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Abstract: In diffuse optical tomography (DOT), the object with unknown
optical properties is illuminated with near infrared light and the absorption
and diffusion coefficient distributions of a body are estimated from the
scattering and transmission data. The problem is notoriously ill-posed and
complementary information concerning the optical properties needs to
be used to counter-effect the ill-posedness. In this article, we propose an
adaptive inhomogenous anisotropic smoothness regularization scheme that
corresponds to the prior information that the unknown object has a blocky
structure. The algorithm updates alternatingly the current estimate and
the smoothness penalty functional, and it is demonstrated with simulated
data that the algorithm is capable of locating well blocky inclusions. The
dynamical range of the reconstruction is improved, compared to traditional
smoothness regularization schemes, and the crosstalk between the diffusion
and absorption images is clearly less. The algorithm is tested also with a
three-dimensional phantom data.
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L. Lipiäinen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical
tomography.” J. Biomed Opt. 11, 064015 (2006).

25. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative
transfer equation and diffusion approximation,” Int. J. Numer. Meth. Eng. 63, 383–405 (2006).

26. J. Heino, E. Somersalo, and J. Kaipio, “Statistical compensation of geometric mismodeling in optical tomogra-
phy,” Opt. Express 13, 296–308 (2005).

27. S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen,
“Approximation errors and model reduction with an application in optical diffusion tomography,” Inverse Probl.
22, 175–195 (2006).

28. J. P. Kaipio and E. Somersalo, “Statistical inverse problems: discretization, model reduction and inverse crimes,”
J. Comp. Appl. Math. 22, 493–504 (2006).

29. C. Paige and M. Saunders, “LSQR: An Algorithm for Sparse Linear Equations And Sparse Least Squares,” ACM
Trans. Math. Software 8, 43–71 (1982).

1. Introduction

The diffuse optical tomography (DOT) is an emerging medical imaging modality in which the
optical properties of the tissue are estimated from the measured scattering and transmission of
near infrared light [1]. One of the potential uses of this modality is to estimate the local oxygen
saturation level in the brain tissue of neonates [2, 3], conveying indirect information of, e.g.,
the cerebral metabolic rate of the oxygen [4].

The optical tomography problem is very challenging from the point of view of instrumenta-
tion and data collection, as the transmission signal has a low signal to noise ratio and is corrupt
by errors due to instabilities in the device. Moreover, the computational challenges are remark-
able since the estimation problem is a non-linear severely ill-posed inverse problem.

The ill-posedness of the inverse problem can be compensated for by using regularization
techniques, among which Tikhonov regularization [5] is the most widely popular. An alterna-
tive approach is to consider the inverse problem as one of statistical inference and to compensate
the shortcomings of the data by complementary information, or prior information about the un-
knowns. Regularized solutions of inverse problems often have an interpretation in the Bayesian
statistical framework. Conversely, while the statistical inverse problem is much richer than just
one estimate, the regularization methods can be used as a guideline for designing reasonable
prior densities. We make use of this interplay in this article.

A standard Tikhonov regularized solution based on a homogenous smoothness penalty pro-
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duces typically a blurred diffuse image, thus failing to identify the boundaries of the internal
structures of the target and possible inclusions. If prior information about the internal structures
is available, e.g., from anatomical imaging modalities such as X-ray tomography or MRI, it is
possible to construct structural penalties that allow abrupt changes across the structure bound-
aries [6, 7, 8, 9, 5, 10]. Often, however, such complementary information is not available, and a
structure based on generic anatomical information alone may lead the algorithm astray. In the
present article, we propose an iterative algorithm that updates dynamically the regularization
functional based on the features in the current estimate. More precisely, starting with a ho-
mogenous smoothness penalty, the proposed algorithm uses the current estimate of an optical
parameter as a pilot image, interpreted as a smooth approximation of the underlying structure,
and iteratively improves the approximation, eventually finding a solution that is locally smooth
but may have fast variations across the boundaries of the inclusions.

The idea of updating iteratively the smoothness penalty has previously been studied with
structured grids and in the framework of linear inverse problems [11, 12, 13, 14]. In the present
work, we extend these ideas to unstructured grids which makes them suitable for applications
where the forward problem calls for finite element modelling. Moreover, the non-linearity
of the forward map increases the complexity of the problem. Finally, the construction of the
anisotropic smoothness penalty with undetermined boundary conditions is new, extending the
idea of Aristotelian boundary conditions presented in [15]. The algorithm presented here is not
limited to optical tomography but is also suitable for other linear or non-linear inverse problems
where unstructured grid is used to represent distributed parameters in a discrete form.

2. Material and methods

2.1. Forward model and inverse problem

The incoherent light propagation in scattering medium can be described with the radiative trans-
fer equation. Being an integro-differential equation, its numerical approximation leads easily
to computational problems of prohibitive size. When the medium is strongly scattering, the
radiative transfer equation is often replaced with the diffusion approximation.

