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logically affects the the final applications of plant-based materials. In this thesis, the 
ultrastructure of natural fibres was analysed using several complementary techniques to gain 
new insights into the ultrastructure of both wood and non-wood fibres. 
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distributions were seen also in size exclusion chromatography measurements of isolated 
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processed eucalyptus and birch pulps. Eucalyptus pulp was found to have considerable 
amounts of lignin associated with the cellulose fraction of the pulp, whilst in birch most of the 
lignin was associated with hemicelluloses. Such differences can be of use when optimizing 
bleaching processes to decrease the consumption of chemicals. 
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1. Introduction and outline of the work

Studies on the chemistry and ultrastructure of natural fibres are presented in this thesis.

The aim of the thesis is to increase knowledge about several ultrastructural features 

which are generally considered to hinder the industrial application of natural fibres and to 

obtain more knowledge on the natural fibre composite structure. It focuses on the 

heterogeneity of the natural fibres and the requirements it sets to the processes using 

them as raw material. The heterogeneity can be the result of fibre processing (papers I, II 

and VI) or it is present as natural differences between species (papers III-VI). 

Understanding the diversity of natural fibres as a material not only enables us to improve 

existing processes but to also help us design better man-made materials by mimicking 

nature.

This work has involved several projects whose topics ranged from the modelling of wood 

to enhancing the properties of bast fibres for textile production and for natural fibre 

composites.

Defects caused by the processing of bast fibres were investigated and reported in papers I 

and II. Defects were shown to be more susceptible to the chemical reactions, which in 

turn might cause problems in the utilization of the fibres in composite applications due to

heterogeneity in the fibre chemistry and structure. Defects were also observed to weaken 

the mechanical properties of the fibres.

Papers III and IV focus more on the elastic properties of fibres and how these are 

manifested at the wood material level. Pulping experiments of juniper revealed its highly 

elastic fibre properties, which also could be seen in 4-point bending tests on juniper 

wood. The chemical composition, chemical distribution and fibre analyses revealed that 

the high microfibril angle of juniper fibres was the determining factor for its material 

properties.
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No differences in the lignin/cellulose distributions of any of the species analysed could 

be observed, however, paper V shows that small differences in the distribution of lignin 

functional groups could play an important role in industrial processes. Clear differences 

could be seen in the distributions of coniferyl alcohol and coniferyl aldehyde groups of 

the lignin in different wood species. Additional size exclusion chromatography 

measurements also backed-up these findings. Such differences were used to explain the 

dissimilar behaviour of pine and spruce in thermomechanical pulping. 

Size  exclusion  chromatography  was  also  used  in  paper  VI,  which  demonstrates  

differences in the lignin distribution with respect to the carbohydrates in birch and 

eucalyptus kraft pulps. Lignin in birch pulp was mainly associated with hemicelluloses 

because a significant fraction of lignin in eucalyptus was observed in the cellulose 

fraction. Such differences can be closely associated with chemical consumption in the 

removal of residual lignin by bleaching.
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2. History of natural fibre products

In one form, a composite is a solid material composed of plastic matrix with an 

embedded fibrous material. Wood could be considered to be a natural fibre composite or 

even a nanocomposite, which has been in use ever since man learned how to use tools.

The  composite  analogy  works  for  natural  fibres  at two  scales. A  single  fibre  can  be  

considered a nanocomposite where nano-sized cellulose microfibrils are embedded in a

matrix of lignin and hemicelluloses, while the whole plant can be considered a natural 

fibre composite where micron-sized fibres are embedded in a continuous lignin matrix, 

i.e., middle lamella.

Natural fibres have been used by men in composites since the dawn of civilization. The 

earliest known man-made natural fibre composites date back to 10 000 B.C. in China, 

where shards of pottery containing hemp fibres have been found (Rowell, 2008). There 

are also Biblical references that show ancient Egyptians using straw to reduce the 

cracking of clay bricks (Exodus, Chapter 5).

World’s most widely used and widespread natural fibre composite, paper, was invented 

in China around 105 A.D. Old rags and plant tissue were used as the material for paper 

sheets. Papermaking spread slowly westwards and reached Europe in the 11th century. By 

the 14th century, several paper mills existed in Europe and they were using linen, hemp 

and cotton rags as the raw material. In the 1850s the first commercial mechanical pulping 

machine using wood as the raw material was developed. However, it took until the 1870s

for the method to be used extensively when a steam pretreatment to soften the fibre 

binding matrix was introduced to the process. The first chemical pulping process, an

acidic soda process, was introduced in 1851 and the most common process used today,

kraft pulping, was developed in 1884 (Sixta, 2008). Research in the pulp and 

papermaking field has been very active ever since and new processes are still being 

designed to improve the quality of products produced from different wood species.
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In the field of composites, the first applications arose in the 1850s, before the first 

modern resins and plastics were invented. In America, shellac mixed with wood flour

was used to produce union cases used for displaying early photographs. At around the 

same time in France, a composite prepared from albumen and wood flour, called “Bois 

durci”, i.e., hardened wood, was patented (Hänninen and Hughes, 2010).

The age of modern composites began with the invention of Bakelite, the first fully 

synthetic thermosetting resin, in 1907. Since Bakelite is brittle, it was reinforced with 

fillers, such as wood flour to improve its properties. In the 1930s in particular, pioneering 

work was carried out in the field on natural fibre composites to produce composite 

materials for aeronautics (Hänninen and Hughes, 2010).

With the commercialization of glass fibre in the 1940s interest in natural fibre

composites declined. More or less regularly efforts to produce natural fibre composites 

for decorative and structural applications occurred thereafter. However, until today there 

have been only a few structural applications that have been commercially successful

(Hänninen and Hughes, 2010). One of the reasons for the poor performance of the natural 

fibres as a reinforcing fibre in composites could be the old defibration processes that date 

back hundreds of years.

Wood, however, has succeeded where man-made composites have failed. Wood is 

widely used in magnificent structures such as Sakyamuni Pagoda in China, the tallest 

wooden structure in the world. By understanding the ultrastructural features of natural 

fibres, we can get closer to producing equally good composites. Knowledge about 

ultrastructure of fibres will also aid us in the utilization of the natural fibre resources.
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Comprehension of the ultrastructure of natural fibres not only aids us in optimizing

existing processes, such as the pulping and bleaching of wood fibres, but it can also give 

us insight to develop totally new kinds of processes to replace old ones. New approaches 

are indeed needed, especially in the field of natural fibre reinforced composites, where 

the product properties are not able to compete with man-made fibre reinforced 

composites and their driving force, environmental friendliness, has been recently

seriously questioned (Dissanayake et al., 2009a, Dissanayake et al., 2009b)
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3. Structure of natural fibres

Although plants consist of many different kinds of cells, which serve their specific 

purpose in the plant, mainly the load bearing cells are used in industry. The wood fibres 

that are utilized in pulp and paper are so called xylem fibres or tracheids. A schematic 

image of pine xylem section is illustrated in Figure 1.

Figure 1. Structure of pine xylem (Kekkonen et al., 2009).

Other important fibre type that are utilized industrially are phloem, or bast fibres. 

Although trees also contain bast fibres, their utilization is minimal. The use of bast fibres 

from the stems of annual plants such as hemp and flax, is much more common.  The bast 
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fibres are arranged in bundles several fibres thick (Eder and Burgert, 2010), which can be 

seen from the Figure 2 illustrating cross-section of flax stem.

Figure 2. Cross-sections of a flax stem (Blackburn, 2005).

Natural fibres are a very challenging raw material to use due to their heterogeneous 

nature. Although natural fibres are in general composed of the same chemical 

compounds and their hierarchical cell wall structure is very similar, significant 

differences in fibres can be found within the same species, or even within the fibres 

growing in the same plant.

Natural fibres are analogous to a nanofibre composite composed of cellulose microfibrils 

functioning as the reinforcing fibres embedded in matrix of lignin and hemicelluloses. In 

addition other compounds, such as waxes, fats and extractives can be found in plants 

(Sjöström, 1993). However, they will not be discussed in this thesis due to their minor

structural role within the cell wall.
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3.1 Cellulose 

Cellulose, which is possibly the most studied component of plants due its abundance in 

nature, is a linear polymer of variable length consisting of 1-4- -D-

anhydroglucopyranose units. Every second anhydroglucose unit is rotated through 180o

with respect to the adjacent unit meaning that the actual repeating unit in the cellulose 

polymer is cellobiose, as illustrated in Figure 3.

Figure 3. Structure of cellulose.

In  nature,  cellulose  molecules  can  be  found  in microfibrils,  agglomerates  of  several  

cellulose chains bound together by a tight intermolecular hydrogen bond network. The 

quantity as well as the length of the cellulose molecules in a single microfibril depends 

on the botanical source (Davidson et al., 2004).

Cellulose in its native state is organized in a crystalline form called cellulose I. In 

cellulose I the cellulose chains are packed in a parallel arrangement. The cellulose chains 

are bonded together with hydrogen bonds between the hydrogen of the OH-group in the 

sixth position and oxygen of the hydroxyl group in the third position of another chain, 

which is considered to be the most important one for cellulose I from the chemical point 

of view (Klemm et al., 2004).

In 1980s Atalla and VanderHart published studies (Atalla and VanderHart, 1984,

VanderHart and Atalla, 1984) where crystalline allomorphs of cellulose I and I were 
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introduced. According to these authors cellulose I was the dominant form in cellulose 

obtained from bacterial sources while in ramie, cotton or wood cellulose I was dominant.

The structure of the cellulose microfibril is not considered to be uniform throughout the 

fibril. A two-phase model introduced by Mark (1940) assumed that microfibrils consist 

of highly ordered crystalline and disordered amorphous regions. This model is better 

known as the fringed fibrillar model according to Hearle (1958) and it is the established

model today (Nishiyama et al., 2003).

