
Publication I 

Juha Itkonen, Kristian Rautiainen, and Casper Lassenius. 2005. Toward an 
understanding of quality assurance in agile software development. International 
Journal of Agile Manufacturing, volume 8, number 2, pages 39-49. 

© 2005 International Society of Agile Manufacturing (ISAM) 

Reprinted by permission of International Society of Agile Manufacturing. 



Volume 8, Issue 2 
� 2005 IJAM 

Abstract: Agile software development stresses individuals and interaction, customer collaboration, short 
development cycles and frequent deliveries of valuable software. From the testing and quality assurance viewpoint, 
these principles are challenging, and agile methods seem to lack aspects that traditionally are considered important 
and fundamental to successful quality assurance. In this paper, we identify these theoretical challenges and 
shortcomings in agile methods. We describe the quality assurance practices of four agile methods and show that 
agile methods emphasize constructive, quality-building practices. Quality evaluating practices, based on a 
destructive attitude, are few, if any. We think that agile development processes could benefit from the introduction 
of additional testing practices, and as examples of such practices, we propose the role of an independent tester and 
the session-based exploratory testing approach.  

Key Words: Quality Assurance, Time Pacing, Time Horizon, Agile Software Development, Software Testing. 

1. Introduction 

Agile software development methods are 
based on iterative and incremental 
development (IID), using short, often time-
boxed development cycles. The highest 
priority of agile methods is to satisfy the 
customer through early and continuous 
delivery of valuable software. Among 
fundamental values of agile software 
development is an emphasis on individuals 
and interactions, customer collaboration, and 
responding to change. Less emphasis is 
placed on processes, tools, documentation, 
and following a plan, which traditionally 
have been among the cornerstones of 
rigorous quality assurance and testing 
practices. [13, 15] 

Quality assurance (Q.A.)—all activities 
and practices used to ensure software 
product quality as a part of the development 

process—is a crucial component of most 
software development efforts. Testing, 
which is one part of Q.A., is the process of 
analyzing a software item to detect the 
differences between existing and required 
conditions, and of evaluating the features of 
the items [17]. Testing approaches 
traditionally have included a set of activities 
concentrated to an integration and testing 
phase at the end of the development project 
[6, 22, 28]. This testing phase often has 
unpredictable length and effort 
requirements. Clearly, time-boxed agile 
projects require a different approach to 
quality assurance and testing. Most agile 
methods, however, do not say much about 
testing. Several of the methods include a set 
of good practices for developers, including 
automated unit testing. Still, only a few 
methods give any guidance for higher test 
levels than unit and integration testing [2].  

IJAM  

Toward an Understanding of Quality Assurance in Agile Software 
Development 

Juha Itkonen, Kristian Rautiainen, Casper Lassenius 
Software Business and Engineering Institute, Helsinki University of Technology 

P. O. Box 9210, 02015 HUT, Finland 



Toward an Understanding of Quality Assurance in Agile Software Development

This raises the question: Is quality 
assurance sufficiently covered in agile 
methods? Some authors have identified 
problems in the quality assurance practices 
of extreme programming [11, 21, 30, 31]. 
This paper aims at increasing an 
understanding of Q.A. in agile software 
development by identifying challenges and 
shortcomings in agile methods considering 
the traditional ideas and principles of Q.A. 

The paper is structured in the following 
way. First, we describe the research 
methodology. Second, we contrast testing in 
agile methods with traditional ideas and 
principles of testing, revealing theoretical 
challenges and shortcomings. Then, we 
present the Cycles of Control framework 
[27] and use it to identify quality assurance 
practices in existing agile methods. Based 
on our findings, we discuss the possibility of 
enhancing quality assurance in agile 
software development. The paper ends with 
conclusions and suggestions for further 
work. 

2. Research Methodology 

The main inspiration for this research 
stems from the work we have performed in 
close cooperation with 11 small product-
oriented software companies for four years. 
In these companies, we have used action 
research to process improvement, 
successfully applying a temporal pacing 
framework [25, 26, 32]. During this work, 
we have observed quality assurance rise as a 
critical issue that currently is understood 
poorly in the companies. All of the 
companies have adopted practices from 
agile methods in their software development 
processes. These practices provided solid, 
low-level, developer practices, but testing 
the software products remained challenging. 
In an attempt to better understand quality 
assurance in agile methods, we performed a 
literature study to contrast agile quality 

assurance with traditional quality assurance, 
with an emphasis on testing. This revealed 
theoretical challenges and shortcomings in 
quality assurance in agile methods. In order 
to further understand these challenges and 
shortcomings, we used the temporal pacing 
framework to identify Q.A. practices in 
existing agile methods on the heartbeat, 
iteration, and release time horizons.  

