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Abstract
In this paper, we present a regularization method in the nonstationary inverse
problem for diffuse optical tomography (DOT). The regularization is based on a
choosing time evolution process such that in a stationary state it has a covariance
function which corresponds to a process with similar smoothness properties as
the first-order smoothness Tikhonov regularization. The proposed method is
computationally more lightweight than the method where the regularization is
augmented as a measurement. The method was tested in the case of the inverse
problem of DOT. A solid phantom with optical properties similar to tissue was
made, incorporating twomoving parts that simulate two different physiological
processes: a localized change in absorption and a surrounding rotating two-part
shell which simulates slow oscillations in the tissue background physiology. A
sequence of measurements of the phantom was made and the reconstruction of
the image sequence was computed using this method. It allows the recovery
of the full time series of images from relatively slow measurements with one
source active at a time. In practice, this allows instruments with a larger
dynamic range to be applied to the imaging of functional phenomena using
DOT.
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1. Introduction

1.1. Diffuse optical tomography

Diffuse optical tomography (DOT) is a functional imaging method which is used to study
the physiology of living tissue non-invasively. Typical applications include the imaging of
hemoglobin concentration and oxygen saturation in the breast, muscle and brain tissue during
interventions, stress or sensory stimulation of the brain. The time scale of hemodynamic
events in these experiments is from hundreds of milliseconds to minutes.

To obtain good sensitivity to the deepest parts of the tissue being imaged, it is essential to
include fully transmissive measurements where the source and detector optodes are positioned
at opposite sides of the tissue. However, if high resolution of the superficial parts of the
tissue is desired, a high density of optodes over the region of interest is needed, with relatively
short source-to-detector separations. Combining both types of measurements is technically
challenging as a large dynamic range is needed. In practical implementations of DOT systems,
there is a trade-off between imaging time, dynamic range and the number of source optodes.
To minimize cross-talk, most instruments use the time-multiplexed approach, in which each
source is activated sequentially. In order to take advantage of the superior 3D imaging
capability of the relatively slow instruments that have the highest sensitivity at low light levels
and the largest dynamic range for practical applications that involve the imaging of relatively
fast functional phenomena, a method of reconstructing the time series of 3D images so that the
reconstruction is updated based on the data corresponding to a single active source is needed.
In the state space method, the image corresponding to a time step is reconstructed based on
the modelled previous state of the tissue and the data corresponding to the current time step,
which includes data for each detector but only one source. This allows the reconstructed
time series to have a higher temporal resolution and greater accuracy of interpretation of
the time-multiplexed data than if the full data corresponding to all the source optodes were
required to reconstruct a single time step. If only the data corresponding to one source is
used to reconstruct images for each time step, it will lead to images with reduced contrast and
incorrect reconstruction of the position of the perturbation, as shown by Kolehmainen et al
(2003).

Furthermore, it is possible to include auxiliary data (such as global physiological signals)
in the state space model, as suggested in Diamond et al (2006).

1.2. State space method

The state space method consists of two models, an evolution model and a measurement model.
The evolution model describes the temporal dynamics of the process under study. In DOT we
are mostly interested in the time evolution of the optical properties xk, such as the absorption
coefficient μa . We can assume that it is a stochastic Markov process xk = Axk−1 + qk−1,
qk ∼ N(0,Qk), where qk is a state noise and k is a state index. The transition matrix A

describes how optical properties evolve during time instances tk−1 and tk. The model could
include a physiological model of the process xk and auxiliary inputs, such as blood pressure
and heart rate, as in Diamond et al (2006), or it could be a random walk process, i.e. A = I ,
as in Kolehmainen et al (2003) and Prince et al (2003).

