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Abstract. Using a Satisfiability Modulo Theories (SMT) solver as the back-end
in SAT-based software model checking allows common data types to be repre-
sented directly in the language of the solver. A problem is that many software
systems involve first-in-first-out queues but current SMT solvers do not support
the theory of queues. This paper studies how to encode queues in the context of
SMT-based bounded model checking, using only widely supported theories such
as linear arithmetic and uninterpreted functions. Various encodings with consider-
ably different compactness and requirements for available theories are proposed.
An experimental comparison of the relative efficiency of the encodings is given.

1 Introduction

Bounded model checking (BMC) [1] is an efficient symbolic model checking technique
that has been successfully applied to finding bugs in hardware, software, timed, and hy-
brid systems. In a recent industrial project we have applied BMC to the analysis of
asynchronous, message passing, object oriented systems described in UML [2,3]. Such
systems rise naturally e.g. in the context of communication protocol design. The pro-
posed BMC techniques seem to be relatively efficient (especially when the so-called
step semantics are applied [3]) and sometimes even complementary to the explicit state
methods traditionally used in the analysis of this kind of systems. In [2,3] we use the
NuSMV tool [4] as the back-end, and thus the symbolic transition relation is eventually
translated (“bit-blasted”) into propositional logic and solved with a propositional satis-
fiability (SAT) solver. Compared to propositional SAT, Satisfiability Modulo Theories
(SMT, see e.g. [5,6,7]) offers an attractive framework for solving problems involving
constraints over non-Boolean domains such as linear arithmetics over reals or integers,
equality with uninterpreted functions (EUF), lists, arrays, and so on. Encouraged by this
and the tremendous improvements in the efficiency of SMT solvers during the last few
years, we have also implemented and experimented with an SMT-based variant of our
UML BMC encoding.

When applying BMC to asynchronous message passing systems, one has to be able
to encode gueues in symbolic form accepted by SMT solvers. Unfortunately, decision
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procedures for theories of queues, especially with sub-queue relations, can be quite
complex (see e.g. [8]) and, to the authors’ knowledge, are not currently implemented
in any of the state-of-the-art SMT solvers. However, in the context of finding counter-
examples to safety properties of message passing systems with BMC, we do not need
a full theory of queues but only enqueue and dequeue operations.' If we wish to check
liveness properties with BMC (see e.g. [11]) or use temporal induction [12,13] to prove
absence of bugs as well, we also need a predicate that checks whether the contents of a
queue are the same at two different time steps. As current SMT solvers do not support
these restricted theories of queues either (the theory of recursive data structures [14]
and its variants implemented in some SMT solvers are not applicable, as they only sup-
port stacks and Lisp-like lists, i.e. last-in-first-out protocol instead of first-in-first-out),
we have developed ways to encode queues with other theories. In this paper we study
how to do such symbolic queue encodings in the BMC context by using fragments of
quantifier-free first order logic supported by the current state-of-the-art SMT solvers.
Our goal is to develop queue encodings that (i) are compact (queue encodings can form
a significant part of the symbolic transition relation encoding used in BMC), (ii) only
require theories that are supported in the current SMT solvers, and (iii) are hopefully
efficient to solve. We present several alternative queue encodings that vary consider-
ably in compactness and in what kind of theories they apply; we mainly concentrate
on queues with fixed bounded capacity but also present one (very compact) encoding
that can handle unbounded queues. We benchmark the proposed encodings by using a
simple scalable “stress test” model and some real UML models. Naturally, our queue
encodings can also be applied to BMC of any hardware or software system that uses
queues, not only message passing protocols.

Related work. Compared to some other theories such as those of arrays or linear arith-
metics, there seems to be relatively little work on developing and implementing decision
procedures for queues.

In [15], lambda functions are used to describe queues within the context of mi-
croprocessor verification. However, the expansion of the lambda functions with beta-
substitution, required for getting an SMT problem without lambdas, seems to result in
a quadratic blow-up with respect to the BMC bound.

