

Aalto University publication series
DOCTORAL DISSERTATIONS 118/2011

Grid Based Propositional Satisfiability
Solving

Antti E. J. Hyvärinen

Doctoral dissertation for the degree of Doctor of Science in
Technology to be presented with due permission of the School of
Science for public examination and debate in Auditorium T2 at the
Aalto University School of Science (Espoo, Finland) on the 28th of
November 2011 at noon.

Aalto University
School of Science
Department of Information and Computer Science

Supervisor
Professor Ilkka Niemelä

Instructor
Doctor Tommi Junttila

Preliminary examiners
Professor Bernd Becker, Albert-Ludwigs-University Freiburg,
Germany
Professor Lakhdar Saïs, Université Lille Nord de France, France

Opponent
Professor Toby Walsh, National ICT Australia and University of New
South Wales, Australia

Aalto University publication series
DOCTORAL DISSERTATIONS 118/2011

© Antti E. J. Hyvärinen

ISBN 978-952-60-4368-5 (pdf)
ISBN 978-952-60-4367-8 (printed)
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934 (printed)

Aalto Print
Helsinki 2011

Finland

The dissertation can be read at http://lib.tkk.fi/Diss/

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Antti E. J. Hyvärinen
Name of the doctoral dissertation
Grid Based Propositional Satisfiability Solving
Publisher School of Science
Unit Department of Information and Computer Science
Series Aalto University publication series DOCTORAL DISSERTATIONS 118/2011
Field of research Theoretical Computer Science
Manuscript submitted 14 June 2011 Manuscript revised 1 September 2011
Date of the defence 28 November 2011 Language English

Monograph Article dissertation (summary + original articles)

Abstract
This work studies how grid and cloud computing can be applied to efficiently solving
propositional satisfiability problem (SAT) instances. Propositional logic provides a
convenient language for expressing real-world originated problems such as AI planning,
automated test pattern generation, bounded model checking and cryptanalysis. The interest
in SAT solving has increased mainly due to improvements in the solving algorithms, which
recently have increasingly focused on using parallelism offered by multi-CPU computers.
Partly orthogonally to these improvements this work studies several novel approaches to
parallel solving of SAT instances in a grid of widely distributed "virtual" computers instead of
workstations or supercomputers.

Two types of parallel SAT solving approaches are analyzed and used as building blocks for

more complex systems: using several solvers which compete to solve a given instance in
parallel, and splitting the search space of the instance and solving the resulting partitions in
parallel. The work presents several efficient partitioning functions, critical in successful
splitting according to an analytical result, and presents novel solving systems that are less
dependent on the partitioning function efficiency. Finally, the work studies combining clause
learning, a key technique in modern SAT solvers, with the novel types of parallel solvers.
Different heuristics are studied for filtering clauses learned in parallel, and the work proposes
techniques which allow exchanging the clauses between different splits.

The practical significance of the results are studied using large, standard benchmark sets

from SAT competitions. Some of the approaches are able to solve several instances that have
either not been solved at all by any other solver, or which are significantly slower to solve with
other solvers.

Keywords Constraint Based Search, Randomized Search, SAT, DPLL procedure, Clause
Learning, Parallel Computing, Cloud Computing, Grid Computing

ISBN (printed) 978-952-60-4367-8 ISBN (pdf) 978-952-60-4368-5
ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942
Location of publisher Espoo Location of printing Helsinki Year 2011
Pages 207 The dissertation can be read at http://lib.tkk.fi/Diss/

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Antti E. J. Hyvärinen
Väitöskirjan nimi
Pilvilaskentapohjainen lauselogiikan toteutuvuustarkastus
Julkaisija Perustieteiden Korkeakoulu
Yksikkö Tietojenkäsittelytieteen laitos
Sarja Aalto University publication series DOCTORAL DISSERTATIONS 118/2011
Tutkimusala Tietojenkäsittelyteoria
Käsikirjoituksen pvm 14.06.2011 Korjatun käsikirjoituksen pvm 01.09.2011
Väitöspäivä 28.11.2011 Kieli Englanti

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit)

Tiivistelmä
Tutkin väitöskirjassani lauselogiikan toteutuvuusongelmana kuvattujen, rakenteisten
ongelmien ratkaisemista pilvilaskentaympäristössä. Lauselogiikka on luonteva kuvauskieli
useisiin käytännön tarpeista nouseviin ongelmiin, kuten tekoälysuunnitteluun,
automaattiseen testihahmojen luomiseen piirisuunnittelussa, rajoitettuun
mallintarkastukseen ja kryptoanalyysiin. Lauselogiikan käytännön merkitys on kasvanut
ratkaisualgoritmien kehittyessä, ja viimeaikoina erityisesti rinnakkaisuuden hyödyntäminen
on noussut keskeiseksi tutkimuskysymykseksi. Uutena näkökulmana työssä tutkitaan useita
lähestymistapoja toteutuvuustarkastamiseen, kun laskentaympäristö koostuu laajasti
hajautetusta joukosta "virtuaalisia" tietokoneita työasemien tai supertietokoneiden sijaan.

Tutkittavat ratkaisumenetelmät pohjaavat kahteen peruskäsitteeseen: ratkaisijoiden

kilpailuttamiseen rinnakkain ja hakuavaruuden jakamiseen. Analyysin mukaan hyvien osa-
avaruuksien tuottaminen on keskeistä, jotta jälkimmäinen menetelmä kaikissa tapauksissa
nopeuttaa ratkaisua. Työssä tutkitaan hyviä osa-avaruuksia tuottavia heuristiikkoja, sekä
useita uudenlaisia tapoja osa-avaruuksien läpikäyntiin siten, että menetelmien tehokkuus ei
riipu voimakkaasti heuristiikoista. Menetelmät yhdistetään lauselogiikan
toteutuvuustarkastimissa keskeiseen klausuulioppimiseen tutkimalla erilaisia klausuulien
suodatusmenetelmiä ja tehokkaita klausuulien siirtotapoja hakuavaruuksien välillä.

Työssä tutkitaan myös esitettyjen menetelmien käytännön merkitystä laajalti käytössä

olevien, toteutuvuustarkastinkilpailujen testiongelmien avulla. Menetelmillä pystyttiin
ratkaisemaan eräitä tunnettuja testiongelmia ensimmäistä kertaa, ja muita tällaisia ongelmia
huomattavasti nopeammin kuin millään aiemmin tunntetulla menetelmällä.

Avainsanat Rajoitepohjainen haku, satunnaistettu haku, Lauselogiikan toteutuvuusongelma,
DPLL-algoritmi, klausuulioppiminen, rinnakkaislaskenta, pilvilaskenta, grid-
laskenta

ISBN (painettu) 978-952-60-4367-8 ISBN (pdf) 978-952-60-4368-5
ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942
Julkaisupaikka Espoo Painopaikka Helsinki Vuosi 2011
Sivumäärä 207 Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/

Contents

Contents 1

List of Publications 5

Author’s Contribution 7

1 Introduction 13

1.1 The SAT Problem . 14

1.2 Related Approaches . 15

1.3 Contributions . 17

2 Propositional Satisfiability and SAT Solvers 19

2.1 Propositional Satisfiability . 19

2.2 Conflict-Driven Clause Learning SAT Solvers 20

2.2.1 Randomness in Solver Run Times 25

2.2.2 Restarts and Randomization 26

2.3 Experiments on Hard Restarts 28

3 Grid Computing 31

3.1 The Computing Model . 31

3.2 Job Management . 32

4 Parallel Solving based on Algorithm Portfolios 35

4.1 Simple Distributed SAT Solving 36

4.2 Parallel Restart Strategies . 37

4.3 Experiments on Parallel Restart Strategies 39

4.4 Clause Learning with Simple Distributed SAT Solving . . . 43

4.5 Experiments on the Algorithmic Framework 44

4.6 The CL-SDSAT Implementation 48

5 Parallel Solving Based on Partitioning 51

1

5.1 Plain Partitioning . 52

5.2 Guiding Paths . 58

5.3 Iterative Partitioning with Partition Trees 60

5.4 Safe and Repeated Partitioning 62

5.5 Constructing Partitions . 64

6 Learning and Partitioning 69

6.1 Learned Clause Tagging . 69

6.2 Cumulative Learning in Iterative Partitioning 75

6.3 Effect of Learned Clauses with Tagging 77

6.4 Experiments on the Iterative Partitioning with Cumulative

Learning . 79

7 Conclusions 85

7.1 Summary of the Contributions 85

7.2 Further Work . 87

Publications 99

2

Preface

This thesis is the result of the research I have conducted in the Computa-

tional Logic Group led by Professor Ilkka Niemelä.

Professor Bernd Becker (Albert-Ludwigs-University Freiburg) and Pro-

fessor Lakhdar Saïs (Université Lille Nord de France) have reviewed the

thesis. I express my gratitude to them for the time invested in giving in-

sightful and constructive analysis on the manuscript, and Prof. Becker for

the suggestions that helped me further improve the presentation. Profes-

sor Ilkka Niemelä and Doctor Tommi Junttila, my thesis supervisor and

instructor, respectively, have been invaluable in sharing their expertise,

giving good advice at the numerous occasions I have needed it in varying

subjects, be they scientific, practical, or related to something completely

different. I am grateful to them for the opportunity of working around a

fascinating subject with a clear goal.

Some of the experiments of this thesis were run on the resources pro-

vided by the NorduGrid Collaboration and the Finnish Material Science

Grid M-grid. I would like to thank the people involved in these projects, in

particular the Grid Computing Group at the Finnish CSC, and the people

involved in the Advanced Resource Connector (ARC) related projects.

I have received funding for the research from the Department of Com-

puter Science, Hecse Graduate school and the Academy of Finland. I am

also grateful for the personal grants from the Jenny and Antti Wihuri

Foundation, the Emil Aaltonen Foundation, the Finnish Foundation for

Technology Promotion, and the Nokia Foundation.

I have enjoyed immensely the working environment in and around the

Computational Logic Group. My colleagues have been helpful, supportive,

and good company. I would in particular like to thank Jori Dubrovin who

not only helped me in the analytics at a critical moment, but also made

me swim while we were simultaneously going through the same hectic

3

period of preparing our thesis manuscripts.

The cover photograph is taken by Heikki Hiltunen in the men’s room

of a former Kallio based bar Oluthuone Poirotti in February 28, 2009 at

9.23 pm. The photo is an artist’s view of a computing grid, and illustrates

a composition of plastic beer carriers forming interesting geometric pat-

terns. I think it captures something essential from SAT solving, where

the trivial and mundane suddenly becomes strange and fascinating once

the right perspective is found.

Finally I want to thank my friends, who have helped me stay in touch

with music as well as life in general, both those here on my home grounds

but also the friends I made in Cambridge, UK while working for Microsoft

Research in Summer 2011. I have a growing and supportive family, an

asset which I greatly respect. Most importantly, I am fortunate to be

married to Hissu who has been with me in this project from the Day One.

Espoo, October 27, 2011

Antti Hyvärinen

4

List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Strategies

for Solving SAT in Grids by Randomized Search. In Proceedings of

the 9th International Conference on Artificial Intelligence and Symbolic

Computation (AISC 2008), volume 5144 of Lecture Notes in Artificial

Intelligence, pages 125–140, July/August 2008.

II Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Incorpo-

rating Clause Learning in Grid-Based Randomized SAT Solving. Jour-

nal on Satisfiability, Boolean Modeling and Computation, volume 6,

number 4, pages 223–244, June 2009.

III Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Partition-

ing Search Spaces of a Randomized Search. Fundamenta Informaticae,

volume 107, Number 2–3, pages 289–311, September 2011.

IV Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Parti-

tioning SAT Instances for Distributed Solving. In Proceedings of the

17th international conference of Logic for Programming, Artificial In-

telligence, and Reasoning (LPAR-17), volume 6397 of Lecture Notes in

Computer Science, pages 372–386, October 2010.

V Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Grid-Based

SAT Solving with Iterative Partitioning and Clause Learning. In Pro-

ceedings of the 17th International Conference on Principles and Practice

5

of Constraint Programming (CP 2011), volume 6876 of Lecture Notes in

Computer Science, pages 385–399, September 2011.

6

Author’s Contribution

Publication I: “Strategies for Solving SAT in Grids by Randomized
Search”

The author is responsible for the description of the computing model, the

two schemes described in the work, and conducting and documenting the

experiments. The approach for solving several SAT instances is due to

Dr. Junttila, and the general idea of using parallel restart strategies in

this context is due to Dr. Junttila and Prof. Niemelä.

Publication II: “Incorporating Clause Learning in Grid-Based
Randomized SAT Solving”

The author has implemented the framework, the simplification, the differ-

ent heuristics and the modifications required to obtain the clauses from a

SAT solver. The length-based heuristics are folklore, while the frequency-

based heuristic is, in this context, by the authors. The author has con-

ducted and reported the experiments.

Publication III: “Partitioning Search Spaces of a Randomized
Search”

The terms simple distribution and plain partitioning are by Niemelä and

Junttila, whereas the author has coined the terms safe and repeated par-

titioning. Most of the proofs in the work are by the author and Junttila.

The implementations, the experiments, and their documentations are by

the author.

7

Publication IV: “Partitioning SAT Instances for Distributed Solving”

The partition tree concept is by the authors, and the proof for non-increas-

ing run time is by the author. The two partitioning function implementa-

tions based on DPLL lookahead and scattering VSIDS are by Junttila as

is the idea for speeding up lookahead computation. The author has im-

plemented the scattering lookahead partitioning function and the general

framework. The experiments on lookahead techniques were conducted

and documented by Junttila, while the rest of the experiments were con-

ducted by the author.

Publication V: “Grid-Based SAT Solving with Iterative Partitioning
and Clause Learning”

The idea of transferring learned clauses between arbitrary nodes of a par-

tition tree is by Junttila, and the description of the learning partition tree

is by Junttila and the author. The partitioning functions, the modifica-

tions required to the solver to obtain the learned clauses, and the two

clause tagging approaches are implemented by Junttila. The idea of the

assumption-based clause tagging is by Junttila whereas the flag-based

clause tagging is by the author in this context. The simplifications and

the framework are by the author, as are the documenting and performing

the experiments.

8

Contributions of the Publications

The work described in this thesis focuses on different approaches to us-

ing grid and cloud computing in efficient parallel solving of propositional

satisfiability problem (SAT) instances.

Publication I

The work specifies the grid / cloud computing model considered in the

thesis. The work explores using portfolios to obtain speed-up in a real-

istic grid environment. Two techniques for parallelizing restart strate-

gies [Luby et al. 1993; Walsh 1999], essential also for efficient sequential

SAT solvers, are introduced. The resulting parallel algorithms are first

studied in a controlled model with varying parameters and then experi-

mented with in a real grid environment. Finally the work proposes an

efficient algorithm for distributed solving of several SAT instances.

Publication II

The work extends the portfolio approach presented in [PI] by introduc-

ing parallel conflict-driven clause learning to it. One of the challenges in

the resulting clause learning simple distributed SAT solving (CL-SDSAT)

approach is that it produces enormous amounts of learned clauses. To

solve this problem, several clause filtering heuristics are studied in con-

trolled experiments with a number of benchmark instances. A length-

based heuristic is then used to study in controlled experiments the “cumu-

lative” aspect of parallel learning, where new clauses are learned based

on earlier clauses learned in parallel. The full framework is implemented

using a real grid environment and succeeds in solving several SAT in-

9

stances which were not solved in a solver competition. An earlier version

of the work was published in the proceedings of AIMSA 2008 [Hyvärinen

et al. 2008].

Publication III

The work compares analytically the portfolio and the search space split-

ting approaches to obtaining speed-up in distributed SAT solving. Search

space splitting is studied using a model for worst and best case parti-

tioning functions. The analysis shows that the efficiency of the partition-

ing approach depends heavily on whether the instance is satisfiable with

many solutions, “barely satisfiable” with few solutions, or unsatisfiable.

The portfolio and search space splitting are combined to safe and repeated

partitioning approaches. A run time distribution analysis shows that the

safe approach is superior to the repeated approach. Finally the studied

approaches are compared experimentally using an actual implementation

of a partitioning function. In this setting repeated partitioning often per-

forms better than the other approaches. An earlier version of the work

was published in AI*IA 2009 [Hyvärinen et al. 2009].

Publication IV

The work develops further an iterative partitioning approach based on

partition trees, first described in [Hyvärinen et al. 2006]. The partition

tree approach uses a partitioning function to iteratively construct a tree of

increasingly constrained derived formulas. The satisfiability of the orig-

inal formula can be determined once a sufficient number of derived for-

mulas have been solved. We prove that unlike in plain partitioning, the

expected time required to determine the satisfiability of a formula can

never increase if more parallelism is used in the partition tree approach.

The work introduces two new partitioning functions based on unit prop-

agation lookahead, and compares them against a previously introduced

function using scattering [Hyvärinen et al. 2006]. A novel approach for

speeding up the computation of the lookahead is described with a tech-

nique originating from conflict driven clause learning. The partition tree

approach is implemented in a real grid environment and used to solve

10

several instances that were not solved by state-of-the-art SAT solvers.

Publication V

The work describes a framework which combines clause learning to the

partition tree approach to allow the transferral of intermediary results

from derived formulas that either were shown unsatisfiable or failed to

be solved due to a resource exhaustion in the grid. The framework at-

taches learned clause databases to the nodes of the tree and specifies the

simplification process which allows restricting the sizes of the databases.

The work presents two techniques for transferring clauses learned in the

nodes of the trees. The techniques are based on tagging learned clauses

with the information on which constraints they depend on using either

Boolean flags or more general assumptions. The flag based tagging is

less expensive but restricts the clause transferral more compared to the

assumption based tagging. The effect of the learned clauses in both tag-

ging approaches are analyzed in a controlled computing environment and

an implementation of the approach is used to solve challenging instances

from a SAT competition. The results show that the flag based tagging

provides speed-up in both controlled experiments and a real implemen-

tation, the resulting solver succeeding in solving many instances beyond

the reach of modern SAT solvers.

11

1. Introduction

This work develops methods for solving instances of the propositional sat-

isfiability problem (SAT), which concerns deciding whether a given propo-

sitional formula over a set of Boolean variables evaluates to true for some

true/false assignment on the variables. As the platform for solving SAT

instances, this work considers computational grid environments consist-

ing of high performance computing clusters connected to the Internet.

In recent years, SAT has experienced an increase of interest from the

industry and other organizations outside the academia as computation-

ally challenging problems arise from fields such as planning [Kautz and

Selman 1992], automated test pattern generation [Larrabee 1992; Biere

and Kunz 2002], cryptanalysis [Mironov and Zhang 2006] and bounded

model checking [Marques-Silva 2008].

The results of this thesis suggest that often, when the solving of such

problems requires large amounts of computing power, the solution can be

efficiently computed in distributed environments. In particular, the solv-

ing can be organized to independent computations, jobs, that are dynam-

ically scheduled to a grid. The results have a practical impact, since cur-

rently grids and clouds seem to provide a particularly appealing comput-

ing paradigm supported by technological advances, environmental con-

cerns, social well-being and economic aspects. Firstly, the worldwide in-

vestments on high quality, low energy communication infrastructure make

high-volume data transfers inexpensive, and virtualization techniques by

manufacturers of of-the-shelf computing nodes allows provisioning of op-

erating environments which are suitable for a large variety of consumers.

Wide scale distributed computing is also fault tolerant by nature. Sec-

ondly, the energy-hungry computing can be dynamically transferred to

sites using renewable energy sources such as wind and solar power, or

to locations where synergy can be obtained, for example, with heating.

13

Introduction

Thirdly, in some cases data centers can be renovated to already existing

buildings creating a more diverse ecosystem of entrepreneurship to rural

areas previously relying strongly on heavy industries. Finally, the change

is driven by the new business layer providing administration and hard-

ware at a relatively low cost to the consumers of computing power.

1.1 The SAT Problem

The SAT problem is a representative of the class of NP-complete deci-

sion problems [Cook 1971], for which all known algorithms need in the

worst case exponential number of steps with respect to the size of the

problem instance. If one of the NP-complete problems has such a poly-

nomial time solving procedure, then the same procedure could be used

for every problem in NP. The proof of (non-)existence of such a procedure

is one of the six currently open Millennium Prize Problems of the Clay

Mathematics Institute. Many engineering problems can be expressed nat-

urally as SAT instances, and can then be efficiently solved by SAT solvers,

pieces of software sometimes capable of solving non-trivial formulas con-

sisting of more than a million variables. Since the first implementations

of SAT solvers [Davis and Putnam 1960; Davis et al. 1962], originally

designed for first-order theorem proving, SAT solving has experienced

tremendous enhancements in algorithm design, and recent solvers, such

as [Moskewicz et al. 2001; Eén and Sörensson 2004], represent in many

ways the state-of-the-art in solving instances of NP-complete problems.

The paradigm of encoding a given problem of an application domain to,

e.g., SAT is often called declarative problem solving. In this paradigm the

programmer is relieved from the algorithm design, a task already per-

formed in building the solver. Instead, the emphasis is on how to build

the encoding. Figure 1.1 illustrates the process with a schematic diagram

where the problem instance flows to the direction of the solid arrows and

the results are indicated by the dashed arrows. The topic of this work is

in studying different approaches for distributing the solver.

14

Introduction

Results

Problem Model Encoding Solver

Problem description

Figure 1.1. Declarative Problem Solving

1.2 Related Approaches

Possibly the most famous research project related to declarative problem

solving is the Fifth Generation Project [Shapiro et al. 1993] which aimed

at using massive amounts of parallel resources for efficient computing in

artificial intelligence. The project built on ideas developed for PROLOG

systems [Sterling and Shapiro 1987]. Compared to SAT, PROLOG systems

have complex procedural semantics, which renders for example their par-

allelization more difficult [Ranjan et al. 1999]. The simplicity makes SAT

problem description also more suitable for automating the transition from

model to encoding in Fig. 1.1.