Assuming that the light source is time harmonic with modulation frequency ω > 0, the pho-
ton density φ = φ(x) in the diffusion approximation satisfies the elliptic partial differential
equation

−∇ · (κ(x)∇φ(x)
)
+

(
μa(x)+

iω
c

)
φ(x) = 0, x ∈ Ω, (1)

where Ω ∈ R
d , d = 2,3, is a bounded domain representing the target, and the diffusion coeffi-

cient is defined in terms of the absorption coefficient μa(x) and reduced scattering coefficient
μ ′

s(x) as κ(x) = (d(μa(x)+ μ ′
s(x)))

−1. The appropriate boundary condition is a Robin condi-
tion,

φ(x)+ 2ζκ(x)
∂φ
∂n

(x) = q(x), x ∈ ∂Ω, (2)

where q is the boundary source and the impedance coefficient ζ takes into account the refractive
mismatch of the body and the outside air on the boundary. We use the semi-empirical model

ζ =
1+R
1−R

, R ≈−1.4399n−2+ 0.7099n−1+ 0.6681+ 0.0636n,

where R is the reflection coefficient of the boundary and n is the refraction index of the medium,
and nair = 1.0, see [16] for further details of the model. The modulation frequency of the source
is ω = 2π f , f = 100MHz and c is speed of light in the medium, assumed to be constant.
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The inverse problem of optical tomography is to estimate the optical properties of the body
from the scattering and transmission of light measured on the surface of the body. In terms of the
diffusion approximation model of light propagation, the problem is tantamount to estimating
the absorption and the diffusion coefficient pair

{(
μa(x),κ(x)

) | x ∈ Ω
}

from the noisy obser-
vations of the outcoming photon densities corresponding to all applicable boundary sources.
Given the boundary source q, the outcoming photon density on the boundary, or exitance, is
defined as

Γ(x) = Γq(x) =−κ(x)
∂φ
∂n

(x) x ∈ ∂Ω. (3)

Hence, the inverse problem is to determine the pair
(
μa,κ

)
from all available pairs

(
q,Γq

)
,

where the measured exitance Γq is corrupted by noise.
In the present formulation, the exitance is a complex quantity, which can be expressed in

terms of the logarithm of the amplitude and the phase shift,

F(μa,κ ;q) =

[
Relog

(
Γq(x)

)
Imlog

(
Γq(x)

)]= [
log |Γq(x)|
argΓq(x)

]
. (4)

In practice, we may apply a finite number of linearly independent boundary source patterns,
q�, 1 ≤ � ≤ L, and the data consists of the corresponding photon densities, denoted by Γ �,
recorded only at few boundary points r j, 1 ≤ j ≤ m, where m is the number of the detectors at
the boundary. Using the amplitude-phase representation and ignoring the measurement noise,
the data set is thus

D =
{(

log |Γ�(r j)|,arg(Γ�(r j))
) | 1 ≤ �≤ L, 1 ≤ j ≤ m

}
. (5)

2.1.1. Discretization

Assume that a triangular or tetrahedral finite element meshing of the domain Ω ∈ R
d , d =

2,3, is given, with vertices xi, 1 ≤ i ≤ N, and assume that the unknown optical distributed
parameters μa and κ are discretized and represented by the collocation values (μ a(xi),κ(xi))
at the nodal points. We denote by p ∈ R

2N the vector containing the N collocation values
of both unknown parameters. Using finite elements, we may discretize the forward diffusion
approximation model to obtain a discrete forward model. Let us denote by y � ∈ R

2m the vector
containing the boundary data (5) corresponding to the amplitude and phase of the exitance Γ � at
the detector locations r j, 1 ≤ j ≤ m. By stacking all the observation vectors into a single vector
y, the finite element model leads to a discrete forward model

y = f (p), f : R2N →R
2M , M = Lm. (6)

2.1.2. Statistical inference

In the Bayesian statistical framework, all the variables are treated as random variables, the
randomness being an expression of the lack of information about the values that they take
on [5, 17]. The inverse problem in this framework is to infer on the probability density of
the unknown vector of primary interest based on the realized values of the random variable
representing the observable.

To set up the statistical model, consider the forward model (6). Assuming that the observation
is corrupted by additive noise that is independent of the optical properties of the body, we write

y = f (p)+ e, e ∼ πnoise(e),

the notation above indicating that the probability density of the noise is π noise. This model
allows us to write the likelihood density of the measurement,

π(y | p) ∝ πnoise(y− f (p)),
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where the symbol “∝” stands for “equal up to a multiplicative constant”. Hence, the data condi-
tional on the true signal is distributed around the noiseless value f (p) as the noise is distributed
around the origin.

Assume that complementary information concerning the unknown p is available, and this
information is expressed in the form of a probability density π prior(p). This density, the prior
probability density, expresses our belief about values that we expect, where π prior(p) is large,
and on the other hand, it excludes values of p that we believe to be unlikely or impossible,
where πprior(p) is small or vanishes. The joint probability density of the random variables p
and y can be written as

π(p,y) = π(y | p)πprior(p) ∝ πnoise(y− f (p))πprior(p).

Reversing the roles of the observable and unknown in the equation for the joint probability
density, we may define the probability density of p conditioned on the observation. The result
is Bayes’ equation for the posterior probability density,

πpost(p) = π(p | y) =
π(p,y)
π(y)

∝ πnoise(y− f (p))πprior(p), y = ymeasured. (7)

Above, π(y) is the marginal density of y, obtained by integrating out the variable p from the
joint probability density, and it is ignored here as it contributes only to normalizing of the
posterior density. In the Bayesian framework, the posterior density is the solution of the inverse
problem, since it is an expression of the information that is available about p, taking the prior
belief, the noisy measurement and the model between the unknown and the data into account.

