
Publication II

Juha Itkonen and Kristian Rautiainen. 2005. Exploratory testing: A multiple case
study. In: Proceedings of the 4th International Symposium on Empirical
Software Engineering (ISESE 2005). Noosa Heads, Queensland, Australia.
17-18 November 2005. IEEE. Pages 84-93. ISBN 0-7803-9507-7.

© 2005 Institute of Electrical and Electronics Engineers (IEEE)

Reprinted, with permission, from IEEE.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of
Aalto University's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

Exploratory Testing: A Multiple Case Study

Juha Itkonen and Kristian Rautiainen
Helsinki University of Technology, Software Business and Engineering Institute

P.O. BOX 9210, FIN-02015 Finland
firstname.lastname@hut.fi

Abstract

Exploratory testing (ET) – simultaneous learning,

test design, and test execution – is an applied practice
in industry but lacks research. We present the current
knowledge of ET based on existing literature and
interviews with seven practitioners in three companies.
Our interview data shows that the main reasons for
using ET in the companies were the difficulties in
designing test cases for complicated functionality and
the need for testing from the end user’s viewpoint. The
perceived benefits of ET include the versatility of
testing and the ability to quickly form an overall
picture of system quality. We found some support for
the claimed high defect detection efficiency of ET. The
biggest shortcoming of ET was managing test
coverage. Further quantitative research on the
efficiency and effectiveness of ET is needed. To help
focus ET efforts and help control test coverage, we
must study planning, controlling and tracking ET.

1. Introduction

Software developers and testers have always been
doing exploratory testing. It is easy to understand this
considering the short definition of exploratory testing:
“Exploratory testing is simultaneous learning, test
design, and test execution.” [6]. This means that ET is
testing without detailed pre-specified test cases, i.e.,
unscripted testing. ET is not a single testing technique
or strategy; it is rather an approach to testing where
test design is performed as part of test execution
instead of having a test design phase before execution.
The ET approach can be used for different types of
testing using various techniques or methods. Many
practitioners seem to promote ET as a valid approach
to software testing and as a valuable part of an
effective set of software quality assurance practices.
ET is not a replacement for existing test-case based
approaches, but a complementary testing approach

suitable for certain situations which are not known due
to lack of research. Many benefits of ET have been
proposed, such as effectiveness, efficiency, the ability
to utilize testers’ creativity, and enabling rapid
feedback [3, 4, 6, 7, 8, 11], but there is lack of
scientific evidence of these benefits. Furthermore, very
few explicit shortcomings of ET have been mentioned
in the existing literature. This does not mean that there
would not be any. Considering the potential benefits of
ET and its seemingly wide use, we think that more
research on the subject is merited.

The purpose of this paper is to introduce
exploratory testing and study its use in three
companies in order to increase the understanding of its
applicability, benefits, and shortcomings. In this paper
our intent is not to contrast ET and other testing
approaches, but to describe the use of ET in industry.
In addition, we bring forth several important research
issues that should be studied to better understand the
applicability and restrictions of ET as well as to
develop new ways to better manage ET in order to
lessen its shortcomings.

The rest of the paper is structured in the following
way. In the next section we present the research
methods used. Then we describe related work about
exploratory testing, followed by the results of the case
study. The paper is rounded up with discussion and
implications for further work.

2. Research methods

In this section we present the research methods used
in this study. Our research questions were: 1) What is
the current knowledge of exploratory testing in
literature? 2) How and why do companies use ET and
with what results? For the first research question we
performed a literature study. For the second research
question we selected a descriptive case study approach
[13].

84

0-7803-9508-5/05/$20.00 (c)2005 IEEE

Table 1. Summary of the case companies

 Mercury Neptune Vulcan
Number of employees in
software product development

15 30 40

Type of product Professional
application

Professional engineering
design application

Professional engineering design
application

Type of users Professional control
room workers

Professional engineers Professional engineers

Training requirements of the
product

Requires some
training

Requires comprehensive
training

Requires comprehensive training

Number of customers < 10 > 100 > 1000
Number of users < 100 > 1000 > 1000
Applied ET in its current form Two months Six months Four years
Test approaches used Only ET for the

studied product
ET and automated scripted
testing

ET for functional and smoke
testing, test cases for system
testing, and automated model-based
testing

Number of interviewees 1 4 2
Formal testing training of the
interviewees

None None None

We performed interviews and collected subjective

evaluations of the benefits and shortcomings of ET and
quantitative defect and effort data in three companies.
In the following subsections we shortly describe the
case companies and the data collection and analysis.