The constraint satisfaction problem (CSP) [Rossi et al. 2006] is often

viewed as a generalization of SAT offering a wider spectrum of variable

constraints and thereby a richer modeling language. Interaction between

developing SAT and CSP solving techniques is intense. For example,

once the conflict driven clause learning techniques [Marques-Silva and

Sakallah 1999] originating from CSP [Dechter 1990] proved extremely

successful in SAT, they have again received interest in CSP solver devel-

opers, and when implemented with care, can provide significant speed-

up [Gent et al. 2010]. Often the constraints are expressible fairly com-

pactly as SAT instances. Indeed, [Walsh 2000] and [Huang 2008] argue

that SAT encodings of some constraints are more compact and efficient

to solve. General differences of SAT and CSP are studied, for example,

in [Bordeaux et al. 2006] and the efficiencies in [Mancini et al. 2008].

An alternative to programming using PROLOG systems is Answer set

programming [Niemelä 1999] (ASP), a logic programming paradigm also

closely related to CSP, which uses the stable model semantics [Gelfond

and Lifschitz 1988] as its basis. The paradigm has an established track

record in planning [Dimopoulos et al. 1997], product configuration [Soini-

nen and Niemelä 1999], formal verification [Heljanko 1999], and even

biology [Erdem and Türe 2008], among others. In part, the success of

the paradigm is due to several highly optimized implementations [Simons

15

Introduction

et al. 2002; Leone et al. 2006; Drescher et al. 2008]. Stable model se-

mantics are closely related to SAT [Ben-Eliyahu and Dechter 1994; Lin

and Zhao 2004; Janhunen 2006]. Recent experimental evaluations, such

as [Gebser et al. 2007; Mancini et al. 2008], suggest that in some cases of

practical relevance the machinery developed for SAT solvers is valuable

in finding stable models of ASP programs.

Both SAT and ASP place rather strict limits on what application do-

mains can be efficiently described. While in theory any polynomial-time

algorithm can be encoded as a SAT instance using the construction of

Cook, the straightforward process is hopelessly inefficient, for example, in

case one has to represent integers or floating-point arithmetics. The rel-

atively new approach of satisfiability modulo theories (SMT) [Ganzinger

et al. 2004; Bozzano et al. 2005; Nieuwenhuis et al. 2006; Sebastiani 2007;

de Moura and Bjørner 2008], combines the successful SAT solving with

methods specifically designed for expressing domain-specific information.

The SMT solvers work on encodings where the propositional part is aug-

mented with a theory T which embeds the special features of the problem

being modeled. The additional theory is expressed in a form where theory-

specific algorithms can be used in addition to the powerful algorithms for

propositional satisfiability. Assume, for example, that one has to model a

scheduling problem with time represented as continuous values. This is

often inefficient to express as a SAT problem. However, if the encoding

is based on SMT, then the part of the domain considering integers can

be encoded as a linear arithmetics theory T over reals while the propo-

sitional part is still efficiently solvable using algorithmic ideas that have

proved useful in propositional theories. It is an interesting research ques-

tion to what extent the results in this work are useful also in designing

distributed SMT solvers.

SAT solvers can be roughly divided into two categories: local search

solvers based on random walk or similar incomplete methods [Selman

and Kautz 1993], and complete solvers usually based on backtracking

search, such as those based on the Davis-Putnam-Logemann-Loveland

(DPLL) [Davis et al. 1962; Davis and Putnam 1960] algorithm. Outside

of this categorization lie methods based on knowledge compilation, such

as binary decision diagrams [Bryant 1986], and the more recently intro-

duced decomposable negation normal form [Darwiche 2001]. The focus

of this work is on using the complete backtracking solvers in distributed

environments. Unlike the local search methods, DPLL solvers are able

16

Introduction

[PIV][PI] [PII]

Grid

SDSAT

CL-SDSAT

Partition tree approach [PV][PIII]

Safe and repeted partitioning

Plain partitioning
Learning partition tree

Figure 1.2. Organization of the results

to prove unsatisfiability, and are less prone to exponential memory con-

sumption sometimes observed in methods based on knowledge compila-

tion. Compared to the local search methods, the DPLL solvers also usu-

ally perform significantly better on industrial SAT instances.

1.3 Contributions

This work develops distributed SAT solving approaches for computing

grids. The goal of the work is to solve extremely challenging instances

using environments where simultaneous computations can only commu-

nicate with a single master process and have tight resource limits. The

challenge is addressed by starting from rigorous study of intuitive solv-

ing approaches, and building increasingly complex approaches so that the

new designs are driven by the previous results. The practical relevance of

the results is established with experimental and analytical comparisons.

The work describes seven approaches for distributed SAT solving. While

each can be used for solving as such, they can also be seen as a hierarchy

of increasingly powerful and complex solving approaches. The approaches

are

• simple distributed SAT solving (SDSAT),

• clause learning simple distributed SAT solving (CL-SDSAT),

• the plain partitioning approach,

• the safe partitioning approach,

• the repeated partitioning approach,

• the partition tree approach, and

• the learning partition tree approach.

Figure 1.2 illustrates the relations of the solving approaches and grid com-

puting, and points also to the publications reporting them. The SDSAT

approach is studied with the grid computing model in [PI] and experimen-

17

Introduction

tally shown to be a solid way of solving challenging SAT instances. The

SDSAT approach is extended to CL-SDSAT in [PII], which solves sev-

eral highly challenging SAT instances beyond the reach of SDSAT. The

plain, safe and repeated partitioning approaches are studied and com-

pared against the SDSAT approach and each other in [PIII]. The idea

of SDSAT is combined to plain partitioning in [PIV]. The resulting par-

tition tree approach solves several instances that could not be solved by

any other solver in the experiments. Finally, [PV] combines the ideas de-

veloped in CL-SDSAT with the partition tree approach, and the resulting

learning partition tree is again shown to perform better than the partition

tree approach.

18

2. Propositional Satisfiability and SAT
Solvers

This chapter discusses the propositional satisfiability problem (SAT) and

SAT solvers including conflict driven clause learning [Marques-Silva and

Sakallah 1999]. A particular emphasis is on random run times and the

closely related restart strategies [Luby et al. 1993; Walsh 1999]. Some

of the results presented in this chapter are studied in [PI], but extended

here with a large number of experiments and a new restart strategy [Biere

2008].

2.1 Propositional Satisfiability

Let B = {x1, . . . , xn} be a set of Boolean variables. The set of literals

{xi,¬xi | xi ∈ B} consists of variables xi and negated variables ¬xi, 1 ≤
i ≤ n. A disjunction of literals is a clause and a conjunction of clauses is

a formula in conjunctive normal form (CNF). Whenever convenient, the

clauses are interpreted as sets of literals, and formulas as sets of clauses.

The truth values of literals are determined by a subset of literals called

a truth assignment. A truth assignment τ is conflicting if both x,¬x ∈ τ

for some variable x, and complete if all variables xi appear in it. Non-

conflicting assignments are consistent and non-complete partial. A literal

l is true in a consistent assignment τ if l ∈ τ and false if ¬l ∈ τ . As usual,

¬¬l is equivalent to l. Given a formula φ, the set Lits(φ) consists of all

literals l,¬l such that l appears in a clause of φ. Variables and literals

that are not either true or false are unknown. A clause C is satisfied by

τ if C contains a true literal and a CNF formula φ is satisfied by τ if all

clauses in φ are satisfied. For example, let φ be the formula

φ = (¬e ∨ b) ∧ (¬d ∨ a) ∧ (¬a ∨ c) ∧ (¬c ∨ a) ∧ (¬a ∨ ¬b ∨ ¬d). (2.1)

19

Propositional Satisfiability and SAT Solvers

Then φ is satisfied by τ = {¬a, b,¬c,¬d,¬e}. The problem of determining

whether a given formula has a satisfying truth assignment is called the

propositional satisfiability problem (SAT).

A formula φ′ is a logical consequence of φ, denoted φ |= φ′, if each satis-

fying truth assignment of φ also satisfies φ′. Two formulas φ and φ′ are

equivalent, denoted φ ≡ φ′, if they are satisfied by exactly the same truth

assignments.

2.2 Conflict-Driven Clause Learning SAT Solvers

Most current complete SAT solvers, such as ZCHAFF [Moskewicz et al.

2001], MINISAT [Eén and Sörensson 2004], LINGELING [Biere 2010] and

CRYPTOMINISAT [Soos et al. 2009], extend the classical DPLL solvers

[Davis and Putnam 1960; Davis et al. 1962] with clause learning tech-

niques [Marques-Silva and Sakallah 1999; Zhang et al. 2001]. The un-

derlying idea is to perform a backtracking search on partial truth assign-

ments which are extended with heuristically chosen decision literals. If a

clause of length k contains k − 1 false literals, the remaining literal must

necessarily be true in order for the whole formula to be true. Such literals

“forcibly set” to true are called implied literals. The implied literals are

obtained by computing the unit propagation closure, and the process po-

tentially results in a conflicting truth assignment. If the truth assignment

becomes conflicting, the algorithm identifies a “reason” for the conflict,

represented as a clause, based on stored information on the propagation

sequence. The algorithm uses such clauses for two purposes: to guide the

backtracking and to prevent similar conflicts from arising in the subse-

quent steps of the algorithm. This is done by conjoining the clause with

the formula. The resulting algorithm differs enough from DPLL to qualify

for a new name, the conflict-driven clause learning (CDCL) algorithm.

Computing the unit propagation closure corresponds to repeatedly iden-

tifying clauses having all but one literal false and the remaining literal

unknown, and extending the truth assignment with the unknown literal

until no such clauses exist.

Definition 1 Given a formula φ and a truth assignment τ , the unit prop-

agation closure UP(φ, τ) is the smallest set τ ′ ⊇ τ containing τ and the

literals ai such that there is a clause (a1 ∨ . . . ∨ ak) ∈ φ containing ai and

{¬a1, . . . ,¬ai−1,¬ai+1, . . . ,¬ak} ⊆ τ ′.

20

Propositional Satisfiability and SAT Solvers

c

b

d a

¬d

(¬b ∨ ¬d)

b@1

d@2 a

¬d

λ

Figure 2.1. An implication graph for φ in Eq. (2.1) obtained by computing UP(φ, bd) (left),
and a corresponding conflict graph (right). The graph on the right also indi-
cates the decision levels and a unique implication point (UIP) cut

Computing the unit propagation closure is useful in searching for a sat-

isfying truth assignment using a backtracking search algorithm. Assum-

ing there is a truth assignment satisfying φ and containing a set of liter-

als τ , then the satisfying truth assignment must also contain literals in

UP(φ, τ):

Proposition 1 Let φ be a formula, τ = {b1, . . . , bm} a partial truth as-

signment, and UP(φ, τ) = {a1, . . . , an, b1, . . . , bm} the corresponding unit

propagation closure. Then φ ∧ b1 ∧ . . . ∧ bm |= a1 ∧ . . . ∧ an ∧ b1 ∧ . . . ∧ bm.

An algorithm making decisions and computing the unit propagation clo-

sure gives an order for the obtained literals in a natural way. Therefore

the truth assignment can be seen as an initially empty ordered sequence

of literals τ = v1v2 . . . vm where vm is either a decision literal or an implied

literal. In the latter case there is a clause C ∈ φ such that some literal l

in C equals vm, and all other literals l′ ∈ C \ {l} appear negated earlier

in the sequence τ . In this case the clause C is said to imply l. If there

are several such clauses, one of them is arbitrarily chosen as the implying

clause.

The information on decision literals, and implied literals and clauses

can be organized as a directed, acyclic implication graph where vertices

are the literals of the truth assignment and the edges encode how the

literals were assigned. More specifically, the graph has the edges from

¬a1, . . . ,¬ai−1,¬ai+1, . . . ,¬ak to ai, if ai was implied by the clause (a1 ∨
. . .∨ak). Decision literals, on the other hand, have no incoming edges. For

example, consider the formula φ in Eq. (2.1) and one possible conflicting

truth assignment UP(φ, bd) = bdac¬d. In one of the possible propagation

orders, the literals a, c,¬d are implied by the clauses (¬d∨a), (¬a∨c), (¬a∨
¬b ∨ ¬d), respectively, while both b and d are decisions. The resulting

implication graph corresponding to this propagation order is the one on

the left in Fig. 2.1.

The example illustrates that a truth assignment can become conflicting

21

Propositional Satisfiability and SAT Solvers

during the unit propagation. As mentioned above, the CDCL algorithm

will determine the reason for the conflict using the implying clauses. Once

a truth assignment τ becomes conflicting, a conflict graph is constructed

from the implication graph. The propagation is interrupted once the first

conflicting literal pair x,¬x is obtained in τ . Then all literals having no

directed path to either x or ¬x are removed and a new literal λ 	∈ Lits(φ) is

connected with edges from x and ¬x. The right hand side graph of Fig. 2.1

illustrates the conflict graph obtained with the above process from the left

hand side implication graph.

The reason clause for the conflict is learned by analyzing the conflict

graph. The graph is partitioned to conflict and reason sets, where the for-

mer consists initially of λ, by a conflict cut. Intuitively, the conflict results

from the assignments represented in the reason side. The analysis simply

consists of changing the partitioning by moving one or more implied liter-

als, connected with an edge to a literal in the conflict set, from the reason

set to the conflict set.

A given conflict cut uniquely defines a conflict clause C = ¬c1 ∨ . . . ∨
¬cn where each ci is in the reason set and has an edge to a literal in the

conflict set. The following two propositions state that a conflict clause

C has the following two properties: (i) φ |= C, and (ii) all literals of C

appear negated in the related conflicting truth assignment τ . We will use

these two properties in showing that the CDCL algorithm terminates and

provides correct results. The proofs follow the ideas in [Zhang and Malik

2003].

Proposition 2 All conflict clauses obtained from the formula φ by the con-

flict analysis described above are logical consequences of φ.

Proof. The claim is trivially true for any clause if φ is unsatisfiable.

Therefore we assume that φ is satisfied by a complete, consistent truth

assignment τ . Then the claim states that each clause defined by the con-

flict cut contains a literal also in τ . The conflict analysis starts with a

clause x ∨ ¬x and since τ is complete, either x ∈ τ or ¬x ∈ τ . Assume now

that the claim holds for an arbitrary conflict clause C = (¬c1 ∨ . . . ∨ ¬cm)

and ¬ci ∈ C is an implied literal moved to the conflict side. Let ci be

implied by the clause A = (a1 ∨ . . . ∨ ai−1 ∨ ci ∨ ai+1 ∨ . . . ∨ am). By the

assumptions both clauses A and C contain a literal from the satisfying

truth assignment τ . The resulting conflict clause C ′ = (A ∪ C) \ {ci,¬ci}
must also contain a literal from τ , since the two literals ci and ¬ci missing

22

Propositional Satisfiability and SAT Solvers

from C ′ could not be the only literals of A and C in τ by the consistency of

τ . This completes the induction proof. �

Since the conflict clauses C are logical consequences of φ, conjoining

them with φ does not change the set of truth assignments satisfying φ,

and we have the equality φ ≡ φ ∧ C.

The next result essentially shows that a conflict clause is “false under

the conflicting truth assignment” that initiated the conflict analysis. This

will be useful in showing when the conflict clause can be used for back-

tracking in the search.

Proposition 3 Let τ be a conflicting truth assignment and C a conflict

clause in the conflict graph obtained from τ . Then all literals of C appear

negated in τ .

Proof. We will prove this by induction on the conflict analysis. The

initial conflict cut consists of the literals x and ¬x, and by construction

they both appear negated in a conflicting τ . Assume then that the claim

holds for a conflict clause C, and the conflict analysis moves the implied

literal ¬ci ∈ C to the conflict side. By the assumptions, ¬ci is false and

ci is implied by a clause A such that ci ∈ A. Therefore the other literals

of A must appear negated in τ , and hence the literals of the new conflict

clause (C ∪A) \ {ci,¬ci} all appear negated in τ . �
The CDCL algorithm conjoins one conflict clause into the formula φ every

time the algorithm finds a conflict during propagation. Typically some

computing is involved to produce as short a clause as possible [Sörensson

and Biere 2009], and some implementations include more than one such

clause [Zhang et al. 2001].

To guide the backtracking search, the CDCL algorithm keeps track of

the implications and decisions using decision levels. As a literal is in-

cluded to the truth assignment, it is labeled with a decision level equal

to the number of decision literals in the truth assignment. For example

in Fig. 2.1, the decision levels of b, d, a, c, and ¬d are 1, 2, 2, 2, and 2, re-

spectively. The decision level 0 is special in the sense that, by Prop. 1, all

literals implied on level 0 are already proved to be logical consequences of

the formula φ.

A conflict clause is asserting, if it contains a single literal in the high-

est decision level. Asserting conflict clauses can be used for guiding the

backtracking: by Prop. 3 all literals of a conflict clause are false. The lit-

23

Propositional Satisfiability and SAT Solvers

eral in the highest decision level is unique in a given asserting clause,

and therefore removing all literals with decision levels higher than the

second highest decision level in the asserting clause results in the assert-

ing clause implying the unique literal. If the asserting clause contains

only a single literal, only the literals on decision level 0 are preserved in

the truth assignment. The cut corresponding to the only asserting clause

¬b ∨ ¬d is shown in Fig. 2.1.

Proposition 4 The CDCL algorithm which learns asserting clauses al-

ways terminates and outputs Unsat if and only the formula φ is unsatisfi-

able.

Proof. Each time a conflict is found on decision level higher than 0,

there is at least one asserting cut for the related conflict graph, that is,

one containing the decision literal in the highest decision level. The truth

assignments generated after propagation by the CDCL algorithm can be

therefore seen as a sequence τ1τ2 . . . τt where τt either contains a pair of

literals x,¬x ∈ τt on the decision level 0 and nothing on other levels if

the instance is unsatisfiable, or is complete and consistent if the instance

is satisfiable. To see this we associate an increasing sequence with each

truth assignment UP(φ, τ) constructed with propagation by the CDCL al-

gorithm, show that there is a limit on the length of the sequence and con-

clude that the CDCL algorithm must therefore terminate. The sequence

consists of the number of literals on each decision level on the truth as-

signment. Let τi be a truth assignment with ki decision literals. Then the

corresponding population list Dτi = dτi0 d
τi
1 . . . dτiki gives the number dτim of

literals on decision level m in τi.

The ordering ≺ is defined as τi ≺ τj if and only if there is a decision

level m such that dτim < d
τj
m and dτi0 = d

τj
0 , . . . , dτim−1 = d

τj
m−1. Suppose

now that the CDCL algorithm finds a conflict in UP(φ, τi) and learns an

asserting clause C. The next step of the algorithm is to compute UP(φ ∧
C, τ ′i), where τ ′i is obtained from τi by removing the literals having decision

levels higher than the second highest decision level on the literals of C.

Since C is implying in τ ′i , also UP(φ, τi) ≺ UP(φ ∧ C, τ ′i). The algorithm

thus produces an increasing sequence of truth assignments. The largest

element in this sequence corresponds to the conflicting truth assignment

containing all literals of φ on the decision level 0. Hence the algorithm

must terminate, either by finding a complete consistent truth assignment

or by finding an inconsistent truth assignment where the conflict is on the

24

Propositional Satisfiability and SAT Solvers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000

p
ro
b
ab

il
it
y
P
(T

≤
t)

time t (in seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000

p
ro
b
ab

il
it
y
P
(T

≤
t)

time t (in seconds)

Figure 2.2. Run time distributions for formulas total-10-13-u and mizh-md5-48-5, both
from the industrial category of the SAT 2007 solver competition

decision level 0.

The latter case occurs if and only if the instance is unsatisfiable since

φ |= C for asserting clauses C by Prop. 2 and φ |= ∧
UP(φ, ∅). �

Interestingly, Prop. 4 only requires that the conflict analysis can be per-

formed, and hence the conflict graph can be constructed. Therefore the

algorithm is free to forget previously learned asserting clauses C which

are not required to construct the conflict graph. This is essential in most

formulas to avoid memory exhaustion.

2.2.1 Randomness in Solver Run Times

Many branch-and-bound backtracking algorithms exhibit high variance

in run times when small alternations are introduced to the search pro-

cess. As this phenomenon is by no means specific to SAT solving, there

is a significant amount of related work in many different contexts [Speck-

enmeyer et al. 1988; Li and Wah 1990; Prestwich and Mudambi 1995;

Grama and Kumar 1999]. Intuitively the idea is that an “unlucky” choice

in the heuristic search can lead to a part of the branch-and-bound tree

which is particularly difficult to solve. Sometimes such areas could have

been omitted, had the search been performed in a slightly different order.

Although the CDCL search described above differs somewhat from a

classical tree-based search, experiments show that also run times of these

solvers exhibit similar behavior. The range of run times depends on the in-

stance being solved and for example MINISAT [Eén and Sörensson 2004]

run times vary from two-fold to several orders of magnitude. Two cumu-

lative run time distributions for benchmark instances from the SAT 2007

competition, showing the probability that an instance is solved in time

less than a give t, are shown in Fig. 2.2.

25

Propositional Satisfiability and SAT Solvers

Some SAT instances, when solved with a CDCL algorithm, obey a heavy-

tailed run time distribution [Gomes et al. 2000]. Such distributions have

a significant probability of producing “outlier” samples, that is, run times

which are far from median run times. The distributions behave in practice

as if they would have an infinite standard deviation or even an infinite

mean. Since propositional formulas have a finite search space and the

CDCL algorithm is complete, the statistics are of course finite. However,

since the search space is in the worst case exponential in the size of the

formula, the statistics can in practice be considered as infinite for some

formulas [Gomes et al. 1998].

The small variations to the CDCL search result, for example, from the

learned clause generation and the process used for selecting decision lit-

erals. The process for selecting decision literals relies on some of the nu-

merous heuristics described in the literature (e.g., [Jeroslow and Wang

1990; Hooker and Vinay 1995; Li and Anbulagan 1997a; Marques-Silva

1999; Moskewicz et al. 2001; Lagoudakis and Littman 2001; Herbstritt

and Becker 2003; Irgens and Havens 2004; Heule and van Maaren 2006]).

Most heuristics employ randomization to break ties, and often implement

a form of deliberate increase in the random behavior either by introduc-

ing a heuristic equivalence parameter [Gomes and Selman 2001] or by

simply mixing the random heuristic (a heuristic which selects a literal

pseudo-randomly from the set of all unknown literals) together with a

more context-dependent heuristic. Hence it is natural to express the run

time of a solver as a random variable and a related probability distribu-

tion.