A particular instance of the posterior density is when the prior density and the likelihood are
Gaussian. If

πnoise(e) ∝ exp

(
−1

2
(e− e∗)TC−1

n (e− e∗)
)
,

πprior(p) ∝ exp

(
−1

2
(p− p∗)TC−1

p (p− p∗)
)
,

where the noise and prior covariance matrices Cn and Cp are positive definite, then the posterior
density assumes the form

πpost(p) ∝ exp

(
−1

2
(y− e∗− f (p))TC−1

n (y− e∗− f (p))− 1
2
(p− p∗)TC−1

p (p− p∗)
)
.

By writing the symmetric (e.g., Cholesky) decompositions of the inverses of the covariance
matrices,

C−1
n = STS, C−1

p = LTL,

the density can be expressed in the form

πpost(p) ∝ exp

(
−1

2
‖S

(
y− e∗− f (p)

)‖2 − 1
2
‖L(p− p∗)‖2

)
,

This equation is particularly useful for establishing the connection between regularization and
statistics. We observe that the maximizer of the posterior density, known as the Maximum A
Posteriori (MAP) estimate of p, denoted by pMAP, satisfies

pMAP = argmin

(
‖S

(
y− e∗− f (p)

)‖2 + ‖L(p− p∗)‖2
)
,
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which is the Tikhonov regularized solution of the inverse problem with the penalty functional

J(p) = ‖L(p− p∗)‖2

and the regularization parameter equal to unity. Hence, an appropriate choice of a Gaussian
prior density leads to the Tikhonov regularized solution as the MAP estimate, and conversely,
a judiciously chosen penalty functional helps to design a Gaussian prior density. We use this
well known interplay in both direction in the discussion to ensue.

2.1.3. Construction of the prior

In the Bayesian framework, the prior density comprises the prior information, or prior belief,
concerning the unknown field, in the present problem the absorption and scattering coefficient.
The challenge in constructing the prior density is how to translate qualitative information con-
cerning the unknown into a quantitative form that is expressible as a probability distribution.
The selection of a good prior model is by no means unique, and the quality can often be assessed
only by its capacity of producing meaningful a posteriori estimates that respect the qualitative
a priori constraints.

In the present context, we assume that the a priori information concerning the optical prop-
erties of the object is summarized in the following qualitative description: the object consists
of well defined simple subdomains with slowly varying optical properties, while across the sub-
domain boundaries, sharp variations may occur. Such a description is often said to define a
blocky object, and techniques for retrieving the parameter fields in such cases have been devel-
oped [18, 19, 20, 13, 12, 14]. In the present work, the goal is to extend the approach proposed
in [12] to a strongly non-linear problem with a non-structured discretization. An extra compu-
tational challenge comes from the complexity of the forward model, requiring both effective
numerical algorithms and use of memory.

The construction of the prior density consists of two steps. To allow the optical parame-
ters to easily jump across the subdomain boundaries, we use inhomogenous direction sensitive
smoothness priors with dynamic adaptation [11, 12]. To avoid boundary artifacts, we adjust the
a priori variances in the smoothness prior model to be nearly constant throughout the body [15].

2.1.4. Structural interior prior

The first step towards constructing a Gaussian direction sensitive second order smoothness prior
is the selection of a suitable penalty functional. Let u : Ω → R denote a twice differentiable
function to be estimated from indirect observations. In the present application, u is either the
diffusion coefficient or the absorption coefficient. Furthermore, let λ : Ω → R a given non-
negative weight function such that λ

∣∣
∂Ω = 1. We can then define an isotropic second order

penalty functional with weight λ ≥ 0 in the interior of Ω of the form

Jint(u;λ ) =
∫

Ω
(∇ · (λ ∇u))2dx. (8)

The role of the penalty functional in the estimation problem is to favor solutions yielding small
values. To understand better for which functions u the penalty takes on small values note that,
when λ is fixed, the minimizer of u �→ J (u;λ ) is a steady state diffusion field with the dif-
fusion coefficient λ . In other words, the function λ controls which parts of the image u mix
together via diffusion, thus conveying structural prior information to our model. Strategies for
the choice of λ will be discussed later in this section.

Assume that a finite element triangular or tetrahedral mesh over Ω with vertices x i is given.
Let Ωi denote a Voronoi cell containing an interior vertex x i, i.e.,

Ωi =
{

x ∈ Ω | |x− xi|< |x− x j|, i �= j
}
,
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Fig. 1. Solid lines presents the triangular mesh. Dashed line is a voronoi cell Ωi connected
to node xi.

see Fig. 1 . To discretize the penalty functional, we write an approximation

∇ · (λ (xi)∇u(xi))≈ 1
|Ωi|

∫
Ωi

∇ · (λ ∇u)dx =
1

|Ωi|
∫

∂Ωi

λ n ·∇udS,

where the second identity follows from the divergence theorem, with n denoting the exterior
normal vector of the boundary ∂Ω i. To approximate the integral in the rightmost term, we
denote by xi an interior vertex and by 1 ≤ i ≤ Nint, and x1

i ,x
2
i , . . . ,x

p
i its neighboring nodes.