The exact crystalline arrangement of cellulose is still under debate. In some studies a

paracrystalline model has been proposed, where a large proportion of disordered 

cellulose is located on the surface of the crystals (Viëtor et al., 2002, Leppänen et al., 

2009). In a model proposed by Salmén and Bergström (2009) disordered regions are 

found on the surface and inside the cellulose microfibrils. Recently, Atalla has proposed 

that the native state of cellulose is none of the proposed forms and crystalline and 

amorphous regions in microfibrils is only an artefact caused by the isolation technique of

the microfibrils or the harsh measurement conditions (Atalla et al., 2009).

3.2 Hemicelluloses and pectins 

In contrast to highly ordered cellulose, hemicelluloses are branched heteropolymers with

a low degree of polymerization (DP) and no crystallinity. Hemicelluloses can be built up 

from various monomeric units, for example glucose, mannose, galactose, arabinose, 

xylose as well as from small amounts of uronic acids such as 4-O-methylglucuronic acid 

and D-galacturonic acid (Sjöström, 1993). The structure of xylan, the most abundant 

hemicellulose in hardwoods, is illustrated in Figure 4. In the cell wall hemicelluloses act 

as the binding material between microfibrils enabling the mobility of microfibrils in 

deformation (Keckes et al., 2003). It has also been proposed that hemicelluloses take part 

in orienting cellulose microfibrils during the biosynthesis of cellulose (Reis and Vian, 

2004).
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Figure 4. Structure of xylan with 4-O-methylglucuronic acid group.

Pectins are sometimes considered hemicelluloses due to their similar structure. Like 

hemicelluloses, pectins are amorphous and most of them are branched heteropolymers. 

Various pectic polysaccharides have been detected in the cell wall, including 

homogalacturonan, rhamnogalacturonan I, rhamnogalacturonan II, arabinan, 

arabinogalactan and galactan (Meshitsuka and Isogai, 1996).

3.3 Lignin 

Lignins are complex heteropolymers derived mainly from three hydroxycinnamyl 

alcohol monomers with differing degrees of methoxylation; p-coumaryl, coniferyl and 

sinapyl alcohols which are illustrated in Figure 5. These monomers produce respectively 

p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units when incorporated into the 

lignin polymer. The amount and composition of lignin varies greatly between species. 

Generally, it is thought that hardwood lignin consist of G and S units whilst softwood 

lignin is composed almost solely of G units. The H units have been considered to be 

found mainly in grasses (Sakakibara and Sano, 1996). Although lignin is conventionally 

considered to consist of these three main precursors, many plants contain significant 

levels of other precursors (Sederoff et al., 1999), for example coniferaldehyde structures.
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Figure 5. Structures of the main lignin precursors.

The function of lignin in the plant cell wall is to act as cementing material to other 

structural units as well binding cells together. Lignin also provides compression strength 

and stiffness to cells and due to its hydrophobic nature, it also controls the water content 

of the cell wall and enables cells to transport water. There have also been reports of

lignin’s role in protecting plants against pathogens (Boerjan et al., 2003).

Lignin is thought to form linkages with cell wall polysaccharides. The presence of lignin-

carbohydrate complexes (LCCs) has been under debate after their proposed discovery by 

Björkman (1956). However, several studies are pointing towards their existence in pulp 

and in wood (Henriksson et al., 2007, Lawoko et al., 2005, Li et al., 2011). LCCs have 

been considered to be one of the reasons for the difficulties to encountered in removing

the residual lignin from pulp during bleaching (Henriksson et al., 2007). Lignin has been 

considered to form linkages mainly with hemicelluloses, but there has also been 

speculation about lignin-cellulose linkages (Jin et al., 2006, Tenkanen et al., 1999).

3.4 Structure of plant cell wall 

Although the functions of plant cells may vary, their structure is very much alike. Natural 

fibres are constructed so that the innermost and load bearing secondary cell wall 

surrounds the hollow center of the fibre, the lumen. The outermost cell wall is called the 

primary cell wall and between the cells resides the fibre binding middle lamella. The 

secondary cell wall can be further divided into smaller layers according to the



14

arrangement of microfibrils, for example, into layers S3, S2 and S1 in the case of wood 

cells (Figure 6). Some studies have proposed that in flax and hemp the S2 layer could be 

divided to even smaller layers (Blake et al., 2008, Romhány et al., 2003, Charlet et al., 

2010).

Figure 6. Schematic representation of the structure of wood cells. Individual cells are separated by 

middle lamella. The cell wall is divided into two layers, primary wall (P) next to middle lamella (ML) 

and secondary wall which is further divided in S1, S2 and S3 layers. A hollow lumen is surrounded 

by the cell wall layers.

The S2 is the dominant cell wall layer when it comes to the physical properties of 

processed fibre or unprocessed plants like wood. In general, the S2 is the thickest cell 

wall layer and therefore the orientation of the microfibrils and the chemical structure in 

this layer affects the material properties most. the S1 and S3 cell walls have been

proposed to strengthen the cell against deformation by swelling with water, as well as 

contributing to the lateral hardness and crushing strength of timber (Donaldson, 2007,

Bergander and Salmén, 2002).
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Although there are some distinctions in the chemical compositions of different plants, the 

different cell wall layers resemble each other. The secondary cell wall has a very high 

cellulose content, although in wood also significant amounts of lignin and hemicelluloses 

are present. Salmén and Olsson (1998) have shown that in the cell wall of spruce fibres,

different hemicelluloses were associated with different cell wall components. 

Galactoglucomannan was found to be attached to the surface of cellulose fibrils while 

xylan was more associated with lignin. Terashima et al. (2009) have proposed a model 

for the assembly of the cell wall components in the secondary cell wall of ginkgo

(Figure 7a) where cellulose microfibrils are aggregated in bundles of different sizes 

which are encrusted with hemicelluloses and subsequently bound together by lignin-

hemicellulose complexes. A similar model has also been proposed by Fahlén and Salmén 

(2004), which is illustrated in Figure 7b. It has been shown that the lignin content affects 

the size of these cellulose microfibril bundles (Donaldson, 2007). In hemp and flax fibres,

only small amounts of lignin have been detected in the secondary cell wall. In flax and 

hemp, the microfibril bundles are surrounded by pectins and small amounts of proteins in 

addition to lignin and hemicellulose (Blake et al., 2008, Gorshkova et al., 2000, Day et 

al., 2005).

The chemical composition of the cell wall changes greatly during the development of the 

cell. For example, in a wood cell, carbohydrates are initially present in the cell wall and 

lignin starts to form later (Sjöström, 1993). The primary cell wall and the middle lamella 

of a cell contain the highest concentrations of lignin when the cell has reached its fully 

grown state in both wood and bast fibres. In wood the main component of the primary 

cell wall and the middle lamella is lignin while in bast fibres, pectic compounds also play 

a major role. A thorough understanding of the composition of the middle lamella is 

essential when considering the isolation of the fibres. Considerable efforts have been 

expanded in the characterization of the middle lamella in wood, while only recently 

studies on the chemical distributions in hemp and flax have started to emerge. 
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Figure 7. Schematic illustrations of S2 cell wall layer structure by (a) Terashima (2009) and (b) 

Fahlén and Salmén (2004).
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4. Role of artificially induced defects in natural fibres

The structural integrity of the plant cell wall plays a very important role in applications 

of natural fibres, especially when compared to man-made fibres which can be considered 

to be practically free of defects. Fibres obtained from plants always contain defects. The 

defects can occur due to the functions of the fibre, for example pits that enables water 

conduction between adjacent cells.

Fibres also contain defects caused by mechanical action. These kinds of defects are also 

known as kinks, kink bands, microcompressions or nodes, among others. Micrographs of 

such defects in processed and unprocessed flax fibres are illustrated in Figure 8.

Figure 8. Micrographs by polarized light microscope of unprocessed (upper) and processed hemp 

fibres. Some of the defects are pointed out by arrows. (Paper II)

4.1 Effect on mechanical properties 

The effect of defects on the mechanical properties of fibres has long been under debate.  

Although the results are contradictory, it can be concluded with a fair degree of certainty 

that defects do affect tensile properties (Page et al., 1972, Davies and Bruce, 1998,

Thygesen et al., 2007, Baley, 2004). This can also be seen from the fibre strength data in 

Table 1. Although there is a decrease in tensile strength values when comparing 
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processed fibres with unprocessed ones, the values are within standard deviation, and 

thus the significance of the difference can be questioned.

Table 1. Flax fibre properties from single fibre tensile tests. (Paper I)

Diameter 
(μm)

Tensile 
strength 
(MPa)

Elastic 
modulus 
(GPa)

Max load
(N)

Fresh Flax 35.2 ±7.3 322 ±93 15.9 ±6.9 0.29 ±0.009
Retted Flax 17.3 ±3.6 486 ±168 24.1 ±7.6 0.12 ±0.06
Flax Noils 26.6 ±5.4 344 ±114 17.6 ±7.5 0.20 ±0.09
Cottonized Flax 28.2 ±4.4 306 ±85 17.7 ±5.6 0.20 ±0.07

The tensile strength of fibres extracted from fresh stems is lower than that of fibres 

extracted from retted stems. As retting most probably does not increase the fibre strength, 

the cross-sectional area of the fibres, which is used in calculations on the tensile strength 

values must be taken into account. The huge variations in fibre diameter, especially 

between fibres extracted from fresh and retted stems, is the most likely cause of artefacts 

in strength property measurements. Fresh fibers might corporate the remainder of middle 

lamella, which may lead to measurement errors using optical microscopy. Using a 

standard transmitted light microscope will lead to error in the in the determination of the 

actual cross-sectional area of the fibres, since it measures the fibre for only one side. To 

enable the acquisition of the true cross-sectional area of the fibre, confocal microscopy 

should to be used.

Table 2. Hemp and flax fibre properties (Müssig et al., 2010)

Tensile strength 
(MPa)

Young's modulus 
(GPa)

Elongation at 
break (%)

Diameter of 
single fibre 
(μm)

Flax 343-1500 8-100 1.2-4 1.7-76
Hemp 310-1110 3-90 1.3-6 3-51

The diameter of the fibres is not the only variable that causes error in single fibre tensile 

property measurements. To mention a few other examples, clamping length, testing 

speed, and the relative humidity affect the results. As seen from Table 2, the variations 
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between the single fibre test values differ greatly in the literature (Müssig et al., 2010).

