt et al. (1999) 

conjectured that continuous simulations would have improved their results 

due to more realistic initial conditions. Overland flow in Finland is 

generated by both Dunne-type and Hortonian mechanisms. Because the 

Dunne-type mechanism requires information on the antecedent moisture 

conditions, event based simulations can be problematic (e.g. Morgan et al. 

1988, Taskinen and Bruen 2007a). Only four of the reviewed erosion 

models (Table 2) include a subsurface flow model for simulation of Dunne-

type overland flow mechanism (Sharda and Singh 1994, SHESED, WEPP 

and LISEM). 

Table 2. Summary of reviewed erosion models. Abbreviations used: Distr. = Distributed, 
Conc. = Conceptual, Cont. = Continuous and Mass cons. = Mass conservation. 

Model: Type: Dimensions: Overland flow: Erosion: 
CASC2D-SED Distr./Event 2-D Diffuse wave Lumped erosion 

CREAMS Conc./Cont. 1-D Runoff Lumped erosion 
EROSION 3D Distr./Event 2-D Kinematic wave Sheet and raindrops 
EUROSEM Distr./Event 1-D See KINEROS2 Rill and interrill, raindrops 
GLEAMS Conc./Cont. 1-D Runoff Rill and interrill, raindrops 

KINEROS2 Distr./Event 1-D Kinematic wave Sheet and raindrops 
LISEM Distr./Event 2-D Kinematic wave Rill and interrill, raindrops 

ICECREAM Conc./Cont. 1-D Runoff Rill and interrill, raindrops 
PSEM_2D Distr./Event 2-D Saint Venant Sheet and raindrops 
PSYCHIC Conc./Cont. - Runoff Sheet and raindrops, 

transport to drains 
Sharda and 

Singh (1994) 
Distr./Cont. 1-D Kinematic wave Rill and interrill 

SHESED Distr./Cont. 2-D Mass cons. Sheet and raindrops 
Taskinen and 

Bruen (2007a, b) 
Distr./Event 2-D Kinematic wave Sheet and raindrops 

WEPP Distr./Cont. 1-D Kinematic wave Rill and interrill, raindrops 
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3. Description of the FLUSH model 

The FLUSH model was developed to simulate water flow and soil erosion 

in clayey, subsurface drained agricultural fields. The prototype processes 

required in the model are presented in Section 3.1 while the realised system 

is detailed in Section 3.2. The system, comprising of the conceptual and 

numerical models, is generic and data are still required from an application 

area to define the initial conditions and parameter values. The reasoning 

behind the selection of the model components was based on the Literature 

review (Section 2) and it was presented in Section 1.4. Decisions regarding 

the model structure and model development are further discussed in 

Section 5.1. Some of the numerical solutions are tested with theoretical 

approaches at the end of this section. 

3.1 The conceptual model 

Refsgaard and Henriksen’s (2004) conceptual model approach is adopted 

here. The conceptual model consists of process descriptions and general 

mathematical equations. The process descriptions are presented in writing 

and illustrated with several figures (Figs. 2–6). 

In summary, the system functions in the following way. The hydrological 

cycle is initiated by precipitation. Water on the field surface infiltrates into 

soil matrix and macropores. When the infiltration capacity of soil is 

exceeded or the groundwater table rises to the surface, overland flow is 

initiated. Water is lost from the field via open ditches, evapotranspiration 

(ET), subsurface drains and groundwater flow. Suspended sediment is 

produced on the field surface by rain drop splash and hydraulic erosion 

processes. Suspended sediment is transported to ditches by overland flow 

and to subsurface drains by preferential flow in macropores. Total 

subsurface pore volume is partitioned into soil matrix and macropore parts. 

Soil shrinkage and swelling processes distribute the total pore volume into 

matrix and macropore fractions according to the moisture state of the 

matrix. 
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The structure of the system is presented as a flow chart in Fig. 2. The 

boxes represent water (Fig. 2a) and suspended sediment reservoirs (Fig. 

2b) in the system while the arrows show different processes transferring 

mass between the reservoirs. The disabled sediment reservoirs and 

processes are presented with dotted lines. The direction of the arrow 

describes the direction of the mass flow. Some lines have arrow heads at 

both ends, indicating that mass can be exchanged both ways. The field is 

divided into overland and subsurface domains. The two domains are 

divided by an infinitely thin interface that is called the field surface in the 

model. Erosive processes extract soil particles from the interface to the 

overland domain. Suspended sediment in the overland domain may enter 

the subsurface domain via macropores. Suspended sediment in the 

subsurface domain is allowed to move only in the macropore system 

because the sediment particles are considered to be too large to enter the 

clay soil matrix voids. In addition, the transport of sediment is constrained 

to macropores between field surface and subsurface drains. In line with the 

findings of e.g. Yli-Halla et al. (2000) and Vakkilainen and Paasonen-

Kivekäs (2004), it is assumed here that the pathways below the drains are 

too narrow for sediment particles to travel. It is possible that suspended 

sediment can block macropore pathways but this is not considered in the 

model. Different processes in the system are discussed next in more detail. 

 

Figure 2. The conceptual model of a) water flow and b) erosion in the field. Dashed lines 
mark disabled storages and processes for sediment. Abbreviations used: Hydr. eros. = 
Hydraulic erosion, Transp. cap. = Transport capacity and Depos. = Deposition. 

3.1.1 Process descriptions 

The processes in the simulated system can be divided into four 

independent but coupled domains: 1) overland flow, 2) subsurface flow, 3) 
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overland erosion and 4) subsurface transport of sediment. Detailed 

descriptions of the processes in each domain are presented below. The 

written descriptions are linked to the corresponding figures with numbers. 

Overland flow 

Fig. 3 depicts different processes present in the overland flow domain. 

Precipitation adds water to the overland flow domain (1 in Fig. 3). Water 

starts moving on the field surface when a threshold water depth is 

exceeded. The threshold water depth simulates the storage of water in 

microdepressions (2). Tillage operations can change the roughness of the 

field surface and the threshold water depth. Water is also stored in larger 

depressions in the topography (3). Water moves as 2-D sheet flow 

according to the topography of the field and pressure differences (4). 

Overland water discharges via ditches and unobstructed slopes in the field 

borders (5). 

 

Figure 3. Overview of the processes in the overland flow domain. 

Subsurface flow 

Fig. 4 depicts different processes present in the subsurface flow domain. 

Water infiltrates into both soil matrix and macropores from the field 

surface (1 in Fig. 4). Maximum infiltration capacity into the soil matrix from 

the overland domain is always calculated with the saturated hydraulic 

conductivity value. The conductivity of the macropore system is increased 

to its saturated conductivity value when the overland flow threshold water 

depth is exceeded to simulate the flow of water into the macropores. 

Subsurface flow is unsaturated between the field surface and the 

groundwater table (2) and saturated below the groundwater table (3). Flow 

is 3-D in both pore systems. Horizontal preferential flow takes place above 

the compressed tillage pan due to soil hydraulic conductivity differences in 

the profile (4). Water moving in the soil matrix and macropores can also 

flow between the pore systems due to pressure differences (5). Water enters 

the subsurface drains from both matrix and macropore systems (6). Water 

can also exit the field by seepage into ditches (7) and via groundwater flow 

(8). Water depth in the ditches is assumed to be constant. Water is lost via 



Description of the FLUSH model 
 

69 
 

ET from both pore systems (9). PET is distributed in the soil profile 

according to the root mass distribution, which is the same in both pore 

systems. ET is decreased from its potential value by too wet and too dry 

root zone conditions. Soil shrinkage and swelling processes change the size 

of macropores according to the moisture state of the matrix. 

 

Figure 4. Overview of the processes in the subsurface flow domain. 

Overland erosion 

Fig. 5 depicts different processes present in the overland erosion domain. 

Suspended sediment is produced by hydraulic (1 in Fig. 5) and rain drop 

splash erosion (2). Only sheet-type hydraulic erosion and one sediment 

particle size are considered in the simulation. Erosion due to leaf drip is not 

included. Tillage operations can increase the erodibility of the soil. 

Sediment is moved by water with a 2-D advection transport mechanism (3 

in Fig. 5). The amount of sediment moved by water is controlled by the 

sediment transport capacity of the overland flow (4). If the sediment 

concentration exceeds the transport capacity of the flow, the additional 

sediment is deposited back on the surface of the field. After rain, suspended 

sediment starts to settle due to gravity (5) while during rain, turbulent 

mixing caused by raindrops cancels deposition. Suspended sediment 

discharges into open ditches (6). 

 

Figure 5. Overview of the processes in the overland erosion domain. 
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Subsurface transport of sediment 

Fig. 6 depicts different processes present in the subsurface transport 

domain. Suspended sediment infiltrates into macropores from the field 

surface (1 in Fig. 6). Suspended sediment cannot be transported into the 

soil matrix with water because the voids in the clay soil matrix are 

considered to be too small for the particles. Sediment is transported by 3-D 

advection and dispersion mechanisms in the macropores. Unsaturated 

transport takes place above the groundwater table (2) and saturated 

transport below the groundwater table (3). However, macropores below the 

subsurface drain level are considered to be too small for sediment to enter. 

Horizontal transport of sediment requires that the macropore network is 

continuous in the horizontal plane. Suspended sediment is discharged via 

drains (4) and via seepage to ditches (5). Sediment can be deposited on 

macropore walls (6) if water is lost through transpiration or exchange into 

soil matrix. Deposited sediment is flushed onwards again after more water 

enters the macropores. Some of the infiltrated sediment is transported with 

groundwater flow when the groundwater table rises above the drain level 

(7). 

 

Figure 6. Overview of the processes in the subsurface transport domain. 

3.1.2 Mathematical descriptions 

The mathematical descriptions of the conceptual model are presented in 

the same way as the process descriptions by dividing them into the four 

domains. The numerical model presented later works in an orthogonal grid 

that is oriented to the Cartesian coordinate system. Spatial coordinates x, y 

and z are therefore used in all of the PDEs presented here, instead of more 

general notation. Sources and sinks in each domain are presented in detail 

alongside the numerical model in Section 3.2. 

Overland flow 

Overland flow is represented with the diffuse wave simplification of the 

Saint-Venant equations used, e.g. by Johnson et al. (2000). The effective 

overland water depth hW [L] is calculated with the following method: 
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(30) 

where hW,TOT [L] is the total overland water depth and hW,THR [L] is the 

overland flow threshold water depth. The hW,THR parameter represents the 

water volume that is stored in the microdepressions. After hW exceeds the 

hW,THR value, water starts to flow on the field surface. The continuity 

equation for overland flow and overland unit flow rate Q [L2 T-1] are defined 

as follows (e.g. Taskinen and Bruen 2007a):  

 
(31) 

 (32) 

where sW [L T-1] is the overland water source/sink term and U [L T-1] is 

the overland flow velocity. U is calculated with the Manning equation: 

 
(33) 

where n [-] is the Manning coefficient and SO [-] is the slope of the 

overland water surface. Hydraulic radius was replaced with hW in Eq. 33. 

The momentum equations for the diffuse wave simplification are the 

following: 

 
(34) 

where zS [L] is the soil surface elevation. 

Subsurface flow 

Ray et al. (1997) and Vogel et al. (2000) presented a general formulation 

of the theoretical flow model of Gerke and van Genuchten (1993a). The 

dual-permeability model divides soil bulk properties into matrix and 

macropore systems in the following way (Vogel et al. 2000): 

 (35) 

 (36) 

 (37) 

Flow in both soil matrix and macropore systems is described with the 

Richards equation. The hydraulic head H [L] is used as a state variable 

instead of the pressure head h [L] (e.g. Nieber and Feddes 1999): 
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 (38) 

 (39) 

where SW [T-1] is the subsurface water source/sink. The KS values can be 

different in horizontal and vertical directions. The equations for ΓW were 

presented in the literature review (Eqs. 25 and 26 in Section 2.2.4.1). KA in 

ΓW is calculated with the following new approach: 

 (40) 

Water retention properties of soils are simulated with MVG WRC 

(Mualem 1976, van Genuchten 1980) in both pore systems: 

 
(41) 

where θR  [L3 L-3] is the residual water content of the soil. K is a function 

of SE: 

 
(42) 

where lMVG [-] is the pore connectivity parameter. SE is calculated as 

follows: 

 (43) 

Overland erosion 

The overland erosion model is built around the sediment continuity 

equation (e.g. Taskinen and Bruen 2007b). Transport is purely advective, 

combined with sources and sinks: 

 
(44) 

where C [M L-3] is the sediment concentration in the overland water, gR 

[M L-2 T-1] is the potential raindrop splash erosion rate, gH [M L-2 T-1] is the 

potential hydraulic erosion rate, wS [-] is the coefficient for particle settling, 

US [L T-1] is the particle settling velocity and sS [M L-2 T-1] is the overland 

sediment source/sink. Potential erosion rates in this context signify the 

maximum amount of sediment produced by the erosion processes when the 

transport capacity of the flow is not limiting them. 
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Subsurface transport of sediment 

The transport of suspended sediment in the subsurface domain is 

simulated with a simplified dual-porosity approach. Only the macropore 

system transports sediment and the exchange of sediment to the matrix 

system is disabled. While the matrix does not store sediment, it still 

reserves a large, varying part of the total pore space (Eqs. 35, 36 and 45). 

Suspended sediment particles are treated as a solute and their dimensions 

are not considered in the infiltration process into macropores. Neither is 

sieving of sediment particles in macropores. Soil bulk properties are divided 

into matrix and macropore systems in the following way (Vogel et al. 

2000): 

 (45) 

Sediment transport in the macropores is modelled with ADE: 

  

(46) 

where SSF [M L-3 T-1] is the sediment source/sink. Retardation and 

degradation processes were not included in the equation because sediment 

is treated as a non-reactive and conservative solute. Directional 

components of the dispersion terms for 3-D transport are as follows (Zheng 

and Bennet 2002): 

 
(47) 

 
(48) 

 
(49) 

where αL [L] is the longitudinal dispersivity, αT [L] is the transverse 

dispersivity and |v| [LT-1] is the magnitude of the velocity vector. The cross 

terms (DFXY, DFYX, DFXZ…) were assumed to be zero. Flow velocity 

components are calculated as follows: 

 (50) 
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3.2 The numerical model 

The numerical model is a realisation of the conceptual model and it 

includes all the necessary solution algorithms for the general mathematical 

descriptions (Section 3.1.2) and other processes delineated in the 

conceptual model. The objective is that the numerical model can be 

transferred into a computer program form with minimal effort. The design 

criterion of the computer program is that minimal changes are needed in 

the code when the model is applied to different field sites. The numerical 

model is comprised of a model framework and individual submodels. The 

framework is the backbone of the system and it is responsible for running 

the submodels and taking care of various other simulation related tasks 

such as time integration. The domains presented in the conceptual model 

also apply to the submodels of the numerical model. In addition, soil 

shrinkage and swelling and crop and tillage effects are stored into separate 

submodels. The individual submodels and the corresponding solution 

algorithms are presented next, followed by the description of the model 

framework. 

3.2.1 Submodels 

The temporal components in PDEs are solved with the forward finite 

difference method. The spatial components are solved with the finite 

volume method (FVM) (e.g. Fletcher 2005, Versteeg and Malalasekera 

2007). FVM was adopted because it is relatively simple to implement and it 

is also suited to distorted and irregular computational grids. The field 

section is divided with computational grids into 2-D rectangular (overland 

flow and erosion) and 3-D hexahedric cells (subsurface flow and transport) 

(see Fig. 7). PDEs are integrated over the area or volume of the cells. The 

volume integrals containing divergence terms can be changed into surface 

integrals with the divergence theorem e.g. Kreyszig 1993). It is then possible 

to solve the state variables from the discretised equations. The cells are 

connected to each other with water and sediment flux components. The 

global solutions are achieved by iterating the local solutions in every cell in 

the grid. In Fig. 7a, a partial view of a 2-D grid is presented with generic 

fluxes Fi+0.5,j, Fi-0.5,j, Fi,j+0.5 and Fi,j-0.5 between cells, cell dimensions Li+0.5,j, Li-

0.5,j L i,j+0.5 and Li,j-0.5 [L] and the cell area Aij [L2] used in the numerical 

formulations. In Fig. 7b, a partial view of a 3-D grid is presented with 

generic fluxes Fi+0.5,j,k, Fi-0.5,j,k, Fi,j+0.5,k, Fi,j-0.5,k, Fi,j,k+0.5 and Fi,j,k-0.5 between 

cells. The plane area Ai,j,k-0.5 and the distance Li+0.5,j,k between adjacent cells 

are also presented in Fig. 7b. 
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Figure 7. Partial views of the a) 2-D overland and b) 3-D subsurface computational grids and 
fluxes between cells. 

The solution algorithms of PDEs in the submodels are comprised of three 

phases: 1) the preprocessing phase, where parts of the algorithm that do not 

change during the iteration phase are calculated, 2) the iteration of the 

global solution in the grid and 3) the post processing of the results. Each 

consecutive iteration round refines the global solution until a predefined 

iteration convergence criterion is fulfilled. Iteration is also stopped if the 

maximum number of iterations is exceeded. The iteration phase is 

accelerated with varying methods in each submodel. Boundary conditions 

and sink and sources used in the submodels are presented at the end of 

each submodel description. The boundary conditions function as bridges 

between the domains and define how the derivatives are solved at the grid 

boundaries. The submodels for soil shrinkage and swelling, and the effects 

of crop and tillage are modelled explicitly and they do not require an 

iterative PDE solution. 

Overland flow 

The implicit, discretised form of overland flow PDE is as follows (e.g. 

Taskinen 2002): 

  

(51) 

where η [-] is the simulation time step level. The ς [-] coefficients cancel 

out the overland flow components going in upstream directions. If water is 

entering the cell in i, j coordinates, ς is set to zero (Fig. 7a). Otherwise, if 

water is leaving the cell, ς is set to 1. The value of ς is specified for all four 

directions. A ± sign convention is used in Eq. 51, and all the following 

equations, to save space. It signifies that two opposite flux components 

have been integrated into one (e.g. Fi+0.5,j and Fi-0.5,j to Fi±0.5,j, see Fig. 7a). 

a) b) 
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The global solution in the grid is achieved by solving Eq. 51 in each cell in 

the grid and iterating until convergence criteria are met. Unfortunately, a 

direct solution of hW,i,jη+1 from Eq. 51 is not straightforward because hW,i,jη+1 

is also present in the velocity components raised to rational exponents (1/2 

and 2/3) in Eq. 33. A numerical root-finding approach called bisection 

method (e.g. Engeln-Müllges and Uhlig 1996) is applied here to solve 

hW,i,jη+1 from Eq. 51 (e.g Taskinen 2002) (see Fig. 8b). The method is 

initiated by choosing the water depth interval where the root must be 

residing. Eq. 51 is calculated with trial solutions of hW,i,jη+1 selected from the 

endpoints of the interval. Because the trial solutions are not (usually) the 

exact solutions of Eq. 51 they produce a non-zero error called residual here. 

Next, the current interval is halved and the residuals are compared to find 

out in which half of the interval the root is residing. The same process is 

conducted again for the new interval and repeated until the root has been 

found within a specified accuracy criterion (epsilon in Fig. 8b). 

A flow chart of the overland flow solution algorithm is presented in Fig. 8 

and it runs from left to right and from top to bottom. 

 

Figure 8. Flow chart of the overland flow solution algorithm divided into a) primary solution, 
b) bisection method and c) calcRes method parts. 
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The algorithm can be divided into three parts: a) the primary solution, b) 

the bisection method and c) the calcRes method. The primary solution part 

is composed of preprocess, iteration and post-process segments. Parallel 

blocks marked in Fig. 8 with dashed lines represent code segments that are 

run in parallel to accelerate the algorithm. The calcRes function (Fig. 8c) 

solves Eq. 51 with the given trial water depth (input from the bisection 

method) and returns the residual to the bisection method. The root found 

by the bisection method, i.e. hW,i,jη+1 is returned to the primary solution part 

of the algorithm (Fig. 8a). When iteration in the primary solution part is 

finished, hW,i,jη+1 becomes solved in each cell in the overland grid. 

Cells that include open ditches function as sinks in the overland domain. 

Open edges can be simulated by inserting ditches parallel to the edges. The 

volumetric flux to ditches QD [L3 T-1] is calculated as a sum of fluxes F 

entering a cell containing a ditch segment: 

 (52) 

Subsurface flow 

Variables θ and h in the Richards equation have a non-linear relationship 

according to WRC. In order to solve the new H value, a change of variables 

is implemented in the original form of the Richards equation (Eqs. 38 and 

39). By introducing the differential water capacity variable CW [L-1], θ is 

eliminated from the equations (e.g. Celia et al. 1990). Karvonen (1988) 

suggested an approximation of CW as follows: 

 
(53) 

Discretised, implicit, dual-permeability flow PDEs for macropore and soil 

matrix systems become as follows: 

  

(54) 

  

(55) 
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where Vi,j,k [L3] is the subsurface cell volume. It is possible to solve Hi,j,kη+1 

in both pore systems directly from Eqs. 54 and 55. The unknown hydraulic 

heads in Eq. 56 are presented in Fig. 9. The global solution can be derived 

by iterating through the individual cell solutions in the grid until 

convergence criteria are met. The iteration process can be accelerated 

substantially by solving several cells simultaneously instead of solving cells 

one by one (Fig. 9). The standard way of solving the Richards equation 

numerically is to apply the tridiagonal matrix algorithm (TDMA) (e.g. 

Karvonen 1988) to solve a column of cells directly. TDMA functions as a 

simplified Gaussian elimination algorithm that solves tridiagonal systems 

of equations (Kreyszig 1993). For the global solution, the columns and pore 

systems in the grid are iterated until convergence criteria are met. 

 

Figure 9. a) The grid, b) the cell column and c) macropore and matrix pore systems. 

The iterative TDMA approach can be improved in stability and speed by 

solving both pore systems in a cell column directly (Fig. 9). A new method 

that applies the pentadiagonal matrix algorithm (PDMA) (e.g. Fletcher 

2005, Engeln-Müllges and Uhlig 1996) is presented here. The function of 

PDMA is analogous to TDMA, but it solves a pentadiagonal system of 

equations instead. In order to use the PDMA approach, the variables in Eqs. 

54 and 55 are organised in the following way: 

 

 

(56) 

where A, B, C, D, E, and F are single band matrices. From this point 

onwards these matrices are called arrays to avoid the confusion between a 

mathematical matrix and matrix pore system. They are also presented as 1-

D arrays in the computer program implementation. The direct solution is 

derived for a vertical column of cells (Fig. 9). The variables in the 

neighbouring columns are considered to be known at this time and the 

horizontal fluxes are adjusted in iteration. Eqs. 54 and 55 are broken down 

into terms and the terms are added to the respective arrays. All the terms 

that include Hi,j,k-1η+1 (the cell above the current cell) are added to A while 
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terms that include Hi,j,k+1η+1 (the cell below the current cell) are included in 

E. The terms with Hi,j,kη+1 (the current cell) are saved into C. The exchange 

coefficient parts of the equations (last components in Eqs. 54 and 55) 

include the flux term from the other pore system, i.e. HF,i,j,k+1η+1 in the 

matrix case and HM,i,j,k+1η+1 in the macropore system case. These terms are 

saved into D and B in the matrix and macropore systems, respectively. B is 

left empty in the matrix system and D in the macropore system. All the 

known terms (old time step and the neighbouring column flux terms) are 

added to F. In the computer program implementation, both pore systems 

are saved into the same arrays in an alternating order (e.g. matrix, 

macropore, matrix etc.). This is the reason why the array indices in the 

matrix and macropore equations differ by one in Eq. 56 (e.g. A2k-2 in the 

matrix system and A2k-1 in the macropore system). The variables in A, B, C, 

D, E and F are presented in Appendix A. A system of equations can be 

formed from the individual cell descriptions (Eq. 56) in a column of cells 

(Fig. 9c): 

 

 

 

 

 

 

(57) 

In the computer program implementation, the system of equations (Eq. 

57) is saved into the arrays and passed into PDMA. The algorithm returns a 

1-D array which contains the new hydraulic heads for the column of cells in 

both pore systems in the same alternating order (matrix, macropore, matrix 

etc.). 

A flow chart of the subsurface flow solution algorithm is presented in Fig. 

10. The flow chart is divided into three phases (preprocessing, iteration and 

post-processing). To accelerate the algorithm, parts of the fluxes (flux terms 

in Fig. 9) that do not change during the iteration phase are precalculated in 

the preprocessing phase (Fig. 10a). The flux components between cells in 

Eqs. 54 and 55 have to be divided with w (macropores) or 1-w (matrix) if w 

is changing between cells in the same pore system. This is not shown in 

Eqs. 54 and 55 to improve the clarity of the presentation. The computation 

time in the iteration phase is mostly spent in saving the multipliers of the 

unknown H values into the 1-D arrays and running PDMA. The successive 

over-relaxation (SOR) method can be used to accelerate the iteration 
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(Fletcher 2005).  h, θ and CW are updated after the H values have been 

solved in the grid during the iteration process. After the iteration phase, 

volumetric fluxes to sinks are saved for the subsurface transport model. 

 

Figure 10. Flow chart of the subsurface flow solution algorithm divided into a) the 
preprocessing phase, b) the iteration phase and c) the post-processing phase. The algorithm 
continues from left to right and from top to bottom. 

The subsurface flow domain contains several internal sinks (subsurface 

drains, ditches and ET) and boundary conditions (infiltration and 

groundwater flow). Sinks remove water from both matrix and macropore 

systems. The drains are depicted as finite, cylindrically shaped sinks in the 

soil: 

   (58) 

where qS [L3 T-1] is the volumetric drain flux, AS [L2] is the drain surface 

area, HS [L] is the hydraulic head in the drain, ΩS [L] is the drain entrance 

resistance, LS [L] is the drain length in the cell and RS [L] is the drain 

radius. K is calculated as the arithmetic mean of horizontal and vertical 

unsaturated hydraulic conductivities. The hydraulic pressure in the drain is 

assumed to be equal to hS (atmospheric pressure, hS = 0.0 m). If H in soil 
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drops below the HS [L] threshold, qS is set to zero. The ΩS parameter can be 

given a constant value or calculated with the following empirical equation: 

 (59) 

Units in Eq. 59 are in [m]. Seepage to ditches is calculated with an 

analogous method: 

 
(60) 

where qD [L3 T-1] is the volumetric ditch flux, AD [L2] is the ditch surface 

area against the horizontal flux, HD [L] is the hydraulic head in the ditch, 

ΩD [L] is the ditch entrance resistance, LD [L] is the ditch length and z [L] is 

the vertical position. The ΩD parameter is set by default to one quarter of 

the horizontal length of a cell. The cell height in Eq. 60 is calculated from 

the vertical positions (z) of the top and bottom planes of the cell. K is 

deduced in the same way as in Eq. 58. The ditch functions as a sink only 

when H in the surrounding soils is higher than in the ditch. Otherwise qD is 

set to zero. The groundwater flow flux qGW [L3 T-1] is presented as follows 

for the four horizontal directions: 

 

 

(61) 

The gradient is calculated between the two outermost cells at the grid 

boundary and only elevation heads are used to estimate the hydraulic 

gradient. K in Eq. 61 is set to the horizontal conductivity value of the soil. 

Additional water is not allowed to enter the grid, i.e. if water is entering the 

grid, qGW is set to zero. Volumetric actual ET flux is solved as follows: 

 (62) 

The αF is calculated with the method of Feddes et al. (1978) presented in 

the literature review (Fig. 1). Infiltration from the overland domain is 

calculated as a flux between the overland and subsurface cells: 

 
(63) 

where K is set to the vertical hydraulic conductivity value of the pore 

system. In the matrix system, K is always set to the saturated value. In the 

macropore system, K is set to the saturated value if the overland water 

depth is above hW,THR (Eq. 30). qI is explicitly solved in the preprocessing 
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phase and adjusted before the iteration phase in the following way. If the 

infiltration volume during a time step is higher than the volume of water in 

the overland cell, the flux is reduced to accommodate this. Conversely, if the 

empty pore space in the soil is less than the infiltration volume the flux is 

reduced accordingly. These precautions are taken to reduce mass balance 

errors and to prevent over-saturation of the subsurface flow cells. 