Furthermore, we let y j
i = (x j

i + xi)/2 be the midpoint of the edge joining neighboring vertices
and ∂Ω j

i the facet of the polyhedron ∂Ω i separating the vertices xi and x j
i , 1 ≤ j ≤ p. Then

1
|Ωi|

∫
∂Ωi

λ n ·∇udS ≈
p

∑
j=1

|∂Ω j
i |

|Ωi| λ (y j
i )(u(x

j
i )− u(xi)). (9)

Collecting in the vector p the values of the function u at the collocation points, p i = u(xi),
the above approximation leads to a matrix representation of the second order differential in the
interior points,

∇ · (λ (xi)∇u(xi))≈ (Lint p)i, Lint ∈ R
Nint×N ,

where the matrix Lint, whose elements are computed using (9) depends on the weight function
λ . The discrete counterpart of the interior penalty functional (8) is therefore

Jint(p;λ ) = ‖Lint p‖2.

We partition the vector p into the vectors p int ∈ R
Nint and pbdry ∈ R

Nbdry containing the interior
node and the boundary node values, respectively. Assuming, for the time being, that the bound-
ary values are known, we may define the following probability density of the interior nodes
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conditional on the boundary nodes,

π(pint|pbdry) ∝ exp

(
−1

2
‖Lint p‖2

)
. (10)

To obtain a proper prior for the vector p, taking into account that the boundary values are also
unknown, it suffices to construct a prior density for the boundary node values.

2.1.5. Variance adjustment at the boundary

Consider now the boundary collocation points x i ∈ ∂Ω, 1 ≤ i ≤ Nbdry. The smoothness penalty
functional derived above involves the values of u at the boundary points, but in order to ob-
tain a proper prior density, additional information concerning the regularity over the boundary
is required. Our approach follows the reasoning in [15]. Here, for simplicity, we restrict the
explanation to the case when the surface ∂Ω is smooth.

Assuming that along the boundary, the function u is second order smooth, we define a second
order boundary penalty,

Jbdry(u) =
∫

∂Ω
(Δτ u)2dS, (11)

where Δτ denotes the surface Laplacian. The mesh defined over Ω restricted to the boundary
induces a meshing of the boundary. We discretize the surface Laplacian analogously with the
interior Laplacian, that is,

Δτ u(xi)≈ 1
|Ωi ∩∂Ω|

∫
Ωi∩∂Ω

Δτ udS =
1

|Ωi ∩∂Ω|
∫

Ci

ν ·∇ud�, (12)

where Ci is the boundary of Ωi ∩∂Ω and ν is its normal vector tangent to ∂Ω. If Ω ⊂ R
2, the

calculation of the rightmost integral reduces to evaluations at two points. Approximating the
normal derivatives with finite differences at neighboring collocation points, as in the case of
interior points, we arrive at a discrete approximation of the boundary penalty functional,

Jbdry(pbdry) = ‖Lbdry pbdry‖2, Lbdry ∈ R
Nbdry×Nbdry ,

where Lbdry is the finite difference matrix which approximates the integral (12). We then define
the Gaussian marginal smoothness density corresponding to this penalty function,

π(pbdry) ∝ exp

(
−1

2
‖αLbdry p‖2

)
, (13)

where α > 0 is a scaling constant, whose role will be discussed below.
Finally, the product of the conditional density π(p int|pbdry) and the marginal density π(pbdry)

yields the prior density
πprior(p) = π(pint|pbdry)π(pbdry).

If we partition the matrix Lint according to the partitioning of p into interior and boundary
values, Lint =

[
L′

int L′′
int

]
, L′

int ∈ R
Nint×Nint , L′′

int ∈ R
Nint×Nbdry , we can express the prior density in

the form

πprior(p) ∝ exp

(
−1

2

∥∥∥∥[ L′
int L′′

int

][ pint

pbdry

]∥∥∥∥2

− 1
2
‖αLbdry p‖2

)

= exp

(
−1

2
‖Lp‖2

)
,
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where L is the matrix

L =

[
L′

int L′′
int

0 αLbdry

]
. (14)

To choose the value of the parameter α , we require that when λ = 1, the variance of components
pi in the interior and at the boundary are of the same order of magnitude, recalling that the
variance of a component pi can be calculated by the equation

var(pi) =
(
L−1L−T)

ii = ‖L−Tei‖2,

where ei is the ith unit coordinate vector. The details can be found in Appendix A.

2.1.6. Structural prior

In this section we discuss the choice of the function λ in the definition of the smoothness
penalty functional and an adaptive updating scheme for it. From Eq. (9) it follows that λ (y j

i )
can be viewed as a coupling constant between the neighboring collocation values u(x i) and
u(x j

i ). The coupling should be small if we believe that the function value is likely to change
significantly between these two collocation points, while it should be large if the collocation
values are believed to be close to each other.

If we have available a smooth approximation û of the unknown function u to be estimated,
which we will refer to as pilot function, we can define λ to be

λ (y j
i ) =

1

1+ |τD
v j

i
û(y j

i )|k
, (15)

where τ > 0, k ∈ N are shape parameters of the function λ , and D
v j

i
denotes the directional

derivative in the direction v j
i ,

v j
i =

1

h j
i

(x j
i − xi), h j

i = |x j
i − xi|.