To compare natural fibre strength data, one would need better standardized equipment

and methods. Paper handsheet tests are good examples of well standardized methods. 

4.2 Effect of defects on the susceptibility of fibres to acid hydrolysis 

The defects do not only decrease the strength properties of the fibres, but they are also

more susceptible to chemical reactions (Rauvanto et al., 2006, MacLeod, 1990).

Inhomogeneous reactivity along the fibre may cause problems, for example, during fibre 

modifications, when intact parts of the fibres may remain unmodified while the defects 

are weakened.

In this work (Paper II), the susceptibility of the defects to hydrolytic degradation was

used to aid determination of the defects. The quantification of defects using polarized 

light microscopy is very tedious work and the bast fibres are unsuitable for most of the 

automatic fibre analysers, such as FiberLab, because of their long fibre length. A method, 

where the defects are weakened by acid hydrolysis with subsequent mechanical breaking 

of the fibres has been used to render bast fibres suitable for analysis by automatic 

instruments. Mechanical breakage, however, tends to cleave the fibres in the undefected 

parts of the fibre as well.

Mild acid hydrolysis in combination with viscosity measurements was used to analyse 

the susceptibility of defects in bast fibres to acid hydrolysis. Viscosity measurement is a

used routinely in analytical technique employed pulp testing to evaluate the chemical 

damage to fibres. The theory of the viscosity measurements is discussed in Experimental 

sections of this thesis.
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Table 3. Chemical composition and intrinsic viscosity before and after acid hydrolysis of industrial 

flax and laboratory damaged hemp fibres. The defected area determined by polarized light 

microscopy is reported for flax only. The extent of damage is reported as the function of number of 

passes through cog wheels for hemp. (Paper II)

Untreated fibres

Flax
Cellulose 
(%)

Hemicellulose 
(%)

Lignin 
(%)

Pectin 
(%)

Other 
(%)

Intrinsic 
Viscosity 
(ml/g)

Defected 
area (%)

Green stem 59 9 3 8 7 1554 24.4±6.8
Retted stem 70 12 2 5 3 1874 19.6±12.1
Noils 79 8 2 2 3 2027 37.4±7.0
Kotonina 79 7 4 5 2 2039 36.2±4.7

Hemp
0 passes 74 11 6 4 7 1600
5 passes 74 11 6 5 6 1617
12 passes 77 11 3 3 5 1702
22 passes 76 11 5 3 7 1767

Acid hydrolyzed 
fibres
Flax

Green stem 82 8 6 2 2 974
Retted Flax 82 7 4 5 3 1058
Flax Noils 84 7 3 4 2 399
Kotonina 84 8 4 2 1 487

Hemp
0 passes 83 10 2 3 4 634
5 passes 83 10 2 3 2 626
12 passes 82 10 3 3 5 556
22 passes 82 9 5 3 2 548

As cellulose is  the main component  of  the fibres and its  DP is significantly higher  than

the DP  of  the  other  cell  wall  polymers,  cellulose  is  the  dominant contributor in  the  

viscosity measurements. This can be seen from the correlation between cellulose content 

and viscosity, which is illustrated in Figure 9. Viscosity data has also been used to 

determine the DP of cellulose and hemicelluloses in pulp samples when their 

concentrations are known (da Silva Perez and van Heiningen, 2002). The method 

however cannot be directly applied to bast fibres due to their high lignin and pectin 

contents.
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Figure 9. Relationship between the intrinsic viscosity and the cellulose content of untreated flax 

fibres. Standard deviation in the viscosity measurements was < 20. (Paper II)

When the viscosities after acid hydrolysis are plotted against the defected area of the 

fibres, a clear correlation can be seen (Figure 10). The decrease in viscosity after acid 

hydrolysis, when the defected area increases, clearly indicates that the susceptibility of 

the cell wall polymers to acid hydrolysis is increased in the defected areas. The defects in 

the structure enable acidic solutions to penetrate the cell wall where cellulose can be 

hydrolysed throughout the whole cell wall. The drastic drop in viscosity is caused by

random cleavage of cellulose due to the acid hydrolysis.

Acid hydrolysis has also been used to determine the level-off DP (LODP) of cellulose

(Battista, 1950), which has been shown to correlate with the average length of the 

crystalline region in cellulose microfibrils (Nishiyama et al., 2003). The determination of 

LODP is performed in very high acid concentrations and the decrease in viscosity is 

much greater than in method used in this work. For example, in the case of birch kraft 

pulp with 1000 ml/g viscosity reaches a LODP value at 200 ml/g (Håkanson et al., 2005).
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Figure 10. Relationship between the intrinsic viscosity and defect-free area of the acid hydrolysed 

flax fibres. Standard deviation in the viscosity measurements was < 20. (Paper II)

Interestingly, the decrease of viscosity after acid hydrolysis levels off after a certain 

amount of damage (Table 3). This leveling-off suggests that in a certain process, after a 

threshold degree of damage, the extent of damage introduced to the fibres is decreased 

significantly. A similar trend has also been reported by Rauvanto et al. (2006) for 

unbleached softwood pulp during PFI beating.
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5. Assembly of the cell wall and its effects on the 
mechanical properties of fibres and wood

The same principles can be considered to apply to the properties of natural fibres as in 

any man-made composite. The outstanding properties of natural fibers lie in millions of 

years of product development, better known as evolution.

The alignment of the reinforcing fibre relation to the applied stress is one of the most 

important characteristics considering composite properties (Hull and Clyne, 1996). In the 

case of natural fibres, the microfibril angle (MFA) of the secondary cell wall can be 

considered to be the dominant factor when it comes to strength properties of the fibres

(Donaldson, 2008).

The compression wood is known to differ from the normal wood by its chemistry and 

cell wall structure. Compression wood is formed as response to external stimuli to 

correct the growth direction of the tree and bring it back to the vertical. Uneven soil, 

heavy snow or strong winds are known to cause the formation of compression wood.  

Juniper (Juniperus communis), a small shrub-like conifer, is known for its exceptionally 

high strain to failure and it is commonly used by children as material for bows. Juniper, 

even with a straight trunk, is known to have several compression wood-like features, 

which makes it an interesting subject for ultrastructural research with respect to its 

material and fibre properties. In previous studies of high MFA wood species, usually 

only a few chemical analyses have been performed and the chemical distributions have 

not been determined from the samples. This leaves open the question; what role does the 

chemical distribution of cell wall components play in the mechanical properties of wood.
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5.1 Analysis of juniper wood 

Values from 4-point bending tests of spruce normal wood, spruce compression wood and 

juniper are presented in Table 4. The elastic modulus of juniper is indeed much lower 

than that of spruce normal wood. Juniper in fact resembles the compression wood of 

spruce in its mechanical properties. Another property of juniper that is reminiscent of 

compression wood is the high MFA, as seen in Table 5 and in the literature (Burgert et 

al., 2004, Kantola and Kähkönen, 1963, Kantola and Seitsonen, 1961).

Besides the MFA, density is one of the determining properties for the elasticity of wood. 

The increase in MFA decreases the elastic modulus while the increase in density 

increases it (Evans and Ilic, 2001, Yang and Evans, 2003, McLean et al, 2010). The 

densities of the spruce normal wood samples were 50 % lower than those of compression 

wood and juniper. Still the elastic modulus of juniper and compression wood was notably 

lower than that of the normal wood of spruce. Similar results have also been obtained for 

yew which also has a high MFA and high density (Keunecke et al., 2008).

Table 4. 4-point bending test data for spruce normal wood, spruce compression wood and juniper.

(Paper III)

Sample name Density 
(kg/m3)

Modulus of 
elasticity 
(MPa)

Bending 
Strength 
(MPa)

Spruce normal wood 454 ±45 8605 ±915 74 ±5
Spruce compression 
wood 575 ±15 4962 ±439 93 ±3

Juniper 647± 118 4796 ±572 92 ±15

From the 4-point bending test data we can see that there is no correlation between the 

elastic moduli and densities of the samples. This indicates that in the case of these 

samples the MFA is the most dominant feature concerning the elasticity of these

materials. Similar results as ours have been reported by Keunecke (2008) for yew.

Denser samples could be observed to withstand higher stresses before breaking.
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Crystal lengths were also similar in compression wood and juniper while spruce normal 

wood had clearly longer crystals (Table 5). Crystal length could also be one of the minor 

reasons for elasticity of juniper and compression wood. The shorter crystal length also 

implies an increase in the frequency of flexible amorphous regions in fibrils. As the fibril 

bundles in cell wall have then more flexibility (Page, 1983), this possibly reflects itself 

also to the fibre properties and further on to wood material properties, although the effect 

is likely to be so small that it is overplayed by more prominent features like MFA.

Although the crystal width in juniper was slightly smaller than in spruce normal wood

and spruce compression wood (Table 5), values corresponded with the ones in literature 

which have rather large variation (Tanaka et al., 1981, Andersson et al., 2003, Davidson 

et al., 2003, Leppänen et al., 2009) and the difference was not considered to be 

significant relative to the mechanical properties of wood. 

Juniper fibre morphology resembles more closely to compression wood fibres of spruce

than normal wood fibres. Helical grooves in the S2 layer of cell wall, which are 

characteristic to compression wood, can be seen in the polarized light micrograph taken 

from juniper and compression wood samples (Figure 11). 
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Figure 11. Radial sections of (a) common juniper and (b) compression wood of spruce. Helical 

grooves or cavities indicating the MFA of the cell wall are clearly visible. (Paper III)

Table 5. Microfibril angle in S2 cell wall layer, crystal length and width determined by using XRD.

The standard deviation of the MFA values is presented within the brackets. The error margins for 

the dimensions of the crystallites are based on the accuracy of the measurement and analysis. (Paper 

III)

MFA of S2 
cell wall 
(degree)

Crystal 
length (nm)

Crystal 
width (nm)

Spruce normal wood 0.2 (7) 40±5 3.08±0.05
Spruce compression wood 35 (8) 20±2 3.06±0.05
Juniper 35 (9) 21±2 2.92±0.05
Juniper kraft pulp 16±2 4.0±1.0
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In some respects the composition of juniper resembles that of spruce compression wood. 