As a part of his thesis [8, Chapter 8], Bjgrner develops a decision procedure for
queues. However, concatenation of queues as well as sub-queue relations are consid-
ered, making the decision procedure rather involved compared to our needs. To our
knowledge, it is not implemented in any state-of-the-art SMT solver. Based on the ax-
ioms given in [8, Chapter 8], one possibility would be to use the cons/revcons construc-
tors to describe queue contents, then eliminate the revcons constructors by using the
axioms, and finally solve the resulting problem with an SMT-solver supporting the the-
ory of recursive data types (e.g. Yices [16] to name just one example of such a solver).
However, eliminating the revcons constructors in this way leads to a quadratic explosion
in the size of the formula with respect to the BMC bound.

! Actually, state machines in UML [9] (as well as in SDL [10]) can also temporarily defer
messages; the symbolic translation in [2] can handle this, but due to space limitations we do
not consider deferring in this paper.
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The queue interface concept we use in this paper is similar to the one proposed
in [17,18] for encoding memories in the context of BMC for embedded systems. It
seems that queues are easier than memories in this setting as the constraints for mem-
ories in [17,18] depend on the BMC bound, making the size of the overall encoding
quadratic with respect to the bound; the queue encodings presented in this paper are
linear with respect to the bound.

As a final note it should be noticed that some of the underlying high-level concepts
in our queue encodings are by no means new. Anyone who has programmed a queue
data structure with a programming language such as C or C++ has certainly considered
the basic ideas of both the “shifting” and “cyclic” approaches of this paper. But we
are not aware of any previous attempts to systematically describe, analyze, and bench-
mark these approaches in the context of SMT-based BMC. Furthermore, the “linear”
approach and the “tag-based” element compression exploit uninterpreted functions for
reducing the problem size in, we believe, a novel way.

2 BMC and the Queue Interface

In Model Checking [19], we can consider a system to be composed of a finite vector
s = (x1,...,x,) of typed state variables, the set I C S of initial states, and the
transition relation R C S x S, where S = domain(x1) x -+ X domain(zx,) is the
set of states of the system. A pair (s, s is in the transition relation iff the system can
move from s to s’ in one execution step. We will primarily consider checking invariant
properties of systems and define the set B C S of bad states, in which the invariant is
broken. The model checking problem is to determine whether a bad state can be reached
from any initial state with a finite number of transitions.

In Bounded Model Checking (BMC), the characteristic functions of the sets I, R,
and B are encoded as formulas I(s), R(s, '), and B(s) over vectors of state variables.
The question is then whether there is a bound K > 0 and a sequence s, ..., Sk of
states such that I(sg) A R(so,s1) A -+ A R(sx—1,8K) A B(sk) holds. For a fixed
bound, a satisfiability checker, in this case an SMT solver, can decide the existence of a
state sequence that satisfies the latter formula and thus show whether a bad state can be
reached.

The problem we address is that if one or more of the state variables represent queues,
there is no direct way of encoding the queue contents and operations in the language
of the currently available SMT solvers. We propose several alternative queue encodings
that only use theories that are widely supported by state-of-the-art solvers. We will
encapsulate each queue behind a unified interface that allows (limited) access to the
contents of the queue, making it possible to switch to a different queue encoding while
keeping the encoding of the rest of the system the same. Although we only talk about
a single queue in a system, several queues can be handled by simply duplicating the
interface and the encoding.

We assume that at each time step, each queue can be the target of at most one enqueue
and at most one dequeue operation (both can occur at the same time step provided that
the queue is not empty: that is, the element enqueued at a time step cannot be dequeued
at the same time step but only later).
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The interface consists of two client-controlled Boolean variables, which tell whether
a dequeue/enqueue operation is executed, and two data elements: one that tells the client
of the queue what the first element in the queue is at the current time step, and another
for the element to be appended into the queue in the case the enqueue operation is
executed. Furthermore, the client can query whether the queue is empty or full, and
whether the contents of the queue at two different time steps match. As mentioned in
the introduction, the equality test between time steps is only required if one wishes to
check liveness properties or apply temporal induction (see e.g. [11,12,13]).

The contents of a queue with element type ELEM can be represented as a variable-
length vector of elements, thus domain(QUEUE(ELEM)) = domain(ELEM)*. In the
case of a bounded queue, the length is bounded by the capacity Z of the queue.

Formally, the queue interface contains the following terms.

— empty® and full’ are Boolean formulas that tell whether the queue is empty or full,
respectively, at the time step ¢t with 0 < ¢t < K. A bounded queue is full iff it
contains Z elements. An unbounded queue is never full.