This selection of λ makes the smoothness prior direction sensitive. The rational for this choice
is that when the pilot function has a strong gradient in the given direction v j

i , the penalty for the
unknown function u for changing rapidly while passing form x i to x j

i should be small, to allow
a rapid variation. The matrix obtained by modifying L using the pilot image û, denoted by L û
can be formed knowing only the values of the pilot image at the interpolation points y j

i .

2.2. Adaptation

We now focus our attention to the construction of the structural priors for the optical tomog-
raphy problem that we are considering. Assume that κ̂ and μ̂a are the pilot functions of the
diffusion and absorption coefficients, respectively. Since these coefficients are estimated simul-
taneously from the data, we define the matrix

W =Wκ̂ ,μ̂a
=

[
γ1Lκ̂

γ2Lμ̂a

]
∈ R

2N×2N , (16)

where γ1,γ2 > 0 are scaling constants. Similarly as in [11, 12], we propose an adaptive algo-
rithm for updating iteratively the penalty matrix (16) based on the current information about
the optical parameters.

1. Initialize κ̂ = 1, μ̂a = 1, set j = 1 and prescribe a maximum number of iterations n iter.
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2. Using the current pilot images κ̂ and μ̂a, form the matrix W according to (16).

3. Calculate p = (μa(xi),κ(xi)) ∈R
2N which satisfies

p = argmin
p∈R2N

{‖S(y− e∗− f (p))‖2 + δ‖W(p− p∗)‖2}, δ > 0. (17)

4. If j = niter, stop, otherwise

(a) Update the pilot images κ̂ and μ̂a using the current estimate of p, normalized by the
maximum values,

κ̂ =
1

maxκ(xi)
κ , μ̂a =

1
maxμa(xi)

μa.

Compute the values at the interpolation points y j
i , according to the equations

κ̂(y j
i ) =

1
2
(κ̂(xi)+ κ̂(x j

i )), μ̂a(y
j
i ) =

1
2
(μ̂a(xi)+ μ̂a(x

j
i )),

(b) Increase j by one and continue from 2.

The selection of the value of Tikhonov regularization parameter δ > 0 in (17) will be dis-
cussed in the next section where we address various issues concerning the practical imple-
mentation of the algorithm and the details of the numerical experiments. The solution of the
minimization subproblem (17) is computed with a damped Gauss-Newton algorithm.

We point out that the updating the penalty functional is tantamount to updating the prior den-
sity based on the data, which may look dubious in the classical Bayesian paradigm. Although
not rigorously analyzed in the present form, the updating of the prior may be justified by in the
context of hierarchical models: see [13, 14, 21].

3. Results

In this sections we illustrate the performance of the proposed algorithm, when applied to both
synthetic and real phantom data. The algorithm has been implemented in C, so as to take ad-
vantage of the shared memory parallelism and to take advantage of automatically tuned BLAS
libraries [22] for linear algebraic operations.

3.1. Simulated data

We start by testing our algorithm with simulated data in two dimensions. The target is a circle
of diameter 7 cm, with three circular inclusions, each of diameter 1 cm. Two of the inclusions
have a scattering coefficient different from the constant background and two of them have
absorbtion coefficients different from the constant background, therefore one of the inclusions
has both scattering and absorption coefficients different from the background.

Two different simulations are carried out. In the first one, the optical parameters of the in-
clusions are constants, hence we refer to it as the “blocky inclusion model”. In the second one,
which we will refer to as the “smooth inclusion model”, the optical parameter functions within
the inclusions are Gaussian humps. The optical properties of the background and the inclu-
sions are listed in the Table 1, and the targets are plotted in Fig. 2. When the smooth inclusion
model is used, the tabulated values refer to the peak values of the Gaussian humps. The re-
fraction index in the body for this simulation is n = 1.4 assumed known, and 17 optical fibers
are uniformly spaced along the circumference of the target. The data are simulated by sequen-
tially letting one of the fibers act as a source and the remaining ones as detectors, leading to
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Table 1. Optical parameters of the simulated object.The numbering of the inclusion is in
agreement with Fig. 2.

μa [mm−1] κ [mm]
Background 0.01 0.33
Inclusion 1 0.02 0.16
Inclusion 2 0.01 0.16
Inclusion 3 0.02 0.33

16× 17 = 272 measured amplitudes and phases. Due to the wide dynamical range, amplitudes
are routinely expressed in the logarithmic scale, corresponding to the model of Section 2.1.

To avoid the “inverse crime” of using the same computational forward and inverse prob-
lem, the simulated data are produced with a FEM model using 3790 triangular elements with
quadratic basis functions, while the model used in the solution of the inverse problem uses 3566
triangular elements with quadratic basis functions.

The optical parameters are represented in a third triangular mesh of 2190 elements and are
interpolated to the FEM meshes by piecewise linear interpolants. In our simulation we add zero
mean Gaussian noise with standard deviation σ log |Γ| = 10−3 max |log |Γ|| = 0.0228 for the the
component added to the logarithm of the amplitude, and of σ ϕ = 10−3 max |ϕ | = 0.0016 for
the component added to the phase shift. Therefore the Cholesky factor of inverse of the noise
covariance matrix is the diagonal matrix

S =

[
σ−1

log |Γ|I 0

0 σ−1
ϕ I

]
. (18)

In the construction of the penalty functional the shape parameters in (15) to be k = 2 and
τ = 50. The scaling coefficients γ1 and γ2 appearing in the definition (16) of W are set in the
first iteration round,when the pilot images are flat and the penalty is a homogenous second
order smoothness penalty, and never changed afterwards. The criterion used for the selection
of the scaling is that we no pixel values of the simulated inclusions should not deviate from the
background by more than two standard deviations. This adjustment can be done once, together
with the boundary variance adjustment. In a realistic situation, the standard deviation needs to
be estimated based on the prior belief of the dynamical range about the coefficients.