Let T be the random variable describing the time required to solve a

given formula φ with a CDCL solver S randomized using, for example,

some of the above mentioned approaches. The cumulative run time distri-

bution qT (t) gives the probability that T ≤ t. We will use the cumulative

distribution to express the expected time required to solve the instance φ

with the solver S. By definition, this is

ET =

∫ ∞

0
tq′T (t)dt, (2.2)

where q′T (t) is the derivative of the cumulative distribution qT (t).

2.2.2 Restarts and Randomization

For formulas having distributions with “high dynamics”, such as the heavy-

tailed distribution, it is useful to interrupt the search procedure after

26

Propositional Satisfiability and SAT Solvers

some time and start the search again from the beginning. The motivation

is that if the solver has made an unlucky choice and ended in a difficult

subtree, it is better to reject some of the partial results obtained so far

and hope to find an easier subtree. Indeed, it can be shown that restarts

can eliminate heavy-tailed distributions [Gomes et al. 2000].

An algorithm can perform restarts according to a schedule called restart

strategy STRAT = (t1t2 . . .), which is a sequence of time values called

restart limits. Applying STRAT to the solver S solving a formula φ re-

sults in S first running for t1 steps. If φ is not solved in these steps, S

will restart by clearing the truth assignment and starting anew, this time

running for t2 steps. The process is continued until φ is finally solved. As

a result of applying the restart strategy, the time required to solve φ will

change in general. Although the CDCL solvers store learned clauses when

restarting, we will analyze here the “hard restarts”, where all learned

clauses, including the clauses of length 1, are removed. The restriction

will be lifted in later experiments (see Sect. 4.4), but will be used here to

build a better understanding of the observed phenomena. Let the time

required to solve the instance φ with the solver S be again described by

the random variable T . The random variable TSTRAT describes the time

required to solve φ with S and the restart strategy STRAT. If the cu-

mulative distribution associated with T is known, it is possible to derive

a closed form representation of the expected run time for some restart

strategies. For example, an important special case is the fixed restart

strategy FIXED = (aa . . .). The expected run time using this strategy is

ETFIXED =
∞∑
i=0

(∫ a

0
(t+ ia)(1− q(a))iq′(t)dt

)
, (2.3)

where (1 − q(a))iq′(t)dt is the differential probability that the formula is

solved after i restarts at time (t + ia). By regrouping and noting that a

and i do not depend on t, we obtain

ETFIXED =

∫ a

0
q′(t)dt

∞∑
i=0

(
ia(1− q(a))i

)
+

∫ a

0
tq′(t)dt

∞∑
i=0

(
(1− q(a))i

)
.

(2.4)

The first sum converges to
∑∞

i=0 ia(1 − q(a))i = a(1 − q(a))/q(a)2, the sec-

ond sum converges to
∑∞

i=0(1 − q(a))i = 1/q(a), and the first integral

equals
∫ a
0 q′(t)dt = q(a). Finally, the second integral can be written as∫ a

0 tq′(t)dt = aq(a)−
∫ a
0 q(t)dt by integration by parts. Finally, we have the

following.

ETFIXED =
a−

∫ a
0 q(t)dt
q(a)

(2.5)

27

Propositional Satisfiability and SAT Solvers

Intuitively, the expected run time when using the fixed restart strategy is

low if it is likely that the instance is solved within time a.

It can be shown that for any distribution q(t) there is a value a∗ such

that the fixed restart strategy OPT = (a∗a∗ . . .) results in lowest expected

value among all restart strategies [Luby et al. 1993]. However, the value

a∗ depends on the distribution which is in general unknown. Further-

more, introducing the hard restarts considered here can break Prop. 4

if improperly implemented; if the shortest proof for the instance φ takes

more than a steps, solving with the fixed restart strategy cannot succeed.

To preserve the termination property of the CDCL algorithm, there must

be no upper bound on the restart limits.

Two widely used unbounded restart strategies are an exponential strat-

egy STRATE = (e1e2 . . .) where ei = α2β(i−1) for some α ≥ 1 and β > 1, and

a universal strategy STRATU = (u1u2 . . .), where

ui =

⎧⎨
⎩ α2k−1, if i = 2k − 1 for some k ∈ N

ui−2k−1+1, if 2k−1 ≤ i < 2k − 1,
(2.6)

and α ≥ 1. In [Luby et al. 1993] the authors show that the expected

run time of a solver using the universal restart strategy is within a loga-

rithmic factor from the run time obtained with the optimal strategy OPT.

Finally, the PICOSAT restart strategy described in [Biere 2008] combines

the exponential growth with the large number of short restarts of the uni-

versal strategy. The resulting strategy can be expressed as the nested

exponential strategy STRATNE = (p1p2 . . .), where

pi =

⎧⎨
⎩ α, if i = 1

αβi−bi−1−1, if bi−1 + 1 ≤ i ≤ bi,
(2.7)

where b1 = 0, bi = bi−1 + i, α ≥ 1, and β > 1. Intuitively, this strategy

consists of exponentially growing sequences of length 1, 2, 3, . . . , each

having as prefix the previous sequence.

2.3 Experiments on Hard Restarts

In the following, we study the question whether “hard restarts” can be

used to speed up sequential solving of SAT instances. The tables 2.1

and 2.2 report the results of applying hard restart strategies to solving

instances from the SAT Competition 2007 (SAT-Comp 2007). The set of

instances was selected by running MINISAT 1.14 once on all the instances

28

Propositional Satisfiability and SAT Solvers

that were solved in the competition from the industrial and crafted cat-

egories and selecting those that had a run time exceeding 1000 seconds.

The qualifying instances were then solved without timeout one hundred

times each to obtain an experimental run time distribution. Finally the

expected run times (column Exp), optimal restart strategy (FIXEDa∗) and

the universal, exponential and nested exponential strategies (STRATU,

STRATE and STRATNE, respectfully) were computed from the obtained dis-

tribution. The restart strategies limit run times in seconds, α = 15 for

the strategies STRATU, STRATE and STRATNE and β = 1.2 for STRATE and

STRATNE. The column labeled a∗ reports the optimal restart limit for each

instance. The symbol ∞ is used in case the optimal restart limit equals

the maximum run time of the experimental distribution.

Based on the results in Table 2.1, the unsatisfiable instances are usually

best solved by placing no limits on the run times. The hard restart strate-

gies seem, with the exception of FIXEDa∗ , to slow down the solving signifi-

cantly. The situation changes dramatically when satisfiable instances are

considered in Table 2.2. In particular, the optimal restart limit is in most

cases different from the maximum run time in the experimental distri-

bution, and the speed-up obtained by using the optimal restart strategy

is more significant. Based on the results, in these cases also the restart

strategies perform better, in many cases providing a clear speed-up com-

pared to the approach without restart strategies.

29

Propositional Satisfiability and SAT Solvers

Table 2.1. Sequential run times for some unsatisfiable instances from SAT-Comp 2007

Instance Exp FIXEDa∗
a∗ STRATU STRATE STRATNE

999999000001nc 2065.12 2065.12 ∞ 25178.01 4175.60 181029.86

AProVE07-03 1196.58 1196.58 ∞ 14331.09 2807.77 128570.77

AProVE07-08 1839.21 1839.21 ∞ 20677.32 3634.56 161594.01

AProVE07-09 4015.97 4015.97 ∞ 52052.98 8542.41 305390.51

AProVE07-16 1563.48 1563.48 ∞ 18112.02 3196.98 149989.89

AProVE07-27 4183.33 4183.33 ∞ 58138.89 8410.43 447728.47

QG7-dead-dnd001 1321.93 1321.93 ∞ 12477.87 2785.58 89235.24

QG7-dead-dnd002 1701.78 1701.78 ∞ 17761.29 3367.85 154848.66

QG7-gensys-icl100 3406.20 3406.20 ∞ 42239.22 7412.73 360003.58

QG7-gensys-ukn003 1593.94 1593.94 ∞ 16221.69 3279.30 179429.58

QG7a-gensys-icl001 7259.33 7259.33 ∞ 106637.18 16272.85 804435.60

clqcolor-10-07-09 1900.03 1900.03 ∞ 24637.56 3844.71 181642.03

connm-ue-csp-sat-n800-d0.02-

s925928766

1557.55 1557.55 ∞ 17418.72 3275.33 135539.39

SGI_30_50_30_20_1-dir 976.24 976.24 ∞ 10570.94 2052.09 105048.62

SGI_30_50_30_20_3-dir 1432.93 1432.93 ∞ 14847.32 3128.40 162195.24

hwb-n26-01-S1957858365 709.11 709.11 ∞ 6531.42 1427.38 78762.33

lksat-n1000-m6860-k4-l4-s1935114289 1238.28 1238.28 ∞ 13933.90 2801.63 130583.36

cube-11-h13-unsat 1745.61 1745.61 ∞ 17642.63 3591.27 128136.33

dated-10-11-u 9889.17 9889.17 ∞ 148006.50 20927.15 860980.84

dated-10-13-u 4116.58 4116.58 ∞ 56671.52 8297.39 448975.93

dated-5-15-u 1551.26 1551.26 ∞ 16203.59 2997.25 113575.78

dated-5-17-u 3088.02 3088.02 ∞ 33116.81 5826.29 205497.77

emptyroom-4-h21-unsat 5205.60 5205.60 ∞ 69127.84 11127.73 498802.02

eq.atree.braun.11.unsat 3096.28 3096.28 ∞ 34776.15 6935.44 333100.26

hwb-n26-03-S540351185 1212.50 1212.50 ∞ 14393.06 2857.24 138739.13

hwb-n28-01-S136611085 1557.14 1557.14 ∞ 15604.97 3208.09 177451.43

hwb-n28-02-S818962541 4654.40 4654.40 ∞ 71133.53 8926.73 555514.00

linvrinv5 2828.63 2828.63 ∞ 33829.46 6630.71 329030.57

manol-pipe-f9b 10617.75 10560.99 32949.69 101754.70 17256.17 404736.19

manol-pipe-f9n 11026.38 10702.17 26206.90 119435.21 16154.78 504421.51

manol-pipe-g10nid 1222.47 1222.47 ∞ 10912.65 2339.16 78107.98

mod2c-3cage-unsat-10-2 3020.26 3020.26 ∞ 35066.27 6687.95 331113.88

mod2c-3cage-unsat-10-3 2580.28 2580.28 ∞ 32081.18 5877.59 274846.06

phnf-size10-exclusive-luckySeven 891.82 891.82 ∞ 8748.36 1841.55 72177.90

pmg-12-UNSAT 4268.80 4268.80 ∞ 65529.71 8234.97 493123.07

pyhala-braun-unsat-40-4-02 2641.35 2641.35 ∞ 32593.35 5960.27 285365.95

s101-100 2528.70 2528.70 ∞ 31678.80 5842.86 274817.87

s97-100 2001.74 2001.74 ∞ 25504.97 4141.72 224352.32

sortnet-6-ipc5-h11-unsat 4886.02 4886.02 ∞ 71664.77 10466.43 517394.31

total-10-13-u 3278.80 3278.80 ∞ 38248.02 6623.49 239536.07

unsat-set-b-fclqcolor-10-07-09 2027.35 2027.35 ∞ 25946.60 4201.85 191066.65

uts-l06-ipc5-h33-unknown 1114.95 1114.95 ∞ 10799.92 2298.63 69221.58

Total time 129013 128632 – 1.5 ∗ 106 252685 1.12 ∗ 107

Table 2.2. Sequential run times for some satisfiable instances from SAT-Comp 2007

Instance Exp FIXEDa∗
a∗ STRATU STRATE STRATNE

cube-11-h14-sat 4831.89 4831.89 ∞ 62717.69 10604.28 430459.73

dated-10-13-s 2276.95 717.79 29.05 940.75 928.13 948.18

dated-10-17-s 7197.18 1172.84 8.06 2174.17 4110.83 2071.90

emptyroom-4-h22-sat 11475.60 11475.60 ∞ 72819.84 21242.36 119033.39

mizh-md5-48-5 1659.23 1236.54 899.27 3525.81 1710.71 9899.53

mizh-sha0-35-3 287.51 223.31 98.08 373.70 225.30 1238.03

mizh-sha0-36-2 2951.31 901.17 36.32 1798.98 2529.31 2569.08

mod2-rand3bip-sat-250-3 1180.48 1180.48 ∞ 2849.09 1722.08 5775.16

mod2-rand3bip-sat-280-1 2381.83 941.61 9.18 1218.03 1721.33 1573.72

sortnet-7-ipc5-h16-sat 21449.26 16003.16 156.55 34718.75 20463.02 46256.75

vmpc_28 623.22 13.16 0.14 120.25 406.85 113.08

Total time 56314.5 38697.6 – 183257 65664.2 619939

30

3. Grid Computing

Grid computing allows a user to execute computational tasks in parallel

using a large pool of computing resources provided by several computing

clusters through a uniform interface. Grid and the related cloud com-

puting have recently gained interest because of various economical and

environmental reasons. This section describes the grid computing envi-

ronment that will be used in the algorithms discussed later in the work.

3.1 The Computing Model

A computing task to be executed in a grid is called a job. The grid in-

terface allows submission of jobs, monitoring their status while they are

running, and retrieving their results once they finish. Apart from being

monitored, the jobs may not communicate with each other or the user

while running. The user may request a certain amount of resources, such

as CPU time and memory, for each job from the grid. The request has

to be agreed upon with the grid system when the job is submitted. Once

submitted, the execution of the job must not exceed the limits. In most

of the applications discussed in this work there is no simple pool of tasks

that need to be executed, but instead a master process uses the previously

obtained results in addition to its own computing to construct the tasks

on-the-fly. The process of constructing the tasks and executing them is

called a work flow. The work flow starts when the first task is constructed

and ends when a time limit for the work flow is reached or a solution can

be determined.

Figure 3.1 depicts how the jobs are executed in the grid. The number of

computing elements available to a user in this model is fixed to N . Each

job executes, shown in darker shade in the figure, until it finishes nor-

31

Grid Computing

t

dq

ds

Tmax

N

Figure 3.1. Schematic visualization of grid computing

mally or exhausts the requested resources, represented by the time limit

Tmax in the figure. In addition the jobs suffer two kinds of delays mod-

eled as random variables: the submission delay ds and the queuing delay

dq. The queuing delay is the time the job spends in the batch queue sys-

tem of a cluster without using the CPU. The submission delay is the time

difference between starting two job submissions, and includes the time

required to query the clusters, transfer the job files, and the occasional

time required to query the statuses of the jobs running in the grid.

3.2 Job Management

In a typical scenario considered in this work a user initiates a work flow

to determine the satisfiability of a formula and would like to receive the

result as soon as possible. For software management reasons it is useful

to separate the task of constructing the jobs from shepherding them in

the grid, since typically the challenges in the two are totally different.

The latter includes ensuring that jobs eventually get to run in the grid in

a reasonable time, taking corrective actions if this seems not to happen

and keeping a “blacklist” of clusters where such actions are required.

The experiments in this work use a job manager to simplify bookkeeping

of such events. The job manager acts as a layer between the grid interface

and the user. The system is described in [Pitkanen et al. 2008] where it is

also used in a similar role for a medical image processing application.

Jobs may fail to execute in the grid due to several reasons. The most

common reason in our experiments is the failure to reach the CPU in a

reasonable time. In most of the experiments considered in this work the

wall clock time for the work flow is limited. Therefore excessively long

queuing times are unacceptable and are considered failures. In a widely

32

Grid Computing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000

p
ro
b
ab

il
it
y
P
(d

q
≤

t)

time t (in seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

p
ro
b
ab

il
it
y
P
(d

s
≤

t)

time t (in seconds)

Figure 3.2. Cumulative queuing delay distribution obtained from nearly 200,000 jobs run
between August 18, 2010 and February 18, 2011 (left), and cumulative sub-
mission delay distribution obtained from 21,000 jobs run between February
15, 2011 and March 2, 2011 (right)

distributed grid there are other reasons for failed jobs, such as sudden,

unexpected service breaks or even hardware failures.

The job manager keeps track of clusters which produce failures. These

clusters are blacklisted for a period of time to allow the problem causing

the failure to be solved. In case a job fails in a cluster, the job manager also

takes care of its resubmission. The number of resubmissions is limited to

avoid getting stuck at submitting a faulty job.

The jobs are monitored approximately every half a minute by the job

manager. As the software in the clusters also checks periodically whether

jobs have finished, it is common that several jobs finish simultaneously.

Because of the submission delay, refilling the grid requires more time than

what would be needed if the jobs would finish one-by-one. Instead of sub-

mitting a new job immediately after an old job finishes, several jobs need

to be submitted sequentially. The job manager lessens this effect by se-

lecting, in work flows where this is possible, the job run times uniformly

at random from a time range.

Figure 3.2 illustrates the statistics for the queuing and submission de-

lays measured for different work flows in the m-grid computing environ-

ment, running in Finnish universities and computing centers. The left

figure shows the experimental distribution of the queuing delay dq in a

work flow related to the iterative partitioning approach (see Ch. 5) where

each job has a maximum run time range of 60 – 90 minutes. The statis-

tics were collected during a half year period and consist of nearly 200,000

jobs. The majority of the jobs, roughly 60%, waste 80 to 260 seconds in the

queue. Once the job has spent 600 seconds queuing in the cluster without

getting CPU time, the job is resubmitted in another cluster. The second

increase in the probability between 720 and 900 seconds reflects these

33

Grid Computing

jobs that were resubmitted after a queuing time-out. Finally there is a

small number of jobs that failed near the end of their first submission af-

ter running the maximum of 90 minutes, and were then solved at another

cluster. The statistics do not include jobs that did not finish successfully

after the second submission.

A similar distribution for the submission delay is given in the right

of Fig. 3.2. The statistics are collected from a work flow related to the

CL-SDSAT approach (see Sect. 4.4). In this work flow the time required

to construct the jobs is usually less than one second, only in 5% of the

cases more than 5 seconds and never longer than 22 seconds. Therefore

the submission delays are much lower than the queuing delays: usually

the submission can be done in less than four seconds. The plateaus in

the distribution result from the periodic polling of the job states, and long

submission times related to filling the grid are somewhat rare.

34

4. Parallel Solving based on Algorithm
Portfolios

The inherent randomness in SAT solver run times can be utilized in ob-

taining a natural parallelization approach. In such approaches the goal is

to run in parallel several solvers with different search parameters, such

as restart and learning strategies, decision heuristics, or completely dif-

ferent algorithms such as local search, on the same formula and obtain

the solution from the first solver determining the satisfiability. This al-

gorithm portfolio approach [Rice 1976; Huberman et al. 1997; Gomes

and Selman 2001] has been extensively studied [Janakiram et al. 1988;

Janakiram et al. 1988; Luby and Ertel 1994; Petrik and Zilberstein 2006;

Inoue et al. 2006; Gebser et al. 2011], and has recently proved surprisingly

efficient in solving structured formulas [Hamadi et al. 2009a; Hamadi

et al. 2009b; Guo et al. 2010; Biere 2010].

For simplicity, this work follows an approach where a SAT solver uses

a small amount of randomness in its decision heuristic to obtain an ef-

fect similar to the more complex portfolios. The first part of this chapter

studies the simple distributed SAT solving (SDSAT) approach, where the

solvers only communicate the success or failure in determining satisfia-

bility to the master process. The second part studies an extension of the

SDSAT approach called clause learning simple distributed SAT solving

(CL-SDSAT), where the solvers may also return learned clauses in case

they fail to determine satisfiability.

The results on the SDSAT approach are based on [PI]. The approach

is studied using different “hard” restart strategies in a parallel setting.

This chapter complements [PI] by giving a significant amount of new ex-

perimental data and studying the nested exponential strategy. On the

other hand, unlike in [PI], the alternate distribution schedules are not

discussed here, and the grid delays are assumed to be zero.

The results on the CL-SDSAT approach are based on [PII]. The dis-

35

Parallel Solving based on Algorithm Portfolios

cussion focuses on the algorithmic framework for CL-SDSAT. The frame-

work is used for describing the effect of different heuristics for sharing the

learned clauses, as well as some scalability results. The results in [PII]

are extended with new experiments using benchmark instances from SAT-

Comp 2009.

Both the SDSAT and the CL-SDSAT approaches result potentially in

good speed-up. The experiments show that the SDSAT approach is inher-

ently limited in a grid environment with fixed length jobs for SAT formu-

las, whereas the CL-SDSAT approach can improve the solving capabilities

of its underlying solver, and enable the solving of formulas not solvable se-

quentially in reasonable time limits.

4.1 Simple Distributed SAT Solving

The Simple Distributed SAT Solving (SDSAT) approach is based on run-

ning several randomized SAT solvers in a distributed or parallel comput-

ing environment on a given formula, and obtaining the result from the

first solver that finishes. The idea of studying random behavior when

parallelizing backtracking search is not new. For example, [Janakiram

et al. 1988; Janakiram et al. 1988] study the effect in randomized, paral-

lel branch-and-bound algorithms. Restarts in parallel settings are studied

in [Luby and Ertel 1994] on Las Vegas algorithms that are similar to the

randomized SAT solvers. More general view is taken by [Huberman et al.

1997] studying a setting where parallel solvers have different search pa-

rameters, and recently learning good portfolios has been studied, for ex-

ample, in [Petrik and Zilberstein 2006].

Speed-up can be obtained by the portfolio SAT solving approach, where a

given formula is solved simultaneously by several different solvers. There

are different ways of combining solvers so that the speed-up would be as

good as possible for a wide range of benchmarks (see, e.g., [Inoue et al.

2006; Hamadi et al. 2009a; Hamadi et al. 2009b; Biere 2010]). One ef-

fective approach is to simply introduce a small amount of randomness in

the heuristic while keeping the search strategy of the solver otherwise

intact. This provides an interesting setting for obtaining speed-up as it

requires virtually no modifications to the underlying solver. The results

in, e.g., [Wintersteiger et al. 2009] also suggest that it compares favorably

to many other portfolio based approaches. In this case we are given a

36

Parallel Solving based on Algorithm Portfolios

randomized solver and a formula such that the probability that the solver

solves the instance within time t is qT (t). Assume now we are given given

n simultaneously running solvers for solving the formula. As the formula

is solved if at least one of the solvers solves the formula within time t, the

probability of solving within time t becomes

qTn(t) = 1− (1− qT (t))
n. (4.1)

Depending on the distribution qT (t), the expected run time ETn of the

simple distribution approach can be be significantly lower than the ex-

pected run time ET of a single solver. This chapter studies this effect in

distributions obtained from a wide range of formulas.

