

Aalto University publication series
DOCTORAL DISSERTATIONS 111/2011

Efficient Symbolic Model Checking of
Concurrent Systems

Jori Dubrovin

Doctoral dissertation for the degree of Doctor of Science in
Technology to be presented with due permission of the School of
Science for public examination and debate in Auditorium TU1 at the
Aalto University School of Science (Espoo, Finland) on the 18th of
November 2011 at 12 noon.

Aalto University
School of Science
Department of Information and Computer Science

Supervisor
Prof. Ilkka Niemelä

Instructor
D.Sc. (Tech.) Tommi Junttila

Preliminary examiners
Prof. Armin Biere, Johannes Kepler University, Austria
Dr. Stephan Merz, INRIA Nancy, France

Opponent
Prof. Daniel Kroening, University of Oxford, United Kingdom

Aalto University publication series
DOCTORAL DISSERTATIONS 111/2011

© Jori Dubrovin

ISBN 978-952-60-4349-4 (pdf)
ISBN 978-952-60-4348-7 (printed)
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934 (printed)

Unigrafia Oy
Helsinki 2011

Finland

The dissertation can be read at http://lib.tkk.fi/Diss/

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Jori Dubrovin
Name of the doctoral dissertation
Efficient Symbolic Model Checking of Concurrent Systems
Publisher School of Science
Unit Department of Information and Computer Science
Series Aalto University publication series DOCTORAL DISSERTATIONS 111/2011
Field of research Theoretical Computer Science
Manuscript submitted 14 June 2011 Manuscript revised 23 August 2011
Date of the defence 18 November 2011 Language English

Monograph Article dissertation (summary + original articles)

Abstract
Design errors in software systems consisting of concurrent components are potentially
disastrous, yet notoriously difficult to find by testing. Therefore, more rigorous analysis
methods are gaining popularity. Symbolic model checking techniques are based on modeling
the behavior of the system as a formula and reducing the analysis problem to symbolic
manipulation of formulas by computational tools. In this work, the aim is to make symbolic
model checking, in particular bounded model checking, more efficient for verifying and
falsifying safety properties of highly concurrent system models with high-level data features.

The contributions of this thesis are divided to four topics. The first topic is symbolic model
checking of UML state machine models. UML is a language widely used in the industry for
modeling software-intensive systems. The contribution is an accurate semantics for a subset
of the UML state machine language and an automatic translation to formulas, enabling
symbolic UML model checking.

The second topic is bounded model checking of systems with queues. Queues are frequently
used to model, for example, message buffers in distributed systems. The contribution is a
variety of ways to encode the behavior of queues in formulas that exploit the features of
modern SMT solver tools.

The third topic is symbolic partial order methods for accelerated model checking. By
exploiting the inherent independence of the components of a concurrent system, the
executions of the system are compressed by allowing several actions in different components
to occur at the same time. Making the executions shorter increases the performance of
bounded model checking. The contribution includes three alternative partial order semantics
for compressing the executions, with analytic and experimental evaluation. The work also
presents a new variant of bounded model checking that is based on a concurrent instead of
sequential view of the events that constitute an execution.

The fourth topic is efficient computation of predicate abstraction. Predicate abstraction is
a key technique for scalable model checking, based on replacing the system model by a simpler
abstract model that omits irrelevant details. In practice, constructing the abstract model can
be computationally expensive. The contribution is a combination of techniques that exploit
the structure of the underlying system to partition the problem into a sequence of cheaper
abstraction problems, thus reducing the total complexity.

Keywords software verification, distributed systems, bounded model checking, UML,
predicate abstraction

ISBN (printed) 978-952-60-4348-7 ISBN (pdf) 978-952-60-4349-4
ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942
Location of publisher Espoo Location of printing Helsinki Year 2011
Pages 224 The dissertation can be read at http://lib.tkk.fi/Diss/

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Jori Dubrovin
Väitöskirjan nimi
Rinnakkaisten järjestelmien tehokas symbolinen mallintarkastus
Julkaisija Perustieteiden korkeakoulu
Yksikkö Tietojenkäsittelytieteen laitos
Sarja Aalto University publication series DOCTORAL DISSERTATIONS 111/2011
Tutkimusala Tietojenkäsittelyteoria
Käsikirjoituksen pvm 14.06.2011 Korjatun käsikirjoituksen pvm 23.08.2011
Väitöspäivä 18.11.2011 Kieli Englanti

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit)

Tiivistelmä
Suunnitteluvirheillä rinnakkaisissa ohjelmistojärjestelmissä saattaa olla kohtalokkaita
seurauksia. Järjestelmän testauskaan ei aina riitä virheiden havaitsemiseen, ja siksi on alettu
vaatia järjestelmällisempien analyysimenetelmien käyttöä. Symbolinen mallintarkastus
perustuu ajatukseen kuvata järjestelmän toiminta logiikan kaavoilla, jolloin toimintaa voidaan
analysoida käsittelemällä näitä kaavoja laskennallisen logiikan työkaluilla. Tässä työssä
päämääränä on parantaa symbolisten mallintarkastusmenetelmien ja erityisesti rajoitetun
mallintarkastuksen tehokkuutta, kun tarkastellaan laajasti rinnakkaisten ja dataa
käsittelevien järjestelmämallien turvallisuusominaisuuksia.

Väitöskirjassa saavutetut uudet tulokset voidaan jakaa neljään aihealueeseen. Ensimmäinen
liittyy UML-tilakonemalleihin. UML-kieltä käytetään laajasti teollisuudessa
ohjelmistopohjaisten järjestelmien suunnitteluun. Tässä työssä määritellään tarkka
suoritussemantiikka luokalle UML-tilakonemalleja sekä mallien automaattinen käännös
kaavoiksi, mikä mahdollistaa UML-tilakoneiden symbolisen mallintarkastuksen.

Toinen aihealue on jonoja sisältävien järjestelmien rajoitettu mallintarkastus. Jonoja
käytetään usein esimerkiksi viestinvälityksen mallintamiseen. Työssä laaditaan erilaisia
tapoja kuvata jonojen toiminta kaavoina, jotka hyödyntävät modernien SMT-ratkaisimien
ominaisuuksia.

Kolmas aihealue on mallintarkastusprosessin nopeuttaminen symbolisilla
osittaisjärjestysmenetelmillä, jotka hyödyntävät järjestelmän rinnakkaisten osien välistä
riippumattomuutta. Työssä esitetään kolme vaihtoehtoista osittaisjärjestyssemantiikkaa sekä
vertaileva analyysi. Kokeiden perusteella osittaisjärjestyssemantiikoilla voidaan ratkaisevasti
nopeuttaa rajoitettua mallintarkastusta. Lisäksi kehitetään rajoitetun mallintarkastuksen
muunnelma, jossa lähtökohdaksi on otettu tapahtumien rinnakkaisuus sen sijaan, että
tarkasteltaisiin tapahtumia tiukassa aikajärjestyksessä.

Neljäs aihealue on predikaattiabstraktion tehokas laskenta. Predikaattiabstraktiossa
luodaan automaattisesti abstrakti malli, josta epäolennaisia yksityiskohtia on jätetty pois.
Näin on saatu tarkastettua monimutkaistenkin järjestelmien ominaisuuksia. Käytännössä
abstraktin mallin rakentaminen on laskennallisesti raskasta. Tässä työssä kehitetään joukko
tekniikoita, jotka hyödyntävät alkuperäisen järjestelmän rakennetta ja paloittelevat
abstraktio-ongelman helpompiin osaongelmiin, jolloin kokonaislaskenta-aikaa saadaan
pudotettua huomattavastikin.

Avainsanat ohjelmistojen verifiointi, hajautetut järjestelmät, rajoitettu mallintarkastus,
UML, predikaattiabstraktio

ISBN (painettu) 978-952-60-4348-7 ISBN (pdf) 978-952-60-4349-4
ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942
Julkaisupaikka Espoo Painopaikka Helsinki Vuosi 2011
Sivumäärä 224 Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/

Contents

Contents vii

Preface xi

List of Publications xiii

Author’s Contribution xv

Brief Summary of the Publications xvii

1 Introduction 1

1.1 Basis of the Research . 4

1.2 Contributions of the Thesis 8

2 Background 11

2.1 Satisfiability Modulo Theories 11

2.2 Symbolic Model Checking . 12

2.2.1 Bounded Model Checking 13

2.3 A Generic Concurrent System Model 14

2.3.1 Transition Formulas 15

3 Symbolic Model Checking of UML State Machines 17

3.1 UML Subset . 18

3.2 UML Semantics . 19

3.3 Encoding State Machine Behavior 21

3.4 Related Work . 22

3.5 Discussion . 23

4 Queue Encodings for Bounded Model Checking 25

4.1 The Queue Interface . 26

4.2 The Queue Encodings . 29

vii

4.2.1 A Shifting Approach 30

4.2.2 A Cyclic Approach . 34

4.2.3 A Linear Approach . 35

4.2.4 Compressing Tuple Elements with Tags 36

4.3 Related Work . 38

4.4 Discussion . 38

5 Symbolic Partial Order Methods 41

5.1 Step Semantics . 43

5.1.1 Semantic Definitions 44

5.1.2 Representing Actions 46

5.1.3 Serial ∃-Step Semantics 47

5.1.4 Parallel ∃-Step Semantics 49

5.1.5 Experiments with Step Semantics 51

5.1.6 Refining Independence 53

5.2 Process Semantics . 55

5.2.1 Analysis of the Serial Process Normal Form 58

5.2.2 Experiments with Process Semantics 59

5.3 Bounded Event Tracing . 60

5.3.1 A Model Checking Procedure 61

5.3.2 Structure and Semantics of Unwindings 62

5.3.3 Encoding Token Traces 65

5.3.4 Representing Queues 66

5.3.5 Relation to Alternative Execution Semantics 66

5.3.6 Experiments with Bounded Event Tracing 67

5.4 Related Work . 68

5.5 Discussion . 70

6 Structure-Aware Predicate Abstraction 73

6.1 Computing Predicate Abstractions 74

6.1.1 Precise and Approximate Abstraction 75

6.1.2 SMT-Based Enumeration 76

6.1.3 Hindrances to Structural Simplification 76

6.2 Exploiting Structure in Abstraction 78

6.2.1 Model-Level Simplifications 78

6.2.2 Formula-Level Simplifications 79

6.3 Results . 81

6.4 Related Work . 82

6.5 Discussion . 83

viii

7 Conclusions 85

Bibliography 87

Publications 95

ix

Preface

This thesis is the result of my postgraduate studies and employment as a

researcher since 2006 in the Laboratory for Theoretical Computer Science

at Helsinki University of Technology, which more recently went through

organizational reforms and became part of the Department of Information

and Computer Science at Aalto University. My full-time research work

has been made possible by financial support from the Helsinki Graduate

School in Computer Science and Engineering (Hecse), the Academy of Fin-

land (project 128050), and the SMUML project joint with Tekes (Finnish

Funding Agency for Technology and Innovation) and industrial partners

(Nokia, Conformiq Software, and Mipro). Moreover, the thesis work has

been supported by three personal grants kindly awarded by Jenny and

Antti Wihuri Foundation, Emil Aaltonen Foundation, and the Foundation

of Nokia Corporation.

I must acknowledge the guidance offered by my supervisor Prof. Ilkka

Niemelä, who has great insight and experience on writing scientific text

and on the research field. I have enjoyed working with such a skillful

leader—I can only imagine the amount of effort Prof. Niemelä has gone

through to minimize any financial and practical concerns that his stu-

dents have to face. Thanks are due to Dr. Tommi Junttila for his uncom-

promising devotion to the work as my instructor. Besides co-authoring

most papers, he has given numerous ideas and feedback on every part

of this thesis. I also thank Prof. Keijo Heljanko, who has had an im-

portant “mentoring” role in this work as a model checking expert, and I

appreciate the encouraging atmosphere and facilities offered by the entire

Department staff.

One of the publications in this thesis was prepared during my research

visit to Trento, Italy, in 2008. I thank Dr. Alessandro Cimatti, Dr. Marco

Roveri, and my other colleagues and friends at the FBK Irst research

xi

center in Trento for the experience that expanded my view on symbolic

model checking and research in general.

I am grateful for the vast amounts of peer support from my friends

Antti Hyvärinen and Riitta Toivonen, working on their own theses at the

same time. My family—parents Yrjö and Marja-Terttu, sister Tanja, and

brother Tero—have been supportive all the time and deserve thanks for

their understanding.

Finally, I thank the appointed pre-examiners, Prof. Armin Biere and

Dr. Stephan Merz, for their expert evaluation of this thesis.

Espoo, October 19, 2011,

Jori Dubrovin

xii

List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Jori Dubrovin and Tommi Junttila. Symbolic Model Checking of Hi-

erarchical UML State Machines. In Application of Concurrency to Sys-

tem Design, 8th International Conference (ACSD 2008), pages 108–117,

June 2008.

II Tommi Junttila and Jori Dubrovin. Encoding Queues in Satisfia-

bility Modulo Theories Based Bounded Model Checking. In Logic for

Programming, Artificial Intelligence, and Reasoning, 15th International

Conference (LPAR 2008), pages 290–304, November 2008.

III Jori Dubrovin and Tommi Junttila and Keijo Heljanko. Symbolic

Step Encodings for Object Based Communicating State Machines. In

Formal Methods for Open Object-Based Distributed Systems, 10th IFIP

WG 6.1 International Conference (FMOODS 2008), pages 96–112, June

2008.

IV Jori Dubrovin and Tommi Junttila and Keijo Heljanko. Exploiting

Step Semantics for Efficient Bounded Model Checking of Asynchronous

Systems. Accepted for publication in Science of Computer Program-

ming, Special Issue on Automated Verification of Critical Systems, 27

pages, available online 23 July 2011.

V Jori Dubrovin. Checking Bounded Reachability in Asynchronous Sys-

tems by Symbolic Event Tracing. In Verification, Model Checking, and

xiii

Abstract Interpretation, 11th International Conference (VMCAI 2010),

pages 146–162, January 2010.

VI Alessandro Cimatti and Jori Dubrovin and Tommi Junttila and Marco

Roveri. Structure-Aware Computation of Predicate Abstraction. In

Formal Methods in Computer Aided Design, 9th International Confer-

ence (FMCAD 2009), pages 9–16, November 2009.

xiv

Author’s Contribution

Publication I: “Symbolic Model Checking of Hierarchical UML State
Machines”

The author designed the encoding of hierarchical UML state machines

and message queues as a symbolic transition formula. The chosen UML

subset and its formal semantics have equivalent contributions from the

author and the co-author. The experimental UML model checker was de-

signed and implemented on top of NuSMV by the author. The text was

written together.

Publication II: “Encoding Queues in Satisfiability Modulo Theories
Based Bounded Model Checking”

Tommi Junttila is the main contributor of this work. The shifting-based

queue encoding was designed by the author. The ideas of the cyclic and

linear queue encoding and tag-based element compression were originally

Tommi Junttila’s. Elaborating, analyzing, and writing down these ideas

were done in collaboration, and the author implemented them in the con-

text of UML model checking, which contributes to part of the experiments.

Publication III: “Symbolic Step Encodings for Object Based
Communicating State Machines”

The idea of employing step semantics was conceived together, but the re-

finement into the specific types of static and dynamic step semantics was

architected by the author. The encoding details were designed and imple-

mented by the author. Keijo Heljanko worked out the relation to earlier

xv

step semantics approaches. A major part of the paper was written by the

author, in particular, Sect. 3, as well as most of the other sections.

Publication IV: “Exploiting Step Semantics for Efficient Bounded
Model Checking of Asynchronous Systems”

This paper started out as a generalization and elaboration of [III]. The

policies of which semantics to include and how to apply them were decided

together with the co-authors. The design of the abstract system formalism

was also collaborative. The definitions and proofs regarding the encoding

of actions and the transition formulas are the author’s work. The idea

of the kind of process semantics used in this paper came from the author,

with a linear-size encoding pointed out by Tommi Junttila. The implemen-

tation and experiments were conducted by the author. Most of the paper

was written by the author. This includes Sects. 3.1–6 almost entirely, and

parts of the other sections.

Publication V: “Checking Bounded Reachability in Asynchronous
Systems by Symbolic Event Tracing”

The author is the sole contributor.

Publication VI: “Structure-Aware Computation of Predicate
Abstraction”

The general concept of structure-aware abstraction is due to Alessandro

Cimatti. The final composition of techniques applied to achieve this was

designed by Cimatti and the author. In addition, the author contributed

the details and the implementation of the low-level abstraction techniques

of Sect. IV, and took part in formulating the behavior of hybrid automata

networks. The experiments were designed, executed, and reported by the

author together with Marco Roveri.

xvi

Brief Summary of the Publications

I UML 2.0 state machines offer a semiformal language for modeling the

behavior of asynchronous systems. This paper describes a translation

that maps a UML state machine to a compact symbolic transition re-

lation formula. The supported UML features include hierarchical state

machines, asynchronous messages with data, and deferred events. The

translation can be used for checking properties of UML models using

various symbolic techniques, such as BDDs or bounded model checking.

Furthermore, accurate state space based semantics is given for the cho-

sen UML subset.

II The paper discusses ways to encode the behavior of queues in the con-

text of bounded model checking using SMT techniques. Queues are fre-

quently used to model, for example, message buffers in distributed sys-

tems. While modern SMT solvers support some high-level datatypes in

their theories, a theory of queues is not directly supported. This work

enables SMT-based bounded model checking in the presence of queues,

relying only on widely supported theories.

III Bounded model checking of asynchronous systems can be acceler-

ated by exploiting the inherent independence of the components of the

system. Using step semantics, several independent actions can be com-

pressed to a single step where the actions are executed in parallel, allow-

ing faster coverage of the reachable state space. This paper shows how

to apply step semantics to a class of systems consisting of state machines

that communicate through message queues and shared variables.

IV This article extends the ideas of step semantics in several ways and

generalizes the handling of data to a more abstract level. The behavior

xvii

of systems is represented in a symbolic formalism that covers a variety

of modeling languages. Besides a step semantics based on parallel exe-

cution of independent actions, a relaxed version of the semantics is pre-

sented that achieves even tighter compression of actions into steps. Fur-

thermore, to reduce redundancy in the set of step semantics executions,

a variation known as process semantics is defined. Explicit bounded

model checking formulas are presented for all semantics and proved for

correctness. An extensive benchmark set is used to compare the effects

of different execution semantics on the performance of bounded model

checking.

V This paper presents a new framework for checking bounded reachabil-

ity properties using an SMT solver. In contrast to traditional bounded

model checking, where an execution is constructed by fixing a sequence

of states and considering the possible transitions between them, here

we take a fixed set of potential events and let the solver explore the

possible flow of control and data between the events. The idea is to even

further exploit the independence of components in an asynchronous sys-

tem. The concept is formalized using a class of high-level Petri nets.

Given a Petri net that specifies a bounded portion of the behavior of

the system, the paper shows how to automatically construct a formula

whose satisfiability corresponds to witnessing the reachability property.

The potential of the technique is demonstrated with a proof-of-concept

implementation.

VI Counterexample-guided abstraction refinement (CEGAR) is a power-

ful technique for model checking complex systems, based on disregard-

ing irrelevant details. CEGAR involves repeated computation of an ab-

straction of the system, essentially by an expensive quantifier elimina-

tion procedure. In this work, we exploit the structure of the underlying

system to partition the problem into a combination of cheaper abstrac-

tion problems. Transformations at the formula level are used to fur-

ther reduce the scopes of individual quantifiers. Experiments on a set

of hybrid system benchmarks are used to evaluate the benefit from the

techniques.

xviii

1. Introduction

This thesis addresses the problem of design errors in software systems.

A desktop PC crashing because of malfunctioning software can make one

lose hours of work. A failing controller in a factory may cause expen-

sive downtime. In medical or aerospace equipment, failure might lead

to disasters. The more critical tasks we hand over to be carried out us-

ing computer-driven systems, the stricter requirements are needed on the

correctness of the systems. The challenge here is that these systems are

inherently complex. In the real world, systems need to be reactive, which

means that they must respond to external events on the fly. The systems

are concurrent, with events occurring in the environment and in different

system components at the same time or asynchronously in an order that

is hard to predict. The need to deliver rich functionality on a limited hard-

ware platform can force the design to be optimized for performance rather

than clarity. All this complexity makes it difficult to predict whether the

behavior of the system is acceptable in every possible situation.

While there are many approaches to increase the quality of software sys-

tems, such as adopting better design languages and design methodologies,

making systems fault-tolerant, and building software from certified com-

ponents, it is also important to be able to assess the quality. A major part

of the assessment is verification, which broadly means confirming that a

system meets its specification. In software, the prevalent form of verifica-

tion is testing, i.e. running the system in a real or simulated environment

and examining the results. While testing is very efficient in practice, it

has a fundamental shortcoming: we can never be sure that all possible

behavior is covered by our tests. Especially in the presence of concur-

rency, the system might fail only after a very specific sequence of events

that is very difficult to spot. Even reproducing such a sequence can be a

challenge because of fluctuations in the timing of different components.

1

Introduction

In formal verification, the approach is to use mathematically rigorous

reasoning to decide whether a system fulfills its specification. Ideally, this

corresponds to guaranteed 100 % test coverage, and the result is a either

a proof that the system is correct or a witness that pinpoints an error in

the system design. The justification of correctness can only involve formal

reasoning steps without the possibility to rely on human knowledge of the

system or its environment. Therefore, one must first construct a formal

model of the system and represent also the specification formally as a

set of desired properties of the model. The system model has to be self-

sufficient in the sense that it must contain every detail of the system and

every assumption about the operating environment that are needed to

show that the specification is fulfilled. Even if formal verification gives an

affirmative answer concerning the model and its formal specification, the

result is not trustworthy if the model does not reflect the properties of the

real system.

Thus, modeling a complex system is a challenge in itself. However, in

developing complex embedded systems, the trend is towards model-based

design, where the model is actually constructed first using a formal or

semiformal modeling language, after which the system is implemented

based on the model. From the verification point of view, an added ben-

efit is that the design model used for development can also be used for

verifying the system, even before the implementation is ready. In the

case of pure software components, the implementation itself is formal be-

cause it is written in a programming language. This makes it possible to

apply formal verification directly to program code, as long as there is a

formalization of the semantics of the language. While this work focuses

on efficient formal verification, it is not discussed here how to integrate it

in the software engineering process. In particular, there is no contribution

on how to build the formal system model, how to validate the specification

against the intended behavior, or how to repair design errors if they are

found.

Writing a mathematical proof that a model of a system is correct with

respect to a given formal specification is laborious and often relies on the

ingenuity of a verification expert. Parts of the process can be automated

using an interactive theorem prover, and this kind of deductive verifi-

cation has been successfully applied to safety and business critical sys-

tems [78, 60]. However, to reduce the cost of formal verification and to

turn it to widely adopted push-button technology, fully automatic meth-

2

Introduction

ods are a vital objective. A simple idea is to let a computer systematically

go through all scenarios that the system can get into and check for vi-

olations. This leads to an approach called model checking [29]. First,

we identify each conceivable snapshot of the system at a point of time

as a state. The behavior of the system then maps to transitions between

states. The system model is a description of the states and the transitions,

and verification is performed by a tool that analyzes the state-transition

graph. All possible behavior of the system is contained in the reachable

state space, which is the part of the graph that is reachable by transitions

from the initial states.

We cannot hope to write a tool that can automatically verify every piece

of software because it is well known that checking non-trivial properties

of computer programs is undecidable (Rice’s theorem). A manifestation of

the undecidability is that the reachable state space of a software system

may be infinite. Model checking is sometimes understood to be applicable

to only finite-state systems. Infinite-state model checking is viable as well,

but generally there is the possibility that the model checker runs forever

and does not give an answer. For specific classes of infinite-state models,

terminating algorithms have been presented [90, 2].

