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Abstract
We present a combined classification and reconstruction algorithm for diffuse
optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem.
Therefore, some regularization is needed. We present a mixture of Gaussians
prior, which regularizes the DOT reconstruction step. During each iteration,
the parameters of a mixture model are estimated. These associate each
reconstructed pixel with one of several classes based on the current estimate
of the optical parameters. This classification is exploited to form a new
prior distribution to regularize the reconstruction step and update the optical
parameters. The algorithm can be described as an iteration between an
optimization scheme with zeroth-order variable mean and variance Tikhonov
regularization and an expectation-maximization scheme for estimation of the
model parameters. We describe the algorithm in a general Bayesian framework.
Results from simulated test cases and phantom measurements show that the
algorithm enhances the contrast of the reconstructed images with good spatial
accuracy. The probabilistic classifications of each image contain only a few
misclassified pixels.

M This article features online multimedia enhancements

1. Introduction

Manymedical imagingmodalities can be described as indirect imaging. An image representing
physical parameters is created from measurements by solving an inverse problem. Such
problemsmay be well- or ill-posed, and linear or nonlinear. It is common for image processing
techniques to be subsequently applied to these reconstructed images. A major subset of these
techniques is the segmentation of structures based on the physical parameters at each pixel.
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This is equivalent to classifying each pixel of the reconstructed image as belonging to one
of a finite number of structures. For example, the image might be thresholded (Sahoo et al
1988, Otsu 1979), segmented using a watershed algorithm (Rettman et al 2002, Moga and
Gabbouj 1997), clustered (Bezdek 1981, Duda and Hart 1973, Fukunaga 1972) or modelled
with snakes or active shape models (Kass et al 1987, Staib and Duncan 1992, Cootes et al
1994).

These classification techniques were developed for direct imaging problems such as
machine vision. Consequently, they are highly reliant on the quality of the reconstructed
images. In this paper, we apply these ideas to indirect imaging. Specifically, we consider
combining the classification and imaging steps: by considering the two steps as a single
problem, we are faced with the segmentation of a small number of structures from a finite set
of measurements.

Combined reconstruction–classification methods have been applied in areas such as
SPECT, PET and CT (Hsiao et al 1998, 2002). In this paper, we apply these ideas to
optical tomography, which is characterized by being both nonlinear and highly ill posed. The
most relevant prior work in this modality (Guven et al 2005) assumed that the spatial structure
of the segmentation was known (this was based on MR data), but that the physical parameters
of each segment were unknown. To the best of our knowledge, no previous study has tried
to simultaneously estimate both the spatial structure and the physical parameters in optical
tomography.

A second way to consider our contribution is in terms of image priors. Most priors for
optical tomography impose low-level information about the smoothness of the image (Paulsen
and Jiang 1996, Kolehmainen et al 2000b, Douiri et al 2007, Hiltunen et al 2008). However,
more sophisticated priors over images are commonplace in machine vision (Feng et al 2002,
Domke et al 2008, Warrell and Prince 2009, Roth and Black 2005, Freeman et al 2000). Many
of these incorporate the notion of hidden variables (Feng et al 2002, Warrell and Prince 2009,
Freeman et al 2000): a complex probability distribution is induced by a generative model that
depends on one or more unseen quantities.

In this paper, the reconstruction/classificationmodel can be considered a prior with hidden
variables. In common with other image priors, it imposes a probability distribution over the
space of reconstructed images: it favours images in which the physical parameters are well
approximated by one of a finite number of distinct values (each corresponding to one classified
region). However, it is unbiased as to what these values are or how they are distributed amongst
the image pixels. These quantities are held in the parameters and hidden variables of the model
respectively and are determined by the data. In other words, the model favours a certain family
of images, but the data themselves determine exactly which member of the family is chosen.

The structure of the paper is as follows. In section 2, we briefly introduce optical
tomography. In section 3, we describe the forward model and inverse problem in optical
tomography, and the reconstruction–classification algorithm. In section 4, we discuss
implementation issues of the algorithm and show results from simulated and measured data.