4.2 Parallel Restart Strategies

The properties of the SDSAT approach is studied in the grid computing

environment discussed in Ch. 3 using a parallel adaptation of the restart

strategies discussed in Sect. 2.2.2. This will be done by applying a sequen-

tial restart strategy STRAT to a work flow consisting of a sequence of jobs

j1j2 A finite restart strategy is a sequence of restart limits t1t2 . . . tk.

Let the maximum run time of a job in the grid environment be Tmax. If

the sum of the restart limits
∑k

i=1 ti ≤ Tmax, then a finite restart strat-

egy can be executed in a job of a work flow. We will use the following

construction for obtaining a finite restart strategy from a restart strategy

STRAT = t1t2 . . .

finite(STRAT) =

⎧⎨
⎩ Tmax, if t1 > Tmax, and

t1t2 . . . tk, k maximizes
∑k

i=1 ti ≤ Tmax otherwise.
(4.2)

Given a restart strategy STRAT, let STRAT1, STRAT2, . . . be a recursively

defined sequence of restart strategies so that STRAT1 = STRAT and the

restart strategy STRATi is obtained by removing the restart limits given

by finite(STRATi−1) from STRATi−1. A parallel restart strategy is the re-

sult of mapping a given restart strategy to finite restart strategies that

are executed in jobs of a work flow. Two different mappings are used

in [PI] to obtain parallel restart strategies. In the faithful parallelization

scheme the mapping is done so that the job j1 uses the restart strategy

finite(STRAT1), the job j2 uses finite(STRAT2) and so forth. The straight-

forward parallelization scheme assumes a grid environment with n com-

puting resources. The scheme, introduced in [Luby and Ertel 1994], gives

37

Parallel Solving based on Algorithm Portfolios

t23

t25

t34t33

· · ·
· · ·
· · ·

· · ·

t5

t12

t16 t18t17

t10 t11

t7 t8 t9 t21

t22

t4

t35t24

t26

t6

t36

t28 t29 t30

t31 t32

t27

t14

t2

t15

t3

t13

t1

t19 t20

t5

t5

t5

t5

· · ·

t3t1

t8

· · ·
t6

t2 t3t1 t9

t4

· · ·
t2 t3t1

t7

t7

t6t2 t3t1 t9

t4 t7

t8

t8t6

t8

t4

t9 · · ·

t9

t6 t7

t4

t2

Figure 4.1. The faithful scheme used in the experiments (top) and the straightforward
scheme (bottom)

the jobs j1 . . . jN the finite restart strategy finite(STRAT1), while the jobs

jN+1 . . . j2N receive the restart strategy finite(STRAT2) and so forth. Fig-

ure 4.1 illustrates the schemes. The experiments in [PI] suggest that the

faithful scheme performs better than the straightforward scheme in most

cases.

As discussed in Sect. 2.2.2 and [Luby et al. 1993], a restart strategy

OPT = (a∗a∗ . . .) is optimal for a given run time distribution. It is rela-

tively straightforward to come up with a distribution where a more elab-

orate restart strategy provides a better speed-up in the parallel case. The

following example, adapted from [Luby and Ertel 1994], illustrates the

phenomenon.

Example 1 Given 0 < p < 1, consider the distribution

q(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t < 1,

p if 1 ≤ t < 10, and

1 if t ≥ 10,

(4.3)

where the probability of solving the instance at time 1 is p, and solving the

instance at time 10 is (1− p). Exactly two fixed strategies can be useful in

solving this distribution, FIXED1 = (1, 1, . . .) and FIXED10 = (10, 10, . . .).

In an environment with n = 2 parallel computing elements, the expected

run times for the two strategies turn out to be

ET 2
FIXED1 = (1− p)

∞∑
i=0

(1− p)2i(i+ 1) =
1

1− p2
, (4.4)

and

ET 2
FIXED10 = 2p(1− p) + p2 +10(1− (2p(1− p) + p2)) = 9p2 − 18p+10. (4.5)

However, the restart strategy S = (10, 1, 1, . . .), having expected run time

ET 2
S = p

8∑
i=0

(1− p)i(i+ 1) + 10(1− p
8∑

i=0

(1− p)i), (4.6)

38

Parallel Solving based on Algorithm Portfolios

results in lower run time than either one of the two fixed restart strategies

for small values of p. For example when p = 0.05, we have the expected run

times
ET 2

FIXED1 ≈ 10.256,

ET 2
FIXED10 ≈ 9.123, and

ET 2
S ≈ 8.025.

(4.7)

4.3 Experiments on Parallel Restart Strategies

This section studies the effect of using different restart strategies in the

grid computing environment discussed in Ch. 3. The distributions used in

the experiments are the same as those used in Sect. 2.3. The computing

environment is assumed to be zero-delayed in the following experiments

and the case with non-zero delays is further analyzed in [PI]. The distri-

butions are computed using an Intel Xeon 5130 dual-core dual-CPU com-

puters with 16 GB memory running MINISAT 1.14 so that a single com-

puter is reserved for each solving. The resulting distributions are then

used for simulating the SDSAT approach with the parallel restart strate-

gies. The results are reported in tables 4.1 and 4.3 for 16 cores, and 4.2

and 4.4 for 64 cores. The table lists the following restart strategies in the

columns:

• FIXEDTmax denotes the run time with the parallel restart strategy based

on the fixed restart strategy FIXEDTmax = TmaxTmax

• FIXEDa∗ shows the results with a restart strategy obtained by minimiz-

ing Eq. (2.5) over a substituting q(t) = qTn(t) from Eq. (4.1). Deter-

mining a∗ requires in practice solving the formula, and is therefore in

practice never available. This restart strategy can be seen as an ideal-

ization.

• STRATU denotes the universal restart strategy (see Eq. (2.6)),

• STRATE denotes the exponential restart strategy,

• STRATNE denote the nested exponential restart strategy (see Eq. (2.7))

• Exp denotes the values obtained directly from the expected solving time

39

Parallel Solving based on Algorithm Portfolios

when running n solvers in parallel with the SDSAT approach until one

of them finds a solution.

• Min shows the minimum sampled run time. This value gives an es-

timate of the minimum time required to solve the instance with any

restart strategy or number of cores.

The results show that many unsatisfiable formulas in this benchmark set

are best solved with the exponential strategy. Surprisingly, the results

are typically better with the exponential strategy than with the strategy

FIXEDa∗ , especially with 64 cores. The run time with the strategy FIXEDa∗

is consistently equal to the expected run time. From this we may conclude

that only the more elaborate restart strategies can provide better speed-

up than the straightforward approach of running the solver until a solu-

tion is found. The speed-up obtained with the exponential restart strategy

is greater with 16 cores than with 64 cores. Typically the run times are

close to the minimum run time, indicating that not much speed-up can be

obtained with increasing the number of CPUs.

Based on the results one could argue that by using the exponential

restart strategy STRATE one would gain a small speed-up compared to

using the fixed restart strategy FIXEDTmax. Figure 4.2 shows scatter plots

for the two restart strategies. Each point in the figures corresponds to

an instance of the application category of the Satisfiability Competition

2009 (SAT-Comp 2009) run with 16 cores (left) and 64 cores (right). The

vertical cordinate of each point is the wall clock run time for the restart

strategy FIXEDTmax and the horizontal for STRATE. A point above the di-

agonal means that the strategy STRATE has a lower run time. The results

are again reported without delays. Based on the figures no significant

gain or loss is obtained by using the more complex restart strategy.

It is not clear how well these results generalize to multicore solving, as

the experiments in this section do not consider any kind of memory bus

congestion issues often experienced with SAT solving in particular. For

example, [Martins et al. 2010] reports a 15% decrease in efficiency when

running four threads in a quad-core CPU.

40

Parallel Solving based on Algorithm Portfolios

Table 4.1. Parallel restart strategies on unsatisfiable instances with 16 cores

Name FIXEDTmax FIXEDa∗
STRATU STRATE STRATNE Exp Min

999999000001nc 1218.79 1218.79 1645.78 1201.90 12050.84 1218.79 1071.51

AProVE07-03 954.01 954.01 1052.54 955.87 8668.53 954.01 923.89

AProVE07-08 1074.13 1074.13 1430.46 1082.87 10072.37 1074.13 774.47

AProVE07-09 2075.72 2075.22 4800.72 2028.56 20966.15 2075.22 1552.37

AProVE07-16 1048.83 1048.83 1250.86 1056.70 9877.37 1048.83 879.383

AProVE07-27 2989.44 2952.72 7816.30 2929.53 28988.91 2952.72 2681.72

clqcolor-10-07-09 1292.80 1292.80 1530.99 1308.50 12269.79 1292.80 1198.31

connm-ue-csp-sat-n800-

d0.02-s925928766

926.77 926.77 1185.90 931.91 8650.57 926.77 847.79

cube-11-h13-unsat 919.08 919.08 1341.03 944.41 8931.40 919.08 703.41

dated-10-13-u 3060.44 3022.28 8529.79 3051.15 30307.07 3022.28 2634.31

dated-5-15-u 773.02 773.02 1071.38 763.94 7389.70 773.02 583.42

dated-5-17-u 1430.65 1430.65 2474.74 1461.95 14331.09 1430.65 1076.53

emptyroom-4-h21-unsat 3980.55 3333.06 15431.82 3346.65 33762.49 3333.06 2826.16

eq.atree.braun.11.unsat 2256.08 2256.08 3476.13 2240.11 21622.92 2256.08 1900.74

hwb-n26-01-S1957858365 584.48 584.48 662.95 586.72 5288.25 584.48 541.18

hwb-n26-03-S540351185 1004.99 1004.99 1112.83 1018.90 9150.24 1004.99 915.99

hwb-n28-01-S136611085 1271.54 1271.54 1379.97 1276.40 11843.20 1271.54 1222.56

hwb-n28-02-S818962541 20390.45 3839.98 120253.79 3824.65 37383.67 3839.98 3596.46

linvrinv5 2346.70 2346.70 2890.58 2365.55 22070.89 2346.70 2168.45

lksat-n1000-m6860-k4-l4-

s1935114289

943.01 943.01 1079.81 939.84 8837.96 943.01 892.25

manol-pipe-f9b 3284.95 2897.48 13832.88 2911.97 26169.26 2897.48 1505.45

manol-pipe-f9n 5031.82 3297.12 21136.59 3362.23 31256.28 3297.12 2561.90

manol-pipe-g10nid 564.88 564.88 773.35 567.43 5334.36 564.88 452.97

mod2c-3cage-unsat-10-2 2316.56 2316.56 3200.24 2322.92 22186.57 2316.56 2100.62

mod2c-3cage-unsat-10-3 1901.87 1901.87 2643.14 1940.09 18202.98 1901.87 1806.69

phnf-size10-exclusive-

luckySeven

508.77 508.77 693.87 522.80 4595.64 508.77 439.27

pmg-12-UNSAT 4202.59 3408.44 14307.67 3411.77 32730.85 3408.44 3201.25

pyhala-braun-unsat-40-4-02 1942.92 1942.92 2556.73 1952.30 18710.17 1942.92 1741.8

QG7-dead-dnd001 622.41 622.41 921.81 606.25 5758.97 622.41 438.34

QG7-dead-dnd002 1076.71 1076.71 1403.67 1101.27 10097.25 1076.71 877.98

QG7-gensys-icl100 2513.79 2513.79 4353.16 2519.19 24436.45 2513.79 2323.00

QG7-gensys-ukn003 1287.10 1287.10 1426.69 1297.45 12058.16 1287.10 1207.62

s101-100 1870.68 1870.68 2385.08 1866.75 18510.20 1870.68 1646.75

s97-100 1593.43 1593.43 1858.12 1596.60 15218.74 1593.43 1425.26

SGI_30_50_30_20_1-dir 772.58 772.58 851.78 781.07 6957.91 772.58 720.65

SGI_30_50_30_20_3-dir 1180.57 1180.57 1303.48 1191.67 10775.70 1180.57 1076.47

sortnet-6-ipc5-h11-unsat 5247.16 3428.12 21159.76 3500.82 33392.97 3428.12 3081.37

total-10-13-u 1701.67 1701.67 3474.52 1742.68 16132.87 1701.67 1189.01

unsat-set-b-fclqcolor-10-07-09 1339.28 1339.28 1649.27 1338.32 12873.22 1339.28 1011.96

uts-l06-ipc5-h33-unknown 488.64 488.64 720.14 498.83 4699.11 488.64 394.69

Total time 89989.9 67981.2 162196 68348.5 652561 67981.2 58194.0

0

4000

8000

12000

16000

0 4000 8000 1200016000

F
ix
e
d
T
m
ax

(i
n
se
co
n
d
s)

Strate (in seconds)

16 cores

0

2000

4000

6000

0 2000 4000 6000

F
ix
e
d
T
m
ax

(i
n
se
co
n
d
s)

Strate (in seconds)

64 cores

Figure 4.2. Scatter plots for the exponential strategy STRATE (on the horizontal axis) and
the fixed strategy FIXEDTmax (on the vertical axis) for 16 (left) and 64 (right)
cores. Each point on the plot corresponds to one instance from the application
category of SAT-Comp 2009

41

Parallel Solving based on Algorithm Portfolios

Table 4.2. Parallel restart strategies on unsatisfiable instances with 64 cores

Name FIXEDTmax FIXEDa∗
STRATU STRATE STRATNE Exp Min

999999000001nc 1097.30 1097.30 1217.53 1091.74 3635.46 1097.30 1071.51

AProVE07-03 929.81 929.81 954.39 930.75 2693.13 929.81 923.89

AProVE07-08 868.46 868.46 1070.43 873.75 3071.37 868.46 774.47

AProVE07-09 1685.02 1685.02 2187.87 1669.81 5996.16 1685.02 1552.37

AProVE07-16 919.55 919.55 1036.74 917.59 3051.46 919.55 879.383

AProVE07-27 2724.18 2724.18 3187.54 2727.98 8889.88 2724.18 2681.72

clqcolor-10-07-09 1223.94 1223.94 1294.52 1222.36 3738.15 1223.94 1198.31

connm-ue-csp-sat-n800-

d0.02-s925928766

859.52 859.52 933.19 861.69 2776.68 859.52 847.79

cube-11-h13-unsat 770.53 770.53 917.82 774.79 2665.47 770.53 703.41

dated-10-13-u 2715.90 2715.90 3294.69 2725.08 9305.16 2715.90 2634.31

dated-5-15-u 621.97 621.97 752.72 612.49 2217.66 621.97 583.42

dated-5-17-u 1173.10 1173.10 1442.47 1161.43 4110.50 1173.10 1076.53

emptyroom-4-h21-unsat 2981.42 2978.67 4977.42 2965.05 9997.88 2978.67 2826.16

eq.atree.braun.11.unsat 2002.87 2002.87 2316.82 2004.98 6692.66 2002.87 1900.74

hwb-n26-01-S1957858365 550.54 550.54 583.36 548.33 1654.99 550.54 541.18

hwb-n26-03-S540351185 936.17 936.17 1005.70 933.93 2893.18 936.17 915.99

hwb-n28-01-S136611085 1229.79 1229.79 1270.72 1228.67 3700.24 1229.79 1222.56

hwb-n28-02-S818962541 6661.30 3623.84 25475.02 3635.29 11334.12 3623.84 3596.46

linvrinv5 2207.00 2207.00 2397.34 2201.85 6860.62 2207.00 2168.45

lksat-n1000-m6860-k4-l4-

s1935114289

897.91 897.91 940.98 897.50 2760.81 897.91 892.25

manol-pipe-f9b 2039.18 2038.45 3798.45 1986.08 7189.72 2038.45 1505.45

manol-pipe-f9n 2727.88 2672.87 7051.39 2623.65 9737.61 2672.87 2561.90

manol-pipe-g10nid 477.56 477.56 537.69 476.39 1577.65 477.56 452.97

mod2c-3cage-unsat-10-2 2133.11 2133.11 2403.48 2145.82 6850.56 2133.11 2100.62

mod2c-3cage-unsat-10-3 1817.37 1817.37 1914.53 1816.27 5612.06 1817.37 1806.69

phnf-size10-exclusive-

luckySeven

456.49 456.49 499.86 454.87 1440.11 456.49 439.27

pmg-12-UNSAT 3243.91 3239.33 5598.29 3224.99 10253.94 3239.33 3201.25

pyhala-braun-unsat-40-4-02 1779.49 1779.49 1993.90 1780.19 5806.67 1779.49 1741.8

QG7-dead-dnd001 489.39 489.39 617.80 485.33 1680.44 489.39 438.34

QG7-dead-dnd002 908.27 908.27 1082.50 915.85 3113.83 908.27 877.98

QG7-gensys-icl100 2371.10 2371.10 2598.43 2366.25 7452.06 2371.10 2323.00

QG7-gensys-ukn003 1222.60 1222.60 1271.92 1223.60 3769.13 1222.60 1207.62

s101-100 1714.32 1714.32 1897.07 1716.77 5683.92 1714.32 1646.75

s97-100 1480.41 1480.41 1595.93 1472.03 4647.91 1480.41 1425.26

SGI_30_50_30_20_1-dir 733.02 733.02 774.79 732.54 2197.40 733.02 720.65

SGI_30_50_30_20_3-dir 1115.71 1115.71 1175.65 1119.01 3411.16 1115.71 1076.47

sortnet-6-ipc5-h11-unsat 3175.41 3120.33 6918.18 3102.86 10402.33 3120.33 3081.37

total-10-13-u 1344.92 1344.92 1706.18 1326.45 4913.85 1344.92 1189.01

unsat-set-b-fclqcolor-10-07-09 1133.14 1133.14 1345.40 1158.07 3895.12 1133.14 1011.96

uts-l06-ipc5-h33-unknown 414.50 414.50 477.63 409.41 1365.39 414.50 394.69

Total time 63834.1 60678.4 72989.8 60521.5 199046 60678.4 58194.0

Table 4.3. Parallel restart strategies on satisfiable instances with 16 cores

Name FIXEDTmax FIXEDa∗
STRATU STRATE STRATNE Exp Min

cube-11-h14-sat 2926.15 2891.47 7905.75 2877.41 28288.35 2891.47 2628.68

dated-10-13-s 64.18 48.55 61.19 70.02 59.60 64.18 10.09

dated-10-17-s 116.60 75.21 92.52 131.00 94.27 116.60 8.06

emptyroom-4-h22-sat 2829.24 2236.62 5503.84 2735.48 7297.10 2417.49 393.28

mizh-md5-48-5 133.88 133.88 239.64 133.12 610.57 133.88 49.76

mizh-sha0-35-3 30.62 30.62 30.68 30.80 96.92 30.62 23.43

mizh-sha0-36-2 87.21 68.92 94.95 77.33 155.29 87.21 25.65

mod2-rand3bip-sat-250-3 116.29 105.73 179.73 102.73 361.95 116.29 40.16

mod2-rand3bip-sat-280-1 84.61 63.11 76.03 100.67 87.40 84.61 9.18

sortnet-7-ipc5-h16-sat 2062.73 1071.07 2740.82 1759.80 3082.93 1965.84 156.55

vmpc_28 7.30 0.86 7.84 9.17 5.10 7.30 0.14

Total time 8458.81 6726.04 16933 7924.8 39777.5 7799.2 3344.98

42

Parallel Solving based on Algorithm Portfolios

Table 4.4. Parallel restart strategies on satisfiable instances with 64 cores

Name FIXEDTmax FIXEDa∗
STRATU STRATE STRATNE Exp Min

cube-11-h14-sat 2682.79 2682.79 3168.93 2697.59 8746.08 2682.79 2628.68

dated-10-13-s 16.45 16.00 16.90 16.79 17.77 16.45 10.09

dated-10-17-s 32.61 20.84 27.45 35.32 28.82 32.61 8.06

emptyroom-4-h22-sat 709.36 666.96 1559.06 657.61 2120.44 708.95 393.28

mizh-md5-48-5 73.64 73.64 88.59 73.48 176.45 73.64 49.76

mizh-sha0-35-3 24.10 24.10 24.20 23.93 29.95 24.10 23.43

mizh-sha0-36-2 30.12 30.12 33.01 28.70 56.13 30.12 25.65

mod2-rand3bip-sat-250-3 47.37 47.37 57.13 45.76 104.98 47.37 40.16

mod2-rand3bip-sat-280-1 21.77 19.56 22.82 22.35 22.58 21.77 9.18

sortnet-7-ipc5-h16-sat 404.61 319.82 523.72 464.86 857.29 404.78 156.55

vmpc_28 0.55 0.26 0.63 0.59 0.55 0.55 0.14

Total time 4043.37 3901.46 5522.44 4066.98 12161 4043.13 3344.98

4.4 Clause Learning with Simple Distributed SAT Solving

Based on the experiments in the previous section it seems that when

solved with a randomized modern clause learning SAT solver, many for-

mulas have a relatively high minimum solving time. A grid computing

environment which places hard limits on solving times cannot therefore

be used for solving some formulas with a given SAT solver and the tech-

niques based solely on randomization and restarts. On the other hand, if

a formula can be solved in the environment, the parallelism potentially

results in substantial speed-up.

This section studies an improvement over the SDSAT approach where

the clauses learned in an earlier job which reached a run time or memory

limit are used in successor jobs. The learned clauses are transferred to a

clause database stored in the master process, where they are filtered using

a parallel clause learning heuristic, and then submitted with the formula

on the subseqeuent jobs. It turns out that this CL-SDSAT approach im-

proves significantly the underlying solver. In practice it is possible to solve

some formulas which could not be solved in reasonable time or memory

limits without this technique. However, in some cases the new learned

clauses can slow down the solving by increasing the overhead related to

memory access of the solver.

Sharing of the learned clauses plays a central role in the discussion.

The size of a clause set ||S|| is the total number of literals in S, that is,

||S|| = ∑
C∈S |C|. The unit clauses are handled specially in the process:

they are always stored in the clause database, and do not contribute to

the size of the database.

Figure 4.3 shows a version of the CL-SDSAT algorithm and the re-

lated concepts. The clause database, initialized on line 1, is denoted by

43

Parallel Solving based on Algorithm Portfolios

ClauseDB , and is annotated with an index j to facilitate the representa-

tion of the results. The set U contains the unit clauses that are proved

true in all satisfying truth assignments of the input formula φ, if any ex-

ist. The shorthand notation UP(φ) = UP(φ, ∅) denotes computing the unit

propagation closure of φ on empty truth assignment.