In the original formulations of model checking [23], the system specifi-

cation is taken in as a formula in temporal logic. Temporal logics such

as LTL and CTL [29] allow describing how events relate to other events

in the future or in the past, for example “if a request is sent, then even-

tually a response will be received”. In most cases, the specification we

want to check does not mention arbitrary references to the future, such

as the word “eventually”, but instead has the form “something bad never

happens”. Such a specification belongs to a class called safety properties,

whose defining aspect is that the occurrence of “something bad” can be

immediately observed. Often the most critical properties of a system are

safety properties, for example “the program never attempts to divide by

zero” and “the door to the elevator shaft on the 4th floor is never open,

unless the elevator is on the 4th floor”. The model checking algorithms

for safety properties are simpler and more efficient than for the general

case, and can be used as a basis for checking more complex temporal prop-

erties [89]. The common way to formalize a safety property is to represent

it as a desired state invariant. Our formal specification is then that every

reachable state of the model is safe, that is, fulfills the invariant property.

In this thesis, the main research question is how to efficiently model

3

Introduction

check safety properties of concurrent systems with software features. We

assume that the system is modeled using a formal language with suit-

able constructs for concurrency and data manipulation. Model checking

is chosen as the verification method because it has proven to cope well

with concurrency and requires minimal user interaction. The work thus

involves designing model checking algorithms that can handle the high-

level data and concurrency features of modeling languages. The primary

concern and the most challenging part is the scalability of the algorithms

to large systems.

1.1 Basis of the Research

The state explosion problem. Given an invariant property, a set of initial

states, and a way to generate the outgoing transitions from a state, model

checking reduces to the problem of reachability in the state-transition

graph. If the graph is finite, the algorithm that solves this is elemen-

tary. Explicit-state model checking refers to methods that search through

the states one by one, and an efficient implementation covers millions of

states in seconds. Unfortunately, this is not enough in practice. A model

of a concurrent system of quite modest complexity can have a few million

reachable states or less, but the number grows rapidly when complexity

increases. This state explosion is the major challenge in model checking.

State explosion is caused by nondeterminism in the model, which means

that states may have several outgoing transitions. There are two main

sources of nondeterminism. One is input from the environment. Reactiv-

ity means that new input may be received in any state, and every possi-

ble input generates a new transition leaving from that state. Especially

if the system receives data, every data value leads to a different state.

The other source is concurrency. The execution platform and the imple-

mentation can seldom be modeled accurately enough to predict the exe-

cution speeds of asynchronous concurrent components. As a conservative

approximation, the order of execution is nondeterministic in the model.

The crudest and most common approximation is the interleaving model of

concurrency, where in each state, one component is nondeterministically

chosen to execute one atomic action while the other components remain

still. Increasing the number of concurrent components or data variables

4

Introduction

causes a combinatorial explosion in the number of states. Generally, the

reachable state space grows much faster than the size of the model, expo-

nentially in the worst case.

Symbolic model checking. Evidently, searching through all reachable

states does not scale up. In symbolic model checking, the idea of enumer-

ating states is dismissed. Instead of manipulating states and transitions

individually, they are manipulated in sets that are represented in a sym-

bolic form. For example, if an integer value s ∈ Z is viewed as a state and

a pair (s, s′) ∈ Z
2 as a transition from s to s′, then the formula s < s′ ≤ 10

represents symbolically the set of transitions where s is incremented non-

deterministically, but not beyond the value 10. The languages used for

the representation are based on Boolean logic, which allows using effi-

cient tools of computational logic for the symbolic manipulation.

The symbolic method that was introduced first is to encode the states as

fixed-length Boolean vectors and to use reduced ordered binary decision

diagrams (BDDs) to express the Boolean functions that correspond to sets

of states and transitions [17]. BDDs allow a compact representation of

large state spaces especially in the case of synchronous hardware designs

with a regular structure. However, not all Boolean functions have a suc-

cinct BDD, and model checking often fails because the BDD for the set of

reached states becomes too large.

Bounded model checking (BMC) [11] leverages the rapid evolution of

propositional satisfiability (SAT) solvers and avoids the memory issue of

BDDs by taking an even more implicit view on the reachable state space.

Using the symbolic representation of transitions, it is straightforward to

construct a formula that characterizes all executions of at most a fixed

length k that lead from an initial state to any state that violates the in-

variant property. The formula is satisfiable if and only if such an exe-

cution exists. To decide whether the property can be violated within k

execution steps, the satisfiability of the constructed formula is checked

using a SAT solver. If the formula is found to be unsatisfiable, then typ-

ically the check is done again with the bound k + 1, and so on. Unlike

with BDDs, there is no easy way to determine when all reachable states

have been covered. Proposals have been made to compute a bound k that

guarantees complete coverage [62, 40], or otherwise make BMC complete

for finite-state systems [91, 68, 71]. Even as an incomplete verification

5

Introduction

method, BMC has a lot of practical value because of its ability to quickly

find shallow errors that can be witnessed by a short execution [82, 4, 30].

During the last two decades, symbolic model checking has become a rou-

tine in hardware verification [63]. Generally, verification of software is

considered more difficult than hardware because software has less regu-

lar structure and contains features such as recursion, pointers, and data

types with potentially unbounded domains. In this work, we are adapting

symbolic methods to handle concurrent software systems. The expected

benefit of employing symbolic model checking is that it copes better with

nondeterminism than explicit-state model checking. Especially when non-

determinism is combined with a large data domain typical of software,

symbolic methods can avoid separately examining each data value. In

some approaches to model checking sequential software, the control flow

graph is represented explicitly and control locations are associated with

symbolic sets of the values of variables [50, 70, 79]. In a concurrent sys-

tem however, the control flow is more convoluted because there is no sin-

gle point of control. Under the interleaving model of concurrency, any

component can be scheduled for execution at any time, and a state of the

system model tells the current active control location of each component

as well as the values of data variables. To apply BDD-based and bounded

model checking, we encode all this in a symbolic form. Another possi-

bility would be to start with a sequential model of each component and

glue them together by adding nondeterministic context switches between

components [83, 41]. The work on pushdown systems [90] aims at model

checking software with unbounded recursion, and it has been extended to

multithreading with bounded context switches [95]. The approach chosen

in this thesis only supports bounded recursion via inlining function calls.

Partial order methods. The high number of interleavings of a concurrent

model is a cause of state explosion, and partial order methods [44] have

been introduced to diminish the effect. In explicit-state model checking,

this is implemented in a form of state space reduction, where the idea is

to exploit regularities of the state space to omit parts of it without affect-

ing the property to check. Partial order reduction is based on the obser-

vation that the nondeterminism introduced by different interleavings is

often redundant. If several components are about to execute an action

and the actions are pairwise independent, the same state is reached re-

6

Introduction

gardless of the order in which the actions are executed. Reducing equiva-

lent interleavings to a single representative can greatly reduce the search

space and speed up explicit-state model checking [44]. For symbolic model

checking, there are partial order methods based on the same idea (see

Sect. 5.4), although the approach is different from state space reduction

because the cost of symbolic model checking does not correlate directly

with the number of reachable states. Symbolic partial order methods can

significantly accelerate the BMC of concurrent systems and are a major

topic of this thesis.

Satisfiability modulo theories. In the software domain, a potential disad-

vantage of symbolic model checking is the cumbersome mapping of soft-

ware features to Boolean formulas. For example, if a transition involves

adding two 32-bit integers, then a 32-bit binary addition circuit needs

to be encoded in the formula that represents the transitions. Increasing

the instances of subcircuits like this can overpower the SAT solver or the

BDD engine. The need to reduce the bulky low-level encoding of data

features has motivated the development of satisfiability solvers that can

check more expressive formulas than pure propositional logic. Satisfia-

bility modulo theories (SMT) [10] combines Boolean logic with constraints

expressed in background theories, such as the theory of linear arithmetic,

fixed-length bitvectors, or unbounded arrays. In bounded model checking,

switching the back-end from a SAT solver to an SMT solver means that

model elements such as integer variables and pointers no longer need to

be broken down to individual Boolean variables but can be passed to the

solver as higher level constructs [6]. The ongoing evolution of modern

SMT solvers has a positive effect in model checking performance. On the

other hand, the rich language support opens up many possibilities of ex-

pressing problems, and in many cases it is not clear which kind of logic

encoding gives the best results. Finding efficient encodings is a concern

also in this thesis, much of which relies on heavy use of SAT and SMT

solvers.

Abstraction. A key technique employed in recent successful formal ver-

ification efforts [7, 50, 28] is abstraction, which means simplifying the

problem by disregarding irrelevant details. The formal model is already a

manual abstraction of the system, but in model checking, the idea is used

7

Introduction

in a systematic way to circumvent state explosion. In existential abstrac-

tion [25], an abstract model is constructed automatically in a conservative

way that over-approximates the behavior of the concrete model. To ver-

ify a safety property of the concrete model, it is sufficient to show that

the simpler abstract model fulfills the property. The abstraction generally

introduces nondeterminism, so a symbolic method such as BDDs is typi-

cally used to check the abstract model. If the abstract model is too coarse,

it does not contain enough details for verification, but including too many

details brings back the complexity of the concrete model. Several abstrac-

tion refinement schemes have been proposed to iteratively find a sufficient

level of detail [24, 71]. A prevalent form of existential abstraction is pred-

icate abstraction [45], which is attractive for software verification because

it maps even an infinite-state model to a finite abstract model whose state

is a Boolean vector. Given a number of state predicates that evaluate to

true in some states and to false in the rest, those concrete states that give

the same values to all state predicates are collapsed into a single abstract

state. While predicate abstraction is effective in reducing the state space,

the bottleneck of model checking can shift from searching the state space

to constructing the abstract model from the concrete model. The expense

of computing the predicate abstraction is one of the problems addressed

in this work.

1.2 Contributions of the Thesis

The contributions of this thesis are divided to four topics. The topics are

briefly summarized below, and they are further explained in Sects. 3–

6, respectively. First, general background information about the model

checking techniques is given in Sect. 2.

1. Symbolic model checking of UML state machine models [I].

UML is a modeling language for software-intensive systems, and its

wide industrial use motivates verification techniques that take UML

models as input. UML 2.0 state machines offer a semiformal language

for modeling the behavior of asynchronous systems. The contribution is

an accurate semantics for a subset of the UML state machine language,

defining the state space of the model, and a translation that maps the

model to a compact symbolic transition formula. The supported UML

8

Introduction

features include hierarchical state machines, asynchronous messages

with data, and deferred events. The translation can be used for checking

properties of UML models using symbolic techniques based on BDDs or

bounded model checking.

2. Bounded model checking of systems with queues [I], [II].

First-in-first-out queues are frequently used to model, for example,

message buffers in distributed systems. While modern SMT solvers sup-

port some high-level datatypes in their theories, the theory of queues is

not directly supported. The contribution is a variety of ways to encode

the behavior of queues in SMT-based bounded model checking, relying

only on widely supported theories.

3. Symbolic partial order methods for accelerated model checking [III],

[IV], [V].

To speed up bounded model checking of concurrent systems, we gen-

eralize the interleaving execution semantics to so-called step semantics,

which allow several independent actions to be executed in a single step.

This brings down the required number of execution steps to find a prop-

erty violation, which is a critical aspect regarding the performance of

bounded model checking. This work presents two practical variants of

step semantics, called the parallel ∃-step semantics and the serial ∃-

step semantics. While their ideas have been introduced earlier, here the

two step semantics are adapted to systems with data variables of un-

restricted domains. Also, the notion of independence is generalized to

allow nondeterministic and context-sensitive dependencies between ac-

tions. Furthermore, a novel semantics, called the serial process seman-

tics, is designed as a normalized form of the serial ∃-step semantics. It

is shown that the serial process semantics corresponds one-to-one to the

partial order semantics of Mazurkiewicz traces and thus eliminates the

redundancy caused by the mutual ordering of independent actions. The

three semantics, as well as the interleaving semantics, are presented in

an abstract, unified framework and compared to each other analytically

and experimentally on an extensive benchmark set.

Another contribution is a new technique for reducing the bounded

reachability problem in a concurrent system to an SMT problem. Un-

like traditional bounded model checking, this technique, called bounded

event tracing, is inherently a partial order method. Instead of tying

9

Introduction

the executed actions to fixed global time steps, they are locally linked

to other actions through the flow of control or data. The (partial) order

of execution is then implied by these links. This idea is presented as a

generic framework based on high-level Petri nets with bounded execu-

tion semantics and automatic generation of corresponding SMT formu-

las. A translation from a class of state machine models to this frame-

work is defined and experimentally tested. However, there is not yet a

translation scheme that is efficient in the general case.

4. Efficient computation of predicate abstraction [VI].

In predicate abstraction, computing the transitions of the abstract

model can be more expensive than model checking the abstract model.

Earlier approaches compute a symbolic representation of the abstract

transitions in a monolithic way. In this work, we instead build the set

of abstract transitions from parts by following the structure of the sys-

tem model. A number of techniques is represented for partitioning the

problem, and each part is solved as a local abstraction problem. As

the computation of the abstraction is essentially a quantifier elimina-

tion problem, and the local problems contain fewer variables under the

scope of the quantifier than the monolithic problem, this can speed up

the computation remarkably. The idea is instantiated for systems ex-

pressed as networks of linear hybrid automata. Experiments on a set of

benchmarks demonstrate the benefit from the techniques.

10

2. Background

In this section, we will briefly review satisfiability solving (Sect. 2.1),

symbolic model checking in general (Sect. 2.2), bounded model checking

(Sect. 2.2.1), and a generic concurrent system model (Sect. 2.3) and its

symbolic transition formula (Sect. 2.3.1). These concepts and definitions

will be used as a baseline throughout the rest of the thesis.

2.1 Satisfiability Modulo Theories

Several of our techniques rely on tools that decide the satisfiability of

quantifier-free formulas in first-order logic. Given a well-formed formula

constructed from function and predicate symbols and Boolean connec-

tives, the formula is satisfiable iff there is an interpretation of the symbols

that evaluates the formula to true. More precisely, we are interested in

satisfiability modulo theories (SMT) [10]. This means that we only take

into account interpretations that respect one or more background theo-

ries, which fix the interpretations of some symbols. An example of such

a theory is linear integer arithmetic, which fixes the interpretation of the

symbols <, +, 0, 1, and so on.

Other theories relevant to this work include the theory of fixed-length

bitvectors, the theory of difference logic, and the theory of arrays. Differ-

ence logic encompasses theory atoms of the forms x− y = c and x− y ≤ c,

where x and y are variables and c is an interpreted real constant. (We

say “variable” to refer to an uninterpreted nullary function or predicate

symbol.) The theory of arrays defines function symbols read and write of

arities 2 and 3, respectively. The function application read(a, i) evaluates

to the value at index i in the array a. The meaning of write(a, i, v) is an

array identical to a except that the value at index i is v. As an example of

11

Background

using an uninterpreted function (uif), the formula (f(x) �= f(y)) ∧ (x = y)

is unsatisfiable: no interpretation of the function symbol f can make the

formula true.

In this thesis, we employ modern SMT solver tools, which are capable

of checking satisfiability modulo these and other theories and also theory

combinations [10, 93]. In many cases, the formulas can be constructed

using only Boolean variables and Boolean connectives, and their satisfia-

bility can be checked using a propositional satisfiability (SAT) solver.

2.2 Symbolic Model Checking

In this work, the term symbolic model checking is used to refer to checking

invariant properties using BDD-based image computation or satisfiability-

based bounded model checking. BDDs (reduced ordered binary decision

diagrams [15]) are a canonical representation for Boolean functions, and

they can be manipulated by efficient algorithms.

We assume that the system model defines a finite set of state variables,

and we identify a state with a vector that gives values to the state vari-

ables. The initial states are defined by a predicate I such that a state s is

initial if and only if I(s) is true. The transitions of the state space are de-

fined by a given predicate T on pairs of states: there is a transition from a

state s to s′ if and only if T (s, s′) is true. The property to check is whether

every state reachable by transitions from any initial state satisfies an in-

variant property, also given as a state predicate P .

BDD-based symbolic model checking [29], in its simplest form, is a di-

rect implementation of the following idea. We define state predicates

S0, S1, S2, . . . by

S0(s) := I(s) (2.1)

St+1(s) := St(s) ∨ ∃s′′ : St(s
′′) ∧ T (s′′, s) for t = 0, 1, (2.2)

In words, St+1 is formed by adding to St all states reachable by a transi-

tion from St. Thus, St is true for exactly those states reachable from an

initial state by a sequence of t or fewer transitions. If the equivalence

St+1 ≡ St holds for some t, then the recursive definition has reached a

fixpoint, and St characterizes precisely the reachable states. If, in addi-

tion, St ∧ ¬P is unsatisfiable, then the invariant property holds in the

model. On the other hand, if there is any t such that St ∧ ¬P is satisfi-

12

Background

able, then any satisfying interpretation constitutes a state that violates

the invariant property and is reachable in at most t steps from an initial

state. Then, it is straightforward to extract an execution path that acts as

a counterexample to the property [29].

To apply BDDs, the state variables need to be Boolean or at least have

a finite domain with an implicit assumption of a mapping to Boolean vec-

tors. The initial predicate I and transition predicate T are encoded as

BDDs, and the forward image computation (2.2) is iterated until either a

fixpoint is reached or a property violation is found. As BDDs are canoni-

cal, the equivalence and satisfiability checks are trivial. Because of the

finite state space, this process always terminates. The practical chal-

lenges are the expensive quantifier elimination in (2.2) and the fact that

the BDD representations of the intermediate reachability predicates St

tend to blow up in size.

2.2.1 Bounded Model Checking

Bounded model checking (BMC [11]) is a symbolic technique that avoids

constructing representations of sets of reachable states and thus circum-

vents some of the bottlenecks of BDDs. In this work, we treat BMC as

an incomplete method for falsifying invariant properties. Direct contribu-

tions are not made on complete BMC (proving invariant properties) nor

on more general temporal properties.

Given a bound k ≥ 0, a sequence of states s0, . . . , sk that satisfies

I(s0) ∧
k−1∧
t=0

T (st, st+1) ∧ ¬P (sk) (2.3)

constitutes a counterexample that breaks the invariant property P . In

BMC, we encode the predicates I, T , and P as formulas and instanti-

ate them over the k + 1 timed copies of the vector s of state variables to

construct (2.3) as a formula. In particular, the transition formula T is

unrolled k times. The satisfiability of the BMC formula (2.3) is checked

iteratively for bounds k = 0, 1, 2, The formulas need to be encoded

in propositional logic for satisfiability checking with a SAT solver, or in

a supported quantifier-free theory for an SMT solver. If a satisfying in-

terpretation is found, it directly gives a counterexample to the property.

If the formula is unsatisfiable up to bound k, we know that every state

reachable in k or fewer steps respects the invariant property, and the

check is repeated with an increased bound. If every reachable state sat-

13

Background

isfies the property, this process does not terminate. In practice, the bot-

tleneck is that the satisfiability solving time grows quickly, even exponen-

tially, when the bound is increased. One way to improve this is to use

incremental satisfiability checking [35], which avoids solving each BMC

instance from the ground up.

Although the only variables in (2.3) are the timed state variables, we

allow the transition formula T (s, s′) to contain auxiliary variables that

facilitate the encoding. Essentially, the transition formula can have the

form T (s, s′) ≡ ∃c : T̃ (s, c, s′), and the satisfiability checking automatically

takes care of existentially quantifying the vector of encoding variables c.

We note that although other formulations of BMC exist (e.g. [27]), the

term BMC in this work refers to the formulation (2.3) based on unrolling

a transition formula.

2.3 A Generic Concurrent System Model

As a generic model of concurrent systems with discrete, asynchronous ex-

ecution steps, we consider a model whose states are defined by a finite set

of state variables and whose behavior is defined by a finite set of actions.

Each action is associated with a subset of states in which the action is

enabled for execution. When an action is executed, its effect is to assign—

possibly nondeterministically—new values to some of the state variables.

The model follows the interleaving execution semantics: one atomic exe-

cution step corresponds to nondeterministically choosing an enabled ac-

tion and executing it. A formal treatment of this generic model is given

in [IV].

In this model, the division of the system into components is not explicit,

nor is the control flow of the components. However, the underlying idea

is that the state variables can represent either control locations or local

data of components or shared data, and an action can represent a local

operation within a component, or it can model synchronization or commu-

nication between components. For example, the actions might correspond

to the transitions of a UML state machine model, with a state variable

allocated for each state machine to hold the current active state.

14

Background

2.3.1 Transition Formulas

For a concrete understanding of how we intend to apply symbolic model

checking, we briefly overview two ways to formulate a transition formula

for models described above. The first way is to write a transition formula

whose structure is a disjunction over the actions, numbered from 1 to n.

The general form is

Tdisj ≡
n∨

i=1

(enabled i ∧ effect i ∧ framei). (2.4)

Above, each subformula enabled i tells whether the ith action is enabled in

the current state s. This typically includes at least checking the current

control location of the corresponding component. The subformulas effect i

constrain the next-state variables s′ to respect the changes made by the

action, for example, setting the new active control location. The frame

conditions framei ensure that the remaining next-state variables retain

their current values.

A potential source of inefficiency in the formulation (2.4) is the amount

of repetition in the frame conditions. In particular, each state variable

local to a component has to be mentioned in the frame condition of every

local action of every other component. Our second formulation reduces

such coupling.

For the alternative transition formula, we introduce a set of auxiliary

Boolean variables f1, . . . , fn. Their meaning is that f i is true iff action i

is the one being executed. We factor out the frame conditions into a com-

mon formula frame, which has a compact representation based on the f i

variables and information on which state variables each action changes.

Using these elements, we rewrite the transition formula in a conjunctive

form that can be generally expressed as

Tconj ≡
n∧

i=1

(f i → enabled i) ∧
n∧

i=1

(f i → effect i) ∧

frame ∧ one-hot(f1, . . . , fn). (2.5)

Above, the one-hot constraint makes sure that exactly one of the f i vari-

ables is true.

For a detailed construction of a conjunctive transition formula, see the

description of the interleaving transition formula in [IV]. In Sect. 5, this is

used as a baseline for transition formulas that follow alternative partial

order semantics. Also, the transition formula for UML models (Sect. 3)

15

Background

follows the conjunctive structure; however, the formula is optimized by

factoring out common logic shared by actions in the same state machine.

The partitioning of the predicate abstraction problem in Sect. 6 is based

on a disjunctive representation like (2.4). The queue encodings of Sect. 4

can be combined with a transition formula of either shape.

16

3. Symbolic Model Checking of UML
State Machines

In systems development, new technology that plugs in transparently is

accepted much more readily than technology that disrupts the develop-

ment flow [63]. Requiring the developer to change the design language

would be a major disruption. Therefore, model checkers that support cur-

rent and emerging industrial languages are at a key position in paving the

way for widely adopted model checking. As the popular languages are not

designed for verifiability, this poses technical challenges. One is the lack

of formal semantics. It is not easy to precisely characterize features such

as pointer casting in C, reflection in Java, or calls to library functions that

may be underspecified. Another issue is how the semantics maps to the

underlying verification technology. Often, this is realized as a translation

to the input language of an existing model checker, or in the case of sym-

bolic model checking, to a transition formula. Publication [I] addresses

these issues for the language of UML state machine models, contributing

a semantics and a translation to a symbolic transition formula.

UML or Unified Modeling Language [76] is a dominant language for

modeling software systems in academia and industry. Some of its key as-

pects are object orientation, graphical notations for visual modeling and

communication, independence from implementation languages, and ori-

entation to large distributed systems. UML is also a big and complex lan-

guage. Besides aspects of object oriented programming such as classes,

polymorphism, and encapsulation, UML can express business processes,

use cases, and deployments of hardware components among other things.

From verification point of view, the most interesting features are the be-

havioral model elements such as state machines for modeling discrete

event-driven behavior, sequence diagrams that specify interactions be-

tween components, and activities that work like extended flowcharts. As

the usage of UML extends from visual documentation to design, simula-

17

Symbolic Model Checking of UML State Machines

tion, and code generation, there is a rising need to verify UML models.

3.1 UML Subset

A user of UML needs to decide which parts of the system to include in the

model, and which UML elements to use for modeling. In [I], we choose a

language subset based on communicating UML state machines.