The measurement model gives a physical observation of the state xk. At every time
instance tk a measurement yk of the process is made. In DOT the forward model is a nonlinear
function. In this section we present the state space method using a linear model for simplicity.
In this case the observation model is a stochastic equation yk = Fkxk + rk , rk ∼ N(0, Rk),
where Fk is an observation matrix and rk is an observation noise.
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This evolution-observation model has a well-known solution, the Kalman filter (Grewal
and Andrews 2001), which consists of a prediction step

m−
k = Amk−1

P −
k = APk−1AT +Qk−1,

(1)

and an estimation step

Sk = FkPkF
T
k + Rk

Kk = P −
k F T

k S−1
k

mk = m−
k +Kk(yk − Fkm

−
k )

Pk = P −
k − KkSkK

T
k ,

(2)

wheremk and Pk are the estimate of the mean and the covariance of the process xk, respectively.
We can use a more general nonlinear version of the evolution model and the measurement
model. Then the solution can be sought using nonlinear methods, such as the extended Kalman
filter (Grewal and Andrews 2001).

Regularization methods are required, because the inverse problem in DOT is ill-posed.
Kaipio and Somersalo (1999) have presented an augmented measurement model to include a
spatial regularization into the state space model. Kolehmainen et al (2003) and Prince et al
(2003) applied this method to DOT. The augmented measurement model ỹk = F̃kxk + r̃k ,[

yk√
αLx̄

]
=

[
Fk√
αL

]
xk +

[
rk

r̂k

]
, r̂k ∼ N(0, R̂k), (3)

contains a pseudo measurement
√

αLx̄ of the regularization term αLxk , where α is a
regularization parameter, L is a regularization operator and x̄ is an a priori estimate of xk.
This formulation has a well-known connection to the Tikhonov regularized solution (Kaipio
and Somersalo 1999).

The augmented measurement method has a drawback in 3D space. The discretized
solution vector mk tends to have a large number of elements. The discretization used in this
paper has 15 711 degrees of freedom. Therefore, solution of the linear system in the estimation
step is computationally impractical (the dimension of the matrix Sk is 15 743 × 15 743, sum
of the physical measurement vector yk dimension (32) and the degrees of freedom (15 711)).
We could overcome this issue by decreasing the degrees of freedom, e.g, using wavelet
domain reconstruction (Rantala et al 2006), or using approximative Kalman filters, such as
the variational Kalman filter (Auvinen et al 2009b) or the BFGS-Kalman filter (Auvinen
et al 2009a). Instead of that, we present a method where the smoothness assumptions are
included in the evolution process. This method does not use the augmented measurement
model; therefore, the matrix Sk is of size 32 × 32 (the size of the measurement vector). As
shown by Kaipio and Somersalo (2004), pp 134–5, the augmented model combined with the
random walk time evolution can be equivalently represented as a modified time evolution
model. However, our method is based on the known spatially smooth time evolution model
rather than the model derived from the augmented model.

In section 2.1 we go through a statistical reconstruction method and compare it to the
general Tikhonov reconstruction method when the object is static. After that, in section 2.2.1
we present a state space method which has similar smoothness properties to the statistical
reconstruction method. The forward method used in DOT is described briefly in section 2.3.
Results from simulated data and real phantom measurement are shown in section 3.
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2. Material and methods

2.1. Stationary reconstruction

We assume that the measured data y ∈ R
m are corrupted with an additive noise

y = f (x) + v, v ∼ N(0, V ), (4)

where the covariance matrix V ∈ R
m×m and m is a number of the measurements. The

measurement model f (x) in DOT is described in section 2.3. The unknown optical properties
x ∈ R

n are a discrete vector, such that xi = x(ri ), i ∈ {1, . . . , n}, where ri are discretization
grid points. We assume that the optical properties are realizations from the normal distribution

x ∼ N(ms, Cs), (5)

where the mean and the covariance are ms,i = ms(ri ) and

Cs,ij = Cs(ri , rj ). (6)

We selected the covariance function from theMatérn family, e.g. Rasmussen andWilliams
(2005),

Cs(r, r′) = σ 2
21−ν

�(ν)

(√
2ν‖r − r′‖

�

)ν

Kν

(√
2ν‖r − r′‖

�

)
, (7)

where � is the gamma function and Kν is the modified Bessel function of the second kind.
Parameters σ , ν and � are positive constants. For ν > k the sample paths x(r) are k times
differentiable, if the process is Gaussian (Gneiting and Guttorp 2010). See more analysis of
the Matérn family covariance function in appendix A.