The update of the value of Tikhonov regularization parameter δ should be be adjusted at
each iteration sweep, e.g., using the Morozov discrepancy principle, but this strategy would
increase the computational burden significantly. In our computed examples, set the value of
delta to 10−3 once and for all. The maximum number of iteration steps was set to n iter = 20,
and up to 15 Gauss-Newton iteration steps were allowed for the solution of the minimization
problem. Within each Gauss-Newton step, the new search direction is computed by solving the
corresponding linear system with the GMRES algorithm [23].

The reconstructions the blocky inclusion model are displayed in Fig. 3. The top left panel a)
corresponds to the absorption coefficient μa and the top right one b) to the diffusion coefficient
κ . The image in the left of each panel displays the reconstructions after the first outer iteration
before the smoothness penalty adaptation, while the image on the right shows the final iteration
(niter = 20). The corresponding profiles of the reconstructions along the circular curve indicated
in Fig. 2, traversed in counterclockwise direction, are shown underneath.

The advantage of using the penalty adaptation in this example is quite dramatic: after the
adaptation, the contrast of the inclusions is sharp and the dynamical range improved. Interest-
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Fig. 2. Images of the absorption coefficient μa (top) and diffusion coefficient κ (bottom)
of the two dimensional simulated targets. The left hand side images correspond to the
blocky inclusion model and the right hand side images to the smooth inclusion model. The
parameter values are as in Table 1.

ingly, the adaptation is also capable of removing almost completely the crosstalk between the
absorption and diffusion coefficient images.

Figure 4 is the counterpart of Fig. 3 for the smooth inclusion model. Although the prior belief
that the target is blocky is in conflict with the model, the reconstruction is reasonable and in
line with what one would expect. Notice that also in this case,the adaptation is able to reduce
the crosstalk very effectively.
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Fig. 3. Reconstructions of optical parameters μa (a) and κ (b) from simulated data from the
blocky inclusions model. The reconstructions on the left of each panel are those obtained
after the first Gauss-Newton iteration, thus corresponding to a homogenous smoothness
penalty without adaptation, while on the right are those obtained after 20 iteration sweeps.
Panels (c) and (d) show the respective profiles along the circular contour indicated in Fig. 2,
traversed counterclockwise. The solid line is the true target, the dotted line the solution after
the first iteration and the dashed line the final reconstruction.
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Fig. 4. Reconstructions of optical parameters μa (a) and κ (b) from simulated data from the
smooth inclusions model. The reconstructions on the left of each panel are those obtained
after the first Gauss-Newton iteration, thus corresponding to a homogenous smoothness
penalty without adaptation, while on the right are those obtained after 20 iteration sweeps.
Panels (c) and (d) show the respective profiles along the circular contour indicated in Fig. 2,
traversed counterclockwise. The solid line is the true target, the dotted line the solution after
the first iteration and the dashed line the final reconstruction.
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3.2. Reconstructions from phantom data

In this section we test the efficiency of the adaptive regularization approach with measured
phantom data. The details about the instrumentation utilized for the data collection can be
found in [24].

The two data sets available used in the computed experiments, two homogenous phantoms,
with the same background optical properties, one without and one with two inclusions, are
encoded in the vectors yh and ynh, respectively. To suppress reconstruction artifacts due to the
diffusion approximation model, we consider the difference data translated around the computed
response of the homogenous background. In other words, we define

y ≡ ynh − yh + f (ph), (19)

where f (ph) is the 3D FEM solution computed on a grid of 21207 tetrahedral elements with
quadratic basis functions, assuming that the homogeneous optical parameters are known. The
absorption and scattering coefficient of the inclusions in the non-homogeneous phantom are
approximately twice the values for the background. We estimated absorption coefficient at
μa,bg ≈ 0.0097 mm−1 for the scattering coefficient μ ′

s,bg ≈ 1.04 mm−1 and at n = 1.56 for
the refraction index. A schematics of the non homogeneous phantom is shown in Fig. 5.

The data was collected by positioning 16 source and 16 detector fibers around the cylindrical
surface in two rings (see Fig. 5). Since the diffusion approximation is known to be a poor model
for light propagation near a singular source, measurements from source–detector pairs less than
30 mm apart are omitted. Thus the actual data used in this example consist of 192 amplitude
and phase measurements.

A preliminary study of the distribution of the data suggests that the noise in the log-
amplitude/phase representation can be well modelled with a Gaussian distribution, although
the variance of the data depends on the mean. Fig. 6 shows the histograms of the log-amplitude
and phase of the homogeneous phantom data from the first source–detector pair and normal
probability densities with the means and variances equal to the empirical means and variances
of the sample. Empirical analysis of the data reveals that the standard deviation of the noise at
detectors 30 mm or more away from the source increases with the amplitude of the data, and
can be fairly well estimated using a linear regression model. This justifies an additive noise
model of the form

y = f (p)+ e, e ∼ N (0,(diag(y))2).

