
Publication III

Sami Hanhijärvi, Markus Ojala, Niko Vuokko, Kai Puolamäki, Nikolaj Tatti, and
Heikki Mannila. 2009. Tell me something I don't know: Randomization strategies
for iterative data mining. In: John Elder, Françoise Soulié Fogelman, Peter
Flach, and Mohammed Zaki (editors). Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD
2009). Paris, France. 28 June - 1 July 2009. New York, NY, USA. ACM. Pages
379-388. ISBN 978-1-60558-495-9.

© 2009 Association for Computing Machinery (ACM)

Reprinted by permission of Association for Computing Machinery.

Tell Me Something I Don’t Know:
Randomization Strategies for Iterative Data Mining

Sami Hanhijärvi, Markus Ojala, Niko Vuokko, Kai Puolamäki, Nikolaj Tatti, Heikki Mannila
Helsinki Institute for Information Technology HIIT

Department of Information and Computer Science
Helsinki University of Technology, Finland

fistname.lastname@tkk.fi

ABSTRACT
There is a wide variety of data mining methods available,
and it is generally useful in exploratory data analysis to use
many different methods for the same dataset. This, how-
ever, leads to the problem of whether the results found by
one method are a reflection of the phenomenon shown by
the results of another method, or whether the results de-
pict in some sense unrelated properties of the data. For
example, using clustering can give indication of a clear clus-
ter structure, and computing correlations between variables
can show that there are many significant correlations in the
data. However, it can be the case that the correlations are
actually determined by the cluster structure.

In this paper, we consider the problem of randomizing
data so that previously discovered patterns or models are
taken into account. The randomization methods can be used
in iterative data mining. At each step in the data mining
process, the randomization produces random samples from
the set of data matrices satisfying the already discovered
patterns or models. That is, given a data set and some
statistics (e.g., cluster centers or co-occurrence counts) of the
data, the randomization methods sample data sets having
similar values of the given statistics as the original data set.
We use Metropolis sampling based on local swaps to achieve
this. We describe experiments on real data that demonstrate
the usefulness of our approach. Our results indicate that in
many cases, the results of, e.g., clustering actually imply the
results of, say, frequent pattern discovery.

Categories and Subject Descriptors
H.2.8 [Database management]: Database Applications—
Data mining ; G.3 [Probability and Statistics]: Markov
processes

General Terms
Algorithms, experimentation, theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

Keywords
Statistical significance, matrix randomization, inverse fre-
quent set mining

1. INTRODUCTION
The data mining research of the past 15 years has pro-

duced a wide collection of algorithms for exploratory data
analysis.

In this paper we consider a simple question. Suppose we
have a dataset D, and we first run an analysis using algo-
rithm A1 on D, obtaining interesting results A1(D). Then
we use another method A2 on D, and again obtain fine re-
sults A2(D). How do we know whether the second result is
actually just a consequence of the first, or does it somehow
increase our information about the data? So does A2(D)
tell us something we don’t know, or is it just rephrasing the
result that we already saw when A1(D) was given to us?

For example, using clustering can give indication of a clear
cluster structure, and computing correlations between vari-
ables can show that there are many significant correlations
in the data. However, it can be the case that the correlations
are actually determined by the cluster structure.

In this paper, we consider the problem of randomizing
data so that previously discovered patterns or models are
taken into account. The randomization methods can be used
in iterative data mining. At each step in the data mining
process, the randomization produces random samples from
the set of data matrices satisfying the already discovered
patterns or models.

Example.
Consider the toy task of analyzing the dataset shown in

Figure 1. We can first look at the row and column margins
(sums of rows and columns) in the data, observing for in-
stance that the column margins vary between 3 and 7 and
the row margins between 1 and 6.

The next step in the analysis could be to find the frequent
itemsets using minimum frequency of, say, 3. The resulting
itemsets are

A,B,C,D,E, F,H,AB,AC,AH,BC,BH,CD,CE,

CF,CH,DE,EF,ABC,ABH,ACH,BCH,ABCH,

all with frequency 3 expect itemsetsA,E, F,H,AC,CH with
frequency 4, itemset D with frequency 5 and itemset C with
frequency 7.

The result contains multiple itemsets. Thus it is natural
to ask which of them are interesting?

379

AB C D E F GH
1 1 1 0 0 0 1 1
1 0 1 0 0 1 0 0
1 1 1 0 0 0 0 1
1 1 1 0 1 1 0 1
0 0 0 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 1

Figure 1: Example 0–1 dataset

A possible method is to use randomization. Given the
row and column margins, we can [5, 9] generate datasets
that have these margins but are otherwise random. Then
we can see how often the frequencies of the sets above are
higher in the real data than in the generated datasets, i.e.,
we can compute empirical p-values for the frequencies of the
dataset.1

By preserving row and column margins in randomization,
the frequencies of the itemsets

AB,BH,ABC,ABH,BCH,ABCH

are found to be statistically significant with significance level
α = 0.05. Thus even given the information about the row
and column margins the frequencies of these itemsets are
interesting. The corresponding empirical p-values are

0.044, 0.041, 0.023, 0.004, 0.015, 0.003.

The other empirical p-values are notably larger.
Now the question is, are the significances of the itemsets

independent of each other? In other words, are the larger
itemsets ABC,ABH,BCH,ABCH statistically significant
only because the smaller itemsets AB,BH are?

To answer the question, we would like to compute empir-
ical p-values in a way that takes the already known infor-
mation into account. That is, we would like to constrain
the sampling of datasets so that each dataset will have the
same frequencies for the itemsets AB,BH. This effectively
forms a new null hypothesis, which states that the dataset
is a random dataset with specific row and column margins
and frequencies of the itemsets AB,BH. Using this ran-
domization and assessing the statistical significances of the
itemsets ABC,ABH,BCH,ABCH, we discover that none
of these itemsets are statistically significant with this new
null hypothesis. The corresponding empirical p-values are

0.229, 0.683, 0.222, 0.170.