In our setting, a run-time instance of a UML model consists of a set

of active objects. These are objects that not only encapsulate data and

behavior but can themselves initiate behavior concurrently with the rest

of the system. In programming language terms, every active object has its

own thread. We assume that the behavior of each active object is governed

by a state machine.

Objects communicate asynchronously by sending messages to each other.

Each object has an event pool from which it dispatches events and reacts to

them as specified by its state machine. The only kind of event we consider

is message reception. UML does not specify the order in which events are

dispatched, but for practicality and simplicity, we assume first-in-first-out

order. Thus, the event pool is a queue of messages, and sending a message

means placing the message at the end of the queue of the receiving object.

Objects have attributes, i.e. instance variables, which may include refer-

ences to objects. The formalism does not preclude reading and writing the

attributes of other objects. This allows communication through shared

memory as well as message passing.

State machines consist of state vertices and transitions between them. A

transition can fire if its source state vertex is active, its guard condition (a

Boolean expression) is satisfied, and an event is dispatched that matches

the trigger of the transition. So-called completion transitions have no trig-

ger and fire spontaneously. In UML, if a dispatched event does not enable

firing any transitions, it is lost by implicit consumption. However, if the

event is marked deferrable by an active state, it is saved in a collection of

deferred events and will be dispatched again later.

A transition can specify an effect that is executed upon firing. UML does

not specify an action language for guards and effects, and we also do not

fix the language in [I]. The model checker implementation uses the action

language described in [III], which has statements for manipulating 32-bit

integer attributes and sending messages with data parameters.

18

Symbolic Model Checking of UML State Machines

S1

sig / defer

t2 : sig [x==0]

C1 C2

S2t1 : sig

S3

I2

t3 : [y==1]

Figure 3.1. A hierarchical UML state machine.

UML allows state machines to be hierarchical, as depicted in Fig. 3.1.

A composite state is a container for child state vertices, which can in turn

be composite states. This feature facilitates top-down design, allowing

the behavior of a state to be refined by adding children within it. Hier-

archy also improves expressiveness. For example, the single high-level

transition t1 in Fig. 3.1 substitutes a whole set of transitions leaving the

descendant states of C1. The children of a composite state, such as C2 in

the figure, can be divided into two or more orthogonal regions. When the

composite state is entered, all its regions become active and start func-

tioning like concurrent state machines. Therefore, besides concurrency

between active objects, the model allows concurrency within an object.

The other kinds of state vertices in our subset are initial pseudostates

and final states, which mark the start and the end of the behavior of a

region or the entire state machine, and choice pseudostates that are used

as control flow branches.

3.2 UML Semantics

UML is more predominantly a communication tool between people than a

machine-executable language. The specification [76] gives an informal ac-

count of how the behavioral elements work, but the syntax allows corner

cases whose meaning is ambiguous [38]. UML is also intentionally un-

derspecified, with many “semantic variation points” that leave open the

choice of semantics. Nevertheless, any tool that performs simulation or

verification of UML models must either follow a precise and explicit se-

mantics, or worse, define a semantics implicitly.

In [I], we define a semantics for the UML subset described above. The

semantics is expressed in an operational style in terms of the state space

of a given UML model. In the UML context, we call a vertex of the state

19

Symbolic Model Checking of UML State Machines

space a global configuration to avoid a name clash with a “state” in a state

machine. In short, a global configuration tells which state vertices are ac-

tive in the state machines, what are the attribute values of objects, and

what are the contents of the event pools of objects. A single execution

step corresponds to a state machine firing one enabled transition or dis-

patching an event that does not enable a transition. We define explicitly

the set of legal execution steps between global configurations. This facil-

itates the construction of a symbolic transition formula because the two

representations are fairly close in structure.

The UML behavior is based on asynchronously executing active objects,

but UML by itself does not enforce a scheduling policy. Because we allow

active objects to share variables, it is relevant at which points an object

can preempt the execution of another object. Our semantics allows arbi-

trary interleavings with the assumption that each individual transition is

executed atomically.

The simplest finite state machine based languages have well under-

stood semantics, but UML adds intricate features such as state hierarchy,

deferrable events, and completion transitions, whose combined behavior

needs to be included in the formalization. In the presence of composite

states, transitions at different levels of the hierarchy can be simultane-

ously enabled by the same dispatched event. According to the UML spec-

ification, transitions whose source state is deeper in the hierarchy have a

priority. A particular aspect of UML state machines is run-to-completion

semantics. This means that a state machine does not dispatch a new event

from its event pool until it has completely processed the previous event.

The formal semantics of [I] takes specially into account the combination

of run-to-completion and the intended behavior of completion transitions.

For example, the completion transition t3 in Fig. 3.1 is triggered by an im-

plicit completion event that is generated when the source state S3 becomes

active. However, if the guard y==1 is false, the transition is not fired and

the run-to-completion step ends. The UML specification implies that even

if y==1 becomes true later by an assignment in an orthogonal region or an-

other active object, transition t3 will not be triggered again. Therefore, we

need to subdivide the global configurations where S3 is active into those

where the completion event has not yet been dispatched and those where

it has. In the latter case, we say that state S3 is quiescent. This distinction

is often overlooked, which may result in both spurious firing of completion

transitions and missing legal behavior because of a spurious completion

20

Symbolic Model Checking of UML State Machines

transition overriding another transition.

3.3 Encoding State Machine Behavior

To enable using BDD-based and bounded model checking as described in

Sect. 2.2.1, the state space needs to be represented in a symbolic form.

This includes the state variables for encoding global configurations, the

initial state formula, and the transition formula. Of these, the transi-

tion formula is the most significant part. The initial state formula is not

discussed as it is straightforward to construct.

The state variables include (i) Boolean variables for each state vertex in

each state machine denoting whether the state vertex is inactive, active,

or active and quiescent. (ii) a variable for each attribute of each object,

and (iii) variables for the messages in the event pools. Attributes and mes-

sages are represented as vectors of Boolean variables for BDD and SAT

based model checking, or as variables of a richer sort if an SMT back-end

is used. To keep the symbolic representation finite, there is a fixed maxi-

mum number of messages that each event pool can contain. Parts of the

state space where the limit is exceeded are not covered in the verification.

The transition formula can be divided into three loosely connected parts

as follows.

• The dynamics of message queues that constitute the event pools. This

is discussed in Sect. 4, where different queue encoding approaches are

examined. Any of the approaches can be used to encode the event pools

of UML objects. However, the shifting approach described in [I] is the

only one that supports deferring of events.

• The control logic of state machines, briefly discussed below. The detailed

description is in [I].

• The guards and effects of transitions. The formulas that encode the

guards and effects are assumed to be given and not defined in [I]. They

depend on the action language, which is not specified. However, one

possible implementation is described in [III].

The encoding of control logic follows the semantics of state machines dis-

21

Symbolic Model Checking of UML State Machines

cussed in the previous section. One design goal is to make the encoding

compact in terms of formula size for efficient BMC. The factors that affect

the run time of a SAT or SMT solver are difficult to estimate, but as a

heuristic, we try to keep the size of the input formula small.

Much of the potential complexity of the control logic formula comes from

state hierarchy. Consider transition t1 in Fig. 3.1. The transition is fired

when the event sig is dispatched. However, according to the UML tran-

sition firing priorities, t1 is not fired if transition t2 is also enabled, nor

if state S1 is active because it defers the event. Furthermore, upon fir-

ing t1, not only the target state S2 becomes active but also the initial

pseudostate I2. In the worst case, there is a quadratic number of implicit

dependencies between the transitions and the state vertices of a state

machine. In our encoding, these dependencies are structured in a way

that follows the state hierarchy. For example, the firing of t1 is not condi-

tioned directly on state S1, but on an auxiliary formula that tells whether

the source state C1 has a descendant that defers the event sig . By this

construction, the size of the resulting formula is linear in the number of

model elements in the state machine.

Publication [I] presents a purely mechanical translation of UML models

to transition formulas, and the translation has been implemented in the

toolset developed in the SMUML project [92].

3.4 Related Work

Foundational UML [75] is the official UML semantics proposal by the Ob-

ject Management Group (OMG), who also manage the UML standard. A

related UML 2 Semantics Project has been carried out by academic and

industrial partners [13, 32, 33]. The idea is to define a virtual machine

that executes models in a foundational subset of UML, which contains the

most basic behavioral elements. In particular, state machines are not part

of the Foundational UML. The intent is to specify higher-level elements

such as state machines by mapping them to the Foundational UML, but

the OMG has not published a realization of this.

Regarding UML state machine semantics, perhaps the most complete

account is given in [37]. That work describes a formal semantics for UML-

like “core state machines” and a translation from UML to core state ma-

chines. The treatment includes many UML features that are not handled

22

Symbolic Model Checking of UML State Machines

in [I], such as history, entry, and exit pseudostates. The granularity of

the semantics is much finer in [37], which means going through possibly

several intermediate configurations when firing a transition. Using such

small steps as such in model checking might increase state explosion and

degrade performance. To the present author’s knowledge, there are no

verification tools based on the semantics of [37].

In [84], the output of UML-to-Java code generators is verified against

the semantics of UML state machines. The work employs a partial spec-

ification of the semantics derived from the UML standard, covering only

selected aspects of the behavior. Other efforts to formalize the semantics

of UML state machines are summarized in [88].

For verifying safety properties of UML models, a recent work by Hansen

et al. [47] sketches a translation from a subset of executable UML to

the mCRL2 language, which has both explicit-state and symbolic model

checking back-ends. The UML subset is similar to ours, including hierar-

chical state machines and bounded event queues but no data attributes.

Earlier work on UML model checking include explicit-state [87, 57] and

symbolic approaches—see the related work section in [I].

3.5 Discussion

Publication [I] presents an execution semantics and a transition formula

that enable symbolic model checking of UML state machine models. The

transition formula is linear-size with respect to the UML description even

in the presence of hierarchical state machines. This continues previous

work by the same group [57], where a UML semantics and a translation

for explicit-state model checking were presented. The semantics in [57]

is compatible with [I] but in a presentation style that better matches

explicit-state model checking.

The transition formula for UML state machines is tested with exper-

iments in [I] and also in [III]—the latter only concerns flat state ma-

chines without state hierarchy. The results suggest that for hierarchical

UML state machines, constructing a compact transition formula based

on the hierarchy as in [I] may perform better than a generic transition

formula that requires explicitly flattening the state machines. In compar-

ison to explicit-state model checking, neither our BDD- nor BMC-based

implementations generally reach the performance level of the (highly op-

23

Symbolic Model Checking of UML State Machines

timized) explicit-state model checker Spin [51] on the tested models. Nev-

ertheless, the ability to construct symbolic representations of the behavior

of UML models as demonstrated in [I] is a step towards applying more ad-

vanced symbolic techniques to industrial UML designs.

24

4. Queue Encodings for Bounded
Model Checking

In our domain of systems with no global synchronization, a common com-

munication mechanism is asynchronous message passing, where a com-

ponent sends a message and does not stop to wait until the recipient has

handled the message. In the meantime, the message is kept in a buffer,

possibly with other messages waiting to be processed. Since we want to

catch the possible errors stemming from unexpected concurrent interac-

tions, we need to incorporate the asynchronous communication in the sys-

tem model, even if the model presents the internals of components at an

abstract level. Often, communication buffers constitute the most complex

data structure in a model. If the messages are processed in first-in-first-

out order, then we can model the communication buffer as a queue of

messages. Explicit-state model checkers such as Spin [51] and DiVinE [9]

support such buffers natively in their input languages. In this section,

we discuss ways to handle queues in the context of symbolic model check-

ing, as presented in publications [I] and [II]. We mostly consider bounded

queues with a fixed maximum number of elements.

Instead of a queue, one could use an unordered collection (a multiset) to

model a buffer from which messages are removed in an arbitrary order.

We do not consider this possibility further in this work. Nevertheless, it

is sometimes desirable to deviate from strict first-in-first-out order of pro-

cessing messages. For example, Spin has a “random receive” capability

that allows removing messages from the middle of a queue. We take a

similar approach and extend the semantics of queues with a defer opera-

tion, originating from the UML state machine language (Sect. 3.1).

The contribution of this section is a set of alternative ways to encode the

behavior of queues in the context of symbolic model checking, in particu-

lar, SMT-based bounded model checking. Although the core idea of SMT is

to offer decision procedures for theories of high-level data types, a theory

25

Queue Encodings for Bounded Model Checking

of queues (such as one presented in [12]) is not directly supported in the

SMT-LIB format nor in the current SMT solvers. Our queue encodings

are based on widely supported theories such as arrays and uninterpreted

functions. Some encodings only rely on Boolean and bitvector variables

and can thus be used in SAT or BDD-based as well as SMT-based model

checking. Publication [I] presents a queue encoding as part of the UML

system transition formula. Publication [II] extends this into a variety

of queue encodings, abstracting from the rest of the transition formula.

However, the defer operation is only supported in the encoding of [I].

We divide the evolution of the contents of a queue into steps that cor-

respond to the BMC time steps. The set of operations that can be ap-

plied in a single step is limited—basically, at most one element can be re-

moved from the queue and at most one can be added. This design choice

avoids introducing new variables to hold the intermediate queue contents

within a step, while still allowing us to model an action that first receives

(dequeues) a message and then, in the same step, sends (enqueues) an-

other message, possibly to the same queue. In particular, such an ac-

tion matches the granularity of execution steps in our UML semantics in

Sect. 3.2. Although we are primarily interested in queues as communi-

cation buffers, the interface allows using queues for any data that can be

compared for equality in SMT.

In Sect. 4.1 below, we will define a common interface that encapsulates

the different queue encodings and exposes the allowed queue operations

at each time step. The semantics of queues is also described. The en-

codings are presented in Sect. 4.2, with related work in Sect. 4.3 and a

summary and discussion in Sect. 4.4.

4.1 The Queue Interface

We encapsulate the queue encodings behind an interface that consists of

expressions for accessing the queue contents and client-controlled vari-

ables that determine the operations on the queue. Here, the client is a

BMC transition formula unrolled up to a bound k. In the following, we de-

scribe an interface that covers the first-in-first-out queue operations of [II]

and also the deferring features of [I]. For the presentation, we take the

notation of [II] and extend it as needed.

Consider a queue over elements of type ELEM that has a fixed upper

26

Queue Encodings for Bounded Model Checking

bound Z on the number of elements or is unbounded with Z = ∞. We

represent the contents of the queue as a pair

Q = 〈〈d1, . . . , dm〉, 〈p1, . . . , pn〉〉,

where d1, . . . , dm ∈ ELEM are deferred elements and p1, . . . , pn ∈ ELEM are

pending elements. The numbers m and n can be zero or positive, and the

sum m + n must not exceed the queue capacity Z. The usual case is that

there are no deferred elements, and the queue functions in the familiar

first-in-first-out basis on the pending elements.

The queue interface consists of expressions for accessing the queue con-

tents and client-controlled variables that determine the operations on the

queue. We will denote the queue contents at different BMC time steps by

Q0, Q1, . . . , Qk. For each time step t with 0 ≤ t ≤ k, the queue interface

exposes the following accessor expressions.

• The Boolean formulas empty t, pending t, and full t tell whether the queue

at step t is empty, has at least one pending element, or is full, respec-

tively. A bounded queue is full iff it contains Z elements, and an un-

bounded queue is never full.

• The expression firstelemt of type ELEM holds the value of the first pend-

ing element in Qt. It has a meaningless value if the queue contains no

pending elements.

• For 0 ≤ u ≤ k, the Boolean formula equal t,u is true iff the contents of the

queue at time steps t and u are the same.

Denoting Qt = 〈〈d1, . . . , dm〉, 〈p1, . . . , pn〉〉, the semantics of the accessors is

as follows.

empty t = (m+ n = 0),

pending t = (n > 0),

full t = (m+ n = Z),

firstelemt = p1,

equal t,u = (Qt = Qu).

There are four operations that can be applied to the queue at a time

step. The dequeue operation removes the first pending element p1, and

27

Queue Encodings for Bounded Model Checking

new elements are enqueued after pn. If deferring occurs, then the ele-

ment p1 is removed and appended to the deferred elements. All defer

operations can be undone by flushing the deferred elements back to the

front of the pending elements list. These operations are defined by the

following transformation functions. Below, Q = 〈〈d1, . . . , dm〉, 〈p1, . . . , pn〉〉
is a queue and p is an arbitrary element.

dequeued(Q) := 〈〈d1, . . . , dm〉, 〈p2, . . . , pn〉〉,
deferred(Q) := 〈〈d1, . . . , dm, p1〉, 〈p2, . . . , pn〉〉,
flushed(Q) := 〈〈〉, 〈d1, . . . , dm, p1, . . . , pn〉〉,

enqueued(Q, p) := 〈〈d1, . . . , dm〉, 〈p1, . . . , pn, p〉〉.

The client-controlled Boolean variables deq t, defer t, flusht, and enq t de-

termine whether a dequeue, defer, flush, or enqueue operation occurs at

time step t, respectively. The variable newelemt of type ELEM determines

the enqueued element, if any. When moving from time step t to t+ 1, the

new contents of the queue is evaluated according to the following sequence

of assignments.

Q← Qt

if deq t then Q← dequeued(Q)

if defer t then Q← deferred(Q)

if flusht then Q← flushed(Q)

if enq t then Q← enqueued(Q,newelemt)

Qt+1 ← Q

Thus, each of the four operations on the queue can occur once per time

step, and if several operations occur, their order is fixed as listed above.

Furthermore, the accessors empty t, pending t, full t, and firstelemt are eval-

uated before applying the operations. The fixed order is chosen to follow a

typical sequence of operations in a discrete execution step, in particular,

firing a single transition of a UML state machine. In the beginning of

such a step, the first pending message in an event queue is examined to

check if it triggers a transition. Then, the message is possibly dequeued

or deferred. If a transition is fired, the deferred messages are flushed be-

cause they potentially trigger a transition in the next step. Finally, the

effect of the transition might send new messages that are enqueued in

the appropriate queues.

A dequeue or defer operation is only possible if the queue has at least

one pending element. An enqueue operation must only occur if the queue

28

Queue Encodings for Bounded Model Checking

Table 4.1. How a queue Qt = 〈〈d1, . . . , dm〉, 〈p1, . . . , pn〉〉 evolves to Qt+1 depending on the
control variables. The symbols 0, 1, and × denote false, true, and don’t care,
respectively.

deqt defer t flusht enqt Qt+1

0 0 0 0 〈〈d1, . . . , dm〉, 〈p1, . . . , pn〉〉
1 0 0 0 〈〈d1, . . . , dm〉, 〈p2, . . . , pn〉〉
0 1 0 0 〈〈d1, . . . , dm, p1〉, 〈p2, . . . , pn〉〉
0 × 1 0 〈〈〉, 〈d1, . . . , dm, p1, . . . , pn〉〉
1 0 1 0 〈〈〉, 〈d1, . . . , dm, p2, . . . , pn〉〉
0 0 0 1 〈〈d1, . . . , dm〉, 〈p1, . . . , pn,newelemt〉〉
1 0 0 1 〈〈d1, . . . , dm〉, 〈p2, . . . , pn,newelemt〉〉
0 1 0 1 〈〈d1, . . . , dm, p1〉, 〈p2, . . . , pn,newelemt〉〉
0 × 1 1 〈〈〉, 〈d1, . . . , dm, p1, . . . , pn,newelem

t〉〉
1 0 1 1 〈〈〉, 〈d1, . . . , dm, p2, . . . , pn,newelem

t〉〉

has space—either a dequeue operation has freed a slot or the queue was

not full to start with. Also, we do not allow both dequeuing and deferring

an element at the same step. We assume that the client of the queue

interface enforces these constraints by fulfilling the following invariants

at every time step t.

deq t → pending t,

defer t → pending t,

¬(deq t ∧ defer t),

enq t → (¬full t ∨ deq t).

To make the evolution of the queue more explicit, Table 4.1 lists all pos-

sible combinations of the control variables at a single time step, under the

above restrictions, and the corresponding total effects on the queue.

Publication [II] describes a subset of this interface with no deferring

support. The subset is obtained by regarding the control variables defer t

and flusht as always false and the list of deferred elements 〈d1, . . . , dm〉 as

always empty. In this case, the accessor pending t is equivalent to ¬empty t.

4.2 The Queue Encodings

In this section, we will go through the queue encoding approaches of Pub-

lications [II] and [I]. The shifting encoding represents a bounded queue

as a finite vector of variables, where the ith variable holds the ith oldest

element of the queue. Dequeuing an element then involves shifting the

29

Queue Encodings for Bounded Model Checking

remaining elements one step towards the beginning of the vector. The

cyclic encoding is a variant that includes a head pointer to the oldest el-

ement. Upon dequeuing, instead of shifting the queue contents, the head

pointer is incremented. In the cyclic encoding, the queue contents wrap

around the end of the vector. The linear encoding also employs a head

pointer, but instead of wrap-around semantics, the queued elements are

placed in a sequence that extends to infinity. With the use of uninter-

preted functions, the formula size of the linear encoding is independent

of the capacity of the queue. This is also the only encoding that can ac-

commodate unbounded queues. These three encodings are presented in

Sects. 4.2.1 to 4.2.3.

In Sect. 4.2.4, we will discuss a technique that can be used on top of

the shifting or cyclic encoding to reduce the encoding overhead in SMT-

based bounded model checking, when the queue elements are composite

objects that cannot be represented as a single term in the formula. The

idea is not to directly store elements in the queue, but tags, which work

like references to elements.

4.2.1 A Shifting Approach

The shifting queue encoding employs a straightforward representation of

the sequence of queued elements 〈〈d1, . . . , dm〉, 〈p1, . . . , pn〉〉 at each time

step. The notation below is compatible with [II] but extended to accom-

modate the defer and flush operations.

For representing a queue with a bounded capacity Z at time step t, we

introduce a sequence of variables qct0, . . . , qc
t
Z−1 of type ELEM. These vari-

ables hold the deferred elements d1, . . . , dm followed by the pending ele-

ments p1, . . . , pn, as illustrated in Fig. 4.1(a). The timed integer variables

firstpost and tail t denote the zero-based index of the position just after

the deferred elements and the pending elements, respectively. Thus, 0 ≤
firstpost ≤ tail t ≤ Z always holds.

30

Queue Encodings for Bounded Model Checking

qct0 . . . qctm−1 qctm

firstpost

. . . qctm+n−1 qctm+n

tail t

. . . qctZ−1

deferred elements pending elements

(a)

(b)

reset[] req[3, 2] req[3, 1] status[0] − −
initial contents

reset[] req[3, 2] req[3, 1] status[0] ack[] −
enqueue ack[]

reset[] req[3, 2] req[3, 1] status[0] ack[] −
defer req[3, 1]

reset[] req[3, 2] req[3, 1] ack[] − −
dequeue status[0], flush deferred elements

Figure 4.1. Representation of the queue contents in the shifting queue encoding, and an
example evolution of a queue.

The accessors of the queue interface are then defined as follows.

empty t := (tail t = 0), (4.1)

pending t := (firstpost �= tail t), (4.2)

full t := (tail t = Z), (4.3)

firstelemt :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

firstpost = 0 : qct0

firstpost = 1 : qct1
...

...

firstpost = Z−2 : qctZ−2

else : qctZ−1,

(4.4)

equal t,u := (firstpost = firstposu) ∧ (tail t = tailu) ∧∧
0≤s<Z

(s < tail t)→ (qcts = qcus). (4.5)

The notation on the right-hand side of (4.4) denotes a nesting of if-then-

else constructs. For example, if Z = 3, then firstelemt is defined as the

expression (if firstpost=0 then qct0 else (if firstpost=1 then qct1 else qct2)).

Figure 4.1(b) illustrates the evolution of a queue under this encoding.