While at first this empirical noise model might be surprising, it becomes easier to understand
after recalling that both the absolute value of the logarithm of the amplitude and the phase shift
increase when the receiver is moved away from the source. Observe that we the constant of
proportionality has been omitted from the noise level, with the understanding that it can be
accounted for in the Tikhonov regularization parameter.

The Cholesky factor of the inverse of the noise covariance C−1
n for this model is

S = diag
(
1/|y1|,1/|y2|, . . . ,1/|y2M|).

The construction of the prior proceeds as in the synthetic data case, with the optical para-
meters discretized in a mesh of 25924 tetrahedral elements with linear basis functions. The
Cholesky factor L of the inverted prior covariance matrix C−1

p and its parameters are as in Sec-
tion 3.1, except that now τ j = 150. The Tikhonov regularization parameter is held at δ = 10−6.

The adaptive algorithm is stopped after 8 outer iterations, with a maximum of 15 inner Gauss-
Newton iteration steps allowed.

Figure 7 displays the projection of the reconstructed optical parameter distributions through
the plane z = 0, see Fig. 5. The scattering coefficient image is calculated from the reconstructed
diffusion and absorption coefficient images.
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Fig. 5. The geometry of the phantom with the diameter of 69.25 mm and height of 110 mm.
The 16 sources (marked with ×) and 16 detectors (marked with ◦) are located in two rows
on the cylindrical surface. A two dimensional slice of the reconstructions are shown along
the plane of intersection at z = 0 (red) . The locations of the inclusions are projected on the
bottom.

We define the contrast of the inclusion Cμa to be the ratio

Cμa =
μainside inclusion

μaoutside inclusion
, (20)

of the means μa over nodal values of μa inside and outside the inclusion. The contrast Cμs′
is defined in a similar manner. Here, the boundary of the inclusions is assumed to be known.
The contrasts in the reconstruction with the smoothness prior are C μa = 1.12 and Cμ ′

s
= 1.11,

respectively, and after eight adaptive iterations, they attain the values C μa = 1.57 and Cμ ′
s
=

1.21. The algorithm does not remove completely the crosstalk in the absorption image: in fact,
in the location of the inclusion with the same absorption coefficient as the background, the
mean value of μa is 0.0102mm−1 before adaptation and μa = 0.0106 mm−1 after the adaptation.
However, since the adaptation improves considerably the dynamical range of the reconstruction,
the relative crosstalk is diminished, and it is visually less prominent.

4. Discussion

The article describes a new adaptive regularization algorithm for diffuse optical tomography.
In contrast to the traditional smoothness penalties that keeps the cost of variations in the recon-
structed optical parameters fixed, the proposed algorithm updates iteratively the smoothness
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Fig. 6. Histograms of the logarithm of the amplitude (left) the phase (right) from a repeated
measurement with one source/detector pair. The red line shows a Gaussian with the same
mean and variance as the sample. The values of the abscissae are arbitrary, as the data are
not calibrated.

penalty, using the current estimate as a structural pilot image to decrease the penalty where the
possibility of strong contrasts is suggested. The iterations can thus be thought of as a learning
process, where the current iterate provides prior information for the new update. A similar ap-
proach has been previously applied to linear inverse problems with structural meshes, while in
the present application, the mesh is unstructured and the forward map is strongly non-linear.
The adaptive algorithm is expected to work best with data that correspond to a target with a
blocky structure, the optical parameters changing abruptly across the inclusion boundaries. The
process of relaxing locally the smoothness penalties is likely to diminish or remove typical
overshooting phenomena creating disturbing artifacts in the reconstruction images.

The algorithm has been tested with both synthetic data and with phantom data. The synthetic
data corresponds to a two-dimensional target, and both blocky and smoothly varying optical
parameter models are considered. The forward model in the synthetic data simulation is the
diffusion approximation. In this case the algorithm was able to get rid almost completely of
the crosstalk between the absorption and diffusion coefficients, whereas traditional smooth-
ness penalized algorithms are corrupted by artifacts. The reconstructed inclusions exhibit sharp
boundaries, even if the data was generated with a smoothly varying model. This result is not
surprising as it is in line with the prior belief but it should be taken into account when the user
is in doubt about the blocky structure of the target. The absence of boundary artifacts in the
reconstruction is the result of implementing the smoothness penalty using a statistical analysis
of the prior image variances.

A second set of tests was performed using phantom data corresponds to a cylindrical target
with blocky inclusions, and a three-dimensional diffusion approximation model. To suppresses
the effects of the modelling errors, difference data was used. Although the optical fibre contacts
may change between the two targets and therefore not cancel in the difference data, the com-
puted reconstructions show little boundary effects. With real data crosstalk is not completely
removed, but since the adaptive iterative algorithm considerably improves the contrast between
the inclusions and the background without increasing the crosstalk artifacts, the latter becomes
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Fig. 7. Cross sections of the reconstructed absorption (top) and scattering (bottom) coeffi-
cient through the plane z=0 (see Fig. 5). The reconstructions on the left are before adapta-
tion, corresponding to a homogenous smoothness penalty, while those on the right are after
eight adaptation sweeps.

visually less prominent. The remaining crosstalk artifacts indicate that the coupling between the
scattering and absorption coefficients is in the higher order terms of the harmonic expansions of
the radiative transfer equation and therefore not captured by the lowest order, or diffusion, ap-
proximation. Hybrid methods that use the radiative transfer equations in the regions where the
diffusion approximation is not expected to be valid have been suggested [25]. Altenatively, the
modelling error due to the low order approximation can be taken into account in the Bayesian
statistical framework, see [5, 26, 27, 28].