Groundwater levels during a simulation are specified by inspecting cell 

columns in the grid from bottom to top, until an unsaturated cell is found. 

The groundwater level inside the unsaturated cell is specified with linear 

interpolation. The levels are defined separately for the soil matrix and 

macropore systems. 

Overland erosion 

The implicit, discretised form of overland erosion PDE is as follows (e.g. 

Taskinen 2002): 

  

(64) 

Ci,jη+1 can be solved directly from Eq. 64: 

  

(65) 

A flow chart of the overland erosion solution algorithm is presented in 

Fig. 11. Sediment mass in the overland domain is converted into a solute 

concentration at the preprocessing phase and back to mass at the post-

processing phase to maintain mass balance outside the algorithm. 

Transport capacity of the overland flow and potential hydraulic and rain 

drop splash erosion rates are calculated in the preprocessing phase with the 

overland flow velocity and water depth results. To identify whether net 

erosion occurred in a cell and which process introduced the sediment into 

the cell, a following approach is adopted. In the iteration phase (Fig. 11b), 
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Eq. 65 is initially solved in two parts: 1) the numerator and 2) the 

denominator. It is then possible to add equation coefficients into one or the 

other (numerator or denominator) and recalculate Ci,jη+1 without noticeable 

increase in the computational load. Ci,jη+1 is calculated three times in each 

cell: 1) after fluxes between neighboring cells and to ditches, 2) after 

hydraulic erosion and 3) after rain drop splash erosion results have been 

added (Fig. 11b). After each time, the resulting concentration is compared 

to the transport capacity of the flow to determine if more sediment can be 

introduced into the cell. 

 

Figure 11. Flow chart of the overland erosion solution algorithm divided into a) the 
preprocessing phase, b) the iteration phase and c) the post-processing phase. The algorithm 
continues from left to right and from top to bottom. 

The overland erosion submodel includes several sink and source 

processes. The sediment flux into a ditch is calculated by multiplying the 

volumetric water flux to the ditch (Eq. 52) with the sediment concentration 

in the cell. The rain drop splash erosion description is derived from the 

SHESED model, without the leaf drip component (Wicks and Bathurst 

1996): 
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 (66) 

where kR [M-1 L-2 T2] is the raindrop splash soil erodibility coefficient, FW 

[-] is the overland water depth correction factor, CG [-] is the proportion of 

soil covered by ground cover, CC [-] is the proportion of soil covered by 

canopy cover and MR [M2 T-3] is the momentum squared for rain. FW is 

calculated with the following method: 

 
(67) 

where DR [L] is the median raindrop diameter. DR in turn is determined 

from the Laws and Parsons (1943) equation: 

 (68) 

where I is the rainfall intensity. The unit of I is in [mm h-1] and DR in [m]. 

MR is calculated as follows: 

 (69) 

where αR and βR [-] are empirical coefficients. They are defined according 

to the value of I (Table 3). 

Table 3. Parameters for the relationship between momentum squared and rainfall intensity 
(Wicks and Bathurst 1996). 

Rainfall intensity, I [mm h-1]: αR [-]: βR [-]: 
I < 10 2.69 × 10-8 1.6896 

10 ≤ I < 50 3.75 × 10-8 1.5545 
50 ≤ I < 100 6.12 × 10-8 1.4242 

100 ≤ I < 250 11.75  × 10-8 1.2821 
 

gH is calculated as follows (Taskinen 2002): 

 
(70) 

where kH [M L-2 T-1] is the overland flow erodibility coefficient, τ [M T-2 L-

1] is the shear stress of the overland flow, τC [M T-2 L-1] is the critical shear 

stress defined by the Shields diagram and κ is a fitting exponent. The 

Shields diagram was originally designed for channel erosion but it is also 

applied in overland erosion studies (e.g. Taskinen 2007b). τ is calculated as 

follows (Taskinen 2002): 

 (71) 

where SOA [-] is the average slope of the overland water surface. SOA is 

calculated as follows: 
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(72) 

τC is defined with the modified Shields method for small particles 

proposed by Mantz (1977) and further improved by Yalin (1977). The 

ordinate of the Shields diagram YCR [-] is as follows: 

 

(73) 

where ψ [-] is a constant and its value is 0.142. The value of Ξ [-] is 

determined as follows: 

 
(74) 

where γS [M L-2 T-2] is the specific weight of sediment in fluid, DS [L] is the 

mean particle diameter and υ [L2 T-1] is the kinematic viscosity of water. 

Parameters γS and τC are defined as follows (e.g. Taskinen 2002): 

 (75) 

 (76) 

where ρS [M L-3] is the sediment particle density. The second to last term 

on the right hand side of the sediment continuity equation (Eq. 44) 

represents suspended particles falling back to the field surface due to 

gravity. US can be calculated with the Stokes law: 

 
(77) 

where SG [-] is the sediment specific gravity in water, i.e. sediment particle 

density divided by water density. During precipitation turbulent mixing 

caused by raindrops cancels deposition and US is set to zero (Taskinen 

2002). Taskinen (2002) noted that Eq. 77 is strictly valid only up to 

Reynolds number Re [-] of 0.5. Re is calculated as follows: 

 (78) 

The transport capacity of the flow TC [ppm] limits potential rain drop 

splash and hydraulic erosion and it is based here on the Yalins equation 

(Yalin 1963): 

 
(79) 
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where USH [L T-1] is the overland shear velocity, UR [L T-1] is the overland 

resultant flow velocity and aY [-] and δ [-] are parameters. USH and UR are 

calculated as follows: 

 
(80) 

 
(81) 

Parameters δ and aY are defined as follows: 

 
(82) 

 (83) 

Parameter Y [-] is determined from the following equation: 

 
(84) 

A possibility was also included in the model to set a minimum value for TC 

in standing water. 

Subsurface transport in macropores 

The implicit, discretised form of subsurface transport PDE is as follows: 

  

(85) 

The ζ [-] variables cancel out the advective components going against the 

water pressure gradient between the cells. When water is flowing into the 

cell in i, j and k coordinates (Fig. 7b), ζ is set to zero while in the opposite 

case it is set to 1. The ζ variables are specified for all six directions. In this 

approach, absolute values of v are used. Iteration in the solution algorithm 

is accelerated with TDMA. Similarly to PDMA applied in the subsurface 

flow submodel, the variables in Eq. 85 have to be organised in a specific 
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way. Multipliers of cF,i,j,k-1η+1, cF,i,j,kη+1 and cF,i,j,k+1η+1 in Eq. 85 are saved into 1-

D arrays A, B and C and the known terms are saved into D. 

 

 (86) 

The terms in A, B, C and D are presented in Appendix B. A system of 

equations can be assembled from the descriptions of the individual cells 

(Eq. 86) in a cell column (Fig. 9) and presented compactly in an array form: 

 

(87) 

The arrays are then passed into TDMA, which returns an array with the 

new concentration values for the column of cells. 

A flow chart of the subsurface transport solution algorithm is presented in 

Fig. 12. Similarly to the overland erosion submodel, sediment is treated as 

mass outside the algorithm, converted into solute concentration in the 

preprocessing phase (Fig. 12a) and back to mass in the post-processing 

phase (Fig. 12c). 

 

Figure 12. Flow chart of the subsurface transport solution algorithm divided into a) the 
preprocessing phase, b) the iteration phase and c) the post-processing phase. The algorithm 
continues from left to right and from top to bottom. 
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The approach minimises the sediment mass balance error caused by 

dynamic macroporosity changes due to tillage and soil shrinkage and 

swelling processes. Otherwise the algorithm functions similarly to the 

subsurface flow solution algorithm (Section 3.2.1.2). 

The advective and dispersive flux terms are precalculated in the 

preprocessing phase to accelerate the algorithm in the iteration phase (Fig. 

12a). However, new concentration values are included in the fluxes in the 

iteration phase. The advection components are also solved implicitly to 

ensure the stability of the algorithm. This can lead to severe numerical 

dispersion when long time steps are used during fast preferential transport 

events. However, suspended sediment is produced in the overland domain 

by erosive processes in a diffuse manner and not in sharp fronts, making 

the problem less critical. Transport of sediment is restricted to the volume 

between the field surface and subsurface drains. This is achieved in the 

model by calculating the solution only in the cells located above the drains 

and forcing the influxes and outfluxes at the domain border to zero. 

Iteration is accelerated with TDMA presented above. After the iteration 

phase, sediment mass fluxes to sinks are saved for inspection. 

Sediment sinks, sources and boundary conditions in the subsurface 

transport domain are bound to the corresponding processes in the 

subsurface flow domain. The sediment mass introduced into a transport cell 

via infiltration is calculated by multiplying qI (Eq. 63) with the sediment 

concentration in the overland erosion cell. The sediment fluxes to ditches, 

subsurface drains and groundwater flow are calculated by multiplying the 

corresponding volumetric water fluxes (Eqs. 60, 58 and 61) with the 

sediment concentrations in the subsurface transport cells. 

Soil shrinkage and swelling 

Soil shrinkage and swelling processes are simulated by changing 

macroporosity of the subsurface cells according to the moisture state of the 

matrix cells. Drying of the matrix pore system increases the volumetric 

fraction of the macropore system (w), while wetting does the reverse. While 

there is no hysteresis effect in the shrinkage and swelling processes, 

anisotropic water exchange creates hysteresis in the moisture flow between 

the pore systems (Eq. 40). The soil shrinkage and swelling model by Kroes 

et al. (2008) (Eqs. 88–92) and SSCC by Kim et al. (1992) (Eq. 3) are 

adopted here. The dynamic crack volume VDY [L3 L-3] is calculated from 

overall and vertical shrinkage as follows: 

 (88) 
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where VSH [L3 L-3] is the volume fraction of overall matrix shrinkage and 

VSU [L3 L-3] is the volume fraction of subsidence shrinkage. The correction 

to VDY when ignoring vertical changes to soil matrix profile is as follows: 

 
(89) 

When static macropores VST [L3 L-3] are present, the horizontal area 

fraction of the matrix equals 1 – VST. The VDY parameter is then calculated 

as follows: 

 
(90) 

The vertical shrinkage component is determined from the overall matrix 

shrinkage: 

 (91) 

VSH is equal to the fraction of volume loss in the soil matrix which in turn 

equals the fraction loss of pore volume: 

 (92) 

where VM [L3 L-3] is the soil matrix volume fraction and VP [L3 L-3] is the 

pore volume fraction. Eq. 90 is adopted to calculate VDY because vertical 

changes of the soil profile are ignored in the model and there are static 

macropores present (e.g. earth worm holes and crop root tunnels). The rS 

parameter is set to a constant value of 3.0 to reflect 3-D isotropic shrinkage 

(Kroes et al. 2008). 

A flow chart of the soil shrinkage and swelling solution algorithm is 

presented in Fig. 13. Geometry of the macropores (e.g. shape, diameter, 

tortuosity and connectivity) can have a big impact on the hydraulic 

properties of the macropore network. Unfortunately, there are little data on 

the effects of different macropore structures on hydraulic conductivity. In 

the model, saturated hydraulic conductivity of the macropore system is 

directly proportional to the macroporosity of soil: 

 (93) 

where KFS,MUL [L T-1] is the macropore saturated hydraulic conductivity 

multiplier. This is a reasonable assumption because the dynamic macropore 

volume is presumed to consist of cracks and they transform primarily along 

one axis during shrinkage or swelling. A similar approach was used 

previously by Messing and Jarvis (1990) and in the MACRO model (e.g. 

Larsbo and Jarvis 2003). 
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Figure 13. Flow chart of the soil shrinkage and swelling submodel divided into a) the primary 
solution and b) the matrix shrinkage state method. 

Cropping and tillage effects 

The cropping and tillage effects submodel changes the properties of 

different subareas of the field over time to simulate crop growth and effects 

of tillage operations. Several parameters can be modified at predefined 

points in time in the overland domain including the Manning’s coefficient 

(Eq. 33), the overland flow threshold water depth (Eq. 30) and the overland 

flow and raindrop splash erodibility coefficients (Eqs. 70 and 66). 

In the subsurface domain, root growth of crops can be represented by 

listing root depths at predefined points in time. The model will linearly 

interpolate the depths between these points. The distribution of root mass 

between field surface and maximum root depth is calculated with a linearly 

decreasing function (linear with depth from surface). The root distribution 

is the same in both pore systems. The static macroporosity values can be 

changed to a predefined tillage depth at different points in time to simulate 

the change of macroporosity due to tillage. 

3.2.2 The model framework 

The model framework is responsible for creating the computational grid, 

running the submodels and taking care of time integration and various 

bookkeeping tasks. The framework can be divided into three parts: 1) the 

preprocessing phase, 2) the simulation phase and 3) the post-processing 

phase. A flow chart of the framework is presented in Fig. 14. In the 

preprocessing phase, data files are loaded and the computational grid is 
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generated. The total simulation time is divided into global time steps that 

are further divided into local submodel time steps. Each submodel 

algorithm presented earlier simulates one local time step at a time. 

Precipitation is applied to the grid in a separate process (Fig. 14b), rather 

than in the overland flow submodel, to make it possible to run submodels 

separately. After each global time step, groundwater table levels and mass 

balances are updated in the grid. After all the global time steps have been 

calculated, the simulation is over and the results are saved to disk. 

 

Figure 14. Flow chart of the model framework divided into a) the preprocessing phase, b) the 
simulation phase and c) the post-processing phase. The algorithm continues from left to 
right and from top to bottom. 

The time stepping system 

A custom time stepping system was derived to divide global time steps 

into local time steps for each submodel. A global time step is partitioned 

into local time steps with the following exponential formula: 
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(94) 

where Δt [T] is the local time step, ΔtMAX [T] is the global time step and χ 

[-] is the time step level. The maximum number of Δt:s is 1024 (χ = 10) and 

the minimum is one (χ = 0). With a one hour ΔtMAX the χ values of 10 and 0 

translate into 3.5 s and 1 hour, respectively. With this approach, the 

submodels using different values of Δt:s will automatically synchronise at 

the multiples of ΔtMAX. Each ΔtMAX is stepped through with the minimum 

time step (χ = 10) in the framework. The number of local time steps in a 

ΔtMAX as a function of χ is presented in Fig 15a. An example simulation with 

different local time steps within a ΔtMAX is shown in Fig. 15b. 

 

Figure 15. a) Division of local time steps in a global time step as a function of χ and b) 
submodels with different local time steps within global time steps. Between global time steps 
t-2 and t-1 a rainstorm passes the study area in the model and the local times steps in the 
submodels are set to the minimum value. 

When the cumulative time within ΔtMAX coincides with Δt of a submodel, 

the model is run. Even though they are still run sequentially, the system 

maximises the parallel operation of the submodels. Precipitation is inserted 

into the grid always with the minimum Δt or with the maximum χ value of 

10. Because all the dynamic solution algorithms are implicit, the usual Δt 
constraints concerning explicit solution approaches do not apply (e.g. 

Courant–Friedrichs–Lewy condition)(e.g. Fletcher 2005). In order to 

produce realistic results, small values of Δt are still needed during rapid 

flow events. 

The χ values are changed at the beginning of each ΔtMAX with a set of rules 

that were derived experimentally with the numerical model. Similar 

systems are used, e.g. in the SWAP model (e.g. Kroes et al. 2008) and in the 

HYDRUS model (e.g. Šimůnek et al. 2006). The submodels for soil 

shrinkage and swelling and crop and tillage effects are always run with χ 
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values of zero, i.e. with the value of ΔtMAX. The value of χ in the submodels is 

adjusted according to the following rules: 

 

Increase χ by 2 if: 

� It is raining.  

� The maximum number of iterations was reached by the 

submodel during the last ΔtMAX. 

� The value of hW is above zero (water level is above hW,THR) in 

any cell in the overland grid (this rule concerns only the 

overland flow and erosion submodels). 

Decrease χ by 2 if: 

� None of the rules above apply. 

The value of χ has lower and upper limits of 0 and 10, respectively. In 

addition to the criteria shown above, two special rules are included. 1) 

Overland erosion and subsurface transport models always operate with the 

same or higher value of χ than the corresponding flow model. 2) In case of a 

rainstorm event, the χ is set to the maximum value of 10 for overland flow 

and erosion and subsurface flow and transport submodels (Fig 15b). The 

threshold precipitation intensity corresponding to a rainstorm event is 

prescribed by the modeller. 

The automatic grid generation system 

An automatic grid generation system (AGGS) was developed to generate 

grids with different resolutions for the numerical model. The primary 

purpose of AGGS is to assist in finding the minimum resolution at which 

the results from the numerical model are resolution independent. After this 

point is found, it is not necessary to use higher resolution grids in the 

simulation, which saves computational resources. AGGS produces 

structured 3-D grids according to the specified settings and provided data. 

The grid cells are square shaped in the horizontal plane but their 

thicknesses can vary arbitrarily. However, the discretisation of the vertical 

profile has to be the same everywhere in the grid. Field sections with 

complex shapes can be represented with structured grids by applying area 

masks to identify and group active and inactive cells. The computational 

load is not increased by the inactive cells although they consume additional 

memory. A set of spatial input data is presented in Fig. 16a as an example. 

Several grids with different resolutions generated from the data are 

presented in Fig. 16b. Theoretical tests are conducted with the grids later in 

this section. 



Description of the FLUSH model 

94 
 

 

Areas (active field area, cropping and tillage areas and soil profile areas) 

and drainage lines (ditches and subsurface drains) are inputted into the 

system as vector data. Separate sets of ditch data are used for the overland 

and subsurface domains because it is possible that there are embankments 

built along ditches to direct overland flow to certain discharge points in the 

field. On the other hand, subsurface seepage into ditches is not hindered by 

the embankments. Digital elevation models (DEM) are represented as 

raster data and soil data, soil layer properties and general settings are saved 

as tabular data. 

 

Figure 16. a) Geometry data used by AGGS (1. tillage areas, 2. active field areas, 3. ditches 
(not embanked), 4. ditches, 5. subsurface drains (concentric circles), 6. soil profile areas, 7. 
DEM and 8. groundwater table level measurement tube positions) and b) three different 
resolution grids generated by the system. 

A flow chart of AGGS is presented in Fig. 17. First, a structured 3-D grid is 

created to the specified coordinates. Three types of algorithms are applied 

to transfer spatial data to the grid: 1) a vector tracing algorithm used for 

ditches and drains, 2) a point-in-polygon based algorithm used with the 

area data (active field area, soil profiles and cropping tillage areas) and 3) a 

down-scaling system used for the raster data (DEM). The length of drainage 

line (subsurface drains and open ditches) in each cell is determined with 

the vector tracing algorithm. The resulting length is either saved into the 

cell in the specified depth in the case of subsurface drains or into each cell 

between the surface and the specified depth in the case of open ditches. The 

grid topography and profile is offset according to DEM and profile 

geometry. If the grid resolution is less than the DEM resolution, an 

a) 

1. 2. 

3. 4. 

5. 6. 

7. 8. 

b) 
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arithmetic mean is calculated from the DEM pixel elevations in the cell 

area. In the end, initial conditions are saved into the grid. The hydraulic 

heads, pressure heads and water contents in both pore systems are 

calculated from the specified initial groundwater table depth. 

 

Figure 17. Flow chart of AGGS. The algorithm continues from left to right and from top to 
bottom. 

Software implementation 

The FLUSH model was implemented with the C++ programming 

language and developed with the Microsoft Visual Studio 2008. The model 

is targeted at desktop workstations with Microsoft Windows Vista or 7 

operating systems. In addition to the numerical model, a visualisation 

program was developed with the OpenGL application programming 

interface (API) to visualise the computational grids (Figs. 16b, 33, 82-83 

and 84-87). All the components including the submodels, the grid and the 

cells were coded with an object oriented paradigm. The cells residing in the 

grid object are divided into two container objects for the overland and 

subsurface cells. The cells store the values of all spatially changing 

parameters and variables. They are linked to each other with pointers in the 

grid creation process (Fig. 17). The cells can then access their neighbours 

with their internal methods to calculate inter-cell properties such as 

hydraulic conductivity and dispersion. Inheritance is used to add 

functionality to the cell classes in layers without making a single, bloated 

class that includes all the cell properties. 

The operation of the submodels is parallelised with OpenMP API. 

Environmental modelling studies using OpenMP were presented 

previously, e.g. by Innocenti et al. (2009) and Neal et al. (2009). OpenMP 
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supports shared memory multiprocessing programming 

(http://www.openmp.org/, 1.1.2010) and it is fairly easy to implement into 

existing simulation models. The start and end of parallel sections in code 

are marked with a set of clauses provided in API. The approach facilitates 

parallelisation of loops and creation of parallel sections in code. The API 

also includes tools for synchronisation of threads and methods to handle 

shared variables between threads. Currently OpenMP support is available 

only for C/C++ and FORTRAN programming languages. 

Parallelised blocks of code in the submodels are presented with dashed 

lines in Figs. 8 and 10–13. The grid is divided dynamically into column 

strips that are solved with separate execution threads. Because the cells are 

connected to each other with pointers, it is still possible for the cells to 

access their neighbours in different strips. Due to the iterative nature of the 

dynamic solution algorithms, it does not matter if the state variables are 

changed in the strips at different times. However, it is very important to 

minimise the access to shared variables during the execution of several 

threads. This can lead to slowing down of the simulation as the threads 

queue to make changes to the variables. In the model, only the deviation of 

the state variables in the iteration phases is treated as a shared variable. 

Everything else is stored locally in the cells. 

3.3 Validation of the numerical model 

Performance of the numerical model is evaluated with various 

approaches. The solution of the Richards equation is tested against results 

calculated with an analytical model because the equation is notoriously 

difficult to solve numerically. The operation of the model framework and 

the system of submodels is analysed with a theoretical test case. The new 

PDMA method is compared to the traditional TDMA approach, and the 

acceleration effect due to parallelisation with OpenMP is investigated with a 

different number of processor cores. 

3.3.1 The numerical solution of the Richards equation 

Analytical solutions of the Richards equation are difficult to derive due to 

the highly nonlinear aspect of PDE (Tracy 2007). The relative hydraulic 

conductivity KR [L T-1] and the volumetric water content θ are both 

functions of the pressure head h in unsaturated soils, which causes the 

strong nonlinearity. 2-D and 3-D analytical solutions were derived by Tracy 

(1995) without a gravity term. Later Tracy (2006, 2007) developed 

analytical 3-D models which included the gravity term and several different 
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boundary conditions. The analytical models by Tracy (2007) were applied 

here to test the 3-D numerical solution of the Richards equation. The goal 

was that the presented numerical solution produced similar results 

compared to the analytical model. The analytical model simulates moisture 

flow in a box-shaped soil sample with a rectangular source area in the 

middle of the top face. Steady and transient variants are presented in the 

Tracy’s study with two boundary conditions: 1) with open sides and 2) with 

closed sides. Only the transient versions were applied here. The solution in 

the analytical model is based on iterative Fourier series-based approaches. 

The resulting equations are rather lengthy and thus are not presented here. 

The modelled box-shaped soil sample is presented in Fig. 18. The pressure 

heads computed by the analytical and numerical models were compared at 

12 points inside the sample (P1–P12 in Fig. 18). Resolution of the 

computational grid used in the numerical model was 64×64×20 cells in x-, 

y- and z-directions. 

 

Figure 18. a) Top view and b) front view of the simulation geometry. The 12 points (P1–P12), 
where the results from the analytical and numerical models are compared, are drawn as 
open circles. 

In the analytical model, the hydraulic conductivity varies with the 

pressure head according to Gardner’s exponential model (Gardner 1958). 

The following modifications to the description of KR and θ are required in 

the numerical model: 

 (95) 

 (96) 

where αG [L-1] is a parameter of Gardner’s WRC. The pressure head in the 

source area (Fig. 18) is set to 0.0 m at the beginning of the simulation. In 

the numerical model, the pressure heads in the whole top cell layer were 

derived from the analytical model. The approach decreased the sharp 
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discontinuity between the source area and the surrounding area, and made 

the numerical solution more accurate. Initial pressure head in the soil 

sample was set to a value of -10.0 m. In the open-sided case, the side 

pressure heads were set to a constant value of -10.0 m. In both open- and 

closed-sided cases, the bottom side remained at a constant -10.0 m pressure 

head. The boundary conditions in the numerical model were assigned to the 

outermost cell layer in the grid. The simulation parameter values are 

presented in Table 4. 

Table 4. The simulation parameter values in the analytical and numerical models. 

Parameter: Value: Unit: 
Width of the soil sample 10.0 [m] 
Length of the soil sample 10.0 [m] 
Depth of the soil sample 2.0 [m] 
Initial h in the soil sample -10.0 [m] 

αG 0.25 [m-1] 
θR 0.1 [m3 m-3] 
θS 0.4 [m3 m-3] 
KS 0.5 [m h-1] 

Simulation time 0.6 [h] 
Δt (numerical model) 0.001 [h] 

 

Due to the larger width of the soil sample compared to the height of the 

sample (10.0 vs. 2.0 m), the difference between the open-sided and closed-

sided models was not notable. Instead of presenting the same points from 

the two tests, different points in the grid are shown from the two tests. The 

comparison between the open-sided models is presented in Fig. 19. The 

mean absolute error (Appendix D) between the analytical and numerical 

model results in Fig. 19 was less than 0.28 m. The average mean absolute 

error in the points was 0.17 m. 

  

Figure 19. Pressure heads calculated with the open-sided analytical and numerical models at 
the points P1, P2, P5, P6, P9 and P10. 

It only took approximately 0.6 h to reach steady-state conditions in the 

simulations due to the relatively well permeable soil. The steady-state 

pressure heads reached with the open-sided models are presented in Table 

5. The largest and smallest differences between the analytical and 

a) b) 
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numerical model results were found at the locations of P9 and P2, 

respectively. 

Table 5. Steady-state pressure heads [m] calculated with the open-sided analytical and 
numerical models at the points P1, P2, P5, P6, P9 and P10. 

Model: P1: P2: P5: P6: P9: P10: 
Analytical -0.421 -1.044 -1.258 -2.681 -2.386 -4.144 
Numerical -0.432 -1.053 -1.292 -2.695 -2.466 -4.197 

 

The pressure heads calculated with the closed-sided models (Fig. 20) were 

slightly higher than the results calculated with the open-sided versions 

because water could not drain through the sides of the soil sample. The 

points P4, P8 and P 12 (Fig. 20b) were selected from the vicinity of the grid 

side which is the reason for the lower pressure head results. The scale of the 

y-axis (pressure head) in Fig 20b was adjusted to accommodate this. 

  

Figure 20. Pressure heads calculated with the closed-sided analytical and numerical models 
at the points P3, P4, P7, P8, P11 and P12. 

The pressure heads produced by the numerical model in Fig. 20 were 

lower (up to 1.6 m at the point P3 at 0.002 h) than the values simulated by 

the analytical model. The average mean absolute error was 0.07 m. The 

steady-state results from the closed-sided models are presented in Table 6. 

The largest difference between the model results was discovered at the 

point P11, while the smallest difference was found at the point P3. 

Table 6. Steady-state pressure pressure heads [m] calculated with the closed-sided analytical 
and numerical models at the points P3, P4, P7, P8, P11 and P12. 

Model: P3: P4: P7: P8: P11: P12: 
Analytical -0.756 -9.484 -1.999 -8.945 -3.296 -8.828 
Numerical -0.762 -9.490 -2.020 -8.969 -3.362 -8.873 

 

The conclusion of the test was that the results calculated with the 

numerical solution of the Richards equation were comparable to the results 

calculated with the analytical model. According to the results, the steady-

state error in the numerical solution increased as a function of distance 

from the source area. 

a) b) 
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3.3.2 Numerical tests with a theoretical test case 

The performance of the whole system, consisting of the framework and 

submodels, was investigated with a theoretical test case that can be 

repeated elsewhere if required. The objective of the test was to ensure that 

the crucial parts of the system were functioning as intended. The test case is 

presented below. 