The stationary inverse problem can be written in the Bayesian framework, where the
solution of the inverse problem is summarized by the posterior density

p(x|y) ∝ p(y|x)p(x), (8)

where the likelihood function p(y|x) = N(y − f (x), V ) and the prior density p(x) =
N(ms, Cs). Amaximum a posteriori (MAP) estimate is equivalent to the Tikhonov regularized
solution of the inverse problem

xMAP = argmin
x∈Rn

‖Ly(y − f (x))‖2 + α‖Lx(x − ms)‖2, (9)

where V −1 = LTyLy and C−1
s = αLTxLx .

In the classical inverse problem theory, smooth solutions are achieved using the
smoothness regularizations, where the regularization matrix Lx is a difference operator,
such as the discretized Laplace operator Lxu ≈ �u. It corresponds to an improper prior
density ∝ exp(−0.5α‖Lx(x − ms)‖2), where Lx is a sparse matrix. This has been a more
computationally attractive method, because Cs is a dense matrix.

2.2. State space approach

In this section we build a state space model, a stationary stochastic process, which has similar
spatial smoothness properties as the stationary reconstruction has. The presented process has
the property that it will decay back to the average value if it has been disturbed and any
measurements have not been made.
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2.2.1. Mean reverting process. In the following sections we study a finite-dimensional
continuous-time space stochastic process xi(t) = x(ri , t), where ri , i ∈ {1, . . . , n}, are grid
points. We could do the same analysis on a spatio-temporal random field x(r, t), but for
simplicity we restrain ourselves in the finite-dimensional model. See the complete analysis
of the discretization of the continuous infinite-dimensional stochastic process in Pikkarainen
(2006).

We assume that the time evolution process is a mean reverting process, Ornstein–
Uhlenbeck process (Uhlenbeck and Ornstein 1930). This process can be written as a stochastic
differential equation (SDE). Some properties of the more general SDE are shown in appendix
B. If the measurements are made at tk, k ∈ Z

+, then the evolution-observation model is

dx(t)

dt
= λ(μ − x(t)) + w(t), (10)

yk = fk(x(tk)) + vk vk ∼ N(0, Vk), (11)

where λ is a positive scalar constant andμ ∈ R
n is a constant vector. The state noisew(t) ∈ R

n

is a time-white noise process. The state noise process has the following properties:

E(w(t)) = 0 (12)

E(w(t)w(t ′)T) = δ(t − t ′)Cw (13)

E(w(t)x(t ′)T) = 0, (14)

where δ is Dirac’s delta function and Cw ∈ R
n×n is a spatial covariance matrix, to be defined

later.
Next we show how the spatial covariance matrix is selected. The process (10) is easier to

analyse if we do the change of the variable z(t) = x(t) − μ, which gives
dz(t)

dt
= −λz(t) + w(t). (15)

Due to subtraction of the constant the covariance is same and the mean is shifted by the
constant. In appendix C we have presented the solution of the mean and the covariance of the
process z(t). The covariance matrix is

cov(x(t), x(t ′)) = e−λ(t+t ′)
(
cov(x(0), x(0)) +

1

2λ
Cw( e2λmin(t,t

′) − 1)
)

, (16)

where cov(x(0), x(0)) is an initial marginal spatial covariance matrix. The process will
converge to the stationary process

E(x(t)) −→ μ, t → ∞ (17)

cov(x(t), x(t ′)) −→ 1

2λ
Cw e

−λ|t−t ′ |, t, t ′ → ∞. (18)

If we select cov(x(0), x(0)) = Cw/(2λ) and x(0) = μ, then the process is stationary t > 0.
We require that the process will have similar spatial smoothness properties as the stationary
reconstruction in section 2.1. Therefore we select