We can therefore conclude that in this example, the fre-
quencies of the smaller itemsets AB,BH and the marginal
distributions explain the frequencies of the larger itemsets.

We continue analyzing the dataset by clustering the rows
into two clusters using k-means. The first four rows are
found to form the first cluster and the last five rows the sec-
ond cluster. To assess the significance of the clustering given
the row and column information, we compare the original
k-means clustering error to clustering errors on randomized
datasets where the row and column margins are preserved.

1As there are several patterns, we should also correct for
multiple testing [1, 11], but for simplicity we omit that con-
sideration in the example.

We obtain a p-value of 0.011 implying that the dataset con-
tains a clustering structure which is independent of the row
and column margins.

Now it would be tempting to conclude that the dataset
contains some significant itemsets and an interesting clus-
tering structure. But are the frequent itemsets and the clus-
ters independent of each other? If we again preserve the
frequencies of the itemsets AB,BH and the row and col-
umn margins in randomization, we get an empirical p-value
of 0.096 for the clustering structure of the dataset! That is,
the cluster structure does not seem that interesting, given
also the data about the two itemsets.

We can also do the reverse: We can preserve the cluster-
ing structure in addition to the row and column margins in
randomization and test the significances of the frequencies
of the itemsets AB,BH,ABC,ABH,BCH,ABCH. In this
case we obtain the empirical p-values

1.000, 0.239, 1.000, 0.239, 0.239, 0.239,

respectively, thus implying that the clusters and the frequent
itemsets depend on each other.

Contents of the paper.
In this paper we consider the approach described in the

above example in a general form. We give a general prob-
lem statement, show hardness of the randomization problem
and give simple approximate algorithms for the task. We
describe experiments on real data that demonstrate the use-
fulness of our approach. Our results indicate that in many
cases, the results of, e.g., clustering actually imply the re-
sults of, say, frequent pattern discovery.

The rest of this paper is organized as follows. In Section 2
we give the basic definitions. The general problem of ran-
domizing datasets given the information of some other anal-
yses is stated in Section 3. Section 4 gives some complexity
results for this problem, showing that it is in most cases NP-
hard. The randomization algorithms based on Metropolis
techniques are given in Section 5, while the empirical results
are described in Section 6. Section 7 is a short conclusion.

Related work.
Randomization is a widely used method in statistics [10,

20]. The main benefit is that the user is releaved from the
often difficult, and sometimes impossible, task of defining an
analytical distribution for the test statistic. It is sometimes
easier to devise a way of sampling from the null hypothesis
than to actually define it analytically. And integrating over
the analytical distribution, which is needed for the p-value
calculation, may not be straightforward. MCMC methods
are constructed to this purpose, which are also methods for
randomization.

Based on a wide body of work in ecology (see [5]), [9] dis-
cusses the randomization of binary matrices when the size
of the matrix as well as the column and row margins are
to be maintained. The authors use a Markov chain using
local swaps that respect the marginal distributions. The pa-
per [16] discusses the same idea for real matrices, where the
marginal distributions are no longer single integers for rows
or columns, but distributions. They use the Metropolis-
Hastings method to define transition probabilities for their
local changes to maintain the desired marginal distributions.
We take influence from these papers to produce our methods.

Our concepts are closely related to the concept on non-

380

derivability [4]. An itemset X is derivable if we can reduce
the exact support of X from the supports of its sub-itemsets.
For example, if the support of A is 0, then the support of
AB must also be 0. This means that if we preserve the
supports of the sub-itemsets, then the support of X will be
constant, thus its p-value will be 1. Hence, our method can
be seen as a generalization of non-derivability in which we
can still remove insignificant X even though we do not know
the exact support of X.

A closely related idea for iterative knowledge discovery
is presented in [13], where randomization is used in model
selection to test if a candidate model is significantly better
than the current model. The current model is replaced by
a significantly better candidate model and the process is
repeated, effectively carrying out model selection iteratively.

The pattern ordering problem considered in [15] tries to
order a collection of patterns so that each pattern gives as
much information about the data as possible, given the ear-
lier patterns. However, in that approach there is no consid-
eration of randomization or significance, and the approach is
only applicable to simple patterns. A related idea for closed
itemsets, where statistical significance is used to order the
patterns, is presented in [7]. For another type of approach
to significance of patterns, see [12, 18, 19].

2. PRELIMINARIES
In this section, we describe how randomization approach

is used in significance testing, give the definition of empirical
p-values and discuss the method by Besag and Clifford for
calculating MCMC p-values. First, however, we introduce
the notation used in the paper.

2.1 Notation
Let D be a 0–1 dataset with m rows and n columns. The

approach we describe is not limited to 0–1 data, but for sim-
plicity we consider just such data in the paper. The rows of
D correspond to transactions and the columns to attributes.
The notation Dtx refers to the element at row t and col-
umn x in the matrix D. An itemset X is a subset of the
attributes, i.e., X ⊂ {1, . . . , n}. A transaction t covers an
itemset X if Dtx = 1 for all x ∈ X. The frequency of an
itemset X in the dataset D is the number of transactions t
that cover the itemset X, denoted by fr(D;X). A family of
itemsets F is a set of itemsets, F = {X1, . . . , Xk}. A clus-
tering C of the rows of D is a partition of the set {1, . . . ,m}.
The row and column margins of a dataset D are the row
and column sums of D.

2.2 Randomization Approach
Consider a 0–1 dataset D with m rows and n columns.

Assume that some data mining task, such as frequent item-
set mining, is performed on D. Let S(D) be the result of
the data mining task. We assume that the result S(D) can
be described with a single number, and we call such a result
the structural measure of D. It can be, e.g., the frequency
of a given itemset, the number of frequent itemsets or the
clustering error of the dataset. Any measure can be used as
long as larger (or smaller) values mean stronger presence of
the structure.