The geometry consisted of a circular plot area (radius 32.0 m, area 0.3217 

ha) with a single hill in the middle (Fig. 16). The vertical axis in Fig. 16 has 

been increased eightfold. The topography of the hill can be described with a 

sine function with peak-to-peak amplitude of 1.28 m and wavelength of 

64.0 m. The average slope was 0.04. The plot was completely surrounded 

by an unobstructed ditch. The width and depth of the ditch was 1.0 m and it 

is full of water. Four concentric circular subsurface drain lines (radii 16.0, 

20.0, 24.0 and 28.0 m) surrounded the hill. The drains were installed at a 

depth of 1.0 m. The diameter of the drainpipe was 0.05 m and the pipes 

were at atmospheric pressure. Vegetation covered the hill with a root depth 

of 0.1 m (e.g. grass). A similar profile with three different soil layers (0.0 – 

0.31, 0.31–1.27 and 1.27–2.55 m) was assumed to exist everywhere in the 

plot.  

The soil parameters for the three soil layers are presented in Table 7. The 

values of the saturated and residual water contents (θS and θR) were set to 

0.5 and 0.1 m3 m-3, respectively, in each soil layer. The KFS,MUL parameter 

(Eq. 93) was assigned a value of  80.0 m h-1. Water exchange rate coefficient 

parameters (d, β and γW in Eq. 26) between pore systems were lumped 

together (e.g. Ray et al. 1997) and a value of 0.01 m-2 was applied for the 

three soil layers. The erodibility parameters kH and kR were set to values of 

1.0×10-6 kg m-2 s and 1.0 J-1, respectively while the dispersivities αL and αT 

were set to values of 0.1 and 0.01 m. Three different grid resolutions 

(16×16×8, 32×32×8 and 64×64×8) were generated with AGGS (Fig. 16). 

The thicknesses of the vertical layers were 0.01, 0.02, 0.04, 0.08, 0.16, 

0.32, 0.64 and 1.28 m. 

Table 7. Soil parameters used in the three soil layers. w describes static macroporosity of the 
soil. 

Layer: αMVG,M: nMVG,M: KSM: αMVG,F: nMVG,F: w: αK: βK: γK: 
[-] [m-1] [-] [m h-1] [m-1] [-] [m3 m-3] [-] [-] [-] 
1 10.0 1.1 1.0×10-2 7.0 2.0 2.0×10-2 0.7 1.3 0.8 
2 3.4 1.1 1.0×10-4 7.0 2.0 2.0×10-3 0.6 1.2 0.9 
3 3.4 1.1 1.0×10-6 7.0 2.0 2.0×10-4 0.6 1.2 0.9 

 

The duration of the simulation was 11 days. Three 24 hour precipitation 

events occurred after the 2nd, 5th and 8th days. The precipitation sum in each 

event was 92 mm and the maximum hourly precipitation was 8.0 mm. The 
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precipitation sum was divided into the 24 hour period with a sine function. 

A constant PET value of 0.1 mm h-1 was assumed in the scenario. Initially, 

groundwater table level was set to the drainage depth (1.0 m) and overland 

water depths were set to zero. The simulations were run on a workstation 

with Intel Core i7 920 processor (4 physical cores + 4 Hyper-Threading 

cores) overclocked to 3.0 GHz and with 6 GBs of RAM. 

The adaptive time stepping system (Section 3.2.2.1) was tested by running 

the presented scenario with and without the system. The mass balance 

results from the simulations are presented in Table 8. The mass balance 

errors are caused by rounding errors due to iteration in the algorithms. 

Table 8. Mass balance results with the adaptive and constant time stepping systems. 
Abbreviations used: Sed. = Sediment. 

Time stepping system: Adaptive Constant Adaptive Constant 
Storage or runoff value: Water [mm]: Water [mm]: Sed. [kg ha-1]: Sed. [kg ha-1]: 

Surface (initial state) 0 0 0 0 
Matrix (initial state) 1224 1224 0 0 

Macropore (initial state) 5 5 0 0 
Surface (end state) 0 0 0 0 
Matrix (end state) 1265 1265 0 0 

Macropores (end state) 2 2 0 0 
Precipitation (corrected) 276 276 - - 

ET 26 26 - - 
Surface net erosion - - 1722 1696 

Surface runoff 117 116 914 913 
Infiltration into soil 160 162 814 788 

Subsurface drainflow 77 78 609 577 
Seepage to ditches 17 18 197 203 
Groundwater flow 1 1 8 7 

Mass balance error 0 +3 +6 +5 
 

In the constant time step case, the local time step was kept at 0.000977 h 

(3.5 s) throughout the simulation. A one hour global time step was used in 

both simulations and the simulations were conducted with the 64×64×8 (in 

x-, y- and z-directions) cell grid resolution. The rain storm threshold value 

was set to 4.0 mm h-1 in the adaptive time stepping case. The simulation 

run with the adaptive time stepping system took 78 min, while the 

simulation run with constant time steps lasted for 223 min, i.e. 

approximately 2.9 times longer. The highest relative differences were 

apparent in sediment infiltration into soil (814 vs. 788 kg ha-1) and 

sediment loads via drainflow (609 vs. 577 kg ha-1). 

The effect of grid resolution on simulation results was investigated with 

three resolutions (16×16×8, 32×32×8 and 64×64×8 cells in x-, y- and z-

directions) (Fig. 16). Cumulative surface runoff and drainflow results are 

presented in Fig. 21. Cumulative surface runoff decreased 5.5% and 

drainflow increased 8.4% with the 64×64×8 grid compared to the results 

calculated with the 16×16×8 grid. 
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Figure 21. a) Cumulative surface runoff and b) drainflow results with different horizontal 
grid resolutions (number of cells in x-, y- and z-directions). 

Changes in cumulative sediment loads (Fig. 22) were reversed and 

smaller compared to the changes in surface runoff and drainflow results. 

Sediment load via surface runoff increased 1.1 % while the sediment load via 

drainflow decreased 1.0% when the grid resolution was increased from 

16×16×8 to 64×64×8. 

Figure 22. Cumulative sediment loads via a) surface runoff and b) drainflow with different 
horizontal grid resolutions (number of cells in x-, y- and z-directions). 

Spatially distributed processes in the plot were studied by visualising data 

from the simulations. Overland water depths and flow velocities during a 

rainstorm event at 205 h are presented in Fig. 82a in Appendix C. The 

precipitation sum right before the event was 54 mm. The highest overland 

flow velocity value at the time was 0.022 m s-1 and the deepest flow depth 

value was 0.0028 m. Net soil erosion patterns after the simulation are 

presented in Fig. 82b in Appendix C. The maximum net erosion value was 

0.21 kg m-2. The erosion patterns in Fig. 82b are artifacts caused by the 

rectangular grid cells set to represent a circular hill and they are not caused 

by the model parameterisation. Pressure heads in the soil matrix and 

macropores after the simulation are presented in Fig. 83 in Appendix C. 

Pressure head in the soil matrix varies more gradually as a function of 

elevation compared to the macropore system. The symmetric form of 

a) b) 

a) b) 
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overland water depths, flow velocities (Fig. 82a), net erosion patterns (Fig. 

82b) and pressure head distributions in soil (Fig. 83) indicate that all the 

directional flux components are working as intended. 

3.3.3 Comparison of TDMA and PDMA 

Performance of PDMA introduced in the subsurface flow submodel 

(Section 3.2.1.2) was compared to the standard TDMA approach (Section 

3.2.1.4) with the simulation setup presented in Section 3.3.2. TDMA and 

PDMA consist of 19 × nI - 14 and 76 × nI - 52 operations (addition, 

subtraction, multiplication, division, comparison and assignment), 

respectively. The variable nI [-] denotes the number of cells in a vertical 

column. The ratio of number of operations in PDMA and TDMA seems to 

approach two as the number of cells in a vertical column approaches 

infinity. However, TDMA has to be run once for each pore system in the 

submodel. Thus, the number of operations is nearly equal in the two 

algorithms. The numerical simulations were conducted with both TDMA 

and PDMA and three different grid resolutions (16×16×8, 32×32×8 and 

64×64×8 cells in x-, y- and z-directions). In addition, the values for the 

maximum number of iterations in the submodels were varied to investigate 

how the parameter affects simulation times. The results of the comparison 

are presented in Table 9. The simulation times with a different maximum 

number of iterations indicated that the performances of the algorithms 

were almost the same. On average, TDMA was 5.7% faster than the new 

PDMA approach. 

Table 9. Comparison of TDMA and PDMA with different grid resolutions. The maximum 
number of iterations in the submodels was varied between 25 and 100. Abbreviations used: 
Max. iter. = Maximum number of iterations and Sim. = Simulation. 

 Max. iter.: 25 50 75 100 
Resolution: Algorithm: Sim. t [min]: Sim. t [min]: Sim. t [min]: Sim. t [min]: 
16×16×8 TDMA 2.4 2.4 2.4 2.5 
16×16×8 PDMA 2.4 2.5 2.9 2.6 
32×32×8 TDMA 11.7 13.8 14.2 15.0 
32×32×8 PDMA 12.8 12.9 13.5 19.0 
64×64×8 TDMA 76.8 89.6 91.9 111.5 
64×64×8 PDMA 78.0 92.0 99.6 114.1 

 

The hourly surface runoff and drainflow simulated with TDMA (max. 

iterations 100) and PDMA (max. iterations 25) are presented in Figs. 23 

and 24. The results produced by the two algorithms with a different 

maximum number of iterations produced a mean absolute error (Appendix 

D) of 0.0013 mm h-1 in surface runoff peak values and 0.003 mm h-1 in 

drainflow peak values. The values are small and it is difficult to separate the 

effect of the algorithm from the fluctuation generated by the parallel 

computing method. 
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Figure 23. Hourly surface runoff simulated with TDMA (max. iterations 100) and PDMA 
(max. iterations 25). 

 

Figure 24. Hourly drainflow simulated with TDMA (max. iterations 100) and PDMA (max. 
iterations 25). 

3.3.4 Tests with OpenMP parallelisation 

The performance gains from the OpenMP parallelisation (Section 3.2.2.3) 

were tested with the same simulation setup presented in Section 3.3.2. 

Numerical simulations were conducted with three different grid resolutions 

(16×16×8, 32×32×8 and 64×64×8 cells) and with 1 to 4 physical processor 

cores. The Hyper-Threading technology in the Intel Core i7 processor 

allows a single physical core to be divided into two logical cores by 

duplicating certain sections of the processor but not the main execution 

resources (www.intel.com, 06.01.2011). The speed-up multipliers due to 

OpenMP parallelisation are presented in Table 10. The speed-up multipliers 

were calculated by dividing the simulation times calculated with a single 

core by the simulation times calculated with 1 to 8 cores (4 physical + 4 

Hyper-Threading cores). The single core simulations took 7.0, 44.9 and 

263.5 min with the 16×16×8, 32×32×8 and 64×64×8 cell grids, 

respectively. With higher resolution grids, each additional core provided a 

clear performance increase. 

Table 10. Speed-up multipliers [-] with different number of processor cores. 

Resolution \ cores: 1: 2: 3: 4: 5: 6: 7: 8: 
16×16×8 1.0 1.9 2.4 2.9 2.7 2.9 2.7 2.9 
32×32×8 1.0 1.9 2.2 2.9 3.0 3.0 3.2 3.5 
64×64×8 1.0 1.8 2.2 2.8 3.0 3.1 3.3 3.4 
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4. Model application 

The numerical model is applied to two clayey, subsurface drained 

agricultural fields in Finland. The resulting systems, implemented for the 

case study sites, are called here computational models. The hypotheses and 

research questions presented in Section 1 are tested with the computational 

models. Results from the simulations are presented at the end of this 

section. 

4.1 Descriptions of the data sets 

Data from two experimental fields in southern Finland was used in the 

model applications (Figs. 25 and 29). The Sjökulla experimental field is 

located in Kirkkonummi, while the Hovi experimental field is located in 

Vihti, approximately 30 km apart. Climate in southern Finland is temperate 

with mean annual precipitation of 700 mm (uncorrected value) and mean 

annual air temperature of +5 ºC. The data sets were provided by several 

organisations including Aalto University, University of Helsinki, Finnish 

Environment Institute (FEI), MTT Agrifood Research Finland (MTT) and 

Finnish Meteorological Institute. It should be noted that the soil data set 

from the Hovi field is scantier than the data available from the Sjökulla 

field. The missing data on soil properties in the Hovi field were completed 

with data from the Sjökulla field. Model calibration and validation was 

conducted with data from two separate years in both case studies (1998 and 

1996 in the Sjökulla case and 1988 and 1984 in the Hovi case). Temporal 

data including runoff and rainfall measurements from the field sites are 

shown in Section 4.3 in conjunction with the simulation results. 

4.1.1 Sjökulla experimental field 

The Sjökulla experimental field site was maintained by the Water 

Resources Laboratory of the Helsinki University of Technology (Aalto 

University) in the 1990s to monitor field-scale runoff, erosion and nutrient 
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transport (e.g. Vakkilainen and Paasonen-Kivekäs 2004). After the 

monitoring period, extensive measurements on soil properties of the field 

were carried out by MTT in 2001–2003 (Alakukku et al. 2003, 2010a). 

Several studies have been published using the data from the field including, 

e.g.: Koivusalo (1993, 1997), Kankaanranta (1996), Al-Soufi (1999), 

Koivusalo et al. (1999), Paasonen-Kivekäs et al. (1999, 2000, 2006, 2008), 

Uusitalo et al. (2001, 2003), Taskinen (2002), Hintikka (2003), Jauhiainen 

(2004), Paasonen-Kivekäs and Koivusalo (2006), Peltovuori (2006), 

Karvonen and Paasonen-Kivekäs (2007), Warsta (2007), Hintikka et al. 

(2008), Warsta et al. (2008a, 2008b, 2009) and Räsänen (2009). 

Description of the field 

The Sjökulla farm is located between Lake Hepari and Sjökullantie road in 

Kirkkonummi (60º 14' 28" N 24º 23' 5" E, Fig. 21). The experimental site 

for runoff and groundwater measurements embodies a field section of 

about 3.3 ha within a larger area of arable land. The location and map of the 

field are presented in Fig. 25. In the model application, the studied field 

area is extended to 3.6 ha to include a field section outside the subsurface 

drainage system in order to facilitate a more appropriate implementation of 

side boundary conditions. The topography of the field section is variable 

and it is bounded by a ditch, an adjacent field and wetland. The steepest hill 

slope is almost 5%, but the lowest area along the ditch has a slope less than 

2%. A paved road runs along the southern side of the field and a gravel road 

along the western side. The roads are separated from the field by shallow 

ditches. A main ditch (partly piped) runs along the northern side of the 

field. The ditch is buffered from the field by about 1.0 m wide vegetation 

strip. The eastern half of the north side (above the pipe line) is connected to 

an adjacent field seamlessly. The eastern side is partly delimited to alluvial 

land (wetland) and partly to arable land. 

The subsurface drainage system, comprised of clay tiles, was installed in 

1951. The distance between the drains is 10–15 m and the drain depth varies 

between 0.7–1.5 m (Fig. 25). The inner and outer diameters of the tile drain 

are 0.04 and 0.06 m, respectively. The design capacity of the drains is 1.0 l 

s-1 ha-1. The water from the drains discharges into two collector pipes with 

drainage areas of 3.14 ha (S1 in Fig. 25) and 0.18 ha (S2). Drainage waters 

from the pipe line discharge into a wetland next to Lake Hepari. Subsurface 

drainflow from the larger drainage area was monitored during intermittent 

periods in the 1990s. Surface runoff was measured in the two sub-

catchments of 0.63 (P1 in Fig. 25) and 2.04 ha (P2) within the experimental 

field. Embankments were built on the north and north-east sides of the field 

to direct overland flow to the measurement weirs (Fig. 25). The depth of the 
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groundwater table was monitored with several measurement tubes along a 

single slope (Fig. 25). 

  

Figure 25. Location of Kirkkonummi in Finland and map of the Sjökulla experimental field. 
Thin lines inside the field borders are the elevation contours (elevations are presented in 
[m]), the thicker lines are the subsurface drains and the white circles (P and S) are the 
surface runoff and subsurface drainflow measurement points. The black circles (1–9) mark 
the locations of the groundwater table level measurement tubes. 

The field section was under conventional crop cultivation during the years 

when the hydrological measurements and the intensive field campaign on 

soil properties were carried out. The land use information of the field 

section is presented in Table 11. 

Table 11. The Sjökulla field land use information. 

Date: Land use: 
1 Aug. 1995 Sowing of autumn rye 

26 Aug. 1996–1 Sep. 1996 Harvesting 
10 Oct. 1996 Ploughing 
1 May 1998 Sowing of spring wheat 

24 Sep. 1998–25 Sep. 1998 Harvesting 
2 Oct. 1998–7 Oct. 1998 Stubble cultivation, ploughing 

Soil properties 

Soil of the Sjökulla field is post-glacial clay classified as very fine Aeric 

Cryaquept by Peltovuori et al. (2002) following the classification of Soil 

Survey Staff (1998). The main clay mineral is illitic mica. The soil has a 

strong tendency to crack during dry periods. For example in summer 2001, 

cracking was observed at least down to a depth of 0.6 m (Alakukku et al. 

2010a). The topsoil layer (0.0–0.25 m) has a clay content of 38–59% while 

the deeper layers have a clay content of 46–90%. Soil texture and organic 

matter content of the soil from different depths are presented in Table 12. 

The measurements were carried out at a midpoint between the drain lines. 
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Table 12. Mean clay, silt and organic carbon content [g g-1]. Range is in parentheses 
(minimum / maximum values) (Alakukku et al. 2003). 

Depth [m]: Clay (≤ 0.002 mm): Silt (0.002 – 0.02 mm): Organic carbon: 
0.0–0.25 0.47 (0.38 / 0.59) 0.28 (0.22 / 0.33) 0.026 (0.017 / 0.044) 

0.25–0.45 0.60 (0.46 / 0.83) 0.24 (0.09 / 0.33) 0.009 (0.004 / 0.019) 
0.45–0.65 0.73 (0.52 / 0.90) 0.18 (0.07 / 0.33) 0.003 (0.002 / 0.009) 
0.65–0.80 0.78 (0.46 / 0.89) 0.16 (0.06 / 0.39) 0.004 (0.002 / 0.009) 

 

Macroporosity and saturated hydraulic conductivity of the soil were 

studied at three distances from the drain: right above the drain, 2.0 m from 

the drain and at a midpoint between the drain lines (Alakukku et al. 2003, 

2010a). Locations of the studied drain lines are presented in Fig. 26 with 

rectangles. The dividing diameter between macropores and micropores was 

assumed to be 300 μm. Measured macroporosity and saturated hydraulic 

conductivity values are presented in Table 13. The measurements from the 

three distances from the drainlines were lumped together because no 

definite differences were found in macroporosities between the samples 

except in the amount of earthworm holes (Alakukku et al. 2010a). While the 

differences in saturated hydraulic conductivities and macroporosities 

across the slope (east-west) were small, there were differences along the 

slope (south-north) (Table 13). 

Table 13. Measured mean, median, minimum and maximum values of KS [mm h-1] and w 
[m3 m-3] of the soil samples taken along the five drain lines (Alakukku et al. 2003, Alakukku 
et al. 2010a). 

 Depth [m]: 0.0–0.23 0.23–0.38 0.38–0.50 0.0–0.23 0.23–0.38 0.38–0.50 
  KS: KS: KS: w: w: w: 

L1 Mean: 151 11 0.05 0.035 0.006 0.002 
 Median: 119 0.07 0.04 0.034 0.004 0.002 
 Min: 9 0 0.006 0.017 0.0003 0.001 
 Max: 454 143 0.25 0.058 0.017 0.004 

L2 Mean: 165 125 0.06 0.03 0.005 0.003 
 Median: 67 28 0.04 0.031 0.005 0.002 
 Min: 2 0.02 0.005 0.018 0.001 0.001 
 Max: 1005 462 0.24 0.041 0.009 0.005 

L3 Mean: 212 97 21 0.027 0.006 0.004 
 Median: 155 43 0.07 0.025 0.005 0.002 
 Min: 26 0.004 0.01 0.013 0.002 0.001 
 Max: 607 306 246 0.043 0.022 0.025 

L 4 Mean: 111 115 31 0.026 0.007 0.003 
 Median: 38 10 0.06 0.024 0.005 0.003 
 Min: 1 0.04 0.02 0.018 0.001 0.001 
 Max: 498 491 206 0.038 0.02 0.006 

L5 Mean: 21 1 7.19 0.023 0.004 0.004 
 Median: 14 0.3 0.09 0.023 0.004 0.004 
 Min: 4 0.04 0 0.005 0.002 0.002 
 Max: 52 52 29 0.054 0.006 0.007 

 

Three soil profile areas were defined for the computational model 

according to the field contour curves and soil sampling locations (Fig 26). 

The parameters of the soil profile area 2 in Fig 26 were calculated as an 

arithmetic mean of sample properties from the lines 2, 3 and 4 (Table 13). 

The parameters of the soil profile areas 1 and 3 were taken from the lines 1 

and 5, respectively. 
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Figure 26. Soil sample locations (rectangles) and different soil profile areas (soil 1, 2 and 3) 
defined in the Sjökulla field computational model. 

Measured WRCs were available from the tillage layer (0.05–0.1 m) and 

bottom soil (0.65–0.70 m) from three different points. Kankaanranta 

(1996) extrapolated the measured curves to wilting point suction with 

empirical curves devised by Karvonen (1988). Parametric MVG WRCs were 

fitted to the measured curves (Kankaanranta 1996). The dual-permeability 

flow model requires a parameterisation for the macropore system as well. 

The total porosity of the soil is divided into soil matrix (1-w) and macropore 

parts (w). Due to the inherent difficulties associated with the direct 

measurement of macropore WRC, a modified curve of gravel was used 

instead (e.g. Ray et al. 1997). WRCs are presented in Fig. 27. 

Figure 27. MVG WRCs of a) tillage layer, b) bottom soil and c) macropores in the Sjökulla 
field computational model (Kankaanranta 1996). 

The MVG WRC parameters are presented in Table 14. These WRCs were 

applied to all the soil profiles in the computational model. The saturated 

volumetric water content (θS) in the macropore system is the same as in the 

corresponding matrix system (Table 14). 

Table 14. Parameters of MVG WRCs of tillage layer, bottom soil and macropores in the 
Sjökulla field computational model (Kankaanranta 1996). 

Parameter: Tillage layer: Bottom soil: Macropores: 
αMVG [m-1] 9.51 3.40 7.0 
nMVG [-] 1.1077 1.0793 2.0 

θS [m3 m-3] 0.5175 0.5643 0.5175 / 0.5643 
θR [m3 m-3] 0.1 0.1 0.01 
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Kankaanranta (1996) studied shrinkage and swelling properties of the soil 

from three points and two depths (0.1–0.15 and 0.4–0.45 m) and fitted 

parametric SSCC by Kim et al. (1992) to the data. SSCCs are presented in 

Fig. 28. 

Figure 28. SSCCs of a) tillage layer and b) bottom soil in the Sjökulla field computational 
model (Kankaanranta 1996). 

Parameters of SSCC are presented in Table 15. As with WRCs, the same 

curves are used everywhere in the field in the computational model. 

Table 15. Parameters of SSCCs of tillage layer and bottom soil in the Sjökulla field 
computational model (Kankaanranta 1996). 

Parameter [-]: Tillage layer: Bottom soil: 
αK 0.7430 0.6236 
βK 1.3057 1.2369 
γK 0.8292 0.9318 

Runoff and meteorological data 

The hourly surface runoff and subsurface drainflow data cover the two 

periods: May–November in 1996 and May–October in 1998 (e.g. Paasonen-

Kivekäs et al. 2008). Outflow from the subsurface drainage system was 

measured at a well with a v-notched weir intercepting the collector pipe 

(Fig. 25, measuring point S1). Surface runoff was measured at the lowest 

points of the field section with a v-notched weir (Fig. 25, measurement 

points P1 and P2). Water levels at the weirs were measured every 15–30 

minutes with a pressure transducer or an ultrasonic sensor. Hourly runoff 

values [mm h-1] were calculated from the measurements using the basic 

stage-discharge relationships of the weirs. The water quality data are 

comprised of total suspended solids (TSS) concentrations in surface runoff 

and drainflow samples. Grab samples of subsurface drainflow were 

collected manually at irregular intervals throughout May–November 1996. 

An autosampler with a 4-hour sampling interval was applied in May–

October 1998. Samples of surface runoff during the study periods were 
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collected manually. The hourly estimates of TSS loads were calculated by 

multiplying hourly runoff volumes with measured concentrations 

(Paasonen-Kivekäs et al. 2008). 

Meteorological variables were measured with a micrometeorological 

station, which recorded precipitation, air temperature, solar radiation, 

relative humidity and wind speed at a height of about 2 m above ground. 

Precipitation measurements were conducted with a collector bucket 

installed on a scale. The measurement frequency was 15–30 minutes and 

hourly values were calculated from the data (Paasonen-Kivekäs et al. 

2008). The measured precipitation was corrected with a constant factor of 

1.05 (Førland et al. 1996) in the simulations. The PET values were adopted 

from Hintikka (2003), who produced PET with the Penman-Monteith 

equation implemented in the MACRO model (e.g. Larsbo and Jarvis 2003). 

4.1.2 Hovi experimental field 

The Hovi experimental field is one of the small catchments where nutrient 

loads are monitored in Southern Finland by FEI. Currently, Uusimaa 

Centre for Economic Development, Transport and the Environment is 

taking care of the actual measurements. Data from the Hovi field has been 

used in several previous studies including, e.g.: Seuna and Kauppi (1981), 

Kauppi (1982), Bengtsson et al. (1992), Posch and Rekolainen (1993), 

Taskinen (2002), Puustinen et al. (2007, 2010), Taskinen and Bruen 

(2007a, b) and Vakkilainen et al. (2010). 

Description of the field 

The Hovi experimental field is located between Kirkkosillantie road to the 

north and Nurmijärventie road to the south, in Vihti (60º 25' 20" N 24º 22' 

7" E, Fig. 29). The 12 ha field section is roughly L-shaped and embedded 

within a larger area of arable land. The topography is undulating with a 

general flow direction spiraling clockwise from south-east to north-east. 

The average slope is 2.8% (Seuna and Kauppi 1981). A new DEM of the field 

was provided by MTT with a pixel resolution of 2.0×2.0 m (Kaivosoja 

2009). DEM was measured with a real time kinematic global positioning 

system mounted on a tractor. There is also an older 20.0×20.0 m DEM 

available created by Taskinen (2002). The new DEM features a large oval-

shaped depression (~100×50 m) in the middle of the field (Fig. 29), not 

present in the old DEM. The field section is not a natural catchment but 

defined according to the subsurface drainage system. Embankments were 

ploughed along the north-east side to direct surface runoff to the open ditch 
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(Fig. 29). A road ditch borders the north-west side of the field. At the south-

west side, the field is delimited by a natural water divide and a farm yard. 

 

Figure 29. Location of Vihti and map of the Hovi experimental field. Thin lines inside the 
field borders are the elevation contours (elevations are presented in [m]), the thicker lines 
are the subsurface drains and the white circles (P and S) are the surface runoff and 
subsurface drainflow measurement points. 

During the simulation years the field was divided into two land use areas 

(Fig. 30). 

 

Figure 30. The Hovi field land use areas (LU1 and LU2) in a) 1984 and b) 1988. 

The land use information corresponding to the areas LU1 and LU2 in Fig. 