— firstelem! is of type ELEM and holds the value of the first element in the queue at
the time step ¢. It has a meaningless value if the queue is empty.

- deg" is a client-controlled Boolean variable that determines whether the first ele-
ment of the queue is removed when moving to the time step ¢ + 1.

— eng' is a client-controlled Boolean variable that determines whether the element
newelem' is appended to the queue when moving to the time step ¢ + 1.

— newelem" of type ELEM is a client-controlled term, see the previous item.

— equal™™ is a Boolean formula that is true iff the contents of the queue at time steps
t and v are the same.

It is assumed that the client of the queue interface never tries to (i) dequeue when the
queue is empty, or (ii) enqueue when the queue is full and dequeuing not is taking place
at the same time step. That is, the following are assumed to be invariants (i.e. to hold at
every time step t):

deq' = —empty (D
engt = (=full® v deq") )
Formally, the contents of a queue () evolve in time as follows. Let the contents at the

time step ¢t be Q' = (v1,va, . .., v,). Then firstelem' = v; and the contents at the next
time step are

(Va, ..., Un, newelem®) if ~empty® A deq' A engt

Qi = (v, ..., vn) if memptyt A deq' A —eng? 3)
(v1,...,Un, newelem") if ~deq" A eng’
(U1, ., vn) if ~deq" A —engt.

We point out that the queue interface is not as expressive as a true theory of queues
would be. In particular, we cannot define arbitrary relationships between time points,
for example, constraining that Q% is equal to Q? except that the first element has been
dequeued. However, from the BMC point of view, arbitrary constraints between queue
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Fig. 1. An illustration of the shifting-based encoding approach when Q* = (uvs, v1, vi2), deg’ =
eng® = true, and newelem' = vi7, resulting in Q""" = (v1, v12,v17)

variables are not needed, and it suffices to reason about a non-branching evolution of
the contents of the queue. The restrictions on the interface make it possible to design
compact encodings to be used especially with BMC.

3  Queue Encodings

In this section we present the three different approaches for encoding queues, called

“shifting”, “cyclic”, and “linear”, together with variations within each approach. We
analyze the sizes and theory requirements of the alternatives.

3.1 A Shifting-Based Approach

Our first approach, illustrated in Fig. 1, is a straightforward implementation of the BMC
semantics of queues given in Eq. (3). It considers bounded queues with at most Z ele-
ments and is basically the approach presented in [2] except that only pure FIFO queues
are considered here. For each time step ¢, we introduce a sequence (qcf, ..., gct; )
of variables, each of type ELEM. The intuition is that gc’._; holds the value of the s:th
element in the queue at time step ¢ (the semantics is undefined if there are less than s
elements). In addition, we introduce a timed integer variable tail’ that holds the loca-
tion of the first unused slot in the sequence, i.e. the length of the queue at time step .
Letting s quantify over {0, ..., Z — 1}, the definitions for the queue interface variables
as well as for updating the queue contents are the following.

deq" A —engt : tail' — 1

tail'™ = { —~deg' A eng® : tail' + 1 4)
else : tail’
empty’ = (tail' = 0) (5)
full’ = (tail' = 7) (6)
eng' A —deq' A tail'=s  : newelem’
R eng® A deq" A tail'=s+1  : newelem’ )
T deg! el
else : gct,
firstelem! := qeb. )

The notation of Egs. (4) and (7) should be interpreted as a standard case-expression, i.e.
tail'™t == if deq® A —eng? then tail’ —1 else (if ~deq' A eng? then tail’+1 else tail®).
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The term gc!, that appears in (7) in the boundary case s = Z — 1 can be taken to have
an arbitrary constant value of type ELEM.

As updating the queue contents (Eq. (7)) requires O(Z) definitions for each time
step, the overall size of the encoding with BMC bound K is O(K - Z).