3. Contrasting Agile and Traditional 
Testing 

Agile methods follow an iterative and 
incremental development process. Short, 
often time-boxed iterations provide a 
mechanism for rapid feedback during 
development and enable frequent control 
points in which the development plans can 
be revised. This rapid pace creates 
challenges for quality assurance, especially 
testing. In the following sub-sections, we 
contrast agile and traditional testing by first 
looking at how the agile principles cause 
challenges from a traditional testing 
viewpoint and then looking at how 
traditional testing principles reveal 
shortcomings in agile testing. We use the 
term agile testing as short for testing in agile 
methods. The term traditional testing refers 
to traditional ideas and principles of Q.A. 
and testing.  

3.1. Challenges in Agile Testing 

The main principles of agile software 
development are described in the Agile
Manifesto [13]. These principles describe 
ideas that are common for all agile 
development methods. From the traditional 
testing viewpoint, these principles bring 
forth several challenges. Table 1 
summarizes the main challenges that the 
agile principles place on testing. 

First, the highest priority of agile 
development is to deliver valuable software 



JUHA ITKONEN, KRISTIAN RAUTIAINEN, CASPER LASSENIUS

to customers early and continuously with a 
rapid release cycle. This is a challenge for 
testing because the rapid release cycle puts 
fixed deadlines on testing activities and does 
not allow the testing period to be extended if 
more defects are found than estimated. 

Agile Principle Challenge 
Frequent deliveries of 
valuable software  

- Short time for testing in each 
cycle 
- Testing cannot exceed the 
deadline 

Responding to change 
even late in the 
development 

- Testing cannot be based on 
completed specifications 

Relying on face-to-face 
communication 

- Getting developers and 
business people actively 
involved in testing 

Working software is the 
primary measure of 
progress 

- Quality information is 
required early and frequently 
throughout development 

Simplicity is essential - Testing practices easily get 
dropped for simplicity’s sake 

Table 1: Challenges that Agile 
Principles Place on Testing. 

Second, agility demands that we should 
welcome changing requirements even in late 
stages of development. Testing and static 
Q.A. methods traditionally have been based 
on specifications that are completed in a 
certain phase of development and that, after 
such point, can be used as a basis for test 
design and other Q.A. activities. If these 
documents are allowed to change even in 
late phases of the development cycle, it 
clearly challenges the traditional way of 
doing Q.A. 

Third, agile development relies on 
conveying information through face-to-face 
conversation, and business people and 
developers must work together daily 
throughout the project. This means that the 
documentation on which traditional testing 
is based does not necessarily exist. Detailed 
information about the expected results of the 
tests is in the heads of the developers and 
the business people. 

Fourth, working software is the primary 
measure of progress. This means testing 
cannot be left as a phase in the end of an 
iteration since it must provide information 
on achieved quality early and promptly in 
order to enable evaluating if the produced 
code actually is or is not working software. 

Fifth, simplicity—the art of maximizing 
the amount of work not done—is essential. 
This principle makes it challenging to keep 
necessary Q.A. practices included in the 
organization’s development process, 
because the Q.A. activities easily are seen as 
unnecessary and unproductive, as they do 
not directly add value in terms of code and 
features. 

3.2. Shortcomings in Agile Testing 

Traditional quality assurance in software 
development has been based on generally 
accepted principles that have not gained 
much focus in the agile software 
development community. In this section, we 
describe these fundamental principles, 
focusing on testing principles. Table 2 
summarizes the traditional testing principles 
and the contradictions we have identified in 
agile testing with respect to those principles. 
These contradictions can be seen as potential 
shortcomings. 