Cw = 2λCs, (19)

where Cs is the covariance matrix in equation (6), and the marginal covariance matrix will be

cov(x(t), x(t)) = Cs (20)

at every time step t. Even if the process starts from other state it will converge to the stationary
state, when t → ∞.
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2.2.2. Time discretization. The continuous state equation (10) can be discretized using
equation (B.5) from appendix B. The process x(t) at tk+1 is

x(tk+1) = e−λ(tk+1−tk )x(tk) +
∫ tk+1

tk

e−λ(tk+1−tk)λμ dτ +
∫ tk+1

tk

e−λ(tk+1−kk)w(τ) dτ (21)

if the state x(tk) is known. Measurements are made at time interval [tk, tk+1] during which we
assume that the process is constant. The evolution-observation model can be written as

xk = Ak−1xk−1 + bk−1 + qk−1 qk−1 ∼ N(0,Qk−1) (22)

yk = fk(xk) + vk vk ∼ N(0, Vk), (23)

where

Ak = e−λ(tk+1−tk) (24)

bk =
∫ tk+1

tk

e−λ(tk+1−τ)λμ dτ (25)

qk =
∫ tk+1

tk

e−λ(tk+1−τ)w(τ) dτ. (26)

The covariance matrixQk = E
(
qkq

T
k

)
is

Qk =
∫ tk+1

tk

e−λ(tk+1−τ)Cw e
−λ(tk+1−τ) dτ

= 1

2λ
(Cw − e−2λ�tk+1Cw), (27)

where �tk+1 = tk+1 − tk (cf equation (B.7) in appendix B). A solution of the discrete state
space model can be solved using the extended Kalman filter (Grewal and Andrews 2001)
or after the linearization of the measurement model using the Kalman filter described in
section 1.2.

2.3. Forward model in diffuse optical tomography

The photon density u(r) in the scattering dominant medium can be approximated by the
diffusive approximation (DA) of the radiative transfer equation. The DA is a partial differential
equation

−∇ · κ(r)∇u(r) +
(
μa(r) +

iω

c

)
u(r) = 0, r ∈ �, (28)

where ω is the modulation frequency, c is the speed of the light and the absorption coefficient
μa(r) and the diffusion coefficient κ(r) are the optical properties. The boundary condition is

u(r) + 2ξκ(r)
∂u(r)
∂n

= J−(r), r ∈ ∂�, (29)

wheren is the outward normal vector and J−(r) is the incoming photon current. The coefficient
ξ is due to the refractive index mismatch at the boundary ∂�.

Measurable quantity, the outgoing photon current, at the boundary, also called the exitance,
is

J +(r) = −κ(r)
∂u(r)
∂n

, r ∈ ∂�. (30)
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(a) (b)

Figure 1. (a) The phantom consists of a cylindrical body and two movable parts. The body (part 1)
has homogeneous optical properties. The sources (x) and detectors (o) are attached on the surface
of the body. Half of the shell (part 2) has a higher absorption coefficient than the body. A small
section of the rod (part 3) has a higher absorption coefficient. Otherwise, movable parts have same
optical properties as the body. (b) The phantom measurement in action.

The complex-valued exitance is presented using the logarithm of the moduli and the argument,
yjq = [

ln |J +q (rj )| arg J +q (rj )
]
, j ∈ {1, . . . , nm}, when the source q is active at rq ,

q ∈ {1, . . . , ns}.
We assume that the diffusion coefficient is constant and we are only interested in changes

in the absorption coefficient. The forward model is yt = ft (xt ), where xt,i = μa(ri ) and the
source q is active at t. The model can be linearized at every time step δyt = Jt (xt )δxt , where
Jt (xt ) is the Jacobian matrix of ft at xt. For computational reasons we linearized the model
only once at the background optical properties xbg and used the model δyt = Jt (xbg)δxt .

The forward model is implemented in the TOAST package and we used its Matlab
interface (Schweiger and Arridge 2008). The package uses the finite element method to solve
equation (28) and the adjoint method to calculate the Jacobian matrix (Arridge 1999).