Equality test. In this approach it is straightforward to check in size O(Z) whether the
contents of the queue are the same at two time steps ¢ and u:

equal™ := (tail® = tail") A /\ (s < tail’) = (gct = qc). )
0<s<Z

One-Hot Encoding for the Tail Pointer. The integer tail pointer used in the shifting-
based approach above requires that the SMT solver includes a decision procedure for
integers with constants and the successor function. We can eliminate this requirement
by using a Boolean one-hot encoding for the tail pointer as follows. For each s &€
{0,1,..., Z}, introduce a timed Boolean variable tail’. In any satisfying truth assign-
ment, at each time step ¢, exactly one of the variables tailé, ..., tail’, will be true by
construction. Letting s quantify over {0,1,..., Z}, the updating of the tail pointer is
expressed as

engt A—deq' 1 (s> 0) A tail’_|
tail’t = { —engt A deqt (s < Z) A tail’ (10)
else : tail’,

where each (s > 0) and (s < Z) is interpreted as a constant false or true depending
on s. Equations (5)—(7) are modified by substituting each equality check of the form
tail® = ¢ with the variable tail’.

Although updating the tail pointer now requires O(Z) definitions (Eq. (10)) instead
of one as in the integer case (Eq. (4)), the size of the overall encoding stays in O(K - 7).
The potential benefits of the one-hot encoding are that (i) no additional theories are
required by the queue encoding, and (ii) as Boolean SAT solvers (whose search tech-
niques and data structures modern SMT solvers apply) are very efficient, the introduced
Boolean constraints are possibly easier to solve for SMT solvers.

Equality test. The predicate for checking the equality of queue contents at two time
steps is relatively easy to express also in this encoding. Let equal”" := equalé’“, where
the auxiliary predicate equalé’“ is defined as

equall™ = (taill A tail?) v ((gcl = gc) A equali’};l) for0 < s < Z, and
equaly" = (taily A taily) .

The size of the equal®" formula stays the same O(Z) as in the integer encoded tail
pointer case above.

3.2 A Cyclic Approach

We can modify the encoding of Sect. 3.1 by introducing a timed integer variable head"
that tells the position of the first element of the queue. Instead of shifting the entire con-
tents of the queue upon a dequeue operation, we increment head’ by one. This requires



296 T. Junttila and J. Dubrovin

t t t t t t [ RS R NS A RS B XS |
9% 9c1 9% q¢3 94 9% 9¢ 9% 9% 9¢3 94 9%
U1 V12 V3 Vg Vg Vg U1 V12 d Vg V4 Vg

tail® head® head' tail'™t

Fig. 2. An illustration of the cyclic encoding approach when Z = 5, Q" = (vs,v1,v12), deq’ =

enq" = true, and newelem' = vy7, resulting in Q' = (v1, v12,v17)

that the values of head’ and tail’ wrap around at the boundary Z. For notational conve-
nience, we define the terms “successor modulo Z + 1 and “predecessor modulo Z +1”
by “succ(x) :=if x = Z then 0 else x+1” and “pred(z) :=if x = O then Z else z—1”,
respectively. We define

head"™" :=if deq" then succ(head") else head' (11)
tail'™ = if eng® then succ(tail®) else tail’ (12)
empty' = (tail' = head") (13)

full’ := (succ(tail’) = head"). (14)

There are several approaches for representing the queue contents at each time step, as
discussed in the following sub-sections. These vary in compactness and in their require-
ments for the available decision procedures.

Explicit Contents Representation. As in the shifting-based approach in Sect. 3.1, we
introduce a sequence (gcf), . . ., gc';) of timed variables, each of type ELEM. The queue
contents update and the firstelem' term are written as follows (see Fig. 2).

qc T = if eng® A (tail'=s) then newelem! else qc', (15)
head' = 0 : qch

firstelem! := (16)

head' = 7 —1 qth_l
else : qct,

There are Z +1 frame definitions (15), each of constant size. On the other hand, Eq. (16)
is of size O(Z). Thus the size of the overall BMC encoding is O(K - Z).

Equality test. Perhaps the easiest way of forming the equality predicate equal®® is
to use the one presented below for one-hot encoded head and tail pointers and simply
replace each test of the form “head’,” with “head’ = ¢” and “tail’” with “tail’ = ¢”.

One-Hot Encoding for Head and Tail. Similarly to Sect. 3.1, we can express the head
and tail pointers with Boolean one-hot encoding instead of integers. We only apply this
one-hot encoding with the explicit contents representation. For each s € {0,1,..., 7},
introduce timed Boolean variables headfg and taili. We replace definitions (11)-(14)
with the following for s =0,..., Z.
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head'™ :=if deq’ then head;md(s) else head”, (17)
tail’™ = if eng" then taill,, . else tail’ (18)
empty" = \/ (head®, A tail’,) (19)

0<s'<Z
full == \/  (headl, A taill,, 4. (20)
0<s'<Z

Again, the definitions (15) and (16) are modified by substituting each test head® = ¢
with head’, and each tail’ = c with tail’..