When a new element (ack[] in the figure) is enqueued, it is placed at the

current tail position, and the tail pointer is incremented. A defer oper-

ation is implemented as just incrementing firstpos . A dequeue operation

31

Queue Encodings for Bounded Model Checking

removes the element at firstpos and shifts the subsequent elements one

position lower (the diagonal arrows in the figure). A flush operation moves

all deferred elements in front of the pending elements, which means reset-

ting firstpos to zero. The last transition in Fig. 4.1(b) involves dequeuing

and flushing in the same step. In the general case, the transition from

time step t to t+ 1 is encoded as follows.

qct+1
s :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

enq t ∧ ¬deq t ∧ tail t=s : newelemt

enq t ∧ deq t ∧ tail t=s+1 : newelemt

deq t ∧ firstpost≤s : qcts+1

else : qcts,

(4.6)

firstpost+1 :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

flusht : 0

defer t : firstpost + 1

else : firstpost,

(4.7)

tail t+1 :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

deq t ∧ ¬enq t : tail t − 1

¬deq t ∧ enq t : tail t + 1

else : tail t.

(4.8)

Equation (4.6) above is instantiated for all indices 0 ≤ s < Z. In the

boundary case s = Z−1, the term qcts+1 can be taken to have any constant

value of the element type ELEM. In Fig. 4.1(b), the symbol “−” denotes

this value.

Variants. The shifting encoding defined above uses integer variables for

the pointers firstpost and tail t. As these integers have a bounded domain,

they can also be encoded using bitvectors, thus enabling SAT and BDD-

based methods.

As an alternative, we consider a one-hot encoding, in which tail t is re-

placed by a sequence tail t0, . . . , tail
t
Z of Boolean variables, where each tail ts

has the meaning tail t = s. The variables firstpost0, . . . ,firstpos
t
Z are anal-

ogous. The motivation is to simplify the encoding so that a decision pro-

cedure for integers or bitvectors is no longer needed. As the pointers are

mostly compared to constants, this change does not significantly increase

the encoding size.

We obtain the version with one-hot pointer variables by making the fol-

lowing changes to the encoding. In the definitions of empty t (4.1), full t (4.3),

32

Queue Encodings for Bounded Model Checking

firstelemt (4.4), and qct+1
s (4.6), we replace all subformulas of the form

firstpost = j and tail t = j by firstpostj and tail tj , respectively. The defini-

tion (4.2) becomes

pending t := ¬
∨

0≤s≤Z

(firstposts ∧ tail ts).

In (4.6), a special treatment is needed for the subformula firstpost ≤ s. In

the case s = 0, this maps to firstpost0. If 0 < s < Z, we replace firstpost ≤ s

by
(
firstposts∨(firstpost ≤ s−1)

)
and apply this transformation recursively.

Because the subformula firstpost ≤ s − 1 is shared with the definition of

qct+1
s−1, we can still express qct+1

0 , . . . , qct+1
Z in size O(Z).

For the equality predicate, we employ a similar chain of definitions with

a size linear in Z. For 0 ≤ s < Z, we define an auxiliary predicate equal t,us

as

equal t,us := (tail ts ∧ tailus) ∨(
(firstposts ↔ firstposus) ∧ (qcts = qcus) ∧ equal t,us+1

)
(4.9)

with the base case

equal t,uZ := (tail tZ ∧ tailuZ).

Then, equal t,u := equal t,u0 . Finally, the evolution of the variables firstposts

and tail ts for 0 ≤ s ≤ Z is determined as

firstpost+1
s :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

flusht : (s = 0)

defer t : firstposts−1

else : firstposts,

tail t+1
s :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

deq t ∧ ¬enq t : tail ts+1

¬deq t ∧ enq t : tail ts−1

else : tail ts.

The boundary cases firstpost−1, tail
t
−1, and tail tZ+1 are taken to have the

value false, and the formula (s = 0) is just the constant true or false.

Publication [II] presents the same one-hot encoding as above but omits

deferring and firstposts. The pointer encoding in [I] is essentially a hybrid,

where firstpost is encoded as an integer (denoted by QPos in [I]), and tail t is

implicitly one-hot encoded. Namely, the unused slots in the vector repre-

senting the queue contents hold a special value none ∈ ELEM, and tail t=s

is encoded as (qcts=none ∧ qcts−1 �=none).

33

Queue Encodings for Bounded Model Checking

qct0 . . . qctj−1 qctj

head t

. . . qctj+n−1 qctj+n

tail t

. . . qctZ

pending elements

qct0 . . . qctn−j−1 qctn−j

tail t

. . . qctZ−j qctZ−j+1

head t

. . . qctZ

pending elements pending elements

Figure 4.2. Representation of the queue contents in the cyclic queue encoding in the cases
head t ≤ tail t and head t > tail t.

4.2.2 A Cyclic Approach

For an optimized implementation of a bounded first-in-first-out queue in

an imperative programming language, a programmer would use a cyclic

buffer, in which the current contents of the queue are represented as a

window of successive elements that may wrap around at the end of the

buffer. Our cyclic encoding employs the same idea. We only consider the

case without deferring, thus the queue only contains pending elements.

Like in the shifting approach, the queue contents at time step t are

represented by a finite vector of variables of type ELEM, with an integer

variable tail t that points to the index where the next element will be en-

queued. Another variable head t points to the oldest element in the queue.

The pending elements are at indices from head t up to but not including

tail t, as shown in Fig. 4.2. In the case head t > tail t, the index wraps back

to zero at the end of the array. The variables head t and tail t range from

0 to Z, inclusive. The index tail t in the vector never holds a queued ele-

ment, and therefore we allocate a vector of length Z + 1 to accommodate

at most Z pending elements. The queue is empty iff head t = tail t and full

iff head t ≡ tail t + 1 (mod Z + 1).

A dequeue operation, instead of shifting elements, increments the head

variable modulo Z + 1. An enqueue operation increments tail modulo

Z + 1. When moving from step t to t + 1, each variable qcts either retains

its old value or is replaced by the enqueued element newelemt. As opposed

to the shifting encoding (4.6), the definition of qct+1
s no longer depends

on qcts+1. The rationale for the cyclic approach is that it reduces the cou-

pling between adjacent slots of the array. The encoding details can be

found in [II].

To extend the cyclic encoding to support deferring, one might introduce a

34

Queue Encodings for Bounded Model Checking

third pointer variable firstpost that marks the boundary between deferred

and pending elements like in Fig. 4.1(a). However, a dequeue operation

would then need to shift the deferred elements one position forward, in

addition to incrementing head . Such mechanics would bring the encoding

close to the shifting approach.

Variants. Analogously to the shifting approach, the head t and tail t point-

ers of the cyclic encoding can also be encoded using bitvectors or one-hot

Boolean variables instead of integers.

Another variant, eligible in SMT-based BMC, is to discard the explicit

variables qct0, . . . , qc
t
Z that hold the queued elements and use uninter-

preted functions (uifs) instead. For each time step t, we define an un-

interpreted function qct : INT → ELEM. In the encoding, we replace each

occurrence of qcts by qct(s), i.e. the uninterpreted function qct applied to

an integer constant. The benefit is that the first pending element can be

queried compactly as firstelemt := qct(head t) instead of an explicit case

split over the Z + 1 possible values of head t. The drawback is increased

complexity due to the introduction of function symbols instead of just vari-

ables.

An even higher-level representation relies on satisfiability modulo the

theory of arrays introduced in Sect. 2.1. An array variable qct : INT →
ELEM represents the queue contents at time step t. The contents at the

next step is then qct+1 := if enq t then write(qct, head t,newelemt) else qct.

This constant-size expression eliminates the need for separately updating

each array slot. The overall size of the encoding (disregarding the equality

formulas equal t,u) is constant per time step and does not depend on the

capacity Z. The compactness relies on the fact that at most one array

element changes its value between successive time steps. Therefore, the

shifting approach would not lend itself to such a succinct array encoding.

The cyclic encoding with one-hot pointers and with uif- or array-based

contents representation are explicitly defined in [II].

4.2.3 A Linear Approach

Our third, SMT-based approach is called the linear encoding. The idea

is to take the cyclic approach and let the length of the buffer grow in-

definitely. At the limit, the tail pointer never wraps around, and every

35

Queue Encodings for Bounded Model Checking

qc(0) . . . qc(j−1) qc(j)

head t

. . . qc(j+n−1) qc(j+n)

tail t

. . .

pending elements

Figure 4.3. Representation of the queue contents in the linear queue encoding.

enqueued element is stored in a fresh slot. An essential observation is

that during the entire evolution of the queue, each slot holds at most

one value of type ELEM. To model this case, we can use a single, time-

independent uninterpreted function qc : INT → ELEM to represent the

contents. The only time-dependent variables are head t and tail t. This is

depicted in Fig. 4.3.

We get a compact encoding, as there are no frame conditions for tying

together the queued elements between successive time steps. The en-

tire dynamics is captured by the following constraints for each time step.

See [II] for the complete encoding.

head t+1 := if deq t then head t + 1 else head t, (4.10)

tail t+1 := if enq t then tail t + 1 else tail t, (4.11)

enq t → (
qc(tail t) = newelemt

)
. (4.12)

Unless we explicitly limit the number of pending elements tail t − head t

to the range 0, . . . , Z, this encoding automatically models an unbounded

queue. Nevertheless, in a finite number of time steps with at most one

enqueue operation per step, the queue cannot grow indefinitely.

We do not handle deferring in the linear encoding. Allowing the flush

operation would lead to a non-linear dequeuing order of elements. With

the time-independent representation of the queue contents, there is no

obvious way to implement this.

4.2.4 Compressing Tuple Elements with Tags

In modeling languages such as the input languages of the Spin [51] and

DiVinE [9] model checkers and our UML subset (Sect. 3), communication

may involve messages that carry data parameters. When storing such

messages in a queue, the type of the elements is composite instead of

scalar. In a software implementation, communicating such messages be-

tween components could be done by passing references to objects instead

of contents, for the sake of efficiency. We adapt a similar optimization

to SMT-based BMC. In our encoding, uninterpreted function application

36

Queue Encodings for Bounded Model Checking

plays the role of object dereferencing.

For simplicity, let us assume that the element type is a tuple of scalar

types T1, . . . , TA. For example, messages that consist of a signal identi-

fier and at most two integer parameters can be represented as tuples of

the form 〈signal , param1 , param2 〉 ∈ TUPLE(SIGNAL, INT, INT). Encoding

such tuples introduces new variables and expressions. In the shifting en-

coding, the variable qcts that holds the sth oldest queued element at time

step t is expanded to A separate variables of types T1, . . . , TA, respectively.

How these variables evolve in time (the definition (4.6) of qct+1
s) is dupli-

cated A times as well. The logic that controls the evolution of the first

tuple element is the same as the logic for the A − 1 remaining elements,

and we would like to factor out the redundant parts of the encoding. The

duplication also applies to the cyclic encoding, and to the array- and uif-

based representations of queue contents.

Naturally, the duplication can be avoided if the back-end solver directly

supports terms whose type is a tuple. For example, the Z3 and CVC3

solvers have native tuple types, but the SMT-LIB language [85] does not.

For the cases where tuple-valued variables are not available, publica-

tion [II] proposes an alternative that avoids storing tuples in the queue.

The idea is to instead store scalar elements (say, integers) that we call

tags. Tags act as references to tuples. For dereferencing, we define time-

independent uninterpreted functions decode1, . . . , decodeA. Then, we have

decodei(r) = x if tag r refers to a tuple whose ith element is x. Enqueuing

a tuple value transforms to enqueuing a tag whose concrete value is un-

specified, while ensuring that the enqueued tag refers to the correct tuple.

For example, to enqueue the message 〈status, 0〉 at step t, the client places

the constraint

enq t ∧ (
decode1(newelem

t) = status
) ∧ (

decode2(newelem
t) = 0

)
.

Similarly, the predicate “the first pending element at step t is 〈status, 0〉”
is encoded as

pending t ∧ (
decode1(firstelem

t) = status
) ∧ (

decode2(firstelem
t) = 0

)
.

With this technique, the encoding of how the queue evolves in time be-

comes independent of the arity A of the element type. The dependence

on A cannot be completely eliminated because the tuples need to be de-

constructed at the interface, as shown above. The tag-based compression

can be applied to all encodings of this section except the linear encod-

37

Queue Encodings for Bounded Model Checking

ing of Sect. 4.2.3, which is immune to the problem because of the time-

independent representation of queued elements.

The use of tags as object references might find more general use in SMT

encodings of structured data. The tradeoff is that it is cheaper to move or

copy tags than entire structures, but accessing the data in the structure

involves an extra level of indirection in the form of an uninterpreted func-

tion application. It is worth noting that our tags do not fulfill the property

of extensionality. That is, two different tags may refer to the same tuple,

and the equality of tuples cannot be resolved by comparing tags alone. For

this reason, the use of tags does not compress the equal t,u predicates.

4.3 Related Work

Our compact cyclic array-based representation of Sect. 4.2.2 can be ex-

tended to fully simulate a first-in-first-out queue datatype, without re-

stricting to a non-branching evolution like in our BMC context. Such an

approach is used as an SMT solving benchmark in a recent work by Ar-

mando et al. [5]. A reduction of queues to arrays and head/tail pointers is

defined in [5] both with cyclic (like Sect. 4.2.2) and unbounded semantics

(like Sect. 4.2.3).

In the thesis of Bjørner [12], a decision procedure for a theory of queues

with an extensive set of operations is developed. See also the related work

section in [II].

4.4 Discussion

To enable symbolic model checking of systems that include queues e.g. in

the form of buffered communication, publication [II] presents three alter-

native approaches to encode queues especially in the context of SMT-based

bounded model checking. The encodings are summarized in a feature ma-

trix in Table 4.2. The three approaches are further subdivided based on

whether the queued elements are represented explicitly using separate

variables, or using arrays or uninterpreted functions (uifs). Furthermore,

the variables that act as pointers to elements can be either (bounded) in-

tegers or one-hot encoded Booleans.

All encodings can model basic first-in-first-out queues. In addition, the

38

Queue Encodings for Bounded Model Checking

shifting approach is augmented with support for the defer operation of

UML state machines. The encodings are restricted to bounded queues of

a fixed capacity Z, except for the linear approach, which also supports

unbounded queues.

The encodings require different theories to be supported by the back-end

SMT solver, as shown in Table 4.2. The encodings with one-hot pointers

do not rely on any theories and could thus be used directly in SAT- and

BDD-based verification. Integer pointers require support for the theory

of integer offsets [5, 74], or more generally, integer linear arithmetic. The

encodings with uif or array contents representation require support for

the theory combination of integer offsets with uifs or arrays [94], respec-

tively.

In a BMC instance, the size of the shifting or cyclic encoding with ex-

plicit or uif-based contents representation is linear in the capacity Z times

the bound k. However, if the element type is a tuple of A scalars, the size

expands to O(kZA). This can be compressed to O(k(Z + A)) by using the

tag technique of Sect. 4.2.4. The size of the cyclic encoding with array-

based contents, as well as the linear encoding, is independent of Z. With

tuple elements, the size of these encodings isO(kA), regardless of whether

tags are used. The equality predicates are not included in the sizes above,

as they are not needed in checking invariant properties.

In the experiments of [II], the approaches are compared to each other on

artificial BMC tests as well as benchmarks translated from simple UML

models. Generally, the cyclic encoding with explicit contents representa-

tion and one-hot encoded head and tail pointers performs best. Compared

to the shifting approach, the evolution of individual queue slots is ex-

pressed with slightly simpler formulas, and this seems to outweigh the

Table 4.2. Queue encoding variants and the supported features.

approach shifting cyclic linear

contents explicit explicit uif array uif

pointers int one-hot int one-hot int int int

features

deq, enq • • • • • • •
defer, flush • •
unbounded •

encoding

theories int – int – int +
uif

int +
array

int +
uif

size O(kZ) O(kZ) O(kZ) O(kZ) O(kZ) O(k) O(k)

tags • • • • • •

39

Queue Encodings for Bounded Model Checking

potential confusion caused by the rotational symmetry of the vector that

represents the queue contents. The linear encoding, although compact,

resulted in the longest solving times. The use of tags seems to consis-

tently give at least some speedup compared to encodings that duplicate

the logic for each tuple element. Significant improvements were observed

with models that involved tuples with a large arity.

All in all, a precise symbolic encoding of the semantics of a queue results

in relatively heavyweight formulas. As with other software features, a

viable approach might be conservative abstraction of the semantics. For

example, one conceivable approximation would be to abstract from the

ordering of elements and to treat the queue contents as a multiset instead

of an ordered sequence of elements.

40

5. Symbolic Partial Order Methods

In a distributed system, local events in different components occur concur-

rently, and it is generally not meaningful or even possible to investigate

the order of these occurrences. Our model of systems, based on global

states and interleaving executions, has the disadvantage that it forces a

total order on unrelated as well as related occurrences.

The theory of Mazurkiewicz traces [66] offers a view of executions that

only fixes a partial order of occurrences. An interleaving execution is rep-

resented as a finite string of symbols. The symbols correspond to the pos-

sible actions of the system, and each pair of symbols is either dependent or

independent. The exact definition of independence may vary, but a min-

imum requirement is that if two actions a and b are independent, then

a �= b, executing a in any reachable state does not change the enabled-

ness of b or vice versa, and in every reachable state where both actions

are enabled, both execution orders ab and ba lead to the same state. Then

a string wabw′, where w and w′ are arbitrary strings, is equivalent to the

string wbaw′. More generally, two strings are equivalent iff one can be

obtained from the other by a number of transpositions of subsequent in-

dependent symbols. An equivalence class of strings is called a trace.

When checking safety properties, examining two executions in the same

trace is redundant because they are guaranteed to end up in the same

state. In explicit-state model checking, this idea is employed in the form

of partial order reduction [44]. Transitions in the state space are pruned

from the search while guaranteeing that at least one representative exe-

cution for each Mazurkiewicz trace remains. This reduction often leads to

tremendous savings in run time, due to the inherent abundance of inde-

pendent actions in concurrent systems.

A major focus of this thesis is to apply partial order methods to accel-

erate bounded model checking of concurrent systems. However, the ap-

41

Symbolic Partial Order Methods

proach is quite different from the reduction used in explicit-state model

checking. In BMC, a bottleneck is that when the bound increases, the time

to check the satisfiability of the unrolled formula grows rapidly. Increas-

ing the bound by one involves encoding a new copy of every action into

the formula, even though only one of the actions is executed in any con-

crete execution under the interleaving semantics. In [III] and [IV], we ad-

dress the bottleneck of BMC by employing so-called alternative execution

semantics, while [V] introduces a different partial order technique called

bounded event tracing. These approaches are briefly introduced below. Al-

though we talk about alternative semantics, our principle is to conform to

the interleaving semantics in terms of the reachability of states.

• The idea of step semantics is to allow each execution step to contain not

just one action, but any set of independent actions. In essence, step se-

mantics adds shortcut edges to the state space, allowing a given state to

be reached in fewer steps. Therefore, we can cover a larger portion of the

state space at each BMC bound than with the interleaving semantics,

without mentionable expansion in the formula size. This makes it sig-

nificantly faster to find counterexample executions to safety properties

in practice. The variants we consider, called the parallel ∃-step seman-

tics and the serial ∃-step semantics, are discussed in Sect. 5.1. These

two semantics have been presented earlier in the context of SAT-based

planning [86] and SAT-based model checking of 1-safe Petri nets [77],

respectively. The contribution of [III] is to extend parallel ∃-steps to

object-based systems with data variables and message queues. In [IV],

parallel and serial ∃-steps are treated in a unified abstract framework

that can accommodate many modeling languages of concurrent systems.

• While the shortcut edges of step semantics add redundant paths to the

state space, the essence of process semantics is to only allow execution

paths in a certain normal form. Process semantics has been employed

before in BMC for Petri net [48] and labeled transition system [58] for-

malisms. Section 5.2 discusses the serial process semantics, which is a

new contribution that combines the idea of process semantics and serial

∃-steps. We will show that the serial process semantics is optimal in the

sense that it allows exactly one execution in each Mazurkiewicz trace.

• Bounded event tracing (Sect. 5.3) is a novel SMT-based technique for

42

Symbolic Partial Order Methods

checking bounded safety properties of concurrent systems. It differs

from bounded model checking as there is no unrolling of a transition

formula that encodes the actions of the system. Instead, we take a fixed

number of potential events, which correspond to unrolled copies of ac-

tions, and construct a formula that characterizes all executions where

each potential event occurs at most once. The order of the occurrences is

unspecified, but constraints are added to the formula to make sure that

a cause always precedes its effect. Therefore, bounded event tracing is

inherently a partial order method.

We will go through these contributions in the following sections, with re-

lated work in Sect. 5.4 and concluding discussion in Sect. 5.5.

5.1 Step Semantics

In the interleaving semantics, each execution step is a unit step: exactly

one action is executed. In BMC, the transition formula is unrolled k times

to cover the part of the state space reachable from the initial state within k

unit steps. Recall that an interleaving transition formula (2.5) contains

an encoding of each action that can occur. Thus, the unrolled formula

contains a copy of every action encoded at every step. In a sense, this is

wasteful, since only one action per time step is scheduled for execution.

For single-threaded systems, we could employ analysis based on the con-

trol flow graph to statically reduce the possible scheduling choices at each

step [39, 27]. Unfortunately, such pruning does not scale to systems with

concurrency. Because of the nondeterministic interleaving of actions from

different components, we cannot in practice say that at a certain global

time step, we only need to consider a small set of actions local to a compo-

nent.

Instead, the approach presented in [III] and [IV] is to allow several ac-

tions to be executed in each step. In particular, the idea of step semantics

is to preserve all unit steps and also add shortcut edges to the state space

such that each shortcut edge corresponds to a sequence of unit steps. The

transition formula is rewritten so that a given BMC bound k covers all

states reachable within k unit steps, and usually a significantly larger

part of the reachable state space as well. This can be very beneficial, as

the satisfiability solver run time on BMC instances is in practice super-

43

Symbolic Partial Order Methods

linear or even exponential in the bound. Naturally, we still do not want to

outweigh the benefits by adding too much complexity to the formula. By

exploiting the inherent independence of actions, a modest modification to

the interleaving transition formula suffices to implement a step semantics

that, in particular, allows all steps consisting of a set of enabled, pairwise

independent actions.

In the following, we will discuss step semantics in general (Sect. 5.1.1),

a way to represent actions (Sect. 5.1.2), the serial and parallel ∃-step im-

plementations (Sects. 5.1.3–5.1.4), experiments (Sect. 5.1.5), and approx-

imation of independence (Sect. 5.1.6).

5.1.1 Semantic Definitions

Let us present three alternative execution semantics: the ∀-step, ∃-step,

and relaxed ∃-step semantics. The semantics actually employed for model

checking in this work do not coincide with any of these, but are closely

related. As a baseline, we take the interleaving state space of the system.

Under the alternative execution semantics, the state space contains the

same set of states but a different set of transitions. There is a transition

from state s to state s′ labeled with a nonempty set of actions ex if the

actions in ex are executable in some order starting from s and reaching s′,

with the following restrictions specific to each semantics.

• Interleaving semantics: ex contains exactly one action enabled in s.

• ∀-step semantics: the actions in ex are enabled in s and pairwise inde-

pendent.

• ∃-step semantics: the actions in ex are enabled in s.

• Relaxed ∃-step semantics: no restrictions.

The semantics above are listed in order from the most restrictive to the

most liberal. The ∀-step semantics is included as it corresponds to the

classical step semantics from Petri net theory [53]. However, for BMC,

we employ the even less restrictive ∃-step and relaxed ∃-step semantics.

Under the ∃-step semantics, there exists an ordering of the actions in a

step that reaches the target state, while ∀-step semantics requires that

44

Symbolic Partial Order Methods

interleaving

∀-step∗

parallel ∃-step∗†

serial process∗†

serial ∃-step†

∃-step

relaxed ∃-step

∗ Subject to approximation in the definition of independence.
† Subject to the chosen total order of actions.