2. Optical tomography

Diffuse optical tomography is a new medical imaging modality with potential applications in
functional imaging of the brain and in breast cancer detection (Arridge 1999, Gibson et al
2005). This method seeks to recover optical parameters of blood and tissue from boundary
measurements of light transmission in the visible and near-infrared range. The reconstructed
images of the spatial distribution of tissue parameters can be related directly to physiologically
important properties such as blood and tissue oxygenation state. Instrumentation for optical
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Figure 1. Overview of the approach. In the reconstruction step, we estimate the physical
properties of the medium x from the data y, using a Gaussian prior with mean x based on the
previous segmentation results. In the estimation step, we soft-assign pixels to clusters and estimate
the properties of these clusters λ, θ . The resulting mixture model is then approximated to form
the mean x and Cholesky factor of the variance Lx of the new prior. The result of the method is a
reconstructed image together with class labels per pixel and statistical properties of the classes.

tomography is portable and relatively inexpensive, and can provide a viable alternative to
currently available systems such as functional magnetic resonance imaging.

Data acquisition systems consist of a light source such as an infrared laser, illuminating
the body surface at different source locations in succession. The light which has propagated
through the tissue is then measured at multiple detector locations on the surface. Biological
tissue is strongly scattering at the wavelengths used in optical tomography, which generally
makes the recovery of tissue parameters from the boundary data a highly nonlinear problem.

The experimental systems in use today utilize either ultrashort input pulses (time-domain
systems) or continuous intensity-modulated input (frequency domain systems). In the former
case, measurements consist of the temporal dispersion of the transmitted pulse, measured at
a resolution in the order of pico-seconds. In the latter case, the measurements consist of
the complex intensity of the transmitted photon density wave, most commonly measured in
terms of the phase shift and modulation amplitude (Nissilä et al 2006). The frequency domain
version of the problem is considered in this paper.

3. Methods

A summary of the idea is shown in figure 1. A glossary of the notation is presented in table 2.
We choose a predefined number of classes nc. A reconstruction step consists of a few
iterations of a damped Gauss–Newton optimization scheme for a regularized output least-
squares problem, where the regularization scheme is first-order Tikhonov with variable mean
and variance. The estimation step is an expectation-maximization (EM) method (Dempster
et al 1977) for class labels, means and variances. The whole cycle is iterated until convergence.

Note that the EM step may be interpreted as a fuzzy K-means classification method
(Mackay 2002), but we provide a more complete general hierarchical Bayesian framework
that allows the imposition of priors on the mixture model parameters.

3.1. Forward model and inverse problem

The most commonly used forward model for optical diffusion tomography is the diffusion
approximation (DA) to the radiative transfer equation (RTE), and is the one adopted in this
paper. The implicit assumption is that the errors between this model and more accurate ones
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are smaller than the measurement noise in the system, or, alternatively, can be calibrated for
by analysis of the systematic errors (Arridge et al 2006). Under the diffusion approximation,
the frequency domain version of optical tomography used in this paper is posed in terms of a
complex-valued photon density u(r) in the medium which obeys an elliptic partial differential
equation:

−∇ · κ(r)∇u(r) +
(
μa(r) +

iω

c

)
u(r) = 0, r ∈ �. (1)

In equation (1), the optical properties are the absorption coefficient μa(r) and the
reduced scattering coefficient μ′

s(r), governing diffuse photon transportation in the domain
� ∈ R

d , d = 2, 3. The diffusion coefficient is defined as κ(r) = (d(μa(r) + μ′
s(r)))

−1. The
speed of light in the medium is c and ω is the modulation frequency.

Equation (1) is subject to the Robin boundary condition written as

u(r) + 2ξκ(r)
∂u(r)
∂n

= J−(r), r ∈ ∂�, (2)

for the incoming photon current J−, where n is the outward normal vector and the refractive
mismatch on the boundary is taken into account via the coefficient ξ . Measurements are
defined in terms of the Neumann boundary condition

J +(r) = −κ(r)
∂u(r)
∂n

, r ∈ ∂�, (3)

which defines the outgoing photon current J +, and is termed exitance in the optical literature.
In this paper, following Schweiger et al (2005), the forwardmodel is defined in terms of the

logarithm of magnitude and phase of complex-valued exitance yjq = [ln |J +q (rj )| arg J +q (rj )]T

evaluated at specific boundary locations rj , j ∈ {1, . . . , nm}, for each of the specified set of
source locations rq, q ∈ {1, . . . , ns}. Similarly, the optical parameters are considered in terms
of a logarithmic transformation xi = ln[μa(ri ) κ(ri )], i ∈ {1, . . . , N}, to ensure positivity in
the image reconstruction, and are evaluated on a regular structured grid (the pixel basis) for N
pixels. This leads to the model

y = f (x) + e , f : R2N → R
2M (4)

whereM = nm ×ns is the number of measurements, and e is the assumed normally distributed
additive noise

e = y − f (x) ∼ N(0, Cy).

where Cy is the variance of the measurement noise. This gives us a likelihood model

p(y|x) ∝ exp
(− 1

2 (y − f (x))TC−1
y (y − f (x))

)
. (5)

The forward model is described in more detail in Schweiger et al (1995), Arridge (1999),
Arridge et al (2006).