The lignin and hemicellulose contents are higher in juniper (Table 6 and Table 7) than in 

the normal wood of spruce, but is lower than that of spruce compression wood. However, 

the carbohydrate composition of juniper is clearly closer to the normal wood than the

compression wood of spruce. In particular, the low amount of galactose indicates that the 

juniper sample would be normal wood. Galactose is abundantly present in compression 

wood as (1-4)- -galactan (Mast et al., 2009, Timell, 1986), which is proposed to be 

concentrated in S2L layer (Altaner et al., 2010), a layer with high concentration of lignin 

within  the  S2  cell  wall. The  S2L layer is one of the most common features of 

compression wood (Gierlinger et al., 2010, Cóte et al., 1968, Donaldson et al., 1999,

Wardrop, 1964, Fergus et al., 1969).

Table 6. Carbohydrate composition (% of neutral sugars) of spruce normal wood, spruce 
compression wood and juniper. (Paper III)

Arabinose Rhamnose Galactose Glucose Xylose Mannose
Spruce normal wood 1.3 0.3 5.5 67.7 9.0 16.3 
Spruce compression 
wood 1.1 0.4 17.5 59.5 10.4 11.2 
Juniper 1.4 0.5 7.4 61.9 11.9 17.1 

Table 7. Lignin and extractives contents (% on dry wood) of spruce normal wood, spruce 
compression wood and juniper. (Paper III)

Acid 
soluble
lignin

Klason 
lignin Extractives

Spruce normal wood 0.5 29.2 0.9 
Spruce compression 
wood 0.5 37.2 1.7 
Juniper 0.7 32.0 5.8 

The distribution of lignin and cellulose within the cell wall can be analysed with Raman 

imaging without using any chemical treatments or staining of the sample. This way the 

introduction of artefacts that may be caused by accessibility of the cell wall and reactions 

or staining of unwanted components can be avoided. Raman imaging could even be done 
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directly  from  freshly cut  fibres,  since  water  does not  disturb  the  measurements  like it  

does in IR spectroscopy (Smith and Dent, 2005). However, the preparation of fresh 

samples has  proven  to  be  extremely  difficult  due  to  the  sample  surface  smoothness

requirements set by the confocal system. Raman spectroscopy and imaging is described

in more detail in the Experimental section of this thesis.

Figure 12. Raman images of spruce normal wood (a,d,g), spruce compression wood (b,e,h) and 

juniper (c,f,i). Images are constructed according to characteristic Raman band regions of cellulose 

(a-c) and lignin (d-f) as well as lignin/cellulose ratio (g-i). Raman band regions used are presented in 

Table 13. (Paper III)
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The lignin/cellulose distribution in juniper resembles that of normal wood of any wood 

species analysed so far by Raman imaging (Gierlinger et al., 2010, Gierlinger and 

Schwanninger, 2006, Agarwal, 2006, Schmidt et al., 2009). The lignin/cellulose 

distribution throughout the secondary cell wall was even while the relative amount of 

lignin was drastically higher in primary cell wall and middle lamella. A similar 

distribution has also been observed with other techniques (Wardrop, 1964, Cóte et al., 

1968, Fergus et al., 1969). Compression wood samples are easily distinguished by the 

high lignin concentration of the S2L layer, which is clearly visible in the images (Figure 

12 e and h). A similar distribution has earlier been measured by Raman imaging from 

spruce compression wood (Gierlinger et al., 2010).

As seen in the Figures 12 and 13, all of the lignin/cellulose ratio distributions are very 

much alike. Practically no differences can be seen between juniper, spruce and pine, or 

even between hardwoods and softwoods. Similar results have also been reported in the 

literature (Agarwal, 2006, Gierlinger et al., 2010, Gierlinger and Schwanninger, 2006,

Schmidt et al., 2009). Only cells from reaction wood or from genetically modified trees 

have been shown to differ in their lignin/cellulose distributions (Gierlinger et al., 2010,

Schmidt et al., 2009).
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Figure 13. Raman images of eucalyptus (a-c) and pine (d-f). Images are constructed according to 

characteristic Raman band regions of lignin (a,d) and cellulose (b, e,) as well as lignin/cellulose ratio 

(c,f). Raman band regions used are presented in Table 13. (Paper IV and unpublished data)

This shows that although the appearance of trees may differ a lot from each other, they 

are basically constructed in the same way. The hierarchical structure of wood has been 

developed during millions of years to the way it is today and it is altered only under the 

severe circumstances. The wood is the only natural fibre composite, or nanocomposite,

that has been used successfully by humankind in load bearing structural applications. 
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5.2 Analysis of juniper pulp 

Juniper fibres were separated using conventional kraft pulping. The pulp was 

subsequently analysed with FibreLab and laboratory handsheets were prepared from it to 

determine the strength properties. Kraft pulping has been studied for over a century and 

handsheet testing is very well standardized, which makes them a viable way to analyse 

fibre properties. The fibre and handsheet properties of juniper were be compared to 

values obtained from literature (Table 8 and Table 10).

The kappa number of juniper pulp was much higher (56.4) than in commercial softwood 

kraft pulps (about 15-30) (Sjöholm et al., 2000, Kontturi and Vuorinen, 2006, Robertsen 

and Joutsimo, 2005, Joutsimo and Robertsen, 2004). This was considered to be caused by 

the high amount of branches in the juniper wood discs used for pulping. Branches are 

more difficult to pulp and they might remain relatively uncooked and a high lignin 

content in the pulp, which increases the Kappa number significantly. Since the aim of 

pulping was to analyse fibre properties, pulping parameters were not fine-tuned.

As  can  be  seen  from  Table  5,  the  crystal  width  increases  due  to  kraft  pulping  and  the  

crystal length decreases. It has been considered that the increase of the crystal width is

caused by the crystallization of the surface and aggregation of the microfibrils during 

pulping (Leppänen et al., 2009). On the other hand it has been proposed that the decrease 

in crystal length is caused by depolymerization of cellulose (Leppänen et al., 2009),

although this seems unlikely.

The carbohydrate composition of juniper pulp was fairly similar to softwood pulps

(Table 8). The contents of non-cellulosic carbohydrates were close to literature values, 

although, more specifically they were close to the highest values. This agrees with the 

high non-cellulosic carbohydrate content of juniper wood (Table 6).
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Table 8. Carbohydrate composition (% of neutral sugars) of juniper pulp. Values for softwood kraft 

pulp handsheets were obtained from literature(Rydholm, 1965, Sjöholm et al., 2000, Hult et al., 

2001). (Paper IV)

Juniper
Softwood 
pulp

Arabinose 0.4 0.1-1
Xylose 9.4 4.5-9.4
Mannose 6.9 5-6.9
Galactose 0.3 0-0.5
Glucose 83.1 83.6-90.3

Juniper’s fibre properties are very much like those of softwood compression wood fibres 

when comparing the fibre properties of commercial softwood pulps (Table 9). Small 

fibre diameter, thick cell walls and short fibres are characteristics of compression wood

(Timell, 1986). Small and thick walled cells explain the high density of compression 

wood and juniper (Table 4).

Table 9. Fibre properties of juniper pulp measured by FibreLab. Values for softwood pulp is 

collected from the literature (Sáren et al. 2001, Rydholm, 1965, Kibblewhite, 1999, Seth, 2006,

Gurnagul et al., 1992). (Paper IV)

Fiber 
diameter

Cell wall 
thickness Mean length Coarseness Curl

(μm) (μm) (mm) %
Juniper 21 3.9 0.83 97 21.5
Softwood 23-56 2.8-3.8 1.5-3.6 130-300 16.4-22.9

When analyzing the fibre properties using handsheet testing, it is important to remember 

that the paper composed of a random network of fibres and unlike in single fibre testing, 

the fibre-fibre interactions also play an important role. For example curl and coarseness 

of fibres affect paper properties. Values for curl and coarseness are very close to the 

values of commercial softwood pulp and their effect can be assumed to be minimal. One 

potential factor affecting handsheet properties is the surface chemistry of the fibers. Its 

influence was, however, considered insignificant, based on the finding of a studies by 
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Maximova et al. (2001) and Koljonen et al. (2004) where adsorbed lignin did not 

significantly affect the strength properties of the handsheets.

The strength properties of juniper handsheets were poor when compared to commercial 

softwood pulp handsheets. One of the reasons for the poor strength properties is possibly 

the short fibre length of juniper. Also the fibre strength naturally contributes to the 

strength properties of the handsheets. MFA has been shown to significantly affect fibre 

strength. As the MFA increases, fibre strength decreases. In low MFA fibres, the fibrils 

are able to bear the tensile load. As the MFA increases the inter-fibrillar or matrix-fibril 

shear load increases, causing the fibrils to debond more easily or for failure to take place 

through shear yielding of the matrix, which leads to the destruction of the cell wall 

hierarchy and thus failure of the fibre.

Table 10. Handsheet properties of juniper kraft pulp handsheets. Values for softwood kraft pulp 

handsheets were obtained from literature(Joutsimo and Robertsen, 2004, Kontturi and Vuorinen, 

2006, Seth and Page, 1988, Seth, 2006, Rydholm, 1965). (Paper IV)

Tens. 
strength Stretch Stiffness

Tear 
Index Density

(Nm/g) (%) (kNm/g) (Nm/kg) (kg/m3)
Juniper kraft pulp 36.9 5.4 3.4 9.4 584
Softwood kraft pulp 120-36 3.3-2.7 9.6-7.5 13-30

On the other hand, the stiffness of the juniper handsheet was significantly lower and the 

stretch was twice that reported for commercial softwood handsheets. The elastic 

properties  of  handsheets have  been  shown  to  correlate  well  with  the  elasticity  of  

individual fibres (Page and Seth, 1980).

Also stretch (strain to fracture) values of juniper handsheets were much higher than ones 

of softwood pulp handsheets. Elastic fibres with high MFA are able to deform before the 

bonds between the fibres or the fibres themselves start breaking, which results in high 

stretch values (Page and Seth, 1980).
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The elastic properties of juniper wood do indeed manifest themselves in the properties of

handsheet made from juniper pulp. The properties of randomly oriented fibre networks of 

paper correlate well with the properties of the solid wood (Table 4 and Table 10).