2.4. Phantom

The phantom consists of a cylindrical main body (part 1) and two movable parts (a rod and a
shell; parts 2 and 3) that go through the phantom. The main body itself is homogeneous but
the movable parts have optically differing perturbations. The shell is divided longitudinally
into two differing regions and the rod has a small perturbation in the middle. By moving these
parts, different physiological phenomena can be simulated. The phantomwasmade fromXOR
crystal polyester resin (CREARTEC trend-design-gmbh), which is optically non-scattering and
clear. Its scattering and absorption properties were modified with titanium dioxide powder
and Pro Jet 900 NP ink (Avecia Biologics Limited), which were mixed in the resin with the
help of a little ethanol. To achieve tissue-like optical properties, the concentration of titanium
dioxide is 191.5 mg dl−1 and the concentration of the ink is 0.14 mg dl−1. The dimensions of
the phantom can be seen in figure 1.
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Figure 2. Time course of the translating and the rotating part of the phantom and sources. The
red line presents the period of the rotating part. Jumps in the line show the time points where the
period changes. Blue bars show when the activation is on, i.e. the perturbation in the translating
part is inside the phantom. Green triangles present the cycle of the sources.

The rod was used to simulate hemodynamic responses by moving it up and down inside
the phantom. The shell was rotated continuously by a stepper motor and it simulated systemic
slow oscillations. The stepper motor was connected to the cylinder with two cogwheels and
a chain, and was controlled with a computer. The systemic slow oscillations in human adults
range from low frequency (∼0.1 Hz) to very low frequency (∼0.02 Hz) (Obrig et al 2000).
The cycle times were determined according to systemic slow oscillations and they ranged from
9.80 to 34.03 s with the average of 20.49 s. The rod was moved by hand with 15 s intervals
so that the perturbation was either completely outside the phantom or in the middle of it. See
figure 2.

2.5. Measurement setup

The measurements were performed using the frequency-domain (FD) optical tomography
system developed at Aalto University (Nissilä et al 2002, 2005). In FD, the optical power of
the light source is modulated with a radiofrequency signal (100 MHz) and the phase shift and
amplitude of the modulated component of the detected light is measured. This corresponds
approximately to the measurement of intensity and mean time using time-domain systems.

Optical fibres were positioned in two rings of 16 positions each. Detector 16 was not
used due to a technical problem. The position of the source and detector fibres is shown
in figure 1. In the first step, the phantom was measured without movement in the rod or
the shell. Calibration according to the three-step procedure described in Nissilä et al (2005)
and Tarvainen et al (2005) was applied to the data and the initial (homogeneous) guess for
the optical properties of the phantom and the amplitude and phase coupling coefficient was
determined by manually adjusting the global parameters until an adequate match between the
simulated and measured slopes of arg J + and ln |J +| as a function of distance was achieved.
The background optical properties were μa,bg = 0.016 mm−1 and κbg = 0.49 mm.

In the next step, the phantom was measured with the rotating shell controlled by computer
and the moving rod (the activation) was manually moved in and out of the phantom with 15-s
intervals, so that the inter-stimulus-onset interval was approximately 30 s. The measurement
time was 600 ms per source position. Measurement without rotation of the shell was also
performed.

The forward problem was solved on an unstructured mesh with 48 127 nodes and 33 813
tetrahedral elements. The optical parameters were discretized on a structured grid with 15 711
nodes.
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3. Results

First we compare the presented regularization model and the state space method where
the regularization is implemented using the augmented measurement model in the case of
simulated data. Then we compare two different reconstruction methods for the measured
data: (i) the stationary reconstruction and (ii) the state space reconstruction. In the stationary
reconstruction we ignore the fact that the object is under motion. The data are averaged before
we solve equation (9). In the state space reconstruction whole time series is solved.