One of the fundamental principles of 
testing is its independency. Myers states that 
programmers should avoid testing their own 
programs and that a programming 
organization should not test its own 
programs [22]. In agile methods, the 
emphasis is mostly on developer-level 
practices, and unit and integration level 
testing by automated tests written by the 
developer. This is problematic because it is 
hard to see problems in one’s own code, 
and, more important, developers’ own tests 
do not reveal possible misunderstandings of 
the specifications or requirements. A 



Toward an Understanding of Quality Assurance in Agile Software Development

separate tester role exists in extreme 
programming (XP) [5, 9], but the tester is 
still part of the development team. Crystal 
Clear defines the tester as a role rotating 
among developers, whose main task is 
reporting bugs [8]. 

Testing Principle Contradicting Practices in Agile 
Methods 

Independency of 
testing 

- Developers write tests for their own 
code 
- The tester is one of the developers 
on a rotating role in the development 
team

Testing requires 
specific skills 

- Developers do the testing as part of 
the development 
- The customer has an important and 
collaborative role and a lot of 
responsibility for the resulting 
quality 

Oracle problem - Relying on automated tests to 
reveal defects 

Destructive 
attitude 

- Developers concentrate on 
constructive Q.A. practices, i.e., 
building quality into the product and 
showing that features work 

Evaluating 
achieved quality 

- Confidence in quality through 
tracking conformance to a set of 
good practices   

Table 2: Traditional Testing Principles and 
Contradicting Practices in Agile Methods. 

Software testing is a creative and 
intellectually challenging task that requires a 
lot of specific skills and experience. It is a 
profession and requires a professional tester 
in order to be performed effectively and 
efficiently [19, 20, 22]. In agile methods, 
testing usually is seen as a task that 
developers do as part of the development 
tasks or as a customer task. In many agile 
methods, the customer is quite tightly 
involved in everyday development and holds 
the responsibility for acceptance testing. 
This has been identified as a problem in [11, 
21, 31]. Testing by the customer can work if 
the customer is capable of acting in a tester’s 
role and has the skill and expertise to do the 
job. The DSDM method recognizes the need 
for testing skills, and Stapleton recommends 

that at least one lead developer or tester in 
each team has received training in testing 
[29]. 

The so-called oracle problem is one of 
the basic problems of software testing. The 
term oracle refers to principles that are used 
to find the correct test result. This is not a 
trivial problem, and professional testers find 
it quite important to inspect the results of 
each test thoroughly in order to notice the 
defects that the test reveals [7, 22]. In 
addition, test automation literature 
recognizes this as one of the hardest 
problems when automating tests [12]. In 
many agile methods, a lot of responsibility 
for testing, if not all, is placed on the 
automated tests that are written by 
developers. From the viewpoint of a 
professional tester, it is not obvious that 
these automated tests would be very 
effective in revealing code defects. 

A destructive attitude to software testing 
can make testing more effective. 
Traditionally, the purpose of testing a 
program is to find problems in it: “Testing is 
the process of executing a program with the 
intent of finding errors” [22]. Test cases 
must be written for invalid and unexpected, 
as well as for valid and expected, input 
conditions. In agile methods, wherein 
developers test their own code, this tester’s 
attitude is hard to achieve. Agile methods 
focus on constructive Q.A. practices, i.e., 
building quality into the product. The agile 
literature describes the practices more in 
terms of showing that features work and in 
demonstrating their benefits, rather than by 
revealing defects and problems in the code. 
This is problematic because even though all 
the unit tests pass, the system still may be 
broken [11]. If you want and expect a 
program to work, you are more likely to see 
a working program, making you miss 
failures [19, 20]. 



JUHA ITKONEN, KRISTIAN RAUTIAINEN, CASPER LASSENIUS

Software testing includes more than 
finding defects. The purpose of testing is to 
provide information and identify defects and 
problems in a product to evaluate and 
improve the achieved quality [16]. 
Evaluating product quality requires metrics, 
e.g., the number of found faults, fault types, 
fault classifications, and test coverage. In 
agile methods, testing activities are based 
mostly on conforming to certain good 
practices and on tracking that these practices 
are followed. This does not provide direct 
information on product quality and does not 
enable evaluating the achieved quality. For 
example, automated unit tests that 
developers write for all functionality, and 
which they always keep running and 
passing, is a good development practice that 
can be tracked by the amount of written test 
code and test cases or the amount of covered 
methods. This practice, however, does not 
give us information about the achieved 
quality. In order to be able to evaluate the 
achieved quality, we would need some 
direct metrics on, e.g., faults, test coverage, 
and quality of the tests. 