30 is presented in Table 16. 
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Table 16. The hovi field land use information. 

Date: LU1: LU2: 
3 Oct. 1983–8 Oct. 1983 Ploughing Ploughing 

1 May 1984 Seeding of spring wheat Fallow 
17 Aug. 1984 Harvesting Rye seeding 
13 Sep. 1984 - Rye springing up 
23 Oct. 1984 Ploughing - 
29 Sep. 1987 Ploughing Ploughing 
10 May 1988 Fallow Harrowing 
11 May 1988 - Seeding of spring wheat 
17 Aug. 1988 - Harvesting 
9 Sep. 1988 Ploughing, harrowing, seeding 

of autumn wheat 
- 

29 Sep. 1988 Autumn wheat springing up ploughing 
 

The subsurface drainage system was installed in 1971 with a drainage 

density of 443 m ha-1 (Seuna and Kauppi 1981) and a drain spacing of 22.0 

m. The drainage area is the whole field section. Plastic tubes with a 

diameter of 0.055 m were installed for the lateral drains and steel and 

plastic tubes with a diameter of 0.1 m for the collector drains. Vertical 

gravel drains were installed with the subsurface drains with a spacing of 

10.0 m (Bengtsson et al. 1992). Subsurface drainflow and total runoff in the 

main ditch were measured in the north-east corner of the field (Fig. 29). 

Soil properties 

The soil properties of the Hovi field have been investigated separately at 

least two times in the past. Taskinen (2002) presented particle size 

distributions of three different soil areas in the field (Fig. 31a). Ristolainen 

and Pesonen (2010) measured particle size distributions, organic carbon 

contents and hydraulic properties of the soil from several locations above 

and between the drain lines in the northeast part of the field in the Täsmä-

NP project (Fig. 31b). 

 

Figure 31. a) Soil areas presented by Taskinen (2002) and b) soil sample locations by 
Ristolainen and Pesonen (2010). The Täsmä-NP project field section (3.2 ha) is drawn with a 
dashed line. 
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In the data presented by Taskinen (2002), the clay content was 51–59 % 

while the silt content was 26–33%. The data describes only the top 0.6 m of 

the profile. Conversely, in the data measured by Ristolainen and Pesonen 

(2010) the clay content varied between 0.54 and 0.77 and silt content 

between 0.27 and 0.17. The samples were taken from three different depths 

(0.0–0.2, 0.2–0.35 and 0.35–0.6 m) (Table 17). Clay, silt and organic 

carbon contents are presented in Table 17. 

Table 17. Mean clay, silt and organic carbon contents [g g-1]. Range is in parentheses 
(minimum / maximum values) (Ristolainen and Pesonen 2010). 

Depth [m]: Clay (≤ 0.002 mm): Silt (0.002–0.02 mm): Organic carbon: 
0.0–0.2 0.54(0.32 / 0.75) 0.27(0.15 / 0.36) 0.02(0.02 / 0.03) 

0.2–0.35 0.71(0.40 / 0.86) 0.20(0.09 / 0.38) 0.01(0.003 / 0.02) 
0.35–0.6 0.77(0.64 / 0.89) 0.17(0.06 / 0.28) 0.003(0.002 / 0.004) 

 

The measured hydraulic properties (Ristolainen and Pesonen 2010) 

included saturated hydraulic conductivities, macroporosities and WRCs. 

Data were available from both between and above the drain lines but only 

data between the drain lines were used. It was thought that it better 

described the general soil properties of the field. The measurements were 

conducted with samples collected from the same depths as the soil texture 

data (Table 17). The dividing diameter between macropores and micropores 

was assumed to be 300 μm. Macroporosity of the soil was higher in the 

samples taken above the drain lines compared to the samples taken 

between the drain lines, except in the tillage layer. Because data on 

hydraulic properties of the soil was only available from the northeast part of 

the field, arithmetic mean values of the data were applied to the whole field 

area. Macroporosity values and saturated hydraulic conductivities of the 

Hovi field (Table 18) were smaller compared to the Sjökulla values (Table 

13).  

Table 18. Measured mean, median and minimum/maximum values of KS [mm h-1] and w 
[m3 m-3] of the soil samples (Ristolainen and Pesonen 2010). 

Depth [m]: 0.0–0.20 0.20–0.35 0.35–0.55 0.0–0.20 0.20–0.35 0.35–0.55 
 Ks:  Ks:  Ks:  w:  w:  w: 

Mean: 163 85 0.6 0.019 0.003 0.001 
Median: 85 23 0.1 0.019 0.002 0.001 

Min: 0.1 0.01 0.01 0.0 0.0 0.0 
Max: 752 545 7 0.043 0.013 0.003 

 

WRCs were measured from two different depths (0.05–0.1 and 0.35–0.4 

m) in the field (Ristolainen and Pesonen 2010). Arithmetic mean values of 

the measured water contents at prescribed suction values were calculated 

from the data set and MVG WRCs were fitted to the resulting curves. The 

curves were further adjusted in the model calibration phase. Macropore 

WRC was parameterised with the same approach used in the Sjökulla case 
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(Table 14, Fig. 27c). WRCs (adjusted), applied to the whole field area in the 

model application, are presented in Fig. 32. 

  

Figure 32. MVG WRCs of a) tillage layer and b) bottom soil in the Hovi field. 

The corresponding MVG WRC parameters are presented in Table 19. 

Table 19. Parameters of MVG WRCs for tillage layer and bottom soil in the Hovi field. 

Parameter: Tillage layer: Bottom soil: 
αMVG [m-1] 7.2011 1.3807 
nMVG [-] 1.0884 1.1197 

θS [m3 m-3] 0.5294 0.5352 
θR [m3 m-3] 0.01 0.01 

Runoff and meteorological data 

The subsurface drainflow and total runoff (drainflow + surface runoff) 

data cover the whole year in 1984 and 1988. Water levels at the runoff weirs 

were originally recorded with a limnograph on paper (Fig. 29, measurement 

points P and S) and later digitised and converted into hourly data [l s-1 

km2]. The intensities can be derived by dividing the addition of the amount 

by the time increment. Suspended sediment concentration measurements 

were available at irregular intervals throughout April–October in 1988. 

Only a few measurements from the ditch and subsurface drainflow were 

available from 1984. 

Precipitation was recorder with Pluviographs with Wild-type collectors on 

pieces of paper which were later digitised into breakpoint data (Taskinen 

2002). Posch and Rekolainen (1993) have described the rainfall 

measurement system in the Hovi catchment. The data were discretised into 

hourly series [mm h-1] used in the model. Precipitation data cover a period 

between May and October in 1984 and 1988. The measured precipitation 

was corrected with a constant 1.05 factor (Førland et al. 1996) in the 

simulations. PET was calculated from daily Class A evaporation pan results 

from Maasoja weather station (60º 25' 7" N 24º 23' 54" E) located 2.5 km 

from the field. The pan results were multiplied with the monthly correction 

coefficients of Vakkilainen (1982) to derive the daily PET values. 
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4.2 Computational models 

A computational model is comprised of the generic numerical model and 

the data from the field. Data are required to create the computational grids, 

assign boundary conditions, set simulation parameters and provide 

dynamic data such as precipitation and PET values for the numerical 

model. 

The models were calibrated and validated with the available runoff and 

sediment data and measured groundwater levels. The years 1998 and 1988 

were used for calibration and 1996 and 1984 for validation in the Sjökulla 

and Hovi models, respectively. The performances of the computational 

models were assessed with visual inspection and statistical approaches. The 

calibration-validation process was conducted manually due to the heavy 

computational load associated with the numerical model. The 

parameterisations of the Sjökulla and Hovi computational models are 

presented side by side in the following section to facilitate easy comparison 

between the fields. 

4.2.1 Computational grids 

Several computational grid resolutions were employed in the simulations 

to accelerate the calibration process and to test the effect of grid resolution 

on the results. The grids were created automatically with AGGS (Section 

3.2.2.2). Horizontal resolutions of the Sjökulla field grids were 18×13, 

36×26, 72×52 and 144×104, whereas resolutions of the Hovi field grids 

were 13×18, 26×36, 52×72 and 104×144 cells in x- and y-directions. The 

computational grids are presented in Fig. 33. 

 

  

Figure 33. The computational grids of a) the Sjökulla and b) Hovi experimental fields. The 
vertical resolution is exaggerated tenfold to accentuate the topography. The fields are not 
shown to scale. 
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The corresponding horizontal lengths of cell sides were 16.0, 8.0, 4.0 and 

2.0 m (Sjökulla) and 32.0, 16.0, 8.0 and 4.0 m (Hovi). As the horizontal 

resolution increases, the active part of the grid conforms more precisely to 

the shape of the field section. The total grid areas (active + inactive parts) 

were 59904 (Sjökulla) and 239616 m2 (Hovi). The horizontal resolutions, 

active field areas and number of active cell columns in the grid (absolute 

number and percentage of the total number of columns) are presented in 

Table 20. The horizontal resolution steps were also given identifiers that 

describe the relative grid resolution in this thesis (Low, Medium, High and 

Very high). 

Table 20. Horizontal grid resolutions, active field areas and number of active cell columns in 
the grids (absolute number and percentage of the total number of columns). Abbreviations 
used: res. = resolution and Act. col. = Active columns. 

Grid: x-res. [-]: y-res. [-]: Act. area [m2]: Act. col. [-]: Act. col. [%]: 
Sjökulla (Low) 18 13 45824 179 76 

Sjökulla (Medium) 36 26 43136 674 72 
Sjökulla (High) 72 52 41664 2604 70 

Sjökulla (Very high) 144 104 41044 10261 69 
Hovi (Low) 13 18 120832 118 50 

Hovi (Medium) 26 36 115200 450 48 
Hovi (High) 52 72 112576 1759 47 

Hovi (Very high) 104 144 111440 6965 47 
 

The number of active cells in the grid can be calculated by multiplying the 

number of active columns in Table 20 by the number of cells in a column. 

Two different vertical resolutions (16 and 30 cells) were investigated to test 

the effect of vertical resolution on results. The vertical profiles are 

presented in Fig. 34. 

 

Figure 34. Vertical grid profiles with a) 16 and b) 30 cells. 
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The depth of the soil profile was 2.4 m. Most of the vertical resolution was 

concentrated into the volume between the field surface and subsurface 

drains. The layer depths of the 16 cell profile (Fig. 34) were: 0.02, 0.05, 

0.08, 0.1×9, 0.25×2, 0.35 and 0.5 m. The 30 cell profile can be derived 

from the 16 cell profile by dividing all the cell depths into two, except the 

top cell and the subsurface drain cell depths, which are kept the same. 

4.2.2 Initial and boundary conditions 

The simulation periods start in the beginning of May, when snow cover 

has already melted in southern Finland but there is still no vegetation with 

notable transpiration capacity growing in the fields. The equilibrium 

moisture conditions in both pore systems were calculated from the assigned 

initial groundwater table depths. Arithmetic means of groundwater table 

depth measurements were adopted as initial values in the Sjökulla case due 

to a limited amount of measurements available from the field. The values 

were adjusted by comparing simulation results to the early summer runoff 

measurements. In the Hovi simulations, it was assumed that the 

groundwater table level was at the drain depth (1.0 m from the surface) 

because no measurements were available from the field. The levels were 

adjusted according to the runoff results. In particular, the Hovi 1988 

groundwater table depth had to be increased drastically from the initial 

value. The initial groundwater table depths are presented in Table 21. 

Overland water depths and sediment concentrations, as well as 

subsurface sediment concentrations were set to zero at the beginning of the 

simulations. 

Table 21. Measured groundwater table depths in the observation tubes (arithmetic mean) 
and calibrated initial values. 

Simulation: Measured value [m]: Simulation value [m]: 
Sjökulla 1998 0.97 1.0 
Sjökulla 1996 0.50 0.9 

Hovi 1988 - 0.1 
Hovi 1984 - 1.2 

 

Boundary conditions in the computational models were set either 

explicitly (ditches and drains) or automatically (groundwater flow) (Fig. 

35). The widths and depths of the ditches were set to 2.0 and 1.0 m, 

respectively. The cross section of the ditch was considered to be triangular. 

Constant water depth of 0.3 m was maintained in the ditch network 

because water levels in the ditches were not simulated by the model. Part of 

the ditch running on the north and northeast side of the Sjökulla field was 

embanked. Overland flow can enter the ditch only at the non-embanked 

parts while subsurface waters can seep into the ditch also along the 
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embanked parts. Open ditch sections associated with the overland domain 

are presented in Fig. 35a (upper row) while the sections used in the 

subsurface domain are presented in Fig. 35b. Overland waters flowing over 

the eastern side of the Sjökulla field to the adjacent field section were 

removed with a ditch section in the simulations (Fig. 35a top row). No 

embankments were built along the open ditch at the Hovi field (Fig. 35a, b 

lower row). 

The subsurface drainage networks were presented in Figs. 25 and 29. The 

drains were set to a depth of 1.0 m from the surface and the radius of the 

drainage pipe (RS) was set to 0.025 m. The groundwater flow sides were 

assigned by AGGS according to the topography of the field (Section 3.2.1.2). 

The sides of the fields, which lose water as groundwater flow, are presented 

in Fig 35c. The grid bottom was assumed to be impermeable at all locations. 

 

Figure 35. Location of a) ditches in the overland domain, b) ditches in the subsurface 
domain and c) groundwater flow boundaries in the Sjökulla (upper row) and Hovi (lower 
row) fields drawn with thick, continuous lines. Dashed lines represent the field boundaries. 

4.2.3 Parameterisations of the computational domains 

Submodel parameterisations are divided into four computational 

domains: 1) overland flow, 2) subsurface flow, 3) overland erosion and 4) 

subsurface transport. Parameter values from literature and the calibrated 

values in the Sjökulla and Hovi computational models are presented side by 

side for ease of comparison. The cropping and tillage effects and the soil 

shrinkage and swelling submodel parameters are integrated into the four 

computational domains presented above. 
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Overland flow 

Overland flow is adjusted in the simulations by two spatially varying 

parameters, Manning’s n and overland flow threshold depth hW,THR. It is 

probable that n and hW,THR are connected in some manner even though they 

are handled separately in the model. Both parameters can vary with 

different land use types and with time due to crop growth and tillage 

operations conducted in the field. 

 Sharda et al. (1994) recommended n values between 0.05–0.12 for 

cropped conditions, depending on the crop growth stage. Singh (1996) 

presented n values from several studies. For a fallow field, the range was 

from 0.01 (smooth rain packed) to 0.7 (rough turn-ploughed) while for a 

cropped field, the range was from 0.05 (grass) to 0.4 (small grain crops). 

Wicks and Bathurst (1996) set the n values to 0.050 during growing season 

(soybeans and corn) and to 0.029 after tillage. Li and Zhang (2001) 

developed an analytical model which can calculate n values for different 

conditions including bare land after autumn ploughing and land with 

spring wheat. The corresponding average n values were 0.0303 and 0.0390. 

Taskinen and Bruen (2007a) reported values exceeding 1.0 for some surface 

conditions. Higher values were associated with rough conditions after 

tillage and with the presence of fully developed crops in the field. 

Hoogmoed and Bouma (1980), Kankaanranta (1996) and Köhne et al. 

(2006) set the hW,THR parameter to 0.002 m while Novák et al. (2000) 

calibrated the value into 0.001 m. hW,THR can also be determined with the 

analytical method of Onstad (1984). 

Both n and hW,THR were calibrated in this study. The parameter values are 

presented in Table 22. n was calibrated directly against measured surface 

runoff while hW,THR had to be calibrated indirectly by inspecting 

precipitation and infiltration rates and the ensuing surface runoff rates. 

While it was possible to change both n and hW,THR in spatial and temporal 

dimensions in the model, in practice, it was difficult to calibrate the 

distributed parameter values with the available measurements. In the 

Sjökulla field computational model, n was fixed to a constant value because 

tillage operations in the autumn did not have a notable effect on the surface 

roughness. The calibrated n values in the Hovi computational model were 

high compared to the Sjökulla values. The high calibrated values could have 

been caused by a number of factors, including the method of measuring 

surface runoff by subtracting drainflow from the total runoff, tillage layer 

flow or dampening of surface runoff by the long ditch strip (~100 m). In 

addition, no data were available about the presence of vegetation in the 

fallow areas during the simulation years. In the end, a single n value was 

applied throughout the Hovi field. However, it became evident in the 
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calibration phase that the value increased notably after tillage in the 

autumn. The same hW,THR value was used in both simulations (Table 22). 

Table 22. Overland flow domain parameters. The two n values in the Hovi column represent 
surface roughness before and after tillage in the autumn. 

Parameter: Sjökulla: Hovi: Unit: 
n 0.1 1.0 / 3.0 [-] 

hW,THR 0.001 0.001 [m] 

Subsurface flow 

The subsurface flow computational domain includes a number of 

parameters to adjust PET and to define hydraulic properties of the soil 

layers. Geometry-related parameters (ditches, drains, groundwater flow) 

were presented earlier in Sections 3.2.1.2 and 4.2.2. 

The precalculated PET value is distributed into the soil profile according 

to the root mass distribution in the model. Crop root depths change 

between the prescribed minimum and maximum root depths in the 

simulations. Linnér et al. (2006) reported maximum crop root depths of 

0.75–1.0 m for autumn rye and spring wheat in Sweden. The crop root 

growth can be around 0.02–0.03 m d-1 during the growing season (e.g. Båth 

1993). The precalculated PET values are decreased with the stress factor αF 

(Feddes et al. 1978, Fig. 1) in dry or wet conditions. Gärdenäs et al. (2006) 

used pressure heads of 160.0, 15.0 and 0.1 m for h4, h3 and h2 (absolute 

values) in a study conducted in Sweden. In Finland, h3 is usually set to 5.0 

m and h4 to wilting point suction (150.0 m) (Vakkilainen 1982). 

The parameters associated with root depths zR and ET are presented in 

Table 23. The maximum zR value was decreased compared to the presented 

measurements in the calibration. The minimum zR value was applied in the 

beginning of the simulations in May, after harvesting in the autumn and in 

the fallow areas (Fig. 30 and Table 16). The threshold pressure heads in αF 

(h1, h2, h3 and h4) were taken from past studies. 

Table 23. Crop root depth and stress factor αF (Fig. 1, Feddes et al. 1978) parameter values. 

Parameter: Value [m]: 
zR  (min)  0.05 
zR  (max) 0.6 
h1 (in αF) 0.0 
h2 (in αF) -0.1 
h3 (in αF) -5.0 
h4 (in αF) -150.0 

 

The soil profile was divided into four soil horizons in both computational 

models (Fig. 34). In the Sjökulla model, the field was divided into three 

different soil profile areas with different macroporosity values (Fig. 26). In 

the Hovi model, the same profile was applied to the whole field because 

data were available only from the northeast part of the field. Tillage layer 
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WRCs (Tables 14 and 19, Figs. 27 and 32) were used in the tillage layer 

matrix pore system (Fig. 34, soil horizon 1). The bottom soil WRCs were 

assigned to the soil matrix pore system in the rest of the profile. The 

macropore WRC (Table 14, Fig. 27c) was employed in all the soil horizons 

in both computational models. SSCCs (Table 15 and Fig. 28) were applied to 

the profile in the same way as WRCs. SSCCs from the Sjökulla field were 

also used in the Hovi field simulations. 

Generally, saturated hydraulic conductivity of soil rises with the increase 

of macroporosity (e.g. Germann and Beven 1981b, Messing and Jarvis 

1990). Macroporosity of clayey soil changes according to the moisture state 

of the soil matrix due to shrinkage and swelling phenomena. The saturated 

hydraulic conductivity measurements (Tables 13 and 18) represent the 

whole cross-sectional area of the soil sample while water moves mostly in 

the limited macropore fraction (e.g. Bouma and Wösten 1979). When the 

conductivity of the soil matrix was assumed to approach zero, an 

approximation of the saturated hydraulic conductivity of the macropores 

was derived by dividing the measured conductivity value with the measured 

macroporosity fraction. An approximation of the macropore saturated 

hydraulic conductivity multiplier KFS,MUL (130.25 m h-1) was obtained by 

fitting Eq. 93 to the data (mean values in Table 13). Four data points out of 

15 were removed from the data set because they exhibited high saturated 

conductivity values (25.0–10.3 m h-1) against small macroporosity values 

(0.007-0.003 m3 m-3). KFS,MUL was further adjusted with calibration against 

drainflow data to 80.0 m h-1. The resulting value was used in both 

computational models. 

Initial static macroporosity (w) values of the soil were derived from 

Tables 13 and 18. The tillage layer (horizon 1 in Fig. 34) static w values were 

decreased by 60% from the measured values in the calibration of the 

Sjökulla computational model. In the Hovi case the initial static w values 

had to be increased in the lower parts of the profile (horizons 3 and 4 in Fig. 

34). The static w values in the tillage layer had to be decreased by the 

cropping and tillage effects submodel in both computational models in the 

autumn after tillage operations to increase surface runoff. The static w 

values were decreased to 25% and 67% of the original values in 1998 and 

1996, respectively, in the Sjökulla field. In the Hovi simulations, static w 

values were decreased to 40% of the original values during both years after 

tillage. 

Groundwater flow was assumed to be responsible for the water loss in the 

fields evident in the measurements. Relatively high static w values were set 

in the bottom soil layer (Fig. 34, soil horizon 4) to achieve this. Horizontal 

and vertical saturated hydraulic conductivities were kept the same in each 
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horizon, i.e. no anisotropy was detected within the horizons. Saturated 

hydraulic conductivity of the soil matrix KSM was derived with calibration. 

KSM values and static w values in the soil profiles are presented in Table 24. 

The three static w values (1/2/3) in the Sjökulla column in Table 24 

correspond to the three soil profile areas in the Sjökulla field (soil 1/2/3) 

presented in Fig. 26. 

Table 24. Calibrated KSM and static w values in the soil profiles. The three static w values in 
the Sjökulla column correspond to the soil profile areas in the Sjökulla field (soil 1/2/3) 
presented in Fig. 26. 

Soil horizon: KMS [m h-1]: Sjökulla, static w [m3 m-3]: Hovi, static w [m3 m-3]: 
1 1.0 × 10-2 2.1 × 10-2 / 1.7× 10-2 / 1.4 × 10-2 1.9 × 10-2 
2 1.0 × 10-4 6.0 × 10-3 / 6.0 × 10-3 / 4.0 × 10-3 3.4 × 10-3 
3 1.0 × 10-4 2.0 × 10-3 / 3.3 × 10-3 / 4.0 × 10-3 2.0 × 10-3 
4 1.0 × 10-4 1.5 × 10-3 1.5 × 10-3 

 

Water exchange rate between the pore systems is governed by the first 

order water exchange coefficient αW (Eq. 26). αW in turn, contains 

parameters β (macropore geometry coefficient), γW (scaling coefficient) and 

d (radius of the matrix structure). Skopp et al. (1981) reported β values of 1 

for planar cracks and 3 for spherical macropores. Van Genuchten and 

Dalton (1986) presented values of 3 and 15 for planar cracks and spherical 

macropores, respectively. The parameter γW varies with the initial water 

content and hydraulic parameters, but not strongly according to Larsbo and 

Jarvis (2003). Gerke and van Genuchten (1993b) derived a value of 0.4 for 

γW that seemed to work well with different macropore geometries. Vogel et 

al. (2000) and Gerke and Köhne (2002) reported a value of 0.01 m for the 

parameter d while Christiansen et al. (2004) set the value of d to 0.055 m. 

Gärdenäs et al. (2006) used d values of 0.11–0.17 m in their 2-D simulation 

of a tile-drained field site in Sweden. Villholt and Jensen (1998) calibrated 

the parameter d to enhance the simulation fit to measurements in glacial till 

soil. The authors had to use very large values of d (20.0 m) on some 

occasions. Jarvis et al. (2007) derived a set of pedotransfer functions to 

approximate d in the MACRO model. 

The parameter values in the water exchange function (Eq. 26) in the 

model are presented in Table 25. The calibration of the parameter d in this 

study was conducted by comparing hourly simulated and measured 

drainflow results and simulated ET and calculated PET results. Similar to 

Villholt and Jensen (1998), d was calibrated to a high value. 

Table 25. First order water exchange coefficient parameter values. 

Parameter: Value: Unit: 
β 3.0 [-] 
γW 0.4 [-] 
d 11.0 [m] 
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Overland erosion 

Overland erosion processes are based on simulated flow velocities, water 

depths and measured precipitation amounts. Constant parameters in the 

model include gravitational acceleration g, kinematic viscosity υ, density of 

water ρW, sediment particle diameter DS and sediment particle density ρS 

(Table 26). 

According to e.g. Meyer et al. (1980) and Smith et al. (1999), cohesive 

soils are removed partly in aggregates and not solely as primary particles. 

Sharda et al. (1994) set the particle diameter DS in the simulations to the 

median diameter of the sediment particles (4.8×10-4 m). Taskinen and 

Bruen (2007) simulated three different particle sizes (clay, silt and sand). 

The diameter of the suspended soil particles was set here to approximately 

tenfold of a single clay soil particle to represent the presence of aggregates. 

Table 26.  Constant parameters in the overland erosion domain. 

Parameter: Value: Unit: 
υ 1.0×10-6  [m2 s-1] 
ρS 2650.0  [kg m-3] 
ρW 1000.0  [kg m-3] 
DS 1.5×10-5  [m] 
g 9.81  [m s-2] 

 

Susceptibility of the soil to hydraulic and rain drop splash erosion is 

defined with the erodibility coefficients kH and kR. Ariathurai and 

Arulanandan (1978) derived a range from 5.0×10-4 to 5.0×10-3 kg m-2 s-1 for 

kH. Wicks and Bathurst (1996) reported kH values of 4.1×10-7, 1.4×10-7 and 

3.3×10-7 kg m-2 s-1. Taskinen (2002) calibrated kH to a range from 3.5×10-8 

to 18.0×10-8 kg m-2 s-1 before ploughing and 0.32×10-6 to 10.0×10-6 kg m-2 s-1 

after ploughing in simulations of the Sjökulla field. Meyer and Harmon 

(1984) presented kR values of 19 J-1 for clay soil. Bradford et al. (1987a, b) 

reported value of 73.5 J-1 while Wicks and Bathurst (1996) presented values 

of 28, 66 and 82 for clayey soils. 

The erodibility coefficients in the computational models were calibrated 

directly against the measured sediment data (loads or concentrations). The 

values of the coefficients increased after tillage in both fields. The calibrated 

erodibility coefficients before and after tillage operations are presented in 

Table 27. A complication was that the Hovi field was partly under fallow 

during 1988 (6 ha) and 1984 (4 ha). Unfortunately, no information was 

available whether the fallow was bare or grass was grown on the areas. In 

the Hovi simulations, the hydraulic erosion process did not produce 

coherent results compared to the measurements, while sediment loads 

produced by rain drop splash erosion were much closer to the data. 
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Previously, Taskinen reported problems in producing hydraulic erosion in 

Hovi field simulations (Taskinen 2002). 

Table 27. Calibrated erodibility parameters before and after tillage in the fields. 

 Before tillage After tillage Before tillage After tillage 
Field: kR [J-1]: kR [J-1]: kH [kg m-2s-1]:  kH [kg m-2s-2]: 

Sjökulla 1998 1.2 1.2 1.0 × 10-7 2.2 × 10-6 
Sjökulla 1996 1.2 1.2 1.0 × 10-7 2.2 × 10-6 

Hovi 1988 LU1 4.0 (fallow) 20.0 (fallow) 0.0 (fallow) 0.0 (fallow) 
Hovi 1988 LU2 4.0 20.0 0.0 0.0 
Hovi 1984 LU1 4.0 20.0 0.0 0.0 
Hovi 1984 LU2 4.0 (fallow) 20.0 (fallow) 0.0 (fallow) 0.0 (fallow) 

 

Other parameters in the erosion process descriptions that had to be 

defined included ground shielding factors CC and CG. There was no 

information available on the crop growing stages during the simulation 

periods. Consequently, CC and CG were set to zero to decrease the number of 

calibrated variables. This action could decrease the value of kR because the 

soil was not shielded by crops. 