The inverse problem in optical tomography is to solve for the optical parameters when the
measured quantities and source distribution are known. In this paper, we adopt the Bayesian
statistical framework, wheremeasured data y and optical parameters x are considered as random
variables. Bayes’ theorem gives us the conditional posterior density of optical parameters

p(x|y) ∝ p(y|x)p(x) (6)

when measurement y is given (Kaipio and Somersalo 2004). In the next sections, we discuss
the prior distribution for optical parameters with hyperparameters p(x|φ) and hyperpriors
p(φ) and describe an iterative posterior inference algorithm for the inverse problem.
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3.2. Mixture model

In most previous work, prior models (which for non-Bayesian approaches are considered
as regularization penalty terms) are based, either explicitly or implicitly, on Gaussian
distributions. In contrast to these models, we consider the prior model as a mixture of
Gaussian distributions. To accomplish this, we introduce nc binary variables ζi� at each pixel i.
These indicator variables provide information about which Gaussian (class) from the mixture
is present so that

ζi� =
{
1 pixel i belongs to the class �

0 otherwise,
(7)

where
∑

� ζi� = 1 for every pixel i. We assume that indicator values at each pixel are drawn
from a multinomial distribution ζi |λ ∼ Multin(1|λ), where λ� is the overall probability of
belonging to class �:

p(ζi |λ) =
∏

�

λ
ζi�

� . (8)

The parameters λ� can be interpreted as the weights (or relative importance) of the mixture
components. When the indicator variable is known, the probability distribution for the optical
parameters xi at each pixel is

p(xi |ζi, θ) =
∏

�

p(xi |θ�)
ζi� , (9)

where p(xi |θ�) is a Gaussian probability density function and the parameters θ� = {m�,C�}
are the mean and variance of the Gaussian density.

We assume that the pixels are independently distributed so that

p(x, ζ |λ, θ) = p(ζ |λ)p(x|ζ, θ) =
∏

i

∏
�

(λ�p(xi |θ�))
ζi� . (10)

When we marginalize over the indicator variables ζ , we retrieve the mixture of Gaussian
distribution:

p(x|λ, θ) =
∫

ζ

p(x, ζ |λ, θ) dζ =
∏

i

∑
�

λ�p(xi |θ�). (11)

We also place hyperpriors over the parameters λ and θ of the mixtures of Gaussian
distribution. For the mixture weights λ, the conjugate prior distribution λ ∼ Dirichlet(α) is
a natural choice. Parameters α� are the expected number of pixels in the class �. If we set
every element of α� to 1, we get a uniform distribution p(λ) ∝ 1. This is a non-informative
distribution indicating that we do not have any specific a priori information about the class
probabilities. The conjugate prior distribution for the class variances is the inverse-Wishart
distribution

p(C�) ∝ |C�|−(ν�+d+1)/2 exp
(− 1

2 tr
(
��C

−1
�

))
, (12)

where ν� is the number of degrees of freedom and�� is a scale matrix. In conjunction with the
inverse-Wishart distribution, one can use a non-informative prior distribution p(m�) ∝ 1 for
class means. We can also place a non-informative prior over the parameters θ of the Gaussians
which takes the form of a multivariate Jeffreys density p(θ) ∝ ∏

� |C�|−(d+1)/2 (Gelman et al
2004).

3.3. Posterior inference

We use Bayes’ theorem to calculate the posterior distribution of the unknown optical
parameters x, mixture weights λ, Gaussian parameters θ and indicator variables ζ from
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the observed measurements y:

p(x, λ, θ, ζ |y) ∝ p(y|x)p(x|λ, θ, ζ )p(λ, θ, ζ ). (13)

Unfortunately, there is no closed form solution for the posterior distribution. Two possible
approaches to this problem are to (i) calculate the maximum a posteriori (MAP) estimate of
the posterior distribution or (ii) take samples from the distribution and estimate the conditional
mean of the parameters. In this paper, we adopt the former approach and use a similar iterative
joint MAP algorithm to Hsiao et al (1998). Posterior inference consists of two steps. In the
reconstruction step, we estimate the optical properties x while fixing the parameters λ, θ, and
ζ of the mixture of Gaussians prior:

xk+1 = argmax
x

p(y|x)p(x|ζ k, λk, θk). (14)

In the parameter estimation step, we consider the optical properties x to be fixed and update
the mixture model parameters λ, θ :

(λk+1, θk+1) = argmax
λ,θ

p(xk+1|λ, θ)p(λ, θ). (15)

This step is the same as fuzzy K-means clustering if we use hyperprior p(α) ∝ 1 and prior
p(θ) ∝ 1.