Figure 5.1. Interleaving and alternative execution semantics in the set of all possible
execution paths. The solid lines denote the semantics implemented for BMC
in this work.

all orderings lead to the same state. In general, every interleaving exe-

cution is a ∀-step execution, every ∀-step execution is an ∃-step execution,

and every ∃-step execution is a relaxed ∃-step execution. In the other di-

rection, every relaxed ∃-step execution can be turned into an interleaving

execution by expanding the relaxed ∃-steps into sequences of unit steps.

This means that the set of reachable states from given initial states coin-

cides for all four semantics. Figure 5.1 illustrates the relationship of these

four semantics, as well as other semantics that will be explained in later

sections.

Example 1. Consider the system in Fig. 5.2(a). The system has two com-

ponents with control locations {L1,L2} and {M1,M2,M3}, and four ac-

tions {α, β, γ, δ}. The state variables are pcL and pcM , which hold the

current control location of the components, and integers x and y. Fig-

ure 5.2(b) shows a part of the interleaving state space of the system. In

Fig. 5.2(c), the dashed arrows together with the solid arrows denote the

transitions under the ∃-step semantics, and all arrows together corre-

spond to the relaxed ∃-step semantics. If we consider action α to be in-

dependent of δ, then the ∀-step semantics corresponds to the solid arrows

plus the transition from state (L2,M1, x=2, y=2) to (L1,M3, x=3, y=2).

As a motivation for the step semantics approach, observe that starting

from the initial state (L1,M1, x=2, y=0), it takes 3 unit steps to reach the

45

Symbolic Partial Order Methods

L1 L2

β : if x > 2 then y ← y + 1 else y ← 2

α : x← x+ 1

M1
M2

M3

γ : y ← x

δ : [y > 0]

(a) control flow graphs of the two components of the system

(L1, M1,
x=2,y=0)

(L2, M1,
x=2,y=2)

(L1, M1,
x=3,y=2)

(L2, M3,
x=2,y=2)

(L1, M3,
x=3,y=2)

(L2, M2,
x=2,y=2)

(L1, M2,
x=2,y=2)

(L1, M2,
x=3,y=2)

(L1, M2,
x=3,y=3)

β

γ

γ

γ

δ

δ

α α α

ββ

ββ β

(L1, M1,
x=2,y=0)

(L2, M1,
x=2,y=2)

(L1, M1,
x=3,y=2)

(L2, M3,
x=2,y=2)

(L1, M3,
x=3,y=2)

(L2, M2,
x=2,y=2)

(L1, M2,
x=2,y=2)

(L1, M2,
x=3,y=2)

(L1, M2,
x=3,y=3)

β

γ

γ

δ

α α α

ββ

ββ β

γδ

{β
,α
,γ}

{β,α
,γ}

(b) interleaving state space (c) relaxed ∃-step state space

Figure 5.2. An example system and parts of its interleaving and relaxed ∃-step state
spaces.

state (L1,M2, x=3, y=2). This can be compressed to 2 ∀-steps or 2 ∃-steps,

or to 1 relaxed ∃-step. The latter compression is possible because α can

first become enabled in a relaxed ∃-step and then be executed in the same

step.

It does not seem practical to realize the full relaxed ∃-step semantics in

symbolic model checking. Therefore, our goal is to define a step semantics

transition formula that includes a large number of the transitions in the

relaxed ∃-step state space but is not much larger in size than the inter-

leaving transition formula. Two such realizations are presented in the

following sections.

5.1.2 Representing Actions

Like in [IV], we assume that the states of the system are given as vectors

that give values to a finite set of typed state variables V , and the behavior

is defined by a finite set of actions act1, . . . , actn. We take a fine-grained

view where the independence of two actions is not statically fixed, but

may be sensitive to the current state or possible nondeterministic choices.

Therefore, we break down the behavior of each action into ground ac-

46

Symbolic Partial Order Methods

tions, in which all data (values from state variables and nondeterministic

choices as well as values computed by the action) is fixed to constants.

Definition 1. A ground action g is a triple 〈act, R,W 〉, where

• act identifies the action,

• R is a set of guards of the form [v = C], where v ∈ V and C is a constant

in the domain of v, and

• W is a set of assignments of the form v ← C such that W contains at

most one assignment to each state variable.

A ground action is enabled in a state iff all its guards are satisfied in

the state. An enabled ground action is executed atomically by applying

its assignments in parallel. We associate each action act to a (potentially

infinite) set of ground actions, denoted by gnd(act).

Example 2. Consider the action γ in Fig. 5.2(a), which executes the state-

ment y ← x. The action reads state variables pcM and x, and assigns pcM

and y. We can represent γ as the set of ground actions

gnd(γ) =
{〈γ, {[pcM = M1], [x = C]} , {pcM ← M2, y ← C}〉 ∣∣ C ∈ INT

}
.

We will use ground actions as a conceptual tool to make explicit how

actions depend on state variables, without committing to any particular

modeling language. Publication [IV] uses a more practicable represen-

tation of actions as sets of expressions that encode how the actions read

and write state variables. These expressions are directly used as build-

ing blocks of transition formulas. The two manners of presentation are

compatible, and there is a straightforward mapping from the encoding

expressions of [IV] to sets of ground actions. The reason for choosing a

higher-level presentation for this section is to make it easier to reason

about steps and independence.

5.1.3 Serial ∃-Step Semantics

In practice, the model checking implementations of this work do not allow

all relaxed ∃-steps of the semantic definitions above. To keep the tran-

sition formula size small, we only consider relaxed ∃-steps in which the

order of execution respects a predefined total order act1 ≺ · · · ≺ actn of

47

Symbolic Partial Order Methods

actions. We call such steps serial ∃-steps, and [IV] describes a transition

formula that allows exactly the transitions corresponding to these steps.

We represent a step as a string (g1 . . . gn), where each gi is a ground

action in gnd(acti) or, if acti is not executed in the step, a special skip

ground action. The skip ground action, denoted by - , is just a placeholder

that has no guards and no assignments and is thus always enabled. The

step is executed by executing the ground actions in the order g1, . . . , gn

corresponding to the order ≺. A step (g1 . . . gn) or a sequence

(g1 . . . gn)(gn+1 . . . g2n) · · · (g(k−1)n+1 . . . gkn)

of k steps is enabled in a state s iff g1 is enabled in s, and every further

ground action gi in the sequence is enabled after executing g1, . . . , gi−1

starting from s.

The empty step (- . . . -) consists of only skip ground actions, and a unit

step contains exactly one non-skip ground action. Thus, an execution un-

der the interleaving semantics is fully identified by an initial state and a

sequence of unit steps.

Definition 2. A step (g1 . . . gn) is a serial ∃-step iff it is not the empty

step. A serial ∃-step execution consists of an initial state s0 and a finite

sequence of serial ∃-steps such that the sequence is enabled in s0.

Example 3. Consider the system of Fig. 5.2(a) with the order β ≺ γ ≺
α ≺ δ of actions. In the initial state (L1,M1, x=2, y=0), the step (g - -h) is

enabled, where g = 〈β, {[pcL = L1], [x = 2]} , {pcL ← L2, y ← 2}〉 ∈ gnd(β)

and h = 〈δ, {[pcM = M1], [y = 2]} , {pcM ← M3}〉 ∈ gnd(δ). The step can be

expanded to the sequence (g - - -)(- - -h) of unit steps.

Regarding the semantic definitions of Sect. 5.1.1, every interleaving ex-

ecution is a serial ∃-step execution, and every serial ∃-step execution is

a relaxed ∃-step execution, only with a fixed ordering of actions. These

relationships are illustrated in Fig. 5.1. Notice that the serial ∃-steps are

neither a subset nor a superset of the (non-relaxed) ∃-steps, which allow

any execution order of actions, but require every action to be enabled in

the beginning of the step. In Example 3 above, the action δ is not enabled

in the initial state, but is still executable as part of a serial ∃-step from the

initial state. This capability makes serial ∃-steps a powerful semantics,

allowing system components to perform long chains of actions in a single

step.

Publication [IV] presents a concrete definition of a serial ∃-step tran-

sition formula based on a set of expressions that describe the individual

48

Symbolic Partial Order Methods

actions. Under the serial ∃-step semantics, a transition from state s = s0

to s′ = sn corresponds to a sequence s0
g1−→ s1

g2−→ s2 → · · · → sn−1 gn−→ sn,

where each gi is a ground action in gnd(acti) ∪ { -}. The transition for-

mula is based on encoding the n sub-steps such that in the ith sub-step,

either an instance of acti is executed or nothing happens. The interme-

diate states s1, . . . , sn−1 are explicitly encoded. Having to represent these

intermediate states does not, however, bloat the formula size in the ex-

periments of [IV]. Because actions usually involve assignments to only

a few state variables, the common case is that most state variables are

statically known to have the same value in si as in si+1, and thus the

representation can be shared in the transition formula.

5.1.4 Parallel ∃-Step Semantics

Another semantics, implemented for symbolic model checking in [III] and

in [IV], is based on parallel execution of a set of (partially) independent

actions. We follow the principle that two actions are dependent iff they

access the same resource and at least one of the accesses is a write. To

allow two actions to be dependent in some states and independent in oth-

ers, we define the independence relation between ground actions instead

of actions.

Definition 3. A ground action g contradicts another ground action h iff g

and h assign different values to some state variable. We say that g af-

fects h iff some state variable occurs both in an assignment in g and in

a guard in h. Two ground actions are independent iff neither affects the

other, their sets of assigned variables are disjoint, and they do not belong

to the same action. Two ground actions are dependent iff they are not in-

dependent. In particular, the skip ground action - is independent of any

other ground action.

Observe that if g and h are enabled in a state and do not contradict

each other, then we can take the union of the assignments in g and h

and apply the assignments in parallel. If, in addition, g does not affect h,

then the result of the parallel assignment is the same as executing first g

and then h. This is the basis for the parallel ∃-step semantics. Like in

Sect. 5.1.3, we fix a total order act1 ≺ · · · ≺ actn of actions and consider

steps of the form (g1 . . . gn).

Definition 4. A step (g1 . . . gn) where each gi ∈ gnd(acti)∪{ -} is a parallel

∃-step iff it is not the empty step and for all 1 ≤ i < j ≤ n, the ground

49

Symbolic Partial Order Methods

action gi neither contradicts nor affects gj . A parallel ∃-step execution

consists of an initial state s0 and a finite sequence of parallel ∃-steps that

is enabled in s0.

Example 4. Let us choose the order β ≺ γ ≺ α ≺ δ for the actions

of the system of Fig. 5.2(a). In the state (L2,M1, x=2, y=2), the ground

actions g = 〈γ, {[pcM = M1], [x = 2]} , {pcM ← M2, y ← 2}〉 ∈ gnd(γ) and

h = 〈α, {[pcL = L2], [x = 2]} , {pcL ← L1, x← 3}〉 ∈ gnd(α) are enabled.

As g does not assign any state variable that occurs in a guard in h, g

does not affect h. The ground actions do not contradict each other, as they

assign disjoint state variables. Therefore, the step (-gh -) is a parallel

∃-step. Like all parallel ∃-steps, it is also a serial ∃-step.

Generally, a parallel ∃-step (g1 . . . gn) is enabled in a state s if and only if

g1, . . . , gn are all enabled in s. This means that parallel ∃-steps are ∃-steps

in terms of the semantic definition of Sect. 5.1.1. Also, recall that under

the ∀-step semantics, a step consists of a set of pairwise independent ac-

tions. As long as we commit to the above definition of independence, two

independent ground actions never affect or contradict each other, hence

every ∀-step execution is also a parallel ∃-step execution. These relations

are depicted in Fig. 5.1.

The parallel ∃-step transition formula defined in [IV] builds on the in-

terleaving transition formula with two modifications. First, the constraint

that a step contains at most one action is removed, allowing several en-

abled ground actions to be executed in the same step, as long as their

assignments to state variables are not contradictory (cf. removing the

one-hot constraint in (2.5)). Second, the requirement that no ground ac-

tion is affected by an earlier ground action in the same step is realized

by adding constraints of the following form: if an action actj reads a state

variable v, then there is no action acti ≺ actj that assigns v in the same

step. The primary motivation of modifying the interleaving transition for-

mula is to allow all ∀-steps, that is, to allow independent system compo-

nents to execute actions in parallel. However, instead of the ∀-step seman-

tics, we employ the parallel ∃-step semantics because it is less restrictive

and has a compact encoding as a transition formula without the need to

list all pairs of potentially dependent actions.

In a parallel ∃-step, each state variable can be changed at most once,

and in particular, each system component can make just one move to a

new control location. In this sense, the parallel ∃-step semantics is less

ambitious than the serial ∃-step semantics. However, as the parallel ∃-

50

Symbolic Partial Order Methods

10-2

10-1

1

10

102

103

10-2 10-1 1 10 102 103

p
a
ra
ll
el
∃-
st
ep

s
/
s

interleaving / s

Total solver time

(a)

10-2

10-1

1

10

102

103

10-2 10-1 1 10 102 103

se
ri
a
l
∃-
st
ep

s
/
s

interleaving / s

Total solver time

(b)

Figure 5.3. BMC efficiency with interleaving vs. step semantics transition formulas.
Comparing cumulative BMC run times to find counterexample executions
to invariant properties of BEEM benchmark instances.

step transition formula is based on executing the actions in parallel from

the starting state, no intermediate states are encoded in the transition

formula, and this simplicity with respect to the serial ∃-step transition

formula might pay off in the satisfiability solving phase.

5.1.5 Experiments with Step Semantics

To evaluate the effect of step semantics, [IV] experimentally compares

BMC with the parallel and serial ∃-step semantics to BMC with the in-

terleaving semantics and to explicit-state model checking. This is done

by taking the extensive model checking benchmark set BEEM [80] and

automatically translating the models and properties to our abstract sys-

tem formalism consisting of state variables and actions. The systems in

BEEM are expressed as concurrent state machines that communicate us-

ing shared variables and rendezvous synchronization. The data types

are 8- and 16-bit integers and fixed-length arrays. The benchmarks are

checked for invariant properties, which are also taken directly from the

BEEM distribution. As we employ BMC as an incomplete method, we get

no definite results for benchmarks that satisfy the property.

Below are the main findings from these experiments.

• Switching from the interleaving to the parallel ∃-step semantics is bene-

ficial for BMC performance. This is illustrated in Fig. 5.3(a), where each

marker denotes a BEEM instance for which BMC finds a counterexam-

51

Symbolic Partial Order Methods

ple within a 1000 second time limit. The axes denote cumulative solver

runtime in seconds starting from bound 0 until the bound with which

the counterexample is found. The speed-up from the parallel ∃-step se-

mantics is due to reduction in the required bound. However, in many

instances the counterexample bound is not reduced, thus the shortest

parallel ∃-step counterexample execution is also an interleaving execu-

tion. This explains the mass on the diagonal of Fig. 5.3(a). The experi-

ments with the parallel ∃-step semantics in [III] are in line with these

results.

• The serial ∃-step semantics generally far outperforms both the inter-

leaving (see Fig. 5.3(b)) and the parallel ∃-step semantics. All but the

most trivial (2 unit steps or less) interleaving counterexample execu-

tions are compressed to a significantly smaller number of serial ∃-steps.

• Switching from the interleaving to the parallel or serial ∃-step seman-

tics does not significantly affect the size of the transition formula. On

average, there is no more than 13 % increase in size.

• Even with the fastest semantics (serial ∃-steps), our BMC approach is

generally slower on BEEM benchmarks than the explicit-state model

checker DiVinE [9]. This is in part explained by the benchmarks having

been written in the native input language of DiVinE—in fact, BEEM

stands for “Benchmarks for Explicit Model checkers”. There are, how-

ever, cases where BMC is orders of magnitude faster. Interestingly, the

experiments in [IV] exhibit very little correlation between the perfor-

mance of BMC and explicit-state model checking.

In the above experiments, the total order ≺ of the actions is the default

order based on the BEEM input file. As different total orders give differ-

ent sets of allowed steps, the question arises as to which order one should

use for best performance. With the serial ∃-step semantics, if the con-

trol flow graph of a component contains a path consisting of actions, say,

α1 → α2 → α3, then we might prefer the order α1 ≺ α2 ≺ α3 to poten-

tially execute the entire path in a single serial ∃-step. A heuristic order-

ing based on this intuition is applied in [IV]. Compared to the default

ordering, experiments show differences in solver time of up to an order of

magnitude—unfortunately, in both directions. This indicates that search-

52

Symbolic Partial Order Methods

ing for a consistently good ordering scheme would be a viable future topic.

With the parallel ∃-step semantics, the choice of the total order is found

to play just a minor role on performance. This is because even the worst

order permits any set of pairwise independent actions in a parallel ∃-step,

and even the best order does not allow any causality between the actions

in a step.

5.1.6 Refining Independence

The definitions in the preceding sections allow some flexibility in the no-

tion of independence between ground actions. While the serial ∃-step se-

mantics is immune to any approximation of independence, this affects the

set of parallel ∃-steps allowed.

Example 5. Consider a system with an integer array a[0..2], modeled

with three state variables a0, a1, and a2, which hold the values a[0], a[1],

and a[2]. Let ρ be an action that executes the statement x ← a[i]. The

value assigned to x is determined by the values of a0, a1, a2, and i, so we

can represent the action as the set consisting of all ground actions of the

form

〈ρ, {[i = C], [a0 = D0], [a1 = D1], [a2 = D2]} , {x← DC}〉, (5.1)

where C ∈ {0, 1, 2} and D0, D1, D2 ∈ Z. On a more fine-grained level, we

see that only one of the array elements is relevant, depending on the value

of i. Thus, an alternative representation ρ′ for the action consists of the

ground actions

〈ρ′, {[i = C], [aC = D]} , {x← D}〉, (5.2)

where C ∈ {0, 1, 2} and D ∈ Z. In this form, the action accesses different

variables depending on the current state. Consequently, the dependence

on other actions becomes conditional on the state. Consider an action σ

that contains the assignment a[0]← 0. The actions ρ′ and σ are dependent

if i = 0 in the current state, and independent otherwise.

In [III], steps built on ground actions that follow the form of (5.1) are

called static steps, and those built on a state-aware formulation like (5.2)

are called dynamic steps. The static over-approximation of variable ac-

cesses is always legal and possible, and [III] and [IV] discuss how it af-

fects the encoding of the parallel ∃-step transition formula. While static

steps may result in a simpler formula, the over-approximation of depen-

dence places restrictions on which steps are allowed, and may increase

the required bound to find a counterexample.

53

Symbolic Partial Order Methods

Steps semantics and queues. There is a limit on how far we can refine

independence using ground actions. For example, the statements x ←
−x and x ← 2x cannot disable each other, and their execution order is

irrelevant, so they could be treated as independent. However, we cannot

capture such independence because ground actions do not differentiate

between commuting and non-commuting assignments.

These considerations are relevant if we combine step semantics and the

queue encodings of Sect. 4. Recall that the queue interface of Sect. 4.1 as-

sumes that in a single evolution round of the queue, the accessors empty t,

pending t, full t, and firstelemt are evaluated first, and then zero or more of

the dequeue, defer, flush, and enqueue operations are performed in this or-

der. Under the serial ∃-step semantics, each of the n actions of the system

might in the worst case be able to perform operations on the same queue.

Therefore, the serial ∃-step transition formula unrolled to bound k needs

to be conjuncted with a queue encoding over O(kn) evolution rounds.

Consider the parallel ∃-step semantics and a state variable q, whose type

is a (bounded) queue. In terms of ground actions, the queue accessors can

be mapped to guards on the value of q, and the queue operations map to

a guard and an assignment. For example, a dequeue operation involves

a guard [q = Q] and an assignment q ← dequeued(Q). Thus, this scheme

allows parallel ∃-steps where a number of actions can use the accessors of

the queue, and the last of those actions in the total order can additionally

perform queue operations. Such parallel ∃-steps can be mapped directly to

evolution rounds of the queue, without the need to allocate several rounds

of the queue evolution for each step.

More generally, a single queue evolution round could also accommodate

a step where one action executes a dequeue operation and another action

an enqueue operation. These actions could occur in whichever order, as

the operations commute when they both are enabled. Generally, a parallel

∃-step could contain a sequence of actions, each reading some of the ac-

cessors and performing some queue operations. Some of these sequences

could be mapped to a single evolution round at the queue interface, while

others could not. Such considerations, however, are more complicated

than what can be expressed using ground actions and simple read/write

access of state variables. Therefore, this generalization is left out of the

scope of publication [IV]. Nevertheless, the transition formula of [III] im-

plements some progress towards this direction. Specifically, the formula

54

Symbolic Partial Order Methods

allows to perform a dequeue and an enqueue operation in a single parallel

∃-step, either by a single action or by two separate actions in whichever

order. This is implemented only in a restricted setting, where each de-

queue operation is preceded by checking the emptiness of the queue and

reading the first element, each enqueue operation is preceded by check-

ing that the queue is not full, and any other kind of queue access is not

possible.

5.2 Process Semantics

Besides step semantics, publication [IV] also investigates a further alter-

native known as process semantics. The motivation is that while step

semantics adds shortcut edges to the state space, it introduces redun-

dancy into the set of executions. In BMC, the multitude of potential coun-

terexample executions to a safety property may slow down satisfiability

solving. The idea of process semantics is to reduce the set of allowed exe-

cutions without increasing the required bound to reach a given state. The

principle is that in an execution under process semantics, each action is

executed at the earliest opportunity or not at all. Thus, an action cannot

be executed at a step if it could have been as well executed at an earlier

step.

Any state reachable by a step semantics execution of exactly k steps

is also reachable by a process semantics execution of k or fewer steps.

On the other hand, as process semantics does not add anything to the

set of allowed executions, the minimum bound to reach a given state is

not reduced with respect to step semantics. Like step semantics, process

semantics preserves invariant properties with respect to the interleaving

semantics.

In [IV], we present a new variant of process semantics called the se-

rial process semantics, which builds on the serial ∃-step semantics. Recall

that a serial ∃-step execution consists of an initial state and a finite se-

quence of steps of the form (g1 . . . gn), where each gi is a ground action

in gnd(acti) ∪ { -}, and there is at least one i such that gi is not the skip

ground action - . To simplify the presentation, in this section we disregard

the internal representation of ground actions. Instead, we treat ground

actions abstractly as symbols of an alphabet with an independence rela-

tion. Each action acti is represented as a set of symbols Ai = gnd(acti).

55

Symbolic Partial Order Methods

Definition 5. Assume a disjoint union of sets of symbols A1∪· · ·∪An∪{ -},
where - is the skip symbol, and a binary, symmetric, irreflexive indepen-

dence relation I over the symbols such that - is independent of any other

symbol and no two symbols in Ai are independent for any i. A step is a

string of the form (g1 . . . gn), where each gi is in Ai ∪ { -}. The step (- . . . -)

consisting of only n skip symbols is the empty step. A step sequence is a

finite sequence of steps. The linearization of a step sequence is the string

obtained by dropping all grouping parentheses and skip symbols from the

sequence.

Example 6. Let our system contain the actions act1 ≺ act2 ≺ act3 ≺ act4

represented by symbol sets A1, A2, A3, and A4, and let

(-g2 - -)(g1 - -h)(- -g3g4) (5.3)

be a step sequence with symbols g1 ∈ A1, g2 ∈ A2, g3 ∈ A3, and g4, h ∈ A4

such that h is independent of g1, g2, and g3, while all other pairs of symbols

are dependent. By breaking the steps down to individual unit steps, we

get another step sequence

(-g2 - -)(g1 - - -)(- - -h)(- -g3 -)(- - -g4). (5.4)

The sequences (5.3) and (5.4) have the same linearization g2g1hg3g4. Re-

ordering independent ground actions does not affect the state reached

by executing them. This principle allows switching the order of h and

the adjacent symbols in the linearization, yielding the strings g2g1g3hg4

and g2hg1g3g4. These strings can be seen as linearizations of the step se-

quences

(-g2 - -)(g1 -g3h)(- - -g4) (5.5)

and

(-g2 -h)(g1 -g3g4), (5.6)

respectively. The step sequences (5.3)–(5.6) are all equivalent in terms of

Mazurkiewicz traces, formalized below. That is, the linearizations of the

sequences can be obtained from one another by repeatedly transposing

adjacent independent ground actions.