The first part of the loop in lines 5–6 consists of submitting the for-

mula, all unit clauses and a heuristically selected subset of ClauseDB of

size at most SubmSize to the grid so that the n computing resources are

filled. The next phase is to receive the results in lines 8–14. The Receive(i)

receives from the resource i a tuple consisting of the result of the comput-

ing, which can be Sat, Unsat or Indet, and a set L of learned clauses. If the

formula is found either satisfiable or unsatisfiable, the algorithm is ter-

minated. Otherwise the set of unit clauses is updated using the learned

clauses on line 13 and the clause database updated on line 14, again using

a heuristic function Merge and limiting the maximum size of the database

to MaxDBSize.

The function Merge has a central role in discussing clause sharing both

here and later in Sect. 6.2. Firstly, the function acts as a heuristic for

selecting learned clauses, and secondly, it simplifies the learned clauses

using the set of literals U obtained by unit propagation. Two operations

are involved in the simplification:

(i) removing satisfied clauses (clauses C such that C ∩ U 	= ∅), and

(ii) removing the false literals ¬l from clauses so that given a clause C,

the simplified clause becomes C ′ = {l ∈ C | ¬l 	∈ U}.

4.5 Experiments on the Algorithmic Framework

It is interesting to contemplate on the different types of heuristics that

can be implemented both for Choose and Merge. This section studies the

following four possibilities discussed also in [PII]:

• Choose123 only considers clauses of length 1, 2, or 3. If the size of the

resulting database is greater than the limit, the shorter clauses are pre-

ferred. This type of approach is used in many portfolio based solvers.

For example, [Biere 2010] only transfers clauses of length 1 to other

solvers, and [Hamadi et al. 2009b] only clauses that have at most eight

literals.

44

Parallel Solving based on Algorithm Portfolios

Input: φ, a propositional formula;

n, number of cores;

MaxDBSize, the maximum size for the database;

SubmSize, the maximum submit size

1 ClauseDB0 := ∅
2 U := UP(φ)

3 j := 0

4 while True:

5 for i := 1 to n:

6 Submit(φ ∪ U ∪ Choose(ClauseDB j ,SubmSize))

7 ClauseDB j+1 := ClauseDB j

8 for i := 1 to n:

9 (result , L) := Receive(i)

10 if result is in {Sat,Unsat}:

11 return result

12 else :

13 U := UP(φ ∪ U ∪ ClauseDB j+1 ∪ L)

14 ClauseDB j+1 := Merge(U,ClauseDB j+1, L,MaxDBSize)

15 j := j + 1

Figure 4.3. The CL-SDSAT Algorithmic Framework

45

Parallel Solving based on Algorithm Portfolios

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10000 100000

q(
tim

e)

time (s)

0
16

32

48
64

80

96

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1e+08 1e+09

q(
de

ci
si

on
s)

decisions

0
16

32

48
64

80

96

Figure 4.4. Run time distribution for n = 0, 16, 32, 48, 64, 80, and 96 parallel cores for
instance hwb-n28-02-S818962541 (left). The expected run time with the
learned clauses is higher than the expected run time without the learned
clauses for n = 16, n = 32 and n = 48. However, the decision distribution
(right) does not show a similar slow-down.

• Choose len returns the shortest clauses. This approach is more general

than Choose123, as it always returns clauses even if the argument set

contains only clauses longer than some limit.

• Choose freq returns the most common learned clauses. As the parallel

search is allowed to overlap, it is not unlikely that the same clause is

learned many times in different jobs.

• Chooserand returns a randomly selected set of clauses.

We can now move to the first analysis of the algorithmic framework de-

scribed in Fig. 4.3. The idea is to see how the database of clauses ClauseDB

affects the expected run time and number of decisions needed to solve

a formula. In particular, we are studying the effect of ClauseDB1 while

n = 8. Table 4.5, adapted from [PII], illustrates the effect of the heuris-

tic when SubmSize = 100000 literals and MaxDBSize is unlimited. The

database is constructed by running the n = 8 solvers for a time corre-

sponding to 25% of the previously measured minimum run times. Once

the resulting learned clauses are merged and simplified in line 14, the for-

mula φ∪U ∪Choose(ClauseDB1,SubmSize), constructed in line 6, is solved

using a randomized solver (MINISAT v1.14) 50 times to obtain a reliable

estimate of the run time distribution.

Based on the results, the fixed clause length heuristic Choose123 is the

best performing heuristic, while the heuristic Choose len gives almost no

reduction in run time, loosing to the random heuristic Chooserand. We still

note that the heuristic Choose len performs very well when measuring the

number of decisions.

46

Parallel Solving based on Algorithm Portfolios

Table 4.5. Expected run times for a selection of benchmarks from the SAT 2007 competi-
tion

Name Base Choose len Choose freq Choose123 Chooserand

AProVE07-09 4 016

8 461 866

1 994
4 388 463

2 616

4 716 035

2 264

5 532 927

3 393

7 451 391

eq.atree.-

braun.11.unsat

3 096

22 311 255

2 967

7 831 761
2 152

13 263 105

1 439
9 034 391

2 481

14 404 941

SGI_30_50_30_20_3-

dir

1 432

1 240 001

70
165 721

485

541 943

211

357 978

343

467 458

cube-11-h14-sat 4 832

1 273 485

4 483
967 851

4 939

1 096 322

4 888

1 238 110

5 294

1 313 385

dated-10-11-u 9 889

1 639 566

2 037

1 058 664

1 977
998 103

2 187

1 146 487

5 240

2 246 003

emptyroom-4-

h21-unsat

5 205

1 885 355

1 498
688 156

1 631

813 027

1 704

853 642

1 954

1 052 777

unsat-set-b-

fclqcolor-10-07-09

2 027

41 172 989

1 153
13 696 945

1 388

29 946 390

1 196

25 945 033

1 864

26 103 961

hwb-n28-02-

S818962541

4 654

125 472 477

14 128

68 950 042
5 001

123 220 119

4 454
97 041 128

10 211

82 550 196

linvrinv5 2 828

40 917 769

7 837

25 824 068
2 620

37 369 017

2 518
36 283 860

4 030

32 008 217

manol-pipe-f9b 10 620

4 954 967

13 336

5 308 314

9 196

4 328 594

7 120
3 401 500

10 814

5 101 791

mod2c-3cage-

unsat-10-2

3 020

271 766 780

3 827

62 714 188
2 659

221 568 484

2 496
195 269 018

4 392

87 430 751

pmg-12-UNSAT 4 268

84 245 813

9 372

40 690 352
4 189

69 882 275

2 955
48 750 743

7 876

56 061 825

pyhala-braun-

unsat-40-4-02

2 641

2 775 304

887

1 001 999
1 086

1 855 329

782
1 436 653

1 348

2 245 269

QG7-gensys-

ukn003

1 594

6 799 632

760

2 081 121
1 196

5 256 338

513
2 737 811

1 506

5 436 088

s101-100 2 528

170 749 796

5 047

47 196 913

2 502

167 440 762

2 428
166 645 578

4 907

46 054 481

sortnet-6-ipc5-

h11-unsat

4 886

2 743 833

1 521

900 265
2 893

1 842 295

1 507
980 166

4 694

2 607 584

total-10-13-u 3 279

1 178 947

1 296

690 406

1 109
682 302

1 695

998 194

1 722

997 008

Sum 73 383

789 589 835

72 213

284 378 607
47 639

684 820 440

40 357
597 653 219

72 069

373 533 126

47

Parallel Solving based on Algorithm Portfolios

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 100 1000 10000 100000

q(
tim

e)

time (s)

0
1

2
3

4

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 100000 1e+06 1e+07 1e+08 1e+09

q(
de

is
io

ns
)

decisions

0
1

2
3

4

Figure 4.5. Effect of conjoining the clause database ClauseDB j with an instance for
j = 0, 1, 2, 3 and 4. Increasing the “depth” of the clause database makes
this instance faster to solve once j ≥ 3.

The results in Table 4.5 show that it is not uncommon that conjoining

learned clauses with a formula increases the expected run times. Fig-

ure 4.4 shows an example, using the Choose len heuristic for selecting the

clauses. The figure shows the effect of increasing the number of paral-

lel cores n in the CL-SDSAT algorithmic framework. The instance is on

the average slower to solve when n < 64, although the number of deci-

sions needed to solve the instance decreases monotonously. A likely ex-

planation for this is that the large amount of learned clauses results in

a higher memory footprint slowing down the solving more than what is

gained from the decrease in decisions. For practical reasons the size of

the learned clause database MaxDBSize was limited to ten million literals

in these experiments, while SubmSize = 100000.

It is also interesting to study the effect of increasing the “depth” of the

learned clause database, that is, the effect of increasing j in ClauseDB j .

Higher values of j signify that the clauses learned in parallel can be used

to derive more clauses. Figure 4.5 shows the effect for n = 16 for the

formula studied also in Fig. 4.4. Clearly this type of cumulative learning

performs significantly better than increasing only the number of simulta-

neously running solvers. The phenomenon is confirmed for several other

formulas in [PII], and will play a key role in the development of cumula-

tive learning for the iterative partitioning approach in Ch. 6.

4.6 The CL-SDSAT Implementation

As a part of this work we have implemented the CL-SDSAT algorithm

for the grid computing environment discussed in Ch. 3. The implemen-

tation of the CL-SDSAT algorithmic framework limits the database size

48

Parallel Solving based on Algorithm Portfolios

Grid

Local computing

Solver1

Solver2

...

Solvern

1

Pool of Parallel-
Learned Clauses

Filtered Clauses

Learned clauses
(if not solved)

Filtered clauses

Figure 4.6. The CL-SDSAT Process

MaxDBSize to one million literals, using the Choose len heuristic to choose

the clauses once the limit is reached. The outgoing clauses are selected us-

ing the same heuristic, and the size of the set is limited to 100 000 literals.

Unlike in the algorithmic framework of Fig. 4.3, the implementation does

not wait for all the parallel running solvers to time out before submitting

the new solvers to the freed resources. This decision was taken since the

delays in the grid environment vary (see Fig. 3.2), and some solvers might

therefore finish much earlier than the less lucky solvers. As a result, the

related work flow could be described as the process in Fig. 4.6, where a

clause database is maintained in the master process using heuristics and

jobs are constructed using the database available at the time a resource

becomes available.

The CL-SDSAT algorithm is based on MINISAT 2.2.0. The solver is used

in two ways; firstly as the clause-producing solver in the workers, and sec-

ondly in the master process for handling the simplification, and removing

subsumed and duplicate learned clauses. Figure 4.7 compares the run

time of MINISAT 2.2.0 based CL-SDSAT approach to MINISAT 2.2.0 for

the application category instances of SAT-Comp 2009. The times reported

for CL-SDSAT include the grid delays, job run time was limited to approx-

imately one hour, memory usage was limited to 2 gigabytes and at most

64 cores were used from the grid simultaneously. The work flow run time

was limited to 6 hours. The times reported for MINISAT 2.2.0 are com-

49

Parallel Solving based on Algorithm Portfolios

0

5000

10000

15000

20000

0 5000 10000 15000 20000

C
L
-S
D
S
A
T

MiniSat 2.2.0

0.1

1

10

100

1000

10000

0.1 1 10 100 1000 10000

C
L
-S
D
S
A
T

MiniSat 2.2.0

1000

10000

1000 10000

C
L
-S
D
S
A
T

MiniSat 2.2.0

Figure 4.7. Comparison of the CL-SDSAT approach against MINISAT 2.2.0. The boxes
(�) represent unsatisfiable and the crosses (×) satisfiable instances. The
right figure shows the data in logarithmic scale, whereas the left figure uses
linear scale. The bottom figure is a zoom into the right figure.

puted in a 12 core AMD Opteron 2435 system. The full node was reserved

for each run to prevent other processes causing memory bus congestion.

Time was limited to 6 hours and memory usage to 24 gigabytes.

Despite the high latency the CL-SDSAT approach seems to perform well

in solving instances and manages to solve several instances that were

not solved with MINISAT 2.2.0, as illustrated by the time outs on the

borders of the graphs. The slowdown in easy instances is particularly

visible in the right graph using logarithmic scale. As the difficulty of the

instances increases, also the gain from the CL-SDSAT algorithm becomes

clearly visible. Based on the results it would be particularly interesting to

study the effect of adding to the clause database the frequently occurring

clauses, and using more information, such as the Literals Blocks Distance

defined in [Audemard and Simon 2009], for assessing the quality of the

clauses. However, this is left to further work at this point.

50

5. Parallel Solving Based on
Partitioning

Parallel SAT solving has in the past relied largely on methods where the

search space is “forcibly” partitioned into non-overlapping searches. This

approach, used for example in [Speckenmeyer 1989; Böhm and Specken-

meyer 1996; Zhang et al. 1996], is natural when using traditional DPLL-

style solvers where the search is organized as a tree.

The SDSAT and CL-SDSAT approaches described in the preceding chap-

ter do not force the solvers to perform different searches on the formula,

but instead rely on randomization in the heuristic to provide speed-up.

The idea in these portfolio approaches is that it is unlikely that two ran-

domized solvers would be searching the solution in a similar fashion.

The differences between the partitioning and portfolio approaches have

been actively studied [Bonacina 1999; Bonacina 2000; Grama and Kumar

1999; Bordeaux et al. 2009]. The most recent results in particular from

SAT competitions suggest that the portfolio based approach performs bet-

ter in practice [Hamadi et al. 2009b; Hamadi et al. 2009a; Biere 2010].

Recently also approaches which combine elements from both partitioning

and portfolios have received some interest [Bonacina 2001; Segre et al.

2002; Hyvärinen et al. 2006; Dequen et al. 2009; Ohmura and Ueda 2009;

Gebser et al. 2011].

This chapter discusses several approaches to avoiding search overlap

with stronger means than just relying on probability. The approaches are

based on inserting additional constraints to a formula resulting in two or

more derived formulas. The constraints, represented either as conjunc-

tions of clauses or as partial truth assignments, are constructed so that

solving sufficient number of the derived formulas allows determining the

satisfiability of the original formula. The chapter presents several ap-

proaches to organizing the partitioning based search, and analyzes the

effects of the approaches to the expected time required to determine the

51

Parallel Solving Based on Partitioning

satisfiability of a formula.

The chapter combines this topic, covered in [PIII] and [PIV], under a sin-

gle discussion. While the scope of [PIII] in particular is in both satisfiable

and unsatisfiable formulas, the main emphasis here is to develop a uni-

form notation for the unsatisfiable formulas. Also other topics, covered in

more detail in the publications, are considered more lightly here. In par-

ticular, the discussion on the lookahead partitioning function in Sect. 5.5

is covered in much more detail in [PIV], and the experimental results for

the studied partitioning approaches are given in [PIII].

5.1 Plain Partitioning

The basic idea in the plain partitioning approach is quite simple: a propo-

sitional formula φ is divided to n derived formulas φ1, . . . , φn that are

solved in parallel with a SAT solver S called the underlying solver of the

approach. The derived formulas are obtained with a partitioning function

and satisfy the following conditions:

(1) φ ≡ φ1 ∨ . . . ∨ φn, and

(2) φi ∧ φj is unsatisfiable if i 	= j.

If all the derived formulas are unsatisfiable, then φ is also unsatisfiable,

whereas if at least one of the derived formulas is satisfiable, also φ is sat-

isfiable. Of particular interest in this section is how much faster a given

formula can be solved with the plain partitioning approach compared to

solving the formula directly with the solver S.

As the idea in plain partitioning is quite fundamental, it is natural that

many parallel SAT solvers, such as [Zhang et al. 1996; Blochinger et al.

2003; Schubert et al. 2009; Schulz and Blochinger 2010], use a similar

idea as their basis. The solving approaches used in these differ from plain

partitioning, for example, by the use of load balancing, where new derived

formulas are constructed from formulas being solved as the satisfiability

of previous formulas is determined. As a result, the number of derived

formulas n is not fixed in these parallel SAT solvers.

Despite such differences, an analysis of the plain partitioning approach

gives insight also to practical parallel solving. The main result in this

section is that the plain partitioning approach is “risky” in the following

sense. Assume that for any cumulative probability distribution q(t) there

exists a formula φq such that the probability of solving φq with S in time

52

Parallel Solving Based on Partitioning

less than or equal to t is q(t). If the partitioning function is from a certain

natural class described in Def. 2, and n is fixed and sufficiently large,

there is always an unsatisfiable formula so that the expected run time

of the plain partitioning approach will be higher than the expected run

time of the underlying solver S. The result is a generalization of a result

in [PIII] stating that if the derived formulas are exactly as difficult as the

original formula, the expected run time of the plain partitioning is never

lower than that of the underlying solver.

The approach is analyzed in a spirit similar to the analysis of the port-

folio style SDSAT approach in Ch. 4. In particular, we will assume that

given a formula, the time required to determine its satisfiability with a

solver S is a random variable T with cumulative distribution qT (t). To

simplify the discussion, we will assume for now that given a number

n ≥ 2, the partitioning function produces n derived instances which are

all solved in parallel using n CPUs or cores.

We will first introduce a model describing how a partitioning function

affects the run time distributions of the derived formulas. We assume

that the solver S performs with the same probability a given search that

takes time tφ in the formula φ but, due to the partitioning constraints, a

shorter time tφi
in the derived formulas φi. The efficiency ε(n) = tφ/tφi

of the partitioning function is assumed to depend only on the number n

of derived formulas. This reasoning results in a model where, given a

formula with the run time distribution qT (t) on a solver S, the n derived

formulas all have the distributions qT (ε(n)t).

The efficiency model that will be used in the proof is ε(n) = nα, where

0 ≤ α ≤ 1 is a constant depending on the partitioning function. This

model can be motivated in two ways. Firstly, the efficiency satisfies the

following natural properties:

(1) 1 ≤ ε(n) ≤ n,

(2) ε(n) ≤ ε(n+ 1), and

(3) (ε(n))p = ε(np) for all p ∈ N

The first condition states that the partitioning function should not make

a particular search of S superlinearly faster or slow the search down. The

second condition requires that the efficiency does not decrease as more de-

rived formulas are created. The last condition states that if a partitioning

function P (φ, n) is used to produce np derived formulas recursively, the re-

sulting efficiency must equal the efficiency of P (φ, np) where the derived

formulas are all generated at once.

53

Parallel Solving Based on Partitioning

Secondly, the model ε(n) = nα can be derived from the following con-

structive application of partitioning. Assume there is a procedure for

splitting the search space of an arbitrary formula φ following the run time

distribution qT (t) to a fixed number n0 ≥ 2 of derived formulas φ1, . . . , φn0 .

Assume further that the derived formulas φi have run time distributions

qT (βt) where 1 ≤ β ≤ n0. Applying this procedure first to φ and then re-

cursively to the derived formulas i times in total results in n = ni
0 derived

formulas with run time distribution qT (β
it). Hence the recursive applica-

tion of the procedure results in a partitioning function P (φ, n) defined for

values n = ni
0 with efficiency βi. Since i = logn0

n, we have

βi = βlogn0
n = e

lnn
lnn0

lnβ
= (elnn)

ln β
lnn0 = n

ln β
lnn0 = nα,

where α = lnβ/ lnn0.

Alternative expressions for the efficiency include a linear model ε′(n) =

max(βn, 1), where 0 ≤ β ≤ 1 is a constant. However, the condition (3) does

not hold for ε′(n). For example setting β = 0.9, n = 2 and p = 2 results in

(ε′(2))2 = 3.24, while ε′(4) = 3.6.

We are now ready to define the partitioning function more precisely.

Definition 2 Given a formula φ with run time distribution qT (t) on solver

S and a partitioning factor n ≥ 2, a partitioning function P : (φ, n) �→
(Π1, . . . ,Πn) is a function mapping the formula φ to n partitioning con-

straints Π1, . . . ,Πn. The partitioning constraints can be used to produce n

derived formulas φi = φ ∧ Πi, 1 ≤ i ≤ n. The derived formulas then satisfy

the following two properties:

(i) φ ≡ φ1 ∨ . . . ∨ φn, and

(ii) φi ∧ φj is unsatisfiable for all i 	= j.

The run time distribution of each of the derived formulas on solver S is

described by the probability distribution qT (ε(n)t), where

ε(n) = nα, 0 ≤ α ≤ 1 (5.1)

describes the efficiency of the partitioning function.

We will denote by ETn
plain-part(α) the expected time required to determine

the satisfiability of φ with the plain partitioning approach using a parti-

tioning function with efficiency ε(n) = nα. A partitioning function is called

54

Parallel Solving Based on Partitioning

void if α = 0 and hence ε(n) = 1. In this case all the derived instances

are as difficult to solve as the original formula. A partitioning function is

called ideal if α = 1, that is, ε(n) = n.

Once the partitioning function is defined, we are now ready to show

the first part of our main result stating that for non-ideal partitioning

functions there are distributions where solving with plain partitioning is

slower than solving with the underlying solver.

Proposition 5 Let P (φ, n) be a partitioning function as in Def. 2, where

0 ≤ α < 1, and S a SAT solver. Then for every n and every α there exists

a distribution qn(t) such that if the solving of an unsatisfiable instance

follows qn(t) on S, then the expected run time ET of S is lower than the

expected run time ETn
plain-part(α) of the plain partitioning approach.

Proof. The family of distributions qn(t) we will use in the proof is

qn(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t < t1,

1− 1
n if t1 ≤ t < t2, and

1 if t ≥ t2,

(5.2)

where t1 < t2. Thus the probabilities that the formula is solved by S

exactly in time t1 is 1 − 1/n and in time t2 is 1/n. The expected run time

for a formula following the distribution qn(t) on S is

ET = (1− 1

n
)t1 +

1

n
t2. (5.3)

The expected run time of the plain partitioning approach using the parti-

tion function ε(n) = nα can be derived by noting that all derived formulas

need to be solved before the result can be determined. This means that

either all solvers are “lucky”, and determine the unsatisfiability in time

t1/n
α, or at least one of the solvers runs for time t2/n

α, which will then

become the run time of the approach. This results in

ETn
plain-part(α) =

(
1− 1

n

)n t1
nα

+

(
1− (1− 1

n
)n
)

t2
nα

. (5.4)

We claim that for every α, there are values for n, t1 and t2 such that

ET < ETn
plain-part(α). Dividing both sides of the resulting inequality by t2

and setting k = t1/t2 results in

(1− 1

n
)k +

1

n
<

(1− 1
n)

n

nα
k +

1− (1− 1
n)

n

nα
,

which can be reordered to

k

(
(1− 1

n
)− (1− 1

n)
n

nα

)
<

1− (1− 1
n)

n

nα
− 1

n
.