3.3. The Need to Enhance Testing in Agile 
       Methods 

Based on the challenges and 
shortcomings that were discussed in the 
previous two subsections, we think that agile 
development processes could benefit from 
the introduction of additional testing 
practices. Most of the agile methods provide 
few instructions or little guidance on how, 
for example, system testing or testing 
different quality attributes should be handled 
[1, 2]. In addition, even though XP defines a 
complete set of rigorous developer practices 
that supposedly work well together and lead 
to good quality, many other methods leave 
the testing part of development open ended, 
and up to the development organization to 
decide upon. In these cases, the organization 
has to find ways to combine testing 

approaches that are, perhaps, more 
traditional with the selected agile method or 
set of agile practices. For example, the 
Feature-driven Development (FDD) method 
does not include much guidance on testing, 
but instead recommends using the 
organization’s established Q.A. practices 
with the agile development method [23]. 

Combining testing practices with agile 
processes is challenging [24]. Applying, 
e.g., the V-model is hard. It is based on 
sequential phases in which activities in each 
phase use the completed work products 
(documents) of the previous phase. Thus, it 
cannot help us understand how the Q.A. 
practices of agile methods work or how 
testing in agile development could be 
improved. In the existing literature, the 
problem of the sequential approach to Q.A. 
has been identified, and a different, 
continuous approach is proposed. For 
example, XP, DSDM, and FDD emphasize 
the importance of building quality into the 
system with low-level developer Q.A. 
practices and testing early and often 
throughout the development life cycle. It is 
not clear, however, how the testing activities 
are related and synchronized with the other 
development tasks. 

We have used a temporal pacing 
framework, the Cycles of Control (CoC) 
[27], in order to better understand the 
dynamic nature of agile software 
development and Q.A. practices, as part of 
an agile development process. In the next 
section, we will introduce the CoC 
framework and use it to describe iterative 
and incremental Q.A. and to identify Q.A. 
practices in existing agile methods. 

4. Agile Development Through Time 
    Horizons 

The CoC framework, which is a general 
framework for describing iterative and 



Toward an Understanding of Quality Assurance in Agile Software Development

incremental, time-paced software 
development, can be used to understand 
agile software development methods 
through time horizons. The framework is 
based on the concept of time pacing, which 
refers to the idea of dividing a fixed time 
period allotted to the achievement of a goal 
into fixed-length segments [10, 14]. At the 
end of each segment, there is a control point, 
at which progress is evaluated and possible 
adjustments to the plans are made. Changes 
can be made only at such a control point. 
This accomplishes persistence, while also 
establishing flexibility to change plans and 
adapt to changes in the environment at the 
specific time intervals. These time intervals, 
or time horizons, set the rhythm for product 
development. In accordance with the time 
pacing idea, the schedule (end date) of a 
time box is fixed, whereas the scope 
(developed functionality) is not. 

Figure 1 shows an overview and 
example of the basic building blocks of the 
CoC framework. Each cycle represents a 
specific time horizon, and starts and ends 
with a control point in which decisions are 
made. The cycles and time horizons are 
hierarchical, meaning that the longer time 
horizons set the direction and constraints for 
the shorter ones. 

The longest time horizon in Fig. 1, 
strategic release management, deals with the 
long-term plans for the product and project 
portfolios of the company and provides an 
interface between business management and 
product development. Each individual 
product release is managed as a time-boxed 
project and is dealt with in the release 
project cycle. Each project is split into time-
boxed iterations, in which partial 
functionality of the final product release is 
developed. Daily work is managed and 
synchronized in heartbeats that represent the 
shortest time horizon. Using time horizons 

instead of traditional phased models makes 
it easier to understand the dynamic behavior 
of agile development methods and the true 
nature of agile software development, which 
also has been noticed by Cockburn, who 
identified seven cycles of different time 
horizons in play on most projects [8]. 