Definition 6. Mazurkiewicz traces [66]. Assume a set Σ of symbols and

a symmetric, irreflexive independence relation I over the symbols. Two

finite strings w,w′ over Σ are trace equivalent, denoted by w ≡Σ w′, if and

only if there is a finite sequence of strings w0, . . . , wN such that w = w0,

w′ = wN , and for all i = 1, . . . , N , there are strings u, v and symbols a, b ∈ Σ

56

Symbolic Partial Order Methods

such that (a, b) ∈ I, wi−1 = uabv, and wi = ubav. Equivalence classes of

the relation ≡Σ are called traces.

Definition 7. The trace of a step sequence x, denoted by trace(x), is the

trace that contains the linearization of x.

In the example above, all step sequences (5.3)–(5.6) have the same trace.

Generally, if a set of executions have the same initial state and their se-

quences of steps have the same trace, then they also reach the same final

state. If this is the case, we would only need to consider one of the execu-

tions when model checking safety properties.

In Example 6, only the last step sequence (5.6) fulfills the principle of

process semantics, which is to execute each action as early as possible. We

say that the step sequence is in the serial process normal form, defined

below. The characterizing property is that no symbol can be pushed back

to an earlier step because there is always an interfering dependent symbol

that prevents the reordering.

Definition 8. A step sequence (g0:1 . . . g0:n)(g1:1 . . . g1:n) · · · (gk−1:1 . . . gk−1:n)

is in the serial process normal form iff it contains no empty step, and for all

1 ≤ t ≤ k − 1 and 1 ≤ i ≤ n such that gt:i �= - , the symbol gt:i is dependent

on at least one of the n preceding symbols gt−1:i, . . . , gt−1:n, gt:1, . . . , gt:i−1.

Example 7. The step sequence (-g2 - -)(g1 - -h)(- -g3g4) in Example 6 is

not in the serial process normal form because the instance of g3 is inde-

pendent of the preceding 4 symbols (-h - -). Thus, we can transform the

sequence to (-g2 - -)(g1 -g3h)(- - -g4), which has the same trace but is closer

to the serial process normal form in the sense that one of the symbols oc-

curs earlier. Repeating such transformations eventually leads to the step

sequence (5.6), which is in the serial process normal form.

In bounded model checking with the serial process semantics, the idea is

to disregard all executions not in the serial process normal form. We un-

roll the serial ∃-step transition formula as usual. In the unrolled formula,

we add constraints that enforce the serial process normal form. That is,

for every ground action in gnd(acti) executed from the second step on-

wards, there has to be either a dependent ground action in gnd(actj) with

j < i executed at the same step or a dependent ground action in gnd(actj)

with j ≥ i executed at the previous time step. Recall that dependence

is defined in terms of the sets of state variables written and read by

the ground actions. Therefore, the new constraints are built on time-

57

Symbolic Partial Order Methods

dependent formulas that track whether each state variable has been writ-

ten or read by a recent action. The interpretations that satisfy the re-

sulting formula then correspond to serial ∃-step executions in the serial

process normal form. Full details are in [IV].

5.2.1 Analysis of the Serial Process Normal Form

Publication [IV] leaves open the question whether the serial process nor-

mal form yields canonical representatives of Mazurkiewicz traces. The

answer is positive. Of course, such a result is subject to the exact map-

ping of executions to strings and the definition of independence.

Theorem 1. Under the assumptions of Definitions 5–8, for any trace M

over the symbols A1 ∪ · · · ∪An, there exists exactly one step sequence x such

that trace(x) = M and x is in the serial process normal form.

Proof. Let X := trace−1(M) be the set of step sequences whose lineariza-

tion is in the trace M . Let us first show that X contains at most one step

sequence in the serial process normal form. Assume that

x = (g0:1 . . . g0:n)(g1:1 . . . g1:n) · · · (gk−1:1 . . . gk−1:n) and

y = (h0:1 . . . h0:n)(h1:1 . . . h1:n) · · · (hm−1:1 . . . hm−1:n)

are different step sequences with trace(x) = trace(y) = M . If one of x and y

is a prefix of the other, then the longer sequence must have an empty step

in the end and is thus not in the serial process normal form. Otherwise,

let the first point of difference of the two sequences be gt:i �= ht:i. At

least one of gt:i and ht:i is not the skip symbol, say, ht:i �= - . Because

trace(x) = trace(y), there is an index u > t such that gu:i = ht:i and gu:i

is independent of the symbols of x between gt:i (inclusive) and gu:i (exclu-

sive). In particular, gu:i is independent of the n preceding symbols, thus x

is not in the serial process normal form. This proves the first part.

Then, we will show that X contains at least one sequence in the serial

process normal form. As an auxiliary concept, define the weight of a step

sequence x = S0 · · ·Sk−1 by

w(x) = 2k +
k−1∑
t=0

|St|
n

2t,

where |St| denotes the number of non-skip symbols in step St. In particu-

lar, |St| is between 0 and n, thus 2k ≤ w(x) < 2k+1.

If we take an arbitrary string g0 . . . gk−1 in M and turn each gt into the

corresponding unit step, we get a step sequence in X. Thus, the set X is

58

Symbolic Partial Order Methods

nonempty. Take from X a step sequence with minimum weight and call

it x = (g0:1 . . . g0:n)(g1:1 . . . g1:n) · · · (gk−1:1 . . . gk−1:n). Then x cannot contain

an empty step; if it did, we could drop the empty step from x to obtain a

sequence in X with a lower weight. Let us show that x is in the serial

process normal form. Assume that this is not the case. Then, there exist

1 ≤ t ≤ k− 1 and 1 ≤ i ≤ n such that gt:i �= - and gt:i is independent of the

symbols gt−1:i, . . . , gt−1:n, gt:1, . . . , gt:i−1. As no two symbols in Ai are inde-

pendent, we must have gt−1:i = - . Let y be the sequence obtained from x

by switching gt−1:i and gt:i, i.e. by moving the symbol gt:i to the preceding

step. As this transformation only involves transpositions of independent

symbols, trace(y) = trace(x), and y is in X. However, w(y) < w(x), which

contradicts the choice of x. The assumption that x is not in the serial

process normal form is thus false. This concludes the proof.

Given a step sequence in the serial process normal form, there is no

shorter step sequence whose linearization is in the same trace. Therefore,

switching from the serial ∃-step semantics to the serial process semantics

does not increase (nor decrease) the minimum bound required to reach a

given state.

Theorem 2. Under the assumptions of Definitions 5–8, if x and y are

step sequences such that trace(x) = trace(y), and x is in the serial process

normal form, then y contains at least as many steps as x.

Proof. Continuing the previous proof, if k is the number of steps in x, we

have 2k ≤ w(x) ≤ w(y). If y contained fewer than k steps, we would have

w(y) < 2k, a contradiction.

5.2.2 Experiments with Process Semantics

In [IV], the serial ∃-step semantics and the serial process semantics are

compared experimentally on the BEEM benchmark set. The introduction

of the process constraints in the BMC formula is shown to increase the for-

mula size by a linear factor. According to measurements, the size roughly

doubles in practice. Figure 5.4(a) shows the effect on the total solver time

to find counterexample executions to invariant properties. Recall that the

required minimum bound is the same with the two semantics. It seems

that the extra constraints generally neither help nor hinder finding a

counterexample. Figure 5.4(b) displays the cases where neither approach

could find a counterexample. Each marker denotes the cumulative solver

59

Symbolic Partial Order Methods

10-2

10-1

1

10

102

103

10-2 10-1 1 10 102 103

se
ri
a
l
p
ro
ce
ss

/
s

serial ∃-steps / s

Total time, Yices, counterexample found

(a)

10-2

10-1

1

10

102

103

10-2 10-1 1 10 102 103

se
ri
a
l
p
ro
ce
ss

/
s

serial ∃-steps / s

Total time, Yices, no counterexample

(b)

Figure 5.4. BMC efficiency with the serial ∃-step vs. serial process semantics transition
formulas.

time up to a bound that was reached by both approaches within the time

limit. Although the effect is generally bilateral, the process constraints in

most cases speed up the refutation of the unrolled BMC formula, at least

with the Yices 2.0 solver [93] used in these experiments.

5.3 Bounded Event Tracing

Publication [V] introduces bounded event tracing, a new framework for

checking bounded safety properties of concurrent systems by reduction

to satisfiability problems. It is a variant of SAT-based bounded model

checking, but is given another name because it is not based on unrolling

a transition formula. Instead, the bound is set by defining a finite set of

potential events such that each potential event can be executed at most

once, and such executions map to a bounded portion of the behavior of

the system. The structure that contains the potential events is called an

unwinding of the system. Technically, an unwinding is a high-level Petri

net whose transitions are the potential events. To cover executions of the

system where an action occurs more than once, the unwinding needs to

have several transition instances for each action. Increasing the bound is

done by creating a new unwinding with more transitions. Bounded event

tracing, like BMC, finds counterexample executions but is not directly

capable of proving safety properties.

The difference to BMC is in how the unwinding is translated to a for-

60

Symbolic Partial Order Methods

mula that characterizes the bounded set of executions. Whenever a tran-

sition reads a piece of data or a control token, that precondition of the

transition must have been previously produced by an earlier transition.

Instead of a number of fixed time steps, the formula directly describes

the nondeterministic choice of where the data or control token came from.

Realization of this choice creates causal links between the transitions.

No ordering of the transitions is imposed other than that induced by

these links. In the presence of concurrency, the links only induce a par-

tial execution order. Therefore, bounded event tracing completely avoids

the problem caused by different interleavings of independent occurrences.

Another aspect of BMC is that the presence of fixed, global time steps may

introduce spurious synchronization between components, even with alter-

native execution semantics. Bounded event tracing, on the other hand,

has no global time steps but only local ordering of interacting transitions.

Publication [V] defines the structure and semantics of unwindings and

presents an automatizable translation to formulas that are given to an

SMT or SAT solver. Correctness proofs are in the technical report ver-

sion [34]. The method is immature in that a robust way to construct effi-

cient unwindings for a system is still missing. As a proof of concept, [V]

presents a unwinding scheme that covers many of the features used in

the models of the BEEM benchmark set [80]. In the following, we take an

overview of these aspects.

5.3.1 A Model Checking Procedure

The proposed procedure for checking safety properties with bounded event

tracing is as follows. We start with a concurrent system with discrete ex-

ecution steps and a safety property. We map the actions of the systems

to potential events such that finite executions up to some bound are cov-

ered by executing each potential event at most once. A single action may

map to several potential events. The safety property is mapped to a spe-

cial potential event t� such that executing t� violates the property. Then,

we form an unwinding as a Petri net whose transitions are the potential

events. Using the automatic translation defined in [V], we construct a

formula from the unwinding and check the satisfiability using an off-the-

shelf SMT solver. If the formula is satisfiable, we extract an execution

that falsifies the safety property. If the formula is unsatisfiable, we in-

crease the bound by adding more potential events and start over with a

61

Symbolic Partial Order Methods

bigger unwinding.

With this scheme, there is no simple way to verify an unbounded safety

property if the property holds.

5.3.2 Structure and Semantics of Unwindings

An unwinding is a Petri net that describes the potential events and their

interactions. It is a high-level Petri net [54], which means that its tran-

sitions can manipulate data values. Unwindings respect the execution

semantics of Petri nets, with the crucial restriction that each transition

may be executed at most once. Therefore, an unwinding is not a complete

model of a system but only specifies a bounded portion of the system be-

havior. Repetition in the behavior cannot be expressed as a cycle in the

unwinding. Instead, repetition is modeled by making new copies of tran-

sitions. Although the length of executions is bounded by the number of

transitions, an unwinding may have infinitely many reachable states due

to nondeterministic choices over infinite domains.

We will go through these concepts with the help of an example. Formal

definitions are found in [V], as well as a more detailed explanation of the

graphical notation. Figure 5.5(a) shows a part of an unwinding. The rect-

angles and circles denote transitions and places, respectively. The place px

models a shared integer variable x, while the other places model control

locations of system components. The markers • and 5 inside the places

are not part of the unwinding but denote tokens. Generally, a state of

an unwinding consists of a multiset of tokens in each place. Each token

carries a value. A token may also be a pure control token and carry the

meaningless value in the singleton domain {•}. Once the unwinding has

been constructed, the method does not differentiate between control and

data tokens but treats them in a unified way.

When a transition is executed atomically, it consumes a token with each

of its associated input arcs and produces a token with each of its output

arcs. The arcs are denoted by arrows labeled with expressions that specify

the value of the consumed or produced token. A transition is enabled

if all its input arc expressions are satisfied by suitable tokens and its

guard predicate is satisfied. If a transition has a guard, it is denoted

by a Boolean expression in square brackets.

This is the standard structure and semantics of Colored Petri Nets [54],

except that we only allow each arc to consume or produce exactly one

62

Symbolic Partial Order Methods

f1 f2 f3

f4

g

t�

[xt = 10]

px

x1

x1+1 x3

x3+1

xg 2xg

xt

5

•

•

(a)

f1 f2 f3

f4

g

t�

[xt = 10]

px

x1

x1+1 x3

x3+1

xg 2xg

xt

13

•

•

(b)

f1 f2 f3

f4

g

t�

[xt = 10]

px

x1

x1+1 x3

x3+1

xg 2xg

xt

• • • •

5

6

12

13

• •

(c)

Figure 5.5. Part of an unwinding in different states (a) and (b). In (c), the token values
and links (dashed arrows) inside the places (circles) denote a particular token
trace of the unwinding.

63

Symbolic Partial Order Methods

token at a time.

Figure 5.5(a) illustrates the outcome of one possible scheme for con-

structing unwindings. The control flow of each component is transformed

to a directed acyclic graph of transitions and places. In this process, each

loop is unwound up to a bound. In the example, a control token can flow

through transitions f1 and f2 to a branch where either f3 or f4 is executed.

Each shared variable is modeled using a single place and input/output

arc pairs for write access. For example, transition f1 models an action

that updates variable x by consuming its old value and producing a new

value x+ 1. The transition t� is special in that it models a violation of the

safety property. In this case, the property is the invariant x �= 10, and t� is

enabled in every state that breaks the invariant. A more detailed expla-

nation of this unwinding scheme is in [V]. Also, [V] extends unwindings

with test arcs [20], which read the value of a token without consuming it,

useful for modeling read-only access to shared variables.

Figure 5.5(b) shows the state reached by starting from Fig. 5.5(a) and

executing the transitions f1, f2, g, and f3. Generally, an execution of an

unwinding consists of a sequence of transitions and concrete values for

the produced tokens. According to the restriction to boundedness, we only

consider one-off executions, which are executions where each transition

occurs at most once. We assume that the construction of the unwinding

is such that its one-off executions map easily to finite executions of the

system.

Token traces. Checking the bounded safety property reduces to deciding

the existence of a one-off execution of the unwinding in which t� occurs.

However, to reflect the partial order view of behavior in the model check-

ing process, we do not search for one-off executions directly. Instead, we

look for a token trace of the unwinding. Like a one-off execution, a token

trace defines a set of events that occur, i.e. a subset of the transitions, and

concrete values for tokens consumed and produced by the associated arcs.

Instead of fixing a linear order of events, a token trace only specifies a

partial order by associating each input arc of each event to an output arc

of another event. These associations are called links and they describe

the flow of tokens. Figure 5.5(c) depicts a token trace that corresponds to

the execution described earlier.

A token trace can be mapped to a corresponding one-off execution, or

64

Symbolic Partial Order Methods

generally, to a set of one-off executions, by taking any linearization of

the partial order of events induced by the links. For example, the token

trace in Fig. 5.5(c) can be mapped to a one-off execution where f2 occurs

before g, or vice versa. In the other direction, every one-off execution of

an unwinding can be mapped to a token trace. This mapping is not one-

to-one either if it happens that at some point in the execution, a place

contains several identical tokens and a transition consumes one of them.

This is because a token trace identifies the output arc that produced the

token being consumed, while a one-off execution does not.

5.3.3 Encoding Token Traces

For symbolic model checking, [V] presents a mechanical translation from

an unwinding to a formula that characterizes the token traces of the un-

winding. A satisfiability solver is then used to check the existence of an

interpretation that corresponds to a token trace where t� is an event.

The formula encodes the rules for a valid token trace. In particular, it

is required that each input arc of each event is linked to an output arc,

and no two input arcs are linked to the same output arc. The token value

consumed by each input arc must be the same as the value produced by

the linked output arc. A crucial constraint is that the links in a token

trace must not induce a causal cycle. For example, there can be no valid

token trace in which transition f1 in Fig. 5.5 consumes from place px a

token produced by f3. This acyclicity is enforced by constraints expressed

in difference logic over real or integer variables—in this case, using only

subformulas of the form x < y. Difference logic is supported by many SMT

solvers, e.g. Yices [93]. All these constraints are expressed as constraints

local to each place. In particular, the occurrence of transitions is not tied

to fixed time steps. Because any input arc incident to a place is poten-

tially linked to any output arc incident to the same place, the size of the

encoding of each place is quadratic in the number of arcs incident to the

place. In the presence of test arcs, the encoding is cubic in the worst case.

Furthermore, it is possible to encode the acyclicity constraints, instead

of difference logic, by an eager SAT encoding, whose size is cubic in the

number of transitions [34].

65

Symbolic Partial Order Methods

qc

headtail

enq1

t1
t1+1

〈t1, elem1〉

enq2

t2
t2+1

〈t2, elem2〉

deq1

h1h1+1

〈h1, elem3〉

4 2
〈2, reset[]〉

〈3, ack[]〉

Figure 5.6. An unwinding that illustrates one way to model a queue. The token values
inside the places (circles) are not part of the unwinding, but represent a state
where the queue contains the two elements 〈reset[], ack[]〉.

5.3.4 Representing Queues

Besides shared variables, unwindings may need to model other forms of

communication between concurrent components. Regarding communica-

tion through a first-in-first-out queue, the queue encodings of Sect. 4 are

not directly usable in bounded event tracing. Figure 5.6 shows one possi-

ble way to represent in an unwinding an unbounded queue without defer-

ring capability.

The solution is similar in spirit to the linear queue encoding approach in

Sect. 4.2.3. Transitions enq1 and enq2 represent actions that perform an

enqueue operation, while transition deq1 performs a dequeue operation

and also reads the dequeued element. The place qc holds the current

contents of the queue as a multiset of tuples of the form 〈index , elem〉. The

places tail and head , initialized with tokens of value 0, hold the integer

index of the next element to be enqueued and dequeued, respectively.

5.3.5 Relation to Alternative Execution Semantics

A natural question is how bounded event tracing relates to bounded model

checking with interleaving or alternative execution semantics. In BMC,

unrolling the transition formula is purely mechanical and results in a se-

quence of homogeneous time steps, where a copy of each action is encoded

for each time step. In contrast, the construction of unwindings allows a

great deal of flexibility; in particular, different actions of the system may

map to different numbers of transitions in an unwinding. A potential

bottleneck in bounded event tracing is that making duplicated copies of

66

Symbolic Partial Order Methods

transitions increases the number of arcs incident to each place, causing

bloat in the SMT formula. A sophisticated unwinding scheme might take

this into account and judiciously make copies of places as well.

As discussed in Sect. 5.2, the serial process semantics is a partial order

semantics that captures exactly one execution from each Mazurkiewicz

trace (Definition 6). Like a Mazurkiewicz trace, a token trace also maps

to a set of executions equivalent up to a partial order. However, we can-

not immediately conclude that token traces match Mazurkiewicz traces.

Consider token traces of the unwinding in Fig. 5.6. A token trace that

links deq1 to enq2 does not necessarily induce any ordering between enq1

and deq1. However, an occurrence of deq1 is generally not independent

of enq1, and therefore a Mazurkiewicz trace over strings of transition oc-

currences must put enq1 and deq1 in one order or the other. In this sense, a

token trace is able to cover executions from several Mazurkiewicz traces.

On the other hand, token traces, unlike strings of transition occurrences,

may superfluously differentiate between identical tokens if they reside at

the same time in the same place. Apparently, we might be able to obtain

one-to-one correspondence between token traces and Mazurkiewicz traces

if we represented executions as words of an alphabet where each symbol

identifies not only a transition and the data values, but also the output

arcs from which the consumed tokens originate. In this work, we will not

however elaborate this idea further.

5.3.6 Experiments with Bounded Event Tracing

In [V], bounded event tracing is experimentally compared to bounded

model checking with an interleaving transition formula on four differ-

ent BEEM benchmarks [80]. The construction of unwindings is based

on fixing a loop bound L and making L unwound copies of loops in the

control flow graphs of the components. The safety property is checked

for L = 0, 1, 2, . . . until a counterexample is found or resources are ex-

hausted. On some benchmarks, bounded event tracing clearly outper-

forms bounded model checking by covering a larger portion of the reach-

able state space in a given amount of solver time. On other instances,

bounded event tracing overburdens the SMT solver much more rapidly

than BMC. The probable reason is the unwieldy growth in the formula

size due to the primitive unwinding scheme that may generate hundreds

of transitions that are never enabled.

67

Symbolic Partial Order Methods

5.4 Related Work

Partial order reduction methods for explicit-state model checking prune

unnecessary states or transitions from the state space under the guar-

antee that the property to be checked is unaffected. A comprehensive

overview is given in Godefroid’s dissertation [44]. The sole purpose of

partial order reduction is to increase performance. For symbolic model

checking, such pruning is not necessarily the best strategy because sym-

bolic model checkers do not work by enumerating reachable states. In the

following, we will review proposed symbolic methods for mitigating the

state explosion problem caused by interleavings.

Interleaving semantics with reductions. An approach called peephole par-

tial order reduction [96], like our step semantics approach, builds on BMC

with a transition formula that implements the interleaving semantics.

The reduction is implemented by adding a constraint that each pair of in-

dependent actions can occur at consecutive time steps only in one prede-

fined order. A generalization called monotonic partial order reduction [59]

claims to explore exactly one execution for each Mazurkiewicz trace. An-

other approach [46] is to start BMC with an under-approximation that

allows a limited set of interleavings, and then allow more interleavings

by iteratively removing constraints.

Step semantics. Our parallel ∃-step semantics is most closely related to

the SAT-based planning approach by Rintanen et al. [86]. While the ac-

tions in our formalism handle data values from arbitrary, abstract do-

mains, the planning operations employed in [86] operate on only Boolean

data. Accordingly, the dependency relationship between operations that

access the same variable is conditioned to the written value (true or false).

The relaxed ∃-step planning approach by Wehrle et al. [97] falls between

parallel and serial ∃-steps in that all operations in a step are not required

to be enabled in the beginning of the step, but variables can still change

their value at most once per step.

The serial ∃-step semantics corresponds to the idea of the BMC approach

that Ogata et al. [77] presented for 1-safe Petri nets.

68

Symbolic Partial Order Methods

Process semantics. The idea of process semantics was introduced by

Heljanko [48] for 1-safe Petri nets and applied to labeled transition sys-

tems by Jussila [56]. The process semantics in those works requires exe-

cutions to be in the Foata normal form, discussed in [48]. The Foata nor-

mal form consists of a sequence of steps such that (i) the actions in a step

are pairwise independent, and (ii) every action in each step from the sec-

ond step onwards is dependent on at least one action in the preceding step.

In particular, such executions conform to the ∀-step semantics, which in

turn is subsumed by the serial ∃-step semantics (Fig. 5.1). As discussed

in Sect. 5.2.1, each serial ∃-step execution is Mazurkiewicz trace equiva-

lent to a serial process execution with the same or lower number of steps.

It follows that our serial process semantics yields executions at least as

compact in the number of steps as the process semantics in [48, 56].

Component-wise BMC with external synchronization. There is a range of

BMC techniques with the common basis that instead of unrolling a tran-

sition formula for the whole system, the concurrent components are first

treated in separation. This circumvents the problem of nondeterminis-

tic interleaving and typically enables simplifications based on the control

flow graph of each component. After unrolling the behavior of each compo-

nent, extra synchronization constraints are added to nondeterministically

link the globally visible actions of different components to each other to

produce valid executions of the whole system. Techniques in this cate-

gory include [18, 41, 83]. These works are discussed in more detail in [V].