To assess whether the result S(D) is explained by certain
characteristics of the original dataset, we generate random
m × n sized 0–1 datasets D̂, which share the given charac-
teristics with D, and compare the original result S(D) with

the results S(D̂) on the randomized datasets. We can, e.g.,
preserve the row and column margins in randomization and
assess the number of frequent itemsets.

2.3 Empirical p-Values
Let D̂ = {D̂1, . . . , D̂k} be a collection of independent ran-

domized versions of the original dataset D. The one-tailed
empirical p-value of S(D) for S(D) being large is

|{D̂ ∈ D̂ | S(D̂) ≥ S(D)}|+ 1

k + 1
, (1)

This gives the fraction of randomized datasets whose struc-
tural measure is larger than the original S(D). The one-
tailed empirical p-value when small values of S(D) are in-
teresting, and the two-tailed empirical p-value are defined
similarly. If the obtained p-value, adjusted for multiplicity
if needed, is less than a given threshold α, say, α = 0.05, we
can regard the result to be independent of the characteristics
preserved in randomization.

2.4 MCMC p-Values
We will use Markov chain Monte Carlo methods to pro-

duce the randomized datasets. The samples produced by
Markov chains are generally not independent thus break-
ing the validity of the empirical p-value. However, we will
use the approach by Besag and Clifford [3] to guarantee the
exchangeability of the samples. In the approach the chain
is started from D and run backwards for K steps to pro-
duce a new starting state D̂0. Each randomized dataset D̂
is produced by starting a new chain from D̂0 and running
the chain K steps forwards. This produces an exchangeable
set of samples {D, D̂1, . . . , D̂k} which ensures the validity of
the empirical p-value regardless of the independence. If the
samples are dependent, we obtain just more conservative p-
values, see [2, 3] for more details. Our methods turn out to
be time-reversible, i.e., running the chain backwards is the
same as running the chain forwards.

3. PROBLEM STATEMENT
In this section we formulate the general specific random-

ization problems discussed in the introduction.

3.1 General Problem Statements
In randomization we want to preserve certain character-

istics of the original 0–1 dataset D, e.g., the row and col-
umn margins. Let f(D) be a statistics function which cal-
culates these statistics of the dataset D. To measure the
similarity between two datasets D and D̂ in the correspond-
ing statistics f(D) and f(D̂), we define a difference measure

h(f(D), f(D̂)) which is a positive function between two sets

of statistics f(D) and f(D̂), where D and D̂ are 0–1 datasets
with the same size. Any difference measure can be used as
long as a smaller difference means that the statistics f(D)

and f(D̂) are closer to each other and a zero difference that
the statistics are equal.

We introduce two general randomization problems. In the
first problem the statistics are preserved exactly where as
in the second problem datasets with small difference in the
statistics are sampled with high probability. The problem
statements are as follows.

Problem 1 (ExactRand). Given a 0–1 dataset D and

a statistics function f , generate a dataset D̂ chosen indepen-

381

dently and uniformly from the set of 0–1 datasets having the
same size and the same statistics as D, i.e., f(D) = f(D̂).

Problem 2 (SoftRand). Given a 0–1 dataset D, a

statistics function f , a difference measure h(f(D), f(D̂))

and a scaling constant w > 0, generate a dataset D̂ cho-
sen with a probability

p ∝ exp{−wh(f(D), f(D̂))}

from all 0–1 datasets having the same size as D.

Note that when w =∞, SoftRand reduces to ExactRand.

3.2 Specific Problem Statements
Next we give the problem statements of the three spe-

cific randomization tasks discussed in the introduction. The
problems Margins, ClusterMargins and ItemsetMar-
gins are examples of the problem ExactRand.

Problem 3 (Margins). Given a 0–1 dataset D, gen-

erate a dataset D̂ chosen independently and uniformly from
the set of 0–1 datasets having the same row and column mar-
gins as the dataset D.

Problem 4 (ClusterMargins). Given a 0–1 dataset
D and a clustering C of the rows of D, generate a dataset
D̂ chosen independently and uniformly from the set of 0–1
datasets having the same row and column margins as well as
the same cluster centers and variances for each cluster in C
as the dataset D.

Problem 5 (ItemsetMargins). Given a 0–1 dataset

D and a family of itemsets F , generate a dataset D̂ chosen
independently and uniformly from the set of 0–1 datasets
having the same row and column margins as well as the same
frequencies for the itemsets in F as the dataset D.

It turns out that the problem ItemsetMargins is much
harder than Margins and ClusterMargins, see Section 4.
Thus we introduce SoftRand version of ItemsetMargins.
Let D be the original dataset, D̂ a randomized dataset and
F a family of itemsets which we are trying to preserve in
randomization. We define the difference in the itemset fre-
quencies of F between the datasets D and D̂ as

hF (D, D̂) =
X

X∈F

| fr(D;X)− fr(D̂;X)|, (2)

where we have combined the statistics function directly into
the difference measure.

Problem 6 (ItemsetMarginsSoft). Given a binary
dataset D, a family of itemsets F and a scaling constant
w > 0, generate a dataset D̂ chosen with a probability

p ∝ exp{−whF (D, D̂)}

from the set of 0–1 datasets having the same row and column
margins as the dataset D.

4. COMPLEXITY RESULTS
In this section we prove that the ItemsetMargins variant

defined in Section 3.2 is intractable in general case. We will
do this by reducing the HamiltonCycle to ItemsetMar-
gins. This negative result shows the need for ItemsetMar-
ginsSoft where we allow some variation in the frequencies.

Theorem 1. Assume that there is a random polynomial
algorithm for ItemsetMargins. Then RP = NP even if
the algorithm is provided with an example of such dataset.

A random polynomial algorithm is a Turing machine that
is bounded by a polynomial time with an oracle produc-
ing random independent numbers. A language is said to
be in RP if there is a non-deterministic Turing machine
such that, given a ’yes’-instance, at least half of the com-
putational paths end up with ’yes’. It is easy to see that
RP ⊆ NP, and the usual conjecture is that RP 6= NP.