After parameter estimation, the MAP estimate of ζ is found from the distribution
p(ζ |xk+1, λk+1, θk+1). In the next two sections, we showhow the reconstruction step transforms
into a minimization problem and describe an expectation maximization (EM) approach to
estimate the parameters in the estimation step.

3.3.1. Reconstruction step. In the reconstruction step, we aim to optimize the optical
parameters x given the measurements y and the mixtures of Gaussians prior p(x|ζ, λ, θ) using
Bayes’ rule as in equation (6). To solve this problem, we assume that the precision C−1

y of the
measurement noise can be factored as C−1

y = LTyLy using the Cholesky decomposition.
After these changes, we can transform the maximization step (14) to a minimization
problem:

xk+1 = argmin
x

1

2
‖Ly(y − f (x))‖2 −

∑
i

ln
∑

�

λ�p(xi |θ�). (16)

Unfortunately, this is a non-convex optimization problem. To resolve this problem, we
approximate the mixtures of Gaussian distribution at each pixel by evaluating only the cluster
with maximum posterior probability. In practice, this can be done by setting the indicator
variable associated with the MAP cluster to one and the others to zero so that,

p(x|ζ, λ, θ) =
∏

i

∏
�

p(xi |θ�)
ζi� = N(x̄, Cx), (17)

where x̄ ∈ R
2N is organized in N blocks of 2 such that the ith block is equal to m� if pixel

i belongs to class �. Similarly Cx ∈ R
2N×2N is the block diagonal with the ith block equal

to the 2 × 2 covariance matrix C�. The complete variance matrix is Cholesky factored as
C−1

x = LTxLx . After these operations, both the prior and likelihood terms are Gaussian and
finding the MAP estimate of the optical parameters x is a convex optimization problem:

xk+1 = argmin
x

‖Ly(y − f (x))‖2 + γ ‖Lx(x − x̄)‖2 , (18)

where we have also included a regularization parameter γ .

3.3.2. Estimation step. In the estimation step, we estimate variables λ and θ by finding
the mode of the posterior distribution p(λ, θ |x) where x is the current estimate from the
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reconstruction step. Rather than directly maximizing the posterior as in equation (15), we
maximize the log posterior so that

lnp(λ, θ |x) = lnp(ζ, λ, θ |x) − lnp(ζ |λ, θ, x). (19)

Averaging the previous equation over ζ under the distribution p(ζ |λk, θk, x), we get

lnp(λ, θ |x) = Ek(lnp(ζ, λ, θ |x)) − Ek(lnp(ζ |λ, θ, x)), (20)

where the index k refers to the current iteration step. Given new estimates λk+1 and
θk+1, which increase Ek(lnp(ζ, λ, θ |x)), we also have that lnp(λ, θ |x) increases because
Ek(lnp(ζ |λ, θ, x)) reaches a maximum at the current estimates (λk, θk) (Gelman et al 2004).

The EM algorithm consists of two steps: the expectation- or E-step and the maximization-
or M-step. In the E-step, we determine the expectation of the log posterior function
Ek(lnp(ζ, λ, θ |x)). In the M-step, we find new estimates of λ and θ , which increase
Ek(lnp(ζ, λ, θ |x)).

E-step: the expectation of the log posterior function simplifies to

Ek(lnp(ζ, θ, λ|x)) =
∫
lnp(ζ, θ, λ|x)p(ζ |θk, λk, x) dζ

=
∑

i

∑
�

ln(λ�p(xi |θ�))E(ζi�|θk, λk, x) + lnp(λ) + lnp(θ) − lnp(x),

(21)

where we have used the identity

p(ζ, θ, λ|x) = 1

p(x)
p(λ)p(θ)p(x, ζ |λ, θ) (22)

and the conditional mean of ζi� is

E(ζi�|θk, λk, x) =
∫

ζi�p(ζi�|θk, λk, x) dζi�

= 0 · Pr(ζ�i = 0|θk, λk, x) + 1 · Pr(ζi� = 1|θk, λk, x)

= λk
�p

(
xi

∣∣θk
�

)∑
l λ

k
l p

(
xi

∣∣θk
l

) . (23)

In the following, we use the abbreviated notation E(ζi�) = E(ζi�|θk, λk, x). The term lnp(x)

is constant during the EM algorithm and can be ignored.