Along similar lines, Bu et al. present a BMC approach [16] where each

component proceeds individually on its local (continuous) time scale, and

constraints are placed to align the clocks on each synchronizing action.

One could say that bounded event tracing also falls into this category of

techniques. Although unwindings as a generic framework are oblivious to

the concept of concurrent components, a sensible unwinding scheme un-

rolls the control flow of each component separately and adds extra places

and arcs to model the communication between components.

Unfoldings. A completely different SAT-based technique for concurrent

systems is based on unfoldings [67, 36], which are partial order represen-

tations of state spaces as acyclic low-level Petri nets. Although an unfold-

ing represents interleavings implicitly, every possible control path is ex-

69

Symbolic Partial Order Methods

plicitly present. Thus, unlike with BMC, the generation of (finite prefixes

of) unfoldings is the most expensive part, not the SAT solving. Unlike

unwindings (Sect. 5.3), unfoldings cannot represent data symbolically.

Merged processes [61] diminish the problem of diverging paths in un-

foldings. Despite the apparent similarities between our unwindings and

merged processes, the techniques of bounded event tracing and merged

processes are fundamentally different. In particular, merged processes

restrict not only each transition but also each place to be used at most

once during an execution.

5.5 Discussion

This section and publications [III], [IV], and [V] present symbolic partial

order methods to accelerate model checking of concurrent systems.

The presented parallel ∃-step semantics and especially the serial ∃-step

semantics are found to significantly speed up bounded model checking.

A step semantics transition formula works, to a large extent, as a drop-

in replacement for an interleaving transition formula. This makes step

semantics immediately applicable to bounded model checking of safety

properties—however, more complex temporal properties would require

special treatment because the shortcut edges in the state space may miss

intermediate states. In particular, the parallel ∃-step semantics has been

implemented on top of the transition formula for hierarchical UML state

machines in the SMUML toolset [92]. Step semantics also works with

BDD-based model checking, although the effect on performance may be

negative, as indicated by the experiments in [III]. A particularly interest-

ing research direction would be to combine step semantics and the com-

plete BMC approach based on Craig interpolants [68].

The novel serial process semantics refines the serial ∃-step semantics

with the attractive property of allowing only one interleaving for each

Mazurkiewicz trace. The applicability of process semantics in settings

other than plain BMC may be complicated by the fact that the extra con-

straints need to refer to two subsequent steps and thus cannot be ex-

pressed in a simple way within a transition formula.

The third partial order approach, bounded event tracing, breaks out of

the view of executions as linear sequences. Bounded event tracing of-

fers a clean, unified framework—conveniently visualized as Petri nets—

70

Symbolic Partial Order Methods

for SMT-based checking of safety properties, but it is not at this point clear

how to make maximal use of the framework. An interesting question is

whether the performance benefits of bounded event tracing can surpass

step and process semantics. More practical experimentation is needed to

answer the question. A major challenge is in finding ways to guide the

construction of unwindings to cover as much behavior as possible without

suffering from the superlinear growth in the formula size.

71

6. Structure-Aware Predicate
Abstraction

A key technique in tackling the state explosion problem is the applica-

tion of abstract interpretation [31] to disregard details that are irrelevant

with respect to the system property under inspection. Predicate abstrac-

tion [45] has lately gained popularity due to its ability to automatically

map a large or infinite state space to an abstract model, whose states are

Boolean vectors, thus enabling to leverage symbolic model checking on the

abstract model. Publication [VI] addresses a practical challenge of pred-

icate abstraction: computing the abstract model is generally expensive

and can present a bottleneck in the model checking process.

Predicate abstraction is an instance of existential abstraction [25], where

the abstract model is defined by an abstraction function α that maps con-

crete states to abstract states. In the abstract state space, there is a tran-

sition from an abstract state a to a′ if and only if there exists a concrete

transition s → s′ with s ∈ α−1(a) and s′ ∈ α−1(a′). This conservative

abstraction ensures that if the abstract model satisfies the safety prop-

erty “no state in a set A is reachable”, then the concrete model satisfies

the corresponding concrete property “no state in α−1(A) is reachable”. In

predicate abstraction, the abstraction function is determined by a finite

set of abstraction predicates on states. Two concrete states s1 and s2 map

to the same abstract state if and only if γ(s1) ↔ γ(s2) for all abstraction

predicates γ.

If an abstract model is too weak to verify the desired property, it needs

to be refined to more closely resemble the concrete system. In predicate

abstraction, this refinement can be done by adding new abstraction pred-

icates. A key innovation is Counterexample-Guided Abstraction Refine-

ment (CEGAR [24]), which consists of iterations where an abstract model

is computed, model checking is applied on the abstract model, and if the

property does not hold in the abstraction, a counterexample execution is

73

Structure-Aware Predicate Abstraction

analyzed for extracting new predicates. With this process, CEGAR auto-

matically and iteratively adapts the abstract model to the problem.

To enable symbolic (typically BDD-based) model checking of the abstract

model, we need construct its transition formula as a propositional for-

mula over the abstract Boolean state variables. This is an instance of a

quantifier elimination problem, where the concrete state variables are ex-

istentially quantified. According to experience, constructing the abstract

transition formula is often far more expensive than any other phase in

the CEGAR process [98]. To leverage solver technology, enumerative ap-

proaches based on All-SAT and All-SMT [64] have been proposed. So far,

these approaches have taken a monolithic view of the system. In [VI], we

suggest instead to partition the problem to smaller subproblems, and to

apply a quantifier elimination procedure to each subproblem in sequence.

Because of the exponential complexity of eliminating a quantifier from

a formula, this divide-and-conquer approach can bring significant per-

formance benefits. The partitioning follows the structure of the system

model.

In [VI], this idea is instantiated to the system formalism of linear hybrid

automata networks [1, 3], which consist of communicating state machines

with continuous-time behavior. In the following sections, we will skip the

definition of hybrid automata, and introduce the structural abstraction

concepts on a higher level. Section 6.1 presents the problem of computing

predicate abstractions, and Sect. 6.2 goes through our proposed approach.

Experiments on hybrid automata are presented in Sect. 6.3, with related

work in Sect. 6.4 and concluding discussions in Sect. 6.5.

6.1 Computing Predicate Abstractions

We assume that a finite set of abstraction predicates {γ1, . . . , γm} is given.

The abstract state variables p1, . . . , pm are Boolean variables that corre-

spond to the predicates. A state in the abstract model is a Boolean vector

that gives values to the abstract state variables. The abstraction function

from concrete states to abstract states is defined by

α(s) = 〈γ1(s), . . . , γm(s)〉.

Under existential abstraction, an abstract state a is initial iff there is

a concrete initial state s such that α(s) = a. There is a transition in the

abstract state space from a to a′ iff there is a concrete transition s → s′

74

Structure-Aware Predicate Abstraction

such that α(s) = a and α(s′) = a′. If T is a concrete transition formula,

the abstract transition formula over abstract states a = 〈p1, . . . , pm〉 and

a′ = 〈p′1, . . . , p′m〉 is equivalent to

R(a, a′) ≡ ∃s, s′ : T (s, s′) ∧ CΓ(s, s
′, a, a′), (6.1)

where the abstraction constraint CΓ is defined by

CΓ(s, s
′, a, a′) :=

∧
1≤j≤m

(pj ↔ γj(s)) ∧ (p′j ↔ γj(s
′)). (6.2)

To apply symbolic (BDD-based) model checking to the abstract model, we

need to express R as a propositional formula over p1, . . . , pm, p′1, . . . , p′m.

With this formulation, the predicate abstraction problem is thus reduced

to quantifier elimination. The abstract initial state formula is similar but

is much simpler to compute and will not be discussed further. The same

applies to abstracting the invariant property.

6.1.1 Precise and Approximate Abstraction

Existential abstraction can be implemented either precisely or approxi-

mately. Abstraction as such is already an approximation of concrete be-

havior, but by approximate abstraction we mean allowing the abstract

model to have a transition from an abstract state a to a′ even though there

is no concrete transition from any state in α−1(a) to any state in α−1(a′).

The reason why approximate abstraction is often applied in practice is

that it can be significantly cheaper to compute than the precise abstrac-

tion (6.1).

A common approximation is Cartesian abstraction [8, 25, 55]. It is a

divide-and-conquer approach where, roughly speaking, the effects of a

transition on different state variables are abstracted separately, and the

results of these cheap sub-problems are joined to form the abstract model.

We can express the idea as a general formula-level approximation

∃xyz : f(a, x, z) ∧ g(a, y, z) ≡ (6.3)

∃xyzz′ : f(a, x, z) ∧ g(a, y, z′) ∧ (z = z′) � (6.4)

∃xyzz′ : f(a, x, z) ∧ g(a, y, z′) ≡ (6.5)(∃xz : f(a, x, z)
) ∧ (∃yz′ : g(a, y, z′)), (6.6)

where (6.3) represents the original abstraction problem and (6.6) is its

Cartesian approximation. From the intermediate forms (6.4) and (6.5),

75

Structure-Aware Predicate Abstraction

we see that Cartesian abstraction effectively allows the shared vector of

variables z to have different values in the conjuncts f and g.

The price of approximate abstraction is that it may introduce spurious

behavior in the abstract model. In the context of predicate abstraction

and CEGAR, this means that adding predicates is no longer sufficient for

eliminating spurious counterexamples. Additional refinement iterations

are needed to remove sets of spurious transitions from the abstract state

space. In this work, we focus on precise abstraction, which avoids this

extra complexity in the CEGAR loop.

6.1.2 SMT-Based Enumeration

One of our baselines is the piecewise construction of the abstract tran-

sition formula by iterative satisfiability checking. Assume that R0 is an

under-approximation of the abstract transition formula, i.e. R0 → R is

valid. Then, by (6.1), the formula

¬R0(a, a
′) ∧ T (s, s′) ∧ CΓ(s, s

′, a, a′) (6.7)

is unsatisfiable if and only if R0 ≡ R. If the formula is satisfiable by some

interpretation, then we can extract concrete values A,A′ for the abstract

state variables a, a′ and augment R0 to form a new under-approximation

R1 := R0 ∨
(
(a = A) ∧ (a′ = A′)

)
,

which includes the new abstract transition A → A′. Starting from an

identically false transition formula, this process is iterated until the ab-

stract transition formula is complete. The procedure terminates because

in each iteration, at least one new satisfying interpretation is found, and

there are only finitely many interpretations of the Boolean vectors a, a′.

Generally, a quantifier elimination problem ∃x : f(a, x), where a is a

vector of Boolean variables, can be solved by enumerating the satisfying

interpretations restricted to a. This idea for predicate abstraction is em-

ployed in [64] using an incremental SMT solver. An alternative presented

in [19] uses BDDs instead of the search procedure in an SMT solver to

guide the construction of the abstract transition formula.

6.1.3 Hindrances to Structural Simplification

The SMT-based abstraction effectively enumerates all transitions in the

abstract state space. As new predicates are added during CEGAR, the

76

Structure-Aware Predicate Abstraction

abstract transitions increase exponentially in the worst case. To avoid

the exponential complexity of monolithically eliminating the quantifier

in (6.1), it is desirable to divide the problem into smaller parts. Unfortu-

nately, there are several factors that impede the subdivision.

• An existential quantifier distributes over disjunctions but not conjunc-

tions. The form of (6.1) is a conjunction, and typically, the concrete tran-

sition formula T is also an n-ary conjunction.

• An existential quantifier does distribute over conjuncts that do not share

quantified variables (cf. (6.5)–(6.6)). While useful, this simplification has

limited applicability to (6.1). To illustrate this, let X be the set of con-

juncts of the transition formula that mention a state variable x local to

a component, and let Y be the conjuncts that mention a variable y local

to another component. One might reason that X and Y are likely to be

disjoint. However, if there is any conjunct outside X ∪ Y that mentions

any quantified variable z occurring in both X and Y , it means that the

variables x, y, and z are coupled together and distributing the quantifier

over these conjuncts is not legal for precise abstraction. The same ap-

plies if there is a longer chain of conjuncts and variables that connects x

to y. Moreover, as new predicates are introduced in the CEGAR loop,

not only does the abstract state space grow, but typically also more and

more state variables become coupled together because they occur in the

same predicate.

• In some cases, it is possible to eliminate the quantified variables shared

between conjuncts and then push the quantifier into the subformulas.

If the variables are Boolean, straightforward application of Shannon’s

expansion yields

∃xyz : f(a, x, z) ∧ g(a, y, z) ≡((∃x : f(a, x, true)
) ∧ (∃y : g(a, y, true)

)) ∨((∃x : f(a, x, false)
) ∧ (∃y : g(a, y, false)

))
.

In the case of real variables that occur in linear (in)equalities, we could

apply the Fourier-Motzkin elimination [52] to dispose of the shared vari-

ables. However, these eliminations may grow the formula exponentially

or worse, and are not investigated in this work.

77

Structure-Aware Predicate Abstraction

• An attractive idea would be to start with the cheap Cartesian abstrac-

tion and then iteratively drop spurious abstract transitions until the

precise abstraction is obtained. Unfortunately, this direction seems in-

feasible. Due to the asymmetry in the definition of existential abstrac-

tion, simple SMT calls can check whether an abstract transition for-

mula is a strict under-approximation or precise, but there seems to be

no efficient way to check whether an abstract transition formula allows

spurious transitions.

6.2 Exploiting Structure in Abstraction

The general idea in [VI] is to apply structural information to divide the

monolithic abstraction problem into several smaller problems. Model-

level simplifications (Sect. 6.2.1 below) make use of the structure of the

system description to construct the predicate abstraction formula in a

way that facilitates abstraction. Then, the formula-level simplifications

of Sect. 6.2.2 are applied to reduce the complexity of individual quanti-

fier elimination problems. Finally, an efficient quantifier elimination pro-

cedure such as the SMT-based approach of Sect. 6.1.2 is applied to the

simplified problems in sequence, and these results are joint with Boolean

connectives to form the final abstract transition formula.

6.2.1 Model-Level Simplifications

The high-level structural abstraction techniques in [VI] divide the ab-

straction problem based on the finite set of actions that the system can

perform, which enables simplifications relying on the fact that individual

actions are often local to a part of the system.

Action-wise disjunctive partitioning. In the setting of concurrent systems

whose behavior is defined as interleavings of action occurrences, it is nat-

ural to compute the abstractions of the actions one at a time. In terms of

the precise abstraction formula (6.1), we replace the transition formula T

by the restriction of T to one of the actions, going through the actions in

sequence. The final abstract transition relation is then the disjunction of

78

Structure-Aware Predicate Abstraction

the action-specific abstractions. In essence, the global transition formula

is represented as a disjunction with one disjunct per action, and the ex-

istential quantifier is distributed over the disjunction. At the same time,

the abstraction constraint CΓ is distributed to every disjunct, but accord-

ing to the experiments in [VI], the potential overhead of this duplication

is far outweighed by the benefits of the partitioning.

Exploiting locality. The partitioning allows us to exploit the locality of

actions. In particular, if an action is known not to change the value of a

state variable x, then we can substitute x for the next-state variable x′

when abstracting that action, immediately disposing of one variable x′

under the quantifier. Moreover, if a predicate γj is such that it does not

mention any variable that the action can change, then we know that the

value of the corresponding abstract state variable pj is also not changed

by the action. Thus, we can eliminate both pj and p′j and their defining

predicates from the scope of the quantifier and instead add the frame

constraint p′j ↔ pj to the action-specific abstract transition formula.

6.2.2 Formula-Level Simplifications

The four low-level abstraction techniques presented in [VI] and described

below are designed to further subdivide and simplify the partitioned ab-

straction problem.

Inlining. After the top-level disjunctive partitioning, the resulting sub-

problems generally have the form of an existentially quantified n-ary con-

junction. By identifying conjuncts of the form var = expr , we apply sub-

stitution rules that eliminate variables under the quantifier. The exact

rewrite rules are listed in [VI], and the strategy is to always apply them

to the formula until saturation.

In particular, the rewrite rules are designed to work as a part of imple-

menting the locality simplifications described above, assuming that on the

model level, the transition formula is constructed with a suitable struc-

ture. Defined as a set of generic formula-level transformations, the ap-

plication of inlining is however not restricted to locality simplifications

alone.

79

Structure-Aware Predicate Abstraction

Syntactic conjunct clustering. From an n-ary conjunction under an ex-

istential quantifier, we identify minimal clusters of conjuncts such that

conjuncts that share a quantified variable are in the same cluster. By

pushing the quantifier in, each cluster then constitutes a smaller quanti-

fier elimination problem. As discussed in Sect. 6.1.3 above, it is common

that all conjuncts collapse into a single cluster, and no benefit is gained.

However, the disjunctive partitioning and inlining increase the likelihood

that this simplification is effective.

Variable sampling. The syntactic conjunct clustering cannot be applied to

the quantifier elimination problem Q(a) ≡ ∃xyz : f(a, x, z)∧g(a, y, z) if the

shared vector z is non-empty. However, if we fix z to a constant value Z,

we can cluster the conjuncts of the resulting problem

QZ(a) ≡ ∃xy : f(a, x, Z) ∧ g(a, y, Z) ≡ (∃x : f(a, x, Z)
) ∧ (∃y : g(a, y, Z)

)
.

For any value Z, we get an under-approximation QZ of Q. If Q′ is an

arbitrary strict under-approximation of Q, any satisfying interpretation

of ¬Q′(a) ∧ f(a, x, z) ∧ g(a, y, z) yields a value Z of z that guarantees QZ

to have at least one satisfying interpretation that does not satisfy Q′.

Thus, Q′ ∨ QZ is both an under-approximation of Q and a strict over-

approximation of Q′. As the vector of free variables a is Boolean, finitely

many values of z are sufficient to completely cover Q as a disjunction of

under-approximations.

By variable sampling, we mean the process that starts with Q′ ≡ false

and iteratively uses an incremental SMT solver call to find a value Z as

above, computes the quantifier-free representation of QZ with the help of

syntactic conjunct clustering, and replaces Q′ by Q′∨QZ . This is repeated

until Q′ and Q are equivalent, that is, until ¬Q′(a)∧ f(a, x, z)∧ g(a, y, z) is

unsatisfiable.

In the general case, there are several conjuncts under the existential

quantifier, and possibly several candidates for a sampled variable or vec-

tor of variables z that divides the conjuncts into two or more clusters.

Ways to find good candidates for z is left outside the scope of this work. In

the experiments in [VI], variable sampling is applied with one fixed vari-

able as the sampled variable, namely δ, which denotes the time interval

in the time elapse action of hybrid systems.

80

Structure-Aware Predicate Abstraction

Blocking don’t cares. Consider the SMT-based enumeration in eliminat-

ing the quantifier from a formula ∃x : f(a, x) occurring in a context of the

form

U(a) ∨ (
V (a) ∧ ∃x : f(a, x)

)
. (6.8)

Here, U and V represent quantifier-free formulas obtained as results from

earlier subproblems from the disjunctive and conjunctive partitioning, re-

spectively. We know that any concrete value A of a that satisfies U(a) ∨
¬V (a) is a don’t care: no matter whether ∃x : f(A, x) is true or false,

the formula (6.8) evaluates to U(A) ∨ V (A). We can block such values

from the enumeration of satisfying interpretations by restricting the prob-

lem ∃x : f(a, x) to ∃x : f(a, x) ∧ ¬U(a) ∧ V (a).

In the experiments of [VI], the idea of blocking don’t cares is imple-

mented only partially in combination with syntactic conjunct clustering.

Namely, when eliminating the quantifiers from a conjunction

(∃x : f(a, x)
) ∧ (∃y : g(a, y)

)

using the SMT-based enumeration, the constraint f(a, x)∧g(a, y) is placed

to restrict the enumeration of both the left and the right subproblem.

6.3 Results

Table 6.1 shows the effect of the structure-aware approach on the compu-

tation time of an abstract transition relation of linear hybrid automata

networks. The hybrid models are taken from the HyTech [49] tool dis-

tribution, and the abstraction predicates are extracted from the last it-

eration of a CEGAR loop computation that was separately run using a

modified version of NuSMV [21]. Only the 11 hardest instances are listed.

Our baseline is the column labeled “monol.”. It denotes the computation

time with the SMT-based enumeration using the MathSAT solver [14] on

the precise abstraction formula (6.1) with the monolithic transition for-

mula. For the column “partit.”, disjunctive partitioning and inlining are

applied, and then the subproblems are solved with SMT-based enumera-

tion. In the “clust.” column, syntactic conjunct clustering is added to the

process.

Finally, the “sampl.” column shows the results when all described tech-

niques are in use. In particular, variable sampling is only used in the

81

Structure-Aware Predicate Abstraction

Table 6.1. Results of structure-aware abstraction on HyTech models.

computation time / s

model monol. partit. clust. sampl.

active 54.626 18.847 2.410 0.937

active-trace 51.781 22.171 2.473 0.952

audio 13.826 4.547 0.448 0.442

audio-timing 10.910 3.915 0.947 0.690

billiard-timed 0.910 0.732 0.732 1.044

dist-controller 0.320 0.232 0.195 0.147

grc-ver 33.068 19.599 10.421 0.455

new-grc 38.649 17.840 7.395 0.383

railroad 0.170 0.140 0.131 0.112

reactor-clock 0.181 0.133 0.069 0.050

reactor-rect 0.132 0.112 0.051 0.045

subproblem of abstracting the time elapse action, yet it tends to visibly

improve the total run time. In all 11 cases, variable sampling further

partitions the problem into at least 2 and up to 5 clusters of conjuncts.

The results indicate that our techniques quite consistently accelerate

the computation of predicate abstractions with respect to monolithic quan-

tifier elimination. Also, the speed-up is not merely due to any individual

simplification but a combination of techniques. Publication [VI] presents

further analysis of these benchmarks and additional positive results on a

set of randomly generated hybrid automata networks.

6.4 Related Work

Computing predicate abstractions with SMT decision procedures was pro-

posed in [64], and combined to BDD-based reasoning in [19]. These works

compute a precise predicate abstraction by treating the problem as a

monolithic quantifier elimination problem. Either of these approaches

can be used in our approach to solve the subproblems resulting from par-

titioning. In [22], the BDD-based approach is generalized by allowing the

formula under the quantifier to be represented as an implicit conjunction

of BDDs.

In BDD-based model checking, the symbolic computation of forward im-

ages (Eq. (2.2)) is also an instance of a quantifier elimination problem,

which has been optimized by e.g. structural partitioning (see [29] and the

related work in [VI]) and also SAT-based techniques [42].

82

Structure-Aware Predicate Abstraction

Giunchiglia et al. [43] present a quantifier elimination procedure that

also follows the structure of the formula to push in quantifiers. The

rewrite rules in [43] are more aggressive than ours in Sect. 6.2.2 and may

cause significant blow-up in the formula size. Quantifier elimination pro-

cedures have also been proposed for specific theories such as linear arith-

metic [72, 65]. Elimination of nested quantifiers has been optimized in

the SMT [73] and purely Boolean [81] context. In our abstraction setting,

quantifiers are not nested in the scope of other quantifiers.

Lately, predicate abstraction has been very successfully applied in sev-

eral works on sequential software verification [7, 28, 50, 69]. An extension

to concurrent software is presented in [26], with techniques similar to our

disjunctive partitioning and inlining, but specialized to programs in the

SpecC language.

6.5 Discussion

Publication [VI] brings together disjunctive and conjunctive partitioning

and formula rewriting techniques to exploit the structure of the under-

lying system in computing precise predicate abstractions. In particular,

the variable sampling technique employs satisfiability solving technology

to gain much of the benefits of Cartesian abstraction without losing pre-

cision, and to the author’s knowledge, such an approach has not been

suggested before.