Figure 1: Cycles of Control Framework. [27] 

In the next sub-sections, we describe 
what the different time horizons mean from 
the quality assurance viewpoint. We also 
identify Q.A. practices in four existing agile 
development methods on the heartbeat, 
iteration and release time horizons. We 
selected four agile methods, namely 
eXtreme Programming [5], Feature-driven 
Development [23], Dynamic Systems 
Development Method [29], and Crystal 
Clear [8] for our analysis. These cover best 
the Q.A. practices of agile methods [1]. 
Table 3 presents a summary of the Q.A. 
practices of each of these four methods. In 
this table, the Q.A. practices are divided on 
the three time horizons in order to illustrate 
the emphasis of quality assurance in the 
methods. Comparing the Q.A. practices of 
the methods is somewhat challenging 
because the methods are described quite 
differently. For example, Crystal Clear does 
not list all specific practices. Instead, it 
describes the essential properties and 
strategies of the method. 

StrategicRelease Management

Release Project

Iteration

Heartbeats

Time



JUHA ITKONEN, KRISTIAN RAUTIAINEN, CASPER LASSENIUS

 eXtreme Programming Feature-driven Development Crystal Clear DSDM 
Release - - - - Contractual acceptance 

testing (if required) 
Iteration - Evaluating the 

acceptance test results 
- Separate system testing - - Integration, system and 

acceptance testing inside 
each timebox 
- User testing 
-Evolutionary prototyping 
- Document reviews 

Heartbeat - Test-driven development 
- Continuous integration 
(daily-builds) 
- Pair programming 
- Acceptance tests 
- Collective code 
ownership 
- Coding standards 
- Simple design & 
continuous refactoring 
- On-site customer 

- Unit testing 
- Regular builds 
- Design inspection 
- Code inspection 
- Individual code ownership 

- Automated tests 
and frequent 
integration  
- Side-by-side 
programming 
- Osmotic 
communication 
- Easy access to 
expert users 

- Unit testing  
- Reversible changes 
-Active user involvement 

Table 3: Summary of Agile Methods’ Q.A. Practices on Time Horizons.  

4.1. Heartbeat Quality Assurance 

Heartbeat quality assurance includes the 
practices that are used to build quality into a 
piece of functionality during its 
implementation and to evaluate the achieved 
quality. Q.A. activities at the heartbeat time 
horizon apply to all implemented features, 
and the implementation tasks are not 
complete before these activities are 
performed. 

A good example of a heartbeat Q.A. 
practice is automated unit testing. 
Developers must write unit tests for each 
piece of code that they create, and progress 
is taken into account only after the tests are 
completed and passed. Note, however, that 
heartbeat tasks are not time-boxed—a task 
can take several heartbeats to complete, but 
tracking and controlling is performed with a 
constant rhythm by, e.g., heartbeat meetings 
and daily builds. Thus, these practices 
tightly follow the daily rhythm of the 
development activities. 

Heartbeat Q.A. activities are not delayed 
to any later testing phase. Instead, these 
activities are performed during 

implementation, as part of the design and 
coding tasks, regardless of who, e.g., a 
developer or tester, performs these tasks. 
These activities give instant feedback to 
developers and thereby help drive 
development in the right direction. 

In agile methods, quality assurance on 
the heartbeat time horizon is quite strong, as 
can be seen in Table 3, in which most of the 
quality assurance practices lie on the 
heartbeat time horizon. Developers’ 
practices are particularly comprehensive and 
are defined rigorously in XP, but the other 
methods also put a strong emphasis on unit 
testing, code and design inspections, regular 
builds and short integration cycles, which all 
are practices for the developers’ everyday 
design and implementation work. 

These practices work as a strong basis 
for the agile development process and strive 
to ensure that good enough quality is 
produced in every development task. 

Heartbeat Q.A. is not restricted to the 
testing tasks of the developers. Heartbeat 
Q.A. tasks can include, for example, 
designing and executing system level 



Toward an Understanding of Quality Assurance in Agile Software Development

functional tests, executing regression tests, 
reporting test results and bugs, verifying bug 
fixes, and so on. Rhythm is the key: 
heartbeat activities are managed and tracked 
according to the heartbeat rhythm and the 
different roles must communicate and 
synchronize their work in every heartbeat. 

4.2. Iteration Quality Assurance 

Quality assurance on the iteration time 
horizon is concerned with activities and 
tasks that are not performed for each 
individually implemented feature at the 
heartbeat rhythm. Instead, these activities 
are controlled and tracked on the iteration 
time horizon and focus on fulfilling the 
iteration goal(s). This includes all 
implementation, testing and review activities 
that are needed to ensure that the quality of 
the end product of the iteration is good 
enough. 