M-step: we find values of the variables which maximize (21)

Ek(lnp(ζ, θ, λ|x)) =
∑

i

∑
�

E(ζi�|θk, λk, x)

(
ln λ� + ln|C�| − 1

2
(xi − m�)

TC−1(xi − m�)

)
+

∑
�

(
(α� − 1) ln λ� − d + 1

2
ln|C�|

)
. (24)

First we maximize with respect to λ given the constraint
∑

� λ� = 1. This can be easily done
using the mode of the resulting Dirichlet distribution:
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λk+1
� =

∑
i E(ζi�) + α� − 1

N +
∑

� α� − nc

, (25)

Note that for the uninformative prior α� = 1, this reduces to

λk+1
� =

∑
i E(ζi�)

N
.

Secondly, the estimates of mean m� and variance C� in the case of the non-informative prior
are updated:

mk+1
� =

∑
i E(ζi�)xi∑
i E(ζi�)

, (26)

and

Ck+1
� =

∑
i E(ζi�)

(
xi − mk+1

�

)(
xi − mk+1

�

)T∑
i E(ζi�) + d + 1

. (27)

If the inverse-Wishart distribution is used the variance update is

Ck+1
� =

∑
i E(ζi�)

(
xi − mk+1

�

)(
xi − mk+1

�

)T
+��∑

i E(ζi�) + ν� + d + 1
. (28)

4. Results

4.1. Implementation details

We use a finite element method for the solution of the forward problem equations (1)–(3).
Details of the finite element method (FEM) model can be found in Arridge et al (1993),
Schweiger et al (1995), Schweiger and Arridge (1997). The implementation uses a library
of C++ classes together with a Matlab interface (Schweiger and Arridge 2008). The EM
algorithm is written in Matlab.

An outline of the algorithm is listed in algorithm 1 and contains nested iterations. The
outer iteration consists of alternating reconstruction and estimation steps. There are two
inner iterations: (i) a damped Gauss–Newton minimization algorithm with inexact line search
(Schweiger et al 2005) and (ii) an EM algorithm.

To ensure convergence in the reconstruction step, data scaling in the likelihood term was
used. The logarithm of the amplitude and phase were scaled by the norms of their initial errors
respectively (Schweiger et al 2005). This is a standard technique in optimization problems
where the data have elements with different scales.

In practice, this is done by rescaling theCholesky decomposition of the noisemeasurement
variance Cy,

L̃y =
[

LlnA

slnA
c

0

0 Lφ

s
φ
c

]
, (29)

where the scaling coefficients sm
c = ‖Lm(ym − fm(x0))‖2 and x0 are the initial estimates of

the optical parameters.
In the literature related to Tikhonov regularization, there are several suggested methods

to find reasonable values of the coefficient γ (Hansen and O’Leary 1993, Vogel 2002). We
have selected γ which gave reasonable results by visual inspection.
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Algorithm 1 Overview of the reconstruction–segmentation algorithm. Note that the outer

iteration is continued until the reconstruction and estimation steps do not produce further

changes.

Initialize parameters

while not converged do

k = 0

Reconstruction step, equation (14)

while k < max. iterations or change in x is small

Calculate Jacobian matrix J of f (xk)

Solve
(
J TLTyLyJ + γLTxLx

)
δxk = J TLTy (y − f (xk)) − γLx(x

k − x)

Do inexact line search in direction δxk

Update xk+1

end while

Set x = xk

k = 0

Estimation step, equation (15)

while k < max. iterations or change in Ek(lnp(ζ, θ, λ|x)) is small

E-Step

Determine equation (21)

M-Step

Solve λk+1
� from equation (25)

Solve mk+1
� from equation (26)

Solve Ck+1
� from equation (27) or (28)

k = k + 1

end while

Set λ� = λk
�, C� = Ck

� , and m� = mk
�

Recalculate x̄ and Lx

end while

4.2. Simulated data

We tested our algorithm with simulated data from a two-dimensional object. The object is a
circle of diameter 5 cm. There are three inclusions of diameter 1 cm each depicted as dashed
lines in figures 2 and 3. Two of the inclusions had the same absorption coefficient and two
had the same diffusion coefficient. The optical values and class labels are listed in table 1.
The refractive index was 1.4 for both background and inclusions.