2.1. Case companies

The three case companies – Mercury, Neptune, and
Vulcan – were selected based on accessibility through
our research project in which they participate.
Therefore we knew that exploratory testing was
applied in these companies. The real names of the
companies have been replaced with pseudonyms.
Table 1 summarizes the characteristics of the
companies. One of the companies is small with around
10 employees working with software development.
The other two are bigger with around 30 and 40
employees in software development.

Neptune and Vulcan develop software application
products for a large number of customers. Mercury has
a more restricted customer segment. The products of
all companies are systems for professional users. Using
two of the systems requires comprehensive training.
The products of Neptune and Vulcan have been on the
market for several years, while the product of Mercury
is new.

Mercury used only ET for their product. This was
due to the immature development stage of the product.
Neptune and Vulcan also used other testing
approaches, although ET had a significant role in their
testing efforts. In this paper we have focused on

studying and describing how and why the companies
used ET.

2.2. Data collection and analysis

We performed seven semi-structured thematic
interviews lasting 40-70 minutes with persons that
were performing exploratory testing in the case
companies. At Vulcan, where ET had been
purposefully used and improved for four years, we
interviewed 2 persons. At Neptune, where a more
systematic approach to ET had been introduced half a
year ago, we interviewed 3 persons from the company
and 1 outsourced tester that was a professional user of
the system. The only interviewee at Mercury had used
ET only a couple of times before the interview.

Each interviewee was interviewed separately using
the same set of themes and questions. The questions
were open ended and neutral, and the goal was to
record the honest opinions and experiences without
any leading of the interviewee. Two researchers were
present at each interview. One researcher asked the
questions and the other one made notes. The
interviews were also recorded. The notes made during
the interviews were used as a basis for the analysis.
The notes were complemented and clarified by
listening to the recordings. We used MindManager1 to

1 MindManager is a commercial software provided by the Mindjet
Corporation. It is used for visualizing and managing information in
the form of mind maps. For more information, see
http://www.mindjet.com/

85

group the data and to create clusters that arose from the
data.

We also collected quantitative data of ET effort as
well as defect counts and types from the companies’
defect and other tracking systems. We analyzed this
data by deriving descriptive metrics to get a picture of
the results of using ET. We compared these to the
subjective evaluations of the interviewees for
triangulation of the results.

3. Related work

In this section we describe the existing knowledge
regarding exploratory testing. First, we describe how
ET is defined in different sources. Then we summarize
the claimed benefits and identified shortcomings of ET
in literature. In the last subsection we describe the
Session-Based Test Management approach for
managing ET. Academic literature seems to lack
research on exploratory testing. Therefore we must
rely largely on text books, practitioner reports and
electronic material available on the Internet.

3.1. Definition of exploratory testing

Exploratory testing is a loosely defined concept that
was first introduced by Kaner et al. in the first edition
of their book “Testing Computer Software” in 1988.
They describe ET as a means to keep testing software
after executing the scripted tests and avoid investing
effort to carefully designing and documenting tests
when the software is in an unstable state and could be
redesigned soon. They also describe ET as a way of
learning the system while designing the systematic test
cases. However, they do not provide a precise
definition of what is included in ET, how it should be
performed, and what it is not. [8]

James Bach defines ET as “…simultaneous
learning, test design, and test execution” [2]. Tinkham
and Kaner give a slightly different definition: “Any
testing to the extent that the tester actively controls the
design of the tests as those tests are performed and
uses information gained while testing to design new
and better tests” [10]. According to Kaner, Bach, and
Pettichord exploring means “…purposeful wandering:
navigating through a space with a general mission, but
without a pre-scripted route. Exploration involves
continuous learning and experimenting.” [7]. They
also propose that a tester should continuously learn
about the product, its market, its risks and its previous
defects in order to continuously build new tests that are
more powerful than the older because they are based
on the tester’s continuously increasing knowledge.

Jonathan Bach stresses focusing on finding defects
[3]. ET is a testing approach that is optimized to
finding defects and puts less emphasis on test
documentation. Finding defects is the primary purpose
of ET and documenting the results of the testing is
found more important than planning and scripting the
test execution paths beforehand.

However, a certain degree of planning is needed for
ET. Copeland [4] suggests performing “chartered
exploratory testing” where the charter may define what
to test, what documents are available, what tactics to
use, what defect types to look for, and what risks are
involved. The charter defines a mission for testing and
works as a guideline.

The exploratory testing approach is recognized in
the Software Engineering Body of Knowledge
(SWEBOK): “Exploratory testing is defined as
simultaneous learning, test design, and test execution;
that is, the tests are not defined in advance in an
established test plan, but are dynamically designed,
executed, and modified. The effectiveness of
exploratory testing relies on the software engineer’s
knowledge, which can be derived from various
sources…” [6]. SWEBOK does not describe ET in
more detail and does not provide any advice on how to
apply ET or for which circumstances ET would be
suitable.