55

Parallel Solving Based on Partitioning

0

20

40

60

80

100

120

140

160

180

10 20 30 40 50 60 70 80 90 100

E
x
p
ec
te
d
ru
n
ti
m
e
(i
n
s)

Number of derived formulas n

ET
α=0.5
α=0.6
α=0.7
α=0.8
α=0.9

Figure 5.1. The scalability of the plain partitioning approach for the distribution q20(t)

in Eq. (5.2) where t1 = 1 and t2 = 1000.

We note that (1− 1
n) > (1− 1

n)
n/nα when n ≥ 2, and therefore the left side

of the inequality is positive and can be made arbitrarily small by setting

k small. It remains to show that the right side of the inequality is positive

for sufficiently large n, i.e.,

n− (1− 1
n

n
)n− nα

nα+1
> 0.

Since nα+1 is always positive, we may simplify this and factor n from the

nominator, resulting in

1− (1− 1

n
)n − nα−1 > 0. (5.5)

Noting that limn→∞(1 − 1
n)

n = 1
e ≈ 0.3, and that limn→∞ 1 − nα−1 = 1 if

α < 1, we get the desired result, that is, for sufficiently large n, there are

values t1 and t2 such that t1 < t2 and ET < ETn
plain-part(α). �

The following example illustrates the performance of the plain partition-

ing approach for distributions of type Eq. (5.2).

Example 2 Assume there is a formula following the distribution q20(t)

such that t1 = 1 and t2 = 1000, and a partition function ε(n) = n0.7 for

this formula. The expected run time of the solver S, given by Eq. (5.3),

is ET ≈ 50.95, while the expected run time of the plain partitioning algo-

rithm, from Eq. (5.4), is ET 20
plain-part(0.7) ≈ 78.84. The scalability of the ex-

pected run time ETn
plain-part(α) of the plain partitioning approach is shown

for the distribution q20(t) for different values of α in Fig. 5.1.

Note that the proof does not hold if the partitioning function is ideal,

since the left hand side of the inequality (5.5) is negative if α = 1. The

56

Parallel Solving Based on Partitioning

requirement that the partitioning function is ideal will turn out to be

sufficient to guarantee that the expected run time of the plain partition-

ing approach is never higher than the expected run time of S, that is,

ET ≥ ETn
plain-part(1) for all n and T . To see this, we will first derive an

expression for ETn
plain-part(α) for an arbitrary distribution qT (t) and an ar-

bitrary partitioning function.

Let qT (t) be a run time distribution of an unsatisfiable formula φ with a

randomized SAT solver S, and tmax the maximum time required to solve

φ with S (hence qT (t) = 1 if t ≥ tmax and qT (t) < 1 otherwise). The n

partitions have run time distributions qT (ε(n)t) and since they all need to

be shown unsatisfiable, the run time distribution of the plain partitioning

approach is qT (ε(n)t)
n. Hence by Eq. (2.2) the expected run time of the

plain partitioning approach is given by

ETn
plain-part(α) =

∫ tmax/ε(n)

0
t

d
dt

qT (ε(n)t)
ndt,

where d
dtqT (ε(n)t)

n = nε(n)qT (ε(n)t)
n−1q′T (ε(n)t) is the derivative of the

distribution function. Substituting ε(n)t = τ above, the expected run time

can be written

ETn
plain-part(α) =

∫ tmax
0

τ
ε(n)nε(n)qT (τ)

n−1q′T (τ)
dτ
ε(n)

=
∫ tmax
0

n
ε(n)τqT (τ)

n−1q′T (τ)dτ.
(5.6)

We can now state the following proposition that increasing the number

of derived instances in ideal plain partitioning does not result in increased

expected run time.

Proposition 6 Let n ≥ 1, ε(n) = n1 = n be the efficiency of an ideal parti-

tioning function, and qT (t) be the run time distribution of an unsatisfiable

formula with a randomized solver. Then ETn
plain-part(1) ≥ ETn+1

plain-part(1).

Proof. Substituting ε(n) = n in Eq. (5.6) results in ETn
plain-part(1) =∫ tmax

0 τqT (τ)
n−1q′T (τ)dτ . Since qT (τ) ≤ 1 when 0 ≤ τ ≤ tmax, we imme-

diately have the desired result ETn
plain-part(1) ≥ ETn+1

plain-part(1). �

Finally from the propositions 5 and 6 we get the main result concerning

unsatisfiable instances.

Proposition 7 The expected run time of the plain partitioning approach,

ETn
plain-part(α), is guaranteed not to be higher than the expected run time ET

of the underlying solver S if and only if the partitioning function is ideal,

that is, α = 1.

57

Parallel Solving Based on Partitioning

It is a strong requirement that the efficiency of a partitioning function

must be ideal in order to never increase the time required to solve a for-

mula, and it would be tempting to draw the conclusion that this require-

ment is never met. The practical implications of the above negative result

are not as dramatic. Unsatisfiable formulas rarely have such pathological

distributions partly because the solvers employ restart strategies known

to eliminate this type of behavior [Gomes et al. 2000]. Furthermore, it is

not impossible for the partitioning function to provide even superlinear

speedup if, for example, the partitioning constraints are somehow related

to the possible back door set [Williams et al. 2003] of the formula. Nev-

ertheless it is interesting to contemplate on what role this phenomenon

has in practice when solving formulas with approaches using partitioning

functions.

5.2 Guiding Paths

A widely used technique for implementing plain partitioning is based on

guiding paths [Zhang et al. 1996], where the search space of a SAT solver

is split on demand by copying a modification of the solver’s decision stack

to other solvers. The guiding paths can be constructed either so that idle

solvers “steal” work from other solvers, or so that busy solvers actively

push their work to idle solvers. The two ways of constructing the guid-

ing paths are analyzed, for example, in [Blumofe and Leiserson 1994].

Guiding paths are used in a wide range of solvers, including [Böhm and

Speckenmeyer 1996; Zhang et al. 1996; Okushi 1999; Blochinger et al.

2003; Jurkowiak et al. 2005; Feldman et al. 2005; Balduccini et al. 2005;

Gressmann et al. 2005; Chrabakh and Wolski 2006; Pontelli et al. 2007;

Le and Pontelli 2007; Michel et al. 2007; Gil et al. 2009; Schubert et al.

2009; Chu et al. 2009; Martins et al. 2010; Schulz and Blochinger 2010].

The intuition in guiding paths based techniques is that a SAT solver

may split its search space on demand by copying a modification of its de-

cision stack to other solvers. In the following the modifications on the

decision stack is always done to the decision literal in the lowest decision

level where modification has not yet been done. Compared to the defini-

tion of guiding paths in [Zhang et al. 1996], this definition is simpler but

covers most of the current implementations.

More technically, let c be an initially zero integer, φ a propositional for-

58

Parallel Solving Based on Partitioning

mula being solved by a CDCL SAT solver S, and l1 . . . ln the current deci-

sion literals of S, ordered by the decision level. A guiding path consists

of the c ≥ 0 first decision literals l1 . . . lc of S. A solver is only allowed to

change the guiding path by including more literals to it. The guiding path

alters the behavior of the CDCL solver in three ways:

(i) If the solver backtracks to a decision level d lower than c, the solver

redoes the decisions ld . . . lc to avoid deviating from the guiding path.

(ii) If a conflict is detected during the redoing of the decisions, the solver

terminates its search, indicating that φ ∧ l1 ∧ . . . ∧ lc is unsatisfiable.

(iii) A solver S may at any point, when it is on a decision level d > c,

split its search space by replacing its guiding path with l1 . . . lc+1 and

delegating a new guiding path l1 . . . lc¬lc+1 to a solver S′.

A guiding path based solving approach terminates if one of the solvers

finds a satisfying solution, or all solvers have proved their guiding paths

unsatisfiable. No two solvers can find the same satisfying truth assign-

ments, since by (i) and (ii) a solver always searches its guiding path, and

by (iii) the guiding paths of any two solvers differ at least by one literal.

The guiding path approach provides a convenient way of performing

load balancing. Whenever there are free computing resources, any of the

running solvers that are on a decision level higher than c may simply

delegate a new guiding path by (iii) to a free resource.

If the formula to be solved is unsatisfiable, then each new delegation

increases the number of instances that need to be shown unsatisfiable.

The delegation operation in the guiding path approach can be seen as an

application of a partitioning function P (φ ∧ l1 ∧ . . . ∧ lc, 2) = (¬lc+1, lc+1)

resulting in the derived formulas φ1 = φ ∧ l1 ∧ . . . ∧ lc ∧ ¬lc+1, and φ2 =

φ ∧ l1 ∧ . . . ∧ lc ∧ lc+1.

If the partitioning function is void, then the run time of the guiding

path approach approaches the maximum run time of S as the number

of delegations increases. In this case the guiding path approach cannot

provide speed-up compared to S. It is an interesting question for further

work under what conditions a result similar to Prop. 7 holds for the guid-

ing path approaches with a non-void partitioning function. Many modern

guiding path based parallel solvers also incorporate clause learning be-

tween the solvers [Blochinger et al. 2003; Schubert et al. 2009; Schulz

and Blochinger 2010]. This will be later discussed in Ch. 6.

59

Parallel Solving Based on Partitioning

5.3 Iterative Partitioning with Partition Trees

The result of Prop. 7 showing that the plain partitioning approach is “vul-

nerable” to certain distributions of unsatisfiable formulas raises the ques-

tion whether there are other solving approaches that use a partitioning

function but are immune to the increased expected run times in all un-

satisfiable cases. Given an unsatisfiable formula, the challenge in plain

partitioning is that the number of formulas needed to show unsatisfiable

increases as more derived formulas are produced.

A trivial solution is to attempt solving both the formula φ and the de-

rived formulas using n + 1 CPUs or cores. This solution corresponds to

solving the formula with the plain partitioning approach and the under-

lying solver S in parallel, and guarantees that the expected run time of

the approach would be at most as high as the expected run time of S.

However, by Prop. 7, it is possible that the run time of the plain partition-

ing approach increases as more resources are used, and this would affect

adversely also the behavior of the proposed solution.

The iterative partitioning approach, presented originally in [Hyvärinen

et al. 2006], is based on a hierarchical partitioning of formulas to increas-

ingly constrained derived formulas which are organized as a tree. The

satisfiability of the original formula can then be determined by solving a

sufficient number of the derived formulas independently with S. The in-

tuition behind the approach is that the possible increase of the expected

run time by Prop. 7 is avoided since every time a formula is partitioned,

also its solving is attempted directly with a solver S.

This section gives a formalization and an analysis of the iterative parti-

tioning approach using the concept of a partition tree defined as follows.

Definition 3 A partition tree Tφ of a formula φ is a finite n-ary tree rooted

at ν0. The nodes νi are associated with constraints: the constraints of the

root consist of the formula φ and the constraints of the other nodes are

obtained using a partitioning function on their parents. More precisely,

1. Constr(ν0) := φ,

and given a node νi, its children νi,1, . . . , νi,n, and a rooted path ν0, . . . , νi

in the partition tree, the partitioning constraints of the child nodes are

2. Constr(νi,k) := Πk where Πk ∈ P (Constr(ν0) ∧ . . . ∧ Constr(νi), n).

Finally, each node νi represents the derived formula

3. φνi := Constr(ν0) ∧ . . . ∧ Constr(νi).

60

Parallel Solving Based on Partitioning

In the iterative partitioning approach a partition tree Tφ is constructed

in breadth first order and the solving of each derived formula φνi is at-

tempted in parallel with a solver S until the satisfiability of φ can be

determined. The satisfiability of a node νi can be determined either by

solving φνi with S, or determining the satisfiability of all the child nodes

νi,1, . . . νi,n.

The iterative partitioning approach guarantees that its expected run

time does not increase as more CPUs are introduced, even if the parti-

tioning function is void. We will show this for partition trees T k
φ , where

all rooted paths to the leaves are of length k. As is conventional, we say

that the height of T k
φ is k.

Proposition 8 Let φ be an unsatisfiable formula, T k
φ and T m

φ be two parti-

tion trees of height k and m, respectively, constructed with a void partition

function, and k < m. Then the expected run time of the partition tree ap-

proach when using T m
φ is less than or equal to the expected run time of the

partition tree approach when using T k
φ .

Proof. We show by induction on the height of the partition tree that the

probability that φ is solved within time t cannot decrease, from which

the claim follows. Let q(t) be the probability that φ is solved sequen-

tially within time t, q′(t) be its derivative at t, and let qi(t) denote the

probability that φ is solved within time t using a partition tree T i
φ of

height i. Then the probability q0(t) = q(t). The probability that the

formula is solved within time t with the partition tree approach using

a tree of height one is q1(t) =
∫ t
0 (q

′(τ) + (1 − q(τ))nq′(τ)q(τ)n−1)dτ , that

is, the integral of the sum of probability q′(τ)dτ that the formula is solved

in the root of the tree at time τ , and the probability that the formula

has not been solved in the root, has been solved by all children but one

by time τ , and is solved at time τ in the last child. A direct calcula-

tion shows that q1(t) ≥ q0(t). Assume now that qk(t) ≥ qk−1(t) for all

t ≥ 0. As previously, qk+1(t) =
∫ t
0 (q

′(τ) + (1 − q(τ))nq′k(τ)qk(τ)
n−1)dτ =

q(t)+qk(t)
n−

∫ t
0 q(τ)nq

′
k(τ)qk(τ)

n−1dτ. Integration by parts on the negative

term results in qk+1(t) = q(t)+qk(t)
n−qk(t)

nq(t)+
∫ t
0 qk(τ)

nq′(τ)dτ = q(t)+

(1 − q(t))qk(t)
n +

∫ t
0 qk(τ)

nq′(τ)dτ. By the induction hypothesis qk+1(t) ≥
q(t) + (1− q(t))qk−1(t)

n +
∫ t
0 qk−1(τ)

nq′(τ)dτ = qk(t) �

In practice the construction of the tree is not atomic, but the nodes of the

tree can be expanded at different times in the breadth first order. As the

61

Parallel Solving Based on Partitioning

ν0

ν0,1

ν0,1,2,1 ν0,2,1,2 ν0,2,2,1 ν0,2,2,2ν0,2,1,1ν0,1,2,2ν0,1,1,2

ν0,1,1,1,1

ν0,1,1,1

ν0,1,1,1,2

ν0,2,1ν0,1,1 ν0,1,2 ν0,2,2

ν0,2 Indet

Unsat

2

4

1

Unsat Unsat3

Figure 5.2. Illustration of the partition tree approach. The shaded area represents jobs
running simultaneously, the numbers indicate the order in which the jobs
terminate and the solid lines represent the edges of the tree

construction of the tree is not immediate, the tree expansion can use in-

formation obtained from earlier solving attempts. The straightforward in-

formation, used in the approach and presented in [Hyvärinen et al. 2006],

is not to expand a subtree rooted at a formula shown unsatisfiable.

The following example illustrates the use of the iterative partitioning

and the related partition tree.

Example 3 Figure 5.2 illustrates how the partition tree approach runs in

an environment with m = 8 parallel resources. The left tree shows the

initial setup, and the right tree shows how the solving has proceeded af-

ter one of the SAT solvers terminates in a memory out and three of the

solvers return unsatisfiable for their respective formulas. In both trees the

shaded area indicates the set of formulas currently being solved. The for-

mulas shown unsatisfiable are labeled with Unsat and the formula having

exceeded its resource limit is labeled with Indet on the right-hand-side tree.

There is no need to solve ν0,1,1 once ν0,1,1,1 and ν0,1,1,2 are shown unsatisfi-

able.

5.4 Safe and Repeated Partitioning

Another approach to avoiding the increase of expected run time in solving

unsatisfiable instances is to combine the plain partitioning approach with

the approaches based on randomization. This way the inherent random-

ness in run times of SAT solvers and the reduction in search space pro-

vided by the partitioning function can be used simultaneously to obtain

speed-up. This work discusses two such composite approaches, presented

in [PIII]:

62

Parallel Solving Based on Partitioning

• The safe partitioning approach uses the partitioning function to derive

formulas each of which are solved with the SDSAT approach; and

• the repeated partitioning approach produces several sets of derived for-

mulas with a partitioning function, and solves these sets in parallel us-

ing one solver per derived instance.

The use of safe partitioning approach has been suggested in [Ohmura

and Ueda 2009; Gebser et al. 2011], whereas the repeated partitioning

approach is closely related to hard restarts in guiding path based ap-

proaches [Gebser et al. 2011]. This work analyzes a setting where n2

resources are used so that in safe partitioning the partitioning function

results in n partitions which are solved using n solvers each. In repeated

partitioning the partitioning function is repeated n times for the same

formula, resulting again in n2 formulas.

The safe partitioning approach consists of applying a partitioning func-

tion P (φ, n) = (Π1, . . . ,Πn), and solving each derived formula φ ∧ Πi,

1 ≤ i ≤ n, with the SDSAT approach using n solvers. It suffices then

to show each derived instance unsatisfiable with one solver. Intuitively

the approach provides speed-up since derived formulas should be easier

to solve than the original formula, and, assuming the solving times of the

derived formulas obey a non-trivial random distribution, the SDSAT ap-

proach results in lower run times for the derived formulas. The repeated

partitioning approach, on the other hand, consists of applying a family

of partitioning functions P j(φ, n) = (Πj
1, . . . ,Π

j
n), 1 ≤ j ≤ n, and solving

each derived formula φ ∧ Πj
i , 1 ≤ i ≤ n, 1 ≤ j ≤ n with a solver S. To

show a formula unsatisfiable it suffices to show unsatisfiable any set of

derived formulas φ∧Πk
1, . . . , φ∧Πk

n for a fixed k. The approach is expected

to result in speed-up as the derived formulas are easier to solve than the

original formula, but also because it is possible that one of the partitioning

functions P j could work better than some other partitioning function. The

analysis will ignore the latter point, but it is worth pointing out the exper-

imental results in [PIII] suggest this as significant in providing speed-up

in practice.

Based on the definition we can immediately give the run time distribu-

tions of the two composite approaches using the equations (4.1) and (5.6)

for simple distribution and plain partitioning. The cumulative run time

distribution for safe partitioning of unsatisfiable formulas qTsafe-part(t) is

63

Parallel Solving Based on Partitioning

given by substituting qT (t) in (4.1) by (5.6), yielding

qTsafe-part(t) = (1− (1− q(ε(n)t))n)n, (5.7)

and the repeated partitioning by substituting qT (t) in (5.6) by (4.1), re-

sulting in

qTrep-part(t) = 1− (1− q(ε(n)t)n)n. (5.8)

Based on equations (5.7) and (5.8) it is proved in [PIII] that the expected

run time of the repeated partitioning is always at least the expected run

time of the safe partitioning, independent of the partitioning function or

number of CPUs n.

Proposition 9 Let qT (t) be the run time distribution of an unsatisfiable

formula. Then ETsafe-part ≤ ETrep-part.

The publication [PIII] also gives an example distribution with which the

expected run time of the repeated partitioning approach is higher than

that of the underlying solver.

If the formula to be solved is satisfiable, one can show the following

proposition (see again [PIII] for the proof):

Proposition 10 ETsafe-part = ETrep-part for satisfiable instances.

Interestingly, the experimental results in [PIII] indicate that in practice

the repeated partitioning approach is faster than the safe partitioning ap-

proach. This seems to result from the randomness in the used partitioning

function not accounted for in the model. The construction of partitioning

functions is discussed in detail in the next section.

5.5 Constructing Partitions

As seen from the preceding analytical discussion, the good quality of the

partitioning function is critical in obtaining speed-up, and, in case of

plain, safe and repeated partitioning based approaches, avoiding increase

in expected run time. The partitioning functions considered here work

by introducing constraints, represented as clauses, to a formula. The

work introduces two types of partitioning functions, the DPLL-based par-

titioning producing only unit clauses, and the scattering based partition-

ing, which produces also longer clauses. Heuristics for constructing the

constraints are used for increasing the likelihood of obtaining partitions

64

Parallel Solving Based on Partitioning

which result in low run time. All implementations of the partitioning

functions are built on a CDCL SAT solver. In addition to the discussion in

this section, [PIV] presents also an approach to combining lookahead and

scattering, and performs an experimental comparison. Some experiments

on two of the partitioning functions are also given later in Ch. 6.

The first partitioning function discussed here uses the unit propagation

lookahead (see, e.g., [Heule and van Maaren 2009]), used in many non-

learning CDCL SAT solvers, such as SATZ [Li and Anbulagan 1997b], and

MARCH_DL [Heule and van Maaren 2006]. The goal is to use as decision

literals the literals that result in highest number of unit propagations.

Computing the full lookahead for a formula φ is worst-case quadratic

in the number of variables in φ. Therefore typical lookahead solvers only

study a subset of promising literals of φ and use several optimizations

in the computation. One such optimization based on the conflict graph

of a CDCL solver is studied more closely in [PIV]. The lookahead DPLL

partitioning function, used in some of the experiments in this work, im-

plements the conflict graph optimization along with some other standard

optimizations to produce evenly sized derived formulas. Given a formula

φ, promising literals l are studied by computing the number of literals in

the unit propagation closure UP(φ, l) and UP(φ,¬l). As the number of lit-

erals in UP(φ, l) might differ dramatically compared to UP(φ,¬l), the im-

plementation scores literals based on the minimum of these two numbers.

Once a heuristically good literal has been selected, the corresponding two

derived formulas φ∧UP(φ, l) and φ∧UP(φ,¬l) are recursively handled in a

similar way. The binary tree up to the depth n constructed this way can be

interpreted as consisting of 2n derived formulas covering all potential sat-

isfying truth assignments of φ, and the idea in DPLL based partitioning

is to return exactly these formulas as the derived formulas.