3.1. Comparison of state space models in 2D

First we compare the presented model and the state model where the regularization is
implemented using the augmented measurement model in a 2D simulated case. The object
was a circle of diameter 50 mm. Optical properties of the background wereμa = 0.025 mm−1

and κ = 0.1646 mm. Around the boundary of the object, 32 sources and 32 detectors were
placed evenly. Sources were active once in random order, i.e. data consist of 64 measurements
at 32 time instances (�t = 1 arbitrary units). The object contains a perturbation, diameter
14 mm, located at 12.5mm from the centre of the object. Optical properties of the perturbation
wereμa = 0.05mm−1 and κ = 0.1646mm. The perturbation translates 2.8◦ around the centre
of the object at every time step. Total translation is 90◦.

The data were simulated in an unstructured mesh which contains 13 051 nodes and
25 752 triangular elements. 1% multiplicative noise was added to the measurement. The state
space models were calculated in a structured grid which contains 786 nodes. The forward
model was linearized in an unstructured grid which contains 3511 nodes and 6840 triangular
elements.

First the presented state space model was run. Parameters of the steady state covariance
Cs(r, r′) were σ 2 = 0.01, ν = 5/2 and � = 10. This choice should prefer twice differentiable
solutions like the first-order Tikhonov regularization. We tested several values of the parameter
controlling the mean reverting process and selected λ = 0.5 and μ = 0. Then we run the state
space model with augmented measurement model, such that Q = 10I , R = 0.01I , α = 104,
and the regularization matrix L was the discretized Laplace operator. In both cases, Kalman
filter was utilized with the linearized measurement model.

The results are presented in figure 3 and amovie (movie 1) is available in the supplementary
material at stacks.iop.org/IP/27/025009/mmedia. As expected, bothmethods gave very similar
results. The root mean square error was ranged from 5.2×10−3 to 5.9×10−3 in the presented
state space model and from 5.1×10−3 to 5.8×10−3 with the augmented measurement model.
In both cases, the reconstructions followed the true target without significant lag, but the
contrast was low.

3.2. Stationary reconstruction

First we tested the stationary reconstruction. We calculated the Tikhonov regularized solution
using equation (9), where Lx was the discretized Laplace operator. The regularization
parameter was 0.05. Linear drift was first removed from the data. Then the difference data
between two states, averaged data when the perturbation was inside and averaged data when
the perturbation was outside were calculated. This calculation includes the assumption that
the object does not change during the measurement. This is not actually true since the rotating
part and the translating part are in different phase when a source is next time active. This
adds the noise to the measurement. Figure 4 presents the reconstructed absorption coefficient

9
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Figure 3. Comparison of the presented regularization method (top row) and the state space
method where regularization is implemented using the augmented measurement model (bottom
row) in the 2D case with the simulated data. Each row presents reconstructions at time
instants t = {1, 7, 13, 20, 26, 32} (arbitrary units). The black circle presents true location of
the perturbation (δμa = 0.025 mm−1).

(a) (b)

Figure 4. The reconstruction of the absorption coefficient solved using the first-order Tikhonov
regularization from the averaged difference data. Images present horizontal (a) and vertical
(b) planes through location where the absorption has maximum value. Approximative locations of
the rotating part and the translating part of the phantom are drawn by black lines.

10
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Figure 5. Columns show the state space reconstruction of the absorption coefficient at time
instants t = {−1.6, 2.4, 6.5, 10.6, 14.6, 18.7} s after the beginning of the activation. The upper
row is the horizontal plane through locationwhere the absorption hasmaximumvalue at time instant
6.5 s. The lower row is the vertical plane respectively. The movie (movie 2) is available in the
supplementary material at stacks.iop.org/IP/27/025009/mmedia. Approximative locations of the
rotating part and the translating part of the phantom are drawn by black lines.

from vertical and horizontal planes which go through the location where the absorption gets
its maximum value. The results do not show any significant artefacts but the maximum of the
absorption coefficient is higher than expected.