Altogether the study on the juniper has shown that the chemistry of the fibres clearly 

does not contribute as much to the properties of the material as the cell wall hierarchy, 

especially MFA.
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6. Effects of lignin composition on processibility of 
fibres

6.1 Differences in lignin functional group distribution in spruce and 

pine 

The composition of lignin is known to vary significantly between different plants, and

even between wood species (Sjöström, 1993). Some studies have also pointed out 

variations in lignin structures within a single wood cell (Whiting and Goring, 1982). The 

structure of lignin has been shown to have an effect in different industrial processes. One 

example of these is coniferyl aldehyde (CAld), the presence of which in lignin has been 

shown to affect the pulping of wood (MacKay et al., 1999). Although methods to analyze 

CAld are well known, there is a very little data on it (Adler et al., 1948).

CAld is considered to be an intermediate in the biosynthesis of coniferyl alcohol (CAlc).

The amount of CAld groups in transgenic trees has been controlled by suppressing the 

activity of coniferaldehyde dehydrogenase (CAD), which is considered to be responsible 

for the reduction of CAld into CAlc  (Boerjan et al., 2003).

Raman imaging was used to analyse the differences in lignin structures in spruce and 

pine.  Raman bands characteristic  to CAlc and CAld groups were chosen according to a

study on ethylenic compounds in TMP by Agarwal and Ralph (2008). For Raman 

imaging, the characteristic Raman bands for CAlc and CAld groups were compared to

the intensity of the 1600 cm-1 band which represents aromatic ring mode of lignin, since 

images constructed using only the characteristic bands yielded images that resemble each 

other exactly. All the wavenumbers used for imaging are presented in Table 13 in the 

Experimental section of this thesis.
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Figure 14. Raman images of pine (on left) and spruce (on right) samples before (a-d) and after (e-h) 

NABH4 treatment. Images are constructed according to lignin/cellulose (a,b,e,f) and CAA/lignin 

(c,d,g,h) Raman band ratios. Raman band regions used are presented in Table 13. (Paper V)
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The Raman images constructed according to the ratio between bands representing both 

CAlc and CAld (joint abbreviation CAA for both structures) and lignin revealed clear 

differences between spruce and pine (Figure 14). In spruce, the CAA group content of

lignin is higher in the secondary cell wall and decreases in the primary cell wall and 

middle lamella lignin. However, in pine, the CAA content in the vicinity of primary cell 

wall lignin was clearly lower than in middle lamella lignin and secondary wall lignin.

Since differences could only be seen from the images constructed according to the 

Raman band where both CAlc and CAld groups contributed, samples were treated so that 

a contribution from only one of the groups was present.  NaHB4 was used to reduce CAld 

groups to CAlc groups according to the method introduced by Agarwal and Ralph (2008). 

The reaction scheme of NaHB4 reduction is presented in Figure 15. After reduction the 

differences between pine and spruce disappeared, and the CAA distribution in both 

species resembled that of unmodified spruce (Figures 14 c,d,g and h), where only two 

separate regions with differing CAA content can be observed.

Phloroglucinol staining is a well-known method for analysing CAld groups (Adler et al., 

1948). However, studies on CAld groups have been scarce. A high concentration of 

CAld groups has been shown to be present in the region of a primary cell wall and S1 

(Peng and Westermark, 1997). CAld distribution was studied by UV-Vis microscopy, 

which gives only the absolute number of groups, while in our study CAld content was 

reported as a ratio to the lignin content.

Figure 15. Reaction scheme for reduction of coniferyl aldehyde to coniferyl alcohol by NaBH4.
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Although the difference in the distribution of one functional group of one cell wall 

component seems insignificant, it could have a large impact in certain industrial 

processes. One of such process is thermomechanical pulping, where the difference in the 

quality of pulp and the energy consumption of the process varies greatly between spruce 

and pine. In order to produce equally good TMP pulp from pine of equivalent quality to

that of spruce, a much greater energy input is needed (Reme and Helle, 2001). The pulps 

from spruce and pine also differ in their surface chemical composition (Karnis, 1994).

It has been shown that the cleavage of fibres takes place in different parts of the cell wall 

in spruce and pine during TMP pulping. In spruce, the crack usually propagates at the 

interface between the primary and secondary cell wall, leaving the low lignin content 

secondary cell wall as the fibre surface. In pine, the crack propagates at the interface

between primary cell wall and middle lamella, and between secondary cell wall and 

primary cell wall. This can result in fibres with a surface consisting of either low lignin 

content secondary cell wall, or primary cell wall with high lignin content (Fernando and 

Daniel, 2008).

Differences in the distribution of CAA groups in lignin could be used to explain 

differences in the processibility of pine and spruce. A high amount of CAld groups could 

indicate that lignin biosynthesis in the cell wall has been interrupted, which causes the 

lignin to have a lower molecular weight than it would normally have. Aldehyde groups 

are also hydrophilic groups and their increased amount could also increase the water 

content of the cell wall. Both decreased molecular weight and increased water content 

affect the glass transition temperature of lignin (Olsson and Salmén, 1997), which plays 

an important role in thermomechanical pulping (Irvine, 1985).

The cracks in the material form preferentially in the interphase of two different materials, 

as in this case lignins with differing amounts of CAld groups. In the case of spruce the 

only interphase of two different lignin types is in the region of the primary cell wall, 
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where the cracks have been shown by Fernando and Daniel (2008) to propagate during 

the TMP process. In pine, however, there are two interphases where lignin structure 

changes; between the secondary and primary cell wall regions and between the primary 

cell wall region and the middle lamella. These interphases correspond well to the 

defibration mechanisms of pine and spruce shown by Fernando and Daniel (2008).

6.2 SEC analysis of residual TMP lignin 

Some middle lamella and primary cell wall particles consisting mainly of lignin remain 

on the surface of the TMP fibres (Li et al., 2006). The surface lignin was isolated from 

spruce and pine TMP pulps by extraction with 1,4-dioxane for further analysis to 

correlate the findings from Raman imaging with other analytical methods. Acetone 

extraction was performed prior to the dioxane treatment in order to remove extractives.

1,4-Dioxane is a well-known lignin solvent and its used, for example, in the isolation of  

milled wood lignin (Björkman, 1956), which is maybe the most popular model 

compound for native lignin (Guerra et al., 2006). 1,4-Dioxane does not dissolve the cell 

wall polysaccharides and thus it extracts only the lignin from the surface of the fibres. 

The lignin inside the cell wall remains sterically locked in the hemicellulose matrix. As 

can be seen from the scanning electron microscope (SEM) images of TMP fibres more 

fibrillar structures, which most likely are bundles of cellulose microfibrils, are revealed

after extraction with acetone and 1,4-dioxane (Figure 16). This suggests that the covering 

layer of lignin is removed due to extraction.
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Figure 16. SEM micrographs of unextracted and extracted spruce and pine TMP fibres.

(Unpublished data)

Removal of residual lignin seen in the SEM images was further supported by ESCA 

measurements. ESCA is a sensitive method to analyse only the very surface of the 

samples (Johansson, 2002), and thus it can be used to analyse changes on the surface of 

the fibre. The O/C ratio and CC-carbon values of the samples were used to analyse the 

chemical  composition  of  the  fibre  surfaces.  The  O/C  vs.  C-C  graph  shows  that  the  

composition of unextracted sample surfaces are close to lignin and extractives, while the 

extracted ones are closer to cellulose (Figure 17). No significant differences, however, 

could be observed between the acetone extracted fibres and the ones further extracted 

with 1,4-dioxane. This indicates that the changes due to dioxane extraction subsequent to 

acetone extraction cause only minor alterations in the surface chemistry of the fibres and 

they cannot be observed with ESCA
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Figure 17. O/C vs. C-C graphs. Values for cellulose, lignin and oleic acid (*) are calculated from 

their chemical compositions. (Unpublished data)

The dioxane was evaporated and the extract dissolved in LiCl/DMI. LiCl/DMI was 

chosen as a solvent for the lignin extract because studies have shown that softwood pulps 

dissolve  better  in  it. A  similar  study  exists  where  residual  lignin  from  kraft  pulp  was

dissolved with LiCl/DMAc and analysed by using size exclusion chromatography (SEC)

(Sjöholm et al., 1999).

The UV and differential refractive index (RI) chromatograms from SEC measurements 

are  presented  in  Figure  18.  From  the  RI  chromatogram  we  can  see  that  there  is  no  

difference in the shape of the peak between the samples. The data from the UV detector, 

operating at 244 nm wavelength, show a difference between spruce and pine samples. In 

pine there is a visible shoulder in the chromatogram, while the shape of the spruce peak 

is much more uniform. The difference could indicate that the residual lignin in pine 
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consists of two fractions with distinct molecular weights while the composition of spruce 

lignin is much more uniform. 

Figure 18. RI and UV chromatograms of 1,4-dioxane extracts from spruce and pine. (Unpublished 

data)

This finding correlates with the Raman imaging results on the CAA distribution in spruce 

and pine. The residual lignin extracted from the surface of the pine TMP fibres consists 

of two molecular weight fractions, which were detected in the SEC-UV chromatogram.

The lower molecular weight lignin fraction possibly contains the primary cell wall lignin 

with a high CAld concentration. Since the CAld groups remain in lignin due to the 

interrupted biosynthesis, the molecular weight of such lignin can be assumed to be lower. 

Two fractions of pine lignin in the primary cell wall and the middle lamella lignin can 

also be seen in the Raman images in Figure 14. The uniform peak of dioxane extract 

from spruce indicates that the lignin in the primary cell wall and middle lamella is more 

homogeneous.
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6.3 SEC analysis of residual lignin in oxygen delignified birch and 

eucalyptus kraft pulps 

A vast quantity of chemicals is needed to remove the lignin from wood fibres in the 

production of bleached pulp for paper making. The most common delignification process 

subsequent to pulping is oxygen delignification. Oxygen delignification removes about

50 % of the residual lignin from kraft pulp. The bleaching sequence, i.e., further removal 

of residual lignin after oxygen delignification is dependent on the raw material used for 

pulping.