Craig and Jaskiel emphasize the fact that in
exploratory testing a tester can immediately expand
testing into productive areas during testing [5]. They
also state that in scripted testing a tester creates many
tests that do not seem as useful during test execution as
they seemed during test design, because they do not
reveal defects.

From the above sources we can derive five
properties that describe when testing is exploratory
testing:
1) Tests are not defined in advance as detailed test

scripts or test cases. Instead, exploratory testing is
exploration with a general mission without
specific step-by-step instructions on how to
accomplish the mission.

2) Exploratory testing is guided by the results of
previously performed tests and the gained
knowledge from them. An exploratory tester uses
any available information of the target of testing,
for example a requirements document, a user’s
manual, or even a marketing brochure.

3) The focus in exploratory testing is on finding
defects by exploration, instead of systematically
producing a comprehensive set of test cases for
later use.

4) Exploratory testing is simultaneous learning of the
system under test, test design, and test execution.

86

5) The effectiveness of the testing relies on the
tester’s knowledge, skills, and experience.

In most of the sources ET is seen as a useful and

effective approach to testing, but still, as a
complementary approach to structured and systematic
test-case based techniques.

3.2 Applicability of exploratory testing

James Bach describes contexts into which ET

would fit well. First, ET fits situations where rapid
feedback or learning of the product is needed. Second,
ET fits situations where there is not enough time for
systematic testing approaches. Third, ET is a good
way to investigate the status of particular risks.
Fourth, ET can be used to provide more diversity to
scripted tests. Fifth, regression testing based on defect
reports can be done by exploring. Sixth, ET fits well
into testing from an end-user viewpoint based on, e.g.,
a user’s manual. [2]

Copeland states that ET is valuable in situations
where choosing the next test case to run cannot be
determined in advance, but must be based on previous
tests and results. ET can be used to explore the size,
scope, and variations of a found defect to provide
better feedback to developers. ET is also useful when
test scripts become “tired”, i.e., they are not detecting
many defects anymore. [4]

Våga and Amland propose that ET should be
planned as part of the testing approach in most of the
software development projects [11]. They describe a
case where ET was successfully used to test a web-
based system in just two days, because that was all
available time for testing.

3.3. Claimed benefits of exploratory testing

Exploratory testing has been advocated as a useful
testing approach based on several benefits that it can
provide for testing. In this section we summarize the
benefits that are proposed in various sources [2, 7, 8].

The most commonly claimed benefit of ET is its
ability to increase the effectiveness of testing in terms
of number and importance of found defects. James
Bach also suggests that in some situations ET can be
orders of magnitude more efficient than scripted
testing [2]. He supports his claim with some anecdotes
from his personal experience. Exploratory testers can
focus on the suspicious areas of the system based on
the information of the actual behaviour of the system,
instead of only relying on the specifications and design
documents when planning the tests.

A second benefit of exploratory testing is the
simultaneous learning. When testers are not following
pre-specified scripts, they are actively learning about
the system under test and gaining knowledge about the
behavior and the failures in the system. This is claimed
to help testers come up with better and more powerful
tests as testing proceeds.

A third benefit is the ability to minimize preparation
documentation before executing testing. This is an
advantage in a situation where the requirements and
the design of the system change rapidly or at the early
stage of product development when some parts of the
system are implemented, but the probability for major
changes is still high.

A fourth benefit is the ability to perform
exploratory testing without comprehensive
requirements or specification documentation, because
exploratory testers can easily utilize all the experience
and knowledge of the product gained from various
other sources.

A fifth benefit is the rapid flow of feedback from
testing to both developers and testers. This feedback
loop is especially fast, because exploratory testers can
react quickly to changes to the product and provide test
results back to developers.

3.4. Identified shortcomings of exploratory
testing

We had a hard time finding explicit references to
shortcomings of ET in the existing literature. One
identified shortcoming of exploratory testing is the
difficulty of tracking the progress of individual testers
and the testing work as a whole. It is considered hard
to find out how the work proceeds, e.g., the feature
coverage of testing, because there is no planned low-
level structure that could be used for tracking the
progress. [3, 11]

Lee Copeland [4] points out that ET has no ability
to prevent defects. Designing the test cases in scripted
testing can begin during the requirements gathering
and design phases and thus reveal defects early.

3.5 Session-based test management

Exploratory testing should not be unplanned,
unstructured, or careless testing without any strategy or
goals [5]. Exploratory testing can be as disciplined as
any other intellectual activity [2]. It can be structured,
managed and planned as long as the planning is not
extended to describe detailed tests on the level of test
cases and execution steps.