In addition, it was found in the Sjökulla field computational model 

calibration that a minimum value had to be defined for the transport 

capacity coefficient TC (Eq. 79). A high value of 5.0 g l-1 was used in the 

Sjökulla field simulations while in the Hovi simulations a minimum value 

was not required. 

Subsurface transport 

Two transport mechanisms, dispersion and advection, are responsible for 

the transport of suspended sediment in the macropores. The advection 

transport mechanism is based purely on the results of the subsurface flow 

simulation, i.e. no additional parameters are required. For the dispersion 

transport mechanism, dispersivities (αL and αT) and molecular diffusion D* 

coefficients have to be specified. In contrast to laboratory scale 

measurements where dispersivities are often limited to a range of 0.0001–

0.01 m, field situations require values several magnitudes higher to produce 

realistic results (Zheng and Bennet 2002). The disparity arises because 

macroscopic heterogeneities are responsible for the dispersion at field-

scale, rather than pore-scale heterogeneity. Dispersion, and consequently 

dispersivity, in the longitudinal direction of the flow is higher than in the 

transverse direction, i.e. αL > αT (Boast 1973). The value of the αL coefficient 

can be approximated by multiplying the main transport direction distance 

by 10% (Spitz and Moreno 1996) while the value of αT can be assumed to be 

10% of the αL coefficient (e.g. Spitz and Moreno 1996 and Gärdenäs et al. 

2006). Although some studies have shown that αL and αT are dependent on 

flow velocity (e.g. Skopp and Gardner 1992, Forrer et al. 1999 and 

Vanderborght et al. 2000), it is assumed here that they are constants. Beven 
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et al. (1993) presented a review on dispersion parameters in undisturbed 

partially saturated soils. 

In dual-permeability model studies, the dispersivity values are usually 

considered to be the same in both pore systems. Ray et al. (1997) reported 

values of 0.01 m for αL and 3.6 × 10-6 m2 h-1 for D* in a 2-D transport 

simulation. The soil sample dimensions were 0.38×0.48 m in x– and z-

directions. Vogel et al. (2000) used a value of 0.05 m for αL in a 2-D soil 

profile (2.0×1.5 m in x- and z-directions) while Haws et al. (2005) 

presented values of 0.15 and 0.015 m for αL and αT, respectively (grid size 

15.0×2.0 m in x- and z-directions). Gärdenäs et al. (2006) set values of 0.1 

and 0.01 and 0.2 and 0.02 m for αL and αT, respectively, in a simulated 2-D 

profile section (length 50.0 m and depth ~3 m). Köhne et al. (2006) ended 

up with αL value of 0.5 m in 2-D simulations (soil section width 5–9 m and 

depth ~2 m). Gerke and Köhne (2004) applied a value of 0.04 m in the soil 

matrix and 0.1 m in the macropore system for the αL in a 1-D simulation. 

They argued that the αL value was higher in the macropore system because 

it was composed of different heterogeneous components such as 

interaggregate pore spaces, root channels and worm burrows. Gwo et al. 

(1995) fitted the 1-D multi-pore region model MURT to transport data 

measured in an undisturbed soil core (height 0.24 m and radius 0.0425 m) 

under different pressure heads. In contrast to Gerke and Köhne (2004), 

dispersivity coefficients for macro-, meso- and micropore systems were 

0.08, 0.12 and 0.26 m in saturated soil, i.e. the value of αL was lower in the 

macropore system than in soil matrix. The dispersivity values decreased as 

the pressure head in the soil decreased below saturation point. 

The dispersivity coefficients in this study could not be calibrated properly 

with the available data because the effect of dispersion was masked out by 

mixing in the subsurface drains, advection in the soil and non-uniform soil 

erosion on the field surface. The method of Spitz and Moreno (1996) was 

applied here to derive the values of αL and αT, i.e. the transport distance 

from the surface to the drains is divided by 10.0 to calculate αL. Parameter 

values used in the simulations are presented in Table 28. 

Table 28. Dispersion coefficients in the subsurface transport domain. 

Parameter: Value: Unit: 
αL 0.1 [m] 
αT 0.01 [m] 
D* 3.6×10-6 [m2 h-1] 

4.2.4 Simulation settings 

The computational models were run with a 1.0 h global time step 

according to the meteorological measurements. The rainstorm threshold 
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intensity was set to 4.0 mm h-1. The simulation periods and duration times 

are presented in Table 29. 

Table 29. Simulation periods and durations. 

Simulation: Start date: End date: Duration [h]: 
Sjökulla 1998 1 May 31 Oct. 4416.0 
Sjökulla 1996 1 May 30 Nov. 5136.0 

Hovi 1988 1 May 24 Oct 4237.0 
Hovi 1984 1 May 8 Nov. 4617.0 

 

Convergence of iteration in the subsurface flow submodel took a large 

number of iterations and consequently increased the computational load 

substantially with the High and Very high resolution grids (Table 20). It 

was noticed initially with the theoretical test case (Section 3.3.3) that after 

around 25 iterations, the results did not change substantially around the 

grid anymore. The same result was also evident in the computational 

models of the fields. Simulations conducted with lower resolution grids that 

converged better were used to cross-check the results. Conversely, if the 

iteration convergence threshold value was increased, mass balance errors 

were introduced into the results. To decrease the time to run the 

simulations with larger computational grids, a more pragmatic approach 

was adopted. The mass balances were continuously checked and they were 

not allowed to oscillate or increase above a 5.0% threshold of the 

introduced mass (precipitation, eroded sediment), while the maximum 

number of iterations was limited to 25 in each submodel. The simulations 

were run on a workstation with Intel Core i7 920 processor (4 physical 

cores + 4 Hyper-Threading cores) overclocked to 3.0 GHz and with 6 GBs of 

RAM. The iteration parameters used in the submodels are presented in 

Table 30. 

Table 30. Submodel iteration parameters. 

Parameter: Value: Unit: 
Number of iterations 25 [-] 

Iteration threshold, overland flow 1.0×10-5 [m] 
Bisection method, iteration threshold 1.0×10-8 [m3] 

Bisection method, right side value 5.0 [m] 
Iteration threshold, overland erosion 1.0×10-10 [kg m-3] 
Iteration threshold, subsurface flow 1.0×10-5 [m] 

Iteration threshold, subsurface transport 1.0×10-7 [kg m-3] 

4.3 Results 

The simulation results are presented concisely in this section. Results 

from the Sjökulla and Hovi simulations are divided into separate sections 

(Sections 4.3.1 and 4.3.2). Sensitivity analysis was conducted to address 

uncertainty in the results (Section 4.3.3). 



Model application 

128 
 

4.3.1 Sjökulla field simulation results 

The Sjökulla field simulation results were calculated with the Very high 

grid resolution (144×104×16 cells in x-, y- and z-directions) (Section 4.2.1). 

Horizontal cell dimensions were 2.0×2.0 m. Simulated and measured water 

and sediment mass balances in the system are presented in Table 31. 

Table 31. Simulated/measured water and sediment mass balances in 1998 and 1996. 
Abbreviations used: n.d. = not defined and Sed. = Sediment. 

Year: 1998 1998 1996 1996 
Storage or runoff value: Water [mm]: Sed. [kg ha-1]: Water [mm]: Sed. [kg ha-1]: 

Surface (initial state) 0 / n.d. 0 / n.d. 0 / n.d. 0 / n.d. 
Matrix (initial state) 1287 / n.d. 0 / n.d. 1293 / n.d. 0 / n.d. 

Macropore (initial state) 6 / n.d. 0 / n.d. 5 / n.d. 0 / n.d. 
Surface (end state) 0 / n.d. 13 / n.d. 0 / n.d. 18 / n.d. 
Matrix (end state) 1341 / n.d. 0 / n.d. 1340 / n.d. 0 / n.d. 

Macropores (end state) 1 / n.d. 3 / n.d. 1 / n.d. 10 / n.d. 
Corrected precipitation 603 - / - 584 - / - 

ET / PET 276 / 277 - / - 288 / 335 - / - 
Surface net erosion - / - 4353 / n.d. - / - 6489 / n.d. 

Surface runoff 61 / 68 1905 / 2367 67 / 58 2196 / 2669 
Infiltration into soil 543 / n.d. 2434 / n.d. 517 / n.d. 4272 / n.d. 

Drainflow 88 / 91 1290 / 1282 78 / 104 2245 / 2937 
Seepage to ditches 46 / n.d. 757 / n.d. 45 / n.d. 1308 / n.d. 
Groundwater flow 84 / n.d. 384 / n.d. 65 / n.d. 709 / n.d. 

Mass balance error 1 / n.d. -2 / n.d. 1 / n.d. -4 / n.d. 
 

The water and sediment mass balance errors in the simulations were 

+0.17% and -0.04% of the precipitation and net erosion amounts in 1998 

and +0.17% and -0.06% in 1996, respectively. The mass balance errors were 

caused by rounding errors due to iteration in the algorithms. 

Cumulative corrected precipitation, PET and simulated ET in 1998 and 

1996 are presented in Fig. 36. In 1998, the simulated cumulative ET was 

equal to the cumulative calculated PET, whereas in August and September 

1996 the simulated cumulative ET was less than the calculated PET value 

due to minimal precipitation and dry root zone moisture conditions (Fig. 1). 

The calculated PET values were not adjusted during the calibration.  

  

Figure 36. Cumulative corrected precipitation, PET and simulated ET in a) 1998 and b) 1996 
in the Sjökulla field. 

a) b) 
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Relative magnitudes of the simulated water fluxes in the field during the 

growing season and autumn of 1998 (Table 31) are visualised with arrows in 

Fig. 37. The mass balance indicates that the water loss via groundwater flow 

is notable (13.9 % of precipitation) and in the same order of magnitude as 

subsurface drainflow (14.6% of precipitation). Surface runoff is 10.1% of 

precipitation. 

 

Figure 37. Water fluxes [mm] in the overland and subsurface domains in 1998 in the 
Sjökulla field. 

Fig. 38 illustrates the relative magnitudes of the simulated sediment 

fluxes in the field in 1998 (Table 31). Approximately 29.6 % of the entrained 

sediment in the overland domain ends up in the subsurface drains while 

43.8 % of the sediment is transported via surface runoff. Groundwater flow 

transports 8.8% of entrained sediment out of the field through subsurface 

pathways, and seepage flow transports 17.4% to open ditches. 

 

Figure 38. Sediment fluxes [kg ha-1] in the overland and subsurface domains in 1998 in the 
Sjökulla field. 
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Cumulative runoff and sediment load results in 1998 and 1996 in the 
Sjökulla field 

Model calibration was conducted with data from 1998, while data from 

1996 were used for validation. Cumulative measured and simulated surface 

runoff and drainflow results are presented for both years in Fig. 39. A 

common feature visible in the 1998 and 1996 runoff results is that the 

simulated events are not as peaky as the measured events. Also, 

approximately 99.5% of the drainflow originated from the macropore 

system during both years. In 1996, modelled drainflow started later in the 

autumn than the measured drainflow and was therefore lower than the total 

measured cumulative result. 

The Nash-Sutcliffe model efficiency coefficients (Appendix D) for surface 

runoff and drainflow were 0.809 and 0.645, respectively, in 1998 and 0.841 

and 0.613 in 1996. The calibration and validation results in Sjökulla were 

similar in terms of the efficiency coefficients. This confirms the high quality 

of the field data and indicates that the model functions properly. The 

corresponding bias values (Appendix D) for surface runoff and drainflow 

were -0.0015 and -0.0006 mm h-1, respectively, in 1998 and +0.0017 and 

-0.0050 mm h-1 in 1996. The bias values can be compared to the average 

measured surface runoff and drainflow values during the study periods 

(0.015 and 0.021 mm h-1 in 1998 and 0.011 and 0.020 mm h-1 in 1996). The 

efficiency coefficients and and bias values were calculated from the hourly 

runoff results, which are presented in more detail in the next sections. 

Figure 39. Measured and simulated cumulative surface runoff and subsurface drainflow 
results in a) 1998 (calib.) and b) 1996 (valid.) in the Sjökulla field. 

Cumulative seepage to ditches and groundwater flow are presented in Fig. 

40. Because 1998 was wetter than 1996 (see Fig. 36), groundwater flow was 

continuous during the simulation. In 1996, groundwater flow ceased almost 

totally between the middle of August and the end of October due to lack of 

precipitation. 

a) b) 
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Figure 40. Simulated cumulative seepage to ditches and groundwater flow in a) 1998 (calib.) 
and b) 1996 (valid.) in the Sjökulla field. 

Cumulative measured and simulated sediment loads via surface runoff 

and drainflow are presented in Fig. 41. According to the calibrated model, 

which quantifies the erosion components (Eqs. 66 and 70), rain drop splash 

erosion was responsible for the sediment load before the autumn tillage 

operations (May to September in 1988 and May to October in 1996). The 

sharp increases in the sediment loads after tillage operations in October 

1998 and in November 1996 were produced by hydraulic erosion. The 

Nash-Sutcliffe coefficients (Appendix D) for sediment loads via surface 

runoff and drainflow were 0.107 and 0.750, respectively, in 1998 and 0.693 

and 0.953 in 1996. The bias values (Appendix D) for sediment loads via 

surface runoff and drainflow were -0.10 and +0.0019 kg ha-1 h-1, 

respectively, in 1998 and -0.27 and -0.13 kg ha-1 h-1 in 1996. The average 

sediment loads via surface runoff and drainflow during the study periods 

were 0.54 and 0.29 kg ha-1 h-1 in 1998 and 0.52 and 0.57 kg ha-1 h-1 in 1996. 

The Nash-Sutcliffe coefficients and bias values were calculated from the 

hourly load results, which are presented in the next section. 

 

Figure 41. Measured and simulated sediment loads via surface runoff and drainflow in a) 
1998 (calib.) and b) 1996 (valid.) in the Sjökulla field. 

a) b) 

a) b) 
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Hourly runoff and sediment load results in 1998 in the Sjökulla field 

Hourly measured and simulated surface runoff results in the calibration 

year 1998 are presented in Fig. 42. Precipitation is presented in the second 

y-axis. Only October is drawn in Fig. 42 because surface runoff was 

minimal in the summer and early autumn. Timing of the surface runoff 

events closely matched the timing of the measurements, which indicates 

consistency between the weather and runoff data. However, the simulated 

runoff peaks are clearly lower and wider than the measured peaks. The 

mean absolute error (Appendix D) between the measured and modelled 

peak values was 0.042 mm h-1 for the eight events shown in Fig. 42. 

 

Figure 42. Hourly measured and simulated surface runoff results in 1998 in the Sjökulla 
field. 

The simulated drainflow results compared well (with an efficiency 

coefficient of 0.645) to the measurements before the autumn tillage event 

(Fig. 43). After the tillage events in October, the first three runoff peaks 

were initially too low (mean absolute error 0.022 mm h-1), but the rest of 

the modelled peaks were reproduced with a mean absolute error of 0.014 

mm h-1. An exceptional precipitation event (constant 0.4 mm precipitation 

value for 61 hours) in the middle of September produced an abnormal 

drainflow event compared to measurements. 

 

Figure 43. Hourly measured and simulated drainflow results in 1998 in the Sjökulla field. 

The dynamics of the simulated overland sediment load (Fig. 44) were 

similar to the simulated surface runoff results (Fig. 42). The Nash-Sutcliffe 

coefficient was lower for the modelled sediment load via surface runoff 
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(0.107) than the coefficient for the surface runoff (0.809), which is due to 

the more pronounced under-prediction of peaks in Fig. 43 compared to Fig. 

42. 

 

Figure 44. Hourly measured and simulated sediment loads via surface runoff in 1998 in the 
Sjökulla field. 

Similarly to the overland flow, the drain sediment load dynamics closely 

resembled (Fig. 45) drainflow patterns (Fig. 43). In terms of Nash-Sutcliffe 

efficiency, the sediment load via drains (0.750) was modelled more 

accurately than the sediment load via surface runoff (0.107). 

 

Figure 45. Hourly measured and simulated sediment loads via drainflow in 1998 in the 
Sjökulla field. 

Hourly runoff and sediment load results in 1996 in the Sjökulla field 

Only November is presented in the surface runoff graph from the 

validation year 1996 because surface runoff was minimal during the 

summer and early autumn (Fig. 46). 

 

Figure 46. Hourly measured and simulated surface runoff results in 1996 in the Sjökulla 
field. 
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The simulated surface runoff peaks were followed by a longer falling limb 

compared to the measurements (Fig. 46). The early measured peaks in 

November were not reproduced in the simulated results. This is an 

indication of either excessively dry antecedent soil moisture conditions 

resulting from evapotranspiration, or uncertainty related to the 

precipitation measurements. 

The drainflow reproduction in 1996 by the model (Fig. 47) was successful 

in terms of the Nash-Sutcliffe coefficient value (0.613). The simulated 

drainflow peaks were lower than the measured peaks during the summer 

and especially at the time of the first autumn peaks. As in the case of the 

simulated surface runoff results, too dry antecedent moisture conditions or 

missing precipitation observations may be the cause of the under-

prediction of the simulated drainflow results in late October and early 

November. A large rainstorm event by Finnish standards (21 mm in one 

hour) occurred in the beginning of July and led to the highest measured 

drainflow peak (0.61 mm h-1) in the simulation period. 

 

Figure 47. Hourly measured and simulated drainflow results in 1996 in the Sjökulla field. 

The dynamics of sediment load via surface runoff in 1996 (Fig. 48) was 

qualitatively similar to the surface runoff results in 1996 (Fig. 46). The 

simulated sediment load peaks via surface runoff were lower with longer 

falling limbs than the measured load. In contrast to the results of 1998, the 

sediment load via surface runoff was modelled almost as well as surface 

runoff in terms of Nash-Sutcliffe coefficient (0.693 vs. 0.841). 

 

Figure 48. Hourly measured and simulated sediment loads via surface runoff in 1996 in the 
Sjökulla field. 
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The large rainstorm event in the beginning of July produced a sediment 

peak via drainflow (Fig. 49) but only minimal sediment load via surface 

runoff. Again, there is a strong similarity between drainflow (Fig. 47) and 

its sediment load dynamics. The Nash-Sutcliffe coefficient value for 

sediment load via drainflow was the highest efficiency value (0.953) 

reached in the simulations. 

 

Figure 49. Hourly measured and simulated sediment loads via drainflow in 1996 from the 
Sjökulla field. 

Groundwater table level results 

Measured and simulated groundwater tables levels in tubes 1, 2, 3, 5, 7 

and 9 in 1998 are presented in Figs. 50–52. Simulated levels in both soil 

matrix and macropore systems are drawn. The locations of the tubes are 

presented in Fig. 25. The sudden drops in the simulated water levels in the 

soil matrix were caused by groundwater flow emptying cells in deeper parts 

of the profile and steepness of WRCs. The large drop in the groundwater 

table level in the matrix pore system in October (Fig. 50–52) was caused by 

the long dry period extending from the end of September to the beginning 

of October. A general trend visible in both measured and simulated levels is 

that the water level is lower in tubes at higher elevations in the field. The 

modelled water table in Figs. 50-52 shows a quicker response to rainfall 

events than the measured water table. 

  

Figure 50. Measured and simulated groundwater table levels in tubes a) 1 and b) 2 in 1998 in 
the Sjökulla field. 

a) b) 
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Figure 51. Measured and simulated groundwater table levels in tubes a) 3 and b) 5 in 1998 in 
the Sjökulla field. 

  

Figure 52. Measured and simulated groundwater table levels in tubes a) 7 and b) 9 in 1998 in 
the Sjökulla field. Fig. 52b legend is the same as in Fig. 52a. 

Groundwater table level was measured at different locations in 1996 

(tubes 4, 6 and 8) than in 1998 (Figs. 53–54). A drop, down to a depth of 

less than 1.0 m in the simulated matrix water level, is apparent in Figs. 53 

and 54 in October 1996. A similar drop was experienced in October 1998 

(Figs. 50-52). Again, the drop was preceded by a long dry period (e.g. Fig. 

47). 

  

Figure 53. Measured and simulated groundwater table levels in tubes a) 4 and b) 6 in 1996 in 
the Sjökulla field. See legends in Figs. 50–52. 

a) b) 

a) b) 

a) b) 
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Figure 54. Measured and simulated groundwater table levels in tube 8 in 1996 in the Sjökulla 
field. See legends in Figs. 50–52. 

Flow and erosion patterns on the field surface in the Sjökulla field 

Overland flow routes in the Sjökulla field were inspected by visualising 

overland water depths and flow velocities immediately after rain storm 

events (28 Oct. in 1998 and 13 Nov. in 1996). Precipitation sums during the 

studied four-hour periods were 12.1 and 13.7 mm in 1998 and 1996, 

respectively. The conditions immediately after the events are presented in 

Fig. 84 in Appendix E. Overland flow velocities are presented with vectors 

indicating the velocity and direction of the flow. Maximum overland water 

depths and flow velocities were 0.195 m and 0.095 m s-1, respectively, in 

1998 and 0.212 m and 0.102 m s-1 in 1996. Overland net erosion results in 

the field at the end of the simulation periods are presented in Fig. 85 in 

Appendix E. Negative net erosion values denote sediment deposition in the 

cell. The maximum and minimum simulated net erosion results were +9.3 

and -182.2, respectively, in 1998 and +5.4 and -102.5 kg m-2 in 1996. It is 

obvious from Figs. 84 and 85 that concentrated overland water movement 

and soil erosion are located in the same areas in the field. 

4.3.2 Hovi field simulation results 

The Hovi field simulation results were calculated with the Very high grid 

resolution (104×144×16 cells in x-, y- and z-directions) (Section 4.2.1). The 

horizontal dimensions of a cell were 4.0×4.0 m. Simulated and measured 

water and sediment mass balances in the system are presented in Table 32. 

The water and sediment mass balance errors were +0.52 % and 0.0% of the 

precipitation and net erosion amounts, respectively, in 1988 and +0.42% 

and 0.0% in 1984 (Table 32). As in the Sjökulla case, the mass balance 

errors were caused by rounding errors due to iteration in the solution 

algorithms. 
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Table 32. Simulated/measured water and sediment mass balances in 1988 and 1984. 
Abbreviations used: n.d. = not defined and Sed. = Sediment. 

Year: 1988 1988 1984 1984 
Storage or runoff value: Water [mm]: Sed. [kg ha-1]: Water [mm]: Sed. [kg ha-1]: 

Surface (initial state) 0 / n.d. 0 / n.d. 0 / n.d. 0 / n.d. 
Matrix (initial state) 1277 / n.d. 0 / n.d. 1239 / n.d. 0 / n.d. 

Macropore (initial state) 4 / n.d. 0 / n.d. 4 / n.d. 0 / n.d. 
Surface (end state) 6 / n.d. 21 / n.d. 15 / n.d. 32 / n.d. 
Matrix (end state) 1278 / n.d. 0 / n.d. 1281 / n.d. 0 / n.d. 

Macropores (end state) 1 / n.d. 0 / n.d. 2 / n.d. 1 / n.d. 
Corrected precipitation 384 - / - 476 - / - 

ET / PET 225 / 328 - / - 243 / 289 - / - 
Surface net erosion - / - 244 / n.d. - / - 222 / n.d. 
Surface layer runoff 25 / 25 81 / n.d. 25 / 41 47 / n.d. 
Infiltration into soil 369 / n.d. 161 / n.d. 449 / n.d. 157 / n.d. 

Drainflow 78 / 69 115 / n.d. 86 / 83 117 / n.d. 
Groundwater flow 55 / n.d. 28 / n.d. 69 / n.d. 26 / n.d. 

Error +2 / n.d. 0 / n.d. +2 / n.d. 0 / n.d. 
 

Cumulative corrected precipitation, PET and simulated ET in 1988 and 

1984 are presented in Fig. 55. Cumulative precipitation in the Hovi field is 

smaller than in the Sjökulla simulations (Fig. 36) while cumulative PET is 

in the same order of magnitude. Simulated cumulative ET is already lower 

than PET during the period from May to June in both 1988 and 1984, which 

results from the simulated low root zone moisture content and its impact on 

evapotranspiration efficiency. 

  

Figure 55. Cumulative corrected precipitation, PET and simulated ET in a) 1988 (calib.) and 
b) 1984 (valid.) in the Hovi field. 

The relative magnitudes of the simulated water fluxes in the field in 1988 

(Table 32) are visualised with arrows in Fig. 56. Compared to the Sjökulla 

results (Fig. 37), surface runoff is less important (2.9% of the precipitation). 

ET is the primary water loss component and it comprises 58.6% of the 

precipitation. Surface layer runoff in Table 32 is the sum of seepage to 

ditches and surface runoff components (Fig. 56). Groundwater flow in Hovi 

has as important role as in Sjökulla (14.3% of precipitation). 

a) b) 
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Figure 56. Water fluxes [mm] in the overland and subsurface domains in 1988 in the Hovi 
field. 

Relative magnitudes of the simulated sediment fluxes in the field in 1988 

(Table 32) are drawn with arrows in Fig. 57. The entrained sediment 

amounts are smaller in the Hovi field than in Sjökulla field (Fig. 57). Most 

of the suspended sediment is detached by rain drop impacts due to lack of 

surface runoff (Fig. 56) and transported to drains via macropores. In the 

Sjökulla field hydraulic erosion was responsible for the bulk of the sediment 

load. 

 

Figure 57. Sediment fluxes [kg ha-1] in the overland and subsurface domains in 1988 in the 
Hovi field. 

Cumulative runoff and sediment load results in 1988 and 1984 in the Hovi 
field 

The model was calibrated with data from 1988 and validated with data 

from 1984. Cumulative measured and simulated surface layer runoff and 

drainflow results are presented in Fig. 58. Simulated surface layer runoff is 

comprised of (actual) surface runoff and seepage to ditches components. In 

1988 98.5% of the drainflow came from the macropore system. In 1984 the 

share grew to 99.6%. Cumulative drainflow was over-predicted in 
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September and October 1988, while in 1984 simulated drainflow was lower 

in July compared to the measured values. Cumulative surface layer runoff 

was smaller than the measured runoff in October 1984. 

The Nash-Sutcliffe model efficiency coefficients (Appendix D) for surface 

layer runoff and drainflow were 0.496 and 0.514, respectively, in 1988 and 

0.669 and 0.717 in 1984. The coefficients were better in the validation year 

because runoff events were concentrated into a shorter interval at the end 

of the simulation period (Fig. 58b). The bias values (Appendix D) for 

surface layer runoff and drainflow were -0.0001 and +0.002 mm h-1, 

respectively, in 1988 and -0.0035 and +0.00067 mm h-1 in 1984. The 

average surface layer runoff and drainflow rates were 0.0058 and 0.016 

mm h-1 in 1988 and 0.0090 and 0.018 mm h-1 in 1984. The results in terms 

of the performance criteria were similar between the calibration and 

validation periods. The Nash-Sutcliffe coefficients and bias values were 

calculated from the hourly runoff results (see next section for details of the 

hourly simulation results). 

Figure 58. Measured and simulated surface layer runoff and drainflow in a) 1988 (calib.) and 
b) 1984 (valid.) in the Hovi field. Surface layer runoff is composed of surface runoff and 
seepage to ditches components (see Fig. 59). 

The components of the cumulative surface layer runoff, i.e. surface runoff 

and seepage to ditches and groundwater flow are presented in Fig. 59.  

  

Figure 59. Simulated cumulative surface runoff, seepage to ditches and groundwater flow in 
a) 1988 (calib.) and b) 1984 (valid.) in the Hovi field. 

a) b) 

a) b) 
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Actual surface runoff is generated only in October in 1988 and at the end 

of October and beginning of November in 1984 (Fig. 59). The rest of the 

surface layer runoff is produced by the seepage to ditches component. 