Compared to the integer case (Eqs. (11)—(14)), maintaining head, tail, empty, and full
definitions now requires terms of size O(Z) instead of O(1) per time step. However,
the total BMC encoding size for K steps stays in O(K - Z).

Equality test. The predicate for checking the equality of queue contents at two time
steps is more cumbersome than in Sect. 3.1 as the head position is now variable. We
can define
equal™® = /\ (head! A heady) = Eit:;‘, (21)
0<4,j<Z

where the Ef ]" are predicates constrained by

Ef]u & (tailt A taily) v (ﬁtailf A =tail§ A (qcﬁzqc;‘) A BB ) (22)

suce(i),suce(y)

Intuitively, Ef ]“ is a “suffixes are equal” predicate evaluating to true iff the sequence
t t t :
(qct, UCyee(iy> - qcmed(mﬂt)> is the same as (qc, qc;‘ucc(j)7 e qczred(mlu)>. The

size of the equal™" predicate, including the constraints in (22), is O(Z?).

UIF-Based Contents Representation. Instead of having a variable qc? to represent the
value of the element s at the time step ¢, we can encode the contents of all elements at a
single time step by using an uninterpreted function (UIF). That is, for each time step ¢,
we introduce an UIF qc! : INT — ELEM and rewrite the equations (15) and (16) as

qc'™(s) = if eng® A (tail'=s) then newelem' else qc’(s) (23)

firstelem® := qc' (head") (24)

where s ranges over {0, ..., Z}. The idea is to reduce the size of the definition of
firstelem' from O(Z) to a constant. However, the overall encoding size still remains

in O(K - Z) as the frame constraints (23) are essentially the same as in the explicit
encoding.

Equality test. In the cyclic approach, we can express the length of the queue with
“lent = if head® < tail® then tail' — head® else tail' + Z + 1 — head'”. Now we can
define the queue contents equality checking predicate as

equal™ := (len" = len™) A /\ ((i < len') = E}Y) (25)
0<i<”Z

where E{" = (qc!(succ’(head")) = qct(succi(head"))) , and succ’(x) denotes the
nested application of the succ(x)-notation ¢ times.
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Array-Based Contents Representation. We can avoid writing the Z + 1 copies of the
frame constraint (23) by using an array instead of an UIF to represent the queue con-
tents. The downside is the reliance on the more complex theory of arrays (see e.g. [20]).
We denote the operations on arrays by read(a, i), which returns the value at index ¢ in
array a, and write(a, i, v), which returns a copy of array a in which the value at index
i has been replaced by v. We introduce a timed array variable gc¢’ : INT — ELEM that
describes the queue contents at time ¢. The definitions (15) and (16) are replaced with

qc = if eng® then write(qc’, tail®, newelem!) else qct (26)

firstelem® := read(qc, head"). 27)

That is, only a constant amount of definitions are needed for each time step, meaning
that the encoding is independent of the queue capacity Z and the size of the resulting
overall BMC encoding is O(K).

Equality test. Unfortunately the compactness of the array-based contents representation
does not seem to extend to equality checking. The most compact way we have found
for expressing equal®" in this setting is essentially the one for UIF-based contents
representation given in Eq. (25). The only change is to replace each equality test of the
form qc?(i) = qc“(j) with read(qct,i) = read(qc®, j).

3.3 A Linear Approach

We next show a very compact encoding approach exploiting uninterpreted functions
and a small fragment of linear arithmetic. The resulting encoding has only a constant
amount of constraints per time step. A drawback is that, like the UIF- and array-based
contents representation approaches above, it requires theory combination: if handling
of queue elements otherwise requires a decision procedure for a theory 7', then the
combination of 7" with the theory of “EUF + integer offsets” (see [21] for an efficient
decision procedure for this theory) is required after introducing the queue constraints.
The basic idea, illustrated in Fig. 3, is very simple: we have a single, infinite ar-
ray common to all time steps in which the queue progresses as a sliding window. For
each time step ¢, we introduce two integer variables, head’ : INT and tail’ : INT. The
contents of the queue at the time step are the array elements from the index head® to
tail! — 1. When an element is removed from the queue, the head® variable is incre-
mented by one. Similarly, when an element is inserted in the queue, it is written to the
array at index tail’, after which the tail index is incremented by one. Thus each array
index is written at most once. This allows us to capture the contents of the queue by
using an UIF qc : INT — ELEM. In contrast to the UIF-based contents encoding in
Sect. 3.2, the UIF is not time-dependent but shared across all time steps. We define