87

Jonathan Bach has published an approach to ET
called Session-Based Test Management (SBTM) [3].
The session-based approach brings a clear structure to
loosely defined exploratory testing. It is an approach to
planning, managing, and controlling exploratory
testing in short (almost) fixed-length sessions. Each of
these sessions is planned in advance on a charter sheet.
The charter is a high level plan for a test session. It
does not pre-specify the detailed test cases executed in
each session. A clearly defined report is produced and
metrics are collected during the session. The results are
debriefed afterwards between the tester and the test
manager.

Experiences of using a similar approach have been
presented by Lyndsay and van Eeden [9]. The
approach of Lyndsay and van Eeden also includes
methods for controlling the scope of the testing,
assessing and tracking the coverage of the tests, and
assessing risks and prioritizing the tests. The session-
based approaches seem to provide tools for managing
ET and alleviation to the planning as well as progress
and coverage tracking problems of ET.

4. Results

In this section we present the results from our case
study. First we present the reported reasons for using
ET in the case companies. Then we present the
different ways of performing ET in the companies. The
following subsections describe the perceived benefits
and shortcomings of ET. In the last subsection we
present the collected measurement data.

4.1. Reasons for using exploratory testing

The companies reported several reasons for using
ET. In Table 2 we have summarized all reasons
mentioned in more than one company. All companies
agreed that writing test cases for everything is difficult
and laborious. At Neptune and Vulcan, when using the
system, a task could be performed in so many ways

that it was impossible to write test cases for all
possible combinations. Therefore an exploratory
approach was regarded a natural choice. At Mercury,
the interviewee stated that it could have taken up to a
week to write a list of test cases and still some
important test cases might have been overlooked or
forgotten. Instead, the interviewee preferred using the
same time to testing and giving feedback to
development.

Another reason that all companies agreed upon was
using ET as a way of testing the software from a user’s
viewpoint. When performing ET, they tested larger
combinations of functionality together from the
viewpoint of performing the tasks of a real
professional user of the system. Exploring real use
scenarios helped find peculiarities and usability
problems in the software. At Neptune, the user manual
was used to structure exploratory testing from the
user’s viewpoint. This also enabled validating the
correctness and usefulness of the manual. Testing from
the user’s viewpoint was also reported challenging,
since it requires very strong domain knowledge from
the tester.

Mercury and Neptune mentioned ET as a natural
way of doing testing, since it emphasizes utilizing the
testers’ experience and creativity to find defects during
test execution. At Vulcan, this was mentioned when
talking about using ET to regression testing. When
new features have been developed or defects have
been corrected, ET is useful for testing that nothing
else has been broken. The interviewees at Vulcan
commented that even if test cases are used as a basis
for testing, ET allows the tester to look at the tested
feature(s) as a whole. This makes it easier to spot
problems that might go unnoticed if the tester was only
following a script. Also, the exploratory attitude helps
the tester to follow hunches and thus find defects, for
example, in unexpected combinations of features. In
this way ET was by the interviewees regarded both as
an independent way of testing and as a complementary
testing approach to using predefined test cases.

Table 2. Reported reasons for using ET in the case companies

Reasons for using ET Mercury Neptune Vulcan
The software can be used in so many ways or there are so many combinations between
different features that writing detailed test cases for everything is difficult, laborious, and
even impossible.

X X X

It suits well to testing from a user’s viewpoint. X X X
It emphasizes utilizing the testers’ experience and creativity to find defects. X X X
It helps provide quick feedback on new features from testers to developers. X X X
It adapts well to situations, where the requirements and the tested features change often,
and the specifications are vague or incomplete.

X X

It is a way of learning about the system, the results of which can be utilized in other
tasks, such as customer support and training.

 X X

88

All companies had found ET practical for giving
fast feedback to developers regarding newly developed
features. When the developer(s) had completed a
feature, a tester would quickly explore the new feature
and give feedback to the developer(s). The feedback
could range from reporting defects to pointing out
usability problems or misconceptions regarding the
customer requirements. This information could then be
used to steer the development, if necessary.

At Mercury and Neptune, the requirements and
developed features could change often during
development. Therefore it was considered a waste of
time to write detailed test cases during the early phases
of development. Also, the specifications were
deliberately left incomplete or even vague when
development started. In these conditions, ET was
considered a logical approach to testing.

At Neptune and Vulcan, ET was viewed as a way to
learn about the system under test. This was considered
valuable, because the information and experience
could then be used to support the tester’s other tasks,
since there were no full-time testers in any of the
companies. For example, the information was used in
planning additions to the set of existing automated
tests. Also, some of the testers worked in customer
support and training. The information they got from
doing ET helped them better understand the questions
received from customers and prepare the answers. The
information and experience was also useful for
preparing training material.