Our reduction is based on Hamiltonian cycles. A Hamil-
tonian cycle is a cycle in a graph such that every node of the
graph is visited only once. Alternatively we can see the cy-
cle as a permutation of the nodes such that adjacent nodes
(including the first and the last nodes) are connected. The
problem HamiltonCycle is FNP-complete [17].

To prove the main result we will need a couple of lemmae.
The first lemma states that we can connect Hamiltonian
cycles and the datasets satisfying some specific constraints.

Lemma 2. Assume that we are given a graph G. There
are column and row margins, itemset frequency constraints,
and a function m that maps a dataset satisfying the con-
straints into a Hamiltonian cycle of G.

Proof. Assume that we are given a graph G with M
nodes and N edges. Our goal is to construct appropriate
constraints. At first, we will focus only on itemsets and
column margins. The row margins will be discussed later.
In our construction we will have 6 different attribute groups.

The first attribute group O = {o1, . . . , oM} contains M
attributes. We impose the frequencies fr(oi) = 1, fr(oioj) =
0 for i, j = 1, . . . ,M , i 6= j. These frequencies will force that
for each oi there is a row on which the attribute value is 1 and
that there are no other active oj on that row, i.e., if we stack
the rows into a matrix we will have a permutation matrix.

The second group V = {v1, . . . , vM} is similar to the first,
that is, we have fr(vi) = 1 and fr(vivj) = 0. This construc-
tion gives us also a permutation matrix. Also note that for
each oi there is a unique vj such that there is a row in which
both oi and vj are present. This allows us to define a per-
mutation of σ(i) = j. The main idea is that σ represents the
Hamiltonian cycle. This can be achieved if we can force that
the nodes in G corresponding to σ(i) and σ(i + 1) are con-
nected. We will achieve this with the rest of the attributes.

The third group B = {b1, . . . , bM} contains the attributes
satisfying bi = oi ∨ oi+1. This is done by imposing the item-
sets fr(bi) = 2, fr(bioi) = 1, and fr(bioi+1) = 1 for i =
1, . . . ,M −1 and fr(bM) = 2, fr(bMoM) = 1, and fr(bMo1) =
1. We see that the attribute bi is present on two rows and
the rows are precisely those in oi and oi+1 are present.

Our fourth group of items resembles greatly the third
group. We denote the group by C =

˘
c1, . . . , cM(M−1)/2

¯
.

The group contains M(M − 1)/2 attributes, where each ci
correspond to a pair of nodes (j, k) in the graph G. We de-
fine the frequencies such that ci is exactly vj ∨ vk. This is
done by setting fr(ci) = 2 and fr(civj) = fr(civk) = 1.

Now let us consider what happens if σ(i) and σ(i + 1)
are not connected in G. There is a cj corresponding to the
node pair (σ(i), σ(i+ 1)) such that the columns bi and cj
are equivalent. In other words, we have fr(bicj) = 2. Thus,
to guarantee that σ is indeed a valid Hamiltonian cycle we
need to make sure that for all bi and cj corresponding to
unconnected pairs in G we have fr(bicj) < 2.

382

Since we do not have inequality constraints in our setup
we will have to simulate it. Let L = M(M−1)/2−N be the
number of pairs of unconnected nodes. We define the fifth
set of attributes, denoted by S = {s1, . . . , sLM}, to contain
LM attributes, one sij for each pair (bi, cj), where cj rep-
resent a pair of unconnected nodes. The needed inequality
constraint is simulated by setting fr(sij) = 1, fr(sijbi) = 1,
and fr(sijcj) = 0. This construction forces bi and cj to be
unequal so that the frequency fr(bicj) 6= 2.

We see now that using the defined itemsets and column
margins from all 5 groups forces the permutation σ to be a
valid Hamiltonian cycle.

Let us now turn the attention to the row margins. The
number of 1s in a single row is as follows: one 1 from group
O, one 1 from group V , two 1s from group B and M − 1 1s
from group C. Group S is problematic since the number of
1 varies per row. We remedy this by defining the sixth group
E = {e1, . . . , eLM}. This group contains LM attributes. We
set ei to be the negation of si. We achieve this by setting
fr(ei) = M−1 and fr(siei) = 0. Now the common number of
1s on single row in group S and E is LM . Hence by setting
all the row margins to 1 + 1 + 2 + M − 1 + LM we have
created a set of constraints such that a dataset satisfying
the constraints corresponds to a Hamiltonian cycle.

Our second lemma states that for each Hamiltonian cycle
in a given graph there is exactly same number of datasets
satisfying the constraints.

Lemma 3. Given a graph G and a Hamiltonian cycle H.
Let m be the map given in Lemma 2. Define X = {D;m(D)
= H} to be the datasets which m maps into H. Then |X | is
a constant not depending on the Hamiltonian cycle H.

Proof. To prove the lemma first note that a dataset sat-
isfying the constraints has M unique rows. Thus there are
M ! datasets obtained by permuting the rows. Assume now
that the group O has the shape of the identity matrix. There
are exactly 2M different permutations for a given Hamilto-
nian cycle, i.e., exactly 2M different configurations for V .
Note that the groups B and C are determined completely
by the groups O and V and that the group E is determined
by the group S. The theorem is proved if we can show that
there are a constant number of configurations for S.

Note that there are 2U configurations for S where U is the
number of sij for which fr(bicj) = 0. The frequency fr(bicj)
is 0 when both the σ(i) and σ(i+1) do not contain the nodes
corresponding to the cj . For a fixed j there are M − 4 of
such sij . Hence we have U = (M − 4)L.

Combining the numbers together we have that for a fixed
Hamiltonian cycle we have exactly M !2M2(M−4)L datasets
which is a constant. This proves the theorem.