Lignin-carbohydrate complexes (LCCs) are known to play an important role in the 

removal of the residual lignin. LCCs are known to be formed during alkaline pulping. 

However, they are assumed to be also present in native wood. LCCs have been 

considered to be one of the main reasons for difficulties in removal of the residual lignin 

from pulps. In order to avoid harsh bleaching sequences that damage fibre properties and 

increase the consumption of chemicals, and understanding of the ultrastructure of

different materials for pulping is necessary.

Oxygen delignified birch and eucalyptus kraft pulps were analysed by SEC with multi-

angle laser light scattering (MALS), RI and UV system using LiCl/DMAc as solvent. As 

can be seen in Table 11, the pulps were fairly similar to each other. The birch pulp had a

slightly higher content of xylose and a lower content of glucose than the eucalyptus pulp.

The viscosity and Kappa number of the birch pulp were slightly higher than those of the 

eucalyptus pulp.

Table 11. Carbohydrate composition, extractive content, kappa number and intrinsic viscosity of 

birch and eucalyptus pulps. (Paper VI)

Arabinose 

(%)

Xylose 

(%)

Mannose 

(%)

Galactose 

(%)

Glucose 

(%)

Extractives 

(%)

Kappa 

Number

Intrinsic 

Viscosity 

(ml/g)

Eucalyptus 0.2 13.1 0.2 0.2 84.1 0.31 11.9 1057

Birch 0.2 21.8 0.4 0.0 73.8 0.21 13.2 1270
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Dissolution of the sample can be evaluated from the slope of conformation plot, which is 

a log-log plot of radius of gyration versus molecular weight. If the solvent is good, the 

slope value falls between 0.5 and 0.6, which indicates random coil formation. Since the 

slopes of conformation plots (Table 12) fell between 0.5 and 0.6, the dissolution of the 

samples could be considered good. Eucalyptus and birch pulps yield very similar 

bimodal RI chromatograms (Figure 19), although the molecular weights and ratios of the 

two fractions differ slightly. The high molecular weight (HMW) fraction of birch pulp 

has a slightly higher average molecular weight than the eucalyptus pulp, whereas the

average molecular weight of the low molecular weight (LMW) fraction was higher in 

eucalyptus. The higher molecular weight of HMW fraction in birch pulp indicates that 

the cellulose has a higher DP compared to eucalyptus pulp. The lower molecular weight 

of LMW fraction of birch pulp, in turn, denotes that hemicelluloses have a higher DP in 

eucalyptus pulp. It can also be seen from the fact that the average molecular weights of 

the samples are almost the same but the hemicellulose content of birch pulp is higher 

than in eucalyptus. The higher amount of hemicelluloses is also likely to be the reason

for the higher polydispersity of the sample (Table 11).

Figure 19. UV and RI chromatograms of oxygen delignified birch (a) and eucalyptus (b) kraft pulps.

(Paper VI)
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Although the RI choromatograms of birch and eucalyptus pulps resembled each other,

there are significant differences in UV chromatograms. The HMW fraction of birch pulp 

has  a  very  small  UV  light  response  whereas the  LMW fraction  is  strongly  UV  light  

absorbing. In eucalyptus pulp the HMW UV absorption band is slightly larger than the 

one in the low molecular weight fraction (Table 12, Figure 19). This indicates that a large 

amount of the lignin in eucalyptus is associated with HMW fraction, which consists 

mainly of cellulose. This brings out the question of the lignin-cellulose association in 

pulps. Are there lignin-cellulose complexes present in pulp? And if so, how do their 

quantities vary in different kinds of pulps?

  

Table 12. Calculated parameters from SEC analysis of birch and eucalyptus pulps. (Paper VI)

Slope of 

Conformation

Mw 

(kDa) Mw/Mn

HMW RI Area/ 

Total RI Area

HMW UV Area/ 

Total UV Area

Eucalyptus 0.55 670 3.96 0.80 0.61

Birch 0.53 662 7.54 0.72 0.27

Although in many publications lignin has been proposed to be linked with cellulose 

(Lawoko et al., 2005, Isogai et al., 1989, Henriksson et al., 2007, Capanema et al., 2004),

there has been debate whether cellulose-lignin LCCs exist (Kilpeläinen et al., 2007,

Tenkanen et al., 1999). Li et al. (2011) recently analysed thioacidolysis products obtained 

from eucalyptus pulp and wood and found lignin-carbohydrates consisting of two 

different fractions, one rich with xylan and the other with glucan.

LCCs have been assumed to play an important role in the delignification of natural fibres 

and they have been even proposed to be the main reason for the difficulties in

delignifying the pulp. In order to remove almost all the residual lignin from the pulp, it 

needs to go through several different bleaching sequences that damage the fibre and 

consume significant amounts of chemicals.  Understanding how the lignin is associated 

with the other cell wall polymers will help us tailor the bleaching sequences for various

materials and consume lesser amounts of chemicals.
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7. Conclusions
The ultrastructure of fibres determines the properties of the material and how it reacts to 

different processes. This thesis covers a range of ultrastructural studies from naturally 

occurring deviations in chemistry or hierarchy of the cell wall to the effects of processing 

on the fibre properties.

The structural hierarchy of the cell wall was found to override the effects of differences 

in fibre chemistry on mechanical properties of both fibres and wood. Especially 

microfibril angle was found to determine the elasticity and tensile strength of natural 

fibre composites, in this case paper and wood. High microfibril angle fibres resisted 

tensile load poorly, which could be seen as very low tensile strength of handsheets and 

tensile failure as preferred failure mechanism of wood samples in 4 point bending tests. 

The low tensile strength could be explained by composite theory, where reinforcing 

fibres are more likely to debond from the surrounding matrix material as they become 

more aligned against the applied load. The elastic modulus of wood and stiffness of 

handsheets were very low in the case of high microfibril angle material, where 

reinforcing cellulose microfibrils have higher mobility inside the cell wall. Disruptions in 

the cell wall structure were observed to lower slightly the fibre tensile strength.

A more severe effect was observed in the susceptibility of the defected areas to acid 

hydrolysis. The degree of polymerization of fibres decreased more drastically in more 

defected fibres after acid hydrolysis than in ones with less structural defects.

The distribution of the cell wall structural components did not seem to have effect on the 

fibre properties. No differences could be seen in the lignin/cellulose distribution of any of 

the normal wood samples of different wood species from the “chemical micrographs” 

obtained by Raman imaging. This correlated well with measurements with other 

techniques in the literature. A different distribution of lignin and cellulose was only 

observed in compression wood.
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Although no differences could be observed in the distributions of the cell wall structural 

components, spruce and pine differed in the distributions of lignin functional groups. The 

middle lamella and primary cell wall lignin in spruce appeared to be very homogeneous, 

while in pine they clearly consisted of two fractions with differing amounts of coniferyl 

aldehyde groups. Size exclusions chromatography measurements supported the Raman 

imaging findings on differences in lignin composition. Lignin with high coniferyl 

aldehyde  group  content  is  known to  have  a  low molecular  weight,  which  in  turn  could  

affect the physical properties of lignin in elevated temperatures so that it could possibly 

be used to explain the differences in the defibration behaviour of pine and spruce during 

thermomechanical pulping. 

Differences in the ultrastructure of fibres could be also observed in processed fibres. A 

significant amount of lignin was found in SEC studies to be associated with the high 

molecular weight fraction of the oxygen delignified eucalyptus pulp sample, which is 

considered to consist mainly of cellulose. In birch pulp most of the lignin was associated 

with the low molecular weight fraction, corresponding to the hemicelluloses. There has 

been debate on the lignin-cellulose complexes, and these results point in favour of their 

existence. Differences in lignin-carbohydrate complexes might prove out to play a 

significant role in further delignification of the pulps.

The findings of this thesis bring out some implications of the complex nature of natural 

fibres. Instead of considering natural fibres merely as microscopic fibres, their 

nanocomposite structure has to be also acknowledged. The alignments of reinforcing 

fibres in walls of individual cells have a substantial effect on the properties of the whole 

plant. The plant cells have evolved to be “perfect” natural fibre composites in ambient 

conditions where the subtle differences in chemical composition do not play an important 

role. However, when the conditions are changed drastically, the effects of chemical 

differences become more prominent and differences between different species become 

significant.
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Understanding the composite structure of natural fibres and their function in plants will 

give us valuable information on the behaviour of nanocomposites and provide us with 

model that can be used to design man-made composites. Knowledge on even the slightest 

details of fibres might aid us to develop processes to enhance fibre utilization.
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8. Materials and Methods

8.1 Materials 

Poland. The flax samples were 

supplied as green stem (i.e. before retting), as retted stem and as two fibre grades, “noils” 

and “kotonina” (Table 1). Noils are flax fibres mechanically separated from the stem and 

cleaned of shive. Additional mechanical processing of the noils, separating the fibres 

further, yields kotonina.  The hemp fibre was mechanically separated from the stem and 

had the shive removed (in processes known as ‘scutching’ and ‘carding’ respectively), 

but had not undergone any further processing. 

Hemp fibres were provided by BaFa GmbH, Malsch, Germany. To investigate whether 

increasing levels of damage induced by a particular mechanical process affected the 

susceptibility of hemp fibre to chemical degradation, a series of fibres that had been 

artificially damaged were prepared. Hemp fibres were passed a varying number of times 

through intermeshing cogwheels and the damage to the fibres was reported as the number 

of passes (0, 5, 12 and 22) the fibres made through the equipment.

Pine and spruce samples used in the determination of the CAA group distributions by 

Raman imaging were provided by KCL (Espoo, Finland).

Birch and eucalyptus samples were provided by Stora Enso, Imatra, Finland.

Stems of common juniper (Juniperus communis L.) were collected from Solböle, South-

Western Finland. Samples were cut from the same, approximately 7 cm thick, straight 

and branchless stem roughly at a height of 50 cm.