4.2. Ways of utilizing exploratory testing

Based on our interviews we identified six different
ways of utilizing exploratory testing in the three case
companies: session-based ET, functional testing,
exploratory smoke testing, exploratory regression
testing, subcontracted ET, and freestyle ET. These
were applied in different phases of the development
life cycle and are explained in more detail in the
subsections below. Even if the companies had many
different approaches to exploratory testing at the
process level, the actual testing work of each
individual tester did not seem to differ a lot. All
interviewees described their testing as an intuitive and
ad-hoc process of trying to find defects or verify
changes. The interviewees had different goals for the
testing, but none of the interviewees could describe
any intentional test strategies or techniques that they
used when exploring the software. When asked about
trying out different combinations and finding
equivalence classes or boundary values, four of the
seven interviewees told that they try to find out
combinations and boundaries to intentionally break the

system. However, none of the interviewees claimed
they do this systematically.

4.2.1. Session-based exploratory testing. At Neptune
and Mercury, a session-based exploratory testing
approach was used. In this approach, testing was
organized in short (0,5-3 hours) test sessions during
which the tester accomplished one planned testing task
(for example, “test the insert note functionality using
the different views of the system”) and tried to
concentrate and focus on that task without any
interruptions or other disturbance. Mercury’s sessions
were shorter (59 minutes on average) than Neptune’s
sessions (113 minutes on average). Most of the
interviewed persons found it beneficial to isolate the
testing time into focused sessions without other tasks
or interruptions. The sessions were planned using short
descriptions that were called charters as in [3].

The charters described briefly the testing task, goals
of the test session, and the target of testing, i.e., the
product and the feature to be tested. At Mercury, the
tester’s testing actions on a high level of abstraction
were logged at the end of the test session charter
during the test session. At Mercury, the person who
performed the testing wrote the charter and at Neptune,
the charters were written by the developer whose
responsibility the tested functionality was. There was
no systematic higher level planning or control of how
the test sessions were allocated, and no tracking of
which parts of the system were covered by the test
sessions and how thoroughly.

The main results that were reported from the
sessions were found defects in the form of entries in
the defect tracking system. At Mercury, the
interviewee recorded the found defects directly into the
defect tracking system during the session, but at
Neptune the interviewees wrote down the found
defects briefly by hand or into a text editor during the
session and reported the defects into the defect
tracking system only after the session. The
interviewees felt that this way of working was better
because it helped them keep their concentration on the
work at hand.

4.2.2. Functional testing of individual features.
Vulcan used ET for testing individual features right
after the feature was implemented. This was performed
by individuals of the requirements management team
and focused on testing whether the implementation
corresponded to the requirements and the designer’s
actual ideas of the specified functionality or not. This
enabled fast feedback to the developers in the early
phase of the development life cycle.

89

4.2.3. Exploratory smoke testing. Vulcan used an
exploratory smoke-testing approach after the
implementation phase, when a new revision of the
software was released to testing, which could occur
once a week. Each of these releases was smoke tested
by the service team. This exploratory testing took from
half an hour to a day and was guided by a “heading-
level” list of the areas to be tested. The tester went
through the list with the intent of identifying defects in
or changes to the existing functionality and
formulating a quick overall picture of the general
quality of the release. In addition, the tester checked
every fix and enhancement that was implemented in
the release to ensure that the reported fixes actually
had been properly performed and worked as the
service team member would expect from the end-user
point of view.

4.2.4. Exploratory regression testing. Both Neptune
and Vulcan used exploratory testing to verify fixes and
changes after implementing a single fix. This testing
was driven by announcements from developers that
some defect was fixed or enhancement implemented.
The tester held a short testing session to verify the fix,
typically without any planning or formal tracking or
control. The result of this session was informally
communicated to the developer or, if it was a defect
fix, the defect was just checked as closed into the
defect tracking system.

This approach differs from the typical regression
testing described in textbooks. In these companies
regression testing was not performed exhaustively over
the whole system. Rather it concentrated on the
changes and fixes made and, based on the tester’s
experience, exploring possible new and related defects
caused by the fixes. The main reasons mentioned for
this kind of “limited” regression testing were lack of
time or resources for complete regression testing of the
system.

4.2.5. Subcontracted exploratory testing. As a
special form of testing, Neptune used real users of the
system as subcontracted testers. They hired two
experienced professional users of their system to test
their upcoming release. This testing was organized by
features and the task of the testers was to explore each
feature of the software to accomplish real working
scenarios.