It is interesting to study partitioning functions producing more general

constraints. The derived formulas in DPLL based partitioning are of the

form φ ∧ l1 ∧ . . . ∧ ln, but there is no need to limit partitioning functions

to producing only constraints of unit clauses. The scattering based parti-

tioning produces both unit and longer clauses as the constraints. The idea

is to first run a CDCL solver for a fixed time to tune the heuristic of the

solver. If the satisfiability of the formula is not determined in this time,

the solver restarts, and starts to produce derived formulas. The first de-

rived formula is produced by making the decisions l11 . . . l1d1 , and outputting

the formula φ ∧ l11 ∧ . . . ∧ l1d1 as in DPLL based partitioning. Then, instead

65

Parallel Solving Based on Partitioning

of selecting the next branch of the search tree, the negation of the literals

is inserted as a clause to φ. The solver restarts again, makes new deci-

sions l21 . . . l
2
d2

, and outputs the formula φ ∧ (¬l11 ∨ . . . ∨ ¬lnd1) ∧ l21 ∧ . . . ∧ l2d2 .

The process is continued until a sufficient number of derived formulas are

produced. The idea leads to a partitioning function producing the derived

formula φi such that

φi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ ∧(l11) ∧ . . . ∧ (l1d1) if i = 1,

φ ∧(¬l11 ∨ . . . ∨ ¬l1d1)∧
∧ . . . ∧ (¬li−1

1 ∨ . . . ∨ ¬li−1
di−1

)∧
(li1) ∧ . . . ∧ (lidi) if 1 < i < n,

φ ∧(¬l11 ∨ . . . ∨ ¬l1d1) ∧ . . .∧
∧(¬ln−1

1 ∨ . . . ∨ ¬ln−1
dn−1

) if i = n.

(5.9)

Essentially the derived formulas consist of the original formula φ, a con-

junction of unit clauses (l1)∧ . . .∧ (ld) and clauses representing negations

of the previously selected unit clauses. In order for the derived formulas

to be of roughly equal size, the number of new unit clauses, denoted by di,

should not in general be the same in all derived formulas. The selection of

the number di is motivated so that the expected run time of each derived

formula should be t/n, where t is the expected run time of the original

formula and n is the total number of derived instances produced by the

partitioning function. Hence the goal fraction ri of the run time for the

derived formula φi can be obtained from the equality

t

n
= (t− (i− 1)

t

n
)ri,

where (i−1) t
n is the run time already contributed to the derived formulas

φ1, . . . , φi−1. Solving the above for ri results in

ri =
1

n− i+ 1
(5.10)

The approach followed in this work is to assume that conjoining a literal

with a formula halves the expected run time of the formula, and therefore

the number di is chosen to be the integer minimizing the difference

Δ = |ri − 2−di |. (5.11)

Example 4 Let φ be a propositional formula and P a partitioning func-

tion producing 3 partitions. From Eq. (5.10), the first fraction of the search

space should be r1 = 1/3. The value d1 = 2 minimizes Δ in Eq. (5.11), the

first derived formula becomes, by Eq. (5.9), φ1 = φ ∧ (l11) ∧ (l12). Similarly,

66

Parallel Solving Based on Partitioning

r2 = 1/2 and the value d2 = 1 minimizes Δ, the second derived formula

becomes φ2 = φ∧ (¬l11 ∨¬l12)∧ (l21). The final derived formula becomes then

φ3 = φ ∧ (¬l11 ∨ ¬l12) ∧ (¬l21).

In the experiments of this work, the vsids heuristic is used to select the

decision literals. A similar approach is used, for example, in [Hyvärinen

et al. 2006; Dequen et al. 2009; Martins et al. 2010].

The approach for choosing values for di using the model in Eq. (5.10) is

not the only possibility. The following example illustrates how the scat-

tering approach can “simulate” a DPLL-based partitioning.

Example 5 Let φ be a propositional formula. Our target will be to build

a partitioning function producing 4 derived formulas. Let the first de-

rived formula be φ1 = φ ∧ (l1) ∧ (l2). Setting d2 = 1 we may choose

φ2 = φ ∧ (¬l1 ∨ ¬l2) ∧ (l1) as the second derived formula. Since UP((¬l1 ∨
¬l2) ∧ (l1)) = {l1,¬l2}, the solving of φ2 will proceed exactly as if the sec-

ond derived formula would have been φ2 = φ ∧ (l1) ∧ (¬l2), corresponding

to the DPLL-based partitioning. Similarly it is possible to choose d3 = 1

in Eq. (5.9) and φ3 = φ ∧ (¬l1 ∨ ¬l2) ∧ (¬l1) ∧ (l3) resulting in the search

corresponding to the DPLL-based partitioning derived formula φ∧¬l1∧ l3,

and finally φ4 = φ ∧ (¬l1 ∨ ¬l2) ∧ (¬l1) ∧ (¬l3).

The approach presented in the above example generalizes to produc-

ing also higher number of derived formulas. Let Sn = (d1, . . . , dn) de-

note the sequence producing n derived instances as in Ex. 5. Let Si =

(d1, . . . , di) and Tj = (e1, . . . , ej) be two such sequences. We denote by

Sn + 1 the sequence (d1 + 1, . . . , dn + 1) and by (Si) · (Tj) the concate-

nation of the two sequences (d1, . . . , di, e1, . . . , ej). The scattering based

partitioning function can “simulate” the DPLL based partitioning func-

tion producing n = 2k, k ≥ 0 derived instances by using a fixed variable

ordering and the sequence Sn defined recursively as S1 = Sk0 = (0) and

S2k = (S2k−1 + 1) · (S2k−1).

67

6. Learning and Partitioning

Clause learning has been one of the major breakthroughs in increasing

SAT solver performance in structured combinatorial problems. The topic

of this chapter is to combine clause learning with partitioning based solv-

ing approaches, and in particular with the iterative partitioning using

partition trees, discussed in Ch. 5. By the construction of the partition

tree, the clauses learned in one branch of the tree are not necessarily logi-

cal consequences in other branches. One of the main challenges tackled in

this chapter is to efficiently compute how a learned clause depends on the

branch so that the clause can be used in other branches. Two approaches

to tracking the dependency are studied independently and by integrating

them to the iterative partitioning approach.

The results obtained in this chapter are in line with those from the CL-

SDSAT framework in Ch. 4, suggesting that combining parallel, cumula-

tive learning with partitioning helps in solving especially the more diffi-

cult instances. The publications [PIV] and [PV] describe a high number of

experiments on iterative partitioning both with and without cumulative

learning. This chapter complements the discussion by giving examples

on the tracking approaches, studying the effect of learned clauses, and

comparing the iterative partitioning approach against several other SAT

solving approaches.

6.1 Learned Clause Tagging

As discussed in Ch. 2, new clauses are learned by a CDCL SAT solver

each time unit propagation results in an inconsistent truth assignment.

If a solver is solving the formula φ ∧ Π for some partitioning constraint

Π, then obtaining clauses which are logical consequences of a formula

69

Learning and Partitioning

φ requires in general modifications to the solver. The challenge in this

section is to track whether clauses used in the analysis of a conflict depend

on the partitioning constraints. As the clause learning techniques play a

key role in modern CDCL solvers, the tracking should not slow down the

solver excessively.

The solution taken in many guiding path based, learning, parallel SAT

solvers (see, e.g., [Schulz and Blochinger 2010; Schubert et al. 2009]) is

to encode partitions in the decision literals using guiding paths, as ex-

plained in 5.2. With such approaches the problem of tracking constraint

dependency is handled by the underlying SAT solver implicitly. In many

applications, such as bounded model checking (see, for example, [Wieringa

et al. 2009; Eén et al. 2010; Ábrahám et al. 2011]) and the partition trees

discussed here, this cannot be done done due to the more general nature of

the constraints. There are two ways in which the partitioning constraints

affect clauses learned by a solver in the more general setting discussed in

this work.

(i) A partitioning constraint can directly enable learning clauses which

are not necessarily logical consequences of the formula.

(ii) A partitioning constraint may result in a learned clause simplified so

that it is no longer a logical consequence of the formula.

The following example illustrates both cases.

Example 6 Consider the formula φ = (y1 ∨¬x1)∧ (y2 ∨¬x2)∧ (y3 ∨¬x3)∧
(x1 ∨ x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨
¬x3 ∨ x4)∧ (¬x1 ∨ z1 ∨ z2)∧ (¬x1 ∨ z1 ∨¬z2) and the partitioning constraint

Π = (x1∨x3∨x4). Assume the formula φ∧Π being solved by a CDCL solver,

and let ¬y1¬y2¬y3 be the current decision literals of the solver. This results

after propagation in a conflict shown in Fig. 6.1 (a); the related analysis

results first in the asserting conflict clause (x1 ∨ x2 ∨ x3). Backtracking

and propagation result in another conflict shown in Fig. 6.1 (b), producing

another asserting conflict clause (x1 ∨ x2). Neither clause is a logical con-

sequence of φ and both fall into the case (i) above. The solver backtracks

and makes decisions ¬y1¬y3. This results again in two asserting conflict

clauses, (x1 ∨ x3) in Fig. 6.1 (c) and (x1) in Fig. 6.1 (d), again not logical

consequences of φ, being examples of the case (i).

The example continues in the bottom of Fig. 6.1, where ¬z1 is assumed,

and conflict and the subsequent analysis results in the clause (¬x1 ∨ z1).

This clause is a logical consequence of φ. However, since x1 is in the de-

70

Learning and Partitioning

¬y1@1

λ¬x2

¬x4

¬y3@3 x4¬x3

¬y2@2

(x1 ∨ x2 ∨ x3)

¬x1

(a)

(x1 ∨ x2)

¬x2

¬y1@1

¬y2@2

¬x1

x3

x4

¬x4

λ

(b)

¬y3@2 ¬x3

λ

¬x1 ¬x4
x2

(x1 ∨ x3)

x4

¬y1@1

(c)

x4

x2

x3
¬y1@1

λ

¬x1

(x1)

¬x4

(d)

x1@0 z2

¬z2
λ

(¬x1 ∨ z1)

¬z1@1

(e)

Figure 6.1. A learning and partitioning example. The top two figures (a) and (b) illustrate
a conflict analysis resulting in two asserting conflict clauses that depend on
a partitioning constraint (x1 ∨ x3 ∨ x4). The middle two figures (c) and (d)
show another conflict analysis resulting in partitioning constraint dependent
unit clause. The bottom figure shows an analysis resulting in a conflict clause
(¬x1 ∨ z1) which does not depend on the partitioning constraint, but can be
simplified to (z1) by using the unit clause (x1) which depends on the parti-
tioning constraint. The simplification is not shown in the figure.

cision level 0, it is in general useful to simplify the clause to (z1), which

again is not a logical consequence of φ. This is an example of the case (ii)

above.

As suggested by the example above, the goal here is to develop methods

for tracking which partitioning constraints were used in a conflict analysis

resulting in a learned clause. The following definition comes to use for this

purpose.

Definition 4 A Constraint Aware Clause Producing (CACP) solver takes

as input a formula φ and set of partitioning constraints Π1, . . . ,Πk and

reports either a satisfying truth assignment for φ ∧ Π1 ∧ . . . ∧ Πk or sets of

learned clauses Lrnt(φ) and Lrnt(Πj) for 1 ≤ j ≤ k such that φ |= Lrnt(φ)

and φ ∧Π1 ∧ . . . ∧Πj |= Lrnt(Πj).

The first approach to enabling such logging is called assumption tag-

ging, and has previously been used in incremental SAT solving [Eén and

71

Learning and Partitioning

Sörensson 2003] and minimum unsatisfiable core extraction [Asín et al.

2010]. The idea is to disjoin to each partitioning constraint a new as-

sumption literal that does not appear in the formula. The partitioning

constraints will be “enabled” by setting the assumption literals false as

the first decisions of the CDCL solver. If such a clause tagged with an

assumption literal is used in conflict analysis, the resulting conflict clause

will inherit the assumption literal. Once a clause tagged with an assump-

tion literal gets involved in a conflict analysis, the assumption literal can-

not disappear from the resulting conflict clauses as assumption literals

only appear in one polarity in the formula.

A CDCL solver can be modified to a CACP solver by using assumption

tagging as follows. Let φ be a formula, Π1 . . .Πk partitioning constraints

and a1 . . . ak literals not appearing in φ. A CDCL solver S takes as input

the formula φ ∧A, where

A =
k∧

j=1

(aj ∨ Constr(νj)).

The constraints are enabled by forcing the first decisions of the solver to

¬a1 . . .¬ak. When a clause C containing an assumption literal is learned

by the CDCL solver, it is, without the assumption literals, added either

to the set Lrnt(Πj) where j = max{j | aj ∈ C}, or to the set Lrnt(φ)

if {a1, . . . , ak} ∩ C = ∅. If a conflict is found during the forced decisions

¬a1 . . .¬aj for some j ≤ k, the set Lrnt(Πj) will only contain the empty

clause ⊥ indicating that the formula φ conjoined with a subset of the con-

straints Π1, . . . ,Πj is unsatisfiable. The following example illustrates the

assumption based CACP solver on the formula in Ex. 6.

Example 7 Let the formula and partitioning constraint in Ex. 6 be solved

with a CACP solver using assumption tagging. Then the partitioning con-

straint is Π1 = (a1∨x1∨x3∨x4), and the learned clauses are (a1∨x1∨x2∨x3),
(a1 ∨ x1 ∨ x2), (a1 ∨ x1 ∨ x3), (a1 ∨ x1) and (a1 ∨¬x1 ∨ z1) respectively. These

clauses are included to the set Lrnt(Π1). Finally, the last conflict analysis

results in a learned clause (¬x1∨z1) which is correctly lacking the assump-

tion literal as the clause is a logical consequence of φ. The clause will be

included to the set Lrnt(φ).

The efficiency of the tagging approach is critical in order for it to pro-

vide speed-up. The following experiment is used to study the overhead

caused by the assumption tagging approach. Some formulas from SAT-

Comp 2009, listed in the upper half of Table 6.1 were solved using MIN-

72

Learning and Partitioning

Table 6.1. Experiments on flag and assumption based tagging approaches

Instances used in the overhead measurement

dated-5-13-u, dated-5-19-u, eq.atree.braun.12.unsat, gss-

24-s100, mod4block_3vars_7gates, rbcl_xits_08_UNSAT,

total-10-17-u, vmpc_34

Instances used in the effect measurement

AProVE07-01, AProVE07-25, countbitsarray02_32,

dated-5-13-u, dated-5-19-u, eq.atree.braun.12.unsat,

eq.atree.braun.13.unsat, gss-22-s100, gss-24-s100, gss-26-

s100, gus-md5-11, gus-md5-14, mod4block_3vars_7gates,

rbcl_xits_08_UNSAT, rpoc_xits_09_UNSAT, sgen1-unsat-

109-100, simon-s02b-k2f-gr-rcs-w8, total-10-17-u, vmpc_34

ISAT 2.2.0 with partitioning constraints encoded directly (see Ex. 6) and

with the assumption tagging. The partitioning constraints were obtained

with the iterative partitioning approach (see Sect. 6.2). The results are

presented in Fig. 6.2, where each cross represents a formula with par-

titioning constraints. The value for the vertical coordinate of the cross

comes from direct encoding and horizontal coordinate from assumption

tagging. The run time comparison in top left reveals that the assumption

tagging approach is usually slower in solving formulas. The assumption

tagging approach also fails to solve many instances solved by the directly

conjoining approach, as indicated by the crosses on the horizontal line at

the top of the graphs.

The number of decision literals taken by the respective approaches is

shown in top right graph. The increase in run time seems not to result

from an increase in number of decisions, as the number is roughly the

same for both approaches. However, the memory consumption shown on

the bottom graph is significantly higher in the assumption tagging ap-

proach. It seems that the increase in clause sizes demonstrated in Ex. 7

results in a substantial bottleneck in memory consumption for some in-

stances.

As the overhead in assumption tagging is high, this work studies also

a more light-weight approach for storing for each learned clause whether

partitioning constraints were used in the conflict analysis. This flag tag-

73

Learning and Partitioning

1

20

400

8000

1 20 400 8000

M
in
iS
a
t
2.
2.
0
as
su
m
p
ti
on

ta
gg
in
g

MiniSat 2.2.0

Time

1

1000

1e+06

1e+09

1 1000 1e+06 1e+09

M
in
iS
a
t
2.
2.
0
as
su
m
p
ti
on

ta
gg
in
g

MiniSat 2.2.0

Decisions

10

100

1000

10 100 1000

M
in
iS
a
t
2.
2.
0
as
su
m
p
ti
on

ta
gg
in
g

MiniSat 2.2.0

Memory

Figure 6.2. Comparison of the assumption tagging approach against the direct conjoin-
ing approach. The figure in the top left compares run times, the top right
compares decisions and the bottom figure compares memory usage.

ging approach flags clauses unsafe if they are potentially not logical con-

sequences of the original formula. The idea is that if an unsafe clause is

used in the conflict analysis, the resulting conflict clause is also tagged

unsafe. A similar idea has been used, for example, in [Wieringa et al.

2009] in bounded model checking. For performance reasons the flag tag-

ging only classifies the clauses as either safe or unsafe. In practice all

clauses in Π1, . . .Πk are tagged unsafe, and the clauses of the formula

φ are untagged. To maintain the correctness of the learned clause sets

Lrnt(φ) and Lrnt(Π1), . . . ,Lrnt(Πk), if a learned clause is tagged unsafe it

is added to the set Lrnt(Πk), while only clauses with no unsafe tag are

added to the set Lrnt(φ). The following example clarifies the use of the

flag tagging approach for the setting described in Ex. 6 and Fig. 6.1.

Example 8 Let φ and Π1 be as in Ex. 6, being solved with a flag tagging

CACP solver. Initially the solver tags the partitioning constraint (x1 ∨ x3 ∨
x4) unsafe. As the clause is used in deriving (x1 ∨ x2 ∨ x3), also this clause

is tagged correctly unsafe. This clause is then used to derive (x1∨x2) which

is therefore also tagged unsafe. The clause (x1 ∨ x2) is used in turn in a

conflict analysis resulting in (x1 ∨ x3), and both clauses are finally used

in analysis resulting in unsafe tagged clause (x1). Finally in the conflict

analysis where (¬x1∨z1) is derived, the clause (x1) is tagged unsafe. Hence

the simplification resulting in the unit clause (z1) can now be performed,

74

Learning and Partitioning

and also (z1) is tagged unsafe.

The overhead caused by the flag tagging approach is minimal as exactly

the same clauses are used in the analysis. The flag only requires one bit

per each clause, and the clause representation of MINISAT 2.2.0 by chance

contains one bit unused by the original implementation.

6.2 Cumulative Learning in Iterative Partitioning

The results in the preceding sections suggest that sharing the learned

clauses between the derived formulas potentially improves the perfor-

mance of the iterative partitioning approach. In what follows, the iter-

ative partitioning approach discussed in Ch. 5 is extended with a cumula-

tive learning similar to the CL-SDSAT approach in Ch. 4. The key points

here are defining a procedure for sharing learned clauses between the

derived formulas and defining a simplification process similar to the one

used in the CL-SDSAT approach for the iterative partitioning approach.

The iterative partitioning approach with cumulative learning is based

on a similar φ-rooted n-ary tree of partitions as the iterative partitioning

approach without cumulative learning described in Ch. 5. Therefore only

a small extension to Def. 3 suffices.

Definition 5 A learning partition tree Lφ of a formula φ is a finite n-ary

tree rooted at ν0. The nodes νi are associated with constraints Constr(νi)

and sets of learned clauses Lrnt(νi) such that

1. Constr(ν0) := φ,

and given a node νi, its children νi,1, . . . , νi,n, and the rooted path ν0, . . . , νi

in the learning partition tree, the partitioning constraints of the child

nodes are

2. Constr(νi,k) := Πk where Πk ∈ P (
∧i

j=0(Constr(νj) ∧ Lrnt(νj)), n)

Finally, each node νi represents the derived formula

3. φνi :=
∧i

j=0(Constr(νj) ∧ Lrnt(νj))

For now we simply assume that Lrnt(νi) is a set of clauses C such that

Constr(ν0) ∧ . . . ∧ Constr(νi) |= C. In the iterative partitioning approach

with cumulative learning, the solving of each node νi is attempted so that

the partitioning constraints Constr(ν0), . . . ,Constr(νi) and heuristically

promising subsets of the learned clauses Lrnt(ν0), . . . ,Lrnt(νi) are given

as the constraints to a CACP solver, which will upon termination return

new clauses for updating the sets Lrnt(ν0), . . . ,Lrnt(νi).

75

Learning and Partitioning

Due to the potentially massive amounts of learned clauses produced by

the CACP solver, there is a need for a size limit MaxDBSize to the learned

clause sets in the nodes of the learning partition tree. A process similar

to the one for CL-SDSAT is used to determine the clauses that are heuris-

tically most likely to speed up the solving of the derived formulas. Let

Lrnt(ν0)
′, . . . ,Lrnt(νi)′ be clause sets learned by the CACP solver. Then

the sets Lrnt(νj), 0 ≤ j ≤ i in the learning partition tree are updated so

that

Lrnt(νj) := Merge(U,Lrnt(νj),Lrnt(νj)
′,MaxDBSize),

where U = UP(φνj ∧Lrnt(νj)
′) is the set of literals obtained by unit propa-

gation from the formula φνj related to the node νj , and the function Merge

is as defined in Sect. 4.4.

Given a node νi to be solved with a CACP solver, the number of learned

clause sets for this node is i. As the number of usable learned clause sets

increases with the length of the rooted path, it is also necessary to limit

the size of and devise a heuristic for selecting the learned clauses provided

to the CACP solver.

The design choice taken here is to learn as “general” clauses as possible

based on earlier shared clauses. The Merge function removes from the in-

put clauses the literals that are false under the set U . Hence its use would

result in learned clauses becoming dependent on the constraints used for

this simplification. Therefore the clause sets Lrnt(νj), 0 ≤ j ≤ i, provided

to the CACP solver are only simplified by removing the clauses satisfied

by Constr(ν0) ∧ . . . ∧ Constr(νi). However, the sizes of the learned clauses

is computed as if the simplification removing also false literals were per-

formed. More technically, let U = UP(
∧i

j=0(Constr(νj) ∧ Lrnt(νj))) be the

unit propagation closure, and U = {¬l | l ∈ U}. The formula provided

to the constraint aware solver consists of constraints and corresponding

learned clauses Constr(ν0) ∧ Lrnt(ν0)
′, . . . ,Constr(νi) ∧ Lrnt(νi)

′ such that

Lrnt(νj)
′ ⊆ Lrnt(νj) for 0 ≤ j ≤ i, and

(i) no clause is satisfied by the unit propagation closure, that is, if C ∈
Lrnt(νj)

′, then C ∩ U = ∅, and

(ii) the sum of the sizes of the simplified learned clauses
∑i

j=0 ||{C \ U |
C ∈ Lrnt(νj)

′}|| is less than or equal to a constant SubmSize.