3.3. State space reconstruction

Next we tested the dynamic reconstruction method developed in this paper. The parameters of
the steady state covariance Cs(r, r′) were σ 2 = 0.05, ν = 5/2, and � = 5. This choice should
prefer twice differentiable solutions like the first-order Tikhonov regularization. We tested
several values of the parameter controlling the mean reverting process and selected λ = 0.61.
If a small value is used, the successive states have a large correlation and the rise time of the
activation is too long.

The data used were difference data. First the linear drift was removed. Then the average,
when the perturbation was outside the main body of the phantom, was subtracted. We are
interested in changes in the optical properties as a function of time. Therefore, we set μ = 0
and the initial state was x(0) = 0.

First the Kalman-filtered solution was calculated from the linearized model. Then the
time-locked average of the time series was calculated relative to the beginning of the activation.
Figure 5 shows the time series of the averaged over intervals between insertions of the
perturbation in the translating part. The movie (movie 2) is available in the supplementary
material at stacks.iop.org/IP/27/025009/mmedia. Figure 6(a) presents activation at a voxel
where the absorption coefficient had the highest value at t = 6.5 s. For comparison the
corresponding time course for the measurement where the shell was not rotated is given in
figure 6(b).
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(a) (b)

Figure 6. (a) The red line shows the average of the absorption coefficient at a voxel where it got
its highest value at time instant 6.5 s after the beginning of the activation. The shaded red area
shows the±2σ confidence interval. The shaded blue area shows time when the perturbation in the
translating part is inside of the main body. (b) Is the same but the rotating part of the phantom was
turned off.

4. Discussion

In this paper we presented a regularization method for the nonstationary inverse problem. Our
evolution model was the Ornstein–Uhlenbeck process with the spatially smooth noise process.
One could use another spatially smooth process, such as the random walk with appropriately
chosen covariance matrix. A difference between the Ornstein–Uhlenbeck process and the
random walk is that the first one has a stationary state and the latter has not.

The problem was studied in 2D DOT by Kolehmainen et al (2003). They used the
augmented measurement model, which was introduced in Kaipio and Somersalo (1999). Our
method, which is based on a spatially smooth time evolution model, performs equally well
as the augmented measurement model in the 2D case, with similar smoothness properties
and regularization effect. On the other hand, the suggested Matérn family of the covariance
functions gives usmuchmore liberty to control the smoothness and the spatial and the temporal
correlation length of the process.

The presented method outperforms the augmented measurement model in cases where the
spatial discretization is large, such as in 3D problems. We studied the case of the reconstruction
of the time series of 3D images from data measured from a dynamic optical tomography
phantom. The calculation of the Kalman gain matrix in the augmented measurement model
method took about 9 min, leading to over 90 h of computation for the complete time series
using the Kalman filter (not performed). One step of the prediction and the estimation in the
Kalman filter using the presented method took only about 3 s, and the total reconstruction time
was about 45 min, including the linearization of the forward model and the calculation of the
covariance matrix. We estimated that the extended Kalman filter, which solves the forward
problem at every step, would take about 24 h. Therefore we used the linearized model instead.

The stationary reconstruction gave reasonable results even though the rotating part of the
phantom interferes with the measurement. The state space method gave more information
than the stationary reconstruction, allowing the reconstruction of the raw and averaged time
series of the localized absorption change in the phantom. Using the presented method, it is
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easier to apply slower, but highly sensitive, instruments to the study of dynamic processes in
tissue. Activating the rotating shell which simulates physiological confounds in tissue reduced
the reconstructed contrast and led to a more noisy time series. To minimize this loss in image
quality, auxiliary signals which are coupled to the background physiology should be included
in the time evolution model. This is a subject of further study.
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Appendix A. Matérn family of the covariance functions

We use the Matérn class covariance function 7 as it is defined by Rasmussen and Williams
(2005). The parameter ν controls the smoothness properties of the process drawn from the
Gaussian process with Matérn covariance. If ν > k, the process will be k times mean square
differentiable (Gneiting and Guttorp 2010). The covariance can be expressed as a product of
a polynomial of order n and an exponential function

Cν= 3
2
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�
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exp