Norway spruce compression wood and normal wood samples for 4-point bending tests 

were obtained from Mikkeli, South-Eastern Finland. Branchless samples were cut from 
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the same stem; normal wood being taken from approximately breast height and 

compression wood lower in the stem, close to the stump.

Oxygen delignified kraft birch and eucalyptus kraft pulps were provided by Finnish pulp 

mills.

8.2 Mechanical testing 

Juniper, spruce and spruce compression wood were cut into small rectangular beams with 

dimensions 3 mm (radial), 6 mm (tangential) and 60 mm (longitudinal). Specimens were 

conditioned in a climate chamber (RH 65 % and 20 °C) prior to testing. 

Annual ring width in juniper is smaller than in spruce and spruce compression wood, 

which  results  in  a  different  number  of  annual  rings  in  the  sample. Therefore  there  is  a

variance in late wood percentage in the sample cross-section, which may slightly affect 

the modulus of elasticity. 

A four point bending test with an outer span of 37.5 mm and an inner span 12.5 mm was 

used to determine mechanical properties (Figure 20). Testing was performed using a 

small, stepper motor driven, loading device designed for the use with a light microscope. 

Force  was  measured  with  a  500  N  load  cell.  The  loading  was  conducted  under

displacement control at a cross-head displacement rate of 0.5 mm/min. Specimens were 

loaded to 50 N and then unloaded to 5 N prior to the actual measurement, whereafter the

samples were loaded to failure.
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Figure 20. The 4-point bend test set-up; L is outer span, L/3 is inner span, R is specimen height and 

T is specimen width.

During testing, load and crosshead displacement data were recorded and bending 

behaviour was observed using an optical microscope equipped with a CCD camera. 

Micrographs were captured at 5 N loading force intervals.

The longitudinal modulus of elasticity was calculated from the classical formula of beam 

theory for homogenous beams with rectangular cross section. Total cross-sectional area 

was used. The modulus of elasticity was calculated based on crosshead displacement 

(which equals deflection of a beam under loading head) and load data between 0.1 and 

0.4 of the maximum load. The effect of shear force and the indentation of the supports 

and loading head were neglected. 

Equation 1

where MOEB is MOE determined in 4-point bending, L is outer span, T is specimen 

head (Gere, 1997).
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8.2 Single fibre testing 

Single fibres were isolated for mechanical testing by soaking technical fibres (fibre 

bundles) in tap water and manually separating the ultimate fibres (individual cells) by 

using tweezers. The single fibre tensile testing was performed according to an adaptation 

of the ASTM D3379-75 (1989) standard. After drying, individual fibres were glued 

across a 10 mm aperture (gauge length) punched into card holders, using PVA adhesive. 

Mechanical testing was carried out on a TSL 400 tensile testing machine (MTS, USA, 

www.mts.com) equipped with a 50 N load cell. Fibres were tested to failure at a rate of 

0.5 mm/min. Twenty (20) fibres were tested from each fibre type. Before tensile testing, 

the cross-sectional dimensions of each fibre were measured from 3 locations along the 

gauge length using an optical microscope. The average value of the three measurements 

was used in the calculation of tensile stress. A circular cross-section was assumed. As no 

direct measurement of strain was possible, fibre strain was calculated from the crosshead 

displacement and is therefore likely to underestimate the true modulus due to the 

compliance of the system and other errors. Tests were deemed invalid if the fibres did not 

fail within the gauge length.

8.3 X-ray diffraction measurements 

X-ray diffraction (XRD) measurements were conducted for solid pieces of juniper and 

for the compression and normal wood of Norway spruce. All the samples were cut 

tangentially  from  the  stems  using  a scalpel  to  a (radial)  thickness  of  about  1  mm  (the  

longitudinal and tangential dimensions being about 10 x 10 mm²). Two samples were cut 

from the juniper stem at the middle between the pith and bark; being 1 mm thick, the 

pieces included several annual rings. The spruce normal wood samples were cut from the 

earlywood of the 16th and the 19th annual rings, and the compression wood samples were 

from the earlywood of the 20th, the 21st and the 22nd annual rings.
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The MFAs were determined for juniper wood from the azimuthal intensity profiles of the 

cellulose reflection 004 measured using the symmetrical transmission geometry. The 

MFA distributions were determined from the azimuthal intensity profiles of the cellulose 

reflections 200 and 004 measured in symmetrical transmission mode using a set-up 

consisting of a Huber 420/511 four-circle goniometer, a sealed Cu-anode x-ray tube, and 

1 radiation (wavelength 1.541 Å) was obtained 

using a ground and bent germanium monochromator. The MFAs were determined from 

the intensity profiles by fitting pairs of Gaussian functions into the profiles as explained 

in (Sáren et al., 2001).

Diffraction patterns were measured using the same x-ray set-up for determining the 

dimensions  of  cellulose  crystallites.  The  crystal  length  was  determined  from  the  

reflection 004 measured in symmetrical transmission mode, and the crystal width was 

determined from the reflection 200 measured in symmetrical reflection mode. The crystal 

dimensions  were  obtained  from  the  widths  and  positions  of  the  reflections  by  the  

Scherrer equation (Andersson et al., 2000).

8.4 Scanning electron microscopy 

Spruce and pine TMP fibres were sputter with ca. 2.5 nm thick osmium-coating layer at 7 

Pa and 10 mA for 5 sec (Neo Osmium Coater, Meiwafosis, Japan). The samples were 

analysed with a field-emission-type SEM (Hitachi S-4000, Hitachi, Japan) at 5 kV.

8.5 Viscosity measurements 

Viscosity measurements are among the most common chemical analyses made for pulp.

In the standard method (SCAN-CM 15:99), the sample is dissolved in 

cupriethylenediamine (CED) and the efflux time at 25 oC of the solution is determined 

with capillary viscometer (Figure 21). The intrinsic viscosity is calculated from the 
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concentration and the efflux time of the solutions by first determining the viscosity ratio 

ratio with equation

Equation 2

ratio=ht

where h is the calibration constant for the viscometer and t is the efflux time for the test 

solution. The viscosity ratio is used to obtain a value for the product

provided in the standard. equation

Equation 3

where c is the concentration of the test solution. 

Figure 21. Capillary viscometer

The intrinsic viscosity of the polymer solution has been shown to correlate with the DP 

of the polymers following to Mark-Houwink-Sakurada equation:
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Equation 4.

mM

where M is the molecular weight and Km a

literature (da Silva Perez and van Heiningen, 2002). Evan and Wallis (1989), however, 

have shown that the Mark-Houwink-Sakurada equation underestimates the actual DP of 

cellulose. Intrinsic viscosity values can be used to correlate with the average DP,

meaning that non-cellulosic cell wall components also contribute to the value.

Da Silva Perez and van Heiningen (2002) have recently developed an equation that can 

be used to determine the DP of cellulose and hemicelluloses from the intrinsic viscosity 

value when the carbohydrate content of the material is known.

8.6 Raman spectroscopy 

The Raman effect was discovered by Krishna and Raman in 1928. However, before the 

introduction of FT-Raman in 1986 there are only a few reports where Raman 

spectroscopy has been applied to chemical analysis (McCreery, 2000). Among the 

reasons for this were technical difficulties and the subsequent, somewhat suppressed 

utilization of Raman spectroscopy, are the weak intensity of Raman scattering, 

fluorescence interference, and the inefficiency of light collection and detection.

Raman spectroscopy is based on detection of scattered photons after the excitation of a

sample by monochromatic light. The basic principles of spectroscopic transition 

phenomena concerning Raman spectroscopy are illustrated in Figure 22. The sample is 

excited with monochromatic light (hv0) to a short-lived “virtual state”. Predominantly the 

molecules relax to the same ground state (v0), scattering the photons of the same energy 

as  used  for  excitation.  This  phenomenon  is  called  Rayleigh  scattering,  which  is  a  

competing effect to Raman scattering. With a small probability the molecule relaxes to a 
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higher ground state (v1), which results to an inelastically scattered photon with lower

energy than the excitation energy. This is called Stokes scattering and it is the main 

phenomenon in Raman spectroscopy. Some of the scattered photons can also have an 

increased energy, which is called anti-Stokes scattering.

Figure 22. Spectroscopic transitions related to Raman spectroscopy.

Raman spectroscopy operates by the same energy range as IR spectroscopy and the 

chemical information yielded by the techniques are complementary. IR spectroscopy 

detects changes in the dipole moment, whereas Raman spectroscopy detects changes in 

polarizability. Symmetrical changes cause large polarization changes and hence strong 

Raman scattering and weak or no IR absorption, while the deformation mode causes 

weak Raman scattering and strong IR absorption (Figure 23). As a rule of thumb what 

can be seen in Raman spectroscopy is not visible in IR and vice versa (Smith and Dent, 

2005).
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Figure 23. Dipole and polarization changes in carbon disulphide with resultant IR and Raman 

spectra (Smith and Dent, 2005)

When it comes to biological hydrophilic samples, such as natural fibres, the insensitivity 

to very polar water can be considered to be an advantage of Raman spectroscopy. This 

also enables measurements directly from water solutions.

Although Raman scattering was discovered with the naked eye, the phenomenon is 

inherently very weak. Only 10-6-10-8 of photons are Raman scattered, which has set high 

requirements on the detection equipment. Due to the weak nature of Raman scattering, 

high energy lasers are needed, which in turn easily result in degradation of the sample 

(Smith and Dent, 2005). Weak Raman scattering can also be easily suppressed by

fluorescence. Fluorescence can originate from the impurities in sample or from the 
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sample itself. For example, degradation products of lignin usually fluoresce so strongly 

that no Raman bands from the sample itself can be distinguished.

8.7 Raman imaging 

Raman imaging can be thought of as “chemical microscopy”. The principle of Raman 

imaging is presented in

Figure 24. First an area of interest is located using an optical microscope. After the area is 

chosen, Raman spectra are collected within the area at regular intervals. Subsequently the 

baselines of the spectra are corrected and characteristic bands representing the features of 

interests are chosen. Raman images are constructed from the corrected spectra according 

to the intensity or intensity area of the selected Raman bands.

Figure 24. Schematic image of Raman microscope and the basic principle of Raman imaging.