head'™ := if deg® then head® + 1 else head' (28)
tail'™! = if eng® then tail' + 1 else tail® (29)
empty’ := (head" = tail") (30)

full’ := (tail" = head' + 7) 31)

firstelem' := qc(head") (32)
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Fig. 3. An illustration of the linear encoding approach when Q = (vs, v1, v12), deg’ = eng®' =
true, and newelem® = v17, resulting in Q**! = (v1, v12,v17)

and constrain that
eng’ = (qc(tail') = newelem"). (33)

Only a constant amount of terms is needed for each time step, and thus the size of the
overall encoding for K time steps is O(K). The size is the same as that of the bounded
cyclic, array-based encoding. The relative benefit is that an easier theory (EUF + inte-
ger offsets [21]) is applied and that unbounded queues can be supported (as explained
below).

Equality test. The equality checking predicate can be expressed in size O(Z). Let
len' := tail' — head" and define equal" := equalé’“, where
equall” := (len'=s A len"=s) V ((qc(head'+s)=qc(head" +s)) A equali’j_‘l) (34)
for0 < s < Z,and
equaltz’" = (lent =ZNlen" = 7). (35)

Unbounded Queues. The linear approach can be modified to allow encoding of un-
bounded queues. Simply replace Eq. (31) above with

full® = false. (36)
The size of the encoding stays in O(1) per time step.

Equality test. The queue contents equality comparison is similar to that of the bounded
case except that the size of the queue at a time step ¢ is now bounded above by ¢ + M
instead of the queue capacity Z, where M is the number of elements in queue at the first
time step 0. That is, assuming ¢ < wu, the equality checking predicate equal®" is the
same as in the bounded linear case considered above except that Z is replaced with the
constant £ + M in Egs. (34) and (35). The worst case size of equal®" is thus O(K). This
is a drawback as in BMC for liveness properties we usually have to apply at least /X such
predicates and thus the overall BMC encoding becomes at least quadratic in the bound.

4 Tag-Based Tuple Element Compression

It is often the case that a queue does not contain scalar values, but tuples of values. In
the context of UML model checking [3], this happens when the messages in the input
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queues of state machines are composed of both a signal identifier and some parameter
values associated with the signal. Some SMT solvers, such as Yices [16] and Z3 [22],
have a direct support for tuples and thus one can simply define ELEM to be tuple type
and use the presented queue encodings unmodified. We next consider solutions for the
case that tuples are not supported.

The straightforward way to handle tuple types is to split them into individual parts.
For example, if ELEM = TUPLE(REAL, INT), then an uninterpreted function qc’ :
INT — ELEM appearing in the UIF-based contents representation scheme (Sect. 3.2)
is encoded as two UIFs qc! : INT — REAL and qc} : INT — INT, and a constraint
qc’(z) = qc'(y) becomes qc! (x)=qc! (y) A qcb(z)=qch(y). This transformation can
be applied to all queue encodings of Sect. 3. If the element type ELEM is a tuple with
A parts, then the variables firstelem', newelem', qct, and gct, and the UIFs qc! and
qc need to be duplicated A times together with the constraints involving those variables
and UIFs. This increases the sizes of all encodings by a factor of A in the O-notation.
We will call the result the duplicating tuple encoding.