Proof of Theorem 1. We start the proof by consider-
ing a related NP-complete problem called SecondHamil-
ton [17]. In this problem we are given a Hamiltonian graph,
a Hamiltonian cycle, and we are asked if there is a second
Hamiltonian cycle different from the given one.

Now let us consider a problem RandomHamilton hav-
ing the same input as SecondHamilton in which we are
asked to give a random Hamiltonian cycle of the graph. As-
sume that we have a random polynomial algorithm H for
this problem. Now consider the problem of SecondHamil-
ton. We can replace H with a non-deterministic machine
by considering all the possible random outputs of the oracle.

x y
...

...
s · · · 1 · · · 0 · · ·...

...
t · · · 0 · · · 1 · · ·...

...

⇐⇒

x y
...

...
s · · · 0 · · · 1 · · ·...

...
t · · · 1 · · · 0 · · ·...

...

Figure 2: A swap in a 0–1 matrix.

Then we compare the random Hamiltonian cycle returned
by H with a given Hamiltonian cycle. If the cycles differ,
then we return ’yes’, otherwise ’no. This means that if there
is another cycle in the graph, then at least 1/2 of the com-
putation paths ends up with ’yes’. Thus we have shown
that SecondHamilton is in RP. But SecondHamilton is
NP-complete and this proves that NP = RP.

Now assume that there is a polynomial algorithm for Item-
setMargins. Such an algorithm is given a set of constraints
and an example dataset satisfying the constraints. By using
the construction given in Lemma 2 we can use that algo-
rithm for sampling Hamiltonian cycles in polynomial time.
The given Hamiltonian cycle can be also easily transformed
into a dataset needed for the input of the algorithm.

The only thing we need to show is that this reduction
produces Hamiltonian cycles from the uniform distribution.
Since we have assumed that the datasets are coming from the
uniform distribution, it suffices to prove that there are same
number of datasets for each Hamiltonian cycle in a fixed
graph. But this is exactly the statement of Lemma 3.

5. ALGORITHMS
Next we introduce algorithms for solving the problems

Margins, ClusterMargins and ItemsetMarginsSoft.
First we introduce the method by Gionis et al. [9] for solving
Margins. Our methods for ClusterMargins and Item-
setMarginsSoft extend the method for solving Margins.

5.1 Preserving Row and Column Margins
The method for producing random datasets D̂ having the

same row and column margins as the original dataset D
is based on swaps. In each swap two rows s, t and two
columns x, y are selected such that Dsx = Dty = 1 and
Dsy = Dtx = 0. In a swap the four elements are swapped as
shown in Figure 2. A swap preserves the row and columns
sums. A randomized dataset D̂ is produced by performing
K attempts of swaps. This is given in Algorithm 1. The
existence of self-loops guarantees that the stationary distri-
bution is uniform, see [9] for more details.

Algorithm 1 Swap

Input: Dataset D, num. of swap attempts K
Output: Randomized dataset D̂
1: D̂ ← D
2: for i← 1 to K do
3: Pick s, t and x, y such that D̂sx = 1, D̂ty = 1

4: if D̂sy = 0 and D̂tx = 0 then

5: D̂ ← swapped version of D̂
6: end if
7: end for
8: return D̂

383

5.2 Preserving Clustering Structure
To obtain an algorithm for the problem ClusterMar-

gins, we modify Algorithm 1 to preserve the given clustering
C. At each step we pick a cluster C ∈ C and attempt a swap
inside that cluster. When the rows s, t belong to the same
cluster, the cluster centers and variances do not change. The
pseudocode of this approach is given in Algorithm 2.

Algorithm 2 Cluster-Swap

Input: Dataset D, partition C of D, num. of swap at-
tempts K

Output: Randomized dataset D̂
1: D̂ ← D
2: for i← 1 to K do
3: Pick a cluster C ∈ C
4: Pick s, t ∈ C and x, y such that D̂sx = 1, D̂ty = 1

5: if D̂sy = 0 and D̂tx = 0 then

6: D̂ ← swapped version of D̂
7: end if
8: end for
9: return D̂

5.3 Preserving Itemset Frequencies
As was mentioned in Section 3, preserving itemset fre-

quencies exactly in general is hard. Thus we give an al-
gorithm for solving ItemsetMarginsSoft where the item-
set frequencies are preserved approximately. We use the
Metropolis algorithm [14] to produce random samples from
the probability distribution

π(D̂|D,F) ∝ exp{−whF (D, D̂)},

where hF is defined in Equation (2). At each step in the
Metropolis algorithm, a proposal modification D′ of the cur-
rent state D̂ is formed. The proposal is accepted as the
new state with a probability min(1, π(D′)/π(D̂)). A direct
implementation of the Metropolis algorithm with swaps is
given in Algorithm 3.

Algorithm 3 Itemset-Swap

Input: Dataset D, itemsets F , num. of swap attempts K
Output: Randomized dataset D̂
1: D̂ ← D
2: for i← 1 to K do
3: Pick s, t and x, y such that D̂sx = 1, D̂ty = 1

4: if D̂sy = 0 and D̂tx = 0 then

5: D′ ← swapped version of D̂
6: a← Uniform(0,1)

7: if a < exp{−w(hF (D,D′)− hF (D, D̂))} then

8: D̂ ← D′

9: end if
10: end if
11: end for
12: return D̂

The same approach can be used to solve the problem
SoftRand in general. However, if too many characteris-
tics are preserved at the same time, the chain may not mix
well enough. In such cases parallel tempering can be used to
overcome the problem [8]. In our experiments, we consider
only a reasonable amount of small itemsets as constraints.

Data set # of rows # of cols # of 1’s density

Paleo 124 139 1978 11.48%
Courses 2405 5021 65152 0.54%

Table 1: Basic characteristics of the datasets.

6. EXPERIMENTS
In this section, we carry out several data mining exper-

iments to demonstrate the use of our framework. We will
first present a method to automatically analyze the conver-
gence of the Markov chain. The method is then used in the
subsequent experiments with two real data sets.