In practice, all needed Q.A. activities for 
new functionality and code cannot be done 
at the heartbeat rhythm, and it is not even 
desirable. Many Q.A. activities are not 
directly connected to individual features or 
enhancement tasks that developers perform. 
This kind of Q.A. activity can be tracked on 
the iteration time horizon by including it in 
iteration goals and tasks. Many typical tasks 
of professional testers belong to the iteration 
time horizon. Specialized testers do a lot of 
testing (e.g., testing performance, reliability, 
and other qualities on the system test level 
that cover the system broader than 
functional testing of single functions or 
function groups), test case design, test 
environment set up, and so on, which is not 
directly connected to the development tasks 
at hand. These specialists write and execute 
tests during the whole iteration, and they 
must synchronize their work with the 
developers. The synchronization can be 
done by using code hand-offs at the daily or 

weekly build rhythm, and the testers can, for 
instance, participate in development 
heartbeat meetings. In addition, testing tasks 
that require specific expertise or long 
periods of set-up or execution time, and thus 
cannot be performed easily as part of the 
implementation of individual features or 
components, may be managed best on the 
iteration or release time horizon. Testing in 
different operating environments, and in 
different combinations of environments, 
represents other examples of tasks that 
usually belong to the iteration time horizon. 

Iteration tasks are time-boxed because 
the length of an iteration is fixed. During the 
iteration, testers have to prioritize their 
work. This means that it is crucial to track 
the progress of the work and to 
communicate the quality information 
constantly, e.g., in heartbeat meetings. 
Without up-to-date information, it is hard to 
make scoping decisions in order to get the 
iteration Q.A. activities performed so that 
the required product quality is reached by 
the end of the iteration. 

In agile methods, the Q.A. practices on 
the iteration time horizon are much fewer 
than the practices on the heartbeat time 
horizon. In Table 3, we notice that only one 
or two practices are defined in ensuring and 
evaluating the quality of the produced 
software increment on the iteration time 
horizon. In addition, the practices on the 
iteration time horizon are defined rather 
superficially compared to the heartbeat time 
horizon practices. Some methods, e.g., XP, 
rely almost purely on strong heartbeat 
practices and leave only progress tracking to 
the iteration time horizon [4, 5, 18]. The 
other methods that have less rigorous 
heartbeat practices recognize the need for 
evaluating the achieved quality on the 
iteration time horizon by system testing, but 
do not give concrete guidance on how to 



JUHA ITKONEN, KRISTIAN RAUTIAINEN, CASPER LASSENIUS

perform it as a part of the process. For 
example, in FDD, the only advice given in 
accomplishing this is to decide which builds, 
and how often, are handed over to separate 
system testing [23]. 

The DSDM method has a stronger 
approach to quality assurance on the 
iteration time horizon and not so detailed 
guidelines for the heartbeat time horizon. 
The approach is like a small waterfall 
process inside each timebox [29]. 

4.3. Release Quality Assurance 

The goal of release quality assurance is 
to ensure the quality of the product on the 
release time horizon. This includes 
evaluating the test results and other quality 
information from the individual iterations, 
and practices, so as to steer the development 
project based on that information (e.g., 
planning forthcoming iterations). Tasks on 
the release time horizon include testing that 
cannot be completed in the iteration 
schedule, tasks of a separate testing group, 
and testing in multiple environments. A 
common way of including release Q.A. is to 
have a separate stabilization iteration at the 
end of the release project. This is not 
iteration Q.A., because the stabilization 
iteration evaluates the quality of the work 
done in the previous iterations. This also 
means that certain quality risks are not 
revealed until the last iteration.  

On the release time horizon, it is quite 
hard to find any Q.A. practices in agile 
methods. For example, in the sample 
methods in Table 3, we could not identify 
any Q.A. practices that would belong to the 
release time horizon. DSDM claims that in 
large projects, or by contractual constraints, 
there might be cases in which separate 
(acceptance) testing activities are needed 
outside the iterations, i.e., on the release 

time horizon [29]. Just as in DSDM, 
however, these cases are considered 
exceptional. 