Raman imaging sets very high requirements for the samples. To obtain high resolution 

images, a confocal microscope with high magnification is needed. When measuring large 

areas, the sample needs to stay in the focus of the microscope during the entire

measurement. For example, when preparing wood cross-sections for Raman imaging, the 

sample needs to be embedded and sectioned with a microtome in order to achieve 

surfaces that are smooth enough.
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Raman images may consist of tens a thousands of spectra, which means that the 

measurements are very long and the sample needs to endure a high powered laser for the 

whole measurement. When constructing a Raman image, usually compromises are made 

between the resolution of the image and the quality of the spectrum. With an increasing 

amount of measurements, however, the features of the images will be clearer and the 

quality of the spectra will be lower due to shorter measurement time or a lower laser 

intensity in order not to burn the sample during the measurement.

Raman spectroscopy and imaging in natural fibre research

Raman spectroscopy has been proven to be a powerful tool in analysis of different 

components of cell wall. Various features of cellulose have been analysed by Raman 

spectroscopy, for example crystallinity (Agarwal et al., 2010, Schenzel et al., 2005),

different polymorphs (Atalla, 1976, Wiley and Atalla, 1987, Schenzel and Fischer, 2001),

orientation (Atalla et al., 1980) and strain (Eichhorn et al., 2000, Eichhorn and Young, 

2001). Strain measuments have been applied for pure cellulose fibres (Eichhorn et al., 

2003), but also for flax, hemp (Eichhorn et al., 2000) and wood fibres (Gierlinger et al., 

2006). The spectrum of cellulose is, like the spectrum of any polymer (Tanaka and 

Young, 2006), sensitive to orientation when using polarized light in analysis (Wiley and 

Atalla, 1987).

Non-cellulosic polysaccharides such as pectins and hemicelluloses in the wood cell wall 

have also been under investigation. However, due to the overlapping of their spectrum

with all of the cell wall components, Raman imaging of hemicellulose and pectins has 

not been succesful so far (Atalla and Agarwal, 1986, Agarwal and Ralph, 1997).

Lignin is perhaps the easiest cell wall component to analyse due to very prominent bands 

arising from the aromatic ring structures at 1600 cm-1 wavenumber region. Raman 

spectroscopy has been used to show that lignin inside the cell wall has orientation with 

respect to cellulose (Atalla and Agarwal, 1985). Raman spectroscopy has also been used 

to analyse for example, guaiacyl/syringyl ratios (Takayama et al., 1997), carbonyl groups 
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(Kihara et al., 2002) and ethylenic compounds in lignin (Agarwal and Ralph, 2008) as 

well as lignin concentration in pulps (Agarwal et al., 2003). A significant advantage in 

lignin analysis can be gained when using UV-wavelength laser for the excitation of the 

sample. Raman bands of aromatic structures (about 1600 cm-1 wavenumber area) are 

resonance enhanced and more information can be extracted from the spectrum of lignin 

(Halttunen et al., 2001, Saariaho et al., 2005, Jääskeläinen et al., 2006). UV-resonance 

Raman spectroscopy can also be used to detect hexenuronic acid groups in pulps 

(Jääskeläinen et al., 2005).

Since the Raman instruments, for example computers and CCD cameras, have been only 

recently developed to such high level that enabled easy Raman imaging, there are 

relatively few publications involving this technique. Raman imaging has been used to 

analyse chemical distributions in conventional (Gierlinger and Schwanninger, 2006,

Agarwal, 2006), as well as transgenically modified trees (Schmidt et al., 2009). The 

sensitivity of Raman spectroscopy to the orientation of cellulose has enabled detection of 

microfibril angle in different parts of the cell wall (Gierlinger et al., 2010, Agarwal and 

Ralph, 2007).

Equipment

The samples were analyzed with an alpha300 R Confocal Raman microscope (Witec 

GmbH, Germany, www.witec.de) at ambient conditions. The Raman spectra were 

obtained by using a frequency doubled Nd:YAG laser (532.35 nm, 10 mW) and a Nikon 

100× (NA=0.95) air objective. The Raman system was equipped with a DU970N-BV 

EMCCD camera behind a 600 lines/mm grating. The excitation laser was polarized 

horizontally. For each single spectrum in the Raman images, an integration time of 

varied length was used depending on how prone the samples were to burn. The size of 

one pixel in the image is 0.1 μm. The baseline of the spectra were corrected with WiTec 

Project 1.94 (WiTec GmbH, Germany, www.witec.de) by using fifth order equation in 

the  wavenumber  area  from  600  cm-1 to 2000 cm-1, where the most prominent Raman 

bands are located. A constant background was not subtracted from the spectra due to the 
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varying baseline of the individual measurements. A list of characteristic wavenumber 

regions used for constructing images is presented in Table 13.

Table 13. Raman band regions of compounds for construction of images.

Compound
Wavenumber region 
(cm-1) Raman mode

Lignin 1583-1620 Aromatic ring mode
Cellulose 1090-1100 C-O stretch
Epoxy resin 1726-1754
Coniferaldehyde and alcohol 
(CAA)

1649-1677 C=C and C=O stretch

Coniferaldehyde 1623-1633 C=C stretch

8.8 Size exclusion chromatography 

Size exclusion chromatography (SEC) is a liquid chromatographic separation method for 

macromolecules by their molecular size. Figure 25 illustrates the basic principle of SEC 

with macromolecules of two different sizes. As the macromolecules pass through the 

column packed with porous material with a controlled pore size, the small particles 

penetrate the pores, which cause them to retain longer in the column than the large 

particles that pass right through the column. A more detailed description on SEC can be 

found from Handbook of Size Exclusion Chromatography (Malawer and Senak, 2004)
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Figure 25. Basic principle of SEC (Malawer and Senak, 2004)

After the molecular weight fractions have passed through the column in reversed order so 

that the high molecular weight fraction elutes first, they can be analysed with different 

kinds of detectors. In this work MALS, RI and UV detectors were used.

The RI detector is the most common detector used in SEC systems. It detects very small 

changes in the refractive index of the solution and can be used to detect concentrations of 

most of the polymeric samples. The UV detector measures the absorption at a certain 

wavelength or a range of wavelengths. UV detectors can be used, for example, for 

samples containing aromatic or olefinic structures (Malawer and Senak, 2004).
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Figure 26. Schematic image of a SEC system (Malawer and Senak, 2004) .

The intensity of the light scattered from a polymer solution, in addition to that scattered 

by pure solvent, is related to the molecular weight and the shape of the polymer in 

solvent. The shape and the polymer size are determined from the angular variations of 

the scattered light intensity. The weight-average molecular weight, the radius of gyration 

and the second virial coefficient can be determined by measuring the scattered intensity 

as  a function  of  the  angle  for  a  series  of  samples.  By  using  MALS,  scattering  can  be  

simultaneously measured of several angles, which enables the determination of 

molecular weight from the eluent. MALS detector combined with SEC can be used to 

analyse the molecular weight distribution directly as polymer elutes without using 

internal standards. However, a value for specific refractive index increment of the 

polymer solution (dn/dc) is needed for each polymer-solvent system to be able to

calculate the molecular weight.
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8.9 SEC measurements on cellulosic materials 

SEC measurements have very high requirements for the solvent used as the mobile phase. 

The viscosity of the solvent has to be low, it needs to be compatible with the packing 

material used in the column, it needs to be nearly transparent if any of the earlier 

mentioned detectors are used and the dissolution of the sample needs to be complete

without degradation of the cell wall components.

The dissolution of a heterogeneous material like natural fibres is always an issue.

Although many solvents have been demonstrated to dissolve lignocellulosic samples

(Kilpeläinen et al., 2007) , there are only a few which can be used in SEC systems. 

The  most  promising  solvents  for  pulp  samples  in  SEC  systems  are  LiCl/N,N-

dimethylacetamide (DMAc) and LiCl/1,3-dimethyl-2-imidazolidinone (DMI). Both 

solvent systems have been used to study wood pulps (Yanagisawa and Isogai, 2007,

Karlsson and Westermark, 1996). However, incomplete dissolution of unbleached 

softwood pulp has been reported in the case of the LiCl/DMAc system (Sjöholm et al., 

2000). The LiCl/DMAc system has also been used to analyse different kinds of kraft 

lignins (Sjöholm et al., 1999).

SEC measurement

SEC measurements were done by using a styrene-divinylbenzene copolymer gel packed 

column (KD-806M; Shodex, Japan, diameter 8 mm, length 300 mm), MALS detector 

and RI detector (RID-10A; 

Shimadzu).
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Pulp samples were activated using solvent-exchange method and dissolved into 8% 

LiCl/DMAc. Lignin samples were dissolved into 8% LiCl/DMI. Measurements are 

described in detail elsewhere (Yanagisawa et al., 2005).

8.10 Chemical compositions 

Wood samples were milled with a Wiley mill and extracted with acetone to determine the 

extractives content. The Klason lignin and carbohydrate contents were determined 

according to a method by Sluiter et al. (2008). The resulting monosaccharides were 

measured by HPAEC (Dionex ICS-3000, CarboPac PA20 column, pulsed amperometric 

detection, PAD).

8.11 ESCA 

The ESCA analyses of extracted and unextracted TMP pulps were carried out using an 

AXIS 165 electron spectrometer and monochromatic Al K irradiation at 100W. For 

elemental composition, low resolution wide spectra were recorded, using 80 eV pass 

energy and 1 eV step. For more detailed chemical information, carbon and oxygen were 

also recorded in high resolution mode, using 20 eV pass energy and 0.1 eV step. 

Experiments were carried out after an overnight pre-evacuation, and a reference sample 

of 100% cellulose paper was used as an in-situ reference, monitoring conditions in the 

analysis chamber during the measurement. No sample damage due to X-rays or vacuum 

exposure was observed. Due to the complexity of this natural material, 2-3 pieces of 

sample were analysed, each from at least three manually optimised locations. In curve 

fitting, a procedure tailored for lignocellulosic samples was applied, using four 

symmetric Gaussian components. Details on the experimental setup and the curve fitting 

used can be found in Johansson and Campbell (2004).
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