6.1 Setup for the Experiments
We use two real data sets: Paleo and Courses, whose

basic characteristics are presented in Table 1. The Paleo2

data contains paleontological absence/presence information
about species in excavation sites [6]. The Courses data set
records the courses individual students have taken in the
Department of Computer Science in Helsinki University of
Technology.

We used the method by Webb [18] to ensure correct treat-
ment of multiple hypothesis. We split both data sets ran-
domly half on rows, and used the other part for mining fre-
quent itemsets of size 2 and 3. The other part was used for
randomization, i.e., p-value calculation.3

The Paleo data set was mined with minimum support 4,
and Courses with 200. It turned out that only 41 columns of
Courses are covered by the found frequent sets. We choose
to ignore the columns of Courses that are not present in
any of the frequent sets. We chose to consider only the fre-
quent sets of size 2 and 3, since it may be fairly easy to
understand the co-occurrence of 2 or 3 variables, but under-
standing itemsets of larger size is increasingly difficult.

When calculating the p-values of itemsets, we use the
support as the test statistic, where a higher value is more
extreme, i.e., more interesting. We always sample 1000
matrices and use them for p-value calculation. The unad-
justed, raw p-values are always adjusted for multiplicity with
Benjamini-Hochberg method [1], which controls the false dis-
covery rate (FDR). The level of FDR is set to 0.05, and thus,
if the p-value of a pattern does not exceed this threshold
value, the pattern is considered statistically significant.

We also cluster the data sets in some of the experiments.
We use the traditional k-means with 3 clusters for Paleo
and 20 clusters for Courses. Since k-means may get stuck
in local optima, we run k-means 10 times and use the clus-
tering with the smallest error. When calculating the p-value
of a clustering, our test statistic is the sum of the square
of the L2 distances between rows and their respective cen-
troids. This is almost the same as optimized by k-means,
but we use this slightly modified version since we know the
ClusterMargins maintains the value of this test statistic.

We use the Algorithm 3 to solve ItemsetMarginsSoft,
with w = 4. That is, a swap which would increase the
total error in itemset frequencies by one is accepted with
probability exp(−4) ≈ 0.018.

2NOW public release 030717 available from [6].
3We also tried not using Webb’s method and use the com-
plete data sets for mining itemsets as well as randomization.
However, the results did not differ significantly.

384

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x 10
4

d
is

ta
n
c
e

multiplier

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

Figure 3: Boxplot of distances between the orig-
inal matrix and 5 ItemsetMarginsSoft randomized
matrices of Courses data with different number of
swap attempts. The x-axis depicts the multiplier to
use with the number of ones in Courses to get the
number of swap attempts.

6.2 Convergence Analysis
In our experiments we used an automatic convergence

analysis method that is based on the distance between the
original and the randomized matrix. As a distance we used
the square of the Frobenius norm between these two matri-
ces [16]. With 0–1 matrices, this is essentially the number
of cells where the two matrices differ. When swapping, this
distance usually first increases rapidly, until after some num-
ber of swaps it tends to settle around a certain value. The
intuition is that when the distance does not change much,
the Markov chain is considered to have converged.

We calculate the number of swap attempts K needed as
follows. We first assign to K the amount of ones in the ma-
trix, as it gives an indication of the number of swaps possible
in that matrix, given that the matrix is sparse. We then ran-
domize the original matrix separately 5 times with K swaps
and calculate the mean of the matrix distances between the
randomized data and the original data. If the mean distance
with the current K has changed less than 1% with respect to
the previous step, we consider the chain to have converged,
stop iterating, and use the final value of K in the sampling.
Otherwise, we multiply K by 2 and repeat the step.

As an example, we run the automated convergence analy-
sis on Courses with 40 frequent sets of size 2 as constraints.
The development of the matrix distances is given in Figure 3.

Note that since we use backward forward sampling, the
chain is first traversed backwards with K swap attempts,
and the resulting matrix is used as a basis for further ran-
domizations. Eventually, the number of swap attempts from
the original matrix to a matrix sample is 2K.

6.3 Significant Itemsets of Size 2
In the first experiment, we are interested in the covari-

ances between the columns when constraining the random-
ization in different ways. Therefore, we focus on all possible
itemsets of size 2, and randomize with Margins, Itemset-
MarginsSoft and ClusterMargins. For the constraints
of ItemsetMarginsSoft we used itemsets of size 2 con-
taining adjacent items. Notice that we did not use Webb’s
method here since we consider all possible patterns.

Data set M IMS CM

Paleo 4.9 360 15
Courses 64 5200 200

Table 2: Average execution times in milliseconds
to produce a single random matrix with Margins
(M), ItemsetMarginsSoft (IM) and ClusterMargins
(CM). The implementations are written in Java and
the randomizations run on a 2.5GHz machine.

Paleo M
N S

IM
N 8832 145
S 60 544

Paleo CM
N S

IM
N 8977 0
S 614 0

Courses M
N S

IM N 402 47
S 41 330

Courses CM
N S

IM N 437 6
S 326 51

Table 3: Some of the contingency tables of the
significance of itemsets in randomizations Margins
(M), ItemsetMarginsSoft (IM) and ClusterMargins
(CM). S represents statistical significance and N the
opposite. All pairs of columns in a data set were
used as itemsets.

The execution times to produce a single random matrix
with different constraints and data sets are listed in Table 2.

Table 3 depicts several interesting contingency tables of
the significance of itemsets in two randomizations at a time.
We also measured the significance of the clustering result.
Using the defined test statistic, the clustering was statis-
tically significant in Margins and ItemsetMarginsSoft,
but naturally not in ClusterMargins.