5. Toward Enhancing Agile Testing 

Agile methods rely strongly on customer 
or user collaboration and do not include 
many destructive testing practices. Some of 
the methods, e.g., XP, provide a rigorous set 
of constructive developer practices that aim 
to produce good enough quality without any 
other testing than user acceptance tests at the 
responsibility of the customer. Other agile 
methods, however, do not provide such a 
complete set of practices and also recognize 
the need for specific testing practices on the 
integration, system and acceptance test 
levels. The most notable example is DSDM, 
which requires testing to be performed on 
several levels inside each iteration. To our 
knowledge, the current literature does not 
provide good guidance on how to enhance 
agile development processes with 
destructive and independent testing 
practices.  

We showed that describing the 
development process and the used practices 
with the help of time horizons makes it 
easier to recognize spots wherein the process 
can be enhanced with testing practices. 
Understanding the heartbeat time horizon 
and its practices gives the synchronization 
points for developers’ and testers’ activities. 
Heartbeat Q.A. practices could be enhanced, 
e.g., by introducing the role of an 
independent tester who tests each completed 
feature in collaboration with the developer. 
This provides instant feedback on the 
achieved quality, based on the independent 
destructive tests, rather than only on the 
developer’s own constructive practices.  

An example of agile testing on the 
iteration time horizon is session-based 
exploratory testing [3]. Exploratory testing 



Toward an Understanding of Quality Assurance in Agile Software Development

is a testing approach that is not based on 
pre-specified test cases and seems to 
embody the agile philosophy. Session-based 
exploratory testing makes it possible to 
manage testing in short time-boxes, which 
makes it suitable to use in conjunction with 
short iterations. The exploratory approach 
allows testing the system in its entirety or, 
for example, interactions of several 
individual features. Our initial experiences 
indicate that exploratory testing is effective 
for testing applications from the viewpoint 
of the end-user and finding relevant defects 
with reasonable effort. The nature of 
exploratory testing helps reach the 
destructive attitude required in effective 
testing. Exploratory testing also could be 
used as a means to get business people or 
people with strong domain knowledge to 
participate in testing.  

In some circumstances, testing tasks are 
needed on the release time horizon. So far, 
we have not found agile practices for the 
release time horizon. In many cases, it may 
be better to include as many Q.A. practices 
as possible on the heartbeat and iteration 
time horizons, so as to provide quality 
information earlier and to help mitigate 
quality risks. 

6. Summary and Conclusions 

In this paper, we identified challenges 
and shortcomings in agile software 
development methods from the viewpoint of 
traditional Q.A. and testing principles. We 
described the Q.A. practices of four agile 
methods on the time horizons of the CoC 
framework and showed how these 
emphasize the developers’ quality building 
practices on the heartbeat time horizon.  

Based on the challenges and 
shortcomings, it seems that it would be 

beneficial to enhance agile development 
processes by introducing additional testing 
practices. As examples of such practices, we 
proposed an independent tester role for the 
heartbeat time horizon and session-based 
exploratory testing for the iteration time 
horizon. 

This paper brings forth two challenges. 
First, evidence of the sufficiency of the 
constructive quality assurance practices of 
existing agile methods is required to show if 
enhancements actually are needed. Second, 
more empirical research is needed to find 
and try out testing practices that work in an 
agile development. 

In the future, we intend to continue our 
research on quality assurance and testing in 
agile and time-paced software development. 
We currently are studying the exploratory 
testing approach and its suitability to 
varying contexts. 

References 

1. Abrahamsson, P., et al., 2002, Agile Software 
Development Methods: Review and Analysis, VTT 
Publications 478, VTT, Finland. 
2. Abrahamsson, P., et al., 2003, "New Directions on Agile 
Methods: A Comparative Analysis," Proceedings of the 
25th International Conference on Software Engineering, 
pp. 244-254.   
3. Bach, J. 2000, "Session-Based Test Management," 
STQE, 2 (6). 

4. Beck, K., 1999, "Embracing Change With Extreme 
Programming," Computer, 32 (10), 70-77. 

5. Beck, K., 2000, Extreme Programming Explained, 
Addison-Wesley, Canada. 

6. Boehm, B.W., 1979, "Guidelines for Verifying and 
Validating Software Requirements and Design 
Specifications," Proceedings of EURO IFIP 79, pp. 711-
719.   