The alternative we propose is a tag-based encoding that avoids storing tuple values in
the queue and moving them across time steps. Instead, each enqueued tuple is associated
with a rag, e.g. a single integer value, which is stored in the queue. Upon dequeuing,
the tag is decoded back into a tuple. The scheme can be efficiently implemented using
UIFs as follows. Assume that ELEM = TUPLE(T%,...,T4) for some types T;. We
define a scalar type TAG that has to have a domain large enough to hold the possible
element values, i.e. |domain(TAG)| > |domain(ELEM)| should hold. We define time-
independent UIFs decode; : TAG — T; for each 1 < i < A that are used to interpret
the tags as tuple parts, and construct a queue with element type TAG using one of
the encodings presented in the previous section. We rename the terms firstelem' and
newelem! of the interface of the queue as firsttag’ and newtag?, respectively, and hide
them from the client. Instead, the client will see the terms

o~

firstelem!; := decode; (firsttag") (37)

newelem! := decode; (newtag") (38)

NS

for each 1 < ¢ < A as part of the queue interface. Except for the queue equality
predicate equal®™ discussed below, this additional level of abstraction does not affect
the semantics of the queue. Note that only the decode functions together with the def-
initions (37) and (38) are duplicated A times, while the internals of the queue only
deal with scalar values. Thus when the tag-based encoding is applied, the size of the
shifting-based approach as well as that of the cyclic approach with explicit and UIF-
based contents representation drop from O(K - Z - A) to O(K - (Z + A)). The size of
the array-based contents representation stays in O(K - A) but requires only one array
variable instead of A per time step; this is, in theory, beneficial as the theory of equality
with UIFs required by tags is much easier to decide than the theory of arrays.

As tuples with same values can be assigned to different tags, the equality checking
predicate equal”" needs special treatment. In equal®", every equality comparison be-
tween tag values has to be expanded; for instance, the comparison gc’, = gc® in Eq. (9)
has to be rewritten as /\; ;. , (decode;(qgc’) = decode;(gc¥)). Thus for the equality
checking part of the encoding, tags do not help to compress the size of the encoding.
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Table 1. Comparison of the approaches on the single queue stress test with a scalar integer ele-
ment. The numbers show the largest bound that was solved within ten minutes by the Z3 solver.

shifting cyclic linear unbounded
explicit uif array
Z int. tail one-hot tail int. tail one-hot tail
2 28 79 35 92 24 26 13 12
5 20 33 28 42 15 26 12
10 19 25 20 31 14 27 12
50 19 25 17 31 12 25 11

S Experiments

We now provide an experimental comparison of the proposed approaches. We have de-
veloped a prototyping tool called PySMT for constructing and solving SMT problems in
the Python programming language. It (i) has an API for constructing the problems, (ii)
can translate the problems into the native input language of several SMT solvers and also
(to some extent) to the SMT-LIB format, and (iii) can also execute the solver binary and
(to a quite limited extent) parse the result so that it can be queried by using the API. We
have implemented the proposed queue encoding approaches on top of PySMT and give
some preliminary experimental results below. The scripts and models for the experiments
are available at http://www.tcs.hut.fi/“tjunttil/experiments/
LPAR2008-SMT.

5.1 Single Queue Stress Test

First, we try to test the efficiency of the queue encodings in isolation by constructing
very simple BMC problems consisting of one queue only. In this problem, (i) whether
an enqueue or a dequeue operation is applied at time step ¢ is unconstrained, meaning
that all possible enqueue/dequeue sequences are considered, (ii) each enqueued element
is either an integer or a tuple of integers, each constrained to have a value greater than
some positive constant, and (iii) the (valid) property to be checked is that an element
with a negative integer value is never dequeued. For each time step, we set the run time
limit to ten minutes and report the time spent in the solver. Problem generation time is
not included as our generator script has, we believe, unessential inefficiencies.

Scalar Elements. To isolate the core queue constraints from the constraints needed
to represent tuple elements, we first compare the encoding approaches in the case of
scalar elements. Table 1 shows the results for different queue lengths when Z3 (ver-
sion 1.2) [22] is used as the SMT solver. In addition, Fig. 4(a) shows a more detailed
view when the queue size Z is five. The results show that there are dramatic differences
in the performance of different approaches and contents encoding schemes. Unfortu-
nately, the more compact and elegant ones, namely the linear approach and the cyclic
approach with array-based contents representation, are not performing well. Instead, the
encodings applying fewest theories, i.e. the cyclic and shifting approaches with one-hot
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encoded head and tail pointers seem to be the best choices in general. We also ran
experiments with the Yices SMT solver [16] and obtained similar results, except that the
integer encoded head and tail pointers seem to perform as well as the one-hot encoded.