4.2.6. Freestyle exploratory testing. At Vulcan, many
parts of the organization performed unmanaged
exploratory testing as part of their other duties. The
common way of doing it was testing the latest alpha or

beta release. For example, at customer services this
was a part of the everyday work.

An interviewee at Vulcan also mentioned that they
quite often use exploratory testing as part of systematic
system testing to explore functionality beyond the
documented test cases with the intent of finding more
defects and defects that are not straightforward to find.

4.3. Perceived benefits of exploratory testing

Some of the perceived benefits of ET were
mentioned in Section 4.1 as part of the reasons for
using ET. In this section we present additional benefits
the interviewees mentioned.

The testing performed using ET is more versatile
and goes deeper into the tested feature(s) according to
all interviewees. Five out of the seven interviewees
mentioned that they tend to test things that they might
not have included in a test plan or among test cases.
Examples of such tests include testing the
dependencies of new and existing features based on
expertise and knowledge of the system. This would
normally not be included as test cases because they are
written based on the requirements for the new features.
Another example of versatility is retesting a corrected
defect. Interviewees at both Neptune and Vulcan
mentioned that they do not just retest in the same way
as before, but explore for possible new defects at the
same time. At Neptune, this was realized in some cases
so that the person that found and reported the defect
was not the one who tested the correction. In this way
the other tester, who explored the software from a
different viewpoint, could use his experience to try to
find new and related defects.

The effectiveness and efficiency of ET was
perceived high by the interviewees, although with
some reservations. At Vulcan, both interviewees
concluded that ET helped them find important defects
in a short amount of time, but if a less experienced
person with less domain knowledge would do the
testing, the results might not be so good. They also
claimed that more defects were found in system testing
using ET than using test-case-based testing and they
implied this could be because the test cases are
designed to verify that the system works and that the
testers use ET with a more destructive attitude. At
Neptune, one of the interviewees thought that ET is
efficient in the short term considering used hours and
the number of found defects. However, in the long run
it is difficult to determine the efficiency of ET, because
it is hard to estimate the coverage of the tests and many
things may go untested and thus unnoticed causing
problems in the future. Another interviewee at Neptune
thought ET was effective, but he also mentioned that

90

using ET to test features of a complex system is very
time consuming.

Getting an overall picture of the quality of the
system quickly is one aspect of efficiency that was
mentioned by interviewees at Neptune and Vulcan. At
Neptune, this was considered important because the
information and overall picture gained from ET was
used as a basis for prioritizing the work towards the
end of the project. At Vulcan, when the testers get a
new version of the system they can quickly determine
the quality level based on their prior experience. They
can also quickly verify that the visual look and feel of
the system is consistent with the historical look and
feel, which is considered important since the system
has been in use for many years and existing customers
would probably not welcome inconsistent changes.

4.4. Perceived shortcomings of exploratory
testing

Coverage in one form or another was the biggest
shortcoming of ET mentioned by all the interviewees.
At Mercury, the biggest challenge concerning
coverage was planning and selecting what to test with
ET. The interviewee admitted that everything could
not be tested with ET, because it is time consuming
and there are not enough testers. The factor of limited
time and testers was also mentioned at Vulcan, where
the interviewees admitted that not everything could be
tested. It was a question of prioritizing testing to
potential weak spots in the system under test and trying
to allocate time of domain experts for testing. This,
combined with scarce documentation of the testing
itself, created another challenge, namely following up
what had been tested and what had not. At Neptune,
coverage was considered a challenge from two
viewpoints: 1) when testing new features, some things
most certainly were left untested, especially
concerning resulting effects in the old features, and 2)
a tester can never guess all the ways in which the
customer might use the system.

Being able to utilize the testers experience and
creativity was mentioned as a reason and benefit for
using ET in all the companies. However, this was also
mentioned as a shortcoming. In both Neptune and
Vulcan the interviewees agreed that relying on the
expertise of the testers made ET more prone to human
errors than systematic testing. At Neptune, one
interviewee commented that it was impossible to find
testers with enough experience to act as professional
users. Another comment from both Neptune and
Vulcan was that all testers have different backgrounds
and experience and thus perform ET from different
viewpoints. Again, this was seen both as a strength and
weakness, especially regarding the versatility of testing
this implied.

The repeatability of defects was seen as a
shortcoming of ET at Neptune. This was attributed to
the complex system that permitted many ways of
performing tasks, and each task could require up to a
hundred or more steps. When a defect was spotted, it
could take hours to repeat it, so that it could be
properly reported in the defect database. However, the
macro recording capability of the system could be used
to alleviate the problems. Repeatability problems had
also occurred at Vulcan, but they had mainly happened
due to memory leaks and could probably not have been
repeated even if a detailed script had been followed. At
Mercury, repeatability was not considered a problem,
because of the extensive session logs written during
the ET sessions.