When comparing the contingency table of ItemsetMar-
ginsSoft and Margins in Paleo, it is evident that many
of the itemsets were not significant in either randomization.
Still, several itemsets were statistically significant in both
cases. One example of such an itemset with two species is
Brachyodus and Bunolistriodon. Both were contained in sep-
arate itemsets constrained in ItemsetMarginsSoft. Ap-
parently, having both species in separate itemset constraints
did not require to maintain the support of their combined
itemset, and hence, it was statistically significant.

Other interesting itemsets are the ones that were statisti-
cally significant in ItemsetMarginsSoft but not in Mar-
gins. One example of such itemset is Hyainailouros and
Amphimoschus. Again both species were contained in sepa-
rate itemset in the constraints, but their combined itemset
was not. These constraints had a clear decreasing effect
in the support of the itemset, and therefore, it was found
significant when randomizing with ItemsetMarginsSoft,
but not with Margins.

The contingency table between ClusterMargins and
ItemsetMarginsSoft shows that no itemset was statisti-
cally significant when constraining the randomization with
clustering. Even though the Paleo data set is known to have
three clear clusters, the extent of this constraint was surpris-
ing. We expected to see at least few itemsets significant in
ClusterMargins. Evidently the clustering result fully ex-
plains the pairwise correlations of the species in the data set.

385

Similar results were found from Courses. An example
of a statistically significant itemset in Margins and Item-
setMarginsSoft is Computer Organization and Database
Systems I. This was expected, since 90% of students who
took Database Systems I also took Computer Organization.

One example of a course pair that was significant in Item-
setMarginsSoft but not significant in Margins is Models
for Programming and Computing and Introduction to the
Use of Computers. One possible reason for this is that this
pair of courses is taken by very different kind of people. The
itemsets of these groups introduce anti-correlation between
the courses in the example, and therefore, that itemset be-
comes statistically significant in ItemsetMarginsSoft.

The clustering results are again similar to the ones in Pa-
leo, with the exception that now some itemsets are signifi-
cant in ClusterMargins. An example of a pair of courses
that is significant in ItemsetMarginsSoft and Cluster-
Margins is Reading Comprehension in English and English
Oral Test. These courses are not specific to any study pro-
gramme in computer science, and therefore, are not affected
by clustering. The clustering mostly separates students with
respect to computer science courses, which makes these gen-
eral courses poorly clustered. However, this allows them to
be statistically significant even when constraining the ran-
domization with the clustering.

6.4 Using Significant Itemsets as Constraints
The motivation of the second experiment is to simulate an

actual data mining scenario, where the patterns are discov-
ered by a data mining algorithm and these are then used
to assess which are significant in different randomization
scenarios. Essentially, the idea is to find out the possible
interrelations between itemsets and clustering.

We focus on frequent sets of size 2 and 3 mined from the
used data sets. Here we use again the same randomizations
Margins, ItemsetMarginsSoft and ClusterMargins,
but with different constraints for ItemsetMarginsSoft.

The first set of constraints in ItemsetMarginsSoft is
constructed by adding the 40 most significant itemsets from
Margins, i.e., the ones with the smallest p-values. The
interest is how the significance of the other itemsets change
when constraining with the most significant itemsets.

The second set of itemset constraints is used for Itemset-
MarginsSoft, but now the set contains the itemsets that
had the largest increase in their p-value from Margins to
ClusterMargins. The intuition is that these itemsets may
explain the clustering since they were explained by it. We
use ICM for short for this randomization.

Table 4 depicts a few interesting contingency tables of the
significance of itemsets in two randomizations at a time. The
clustering was statistically significant in Margins, Item-
setMarginsSoft and ICM, but not in ClusterMargins.

The Paleo results between ItemsetMarginsSoft and
ClusterMargins are very similar to the previous section.
None of the itemsets were significant in ClusterMargins,
and a portion was significant in ItemsetMarginsSoft. The
strength of the clustering result clearly also affect the item-
sets of size 3.

The contingency table between ICM and ItemsetMar-
ginsSoft displays the fact that neither of the constraint sets
completely explain the data since roughly 500 itemsets were
significant in both, and few hundred in either. Still, 60%
of the itemsets were explained by both constraint sets along

Paleo CM
N S

IM N 1882 0
S 687 0

Paleo ICM
N S

IM N 1572 306
S 162 535

Courses CM
N S

IM N 297 13
S 809 146

Courses ICM
N S

CM N 265 841
S 2 157

Table 4: Some of the contingency tables of the
significance of itemsets in randomizations Mar-
gins (M), ItemsetMarginsSoft (IM), ClusterMargins
(CM) and ItemsetMarginsSoft constrained by item-
sets found using ClusterMargins (ICM). S repre-
sents statistical significance and N the opposite. Fre-
quent itemsets of size 2 and 3 were used as itemsets.

with the margins. However, 1419 itemsets were never signif-
icant even with Margins, which means that the expressive
power of both constraint sets is very limited.

ClusterMargins is very different from ICM. Although
we tried to construct the set of itemsets to constrain in ICM
in such a way that the results would be the same as with
ClusterMargins, the numbers of significant itemsets do
not show this.

The results for Courses display similar behavior between
ItemsetMarginsSoft and ClusterMargins as in previ-
ous experiment, and different from Paleo. Clearly, the clus-
tering of Courses does not describe the data as well as for
Paleo. One example of an itemset of courses significant in
both is Programming Project and Programming in Java. Ev-
idently, these have much in common and are most likely
taken both instead of just either of them.

The comparison between ClusterMargins and ICM ex-
presses the same as with ClusterMargins and Itemset-
MarginsSoft. We can conclude also here that ICM with
these constraints is not as strict, and conversely, does not
explain as much, as ClusterMargins. An example itemset
significant in ICM but not in ClusterMargins is Informa-
tion Systems Project, Programming Project and Data Com-
munications. The last two was an itemset constrained in
ICM, and the first was also a part of a separate constraint.