No Nash-Sutcliffe coefficients or bias values were calculated for the 

sediment load results (Fig. 60) because only a few sediment concentration 

measurements were available. In 1988, the sediment load is mainly 

generated by precipitation events in the end of July and in the beginning of 

October. In 1984, most of the sediment load is generated in October. 

 

  

Figure 60. Simulated cumulative sediment loads via surface layer runoff and drainflow in a) 
1988 (calib.) and b) 1984 (valid.) in the Hovi field. 

Hourly runoff and sediment concentration results in 1988 in the Hovi field 

Hourly measured and simulated surface layer runoff values in the 

calibration year 1988 are presented in Fig. 61. Only the end of September 

and the beginning of October are presented in the graph because surface 

layer runoff was minimal during the summer and early autumn. The 

simulated results compared well to the measurements in terms of the 

fitness criteria presented in the previous section. However, a high 

Manning’s n value (3.0) had to be used to reproduce the measured pattern. 

 

Figure 61. Hourly measured and simulated surface layer runoff results in 1988 in the Hovi 
field. 

The Nash-Sutcliffe coefficient between the measured and simulated 

drainflow (0.514) was not as high in Hovi as in Sjökulla (0.645 and 0.613 in 

a) b) 
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1998 and 1996, respectively). The coefficient was affected by occasional 

mismatches between the measured and simulated peaks in early May, 

August and late October (Fig. 62). The simulated drainflow results were 

similar to measurements, except that the early May period and the final 

flow peak in October were not reproduced well (Fig. 62). In the model, 

decrease of macroporosity due to soil swelling and tillage operations can 

cause drainflow peaks to get lower and wider. In the field, some of the 

macropores probably close altogether, while some pathways stay open. This 

leads to downscaling of the peaks while the shape of the runoff curves 

remains the same. 

 

Figure 62. Hourly measured and simulated drainflow results in 1988 in the Hovi field. 

Simulation results of sediment transport were compared to sediment 

concentration measurements instead of sediment loads in the Hovi field. 

Only a handful of concentration measurements were available from the 

field and an accurate estimation of loads would have been difficult. Because 

no sediment concentration measurements were available from drainflow in 

1988, the simulated drainflow concentrations were plotted against 

concentrations measured in the ditch for comparison (Fig. 63). 

 

Figure 63. Hourly simulated sediment concentrations in drainflow in 1988 in the Hovi field. 
Concentrations in the ditch are plotted for comparison because drainflow concentration 
measurements were not available. 

The beginning of the simulation period is not shown because 

concentrations were minimal in both measurements and simulations. As 

presented earlier, suspended sediment in the Hovi field simulations was 

produced solely by rain drop splash erosion (Table 27). Although Fig. 63 
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only presents an overview of the events in 1988 it can be seen that the 

timing of erosion events is similar to the measurements. The mean absolute 

error and bias (Appendix D) between the measured and simulated 

concentration values for the period shown in Fig. 63 were 0.17 g l-1 and 

-0.084 g l-1 (average measured concentration 0.25 g l-1), respectively. Some 

simulated peaks such as the one in the end of July were not measured. 

Measured and simulated sediment concentrations in the ditch are 

presented in Fig. 64 together with the simulated concentrations calculated 

from both drainflow and surface layer runoff entering the ditch. Only the 

end of September and beginning of October are shown, because the 

dynamics of the simulated ditch concentrations are similar to the sediment 

concentrations in drainflow (Fig. 63). The timing of the simulated peaks 

were similar to the measurements. The simulated peak at the end of 

September is not visible in the measurements. The mean absolute error 

between the measured and simulated concentration values was 0.28 g l-1 

and the bias was -0.091 g l-1 (average measured concentration 0.42 g l-1). 

 

Figure 64. Hourly measured and simulated sediment concentrations in the ditch in 1988 in 
the Hovi field. 

Hourly runoff and sediment concentration results in 1984 in the Hovi field 

Hourly measured and simulated surface layer runoff results in the 

validation year 1984 are presented in Fig. 65. Only October and the 

beginning of November are presented in the graph (Fig. 65) because runoff 

was minimal during the summer and early autumn. 

 

Figure 65. Hourly measured and simulated surface layer runoff results in 1984 in the Hovi 
field. 
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Simulated surface layer runoff peaks were lower than the measurements 

but the timing was similar (Fig. 65). The lower simulated peaks could have 

been caused by too high infiltration rates and high values of Manning’s 

coefficient. 

The large drainflow event in the end of June was not reproduced in the 

simulated drainflow results (Fig. 66) and the peaks in the end of October 

were smaller than the measured peaks. In the end of June, soil was 

presumably too dry to produce drainflow due to ET in the model. The drop 

in drainflow intensities in the end of October is caused by the soil swelling 

process in the model. In terms of the Nash-Sutcliffe coefficient values, the 

surface layer runoff and drainflow results from the validation year 1984 

were better than the results from the calibration year 1988. 

 

Figure 66. Hourly measured and simulated drainflow results in 1984 in the Hovi field. 

Only four concentration measurements were available from drainflow in 

1984 (Fig. 67). The simulated sediment concentrations in the drainflow 

started to rise steeply only after the middle of October, while according to 

the measurements, concentrations actually started to rise already in the 

beginning of October. 

 

Figure 67. Hourly measured and simulated drainflow sediment concentrations in 1984 in the 
Hovi field. 

The simulated concentration results in the ditch (Fig. 68) were calculated 

from the surface layer runoff and drainflow results. The measured ditch 

concentrations (Fig. 68) were slightly higher than the sediment 

concentrations in the drainflow (Fig. 67). The sparse data available from the 

ditch does not validate the simulated concentration results (Fig. 68). Also, 
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the concentration measurements do not coincide with the precipitation 

events. Concentration scales (y-axis) in Figs. 67 and 68 are different due to 

differences between drainflow and ditch concentrations. 

 

Figure 68. Hourly measured and simulated sediment concentrations in the ditch in 1984 in 
the Hovi field. 

Flow and erosion patterns on the field surface in the Hovi field 

Overland flow patterns in the Hovi field were inspected by visualising 

overland water depths and flow velocities immediately after rain storm 

events (10 Oct. in 1988 and 21 Oct. in 1984). Precipitation sums during the 

single hour periods were 14.9 and 10.3 mm in 1988 and 1984, respectively. 

The conditions immediately after the events are presented in Fig. 86 in 

Appendix E. Overland flow velocities are presented with vectors indicating 

the velocity and direction of the flow. Maximum overland water depths and 

flow velocities were 0.383 m and 0.007 m s-1, respectively, in 1988 and 

0.227 m and 0.022 m s-1 in 1984. The flow velocities were low compared to 

the Sjökulla results (Section 4.3.1.5). Overland net erosion results in the 

field at the end of the simulation periods are presented in Fig. 87 in 

Appendix E. Negative erosion values denote sediment deposition in the cell. 

The maximum and minimum simulated net erosion results were +0.14 and 

-3.30 kg m-2, respectively, in 1988 and +0.13 and -2.61 kg m-2 in 1984. 

4.3.3 Model sensitivity analysis 

Several methods or frameworks have been published that address 

uncertainty in hydrological modelling (e.g. Beven and Binley 1992 and 

Refsgaard and Henriksen 2004). The principal problems are the 

uniqueness of the solution and the role of uncertainty in simulation results. 

Model sensitivity to parameter values, grid resolution and the effect of 

spatial variation of macroporosity is analysed to address uncertainties in 

the results. In addition, the roles of tillage and soil shrinkage and swelling 

processes in the simulations are investigated. The effect of grid dimension 

(1-D, 2-D or 3-D grid) on simulation results is tested in the end of the 
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section. The model sensitivity analyses were conducted with the calibrated 

computational models. 

Parameter sensitivity analysis 

Parameter sensitivity analysis was employed to detect the parameters that 

had the greatest influence on simulation results. Sensitive parameters were 

calibrated with greater care compared to the less sensitive ones. Effects of 

the parameters on results were assessed by offsetting them from their initial 

values by +10 and -10%. The resulting simulated surface runoff, drainflow 

and sediment loads via surface runoff and drainflow were compared to the 

original simulation results. The relative changes to runoff and load results 

due to the parameter modifications are presented in Table 33. The rankings 

were calculated by subtracting the +10% change from the -10% change 

(Table 33), squaring the result and summing up the runoff and sediment 

load components. 

Table 33. Parameter sensitivity analysis results [%]. Abbreviations used: SR = surface runoff, 
DF = drainflow, SL = sediment load via surface runoff, DL = sediment load via drainflow, 
G.w. depth = initial groundwater depth and Dit. w. depth = ditch water depth. H1–4 refer to 
the soil horizons in the profile (Fig. 34). Root depth parameter refers to the maximum root 
depth value (Table 23). 

 Offset: +10% -10% +10% -10% +10% -10% +10% -10% 
Rank: Parameter: SR [%]: SR [%]: DF [%]: DF [%]: SL [%]: SL [%]: DL [%]: DL [%]: 

1 nMVG,M, H2–4 80.3 118.4 87.2 109.8 79.2 112.9 94.5 99.5 
2 Drain depth 94.5 112.9 113.1 75.8 95.8 107.7 110.2 80 
3 nMVG,M, H1 96.4 99.2 89.5 107.2 99.6 95.6 89.6 113.3 
4 θS, H2–4 91.4 108 99 100.9 91.2 107.1 101.9 98.1 
5 θS, H1 92.8 107.5 98.4 100.5 94.4 104.8 98.7 99.9 
6 hW,THR 99.2 101.6 100.4 99 101.5 99.4 106.1 92.4 
7 KFS ,MUL 96.1 106.1 99.9 99 97.2 105.7 102.3 97 
8 w, H3 96.9 103.3 102.9 96.5 97.8 102.7 103.1 96.2 
9 γK, H2–4 96.6 102.8 100.3 100 96.5 102 101.9 99.5 

10 γK, H1 97.2 103.9 99.9 99.7 97.8 103.1 100.1 100 
11 G.w. depth 97.9 101.9 96.8 103.4 98.3 101.3 100.4 100.1 
12 kH 100.3 99.9 99.8 99.9 103.1 97.3 101.6 97.4 
13 Ditch depth 97.8 102 96.9 101.7 98.8 101.7 99.5 100.6 
14 Root depth 98.6 101.6 99.6 100.5 97.6 102.3 102.8 98.6 
15 kR 100.1 99.7 99.9 100.4 100.6 99.7 103.4 97.5 
16 w, H1 97.9 102.2 100.5 99.2 98 102 100 99.9 
17 w, H4 99.3 101.7 97.3 102.1 99.5 101.7 99.8 99.3 
18 αMVG,M, H2–4 97.9 101.7 99.6 100.8 97.9 102 100.6 99.5 
19 nMVG,F 99.4 102.7 99.4 101.2 99.6 101.8 99.2 100.5 
20 KSM, H1 99.3 101.3 100.5 99.1 98.9 101.9 98.8 100.7 
21 αMVG,F 100 100.5 100.8 98.4 100.6 100.2 101.6 98.7 
22 n 99.9 100.3 99.9 99.8 101.6 98.7 100.6 99.1 
23 αK, H1 101.5 99.1 99.5 99.9 101 99.5 100.8 100.4 
24 αMVG,M, H1 98.9 101.1 100 100.2 99.1 100.9 99.9 99.8 
25 Dit. w. depth 100.4 99.6 100.5 99.6 100.6 99.6 100.6 99.6 
26 αK, H2–4 100.1 98.7 100.2 100.4 99.6 98.4 100.5 101 
27 θR, H1 100.3 99.2 100.6 99.8 100.1 99.2 100.3 100.4 
28 αT 100 100 100 100 100.3 100 99.2 100.6 
29 w, H2 100.4 100.2 99.5 100.1 100.6 100.2 99.1 100.1 
30 KSM, H2–4 99.8 99.7 99.9 100.2 99.7 99.3 99.5 100.5 
31 d 99.6 100.3 100.3 99.7 99.9 100.3 100 100.4 
32 βK, H1 99.9 100.2 99.9 100.1 99.8 99.8 100.2 100.9 
33 αL 99.6 100.2 100.3 99.9 99.9 100.2 100.1 100 
34 βK, H2–4 99.3 99.7 100.2 100.3 99.3 99.5 100.9 101 
35 DS 99.6 99.9 100.3 100.2 99.8 99.5 100.5 100.4 
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The results were calculated only with the Sjökulla 1998 parameterisation 

and with the Low grid resolution (18×13×16 cells in x-, y- and z-directions). 

Due to the parallel computing approach (Section 3.2.2.3), some fluctuation 

was evident in the results. Small deviations around the original results 

could have been caused by this phenomenon. The nMVG,M parameters were 

decreased only by 5% because the value of the parameter had to be higher 

than 1.0. According to the test, the results were sensitive to the adjustment 

of the soil matrix MVG WRC parameters nMVG and θS (Table 33). Other 

parameters that were found out to strongly influence the results included 

subsurface drain depth, hW,THR and KFS,MUL. Surprisingly, manipulation of 

the characteristic radius d in the first order water exchange coefficient had 

only minor effects on the results. 

Effect of grid resolution on results 

The effect of computational grid resolution on runoff and sediment load 

simulation results was analysed by increasing grid resolution in the 

horizontal and vertical directions (Section 4.2.1). Simulation times with 

different grid resolutions are presented in Table 34. The Hovi simulation 

times were shorter than the corresponding Sjökulla times because there 

were fewer active cell columns in the grids (Section 4.2.1). Every time the 

horizontal resolution was quadrupled, the simulation time was increased 

approximately sevenfold. When the vertical resolution was doubled, i.e. the 

total number of cells was doubled, the simulation time was also 

approximately doubled. However, the effect of vertical resolution was 

investigated with only two different resolution steps, making it difficult to 

draw any definite conclusions from the result. 

Table 34. Simulation times [min] with different grid resolutions. 

Resolution / Simulation: Sjökulla 1998: Sjökulla 1996: Hovi 1988: Hovi 1984: 
Low 11 11 9 9 

Medium (z = 16 cells) 94 79 50 47 
Medium (z = 30 cells) 323 162 110 148 

High 713 503 440 469 
Very High 4763 (3d, 7h) 3414 (2d, 8h) 3391 (2d, 9h) 3282 (2d, 7h) 

 

Convergence of the results was assessed only visually from the simulation 

results with different grid resolutions. The term “convergence” in this 

context means that at a certain resolution step the results do not change 

any more. The Sjökulla surface runoff results in 1998 and 1996 converged at 

the High resolution step (72×52×16 cells in x-, y- and z-directions) but the 

drainflow results did not converge with the calculated resolutions (Fig. 69), 

However, the difference between the resolution steps was not notable (Fig. 

69). 
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Figure 69. Simulated cumulative subsurface drainflow in a) 1998 b) 1996 with the Sjökulla 
field computational model with different horizontal grid resolutions (number of cells in x-, 
y- and z-directions). 

Cumulative sediment loads via surface runoff in the Sjökulla field did not 

converge within the simulated resolution steps and additionally the results 

fluctuated between the steps (Fig. 70). Cumulative sediment load results via 

drainflow converged at the Medium resolution step (36×26×16), even 

though drainflow changed between the resolution steps (Fig. 69). The two 

tested vertical resolutions (36×26×16 and 36×26×30) produced almost 

identical results in the Sjökulla field. The absolute changes in cumulative 

runoff and sediment load results were below 5% between the vertical 

resolution steps during both years. 

Figure 70. Simulated cumulative sediment loads via surface runoff in a) 1998 b) 1996 with 
the Sjökulla field computational model with different horizontal grid resolutions (number of 
cells in x-, y- and z-directions). 

The Hovi simulation results converged already at the Medium resolution 

step (26×36×16). With the higher vertical resolution (26×36×30) there was 

some decrease apparent in the 1988 drainflow result (71.2 vs. 75.9 mm) but 

not in the 1984 result (Fig. 71). The main reason for the better convergence 

in the Hovi computational model seemed to be the more gentle slopes in the 

field compared to the Sjökulla field. Groundwater in the Sjökulla field 

flowed with an increased flow rate towards the lower areas in the grid 

compared to the Hovi field, due to steeper slopes. This in turn, increased 

a) b) 

a) b) 
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drainflow as the groundwater table rose closer to the field surface in the 

lower parts of the field. 

Figure 71. Cumulative subsurface drainflow results in a) 1988 b) 1984 with the Hovi field 
computational model with different vertical grid resolutions (number of cells in x-, y- and z-
directions). 

Effect of spatial variability of macroporosity on results 

The effect of spatial variation of macroporosity in the field area on the 

simulation results was investigated with the Sjökulla field computational 

model (Fig. 25). The Hovi field was not studied in this section because no 

data on spatial variation of soil hydraulic properties were available. The 

structure of the profile was presented in Fig. 34 and the macropore 

parameters (static macroporosity) in Table 24. The High grid resolution 

step (72×52×16) was used in the test (Section 4.2.1). Four scenarios were 

developed to test the effect of spatial variation of macroporosity on runoff 

and sediment load results. In Scenarios 1, 2 and 3, soil profile areas 1, 2 and 

3 (Fig. 26, Table 24) were applied separately to the whole field area. In the 

Scenario 4, an arithmetic mean was calculated between the parameters of 

the three soil profile areas and the mean values were applied to the whole 

field area. The results are presented in Fig. 72. 

  

Figure 72. The effect of different macroporosity scenarios on a) sediment load via drainflow 
and b) drainflow with the Sjökulla field computational model in 1996. 

a) b) 

a) b) 
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In the 1998 case, the absolute changes to surface runoff, drainflow and 

sediment load results via surface runoff and drainflow were all below 6%. In 

the 1996 case, sediment load via drainflow decreased -21% in the Scenario 1 

(Fig. 72a). Other notable changes in 1996 included the decrease of 

drainflow (-11%) in the Scenario 1 and increase of drainflow (+11%) in the 

Scenario 3. All other changes in 1996 were under 10% (absolute). The 

decrease in drainflow and sediment load via drainflow in the Scenario 1 in 

1996 was probably caused by the decrease of static macroporosity in the 

lower parts of the profile near subsurface drains. 

Effects of soil shrinkage and swelling processes and tillage operations on 
results 

The effects of soil shrinkage and swelling processes and tillage operations 

on runoff and sediment load results were tested by turning the processes off 

in the model one at a time. The high resolution grids were used in the 

comparison (Section 4.2.1). Surface runoff in the Sjökulla field increased 

+64% and +47% in 1998 and 1996, respectively, when the shrinkage and 

swelling processes were inactivated (Fig. 73). Drainflow and groundwater 

flow were in turn decreased. In the Hovi field, drainflow increased +13% 

and +25% in 1988 and 1984, respectively, when the soil shrinkage and 

swelling processes were not active. Surface layer runoff increased +19% and 

+21% in 1988 and 1984, respectively. The increase in drainflow in the Hovi 

field site was attributed to the decrease of groundwater flow. 

  

Figure 73. Simulated cumulative surface runoff results with and without soil shrinkage and 
swelling processes in a) 1998 b) 1996 with the Sjökulla field computational model. 

The corresponding cumulative sediment loads via surface runoff in the 

Sjökulla field increased +25% and +24% in 1998 and 1996, respectively 

(Fig. 74). In the Hovi field, the cumulative sediment load via surface runoff 

increased +12 and +7% in 1988 and 1984, respectively. The cumulative 

sediment load via drainflow increased +26 and +40% during the same 

simulation periods. 

a) b) 
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The increase in surface runoff, when the soil shrinkage and swelling 

processes were inactive, was caused by the decreased infiltration capacity of 

the profile and loss of water storage volume due to smaller macropore 

system. Although surface runoff was increased in the summer months, the 

corresponding sediment load did not increase as much (Fig. 74) because 

erodibility of the soil was increased only after tillage operations in the 

autumn. 

  

Figure 74. Simulated cumulative sediment loads via surface runoff with and without soil 
shrinkage and swelling processes in a) 1998 b) 1996 with the Sjökulla field computational 
model. 

The tillage operations in the autumn had a big impact on runoff and 

sediment load results in the computational models. When the tillage effects 

were turned off, i.e. macroporosity in the tillage layer was not decreased 

and the soil erodibility was not increased, cumulative surface runoff in the 

Sjökulla field decreased -56% and -30% in 1998 and 1996, respectively (Fig. 

75). Cumulative drainflow increased +21% and +13% during the same years. 

In the Hovi field, cumulative surface runoff decreased -21% in 1988 and 

-25% in 1984. Cumulative drainflow increased +6 and +20% in 1988 and 

1984, respectively. 

  

Figure 75. Simulated cumulative surface runoff results with and without tillage changes to 
macroporosity of the tillage layer in a) 1998 b) 1996 with the Sjökulla field computational 
model. 

a) b) 

a) b) 
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The largest differences were apparent in the sediment load results via 

surface runoff. In 1998, the cumulative load decreased -67% while in 1996 

the decrease was -33% (Fig. 76). The changes in cumulative sediment loads 

via drainflow were not so drastic, increasing +14% in 1998 and decreasing 

-1% in 1996. The cumulative loads in the Hovi field decreased to 

approximately one third of the original load results during both years 

(Table 32 and Fig. 60). 

  

Figure 76. Simulated cumulative sediment loads via surface runoff with and without tillage 
changes to macroporosity of the tillage layer in a) 1998 b) 1996 with the Sjökulla field 
computational model. 

Effect of grid dimension on results 

Most of the previous preferential flow studies were conducted with 1-D or 

2-D models (Section 2.2). To see how the parameterisations derived in this 

study functioned with lower dimension grids, the Sjökulla simulations were 

rerun with 1-D and 2-D grids generated with AGGS. The locations and 

section views of the 1-D and 2-D grids are presented in Fig. 77. The 

resolution of the 1-D grid had to be set to 3×3×16 cells in x-, y- and z-

directions because the model required the extra cells to decipher the slope 

of the field. The average slope and area of the grid were 0.027 and 36 m2, 

respectively. The 2-D grid is composed of a string of 102 active cell columns 

and it was positioned in a location where water will naturally collect and 

flow towards the discharge point (Figs. 77 and 84). The average slope and 

area of the grid were 0.016 and 204 m2, respectively. The incoming and 

outgoing groundwater fluxes perpendicular to the running direction of the 

2-D grid were set to zero. The same vertical profiles (Fig. 34) and horizontal 

cell diameters (2.0×2.0 m) were used in the 1-D, 2-D and 3-D grids. The soil 

parameters were set according to the locations of the grids (Fig. 26) (soil 2 

used in the 1-D grid). Because the 1-D profile was located on a slope in the 

field, water was flowing horizontally into and out of the profile. The 

horizontal multipliers of the saturated hydraulic conductivity parameters 

were modified from 1.0 to 0.01 to adjust the net water loss due to 

groundwater flow. 

a) b) 
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Figure 77. The locations of the 1-D and 2-D grids in the Sjökulla field and section views of the 
grids (the vertical axis has been magnified tenfold in the section views to accentuate 
topography). 

Surface runoff and drainflow and the respective sediment load results 

simulated with the 1-D, 2-D and 3-D grids are presented in Figs. 78–81. The 

3-D grid results were calculated with the Very high grid resolution (Section 

4.2.1). 

While the simulations with the 2-D grid resulted in similar surface runoff 

values compared to the 3-D grid (55.2 and 61.1 mm in 1998 and 51.6 and 

66.9 mm in 1996), the 1-D grid exaggerated surface runoff considerably 

(92.8 mm in 1998 and 1996) (Fig. 78). 

Figure 78. Simulated cumulative surface runoff in the Sjökulla field with the 1-D, 2-D and 3-
D grids in a) 1998 and b) 1996. 

a) b) 
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On the other hand, the 1-D grid produced similar drainflow results to the 

3-D grid (87.3 and 88.2 mm in 1998 and 76.7 and 78.1 mm in 1996) but 

simulations with the 2-D grid resulted in too much drainflow during both 

simulation years (191.1 and 164.6 mm in 1998 and 1996, respectively) (Fig. 

79). 

Figure 79. Simulated cumulative drainflow with the 1-D, 2-D and 3-D grids in the Sjökulla 
field in a) 1998 and b) 1996. 

The cumulative sediment load via surface runoff simulated with the 1-D 

grid (Fig. 80) was approximately half of the results simulated with the 2-D 

and 3-D grids. The foot of the hill, where most of the net erosion took place 

in the 2-D and 3-D grids due to higher flow depths (Fig. 85), was missing 

from the 1-D grid. Sediment loads calculated with the 2-D and 3-D grids 

were similar (2182 and 1905 kg ha-1 in 1998 and 2042 and 2196 kg ha-1 in 

1996) (Fig. 80). 

 

Figure 80. Simulated cumulative sediment loads via surface runoff in the Sjökulla field with 
the 1-D, 2-D and 3-D grids in a) 1998 and b) 1996. 

The sediment load results via drainflow simulated with the 1-D, 2-D and 

3-D grids (Fig. 81) did not exhibit the same behavior as the sediment load 

results via surface runoff. In 1998, the sediment loads simulated with the 1-

D and 3-D grids were similar except in October where the 3-D grid 

produced higher loads (881 and 1290 kg ha-1) (Fig. 81a). In 1996, the 

a) b) 

a) b) 
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sediment load via drainflow simulated with the 3-D grid was notably higher 

compared to the 1-D grid result (2245 and 1186 kg ha-1) (Fig. 81b). The 

sediment load simulated with the 2-D grid (1976 and 2680 kg ha-1 in 1998 

and 1996, respectively) was higher than the results calculated with the 1-D 

and 3-D grids during both years. This was probably caused by the increased 

drainflow in the 2-D grid (Fig. 79). 

Figure 81. Simulated cumulative sediment loads via drainflow in the Sjökulla field with the 1-
D, 2-D and 3-D grids in a) 1998 and b) 1996. 

The grid dimension test showed that the results simulated with the 1-D 

and 2-D grids depended on the position of the computational grid in the 

field. Neither the 1-D, nor 2-D grid could reproduce both surface runoff and 

drainflow results simulated with the 3-D grid. However, it is likely that 

other 1-D and 2-D grid-specific parameterisations exist which would 

produce comparative results. It is also possible that 1-D and 2-D 

parameterisations have to be changed with the position of the grid. Another 

drawback with the 1-D and 2-D grids was that they could not reproduce the 

spatial distribution of water and sediment related processes in the field with 

the same fidelity as the 3-D grid (Figs. 84–85). Although surface runoff was 

increased notably in the simulation with the 1-D grid, the flow depths 

remained low due to a relatively steep slope. The lack of concentrated 

overland flow was probably the reason why sediment loads in the 1-D grid 

remained lower than in the simulations with the 2-D and 3-D grids (Figs. 

80-81). 

a) b) 
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5. Discussion 

The objectives of the thesis were to produce new computational 

approaches and knowledge on flow and erosion processes in clayey, 

subsurface drained agricultural fields. A new numerical model (FLUSH) 

was developed, which included preferential flow and transport and soil 

shrinkage and swelling processes and simulation of rudimentary cropping 

and tillage effects. The discussion section is divided into two parts. In the 

first part, programming details of the FLUSH model are discussed. In 

addition, some of the decisions regarding the structure of the numerical 

model are explained. In the second part, the results are analysed via 

answers to the hypotheses and research questions posed in Section 1.3, and 

comparisons are made against previously published studies. 

5.1 Model features and computational aspects 

The FLUSH model was developed primarily for research purposes and it 

is geared towards dynamic, continuous, 3-D, field-scale problems. 