7. Burnstein, I., 2003, Practical Software Testing, Springer-
Verlag, New York. 

8. Cockburn, A., 2004, Crystal Clear: A Human-Powered 
Methodology for Small Teams, Addison-Wesley, Boston. 



JUHA ITKONEN, KRISTIAN RAUTIAINEN, CASPER LASSENIUS

9. Crispin, L. and House, T., 2003, Testing Extreme 
Programming, Addison-Wesley, Boston. 

10. Eisenhardt, K. M. and Brown, S. L., 1998, "Time 
Pacing: Competing in Markets that Won't Stand Still," 
HBR, 76 (3), 59-69. 

11. Elssamadisy, A. and Schalliol, G., 2002, "Recognizing 
and Responding to ‘Bad Smells’ in Extreme 
Programming," Proceedings of the 24th International 
Conference on Software Engineering, pp. 617-622.  

12. Fewster, M. and Graham, D., 1999, Software Test 
Automation, Addison-Wesley, Harlow, England. 

13. Fowler, M. and Highsmith, J., 2001, "The Agile 
Manifesto," Software Development, 9 (8), 28-32. 

14. Gersick, C. J. G., 1994, "Pacing Strategic Change: The 
Case of a New Venture," Academy of Management 
Journal, 37 (1), 9-45. 

15. Highsmith, J., 2002, Agile Software Development 
Ecosystems, Eds. Cockburn, A.; Highsmith, J., Addison-
Wesley, Boston. 

16. IEEE 2004, Guide to the Software Engineering Body of 
Knowledge, The Institute of Electrical and Electronics 
Engineers, Inc., New York.  

17. IEEE 1990, IEEE Standard Glossary of Software 
Engineering Terminology, The Institute of Electrical and 
Electronics Engineers, Inc., New York. 

18. Jeffries, R.; Anderson, A. and Hendrickson, C., 2001, 
Extreme Programming Installed, Addison-Wesley, Boston. 
19. Kaner, C.; Bach, J. and Pettichord, B., 2002, Lessons 
Learned in Software Testing, John Wiley & Sons, Inc., 
New York. 

20. Kaner, C.; Falk, J. and Nguyen, H. Q., 1999, Testing 
Computer Software, John Wiley & Sons, Inc., New York. 

21. Lippert, M., et al., 2003, "Developing Complex 
Projects Using XP with Extensions," Computer, 36 (6), 67-
73.

22. Myers, G. J., 1979, The Art of Software Testing, John
Wiley & Sons, New York. 

23. Palmer, S. R. and Felsing, J. M., 2002, A Practical 
Guide to Feature-Driven Development, Prentice-Hall,
Upper Saddle River, NJ.   

24. Pyhäjärvi, M. and Rautiainen, K., 2004, "Integrating 
Testing and Implementation into Development," 
Engineering Management Journal, 16 (1), 33-39. 

25. Rautiainen, K.; Lassenius, C. and Sulonen, R., 2002, 
"4CC: A Framework for Managing Software Product 

Development," Engineering Management Journal, 14 (2), 
27-32. 

26. Rautiainen, K.; Vuornos, L. and Lassenius, C., 2003, 
"An Experience in Combining Flexibility and Control in a 
Small Company’s Software Product Development 
Process," International Symposium on Empirical Software 
Engineering, pp. 28-37.  

27. Rautiainen, K., 2004, Cycles of Control: A Temporal 
Pacing Framework for Software Product Development 
Management, Helsinki University of Technology, Espoo, 
Finland. Available: 
http://www.soberit.hut.fi/kqr/Lisuri_v12.pdf.  

28. Royce, W. W., 1970, "Managing the Development of 
Large Software Systems: Concepts and Techniques," 
Proceedings of Wescon, pp. 1-9. 

29. Stapleton, J., 1997, Dynamic Systems Development 
Method, Addison-Wesley, Harlow, England. 

30. Stephens, M. and Rosenberg, D., 2003, Extreme 
Programming Refactored: The Case Against XP, Apress, 
Berkeley, CA. 

31. Theunissen, W. H. M.; Kourie, D. G. and Watson, B. 
W., 2003, "Standards and Agile Software Development," 
Proceedings of SAICSIT, pp. 178-188.  

32. Vanhanen, J.; Itkonen, J. and Sulonen, P., 2003, 
"Improving the Interface Between Business and Product 
Development Using Agile Practices and the Cycles of 
Control Framework," Proceedings of the Agile Software 
Development Conference, pp. 71-80.