4.5. Defect and effort data

We collected quantitative defect and effort data
from the defect and other tracking systems of the case
companies. The collected data is summarized in Table
3. It helps in describing how the companies used ET.
The available data has limitations which makes it hard
to make conclusions based on it. At Vulcan, a session-
based testing approach was not used which means that
there is no session-specific data available.

Table 3. Summary of defect and effort data

Vulcan Neptune Mercury
Functional Smoke

Total number of found defects 169 34 103 / release 31 / release
Total effort (hours) 36 4 160 / release NA
Number of sessions 17 4 NA NA
Average session length (minutes) 113 59 NA NA
Average defects / session 9.9 8.5 NA NA
Average defects / hour 4.8 8.7 0.6 NA
Serious defects NA 15 % NA NA

91

The session data of Neptune and Mercury is
collected from the test sessions that they have
performed so far. Vulcan’s data is collected from four
successive product releases and presented as averages.
Two different ways of doing exploratory testing at
Vulcan could be taken into account in data collection:
functional testing (see Section 4.2.2) and smoke testing
(see Section 4.2.3). There was no effort data of smoke-
testing available. The number of serious defects could
not be determined for Neptune and Vulcan.

Within each case we cannot say whether the
numbers in Table 3 show good or bad performance
since we have no comparative data of other testing
approaches in the companies. Based on a cross-case
comparison, however, defect detection efficiency
(Average defects / hour in Table 3) is much higher
where a session-based approach has been used. This
may partly be because the tester can stay focused by
avoiding interruptions during sessions. The
interviewees at Vulcan admitted that they encountered
many interruptions during testing, but they did not see
it as a problem. The defect rate per hour metric of
Vulcan’s functional testing might also be biased. We
cannot ensure that all detected defects have been
logged into the defect tracking system or that effort has
been correctly and exactly allocated to ET.

The difference between the defect rates per hour at
Neptune and Mercury may be explained by the
maturity of the products. Mercury’s product is new and
it is logical that it might contain more defects to be
detected.

5. Discussion and further work

The purpose of this paper was to study what the
current knowledge of exploratory testing is in
literature, how and why companies use ET, and with
what results. We presented the current knowledge of
ET, its claimed benefits, applicability, and
shortcomings based on the existing literature, which
we found very scarce. We conducted a case study in
three software product companies. We looked at the
reasons for using ET, how ET is applied in the
companies, and what the perceived benefits and
shortcomings of ET are. The resulting description of
the use of ET in the companies is the main contribution
of this paper. The results of our study support many of
the claimed benefits of existing literature and reveal
some new findings. Next we discuss the limitations of
our study, our findings, and propose ideas for further
research (ideas marked in italics).

We recognize that there are many limitations to our
study, especially concerning the small number of case

companies. There were only three case companies,
which makes generalization of the results difficult.
Neptune and Vulcan are alike in many respects, while
Mercury is smaller and has a little bit different
customer segment, but it still means that the
representativeness of the case companies is limited.
Also, all case companies are in the product business,
so we cannot say if or how ET would work in, e.g.,
bespoke software projects. Another limitation is that
we focused on the use of ET in the companies and not
the whole testing approach and the role ET plays in it.
In view of the limitations of the study, our findings
should be considered more suggestive than conclusive.
A more comprehensive case study should be made,
with a bigger and more versatile sample of companies.
However, our findings add to the body of knowledge
concerning exploratory testing and provide some food
for thought.

The data did not fully support the claimed benefit of
increased productivity. Many interviewees felt that ET
is an effective way of finding defects, especially
defects that were hard to find. Still, they also
considered it time consuming to explore complicated
functionality carefully. The defect and effort data in
Table 3 seems to support claims about defect detection
efficiency, at least concerning session-based ET. In
studies we can use as comparison, Anderson et al. [1]
found an average defect detection efficiency of less
than 3 defects per hour for usage-based testing, where
the tester tests a piece of software based on test cases
derived from use cases. Wood et al. found an average
defect detection efficiency of 2.47 defects per hour for
functional testing [12]. The defect detection efficiency
for Neptune and Mercury was 4.8 and 8.7 defects per
hour respectively (see Table 3). Also, 15% of the
found defects at Mercury were serious, which gives
some support for the effectiveness of session-based
ET. However, these issues require studies where a
reliable comparison of efficiency and effectiveness can
be made between ET and e.g. test-case based testing.