However, it is possible to apply the model to steady-state, event-based and 

1-D and 2-D problems (Section 4.3.3.5). Currently, the automatic grid 

generation system (AGGS) (Section 3.2.2.2) can only produce grids with 

uniform layer depths everywhere in the grid, although it is possible to use 

different soil types in different parts of the field in the profile. The system is 

based on an object oriented paradigm and is composed of a set of C++ 

classes which can be combined together and extended as required. There is 

no dedicated user interface to run the system, although a primitive program 

was developed to visualise the input data and the 3-D computational grids 

with colors, text and (velocity) vectors. An earlier version of the model was 

applied to field conditions by Jalonen (2008) and to a laboratory scale 

experiment by Kesäniemi (2009). The new version of the model was 

applied to a clayey field in southern Finland which contained several 

connected field sections by Turunen (2011). 
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The major assumptions made in the conceptual model are the lack of 

winter time processes and the simplified description of evapotranspiration. 

However, these features were ruled out of scope in Section 1.3 and they are 

therefore not discussed further. Regarding the subsurface sediment 

transport description, the key assumptions were that soil is not eroded in 

the macropore system and that suspended sediment is not transported into 

the soil matrix. These decisions are further discussed in Section 5.2.3. 

The main new feature of the numerical model is the integration of 2-D 

overland flow and erosion and 3-D subsurface flow and transport domains. 

The subsurface domain also supports preferential flow and suspended 

sediment transport in macropores. Soil shrinkage and swelling processes 

govern macroporosity and hydraulic conductivity of the soil profile as a 

function of moisture state of the soil matrix (Section 3.2.1.5). No previous 

3-D models were found that included soil shrinkage and swelling 

simulation. The effects of cropping and tillage operations can be simulated 

by changing overland and subsurface soil parameters at specified points in 

time. Several new approaches were developed to speed up simulations in a 

desktop workstation environment. The model includes a new time-stepping 

system that can be used to run several submodels in a parallel fashion with 

different time steps (Section 3.2.2.1). PDMA algorithm can make iteration 

in dual-permeability systems more stable and decrease the number of 

iterations needed for convergence in implicit solution algorithms (Sections 

3.2.1.2 and 3.3.3). The solution algorithms are parallelised with OpenMP 

API to utilise the latest processor technology to its full extent (Sections 

3.2.2.3 and 3.3.4). 

The numerical model was developed specifically for this study but the 

system also retains parts of previously published algorithms, as such or in 

modified forms. The overland flow model by Taskinen (2002) was adapted 

to the system. The finite difference method-based numerical solution was 

converted to FVM and the kinematic wave approach was changed to the 

diffuse wave approach. The theoretical dual-permeability flow model 

followed the methods of Gerke and van Genuchten (1993a). The Richards 

equation (Richards 1931) was used to simulate flow in both pore systems. 

The method presented by Karvonen (1988) was applied to approximate 

differential water capacity in the solution. The models by Van Genuchten 

(1980) were employed to represent WRCs and to simulate unsaturated 

hydraulic conductivity in both pore systems. TDMA, usually found in 

subsurface flow solution algorithms, was replaced with the new PDMA 

approach to solve both pore systems simultaneously. The soil shrinkage and 

swelling system in the SWAP model (e.g. Kroes et al. 2008) was adopted 
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here. The stress factor by Feddes et al. (1978) (Fig. 1) was applied to 

decrease evapotranspiration in very moist and dry conditions. 

The erosion model originated from various sources including Taskinen 

(2002) (principal solution algorithm and hydraulic erosion), Wicks and 

Bathurst (1996) (rain drop splash erosion) and Yalin (1963), Mantz (1977) 

and Yalin (1977) (transport capacity for small particles). The solution 

algorithm of the sediment continuity equation was also converted to FVM. 

A minimum transport capacity value had to be defined for the suspended 

clay particles in standing water to improve the results. A simplified 

theoretical dual-porosity model was adopted to simulate sediment 

transport in soil. Suspended sediment was allowed to move only in the 

macropore system, due to the relatively large size of clay aggregates 

compared to the voids in the clay soil matrix. 

Numerical solution of PDEs was carried out with FVM, rather than with 

FEM, even though FEM is known for its flexibility with the element shape 

and accuracy due to interpolation inside the elements (e.g. Zienkiewicz 

1971, Pinder and Gray 1977, Fletcher 2005). The FVM based model 

development was initiated by Warsta (2005) and further developed by 

Warsta (2007), Warsta et al. (2008a, b) and Warsta et al. (2009). The 

flexibility with the element shape is not an issue with FVM because the 

method supports also irregular and distorted geometry. At any rate, 

Karvonen (1988) showed with a FEM approach that increasing grid 

resolution around subsurface drains did not improve the simulation results 

substantially due to the uncertainties in the measurement data. Fipps and 

Skaggs (1986) came to a similar conclusion. Recoding of the system with 

FEM paradigm was not seen necessary at this point. 

According to Sun (1994), two problems have to be solved when building a 

groundwater model: 1) the forward problem (simulation) and 2) its inverse 

(calibration). The two ways to approach calibration are trial and error and 

parameter identification (e.g. Strecker and Chu 1986). Theory and a case 

study on the issue of automatic parameter identification were presented by, 

e.g. Neuman and Yakowitz (1980) and Neuman et al. (1980). The inverse 

problem in this study was solved solely with trial and error calibration 

because the numerical model was computationally too demanding for 

automatic calibration approaches with the current desktop hardware. 

Automatic parameter identification was used in several recent erosion and 

preferential flow and transport studies including, e.g. Schwartz et al. 

(2000), Abbaspour et al. (2001), Taskinen (2002) and Jarvis et al. (2007). 

Kokkonen (1997) showed that automatic parameter identification methods 

also suffer from the uniqueness problem, i.e. there are a large number of 

parameter combinations that produce the same simulation results. 
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5.2 Answers to the hypotheses and research questions 

The results presented in this thesis are analysed by answering the 

hypotheses and research questions posed in Section 1.3. Since it is difficult 

to generalise results from only two study fields, evidence is presented either 

for or against the presented hypotheses. 

5.2.1 Hypothesis 1 

Preferential flow via macropores has a major impact on runoff 
dynamics and water balance in clayey, subsurface drained agricultural 
fields. 

 

By using rough estimates for macroporosity (3.3×10-3 m3 m-3) and 

saturated hydraulic conductivities for soil matrix and macropores (1.0×10-4 

and 0.248 m h-1) in the drain depth, the volumetric drainflux via 

macropores was approximately eightfold compared to the soil matrix. 

However, according to the simulation results on average 99% of the 

drainflow originated from the macropore system. This indicated that 

preferential flow was generated in non-equilibrium conditions in the model 

and dominated water flow into subsurface drains. Furthermore, the 

parameter d (Eq. 26) which describes the diffusion length between the soil 

matrix and macropores had to be calibrated into a high value (11 m) 

indicating that water exchange rate between the pore systems was very 

limited. The non-equilibrium preferential flow manifested itself as peaky 

drainflow events (Figs. 43, 47, 62, 66) as the water moving in the 

macropores was unable to drain into the soil matrix. 

Evidence of the effect of macropore flow on drainflow was available from 

the simulation results from both fields. In both measurements and 

simulations, drainflow started quickly after precipitation events. For 

example a precipitation event (16 mm h-1) on 10 July 1998 in the Sjökulla 

field started producing drainflow within the same hour and reached its 

maximum in the next hour (Fig. 43). The same trend was evident in a 

precipitation event (9 mm h-1) on 5 October 1984 in the Hovi field (Fig. 66). 

Without preferential flow in macropores, water could not have reached the 

drains in such a short time frame. Obviously, many factors affected the 

timing and volume of drainflow events, including the presence of cracks, 

antecedent moisture conditions in the soil and duration and intensity of the 

precipitation events. Other authors have presented similar modelling 

results. Koivusalo et al. (1999) reported that the total water balance of the 

simulated hillslope in the Sjökulla field was dominated by 

evapotranspiration and subsurface drainflow through macropores. In the 
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study by Gärdenäs et al. (2006) with the HYDRUS model, drainflow waters 

originated almost entirely from macropores while surface runoff was 

minimal. Larsson et al. (2007) found that 40% of the simulated drainflow 

originated from macropores in a study conducted with a modified 

ICECREAM model. Groundwater flow and surface runoff were assumed to 

be negligible. Hintikka et al. (2008) reported that 96–99% of modelled 

drainflow was a result of preferential flow in macropores in the Sjökulla 

field. 

Further evidence was available from the sensitivity analysis. When the 

macroporosity value in the profile was decreased, the drainflow volumes 

decreased (Fig. 72b, Scenario 1). A more radical effect was achieved when 

the soil shrinkage and swelling processes were disabled in the model. 

According to modelling results, surface runoff increased in the Sjökulla field 

+64% and +47% in 1998 and 1996, respectively. In the Hovi field, the effect 

was not visible because surface layer runoff was minimal during the 

simulation periods. A previous modelling study conducted with the MACRO 

model and Sjökulla data indicated that cracks had only a minor effect on 

runoff results (Hintikka et al. 2008). Unfortunately, data available on 

cracks in the fields were limited, e.g. Alakukku et al. (2010a) reported that 

cracks reached at least a depth of 0.6 m in the Sjökulla field. A clear change 

in runoff distribution between surface runoff and drainflow was detected 

after the tillage operations in the autumn in the computational models 

(Figs. 75). The relative volume of drainflow decreased while surface runoff 

increased. The change was presumably caused by tillage operations and 

liquefaction of clay soil, disrupting direct macropore connections between 

field surface and drains. 

The measured water balance (precipitation, surface runoff and drainflow) 

did not match in the two fields. In addition to grossly underestimated PET 

values, the only other source for the error that seemed conceivable was 

groundwater flow. Because there was little information available on the soil 

types below the subsurface drains in the Sjökulla and Hovi fields, it was 

assumed here that the heavy clay soil continued down to bedrock below. 

Preferential flow could take place in permanent fractures, silt lenses and 

soil–bedrock interface. The Sjökulla field simulation results indicated that 

84 and 65 mm water were lost via groundwater flow in 1998 and 1996, 

respectively. In the Hovi field simulations, 55 and 69 mm were lost in 1988 

and 1984, respectively. Groundwater flow also had a notable effect on water 

balance in other studies. Gustafson (1987) reported an annual water loss of 

20–70 mm via groundwater flow. Gärdenäs et al. (2006) experienced over-

estimation of drainflow and the authors hypothesised that the reason was 

the lack of a groundwater flow process in the model. On the other hand, 
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Vakkilainen et al. (2010) reported that runoff even exceeded precipitation 

due to additional water entering the experimental field section from the 

surrounding land area. 

According to the presented results, it would have been very difficult to 

describe the runoff dynamics and water balance in the computational 

models without a preferential flow description. The results from the four 

different growing periods and two separate fields calculated with the 3-D 

dual-permeability model provided further evidence that preferential flow 

had an important effect on runoff dynamics and water balance in clayey, 

subsurface drained agricultural fields. It is asserted here that Hypothesis 1 

is valid. 

5.2.2 Hypothesis 2 

Mechanisms of preferential flow can be represented, and the related 
mass fluxes can be quantified using computational methods presented in 
the literature. 

 

According to the results presented in Hypothesis 1, it is evident that 

preferential flow is important to runoff dynamics and water balance in the 

studied fields. In the Hypothesis 2, the methods applied to simulate 

preferential flow in the model are investigated in more detail. Preferential 

flow was implemented in the model by dividing the total porosity into 

separate but interacting macropore and soil matrix pore systems (e.g. Gerke 

and van Genuchten 1993a). Flow in both macropore systems was 

represented with the Richards equation and the saturated hydraulic 

conductivity value in the macropore system was approximated with a linear 

model as a function of macroporosity of the soil (Eq. 93). In a model 

presented by Messing and Jarvis (1990), the value of KSF was calculated 

with an exponential function. In Hypothesis 1, it was found that the 

drainflow waters originated largely from the macropore system. The success 

of the presented method for simulating macropore flow could be quantified 

by inspecting hourly drainflow results from the fields (Figs. 43, 47, 62, 66). 

Even though there are several discrepancies in the results, the system works 

relatively well in describing the intensities and lengths of the measured 

drainflow events. The short delay in drainflow initiation after a 

precipitation event indicated that the macropore network formed a short 

and direct connection between the field surface and subsurface drains. The 

calculated Nash-Sutcliffe coefficients for drainflow provided more evidence 

that the model was able to describe the phenomenon relatively well 

(Sections 4.3.1.1 and 4.3.2.1.). The coefficients were calculated from 4416–

5136 measurement-simulation pairs. 
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The effect of macroporosity on drainflow in different soil horizons was 

investigated with several methods. Parameter sensitivity analysis showed 

that the system was very sensitive to the macroporosity value w in horizon 

3 (Fig. 34, Table 24). This was due to the location of drains and thickness of 

the horizon in the profile. The system was not particularly sensitive to the 

macroporosity values in horizons 1, 2 and 4. The effect of spatial variance of 

macroporosity on runoff and sediment load results in the Sjökulla field was 

also investigated in the sensitivity analysis (Section 4.3.3.3). In Scenario 1, 

macroporosity of the tillage horizon was increased, but the macroporosity 

of horizon 3 (Fig. 34, Table 24) was decreased. The result was that 

drainflow (Fig. 72b) and the corresponding sediment load decreased (Fig. 

72a). According to the simulation results, the macroporous soil profile 

functioned as a funnel, i.e. even though the macroporosity value of the 

upper part was increased, the lower part still acted as a bottleneck 

governing drainflow. Furthermore, simulation tests without static 

macropores at the drainage depth produced only minimal drainflow 

throughout the simulation periods compared to the measurements (results 

not shown). 

The change in runoff distribution after autumn tillage operations, already 

mentioned in Hypothesis 1, was achieved by decreasing the static 

macroporosity of the soil in the tillage horizon with the cropping and tillage 

effects submodel (Fig. 75b). Without the explicit change to the static 

macroporosity, it was difficult to achieve the change in the runoff 

distribution. This indicated that the effect was not solely caused by soil 

swelling process. A greater decrease in static macroporosity was required in 

1998 in the Sjökulla field compared to 1996. It is possible that the greater 

decrease in 1998 was due to the wetter soil compared to 1996. According to 

Alakukku (1996a), moist mineral soils are prone to damage by compaction 

and loss of structure. On the other hand, in the Hovi field the decrease of 

static macroporosity was the same during both years. The effects of tillage 

operations on macroporosity are rarely taken into account in simulation 

studies (e.g. Ray et al. 1997). 

Simulated groundwater table movement in macropores and soil matrix 

were compared to the groundwater level data measured at the Sjökulla field 

(Figs. 25, 50–54). Neither the simulated matrix nor macropore levels 

corresponded well to the levels in the measurement tubes. Simulated 

matrix levels changed relatively slowly and were generally higher than the 

measured levels. Simulated macropore levels, on the other hand, fluctuated 

too rapidly but otherwise resembled the measured levels more closely. It 

was found in the simulations that the matrix groundwater table level was 

governed by the water exchange rate between the pore systems and 
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transpiration extracted by crop roots. The low saturated hydraulic 

conductivity KSM and steepness of WRC of the soil matrix caused sudden 

drops in the simulated matrix groundwater table levels. Increase of KSM 

brought the matrix groundwater table levels closer to the measured levels. 

However, the increase of KSM also resulted in more diffuse drainflow results 

as the importance of preferential flow was diminished. In previous studies, 

Jauhiainen 2004 and Hintikka et al. (2008) presented groundwater table 

level simulation results that corresponded relatively well to the 

measurements from the Sjökulla field. 

The calibration results indicated that water exchange between the pore 

systems was much slower when water was flowing from the soil matrix to 

the macropore system than in the opposite direction. When an arithmetic 

mean of hydraulic conductivities in the pore systems was employed in the 

first order water exchange coefficient αW (Eq. 26), the matrix system 

drained too quickly, resulting in diffuse drainflow events (not shown). On 

the other hand, if solely matrix conductivity was used, infiltration from the 

matrix to the macropore system was too slow and drainflow increased 

steeply (not shown). The hysteresis effect in the water exchange between 

pore systems was represented with Eq. 40. In a previous study, Othmer et 

al. (1991) set the value of hydraulic conductivity in the matrix-macropore 

interface KA to the hydraulic conductivity value of the soil matrix. Gerke 

and van Genuchten (1993b) studied the magnitude of KA by simulating a 2-

D, single pore system sample with a macropore region parameterised into 

the centre of the grid surrounded by soil matrix cells. The authors 

compared the results from the 2-D simulation to results derived with a 1-D 

dual-permeability model, applying different formulations for KA. They 

found out that the arithmetic mean of hydraulic conductivities of 

macropore and soil matrix pore systems described the mass exchange most 

accurately in the context of the simulated 2-D system. 

The characteristic length d in αW (Eq. 26) had to be calibrated to a very 

large value (11 m). This indicated that water exchange between the pore 

systems was very slow. The sensitivity of the parameter d was found to be 

low in the parameter sensitivity analysis (Table 33). Previously, Villholt and 

Jensen (1998) also had to use large values of d in their simulations. 

Additionally, Gerke and Köhne (2004) had to reduce KA by a factor of 1000 

compared to the hydraulic conductivity value of the soil matrix due to 

coatings on clay aggregates. Unfortunately no data were available to assess 

whether the assumption made by Gerke and Köhne (2004) was also 

applicable to the soils in this study. 

A lot of uncertainties remain in the representation of preferential flow in 

the model. The current configuration does not allow simulation of local 
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pathways that stay open even after the soil has swollen shut. Examples of 

such pathways are large earth worm tunnels and vertical gravel drains. 

Instead, the total macroporosity value is averaged out to the whole volume 

of the cell. In the simulations, drainflow events got lower and wider instead 

of just shrinking while retaining their shape when macroporosity was 

decreased. This was visible in the hourly Hovi drainflow results in 1988 

(Fig. 62), where the last drainflow event became lower and wider compared 

to the measured peak. Small scale features could be simulated with spatially 

changing conductivity fields studied, e.g. by Vogel et al. (2000) and 

Taskinen (2002). However, this approach would require denser simulation 

grids and more computing resources. The method used to approximate the 

saturated hydraulic conductivity of the macropore system (Eq. 93) is 

problematic because hydraulic conductivity may not solely be a function of 

the macropore porosity of soil, but a combination of macropore porosity, 

geometry and connectivity of the macropore network. As anticipated, 

approximately one third of the high saturated hydraulic conductivity values 

in the Sjökulla measurements were associated with low macroporosity 

values (Table 13). This illustrates the fact that, e.g. a few wormholes can be 

responsible for the preferential flow through the soil layers. In some models 

like SWAP (e.g. Kroes et al. 2008) and RZWQM (e.g. Cameira et al. 2000), 

the macropore system is divided into a disconnected dead end pore system 

and an actual connected pore system that reaches down to the subsurface 

drain depth. Finally, one can argue that the value of MVG WRC parameter 

α (Fig. 27 and Table 14) used in the study is too small (7 m-1) to represent 

the macropore system. The corresponding air entry value is approximately 

0.14 m which is unrealistic for gravel material simulated with WRC. The 

result is that the modelled macropore system can conduct water relatively 

well even in high tensions. The problem was discusses earlier by Jarvis 

(2007). However, a more realistic value of 30 m-1 produced instability 

problems in simulation tests (not shown). This issue should be addressed in 

future studies. 

It was found possible to quantify preferential flow in macropores by 

comparing simulated hourly drainflow results to the drainflow 

measurements. However, the dual-permeability concept was not fully 

verified as neither of the simulated pore systems corresponded very well to 

the measured groundwater table levels, and parameterisations applied in 

αW (namely KA) in previous studies did not work in the computational 

models. More data are required, at least from three different areas, 

including macroporosity-saturated hydraulic conductivity of soil relation, 

the effects of soil shrinkage and swelling processes on preferential flow, and 

more detailed information on water exchange between the pore systems. 
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Due to difficulties and uncertainties related to the representation of 

preferential flow in the studied fields, it is not possible to fully confirm 

Hypothesis 2. 

5.2.3 Hypothesis 3 

The sediment load via subsurface drains in the studied clayey fields can 
be simulated when the sediment load is assumed to originate from the 
tillage layer of the fields. 

 

In the model, suspended sediment is introduced into the field in the 

overland domain by hydraulic and rain drop splash erosion processes. The 

sediment is then distributed between sediment loads via surface runoff and 

drainflow according to the flow simulation results. Hypothesis 3 has been 

integrated into the structure of the conceptual and numerical models 

presented earlier. Thus the proposed numerical model is a quantitative 

mechanism for testing the hypothesis, i.e. if it is possible to validate the 

model with the high resolution data, the hypothesis is asserted to be true.  

In the Sjökulla field computational model, the sediment load before 

autumn rains was generated almost exclusively by rain drop splash erosion 

(Fig. 41). Larger scale erosion in October 1998 and November 1996 was 

attributed to hydraulic erosion instead (Fig. 41). The sediment load was 

distributed between surface runoff and drainflow well during both years 

(Tables 31 and 32). However, the Nash-Sutcliffe coefficient (0.107) 

indicated that there were problems with the sediment load results via 

surface runoff in 1998 (Fig. 41a). Visual inspection revealed nothing else 

than slightly lower cumulative load results compared to the measurements 

(Figs. 41a and 44). It is possible that the low Nash-Sutcliffe value was 

caused by delayed simulation peaks compared to the measured peaks. 

In the Hovi field, the sediment load was produced almost totally by rain 

drop splash erosion in the simulations. Taskinen (2002) came to the same 

conclusion previously. The simulated concentrations were in agreement 

with the concentration measurements from the ditch in 1988, and with the 

concentration measurements from both drainflow and the ditch in 1984. 

The lack of hydraulic erosion was a consequence of limited overland flow in 

the field. In addition, simulated overland flow was very slow compared to 

the Sjökulla results, indicating that the water might have moved in the 

tillage horizon above the compressed tillage pan instead. Lack of overland 

flow and hydraulic erosion kept the sediment loads in the Hovi field 

approximately 20 times lower compared to the sediment loads simulated in 

the Sjökulla field. The Sjökulla field was also steeper, had optimal 

conditions for concentrated overland flow on the slopes, and a flat area 
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close to the outlet where water and suspended sediment could accumulate 

(Figs. 25, 84 and 85). The sediment load results in both fields were 

comparable to the measurements without a sediment sieving process 

description in the model. Thus, it seemed that sediment sieving in the 

macropore system was not an important process in the studied fields. The 

lack of sieving was probably caused by the small size of clay aggregates and 

direct preferential flow routes to the subsurface drains disclosed in 

Hypotheses 1 and 2. 

Only two previous modelling studies were found that simulated both soil 

erosion on the field surface and transport of suspended sediment into the 

subsurface drains. Knisel and Turtola (1999) simulated soil erosion with the 

GLEAMS model combined with a separate model that described sediment 

transport via preferential flow paths into subsurface drains. The authors 

postulated that erosion occurred on the field surface and suspended 

sediment travelled to drains via shrinkage cracks over subsurface drain 

lines. The simulated cumulative sediment load via drains (3255 kg ha-1) was 

approximately half of the sediment load via surface runoff (7911 kg ha-1) 

during the seven year study period conducted at a clayey field in Finland. 

Larsson et al. (2007) applied a modified ICECREAM model to a silty clay 

field site in Sweden. The suspended sediment was also generated on the 

field surface. According to the authors, the cumulative sediment loads via 

drains were similar to the measurements (simulated 231 kg ha-1 vs. 

measured 261 kg ha-1) but simulated individual events did not match 

measurements very well. The authors resorted to a sediment sieving 

process in the macropore system to decrease the sediment load via drains. 

Compromises were required in the conceptual and numerical erosion 

models to simplify the system. Interrill and rill erosion were lumped into a 

single sheet-like erosion process and only a single particle size was 

simulated. Interrill and rill erosion were not simulated separately because 

no data were available to calibrate the processes. Several other authors 

ended up lumping interrill and rill erosion (e.g. Wicks and Bathurst 1996, 

Taskinen 2002) and simulating only a single sediment size class (e.g. 

Sharda and Singh 1994, Nord and Esteves 2005). On the other hand, 

simulation of several sediment particle size classes was recommended by, 

e.g. Heilig et al. (2001) and Beuselinck et al. (2002). However, both study 

fields were clayey and the sediment loads were composed mostly of 

suspended, fine clay aggregates (Tables 12 and 17). It is possible that 

simulation of several particle size classes would have unnecessarily 

complicated the overland erosion and subsurface transport models. 

Additionally, according to the sensitivity analysis in Table 33, particle size 

was the most insensitive tested parameter in the system. One of the major 
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assumptions made in the conceptual model was that suspended sediment 

was transported only in the macropore system. The voids in the clay soil 

matrix are exceptionally small which was reflected on the low saturated 

hydraulic conductivity value of the matrix system in the model (10-4 m h-1). 

Also, the exchange rate of water between the macropore and matrix systems 

was limited (see Hypotheses 1 and 2). Therefore, if the sediment transport 

was enabled also in the soil matrix, both infiltration into soil matrix and 

movement in the matrix would be very slow. Presumably, the suspended 

sediment would block the available flow routes in the matrix relatively 

quickly. Also, valuable computational resources were saved by not 

simulating sediment transport in the matrix system. 

Some problems were found in the hydraulic erosion (Eqs. 70–72) and 

transport capacity descriptions in the overland erosion model (Eqs. 73–84). 

Because hydraulic erosion was estimated as a function of shear stress τ of 

overland flow and not flow velocity (Eq. 70), soil erosion actually increases 

when surface roughness n is increased. When n is increased, flow velocity 

decreases, but flow depth increases. The value of τ was calculated as a 

function of flow depth. The effect was visible, albeit faintly, in the 

parameter sensitivity analysis (Table 33), i.e. when n was increased, 

sediment loads via surface runoff and drainflow were increased. The same 

effect was reported previously by Sharda et al. (1994). 

Several authors (e.g. Julien and Simons (1985), Taskinen and Bruen 

2007b) recommended the Yalins transport capacity (TC) equation for 

overland erosion simulation. The adopted Yalins equation (Yalin 1962, 

Mantz 1977, Yalin 1977) worked well in the Hovi field simulations, but 

failed to perform adequately in the Sjökulla case. Clay soil in the low lying 

areas in the Sjökulla field can get very wet and liquefy, creating a thick clay 

particle-water mixture. The theoretical assumptions made in the transport 

capacity formulation probably do not apply to this kind of case. Previously, 

Wicks and Bathurst (1996) encountered similar problems in their 

simulations. The method by Engelund and Hansen (1967) was also tried but 

the simulation results were not improved (not shown). It is conjectured 

here that the Yalins method, even with the modifications for small particles 

(Eqs. 73–84), does not work well with very fine particles. Both Yalins and 

Engelund–Hansen methods include flow velocity terms in the formulations, 

and when the flow velocity drops to zero, the transport capacity also equals 

zero. In the Sjökulla field, water can move very slowly or even stand still in 

the low lying areas on the northern side (Figs. 25, 84 and 85). The 

assumption that particles drop immediately from suspension might be valid 

for larger particles but not necessarily for clay particles (Stokes law, eq. 77). 

The problem was bypassed by introducing a minimum TC value for standing 
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water. The sediment settling process was included in the overland erosion 

submodel to decrease sediment concentration gradually in standing water. 

Even though a lot of uncertainty is included in the results, and some 

problems were encountered with the process descriptions, the model was 

still able to simulate sediment loads in the studied fields relatively well. 

Strictly according to the definition of the Hypothesis 3 presented in the 

beginning of the section, the hypothesis is asserted to be true. Another 

option, that is only discussed here, is that the sediment load from 

subsurface drains originated partly from internal erosion in macropores. 

According to the empirical evidence (Laubel et al. 1999, Uusitalo et al. 

2001), the sediment load in clayey fields was detached from the soil surface 

layer. Also, sediment concentration in the drainflow was similar to the 

concentration in surface runoff waters (Turtola and Paajanen 1995, 

Uusitalo et al. 2001, Paasonen-Kivekäs et al. 2008). The model results point 

indirectly into the same direction as these studies. However, one can still 

argue that the sediment load from subsurface drains originates partly from 

internal erosion in macropores. With the current parameterisation, the 

average maximum flow velocities in cracks was a magnitude lower 

compared to the maximum simulated overland flow velocities. In addition, 

the erosive force of rain drop impacts is absent in cracks. According to this 

information, the same mathematical model that was used in the overland 

domain would not have detached particles from the macropore walls. 