(
−

√
3r

�

)
(A.1)
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. . .

where r = ‖r − r′‖, if ν = n + 1/2. See the complete function in Rasmussen and Williams
(2005). The covariance function has two special cases: the exponential covariance function

Cν= 1
2
(r, r′) = σ 2 exp

(
− r

�

)
, (A.3)

when ν = 1/2, and the squared exponential covariance function

Cν→∞(r, r′) = σ 2 exp

(
− r2

2�2

)
, (A.4)

when ν → ∞ (Rasmussen and Williams 2005). Therefore the parameter � can be defined as
the length scale of the process. The parameter σ 2 is simply the variance.

Appendix B. Stochastic differential equations

In this paper we study SDEs of the form
dx(t)

dt
= Ax(t) + b + w(t), (B.1)

whereA ∈ R
n×n is a constantmatrix. The state noise processw(t) has the following properties:

E(w(t)) = 0 (B.2)

E(w(t)w(t ′)T) = Cwδ(t − t ′) (B.3)

E(w(t)x(t ′)T) = 0, (B.4)

where Cw(t, t ′) ∈ R
n×n is a noise covariance matrix.
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The solution of the SDE is similar to the solution of the deterministic differential equation
(Bar-Shalom et al 2001)

x(t) = e(t−t0)Ax(t0) +
∫ t

t0

e(t−τ)A(b + w(τ)) dτ. (B.5)

The expectation value m(t) = E(x(t)) = e(t−t0)AE(x(t0)) +
∫ t

t0
e(t−τ)Ab dτ can be computed

using property (B.2). Similarly one can solve the covariance matrix

C(t, t ′) = E((x(t) − m(t))(x(t ′) − m(t ′))T) (B.6)

= e(t−t0)AC(t0, t0) e
(t ′−t0)A

T
+

∫ min(t,t ′)

t0

e(t−τ)ACw e
(t ′−τ)AT dτ, (B.7)

where C(t0, t0) is the initial marginal covariance matrix (Bar-Shalom et al 2001).

Appendix C. Mean reverting process

The mean reverting process (10) can be transformed into

dx(t)

dt
= −λx(t) + w(t) (C.1)

by using the change of the variable. The state noise process w(t) has same properties as in
section 2.2.1 and λ is a positive constant. Next we study the process multiplied by eλt

d(x(t) eλt )

dt
= eλt

(
dx(t)

dt
+ λx(t)

)
= w(t) eλt . (C.2)

The solution of the above process is (see appendix B)

x(t) eλt = x(0) +
∫ t

0
w(τ) eλτ dτ. (C.3)

The expectation value of the process (C.2) is

E(x(t) eλt ) = E(x(0)) +
∫ t

0
E(w(τ)) eλτ dτ (C.4)

= E(x(0)), (C.5)

from which we can solve the expectation value of the mean reverting process

E(x(t)) = e−λtE(x(0)). (C.6)

The covariance function of the process (C.2) is

E((x(t) eλt − E(x(t) eλt ))(x(t ′) eλt ′ − E(x(t ′) eλt ′))T) (C.7)

= E((x(0) − E(x(0))(x(0) − E(x(0))T)

+
∫ t

0

∫ t ′

0
eλτ eλυE(w(τ)w(υ)T) dυ dτ (C.8)

= cov(x(0), x(0)) +
∫ min(t,t ′)

0
e2λτCw dτ (C.9)

= cov(x(0), x(0)) +
1

2λ
Cw( e2λmin(t,t

′) − 1) (C.10)
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from which we can solve the covariance matrix of the mean reverting process

cov(x(t), x(t ′)) = e−λ(t+t ′)
(
cov(x(0), x(0)) +

1

2λ
Cw( e2λmin(t,t

′) − 1)
)

. (C.11)

If cov(x(0), x(0)) = Cw/(2λ), then the covariance function is

cov(x(t), x(t ′)) = 1

2λ
Cw e

−λ|t−t ′ |, (C.12)

which is the stationary covariance matrix of the process (C.2).
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