Both the literature and the interviewees agreed that
one of the main reasons for using ET is being able to
utilize the testers’ creativity and experience during test
execution, instead of spending much time on designing
test cases prior to test execution. The interviewees
stressed the difficulty of creating good test cases
because the systems were so complicated and provided
so many options for the user. However, the
interviewees stated clearly their concern for the strong
reliance on the expertise of the individual tester in ET.
It is hard to find testers with enough domain expertise
to act as professional users and different testers may
focus on different things when testing. This makes
evaluating the quality of testing challenging. These

92

shortcomings have not been explicitly addressed in the
existing literature. An interesting question for further
research is what importance domain knowledge and
testing skills play in finding defects. None of the
interviewees had received any formal testing training.
Would the interviewees have found more defects if they
had received testing training? Would a professional
tester be able to find relevant defects without domain
knowledge? These questions remain open for further
research.

Our study did not reveal any intentional test
techniques or strategies used for exploring. This could
be due to lack of testing training. We feel that further
research on ET techniques and strategies is needed,
because they might increase the effectiveness of ET.

One new finding of our study that has not been
mentioned in existing literature was the use of ET for
learning the system for other purposes than better
testing and finding defects more effectively. In two of
the three case companies one of the reasons for using
ET was learning the features and behavior of the
system, e.g. to help prepare training material and
answers in customer service.

Based on our study the biggest shortcoming of ET
is coverage. Only selected parts of the system can be
tested because of time pressure, but in the case
companies there were no established ways of planning
and prioritizing what to use ET for. This, combined
with insufficient mechanisms for following up test
progress, resulted in unknown coverage, which was a
concern for the interviewees. It seems that we need
more research to find reliable techniques for planning,
controlling and tracking ET to help focus ET efforts
and help control coverage. The session-based
approach suggested in [3, 9] seems promising in this
respect.

It seems that exploratory testing is an accepted
approach to testing in industry and in the future we
will continue our research efforts on ET. As ET seems
to work well as a complementary testing method, more
detailed case studies are needed focusing on the role
of ET in a comprehensive testing process. We plan to
conduct more case studies to gain better understanding
of the role, and benefits of exploratory testing in
software development. We plan to focus our efforts on
session-based approaches and hope to find ways of
coping with the shortcomings and challenges of ET
while utilizing the full potential of the benefits it can
provide. Another area of interest is exploration
techniques. We plan to arrange student and industrial
experiments to get results of the effect of using
different techniques in exploratory testing.

References

[1] C. Andersson, T. Thelin, P. Runeson and N. Dzamashvili,
"An Experimental Evaluation of Inspection and Testing for
Detection of Desing Faults", in Proceedings of International
Symposium on Empirical Software Engineering, 2003, pp.
174-184.

[2] J. Bach, "Exploratory Testing", in The Testing
Practitioner, Second ed., E. van Veenendaal Ed., Den Bosch:
UTN Publishers, 2004, pp. 253-265.

[3] J. Bach, "Session-Based Test Management", STQE, vol.
2, no. 6, 2000.

[4] L. Copeland, A Practitioner's Guide to Software Test
Design, Boston: Artech House Publishers, 2004.

[5] R.D. Craig and S.P. Jaskiel, Systematic Software Testing,
Boston: Artech House Publishers, 2002.

[6] IEEE, "Guide to the Software Engineering Body of
Knowledge", IEEE., Tech. Rep. IEEE - 2004 Version, 2004.

[7] C. Kaner, J. Bach and B. Pettichord, Lessons Learned in
Software Testing, New York: John Wiley & Sons, Inc., 2002.

[8] C. Kaner, J. Falk and H.Q. Nguyen, Testing Computer
Software, New York: John Wiley & Sons, Inc., 1999.

[9] J. Lyndsay and N. van Eeden, "Adventures in Session-
Based Testing", 2003, Accessed 2005 04/25,
http://www.workroom-
productions.com/papers/AiSBTv1.2.pdf

[10] A. Tinkham and C. Kaner, "Exploring Exploratory
Testing", 2003, Accessed 2005 04/25,
http://kaner.com/pdfs/ExploringExploratoryTesting.pdf

[11] J. Våga and S. Amland, "Managing High-Speed Web
Testing", in Software Quality and Software Testing in
Internet Times, D. Meyerhoff, B. Laibarra, van der Pouw
Kraan,Rob and A. Wallet Eds., Berlin: Springer-Verlag,
2002, pp. 23-30.

[12] M. Wood, M. Roper, A. Brooks and J. Miller,
"Comparing and Combining Software Defect Detection
Techniques: A Replicated Empirical Study", ACM SIGSOFT
Software Engineering Notes, vol. 22, no. 6, 1997, pp. 262-
277.

[13] R.K. Yin, Case Study Research: Design and Methods,
London: SAGE Publications, 1994.

93