Unfortunately, without further empirical measurements on actual flow 

velocities in cracks, this problem cannot be fully resolved.  

5.2.4 Hypothesis 4 

A distributed problem domain, including separate 2-D overland and 3-D 
subsurface domains with different process descriptions, is required for a 
holistic simulation of water flow and soil erosion in undulating, clayey, 
subsurface drained agricultural fields. 

 

Hypothesis 4 was developed from a notion that both flow and erosion 

processes in undulating, clayey, subsurface drained agricultural fields were 

temporally and spatially varying, and that this variation had a notable effect 

on runoff and sediment load results. With the “holistic simulation” term, it 

is meant that simulation of an arbitrary part of a field is difficult due to 

complex boundary conditions caused by interactions between the selected 

part and the surrounding areas. The main reason for dividing the 

computational domain into separate overland and subsurface domains was 

the possibility to apply existing methods for simulating the governing 

processes. In Section 4.3.3.5, a sensitivity analysis was conducted to 
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investigate the effect of grid dimension (1-D, 2-D and 3-D) on the 

simulation results. In the following paragraphs, the term 3-D grid 

represents a grid that is divided into 2-D overland and 3-D subsurface 

domains (Fig. 33), while a 2-D grid is divided into 1-D overland and 2-D 

subsurface domains (Fig. 77). A 1-D grid is composed of point-like overland 

and 1-D subsurface parts (Fig. 77). 

In the sensitivity analysis, the 1-D grid was positioned in the middle of a 

slope in the Sjökulla field (Fig. 77). Simulations with the 1-D grid resulted in 

excess surface runoff during both calibration and validation years, 

indicating that the effective slope of the grid should have been less than the 

slope of the hillside (Fig. 78). Also, the flow routes taken by the overland 

flow are totally omitted in 1-D simulations. While this might be justified for 

overland runoff, erosion phenomenon is comprised of interacting particle 

detachment and deposition processes that vary in spatial and temporal 

dimensions. When overland flow routes are not simulated, either erosion is 

overemphasised, because particle deposition processes are not simulated, 

or detachment is underestimated to compensate for the lack of deposition 

in the field. Previously, Hintikka et al. (2008) suggested that 1-D models 

could be used to quantify average water balance and total runoff on a clayey 

hillslope, but the authors recommended 2-D and 3-D models when the 

distribution of runoff between surface runoff, drainflow and groundwater 

flow was investigated. Köhne et al. (2006) found out that a 2-D flow and 

transport model with preferential flow and transport support described 

solute transport better in a tile-drained agricultural field than the 

equivalent 1-D model. 

With the 2-D grid, investigated in the sensitivity analysis, it was possible 

to simulate a single flow path in the field and erosion processes along the 

path (Fig. 77). Simulations with the 2-D grid produced comparable surface 

runoff (Fig. 78) and erosion results (Figs. 80 and 81) to the 3-D grid results. 

However, simulated drainflow increased because groundwater flow was 

removed only from the foot of the slope (Fig. 79). Removal of groundwater 

flow can be problematic in 2-D grids because the flow direction orthogonal 

to the running direction of the 2-D grid is not simulated. Obviously, it is 

possible to place sinks into the grid that simulate transverse groundwater 

flow from the grid. The problem is that the magnitudes of these fluxes are 

not known at the different parts of the slope. The position of the 2-D grid in 

the Sjökulla field (Fig. 77) was chosen so that it was located in a depression 

(Fig. 25), where outgoing groundwater fluxes orthogonal to the running 

direction of the grid were at a minimum. The 2-D grid could represent the 

field better than the 1-D grid because the spatial variability of the soil 

properties could be taken into account with a careful positioning of the grid. 
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In an earlier study, Mohanty et al. (1998) applied a 2-D model (Mohanty et 

al. 1997) to a subsurface drained, silty clay loam field. The authors deduced 

from the results that subsurface drains do not necessarily provide a good 

integrated field-scale flow and transport behaviour. The authors suggested 

that a 3-D model would have better suited the problem than the 2-D 

approach used in the modelling. Koivusalo et al. (1999) found out in a 2-D 

simulation of a hillslope in the Sjökulla field that the water table could not 

fall below the subsurface drain level because groundwater flow below the 

root zone was not simulated. Haws et al. (2005) simulated water flow and 

solute transport in a subsurface drained, silty clay loam field with 2-D 

single porosity and dual-porosity models (HYDRUS 2-D). The authors 

attributed the problems encountered in the solute transport simulations to 

the non-uniqueness of the parameters and the problem of representing a 3-

D heterogeneous system with a 2-D homogenous system. 

Although the 2-D grid (Fig. 77) could describe a single overland flow path 

and erosion dynamics along the path, it could not reproduce the complex 

flow (Figs. 84 and 86) and erosion patterns (Figs. 85 and 87) on the field 

surface which are evident in the 3-D grid results. The sensitivity analysis 

indicated that spatial variability of macroporosity had a notable effect on 

the runoff and sediment load results in the Sjökulla computational model 

(Fig. 72). On the other hand, even without spatial variation of soil 

parameters in the Hovi field, complex overland flow and erosion patterns 

emerged in the simulations due to topography and soil moisture variations 

alone. Lower areas in the fields, especially in the Sjökulla field, were wetter, 

increasing probability of Dunne-type overland flow and hydraulic erosion. 

This was visible in the Sjökulla field rainstorm simulation results (Fig. 84) 

where overland waters were accumulating in the middle of the north side 

(the red areas). The same areas were also prone to soil erosion in the model 

(Fig. 85) (the red areas). The results of Bronstert and Plate (1997), 

simulated with the 3-D HILLFLOW model, indicated that in addition to the 

vertical, subsurface flow fluxes, horizontal fluxes are also required for 

realistic simulation results. Christiansen et al. (2004) showed with the 

MIKE-SHE model that preferential flow and transport can vary strongly at 

a catchment scale with topography and depth of groundwater. 

Other models that can simulate 2-D overland flow and 3-D subsurface 

flow in a single pore system include, e.g. MIKE-SHE (Abbot et al. 1986a, b), 

MOHID (Trancoso et al. 2010) and HYDRUS 3-D (e.g. Šimůnek et al. 2006) 

with a separate overland flow module. HYDRUS 3-D can also simulate 

preferential flow with the dual-porosity approach. A separate module is 

available for MIKE-SHE that adds preferential flow and transport options 

to the model (e.g. Christiansen et al. 2004). 
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According to the evidence from the simulations and results from previous 

studies, Hypothesis 4 seems to be true. Previously, Jetten et al. (1999) 

noted that modellers are usually more concerned with how much water and 

sediment is leaving the study area than with investigating what are the 

main processes controlling water movement and erosion within the area. 

While an attempt was made in this study to address the issue, it was 

difficult to verify the spatially distributed flow and erosion results in the 

field (Figs. 84-87) due to lack of data. The waterlogged conditions in the 

Sjökulla field were confirmed in the field site by Paasonen-Kivekäs et al. 

(2008) but no data were available to show if the simulated soil loss patterns 

coincided with erosion in the studied fields. Thus, more distributed data are 

required from fields to further verify the hypothesis, including soil moisture 

measurements, macroporosity data, overland flow depth and velocity 

information and spatial soil erosion results. An interesting application of 

the model would be to study runoff generation mechanisms in fields that 

are partly compacted due to, e.g. wheeltracks, tramlines, and headlands 

(Alakukku 1996a). Hortonian runoff mechanism would be a dominant 

mechanism in the compacted areas while Dunne type mechanism would be 

predominant elsewhere. From the point of view of applying the developed 

model, this would require a dense measurement data set and a smaller 

study area in order to keep the computational load manageable. 

5.2.5 Answers to the computational modelling questions 

Answers to the computational modelling questions are presented briefly 

because they have already been answered implicitly in the text. 

  

1) How can processes operating in different temporal scales be 
combined? 

 

In theory, the problem of the thesis could be approached by solving all the 

governing PDEs in a single solution process. Due to the mathematical 

complexity of the approach, the system was built from several separate 

submodels instead. An added benefit is that submodels can be easily 

removed or modified. The primary problems concerning the presented 

system were how to connect the separate domains, and how to choose the 

execution order and time step lengths of the submodels? 

Separate overland and subsurface domains in the numerical model 

required definitions for mass exchange mechanisms between the domains. 

Both implicit and explicit methods were tested during the development of 

phase. An implicit, flux-like boundary condition often drained the overland 

water depths to negative values, causing problems in the overland flow and 
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erosion models. An explicit infiltration scheme was adopted in the end, 

even though it had its own set of problems. For example, infiltration 

volumes could be smaller, compared to the implicit approach, with longer 

time step lengths. Previously, Vassilev and Yotov (2010) were able to solve 

Stokes-Darcy flow PDEs simultaneously. A drawback of this approach is 

that the resulting models are mathematically complicated and 

computationally demanding. In addition, solutions are currently available 

only for saturated, single pore system, subsurface flow and transport cases. 

Weill et al. (2009) presented a coupled overland-subsurface system 

modelled with the Richards equation. The advantage of this approach is 

that no mass exchange mechanisms are required between the domains. 

Unfortunately, the model supports only single pore system subsurface flow. 

In the current configuration, the submodels are always run in the same 

order, but depending on the submodel time step the model might not be 

run during every subtime step loop (Fig. 15). Theoretical tests were 

conducted with persistent small time steps across all submodels to confirm 

that this approach worked (Section 3.3.2). Still, more work is needed to find 

the optimum time steps for each submodel in different circumstances. 

 

2) What is the effect of computational grid resolution on results and is it 
possible to achieve resolution-independent results? 

 

AGGS was developed partly to accelerate the calibration process and 

partly to conduct sensitivity analysis on the effect of grid resolution on the 

results (Section 4.3.3.2). The lowest resolution 3-D grids used to represent 

Hovi and Sjökulla fields in the study took 9 and 11 minutes to simulate 

(Table 34), respectively. The simulation time was increased approximately 

sevenfold every time the resolution was quadrupled. While it is possible to 

simulate larger areas than field sections, the computational load quickly 

becomes overwhelming for personal workstations as the number of cells in 

the grids increase. Convergence of runoff and load results with the increase 

of grid resolution was more pronounced in the Hovi simulations. In the 

Sjökulla simulations convergence was not attained with drainflow (Fig. 69) 

and sediment load results via surface runoff (Fig. 70). Wicks and Bathurst 

(1996) conjectured that the values of the erodibility coefficients could vary 

with the resolution of the grid due to the areal averaging of soil erosion and 

overland flow parameters. In this study, tests with the numerical model 

indicated that increased groundwater flow losses created the non-

convergent behavior (not shown). The rate of groundwater flow was related 

to the topography and steepness of slopes in the field. Additionally, the 

maximum horizontal resolutions applied in the study were still not high 
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enough to accurately describe pressure fields created by subsurface drains. 

Other pertinent studies that investigated the effects of grid resolution on 

simulation results include Tiihonen (2007) and Zinke et al. (2010). 

 

3) Is it possible to accelerate the performance of the numerical model 
with special algorithms and hardware? 

 

According to the numerical tests conducted during the development of the 

model, the most computationally intensive part of the system was the 

subsurface flow model. This was due to the weak iteration convergence in 

the solution algorithm especially in simulations with high resolution grids. 

The convergence problem was probably due to the non-linear nature of the 

Richards equation (Tracy 2007), coupled with WRCs of clay soil. WRCs of 

clay soils can be very steep with low suction values increasing non-linearity 

in the solution (Section 4.1.1.2 and 4.1.2.2). The numerical solution of the 

Richards equation was also analysed with an analytical model developed by 

Tracy (2007)(Section 3.3.1). The conclusion of the examination was that 

optimisation efforts had to be concentrated on the subsurface flow solution 

algorithm. The approaches could be applied to accelerate the analogous 

subsurface transport solution algorithm too. 

A PDMA-based method was developed to solve the pentadiagonal linear 

system which arose from the numerical solution of the dual-permeability 

flow equations (Section 3.2.1.2). According to the theoretical tests (Section 

3.3.3), the new method was approximately as fast as the standard TDMA 

method. However, the tests were made with relatively low vertical 

resolutions. Higher vertical resolutions might prove to be advantageous for 

PDMA. Also, soils with high exchange rates between the pore systems might 

benefit from the method, making the simulations more stable. Previously, 

Gerke and van Genuchten (1993a) found out that a direct solution method 

of the linear system of equations, derived from the discretised dual-

permeability flow and transport equations, was more stable than an 

iterative one. 

The OpenMP API was used to parallelise the solution algorithms in all 

submodels (Section 3.3.4). It was possible to decrease the simulation times 

to one third by distributing the computational load over several processor 

cores. It is possible that additional physical cores would further accelerate 

the simulations. Because the model also has serially processed parts and 

some resources have to be invested in task distribution itself, the speed 

increase was under the hypothetical limit. More robust approaches are 

required in the future. GPU computing (graphics processing units) and 

supercomputer options are both viable alternatives. 
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6. Conclusions 

A new numerical model was developed in the study which can simulate 

water flow and soil erosion in clayey subsurface drained agricultural fields. 

The model was applied successfully to two field sites in southern Finland 

and to four different growing seasons. Even though the model cannot yet be 

used to simulate actual nutrient loads, the groundwork is completed for the 

simulation of both phosphorus and nitrogen (and other compounds) in the 

future. Currently the model can simulate growing season processes but does 

not include descriptions for winter time processes. Soil freezing and 

thawing, as well as snow cover simulation are not included in the current 

model version. The conclusions derived from the simulation results are 

divided into four sections according to the main hypotheses presented in 

Section 1. Answers to the hypotheses were presented in Section 5. 

According to the simulation results, preferential flow had a major impact 

both on runoff dynamics and water balance in the studied fields, verifying 

Hypothesis 1. Drainflow waters originated almost entirely from the 

macropore system. The modelling results indicated that shrinkage cracks 

decreased surface runoff during the summer. Tillage operations, soil 

swelling, clay soil liquefaction or a combination of these three factors 

changed the runoff distribution in the autumn. Additionally, groundwater 

flow, presumably occurring in permanent fractures, silt lenses and at the 

soil-bedrock interface, had a substantial impact on the water balance in the 

studied fields. 

With respect to Hypothesis 2, the dual-permeability approach used to 

simulate preferential flow in the model did not perfectly describe the flow 

processes in the fields. However, the system was able to simulate the 

intensity and duration of drainflow events in the two fields. The saturated 

hydraulic conductivity of the macropore system was described with a linear 

model as a function of macroporosity. The measured dynamics of the 

groundwater table level was not reproduced well and the water exchange 

description between the pore systems had to be exchanged into a custom 

function. Water exchange exhibited a hysteresis effect, which was described 
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and quantified using the hourly drainflow measurements. Laboratory 

measurements in soil columns and dye experiments in the field would be 

helpful in further improving the computational description of preferential 

flow. 

The model could describe soil erosion in the studied fields, and provide 

realistic estimates of sediment load transported in subsurface drains 

(Hypothesis 3). The successful simulations provide further evidence that 

sediment load via drainflow in the two fields originate in their entirety from 

the tillage horizon. According to the results from the Sjökulla field, 

hydraulic erosion was the main source of suspended sediment and the 

sediment load was notably increased by tillage operations in the autumn. In 

the Hovi field, autumn tillage did not increase the erosion risk because 

overland flow was minimal during the simulation periods. The results show 

that it is important to minimise overland flow in order to decrease the 

effects of hydraulic erosion. The sediment load produced by rain drop 

splash erosion was relatively small, particularly in the Sjökulla field. The 

simulations also indicated that sieving in the macropore system was 

minimal and that simulation of a single particle size was sufficient in the 

studied fields. Also, according to the results, transport capacity methods 

should be further refined for very fine particles. 

In Hypothesis 4, the effects of grid dimension and spatial variation of 

macroporosity were investigated. Simulations with the 3-D grids 

predominantly used in the study yielded results that compared well with 

the measurements, while the 1-D and 2-D grid simulations had trouble in 

reproducing the runoff measurements. On sloping fields, it can be difficult 

to choose a position for a 1-D or a 2-D grid that effectively captures the 

spatially varying soil properties and topography. Furthermore, defining 

boundary conditions in a 1-D or a 2-D grid can be complicated when the 

grid is located on a slope. Spatial variation of macroporosity had a notable 

effect on the runoff and sediment load results in the simulations. An 

interesting finding was that even without spatial variation of soil properties, 

3-D grids could provide useful results on the spatial distribution of overland 

flow and soil erosion in the field. The spatial variability is then due to 

differences in topography and soil moisture conditions alone. Conversely, in 

a large and flat field application of a 3-D model may not be necessary 

because subsurface drains are likely to govern the water balance and hence 

the results are symmetrical around each drainline. The drawback with 3-D 

grids is that high resolution grids can be computationally demanding. In 

addition, more spatially distributed data are required from fields. For 

example data on macroporosity, soil moisture, overland water depths and 
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flow velocities and erosion would be necessary to further verify the 

simulation results. 

Computation speed of the numerical model was successfully accelerated 

with a new time stepping system and parallelisation of the submodels with 

the OpenMP API. The proposed PDMA approach to solve flow in a dual-

permeability system was equally fast with the standard TDMA approach. It 

is possible that the new algorithm performs better when the water exchange 

rate between the soil matrix and macropores is increased. Faster algorithms 

and hardware are still required to increase the horizontal resolution in the 

3-D grids, in order to capture the pressure fields around subsurface drains 

in more detail. 

According to the presented study, the key new features of the model are: 

1) implementation of a 3-D model with both overland and subsurface flow 

simulation, 2) combined simulation of soil shrinkage and swelling and 

preferential flow in macropores, 3) overland erosion combined with 

sediment load simulation via surface runoff and subsurface drainflow and 

4) new distributed numerical solution algorithms that take full advantage of 

the processing power in modern workstations. 
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7. Summary 

Problems caused by soil erosion vary geographically, and range from loss 

of available top soil in agriculture to sedimentation and eutrophication of 

waterways. In Finland, the soil loss itself is not of great concern but the loss 

of adsorbed nutrients into surface waters can cause water quality problems. 

In Finnish fields, soil erosion is induced mainly by overland flow and rain 

drop impacts on the field surface. Suspended sediment is lost via two main 

routes: 1) surface runoff and 2) subsurface drainflow. In low permeable 

soils, suspended particles are assumed to move with preferential flow via 

macropores and drain trench backfill material down to the subsurface 

drains. Considerable resources have been invested in curbing nutrient 

losses from agricultural fields. Recent studies indicate that more research is 

still needed to identify more effective conservation methods. The objective 

of the study was to develop a new numerical model which can be applied to 

investigate mechanisms of water flow and soil erosion in clayey, subsurface 

drained agricultural fields. The model can be used as a basis for future 

nutrient leaching models. 

A literature review was conducted to assess the current state of overland 

erosion and subsurface flow and transport models. The conceptual models 

applied in erosion prediction in Finland have several deficiencies, including 

empirical erosion components based on foreign soil data and lack of 

subsurface drain simulation. Process-based erosion models can be used 

alongside conceptual models to improve simulation results. Most of the 

reviewed process-based erosion models are built around the sediment 

continuity equation combined with different erosion process descriptions. 

However, preferential transport of suspended sediment in macropores to 

drains is not considered in the models. The published literature on 

preferential flow and transport is extensive, suggesting dozens of different 

ways to simulate the processes. According to the review, a dual-

permeability approach where the total pore space is divided into two 

separate pore systems would be best suited for the current study. While no 

existing models that could directly be applied to the problem were found, a 
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new model could be constructed by combining different available models 

and algorithms together. 

The modelling approach followed in the thesis can be divided into 

conceptual, numerical and computational parts. The conceptual model 

consisted of process descriptions and general mathematical equations. The 

model was divided into four parts: 1) overland flow, 2) overland erosion, 3) 

subsurface flow and 4) subsurface transport. Overland flow was simulated 

with the diffuse wave simplification of the Saint Venant equations. 

Overland erosion was built around the sediment continuity equation 

including hydraulic erosion, rain drop splash erosion, simulation of 

transport capacity and sediment deposition processes. Subsurface flow was 

represented with the dual-permeability model wherein both pore systems 

were simulated with the Richards equation. Subsurface transport of 

suspended sediment particles were simulated with a simplified dual-

porosity model and the advection-dispersion equation. The numerical 

model in turn was comprised of the model framework and six submodels, 

including submodels corresponding to the parts of the conceptual model 

listed above. Additional submodels were used to simulate soil shrinkage 

and swelling processes and the cropping and tillage effects. The partial 

differential equations in the submodels were solved numerically with an 

implicit finite volume method. A new method, based on pentadiagonal 

matrix algorithm, was developed to solve subsurface flow in the two pore 

systems simultaneously. The result is that one iteration round is removed 

from the algorithm as iteration does not have to be conducted between the 

pore systems. A novel time stepping system enabled the individual 

submodels to be run in a concurrent fashion. The solution algorithms in the 

submodels were parallelised with the OpenMP application interface to 

further optimise the computing. An automatic grid generation system 

created grids with different resolutions for the numerical model. 

In order to study the mechanisms of water flow and soil erosion, the 

model was applied to two clayey, subsurface drained agricultural fields in 

southern Finland. The 3.3 ha Sjökulla experimental field is located in 

Kirkkonummi while the 12.0 ha Hovi experimental field is located in Vihti. 

Data from two years were used to calibrate and validate the computational 

models. The calibration and validation processes were carried out manually 

due to the heavy computational load associated with the model. The 

simulations started in May and ended in October or November, before 

temperatures fell below freezing. The simulation results included mass 

balance tables and cumulative and hourly runoff and sediment load results. 

In addition, distributions of overland flow after rainstorm events and net 

erosion in the fields in the end of the simulation periods were produced. 
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Performances of the computational models were assessed with visual 

inspection and statistical measures. A sensitivity analysis was conducted to 

approximate uncertainty in parameter values and processes in the models. 

 The results were analysed by presenting answers to the hypotheses 

formulated at the beginning of the study. According to the results, 

preferential flow had a major impact on water balance, runoff dynamics and 

erosion in the fields. Most of the drainflow originated from the macropore 

system. Macroporosity, soil shrinkage and swelling processes and tillage 

operations had notable effects on preferential flow, and as a consequence 

on the water balance. It was possible to quantify preferential flow with the 

presented method and to verify the results with hourly drainflow 

measurements. However, more laboratory and field data are required to 

further adjust the description of the preferential flow mechanism. In 

particular, while water exchange between the pore systems has a major 

impact on the model results, its magnitude is hard to estimate with existing 

measurements. 

Hydraulic erosion in the autumn was responsible for the bulk of the 

sediment load in the Sjökulla field, while rain drop splash erosion alone 

created the sediment load in the Hovi field. Tests with different grid 

dimensions (1-D, 2-D and 3-D) and sensitivity analysis with spatially 

varying macroporosity data indicated that the 3-D grids were best suited for 

simulation of sloping clayey fields. According to the results, lower 

dimension grids (1-D and 2-D) are more suited to flat fields where water 

balance is dominated by subsurface drains. Drawbacks of using 3-D grids 

include that 1) more spatially distributed data are needed to verify the 

results, and 2) more computing power is required to run the simulations. In 

the near future, 3-D modelling will become even more attractive due to the 

increased availability of GIS data and computational resources. 
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Appendix A  PDMA multipliers for 
subsurface flow 

Macropore system multipliers: 
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Matrix system multipliers: 
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Appendix B  TDMA multipliers for 
subsurface transport 

 

Macropore system multipliers: 
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Appendix C  Theoretical test case 
images 

Water depths and flow velocities at the theoretical test plot at 205 h 

during a rainstorm event are presented in Fig. 82a. Precipitation sum 

immediately  before the event was 54 mm. The highest flow velocity value at 

the time was 0.022 m s-1 and the deepest flow depth value was 0.0028 m. 

Distribution of overall net erosion after the simulation at the plot is 

presented in Fig. 82b. The maximum net erosion value was 0.21 kg m-2. The 

erosion patterns in Fig. 82b are artefacts caused by the rectangular grid 

cells used to represent a circular hill and are not caused by the model 

parameterisation. Pressure head distribution in the grid after the 

simulation in macropores and soil matrix is presented in Fig. 83. 

 

Figure 82. a) Simulated overland water depths and flow velocities at the theoretical plot 
during a rainstorm event. The color range from red to blue corresponds to water depths of 
0.003 to 0.0 m, respectively. The vectors describe velocity and direction of the overland 
flow. The maximum flow velocity value was 0.022 m s-1. b) Distribution of net soil erosion at 
the plot. The color range from red to blue corresponds to net soil erosion values of 0.025 to 
0.0 kg m-2, respectively. 

 

Figure 83. Pressure head distribution at the theoretical plot (x-z direction) in a) macropores 
and b) soil matrix. The color range from red to blue corresponds to pressure head values of 
+0.5 to -0.5 m, respectively. The vertical coordinates have been increased eightfold to 
accentuate the topography. 
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Appendix D  Statistical model 
performance indicators 

The Nash-Sutcliffe model efficiency coefficient ENS [-] is defined as (Nash 

and Sutcliffe 1970): 

 
(100) 

where QO [L3 T-1] is the observed discharge, QS [L3 T-1] is the simulated 

discharge, and T is the number of time steps in the test. An efficiency of one 

is considered as a perfect match between the observed and simulated 

results. An efficiency of zero indicates that the model results are as accurate 

as the mean of the observed data. An efficiency value below zero means that 

the observed mean value is a better predictor than the simulated value. Bias 

of the predicted and observed values is calculated as follows: 

 
(101) 

where P [L3 T-1]  is the simulated discharge and O [L3 T-1]  is the observed 

discharge. The bias value describes the measure of systematic difference 

between simulation results and observations. The mean absolute error 

between the predicted and observed values is as follows: 

 
(102) 

The mean absolute error is the average of the absolute errors between 

simulated and observed discharges. 
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Appendix E  Overland flow and 
erosion images 

Simulated overland flow conditions immediately after rain storm events 

in autumn at the Sjökulla (28 Oct. in 1998 and 13 Nov. in 1996) and Hovi 

(10 Oct. in 1988 and 21 Oct. in 1984) fields are presented in Figs. 84 and 86. 

Precipitation sums before the events at the Sjökulla field were 12.1 and 13.7 

mm (4 hours) in 1998 and 1996, and at the Hovi field 14.9 and 10.3 mm 

(one hour) in 1988 and 1984, respectively. Overland net erosion results in 

the fields after the simulation periods are presented in Figs. 85 and 87. 

 

Figure 84. Simulated overland water depths and flow velocities in the Sjökulla field in a) 
1998 and b) 1996 after rainstorm events. The color range from red to blue corresponds to 
water depths of 0.05 to 0.0 m, respectively. The vectors describe velocity and direction of the 
overland flow. The maximum flow velocities were 0.095 m s-1 and 0.102 m s-1 in 1998 and 
1996, respectively. 

 

Figure 85. Simulated net erosion in the Sjökulla experimental field in a) 1998 and b) 1996. 
The color range from red to blue corresponds to net erosion results of +2.0 to -2.0 kg m-2, 
respectively. Green color indicates zero net erosion. 
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Figure 86. Simulated overland water depths and surface flow velocities in the Hovi field in a) 
1988 and b) 1984 after rainstorm events. The color range from red to blue corresponds to 
water depths of 0.04 to 0.0 m, respectively. The vectors describe velocity and direction of the 
overland flow. The maximum flow velocities were 0.007 m s-1 and 0.022 m s-1 in 1988 and 
1984, respectively. 

 

Figure 87. Simulated net erosion in the Hovi experimental field in a) 1988 and b) 1984. The 
color range from red to blue corresponds to net erosion results of +0.1 to -0.1 kg m-2, 
respectively. Green indicates zero net erosion. 
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