There are 32 sources and 32 detectors placed at equal distances around the object.
Simulated data were generated from a FEM approximation with an unstructured mesh of
13 051 nodes and 25 752 triangular elements. 1% multiplicative white noise was added to
the data. The FEM approximation in the forward problem used a mesh with 3511 nodes and
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(a) (b)

(c)

(d)

Figure 2. Results after the first reconstruction and estimation step. (a) Absorption coefficient.
(b) Diffusion coefficient. (c) Scatter plot of optical parameters in (lnμa, ln κ)-space.
(d) Probabilistic classification of every pixel (classes 1–4 from left to right). Dots in (a) and
(b) present selected initial values of the class means in the estimation step.

Table 1. Optical properties used in the simulated object.

μa (mm−1) κ (mm) Class label

Background 0.02 0.3 1
Inclusion 1 0.03 0.4 2
Inclusion 2 0.01 0.15 3
Inclusion 3 0.03 0.15 4

6840 triangular elements in an unstructured grid and optical parameters were discretized in a
structured grid which contained 3096 pixels.

We set starting values of optical parameters x0 = ln[0.02 0.3]. In first estimation step,
variances were initialized to C� = 10−2I and values of the inv-Wishart parameters were
ν� = 1 and �� = 10−3I . Initial means in the first estimation step were selected from the first
reconstruction result. Selected means are presented as dots in figures 2(a) and (b). The value
of the variable γ was 10−4. The maximum number of reconstruction steps was limited to five
steps and estimation steps to one step within each outer iteration.
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(a) (b)

(c)

(d)

Figure 3. Results after ten reconstruction and estimation steps when the algorithm has reached the
maximum number of steps; (a)–(d) are the same as in figure 2. Tails with × in (c) represent the
convergence of the class means.

The result after the first reconstruction and estimation step is presented in figure 2. We
have used a non-informative hyperprior (α = 1) for λ. Reconstructed absorption and diffusion
coefficients are presented in figures 2(a) and (b), respectively. The algorithm was initialized
with all the class labels set to the background class. Hence, the first step of reconstruction
uses a unimodal Gaussian prior with initial optical parameters as mean and results in blurred
images. This can be seen in figure 2(c) where the optical parameters of every pixel are
plotted in (lnμa, ln κ)-space. The small circles and ellipses represent the estimated mean
and variance of classes respectively. In figure 2(d), we depict the conditional probability of
belonging to class � Pr(ζi� = 1|θk, λk, xk) for every pixel i. This is sometimes referred to as
‘fuzzy labelling’.

Figure 3 shows the same information as figure 2 after ten reconstruction and estimation
steps when the algorithm has reached the maximum number of iterations. Now absorption
(figure 3(a)) and diffusion (figure 3(b)) coefficients have sharp edges near the class boundaries
and the scatter plot (figure 3(c)) is clearly separated. In the scatter plot, the lines marked with
crosses and ending in ellipses represent the trajectories of the label means. The complete
iterative steps are shown in the animations associated with this paper (movie 1 available at
stacks.iop.org/PMB/54/6457).
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Table 2. Definition of variables.

Quantity Meaning Type

ζi� Indicator of class membership per pixel Binary
nc Number of classes Integer
N = ∑

i� ζi� Number of pixels in the image Integer
ns Number of sources Integer
nm Number of detectors Integer
M Number of complex measurements Integer
λ� Fraction of pixels in class � Real ∈ [0, 1]
m� Mean of class � Real 2-vector
C� Variance of class � Real 2× 2 matrix
θ� Parameters for pdf for class � {m�,C�}
α� Parameter of Dirichlet distribution Positive real
ν� Parameter of inv-Wishart distribution Positive real
�� Parameter of inv-Wishart distribution Real 2× 2 matrix
γ Regularization scaling parameter Positive real
J − Source current Complex function
J + Exitance Complex function
y Combined amplitude and phase data Real 2M-vector
Cy Variance of measurement noise Real 2N × 2N matrix
x Combined image of μa and κ Real 2N -vector
x Mean of image prior Real 2N -vector

We have estimated the probabilistic classification error using

Eclassification =
∑

i p(pixel i misclassified)

N
. (30)

After the first step, the classification error was 26.5% and it converged to 11.7%.

4.3. Noise analysis

In this section, we compare the reconstruction–classification algorithm of section 3 to
a ‘conventional approach’ in which the regularized Guass–Newton algorithm is run to
convergence with a fixed zero-order Tikhonov regularization term (i.e. equation (18), where
x̄ = x0 and Lx = I ), followed by running the estimation step to convergence (maximum
number of iterations was 20). In each case, the algorithms were run with the same noise
instantiations, initial conditions and initial seed points for multiple trials, and the statistics of
the reconstructed images and classifications are compared. The number of trials used was 25.
We used two different methods to select the regularization level for the conventional algorithm:
(i) the choice γ = 0.0056 gave optimal results in the sense of minimizing the reconstruction
error for a known ground truth; i.e. ‖x − xtrue‖, and (ii) the choice γ = 5.6 × 10−4 gave
optimal results in the sense of the classification error (30).