Tuple Elements. We also benchmarked the encoding approaches when queue elements
are tuples of integers. As expected, the result is that the problems become harder when
tuples contain more parts. For instance, consider the cyclic approach with explicit con-
tents representation and one-hot encoded head and tail pointers. With scalar element
(tuple with one part) the behavior is shown as the rightmost curve in 4(a) while the sec-
ond rightmost curve in Fig. 4(b) shows the same with a tuple of five parts: the largest
bound solved within ten minutes drops from 42 to 27.

The second observation is that the tag-based tuple encoding is almost universally a
few times more efficient in terms of running time than the duplicating tuple encoding.
Figure 4(b) shows a comparison of the tuple encodings for three different queue en-
codings approaches; these plots represent typical behavior in this benchmark set. We
also experimented with the direct tuple type support of Z3; it seems to provide similar
performance as our tag-based encoding. Again, comparable results were obtained when
Yices was used as the solver instead of Z3.

5.2 Bounded Model Checking of UML Models

We have also benchmarked the queue encodings in a more realistic bounded model
checking context. We analyzed some UML models by using the symbolic encoding de-
scribed in [2,3]. Instead of using NuSMYV, we translate the BMC problems into SMT
problems and use Yices (version 1.0.11) [16] to solve them. The results are shown in Ta-
ble 2, the numbers give the cumulative time (in seconds) used by the SMT solver when
solving all the problems from bound 0 to the bound |cex| where a counter-example to
the analyzed property is found. The queue size for the bounded queue encodings was
set to ten; “dstep” (“interl.”, resp.) denotes that the dynamic step (interleaving, resp.)
semantics (see [3]) was applied. The use of tags to represent tuple queue elements seems

600 — - —— — - - 600
500 |- i i : i 1 500 |-
400 | i ; I g 400 |

300 300

time(s)
time(s)

200 i i ! . . £ - 200

b=~ shifting(intt) ——
_-#" shifting(int t)+tags -------- 4
ST shlmng(onehml} B
" /shifting(onehot t +tags
-~ " cyclic(expl.onehot ) —----
| . i e ) cyclic(expl.,onehot tail) - cyclic(expl..onehot t.)+tags -
10 15 20 25 30 35 40 45 50 10 20 25 30
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Fig. 4. Comparison of some approaches with Z3 as the solver. (a) Scalar queue element, Z = 5.
(b) Tuple queue element with 5 parts, Z = 5.
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Table 2. BMC of some UML models using Yices as the solver

model |cex| linear shifting shifting cyclic cyclic cyclic
unbounded one-hot explicit one-hot UIF

giop, dstep 8 21.31 2393 2899 296.77 7898 137.33
(with tags) 24.18 2452 2958 25.67 24.44
giop,interl. 14 1986.07 1599.10 1250.13  >1h >1h 2902.11
(with tags) 1084.25 860.11 849.31 1244.03 1088.80
travel,interl. 15 1.86 254 218 316 293  3.17
(with tags) 245 209 287 283 326
mtravel,dstep 11 377 543 427 745 574  7.02
(with tags) 399 379 458 432 482

to play a much bigger role than the encoding approach in this practical setting; they pro-
vide a substantial performance gain especially when analyzing the giop model having
tens of message parameters and thus wide tuples in queues. With the other models
having no or only few parameters, the performance gain is non-existent or small; in
addition, the choice of the encoding approach does not seem to make much difference
on these models. The reason for this is probably that the applied bounds are relatively
small and parts other than the queue encoding dominate the search space of the SMT
problem.

6 Conclusions

We have presented and experimentally evaluated different quantifier-free SMT encod-
ings for queues in the context of bounded model checking. The presented encodings
vary significantly in compactness and the theories they require the SMT solver to im-
plement. Our preliminary experimental results show that the most compact encodings
do not necessarily perform best, even when they involve no complex theories such ar-
rays but only equality with uninterpreted functions and integer offsets. On the contrary,
it seems that it may be worthwhile to use more space by booleanizing integer head and
tail pointers so that the encoding becomes essentially propositional, the only theory
atoms being equality tests between elements that are stored in the queue. The proposed
method for compressing tuple elements with the use of tags and uninterpreted decode
functions yields a relatively consistent and often significant speed-up in our experi-
ments. The most obvious future work is of course to develop and implement decision
procedures for theories of queues. The encoding approaches presented in this paper
form a natural base when evaluating their performance in the BMC context.
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