The choice of a rather coarse grid for the discretization of the optical parameters, which has
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a regularization effect on the solution, cannot resolve well sharp edges accurately, thus causing
some artifacts near the boundary of the inclusions.

The modelling of the noise in the optical tomography measurements is not a trivial issue,
in particular when the data is in the amplitude-phase format. Here a Gaussian approximation
with a semi-empirical variance model was used, and the scaling of the noise covariance was
absorbed by the regularization parameter when phantom data was used. Proper modelling of
the noise is particularly important when absolute rather than difference data need to be used. A
detailed analysis will be the topic of future work.

A. Variance adjustment

In this appendix, we discuss the details of the construction of the smoothness penalty and the
variance adjustment at the boundary.

Consider the block partitioning (14) of the matrix L. Since the block L ′
int ∈ R

Nint×Nint

corresponds to a discrete Laplacian with homogenous Dirichlet data, it is invertible, while
the matrix Lbdry ∈ R

Nbdry×Nbdry has a one-dimensional null space spanned by the unit vector
1 =

[
1,1, . . . ,1]T ∈R

Nbrdy . Therefore it follows that the null space of L is also one-dimensional,
spanned by the unit vector 1 ∈ R

N . Consequently, given Lp, it is possible to recover the vector
p only up to an undetermined additive constant which can be specified by, e.g., specifying the
mean value μ over the boundary values p bdry. We therefore define the folding matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎣

1
−1 1

. . .
. . .
. . . 1

−1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R
Nbdry×(Nbdry−1),

whose range is an (Nbdry −1)-dimensional subspace in R
Nbdry perpendicular to the null space of

Lbdry, and we reparameterize pbdry as

pbdry =Cz+ μ1, z ∈ R
Nbdry−1.

With this representation,

Lp =

[
L′

int L′′
int

αLbdry

][
pint

Cz+ μ1

]
=

[
L′

int L′′
intC

αLbdryC

][
pint

z

]
+

[
μL′′

int1
0

]
= Kα p′+ r,

where

Kα =

[
L′

int L′′
intC

αLbdryC

]
=

[
I

αI

][
L′

int L′′
intC

LbdryC

]
=

[
I

αI

]
K1. (21)

Without loss of generality, we may assume here that μ = 0, i.e, r = 0.
Consider the Gaussian density

π(p | μ = 0) ∝ exp

(
−1

2
‖Lp‖2

)
= exp

(
−1

2
‖Kα p′‖2

)
, (22)

where the matrix Kα ∈ R
N×(N−1) has full column rank. We are interested in the covariance of

the components of the vector p with respect to this density. Consider an interior node value p j,
expressed in terms of p′ as

p j = eT
j pint =

[
e j

0

]T

p′,
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where e j ∈R
Nint is jth unit coordinate vector. Denoting by E the expectation with respect to the

probability density (22), the variance of the component is

var(p j) = E
{

p2
j

}
=

[
e j

0

]T

E
{

p′(p′)T}[e j

0

]

=

[
e j

0

]T (
KT

α Kα
)−1

[
e j

0

]
= ‖v‖2,

where v is the least squares solution of the linear system

KT
α v =

[
e j

0

]
or v =

(
KT

α
)+ [

e j

0

]
, (23)

where
(
KT

α )
+ is the pseudo-inverse of K T

α . Here we used the identity (KT
α Kα )

−1 = K+
α (K+

α )T

and (K+
α )T = (KT

α )
+. The solution is found by solving the normal equations,

Kα KT
α v = Kα

[
e j

0

]
,

or, in view of the equation (21),

K1KT
1

[
1

α1

]
v = K1

[
e j

0

]
,

implying that the solution is

v =

[
1

α−11

]
(KT

1 )
+

[
e j

0

]
=

[
v1

α−1v2

]
,

and therefore,

var(p j) = ‖v1‖2 +
1

α2 ‖v2‖2.

Similarly, we compute the variance of a boundary node value. Denoting by n k ∈R
Nbdry a unit

vector with a single non-zero element, the corresponding boundary node value can be expressed
as

pk = nT
k (Cz) =

[
0

CTnk

]T

p′,

and the variance of the value is found to be

var(pk) = ‖u‖2,

where u is the least squares solution of the system

KT
α u =

[
0

CTnk

]
,

or, equivalently,

u =

[
1

α−11

]
(KT

1 )
+

[
0

CTnk

]
=

[
u1

α−1u2

]
,

leading to the equation

var(pk) = ‖u1‖2 +
1

α2 ‖u2‖2.
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The condition var(p j) = var(pk) therefore leads to the condition

α2 =
‖u2‖2 −‖v2‖2

‖u1‖2 −‖v1‖2 .

In practice, the linear systems are solved in the least squares sense using the LSQR algorithm
[23, 29].
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