From the set of 25 trials, we determined the mean and standard deviation of the
classification images and the mean and standard deviation of the bias (

√
E[(x − xtrue)2]).

The mean of the reconstructions and standard deviation of the bias are shown in figure 4 and
the mean and the standard deviation of the classifications are shown in figure 5.

These results shows that our reconstruction–classification method and the conventional
method with regularization level (i) have similar total variance but the reconstruction–
classification method generates sharper images and lower classification error. Using



A combined reconstruction–classification method for diffuse optical tomography 6469

Figure 4. Mean of the absorption (first row) and the diffusion (third row) parameters from
25 reconstructions with different algorithms: presented algorithm (left column), Tikhonov
regularization γ = 0.0056 (middle column) and Tikhonov regularization γ = 5.6 × 10−4 (right
column). Standard deviation of the bias (

√
E[(x − xtrue)2]) for the absorption parameter (second

row) and the diffusion parameter (fourth row).

regularization level (ii) leads to greater error in the reconstructions. Total variance of the
bias for the different methods was: absorption 0.017 and diffusion 3.25 in the reconstruction–
classification algorithm, absorption 0.014 and diffusion 2.48 in case (i), and absorption 0.020
and diffusion 12.0 in case (ii). For the reconstruction–classification algorithm, the variance
of the classification is almost all contributed by small errors in the localization of the edges
of the objects, whereas for the conventional algorithm the variance is distributed throughout
the images. The mean classification error for the reconstruction–classification algorithm was
12.8%, whereas for the conventional algorithm, it was 17.6% for regularization level (i) and
15.1% for regularization level (ii).

4.4. Phantom measurement

For experimental data, we used the phantom measurements described in Nissilä et al (2006).
The phantom had a height of 110 mm and a diameter of 69.25 mm (see figure 6). Data yhmg
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Figure 5. Mean of the probabilistic classification from25 reconstructionswith different algorithms:
resented algorithm (first row), Tikhonov regularization γ = 0.0056 (second row) and Tikhonov
regularization γ = 5.6× 10−4 (third row). Standard deviation of the probabilistic classification is
in the second, fourth and sixth rows, respectively. Classes from 1 to 4 are in columns from 1 to 4.
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Figure 6. Geometry of the non-homogeneous phantom.

from a homogeneous phantom and data yinc from a phantom with inclusions were measured
and used to generate difference data. The inclusions both had cylindrical shape, diameters of
9.5 mm and heights of 9.5 mm. The data used for reconstruction were based on the difference
of measurements with the homogeneous forward model added y ≡ f (xhmg) + yinc − yhmg.
The background optical properties were μa ≈ 0.0097 mm−1 and μ′

s ≈ 1.04 mm−1 and
the refractive index was 1.56. One inclusion had approximately twice the background
absorption coefficient and the other had approximately twice the background reduced scattering
coefficient. More details of the measurement and phantoms can be found in Nissilä
et al (2006).

The instrumentation had 16 sources and 16 detectors. Sources and detectors were placed
in two rings around the phantom such that half of the sources and half of the detectors were in
the upper ring and the other halves in the lower ring (see figure 6). Source detector separations
less than 30 mm were not used. Therefore, 192 measurements of amplitude and phase were
acquired. The FEM approximation of the forward problem was done in an unstructured
grid which contained 31 171 nodes and 21 207 tetrahedral elements and optical parameters
were discretized in a structured grid which contained 23 541 voxels. The reconstruction and
estimation were done in (lnμa, ln κ)-space and the reduced scattering coefficient was solved
afterwards.

In the phantom measurement algorithm was initialized as in the simulated case except
x0 = ln[0.0097 0.32]. Selected means are presented as dots in figures 7(a) and (b). In
estimation step, we used only voxels approximately between z = [48 62] (inclusion are
between z = [50.2 59.8]). The value of the variable γ was 10−3. In first estimation step,
variances were initialized to C� = 10−3I . The values of the inv-Wishart parameters were
ν� = 2000 and �� = 0.5I for background class. For other two classes, parameters were
ν� = 200 and �� = 0.05I . Initial means in the first estimation step were selected from
the first reconstruction result. Selected means are presented as dots in figures 2(a) and (b).
The value of the variable γ was 10−6. The maximum number of reconstruction steps was
limited to ten steps and estimation steps to one step.