According to the experiments, the structural partitioning does pay off

and reduces computation time. It is not obvious that this should be the

case. As pointed out in [VI], the formalism of hybrid automata networks

encompasses some features that do not agree well with our simplifica-

tions, which largely rely on the local nature of actions. Transitions in

different hybrid automata can be explicitly synchronized by labels. As

a result, one action may involve an arbitrary combination of transitions

with the same label. Such synchronizing actions involve control locations

and possibly other variables from at least two automata, breaking local-

ity. Also, hybrid automata exhibit location invariants, which are in some

cases used as a veiled synchronization mechanism between automata. Fi-

nally, the single action that models time elapse is global in nature, which

makes it often the most expensive part of the abstraction.

One might consider the combination of structure-aware predicate ab-

83

Structure-Aware Predicate Abstraction

straction and step semantics (Sect. 5.1). The parallel ∃-step transition

formula purposely mixes the structure and thus defeats the purpose of

structural abstraction. However, if one chooses to employ BMC on the

abstract model, the idea of the serial ∃-step semantics would be straight-

forward to apply to the partitioned abstraction: after abstracting each ac-

tion separately, instead of joining them disjunctively to form the abstract

transition formula, put the abstract actions in sequence with intermedi-

ate abstract states between them.

With bounded event tracing (Sect. 5.3), a right kind of abstraction is

unlikely to be based on state predicates, due to the lack of global states in

the encoding. Regarding predicate abstraction for UML models (or object-

oriented models in general) and for systems with queues, the efficient

computation of abstractions seems secondary, as the bigger question of

how to infer semantically meaningful abstraction predicates is still open.

84

7. Conclusions

This thesis addresses the problem of the computational cost of verifying

highly concurrent software-intensive systems. The focus is on checking

and falsifying invariant properties of formal design models using sym-

bolic model checking techniques. Contributions are made on four research

topics: symbolic model checking of UML state machine models, bounded

model checking of systems with queues, symbolic partial order methods

for accelerated model checking, and efficient computation of predicate

abstraction. In line with our strong emphasis on concurrency, symbolic

partial order methods has more weight than the other topics. The pro-

posed techniques enable the use of symbolic model checking to analyze

systems modeled with commonly used language features (the topics of

UML state machines and systems with queues) and accelerate established

model checking techniques (the topics of symbolic partial order methods

and structure-aware abstraction).

The main results are

• a formal execution semantics and a compact symbolic transition for-

mula for a subset of the UML 2.0 state machine language,

• several encodings of queues for SMT-based bounded model checking of

systems with communication buffers, including UML systems,

• three alternative partial order execution semantics that are shown to

significantly accelerate bounded model checking with respect to the con-

ventional interleaving semantics,

• bounded event tracing, a variant of BMC with inherently concurrent

semantics, and

85

Conclusions

• a collection of structure-aware partitioning techniques that are demon-

strated to speed up the computation of precise predicate abstractions.

Of these contributions, bounded event tracing requires perhaps the most

work to take into use, because the construction of unwindings is still at a

preliminary stage.

Lately, testing and pure explicit-state enumeration have been acceler-

ated by tremendous engineering feats, but they cannot keep up with the

exponential nature of the state explosion problem. In this work, we pro-

pose a purely symbolic approach, where not only the data values but also

the control flow is encoded in formulas. This avoids facing up-front any

combinatorial explosion due to composing the concurrent components. In-

stead, the problem is—in the case of bounded model checking—pushed

entirely to the satisfiability solver. Apparently, BMC can efficiently find

shallow counterexample executions, but it is not strong on properties that

require going deep into the reachability graph. Approaches such as ab-

straction refinement and interpolation improve on blind BMC unrolling

by gradually collecting problem-specific information to guide the search.

The combination of such approaches to the results of the thesis requires

further investigation. A particularly interesting direction is to employ in-

termediate reachability information in guiding the expansion of unwind-

ings, exploiting the flexibility of the bounded event tracing framework.

86

Bibliography

[1] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho.
Hybrid automata: An algorithmic approach to the specification and verifi-
cation of hybrid systems. In Hybrid Systems, volume 736 of Lecture Notes
in Computer Science, pages 209–229. Springer, 1992.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126(2):183–235, 1994.

[3] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic symbolic
verification of embedded systems. IEEE Transactions on Software Engi-
neering, 22(3):181–201, 1996.

[4] Nina Amla, Robert P. Kurshan, Kenneth L. McMillan, and Ricardo Medel.
Experimental analysis of different techniques for bounded model check-
ing. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2003), volume 2619 of Lecture Notes in Computer Science, pages
34–48. Springer, 2003.

[5] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan
Schulz. New results on rewrite-based satisfiability procedures. ACM Trans.
Comput. Log., 10(1), 2009.

[6] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded
model checking of software using SMT solvers instead of SAT solvers. Soft-
ware Tools for Technology Transfer, 11(1):69–83, 2009.

[7] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. SLAM
and Static Driver Verifier: Technology transfer of formal methods inside Mi-
crosoft. In Integrated Formal Methods (IFM 2004), volume 2999 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2004.

[8] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and
Cartesian abstraction for model checking C programs. Software Tools for
Technology Transfer, 5(1):49–58, 2003.

[9] Jiří Barnat, Luboš Brim, and Petr Ročkai. DiVinE 2.0: High-performance
model checking. In Workshop on High Performance Computational Systems
Biology (HiBi 2009), pages 31–32. IEEE, 2009.

[10] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo
theories. In Handbook of Satisfiability, pages 825–885. IOS Press, 2009.

87

Conclusions

[11] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 1999), volume 1579 of Lec-
ture Notes in Computer Science, pages 193–207. Springer, 1999.

[12] Nikolaj S. Bjørner. Integrating Decision procedures for Temporal Verifica-
tion. PhD thesis, Stanford University, 1998.

[13] Manfred Broy, Michelle L. Crane, Jürgen Dingel, Alan Hartman, Bernhard
Rumpe, and Bran Selic. 2nd UML 2 semantics symposium: Formal seman-
tics for UML. In MoDELS Workshops 2006, volume 4364 of Lecture Notes
in Computer Science, pages 318–323. Springer, 2007.

[14] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Grig-
gio, and Roberto Sebastiani. The MathSAT 4 SMT solver. In Computer
Aided Verification (CAV 2008), volume 5123 of Lecture Notes in Computer
Science, pages 299–303. Springer, 2008.

[15] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipu-
lation. IEEE Trans. on Computers, 35(8):677–691, 1986.

[16] Lei Bu, Alessandro Cimatti, Xuandong Li, Sergio Mover, and Stefano Tonetta.
Model checking of hybrid systems using shallow synchronization. In For-
mal Techniques for Distributed Systems (FMOODS/FORTE 2010), volume
6117 of Lecture Notes in Computer Science, pages 155–169. Springer, 2010.

[17] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic model checking: 1020 states and beyond. Infor-
mation and Compututation, 98(2):142–170, 1992.

[18] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. CheckFence:
checking consistency of concurrent data types on relaxed memory models.
In Programming Language Design and Implementation (PLDI 2007), pages
12–21. ACM, 2007.

[19] Roberto Cavada, Alessandro Cimatti, Anders Franzén, Krishnamani Kalyana-
sundaram, Marco Roveri, and R. K. Shyamasundar. Computing predicate
abstractions by integrating BDDs and SMT solvers. In Formal Methods in
Computer-Aided Design (FMCAD 2007), pages 69–76. IEEE, 2007.

[20] Søren Christensen and Niels Damgaard Hansen. Coloured Petri Nets ex-
tended with place capacities, test arcs and inhibitor arcs. In Application
and Theory of Petri Nets (ATPN 1993), volume 691 of Lecture Notes in Com-
puter Science, pages 186–205. Springer, 1993.

[21] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV version 2: An opensource tool for
symbolic model checking. In Computer Aided Verification (CAV 2002), vol-
ume 2404 of Lecture Notes in Computer Science, pages 359–364. Springer,
2002.

[22] Alessandro Cimatti, Anders Franzén, Alberto Griggio, Krishnamani Kalyana-
sundaram, and Marco Roveri. Tighter integration of BDDs and SMT for
predicate abstraction. In Design, Automation and Test in Europe (DATE
2010), pages 1707–1712. IEEE, 2010.

88

Conclusions

[23] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In Logic of
Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71.
Springer, 1981.

[24] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement for symbolic model
checking. Journal of the Association for Computing Machinery, 50(5):752–
794, 2003.

[25] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking
and abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

[26] Edmund M. Clarke, Himanshu Jain, and Daniel Kroening. Verification
of SpecC using predicate abstraction. Formal Methods in System Design,
30(1):5–28, 2007.

[27] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS 2004), volume 2988 of Lecture Notes in Computer
Science, pages 168–176. Springer, 2004.

[28] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.
Predicate abstraction of ANSI-C programs using SAT. Formal Methods in
System Design, 25(2-3):105–127, 2004.

[29] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Check-
ing. The MIT Press, 1999.

[30] Fady Copty, Limor Fix, Ranan Fraer, Enrico Giunchiglia, Gila Kamhi, Ar-
mando Tacchella, and Moshe Y. Vardi. Benefits of bounded model checking
at an industrial setting. In Computer Aided Verification (CAV 2001), vol-
ume 2102 of Lecture Notes in Computer Science, pages 436–453. Springer,
2001.

[31] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Principles of Programming Languages (POPL 1977), pages
238–252. ACM, 1977.

[32] Michelle L. Crane and Jürgen Dingel. Towards a formal account of a foun-
dational subset for executable UML models. In Model Driven Engineering
Languages and Systems (MoDELS 2008), volume 5301 of Lecture Notes in
Computer Science, pages 675–689. Springer, 2008.

[33] Michelle L. Crane and Jürgen Dingel. Towards a UML virtual machine: im-
plementing an interpreter for UML 2 actions and activities. In Conference
of the Centre for Advanced Studies on Collaborative Research (CASCON
2008), pages 8:96–8:110. ACM, 2008.

[34] Jori Dubrovin. Checking bounded reachability in asynchronous systems by
symbolic event tracing. Technical Report TKK-ICS-R14, Helsinki Univer-
sity of Technology, Department of Information and Computer Science, 2009.
http://ics.tkk.fi/en/research/publications/.

89

Conclusions

[35] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT
solving. Electronic Notes in Theoretical Compututer Science, 89(4):543–560,
2003.

[36] Javier Esparza and Keijo Heljanko. Unfoldings — A Partial-Order Ap-
proach to Model Checking. Springer, 2008.

[37] Harald Fecher and Jens Schönborn. UML 2.0 state machines: Complete
formal semantics via core state machines. In Formal Methods: Applica-
tions and Technology (FMICS/PDMC 2006), volume 4346 of Lecture Notes
in Computer Science, pages 244–260. Springer, 2007.

[38] Harald Fecher, Jens Schönborn, Marcel Kyas, and Willem P. de Roever. 29
new unclarities in the semantics of UML 2.0 state machines. In Interna-
tional Conference on Formal Engineering Methods (ICFEM 2005), volume
3785 of Lecture Notes in Computer Science, pages 52–65. Springer, 2005.

[39] Malay K. Ganai and Aarti Gupta. Accelerating high-level bounded model
checking. In International Conference on Computer-Aided Design (ICCAD
2006), pages 794–801. ACM, 2006.

[40] Malay K. Ganai and Aarti Gupta. Completeness in SMT-based BMC for
software programs. In Design, Automation and Test in Europe (DATE 2008),
pages 831–836. IEEE, 2008.

[41] Malay K. Ganai and Aarti Gupta. Efficient modeling of concurrent systems
in BMC. In International SPIN Workshop (SPIN 2008), volume 5156 of
Lecture Notes in Computer Science, pages 114–133. Springer, 2008.

[42] Malay K. Ganai, Aarti Gupta, and Pranav Ashar. Efficient SAT-based Un-
bounded Symbolic Model Checking Using Circuit Cofactoring. In Interna-
tional Conference on Computer-Aided Design (ICCAD 2004), pages 510–517.
IEEE / ACM, 2004.

[43] Fausto Giunchiglia and Enrico Giunchiglia. Building complex derived infer-
ence rules: A decider for the class of prenex universal-existential formulas.
In European Conference on Artificial Intelligence (ECAI 1988), pages 607–
609. Pitmann Publishing, 1988.

[44] Patrice Godefroid. Partial-Order Methods for the Verification of Concur-
rent Systems - An Approach to the State-Explosion Problem, volume 1032 of
Lecture Notes in Computer Science. Springer, 1996.

[45] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with
PVS. In Computer Aided Verification (CAV 1997), volume 1254 of Lecture
Notes in Computer Science, pages 72–83. Springer, 1997.

[46] Orna Grumberg, Flavio Lerda, Ofer Strichman, and Michael Theobald. Proof-
guided underapproximation-widening for multi-process systems. In Princi-
ples of Programming Languages (POPL 2005), pages 122–131. ACM, 2005.

[47] Helle Hvid Hansen, Jeroem Ketema, Bas Luttik, MohammadReza Mousavi,
and Jaco van de Pol. Towards model checking executable UML specifica-
tions in mCRL2. Innovations in Systems and Software Engineering, 6(1–
2):83–90, 2010.

90

Conclusions

[48] Keijo Heljanko. Bounded reachability checking with process semantics.
In Concurrency Theory (CONCUR 2001), volume 2154 of Lecture Notes in
Computer Science, pages 218–232. Springer, 2001.

[49] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: a
model checker for hybrid systems. Software Tools for Technology Transfer,
1:110–122, 1997.

[50] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
Lazy abstraction. In Principles of Programming Languages (POPL 2002),
pages 58–70. ACM, 2002.

[51] Gerard J. Holzmann. The SPIN Model Checker — primer and reference
manual. Addison-Wesley, 2004.

[52] Jean-Louis Imbert. Fourier’s elimination: Which to choose? In Princi-
ples and Practice of Constraint Programming (PPCP 1993), pages 117–129,
1993.

[53] Matthias Jantzen and Georg Zetzsche. Labeled step sequences in Petri nets.
In Applications and Theory of Petri Nets and Other Models of Concurrency
(Petri Nets 2008), volume 5062 of Lecture Notes in Computer Science, pages
270–287. Springer, 2008.

[54] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods, and
Practical Use, volume 1. Springer, 1997.

[55] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Com-
put. Surv., 41(4), 2009.

[56] Toni Jussila. On bounded model checking of asynchronous systems. Re-
search Report A97, Helsinki University of Technology, Laboratory for The-
oretical Computer Science, 2005. Doctoral dissertation.

[57] Toni Jussila, Jori Dubrovin, Tommi Junttila, Timo Latvala, and Ivan Por-
res. Model checking dynamic and hierarchical UML state machines. In
Model Development, Validation and Verification; 3rd International Work-
shop (MoDeV2a 2006), pages 94–110, 2006.

[58] Toni Jussila, Keijo Heljanko, and Ilkka Niemelä. BMC via on-the-fly deter-
minization. Software Tools for Technology Transfer, 7(2):89–101, 2005.

[59] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order re-
duction: An optimal symbolic partial order reduction technique. In Com-
puter Aided Verification (CAV 2009), volume 5643 of Lecture Notes in Com-
puter Science, pages 398–413. Springer, 2009.

[60] Roope Kaivola. Formal verification of Pentium 4 components with symbolic
simulation and inductive invariants. In Computer Aided Verification (CAV
2005), volume 3576 of LNCS, pages 170–184. Springer, 2005.

[61] Victor Khomenko, Alex Kondratyev, Maciej Koutny, and Walter Vogler. Merged
processes: a new condensed representation of Petri net behaviour. Acta Inf.,
43(5):307–330, 2006.

91

Conclusions

[62] Daniel Kroening and Ofer Strichman. Efficient computation of recurrence
diameters. In Verification, Model Checking, and Abstract Interpretation
(VMCAI 2003), volume 2575 of Lecture Notes in Computer Science, pages
298–309. Springer, 2003.

[63] Robert P. Kurshan. Verification technology transfer. In 25 Years of Model
Checking, volume 5000 of Lecture Notes in Computer Science, pages 46–64.
Springer, 2008.

[64] Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. SMT tech-
niques for fast predicate abstraction. In Computer Aided Verification (CAV
2006), volume 4144 of Lecture Notes in Computer Science, pages 424–437.
Springer, 2006.

[65] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimina-
tion. Comput. J., 36(5):450–462, 1993.

[66] Antoni W. Mazurkiewicz. Trace theory. In Advances in Petri Nets, volume
255 of Lecture Notes in Computer Science, pages 279–324. Springer, 1986.

[67] Kenneth L. McMillan. Using unfoldings to avoid the state explosion prob-
lem in the verification of asynchronous circuits. In Computer Aided Verifi-
cation (CAV 1992), volume 663 of Lecture Notes in Computer Science, pages
164–177. Springer, 1993.

[68] Kenneth L. McMillan. Interpolation and SAT-based model checking. In
Computer Aided Verification (CAV 2003), volume 2725 of Lecture Notes in
Computer Science, pages 1–13. Springer, 2003.

[69] Kenneth L. McMillan. Lazy abstraction with interpolants. In Computer
Aided Verification (CAV 2006), volume 4144 of Lecture Notes in Computer
Science, pages 123–136. Springer, 2006.

[70] Kenneth L. McMillan. Lazy annotation for program testing and verifica-
tion. In Computer Aided Verification (CAV 2010), volume 6174 of Lecture
Notes in Computer Science, pages 104–118. Springer, 2010.

[71] Kenneth L. McMillan and Nina Amla. Automatic abstraction without coun-
terexamples. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2003), volume 2619 of Lecture Notes in Computer Science,
pages 2–17. Springer, 2003.

[72] David Monniaux. A quantifier elimination algorithm for linear real arith-
metic. In Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR 2008), volume 3835 of Lecture Notes in Computer Science, pages
243–257. Springer, 2008.

[73] David Monniaux. Quantifier elimination by lazy model enumeration. In
Computer Aided Verification (CAV 2010), volume 6174 of Lecture Notes in
Computer Science, pages 585–599. Springer, 2010.

[74] Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and
extensions. Information and Computation, 205:557–580, 2007.

[75] Object Management Group. Semantics of a Foundational Subset for Exe-
cutable UML Models, Version 1.0 Beta 3, 2010. http://www.omg.org/spec/
FUML/.

92

Conclusions

[76] Object Management Group. UML 2.3 Superstructure, 2010. http://www.
omg.org/spec/UML/2.3/.

[77] Shougo Ogata, Tatsuhiro Tsuchiya, and Tohru Kikuno. SAT-based veri-
fication of safe Petri nets. In Automated Technology for Verification and
Analysis (ATVA 2004), volume 3299 of Lecture Notes in Computer Science,
pages 79–92. Springer, 2004.

[78] Sam Owre, John Rushby, N. Shankar, and David Stringer-Calvert. PVS:
an experience report. In International Workshop on Current Trends in Ap-
plied Formal Methods (FM-Trends 1998), volume 1641 of Lecture Notes in
Computer Science, pages 338–345. Springer, 1998.

[79] Corina S. Pasareanu and Willem Visser. Symbolic execution and model
checking for testing. In Haifa Verification Conference (HVC 2007), volume
4899 of Lecture Notes in Computer Science, pages 17–18. Springer, 2007.

[80] Radek Pelánek. BEEM: Benchmarks for explicit model checkers. In In-
ternational SPIN Workshop (SPIN 2007), volume 4595 of Lecture Notes in
Computer Science, pages 263–267. Springer, 2007.

[81] David A. Plaisted, Armin Biere, and Yunshan Zhu. A satisfiability pro-
cedure for quantified Boolean formulae. Discrete Applied Mathematics,
130(2):291–328, 2003.

[82] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent ad-
vances in SAT-based formal verification. Software Tools for Technology
Transfer, 7(2):156–173, 2005.

[83] Ishai Rabinovitz and Orna Grumberg. Bounded model checking of concur-
rent programs. In Computer Aided Verification (CAV 2005), volume 3576 of
Lecture Notes in Computer Science, pages 82–97. Springer, 2005.

[84] Lukman Ab Rahim and Jon Whittle. Verifying semantic conformance of
state machine-to-Java code generators. In Model Driven Engineering Lan-
guages and Systems (MoDELS 2010), volume 6394 of Lecture Notes in Com-
puter Science, pages 166–180. Springer, 2010.

[85] Silvio Ranise and Cesare Tinelli. The Satisfiability Modulo Theories Li-
brary (SMT-LIB). www.smt-lib.org, 2011.

[86] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as satisfia-
bility: Parallel plans and algorithms for plan search. Artificial Intelligence,
170(12–13):1031–1080, 2006.

[87] Timm Schäfer, Alexander Knapp, and Stephan Merz. Model checking UML
state machines and collaborations. Electr. Notes Theor. Comput. Sci., 55(3),
2001.

[88] Jens Schönborn and Marcel Kyas. Refinement patterns for hierarchical
UML state machines. In Fundamentals of Software Engineering (FSEN
2009), volume 5961 of Lecture Notes in Computer Science, pages 371–386.
Springer, 2009.

[89] Viktor Schuppan and Armin Biere. Efficient reduction of finite state model
checking to reachability analysis. Software Tools for Technology Transfer,
5(2-3):185–204, 2004.

93

Conclusions

[90] Stefan Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technis-
che Universität München, 2002.

[91] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety
properties using induction and a SAT-solver. In Formal Methods in Computer-
Aided Design (FMCAD 2000), volume 1954 of Lecture Notes in Computer
Science, pages 108–125. Springer, 2000.

[92] The SMUML software distribution version 1.0.1, 2008. Software. http:
//www.tcs.hut.fi/Research/Logic/SMUML.shtml.

[93] SRI International. Yices 2.0 prototype, 2009. Software.

[94] Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A
decision procedure for an extensional theory of arrays. In Logic in Computer
Science (LICS 2001), pages 29–37. IEEE, 2001.

[95] Dejvuth Suwimonteerabuth, Javier Esparza, and Stefan Schwoon. Sym-
bolic context-bounded analysis of multithreaded Java programs. In In-
ternational SPIN Workshop (SPIN 2008), volume 5156 of Lecture Notes in
Computer Science, pages 270–287. Springer, 2008.

[96] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole par-
tial order reduction. In Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS 2008), volume 4963 of Lecture Notes in Computer
Science, pages 382–396. Springer, 2008.

[97] Martin Wehrle and Jussi Rintanen. Planning as satisfiability with relaxed
∃-step plans. In Advances in Artificial Intelligence (AI 2007), volume 4830
of Lecture Notes in Computer Science, pages 244–253. Springer, 2007.

[98] Benjamin Weiß. Predicate abstraction in a program logic calculus. Sci.
Comput. Program., 76(10):861–876, 2011.

94

DISSERTATIONS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-D14 Hirsimäki, Teemu.

 Advances in Unlimited-Vocabulary Speech Recognition for

 Morphologically Rich Languages. 2009.

TKK-ICS-D15 Heikinheimo, Hannes.

 Extending Data Mining Techniques for Frequent Pattern Discovery:

 Trees, Low-Entropy Sets, and Crossmining. 2010.

TKK-ICS-D16 Hermelin, Miia.

 Multidimensional Linear Cryptanalysis. 2010.

TKK-ICS-D17 Savia, Eerika.

 Mutual Dependency-Based Modeling of Relevance in Co-Occurrence

 Data. 2010.

TKK-ICS-D18 Liitiäinen, Elia.

 Advances in the Theory of Nearest Neighbor Distributions. 2010.

TKK-ICS-D19 Lahti, Leo.

 Probabilistic Analysis of the Human Transcriptome with Side

 Information. 2010.

TKK-ICS-D20 Miche, Yoan.

 Developing Fast Machine Learning Techniques with Applications to

 Steganalysis Problems. 2010.

TKK-ICS-D21 Sorjamaa, Antti.

 Methodologies for Time Series Prediction and Missing Value

 Imputation. 2010.

TKK-ICS-D22 Schumacher, André

 Distributed Optimization Algorithms for Multihop Wireless Networks.

 2010.

Aalto-DD99/2011 Ojala, Markus

 Randomization Algorithms for Assessing the Significance of Data

 Mining Results. 2011

�������	
���
���

