
Publication IV

Juha Itkonen, Mika V. Mäntylä, and Casper Lassenius. 2009. How do testers do
it? An exploratory study on manual testing practices. In: Proceedings of the
Third International Symposium on Empirical Software Engineering and
Measurement (ESEM 2009). Lake Buena Vista, Florida, USA. 15-16 October
2009. IEEE. Pages 494-497. ISBN 978-1-4244-4842-5.

© 2009 Institute of Electrical and Electronics Engineers (IEEE)

Reprinted, with permission, from IEEE.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of
Aalto University's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

How Do Testers Do It?
An Exploratory Study on Manual Testing Practices

Juha Itkonen, Mika V. Mäntylä and Casper Lassenius
Helsinki University of Technology, Software Business and Engineering Institute

P.O. Box 9210, FI-02015 TKK, Finland
juha.itkonen@tkk.fi, mika.mantyla@tkk.fi, casper.lassenius@tkk.fi

Abstract

We present the results of a qualitative observation

study on the manual testing practices in four software
development companies. Manual testing practices are
seldom studied, and based on the literature we conjec-
ture that they have a strong effect on the effectiveness
of manual testing. We observed testing sessions of 11
software professionals performing system level func-
tional testing. As a result we identified 22 manual test-
ing practices that we classified into 9 test session
strategies and 13 detailed test execution techniques.
Many of the identified techniques were based on simi-
lar ideas as traditional test case design techniques.
However, the subjects applied these techniques during
manual testing without separate test design phase. The
results indicate that software professionals use a wide
set of strategies and techniques when performing ma-
nual testing. Testers seem to need and use techniques
even if applying exploratory testing.

1. Introduction

Revealing defects efficiently is one of the great
challenges in software engineering. In practice, detec-
tion of functional defects at the system level is still
largely dependent on the contribution of human testers
doing manual testing. Most new defects are found by
manual testing, and test automation is often seen as a
way of removing the enactment of simple and repeti-
tive tasks from human testers in order to free up time
for creative manual testing, not to replace it [1,2].

We consider test execution a key activity in the
manual testing process, and think that more research is
needed to understand the state of the practice of all
manual testing activities in real software development
organizations. Testing is traditionally considered a
process that relies upon executing test cases that are
carefully designed using test case design techniques
[3,4]. However, test execution is typically not a simple

mechanic task consisting of executing completely spe-
cified test cases. Instead, testers’ skill and knowledge
are important also during test execution. Previous re-
search shows that individual aspects such as testers’
skills have as strong an effect on the results of testing
as do the test case design techniques [5]. Studies on
industrial practice and practitioner reports show that
rigorous and thoroughly documented test-case based
testing is not common in industry [1,6,7] and many
researchers and practitioners, see e.g. [8-12], have em-
phasized the role of experience and skills in software
testing activities.

One experience-based alternative to test-case based
testing is exploratory testing (ET) approach that does
not rely on the documentation of test cases prior to test
execution. ET builds on applying the experience and
knowledge of the tester during manual testing by per-
forming simultaneous test design, execution, reporting,
and learning of the tested application [6,8]. Practitioner
reports of exploratory testing approaches claim them to
be effective and cost-efficient [8-10]. In addition, some
scientific studies, e.g. [11,13], as well as our own re-
search [6,12] support the hypothesis that experience-
based testing could be effective and cost-efficient in
suitable contexts.

There is an identified need for research on the ac-
tual practice on software testing [14,15]. However, the
majority of prior works focuses on test case design and
research on manual testing as a whole is rare. In this
paper, we report the first results of an observation
study of software testing work in industry with the
purpose of shedding some light upon what testers
really do when performing experience-based manual
testing.

2. Research goals and methods

The main goal of this study is to increase under-
standing of how testers perform experience-based and
exploratory manual testing in the context of system
level functional testing. This study aims at identifying

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
494

and classifying the actual practices that testers use.
With ‘practices’ we mean any manual testing behav-
iour that follows some logic, has some goal, and in-
volves utilising testers experience or skills, i.e., behav-
iour that is not only following a written script.

This study is exploratory in nature, as opposed to
theory development. In order to properly study these
human aspects of software engineering, we chose to
use qualitative inquiry using field observations as the
primary data collection method [16]. Field observation
was selected as a method to gain access to the actual
testing tasks that the subjects performed in their natural
working environments. By using direct observations,
instead of interviews or inquiries afterwards, we
avoided having to rely on descriptions and conceptu-
alizations by the subjects, based upon their recollection
of how they work. To gain better understanding of
what the observed tester was doing, how, and why, we
applied the “think-aloud” approach [16], meaning that
we asked the subjects to think aloud, i.e., describe what
they were doing and thinking during the testing ses-
sion. However, the subjects typically verbalized their
work quite briefly and discontinuously.

This study was carried out in four case organiza-
tions. All organizations were Finnish small to medium
sized companies in the software product business. The
case companies were selected based on accessibility,
i.e., the case companies were accessible to researcher
through research co-operation. The total number of
tested software systems in the observed sessions was
six. Two of the six products were developed with a
separate testing organization, and also the observed
subjects in these cases were from the testing organiza-
tion. The rest of the products were developed in or-
ganizations without an independent testing team. In
these cases the actual testing tasks were carried out by
people in varying roles in the organization.

The total number of observed sessions was 11, i.e.,
one observation session for each subject. The lengths
of the observed sessions varied between 1.5 and 2.5
hours. All the observed sessions were part of the sub-
jects’ normal testing activities and took place in the
same environment the subject would normally do the
testing work. The focus of the observations was nar-
rowed to the tester’s practices and behaviour during the
testing session.

The observed subjects were selected using purpose-
ful sampling [16] among software development profes-
sionals who had functional testing as one of their du-
ties. We selected subjects with different roles and
backgrounds. We aimed at finding information-rich
cases ([16] p. 242), in order to get a wide view of the
variety of practices professionals use in testing work.
Four of the eleven observed professionals were primar-
ily testers. Rest of the subjects were not full time test-

ers, but rather application area experts in such roles as
product and project management, customer support,
and software development. The subjects were experi-
enced in their application domain with an average of
11 years of domain experience and 7.8 years of soft-
ware engineering experience.

The observations were carried out by the first au-
thor alone. The data was collected by taking thorough
field notes during the test session observation using a
pre-planned structure. In addition, if test documenta-
tion, such as high level test cases or other guidance,
was used during the observed sessions it was recorded
to support data analysis.

The observations were augmented by short (15-30
min) interviews after each observation session. The
interview data was used as demographic background
information and to understand if the observed session
was somehow special or differs from the normal test-
ing activities in the organization.

The field note data was analyzed by coding and
categorizing the findings. We first used a pre-defined
initial coding scheme where we coded the data using
high level codes that were based on our research ques-
tions and general theory of software testing. The pre-
liminary list of codes was refined and extended during
analysis work. After coding we formed categories of
the practices based on the abstraction level the practice
worked at and similarity of the practices.

3. Results

In this chapter, we describe the results of this study.
We describe the classification that was created in order
to better understand the large amount of identified test-
ing practices. Few selected practices are described to
give examples of different types of identified practices.
In addition, we outline the challenges testers encoun-
tered in the observation sessions.

We identified that practices worked at different ab-
straction levels and analysed the findings from this
viewpoint. Based on the analysis we divided the prac-
tices into two main classes, namely test session strate-
gies and test execution techniques. The two main
classes were further divided into subclasses based on
the similarity as described in Table 1. The classifica-
tions are described in the next subsections.

We also identified challenges related to experience-
based testing approach. Despite of the numerous test
execution practices that we identified, the subjects
lacked practices for logging and tracking of testing;
transferring the requirements knowledge to testers and
utilizing it; and focusing testers’ attention to ensure the
most important aspects of the tested features are tested.
In experience-based testing applicable methods are
needed for documentation, knowledge transfer, and

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
495

tracking, when the test-case based documentation prac-
tices are not applied.

3.1. Test Session Strategies

The test session strategies are high level practices
that the subjects used to give an overall structure to
their testing work. Session strategies gave the general
guideline of how to proceed in testing and what aspects
to cover. In combination with session strategies, sub-
jects typically used free exploratory testing or some
test execution technique (see Table 1) to test the details
of each feature. The session strategies are further di-
vided into subclasses of exploratory strategies and
documentation based strategies.

The exploratory strategies were used to guide and
give structure to exploratory testing. An example of
such strategy is User interface exploring where a tester
structured the testing through user interface features
and proceeds from feature to feature and covers all UI
features, but relied on experience-based approach in
testing each individual feature. Another example is
Exploring weak areas that relied on the tester’s experi-
ence and tacit knowledge of potential weak areas, not
based on documented analysis. Rest of the strategies
are Aspect oriented testing, Top-down functional ex-
ploring, Simulating a real usage scenario, and Smoke
testing by intuition and experience.

The documentation based session strategies, in con-
trast to exploratory strategies, are used to guide experi-
ence-based testing using documented tests or other
documentation. The used documentation can be test-
cases that are described on varying level, or release
notes and defect reports. The documentation is used as
a checklist to give structure for test execution or as
high-level test-cases that are extended and deepened by
experience-based approach. An example of such strat-
egy is Data as test cases where test data was docu-
mented and used to give structure for testing and man-
age coverage. Instead of functional steps the testing
was guided by situations defined in terms of test data.
The strategy was used in testing a financial system
where the test data represented different kinds of cus-
tomers with different properties, services, and personal
situations. This data set was used for covering a repre-
sentative set of situations in experience-based testing
of the features of the system. Other strategies are Ex-
ploring high-level test cases, and Checking new and
changed features.

3.2. Test Execution Techniques

The test execution techniques are practices that the
subjects used for testing individual or tightly related
features, or such small details as input values. We

categorized the techniques into three subclasses: Ex-
ploratory, comparison and input techniques.

Table 1. Classification of the identified practices

Test session
strategies

Exploratory 6 practices
Documentation based 3 practices

Test execution
techniques

Exploratory 6 practices
Comparison 4 practices
Input 3 practices

The exploratory techniques are techniques that are

used for exploring one isolated functionality or a single
function. Most of the exploratory techniques are based
on hypothesis of a certain type of defects that the tech-
nique aims to reveal, or a certain typical situation
where defects are often revealed. For example, Simu-
lating abnormal and extreme situations is a technique
for testing extreme situations or scenarios. The aim is
to evaluate how a function performs on and beyond its
limits and reveal problems of handling abnormal and
stress situations where the limits or rules of normal
operation are violated. Other techniques are Testing
alternative ways, Exploring against old functionality,
Persistence testing, Feature interaction testing, and
Defect based exploring.

The comparison techniques are used for evaluating
the test outcomes and making difference between cor-
rect, expected; and incorrect, erroneous behaviour dur-
ing testing, i.e., how to recognize a defect. Subjects
needed comparison techniques to analyse complicated
features and evaluate the expected outcome especially
when the correct function was not unambiguously
specified or involved many aspects that must be taken
into consideration. For example, Comparing within the
software is a technique for comparing similar features
in different places of the same system. The aim is to
assess if a feature works correctly or not by investigat-
ing the consistency of functionality inside a software.
Other techniques are Comparing with another applica-
tion or version, Checking all the effects, and End-to-
end data check.

The input techniques are used for detailed testing of
individual input values or set of related inputs. Input
techniques are used to manage covering the details of a
feature and selecting relevant test cases or values for
testing. For example, Testing boundaries and restric-
tions is a technique that focuses on testing the bound-
ary values and other restrictions of input data. The aim
is to cover all explicit and implicit restrictions of a sin-
gle function and reveal defects that are associated with
handling boundaries and restrictions. Other techniques
are Testing input alternatives and Covering input com-
binations.

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
496

4. Discussion and conclusions

It is important to notice that many of the identified
practices are actually based on theories and assump-
tions that are same or similar to some of the traditional
test-case design techniques. As an example the tech-
niques in the Input technique category were similar to
the classic equivalence class partitioning and boundary
value analysis techniques [3]. In addition, the Covering
input combinations was a simple technique that cap-
tured the basic idea of the combinatorial testing. Many
of the exploratory strategies and techniques were simi-
lar to the general heuristics, rules of thumb, and ex-
perience-based lessons found in software testing text-
books [3,10]. However, the difference between our
findings and how the techniques are presented in the
literature is that the execution-time practices were used
as part of test execution, not as test design methods
beforehand. The identified comparison techniques
seem to be techniques that are not often described in
testing literature, because in test-case based testing the
comparison to documented expected results does not
require separate techniques. As a notable exception,
Kaner et al. list some evaluation-based techniques in-
cluding comparison techniques and consistency heuris-
tics [10].

As a conclusion we state that this study provides
initial results of a research on the manual testing prac-
tices in the form testing is practiced in industry. We
identified 22 manual testing practices used by profes-
sionals. We created a classification of the testing prac-
tices to help better understand the numerous findings
and support future research. This study supports the
hypothesis that testers, in practice, apply numerous
techniques and strategies during test execution and do
not mechanically rely on test documentation. Testers
need testing techniques even if applying experience-
based and exploratory testing approaches. Finally, we
identified that execution-time techniques are partly
similar to test-case design techniques, but are strongly
experience-based and applied in the non-systematic
fashion during test execution.

We continue research on manual testing practices
in real testing organizations and include more dedi-
cated testing organizations in our research and focus to
understanding what makes testers good. It is important
to study how the testing practices can be trained and
how the practices can benefit experience-based testing
without sacrificing other important aspects of testing,
such as planning, tracking and coverage.

5. References

[1] Andersson, C. and P. Runeson, “Verification and vali-
dation in industry - a qualitative survey on the state of

practice,” Proceedings of International Symposium on
Empirical Software Engineering, 2002, pp. 37-47.

[2] Berner, S., R. Weber, and R.K. Keller, “Observations
and Lessons Learned from Automated Testing,” Pro-
ceedings of International Conference on Software En-
gineering, 2005, pp. 571-579.

[3] Myers, G.J., The Art of Software Testing, New York:
John Wiley & Sons, 1979.

[4] Beizer, B., Software Testing Techniques, New York:
Van Nostrand Reinhold, 1990.

[5] Juristo, N., A.M. Moreno, and S. Vegas, “Reviewing
25 years of Testing Technique Experiments,” Empiri-
cal Software Engineering, vol. 9(1-2), 2004, pp. 7-44.

[6] Itkonen, J. and K. Rautiainen, “Exploratory testing: a
multiple case study,” Proceedings of International
Symposium on Empirical Software Engineering, 2005,
pp. 84-93.

[7] Ahonen, J.J., T. Junttila, and M. Sakkinen, “Impacts of
the Organizational Model on Testing: Three Industrial
Cases,” Empirical Software Engineering, vol. 9(4),
Dec. 2004, pp. 275-296.

[8] Bach, J., “Exploratory Testing,” The Testing Practi-
tioner, E. van Veenendaal, ed., Den Bosch: UTN Pub-
lishers, 2004, pp. 253-265.

[9] Våga, J. and S. Amland, “Managing High-Speed Web
Testing,” Software Quality and Software Testing in In-
ternet Times, D. Meyerhoff, B. Laibarra, R. van der
Pouw Kraan, and A. Wallet, eds., Berlin: Springer-
Verlag, 2002, pp. 23-30.

[10] Kaner, C., J. Bach, and B. Pettichord, Lessons Learned
in Software Testing, New York: John Wiley & Sons,
Inc., 2002.

[11] Beer, A. and R. Ramler, “The Role of Experience in
Software Testing Practice,” Proceedings of Euromicro
Conference on Software Engineering and Advanced
Applications, 2008, pp. 258-265.

[12] Itkonen, J., M.V. Mäntylä, and C. Lassenius, “Defect
Detection Efficiency: Test Case Based vs. Exploratory
Testing,” Proceedings of International Symposium on
Empirical Software Engineering and Measurement,
2007, pp. 61-70.

[13] Houdek, F., T. Schwinn, and D. Ernst, “Defect Detec-
tion for Executable Specifications — An Experiment,”
International Journal of Software Engineering &
Knowledge Engineering, vol. 12(6), Dec. 2002, p. 637.

[14] Martin, D., J. Rooksby, M. Rouncefield, and I. Som-
merville, “'Good' Organisational Reasons for 'Bad'
Software Testing: An Ethnographic Study of Testing in
a Small Software Company,” Proceedings of Interna-
tional Conference on Software Engineering, 2007, pp.
602-611.

[15] Juristo, N., A. Moreno, S. Vegas, and F. Shull, “A
Look at 25 Years of Data,” Software, IEEE, vol. 26(1),
2009, pp. 15-17.

[16] Patton, M.Q., Qualitative Research and Evaluation
Methods, Thousand Oaks: Sage, 2002.

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
497