Figure 7 shows the reconstructed optical parameter from two different planes when the
algorithm has reachedmaximum ten iterations. The reconstructed images show some crosstalk
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(a) (b)

(c) (d)

Figure 7. Reconstructed (a) absorption coefficient from plane z = 0, (b) reduced scattering
coefficient from plane z = 0, (c) absorption coefficient from plane y = 0, and (d) reduced
scattering coefficient from plane y = −12.24 after ten reconstruction and estimation steps when
the algorithm has reached the maximum value of the iterations. Dashed lines present true locations
of the inclusions. Dots in (a) and (b) present selected initial values of the class means in the
estimation step.

between the estimates of absorption and scattering. From figure 8, we can see that the contrast
has substantially improved during iteration, but crosstalk is still present. There are also a
few misclassified voxels which are not near the inclusions or the boundary (see figure 8(b)).
The complete iterative steps are shown in the animations associated with this paper (movie 2
available at stacks.iop.org/PMB/54/6457).
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(a)

(b)

Figure 8. (a) Scatter plot of the absorption and diffusion coefficient when the algorithm has
converged. Tails with × represent the convergence of the class means. (b) Probabilistic
classification of the classes

5. Discussion

In this paper we have presented a simultaneous reconstruction and classification algorithm for
optical tomography. We have adopted the Bayesian framework which described a statistical
model of the optical parameters. In our model, optical parameters are assumed to follow the
Gaussian mixture model with unknown coefficients. We have presented an algorithm which
successively estimates the optical parameters and the mixture model parameters. Estimating
the optical parameters simplifies to Tikhonov regularized reconstruction with variable mean
and variance, and the estimates of themixturemodel are found using the EMalgorithm. Results
from simulated data and phantom measurements showed that our algorithm can accurately
classify inclusions and background and also enhance the contrast of the reconstructed optical
parameters.
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Our alternating reconstruction and segmentation algorithm tries to separate optical
parameters into nearly homogeneous regions. The method uses purely statistical information
andwithout any knowledge of the spatial structure. Prior knowledge of the expected proportion
of the pixels in each class could have been incorporated via the hyperparameter α but was not
used in the examples presented here.

The reconstruction–classificationmethodwe have presentedmay be comparedwith shape-
based methods which assume that the reconstructed images consist of well-defined geometric
regions and the boundaries between them (Kolehmainen et al 1999, Arridge et al 2006, 2008,
Zacharopoulos et al 2006). It may also be compared to level set methods which allow for
topological changes of the structures and regularization based on shape metrics (Schweiger
et al 2006, 2008). However, both of these methods assume uniform contrast levels within
each region that are usually assumed to be known a priori. In cases where these are treated
as unknowns they typically exhibit a degree of cross-talk between object volume and contrast
(Kolehmainen et al 2000a).

In comparison to the algorithm described in Guven et al (2005) our method produces
classification at each pixel rather than assuming this based on auxiliary information. A further
difference is that our implementation does not update the regularization parameter γ during
iteration. We selected γ by visual inspection of the reconstructed optical parameters. An
alternative approach would have been to treat γ as an unknown variable within the Bayesian
framework.

We have limited our examples to the case where the number of the Gaussian distributions
in the mixture model is known. We could consider two different approaches to relax this
limitation. First, we can include one class with large variance and keep that fixed in the
estimation step. This class can be interpreted as an outlier class which collects pixels which
do not fit any other class. Alternatively, we can apply methods for automatically estimating the
number of components in amixturemodel. Themost desirable approachwould be to fitmodels
with different numbers of components Bayesian Model Comparison (Mackay 2002) to find
which is most probable. Unfortunately, this requires estimating a joint posterior distribution
over both the hidden variables and the parameters of the mixture model and this is intractable.
One approach is to use a variational approach to approximate this posterior (Bishop 2006).
A second method would be to use a Monte Carlo method to sample from a Dirichlet Process
mixture model and to choose the modal number of classes (Neal 2000). While it would be
possible to apply these methods here, they are quite complex and beyond the scope of this
article.

Our current algorithm does not assume any spatial correlation between neighbouring
pixels. This can lead to small groups of isolated pixels appearing spatially distant from the
main structure constituting a particular class, as seen for example in figure 8(b) where one of
the inclusions shows some pixels included which belong in the background class. In future
work, we will focus on investigating models which include neighbouring information and on
building models where prior knowledge of class probabilities is available, for example using
multimodality images.
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