This itemset had high frequency in some clusters but very
low in others. Because of this, the randomization had little
room to break the itemset in ClusterMargins. We conjec-
ture that these courses are most likely all required in some
study programme. Additionally, Programming Project and
Data Communications together did not explain the occur-
rence of the triplet, and therefore it was significant in ICM.

6.5 Discovering Significant Itemsets Iteratively
In our final experiment we conduct an iterative data min-

ing process in which the itemsets are added iteratively to
constraints. We used again the frequent sets of size 2 and 3.

First, the data is randomized with Margins and the item-
set with the smallest p-value is inserted to the set of itemset
constraints. The data is then randomized at each iteration
with ItemsetMarginsSoft and always the itemset with
the smallest p-value is added to the set of constraints. This
resembles the situation where the user iteratively tries to un-
derstand one pattern at a time and wants to find which pat-
terns are not explained by the already understood patterns.

386

#
si

gn
ifi

ca
nt

pa
tte

rn
s

0 1 2 3 4 5 6 7 8 910

950

1000

1050

1100

1150

iteration

(a) Paleo

0 1 2 3 4 5 6 7 8 910

1080

1100

1120

1140

iteration

(b) Courses

Figure 4: The number of significant itemsets at each
iteration. Notice the different vertical scale and that
the lower parts of the bars have been cropped to
better see the difference between iterations.

We carried out a total of 10 iterations. Figure 4 displays
the number of itemsets found significant at each iteration,
including the initial Margins randomization.

The results follow almost with no fail the intuition that
when constraints are added, the number of significant item-
sets decreases. However, this may not always be the case,
as seen in the previous experiments. Sometimes adding con-
straints increases the statistical significance of some patterns
by introducing anti-correlation. Still, the intuitive results
may be due to how the itemset constraints were selected.
At any time, the constrained itemsets do not explain the
itemsets found statistically significant. However, the signifi-
cant itemsets are still likely to have some correlation between
them, and adding one of them to the set of constraints will
restrict the rest. Selecting itemsets in another fashion may
produce very different results.

7. CONCLUSIONS
Our focus in the paper was to study the concept of it-

erative data mining. The idea behind this approach is the
question whether the results of one analysis explains or im-
plies the results of another analysis. This approach can be
then refined into iterative data mining process in which the
user iteratively selects interesting patterns or models that
are then used for updating the significance of the rest of the
patterns or models.

Our approach is to produce random data sets having the
same selected statistics as the original dataset. As constrain-
ing statistics we used row and column margins, itemsets,
and clustering structure. Using these random data sets we
computed empirical p-values for our test statistics. Our ex-
periments demonstrated that our method works in practice.

8. REFERENCES
[1] Yoav Benjamini and Yosef Hochberg. Controlling the

false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal
Statistical Society. Series B (Methodological),
57(1):289–300, 1995.

[2] Julian Besag. Markov chain Monte Carlo methods for
statistical inference. http://www.ims.nus.edu.sg/
Programs/mcmc/files/besag_tl.pdf, 2004.

[3] Julian Besag and Peter Clifford. Generalized Monte
Carlo significance tests. Biometrica, 76(4):633–642,
1989.

[4] T. Calders and B. Goethals. Non-derivable itemset
mining. Data Mining and Knowledge Discovery,
14(1):171–206, 2007.

[5] G. W. Cobb and Y.-P. Chen. An application of
markov chain monte carlo to community ecology.
American Mathematical Monthly, (110):264–288, 2003.

[6] Mikael Fortelius and Jussi Eronen. Now – neogene of
the old world. http://www.helsinki.fi/science/now/,
2005. Database of fossil mammals.

[7] Arianna Gallo, Tijl Bie, and Nello Cristianini. Mini:
Mining informative non-redundant itemsets. In Proc.
of the 11th European conference on Principles and
Practice of Knowledge Discovery in Databases, 2007.

[8] Charles J. Geyer. Markov chain monte carlo maximum
likelihood. In Computing Science and Statistics: Proc.
of 23rd Symposium on the Interface Foundation, 1991.

[9] Aristides Gionis, Heikki Mannila, Taneli Mielikäinen,
and Panayiotis Tsaparas. Assessing data mining
results via swap randomization. ACM Transactions on
Knowledge Discovery from Data, 1(3), 2007.

[10] Phillip Good. Permutation Tests: A Practical Guide
to Resampling Methods for Testing Hypotheses.
Springer-Verlag, 2000.

[11] S. Holm. A simple sequentially rejective multiple test
procedure. Scandinavian Journal of Statistics, 1979.

[12] Szymon Jaroszewicz. Interactive hmm construction
based on interesting sequences. In Local Patterns to
Global Models (LeGo’08) Workshop at the the
European Conference on Principles and Practice of
Knowledge Discovery in Databases, 2008.

[13] David Jensen. Knowledge discovery through induction
with randomization testing. In Proc. of the 1991
Knowledge Discovery in Databases Workshop, 1991.

[14] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller. Equation of state
calculation by fast computing machines. Journal of
Chemical Physics, 21(1):1087–91, 1953.

[15] Taneli Mielikäinen and Heikki Mannila. The pattern
ordering problem. Lecture Notes in Computer Science,
2838:327–338, 2003.

[16] Markus Ojala, Niko Vuokko, Aleksi Kallio, Niina
Haiminen, and Heikki Mannila. Randomization of
real-valued matrices for assessing the significance of
data mining results. In Proc. of the 2008 SIAM
International Conference on Data Mining, 2008.

[17] Christos H. Papadimitriou. Computational
Complexity. Addison-Wesley, 1994.

[18] Geoffrey I. Webb. Discovering significant patterns.
Mach. Learn., 68(1):1–33, 2007.

[19] Geoffrey I. Webb. Layered critical values: A powerful
direct-adjustment approach to discovering significant
patterns. Machine Learning, 71(2–3):307–323, 2008.

[20] Peter H. Westfall and S. Stanley Young.
Resampling-based multiple testing: examples and
methods for p-value adjustment. Wiley, 1993.

387