Example 9 The example in Fig. 6.3 illustrates, similar to Fig. 5.2, how

the learning partition tree is constructed on-the-fly in breadth-first order

starting from the root using eight CPU cores in a grid and when the arity

76

Learning and Partitioning

ν0

ν0,1

ν0,1,2,1 ν0,2,1,2 ν0,2,2,1 ν0,2,2,2ν0,2,1,1ν0,1,2,2ν0,1,1,2

ν0,1,1,1,1

ν0,1,1,1

ν0,1,1,1,2

ν0,2,1ν0,1,1 ν0,1,2 ν0,2,2

ν0,2
Indet

Unsat

2

4

1

Unsat Unsat3

Figure 6.3. The iterative partitioning approach with cumulative learning. The nodes
represent the derived formulas, and the nodes in the shaded area are being
solved simultaneously. Terminated jobs are marked either Indet or Unsat

depending on whether they run out of resources or prove unsatisfiability, and
annotated with the termination order (1 terminates first and 4 last). Some
learned clauses from earlier terminated jobs can be transferred to the newly
submitted jobs, illustrated by the dashed arrows. The tree is constructed in
breadth-first order.

n = 2. In the left tree the derived formulas at nodes are sent to the environ-

ment to be solved (in parallel) with a SAT solver, and the nodes are further

partitioned into child nodes at the same time. At this point no clauses are

learned yet, and thus the sets Lrnt(νi) = ∅ for all nodes. The process con-

tinues as in Ex. 3 until all eight computing resources are used. Similar

to Ex. 3, the solving of ν0,1,1 could be finished once ν0,1,1,1 and ν0,1,1,2 are

shown unsatisfiable. The solving is not terminated in the example as the

clauses learned there might still prove useful in other parts of the partition

tree, and instead the next node ν0,2,1,2 is submitted. Learned clauses can be

transferred to subsequent jobs, indicated by the dashed arrows. Cumula-

tive learning can be seen in learned clauses transferred to ν0,2,2,1, as these

potentially include clauses learned in ν0,1,1,2 using clauses learned in ν0,1,2.

6.3 Effect of Learned Clauses with Tagging

Based on the results of the CL-SDSAT approach in Ch. 4, one can expect

that learned clauses should speed up solving once a sufficient number of

high quality clauses have been obtained. It is interesting to compare the

two tagging approaches in this respect. On one hand the clauses shared

in the assumption tagging approach should be more numerous. As the

number of clauses is higher, more search space can be pruned compared

to the flag tagging approach. On the other hand the related overhead

seems to be higher in the assumption tagging approach.

77

Learning and Partitioning

This section studies the combined effect of learned clauses and the tag-

ging approaches. The benchmark instances used for these experiments

are given in the lower half of Table. 6.1. The formulas are constructed

based on these instances with the iterative partitioning approach with

cumulative learning. The shortest from all available learned clauses are

used so that the total number of literals in these clauses is at most 100

000. The same number was used in the CL-SDSAT experiments. Both

the DPLL based partitioning with the lookahead heuristic and the scat-

tering based partitioning with the vsids heuristic were used in producing

the derived formulas.

Unlike in Fig. 6.2, where the goal is to measure the overhead of the as-

sumption tagging approach, the experiments in this section also consider

the gain obtained with the learned clauses. The value on the vertical axis

is obtained from a CACP solver and a number of constraints consisting of

learned clauses and partitioning constraints. The value on the horizontal

axis is obtained from MINISAT 2.2.0 with the partitioning constraints but

without the learned clauses. The learned clauses are not included in the

formulas corresponding to the values on the horizontal axis, as a solver

conjoining the partitioning constraints as such cannot, of course, transfer

learned clauses between two arbitrary derived formulas after terminating

without risking the correctness of the approach.

The comparisons are shown in Fig. 6.4 for the assumption tagging ap-

proach (graphs (a) and (b)), and for the flag tagging approach (graphs (c)

and (d)). The overhead caused by the assumption tagging is often high

compared to the reduction in decisions gained from the higher number

of short learned clauses. In particular the amount of failed executions

(the crosses on the horizontal line on top of the graphs) is high for the

approach. The graphs (c) and (d) in Fig. 6.4 show that the gain from the

clauses learned with the flag tagging approach is significantly better. For

these formulas the flag tagging approach results in sufficient number of

learned clauses while keeping the overhead related to tracking the parti-

tioning constraint dependency sufficiently low.

78

Learning and Partitioning

10

100

1000

10000

100000

10 100 1000 10000 100000M
in
iS
a
t
2.
2.
0
as
su
m
p
ti
on

ta
gg
in
g

MiniSat 2.2.0 no learned clauses

(a)

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

100 10000 1e+06 1e+08 1e+10M
in
iS
a
t
2.
2.
0
as
su
m
p
ti
on

ta
gg
in
g

MiniSat 2.2.0 no learned clauses

(b)

10

100

1000

10000

100000

10 100 1000 10000 100000

M
in
iS
a
t
2.
2.
0
fl
ag

ta
gg
in
g

MiniSat 2.2.0 no learned clauses

(c)

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

100 10000 1e+06 1e+08

M
in
iS
a
t
2.
2.
0
fl
ag

ta
gg
in
g

MiniSat 2.2.0 no learned clauses

(d)

Figure 6.4. Comparing non-learning and learning approaches for iterative partitioning.
The graphs (a) and (c) show run times and the graphs (b) and (d) show the
number of decisions. The graphs (a) and (b) compare the assumption and the
figures (c) and (d) the flag tagging approaches.

6.4 Experiments on the Iterative Partitioning with Cumulative
Learning

This section studies the run time of the iterative partitioning approach

with cumulative learning using the m-grid environment discussed in Ch. 3.

The maximum run time of the jobs in this environment are randomly se-

lected between 60 and 90 minutes, the number of simultaneously running

jobs is limited to 64 and each job can consume at most 2GB of memory.

The full work flow was limited to 6 hours. The underlying CDCL solver,

modified to a CACP solver, is MINISAT 2.2.0 [Eén and Sörensson 2004].

The first experiment studies the efficiency of the lookahead DPLL and

the vsids scattering partitioning functions (see Sect. 5.5). Results for a

third partitioning function based on combining scattering and lookahead

are presented in [PIV]. All partitioning functions produce in these exper-

iments eight derived instances. The maximum size MaxDBSize of the sets

of non-unit learned clauses Lrnt(ν0) is limited to 100 000 literals, while

the sizes of the sets of learned clauses was zero for all other nodes. This

choice was made to keep the experiments as simple as possible. The same

limit of 100 000 literals is used as the maximum size SubmSize of the set of

79

Learning and Partitioning

0

5000

10000

15000

20000

0 5000 10000 15000 20000

v
si
d
s
sc
at
te
r
(t
im

e
in

s)

lookahead DPLL (time in s)

10

100

1000

10000

10 100 1000 10000

v
si
d
s
sc
at
te
r
(t
im

e
in

s)

lookahead DPLL (time in s)

Figure 6.5. Comparing the vsids scattering heuristic against the lookahead DPLL
heuristic. Crosses (×) represent satisfiable and boxes (�) unsatisfiable in-
stances.

learned clauses provided for each CACP solver. Similar to the CL-SDSAT

approach, no limits are placed on the number of learned unit clauses.

The first comparison is done on the partitioning functions based on the

vsids scattering and the DPLL lookahead approaches. The application

category benchmarks from SAT-Comp 2009 were tried using flag based

tagging in the underlying constraint aware solver. Both partitioning func-

tions were allowed to run at most 300 seconds while producing the eight

derived formulas. The results are shown as scatter plots in Fig. 6.5 with

both logarithmic (right) and linear (left) scale. The results show that the

vsids scattering partition function usually performs better than the looka-

head DPLL partitioning function in “easy” benchmarks solvable in less

than 100 seconds, but also in the most difficult benchmarks where the

iterative partitioning using the lookahead DPLL partitioning function is

not able to determine satisfiability. The fast solving times for easy in-

stances can be explained by the nature of the partitioning function and

the delays in m-grid. The vsids scattering partitioning function runs es-

sentially a local CDCL SAT solver on the formulas and can therefore find

solutions without waiting for the results coming from the grid. The looka-

head DPLL partitioning function, on the other hand, is not tuned towards

finding solutions and therefore the formulas get solved in the grid. The

good performance of the vsids scatter partitioning function in the most dif-

ficult instances is more difficult to explain, and could even be an artifact of

the benchmark set. Since the grid and cloud based computing approaches

are naturally tuned towards solving the difficult benchmarks because of

the high delays, a conclusion can be drawn that the vsids scatter parti-

tioning function performs better than the lookahead DPLL partitioning

function in this context.

The iterative partitioning approach (Part-Tree) is compared to the iter-

80

Learning and Partitioning

0

5000

10000

15000

20000

0 5000 10000 15000 20000

P
ar
t-
T
re
e-
L
ea
rn

(t
im

e
in

s)

Part-Tree (time in s)

1

10

100

1000

10000

1 10 100 1000 10000

P
ar
t-
T
re
e-
L
ea
rn

(t
im

e
in

s)

Part-Tree (time in s)

Figure 6.6. Comparing the Part-Tree approach against the Part-Tree-Learn approach.
Crosses (×) represent satisfiable and boxes (�) unsatisfiable instances.

0

6000

12000

18000

0 6000 12000 18000

F
la
g
ta
gg
in
g
(t
im

e
in

s)

Assumption tagging (time in s)

lookahead DPLL

0

6000

12000

18000

0 6000 12000 18000

F
la
g
ta
gg
in
g
(t
im

e
in

s)

Assumption tagging (time in s)

vsids scatter

Figure 6.7. Comparing the assumption and flag tagging approaches for the lookahead
DPLL partitioning function (left) and vsids scatter partitioning function
(right).

ative partitioning approach with cumulative learning (Part-Tree-Learn)

in Fig. 6.6. The benchmarks that can be solved in roughly an hour are

faster to solve without learning, whereas the more difficult benchmarks

can be more efficiently solved when learning is enabled. It is enlightening

to compare these results to the results, for example, in Figs. 4.4 and 4.5

for the CL-SDSAT approach. It is possible that the slow down in solving

these “mid-range” instances results from the initial low-quality clauses

observed in cumulative learning and CL-SDSAT.

Finally, the comparison in Fig. 6.7 shows the difference between the

assumption tagging and flag tagging approaches on some of the more

challenging instances from SAT-Comp 2009. The assumption tagging ap-

proach performs usually worse than the flag tagging approach, a result

that could already be extrapolated from Fig. 6.4. However, it is important

to note that the assumption tagging is not used to its full potential in this

work, since learned clauses are only updated to the root of the partition

tree. The performance of the assumption tagging approach depends on

the partitioning function. Significantly better results are obtained with

the lookahead DPLL, while the results on vsids scatter are less encourag-

81

Learning and Partitioning

0

5000

10000

15000

20000

0 5000 10000 15000 20000

P
ar
t-
T
re
e-
L
ea
rn

(t
im

e
in

s)

CL-SDSAT (time in s)

10

100

1000

10000

10 100 1000 10000

P
ar
t-
T
re
e-
L
ea
rn

(t
im

e
in

s)

CL-SDSAT (time in s)

Figure 6.8. Comparing the CL-SDSAT approach against the iterative partitioning ap-
proach with cumulative learning. Crosses (×) represent satisfiable and boxes
(�) unsatisfiable instances.

0

5000

10000

15000

20000

0 5000 10000 15000 20000

P
ar
t-
T
re
e-
L
ea
rn

(t
im

e
in

s)

PLingeling (time in s)

0

5000

10000

15000

20000

0 5000 10000 15000 20000

P
ar
t-
T
re
e-
L
ea
rn

(t
im

e
in

s)

ManySat 1.1 (time in s)

0

5000

10000

15000

20000

0 5000 10000 15000 20000

P
ar
t-
T
re
e-
L
ea
rn

(t
im

e
in

s)

ManySat 1.5 (time in s)

0

5000

10000

15000

20000

0 5000 10000 15000 20000

P
ar
t-
T
re
e-
L
ea
rn

(t
im

e
in

s)

MiniSat 2.2.0 (time in s)

Figure 6.9. Comparing iterative partitioning with cumulative learning against PLIN-
GELING (top left), MANYSAT 1.1 (top right), MANYSAT 1.5 (bottom left), and
MINISAT 2.2.0 (bottom right).

ing. As mentioned in Sect. 6.2, a CACP solver which uses the assumption

tagging approach can determine unsatisfiability of nodes that are on the

path leading to the node being solved. This can potentially speed up the

solving of the original formula with the iterative partitioning approach

with cumulative learning. Unfortunately, in our experiments this hardly

ever happened, a result that is reflected also in the comparison in Fig. 6.7.

The comparison in Fig. 6.8 reports how the iterative partitioning ap-

proach with cumulative learning (Part-Tree-Learn) performs against the

CL-SDSAT approach. The Part-Tree-Learn approach performs particu-

larly well again on the more difficult instances, whereas CL-SDSAT is

able to solve faster many instances from the instances solvable in roughly

one hour.

82

Learning and Partitioning

0

5000

10000

15000

20000

0 5000 10000 15000 20000

P
ar
t-
T
re
e

64 × MiniSat (time in s)

Figure 6.10. Comparing the iterative partitioning approach against the minimum over
64 runs of MINISAT.

Figure 6.9 collects comparisons against several well performing SAT

solvers that are not designed to be run in grids or clouds, but instead

use one or more cores sharing the memory of a single computer. All

solvers were run on a 12-core AMD Opteron 2435 so that the whole com-

puting node was reserved solely for one process, time limit was six hours

and memory limit was 24 GB. The solver PLINGELING version 276, de-

scribed in [Biere 2010], was run using the full 12 cores available, whereas

MANYSAT 1.1 and MANYSAT 1.5 [Hamadi et al. 2009b] were run with

the default setting using four cores. The comparison to MINISAT 2.2.0 is

interesting, as it is the underlying solver in the partition tree approach.

MINISAT 2.2.0 uses only a single core.

Finally Fig. 6.10 shows the performance of the iterative partitioning ap-

proach against MINISAT in an arrangement where 64 copies of MINISAT

are run in parallel. The benchmark set consists again of some of the more

challenging instances of SAT-Comp 2009. The results are in line with

those in Ch. 4, showing that for these benchmarks a pure parallel portfo-

lio approach with no clause sharing is not competitive.

It would be interesting to compare the iterative partitioning approach

against a guiding path based parallel solver. Unfortunately, such solvers

were not found at the time of this writing and therefore must be left for

further work.

83

7. Conclusions

This work studies parallel SAT solving in a grid or cloud computing en-

vironment, where resources consist of several computing clusters that

are distributed over a large geographical area. Several SAT solving ap-

proaches are developed for the environment and experimented using a

large benchmark set consisting of instances from recent SAT solver com-

petitions. The results are encouraging, as several instances that could

not be solved with current state-of-the-art solvers within reasonable time

limits could be solved with the presented approaches within hours. One

of the most interesting future directions for the work started in here is in

studying the behavior of the presented approaches in the important multi-

core computing environments. To this end, the experiments are presented

in the work so that the results should, to some extent at least, generalize

beyond the still emerging grids and clouds.

7.1 Summary of the Contributions

The work first defines an abstract model of a computing grid, based on

the ideas in [Jensen et al. 2005] and experiences on the NorduGrid sys-

tem [Ellert et al. 2007]. Throughout the experiments of this work the grid

environment is operated through a job submission system, a job manager,

running in the user’s computer. The task of the job manager is to ensure

that a computation, called a job, requested by the user is executed and

the results are reported back within reasonable time. The job manager is

also described in [Pitkanen et al. 2008], where it is used in medical im-

age processing. Some central assumptions in the development of the job

manager, as well as the model of computing, are that in a large grid jobs

are bound to sometimes fail, the distances to resources cause unavoidable

85

Conclusions

delays in job and result transmission, and the resources might sometimes

be overloaded causing high queuing times.

The grid environment is used in studying the effect of delays and re-

source bounds on the simple distributed SAT solving (SDSAT) framework,

based on solving a single instance with several randomized SAT solvers in

parallel. The SDSAT framework is studied in the context of several restart

strategies [Luby et al. 1993]. Based on the experimental evaluation, the

work describes a method for efficiently solving a set of SAT instances in a

grid. This method is general in the sense that it works on all so called Las

Vegas type algorithms [Babai 1979; Papadimitriou 1994] and instances

which can be associated with a run time behavior similar to those of SAT

instances.

Based on the results, the work devises the Clause-Learning Simple Dis-

tributed SAT Solving (CL-SDSAT) framework which incorporates the pow-

erful clause learning techniques of modern SAT solvers to the SDSAT ap-

proach. The CL-SDSAT framework is analyzed with respect to several

learning strategies using controlled experiments and shown to efficiently

scale to a large amount of distributed resources in a setting where clauses

are cumulatively learned in parallel running solvers. The efficiency of CL-

SDSAT is further demonstrated by solving several well-known and hard

SAT problems using an implementation of CL-SDSAT and a production

level grid.

Many parallel SAT solvers are based on dividing the search space of

a formula by inserting partitioning constraints and solving the resulting

partitions in parallel. An idealized version of the approach, called plain

partitioning, is studied analytically using a natural model for construct-

ing the partitions. An analysis of plain partitioning shows that for un-

satisfiable instances the approach is “risky” in the sense that increasing

the number of parallel partitions increases the expected run time of the

approach. This observation motivates firstly the study of alternate forms

of dividing search spaces, resulting in the safe and repeated partitioning

approaches, and the iterative partitioning approach. Secondly, the suc-

cess in producing partitions with equally sized search spaces is critical to

avoiding the risks in the plain partitioning approach. Different efficient

partitioning functions for this task are developed and studied in particu-

lar on the most challenging benchmarks.

The final topic of the work is integrating cumulative, parallel clause

learning, studied for CL-SDSAT, to the iterative partitioning approach.

86

Conclusions

The problem is substantially more difficult here, as the clauses learned

in solving one partition are not necessarily logical consequences of an-

other partition. The study results in the assumption and flag tagging

approaches able to efficiently track the dependency of the learned clauses

on the partitioning constraints enabling sharing of the learned clauses

between partitions in a sound way.

The results of this work show that the presented, relatively restricted

frameworks are sufficient to yield concrete speed-up on many known hard

SAT instances compared to state-of-the-art SAT solvers. Furthermore,

the experimental evaluation using instances from both the SAT competi-

tion 2007 and SAT competition 2009 (http://www.satcompetition.org/)

resulted in solving several problems which were not solved by any SAT

solver in the competition, and even problems that could not be solved us-

ing no time limitations at all. The literature reports few positive results

obtained on parallel SAT solving when the actual solving time is mea-

sured, and therefore the significance of the results presented in this work

is also in showing that high-latency grid environments can be efficiently

used in algorithms that are not trivially distributable. The author of this

work sees this as an important contribution, since grid-based computing

has been gaining more popularity among those in possession of computa-

tional resources, and will therefore be of interest to a wider audience in

the future. While similar results have been obtained for highly controlled

grid environments [Bal and Verstoep 2008], the results reported here are

one of the first for production-level grids.

7.2 Further Work

Given the practical significance of constraint programming in general and

the propositional satisfiability problem in particular, the topic of this work

seems far from exhaustively researched and understood. Although grid or

cloud computing might not be novel ideas and have been known with dif-

ferent names for a long time, their economical and practical values have

been recognized only recently, due to advances both in algorithms and

hardware. This section discusses some of the new intriguing research

questions raised by the results of this work.

One of the most obvious questions is the scalability of the presented

approaches. Although some results for this are presented in [PI] for the

87

Conclusions

SDSAT and in [PII] for the CL-SDSAT approaches, as well as for the plain

partitioning approach in [PIII], the more complex repeated, safe, and it-

erative partitioning approaches are yet to be studied in this respect.

The initial results on the efficiency of the repeated partitioning approach

reported in [PIII] are highly encouraging. It seems that combining ideas

from the repeated partitioning to the iterative partitioning, while far from

straightforward to implement, could provide a robust approach for solving

formulas beyond the reach of current state-of-the-art.

The experiments in [PV] suggest that iterative partitioning approach

can be substantially improved by sharing some of the clauses learned in

different parts of the partition tree. Based on the results it is possible that

a more general clause sharing scheme would increase the performance

even more. For example, in the current implementation it was decided

that the non-unit clauses are only shared if they are logical consequences

of the original instance, while the described framework supports sound

sharing of any clauses based on the tagging information.

As mentioned in the beginning of the chapter, the experiments of this

work are to a large extent motivated by the grid and cloud computing en-

vironments. As the discussed approaches proved to be highly efficient in

these experiments, it is also natural to ask how they would perform in

multi-core environments. These environments differ from grid computing

by being more predictable and enabling more efficient ways of commu-

nication, but provide a lower number of computing resources and have

usually more congested, shared memory. Implementing, for example, the

iterative partitioning approach to a multi-core environment is an inter-

esting future challenge.

Finally the results here can be studied in more general context of other

constraint programming paradigms. For example, much analytical work

should immediately be applicable to parallelizing ASP, SMT, and more

general constraint programming solvers.

88

References

ÁBRAHÁM, E., SCHUBERT, T., BECKER, B., FRÄNZLE, M., AND HERDE, C. 2011.

Parallel SAT solving in bounded model checking. Journal of Logic and Compu-

tation 21, 1, 5–21.

ASÍN, R., NIEUWENHUIS, R., OLIVERAS, A., AND RODRÍGUEZ-CARBONELL, E. 2010.

Practical algorithms for unsatisfiability proof and core generation in SAT solvers.

Advances in Computers 23, 2–3, 145–157.

AUDEMARD, G. AND SIMON, L. 2009. Predicting learnt clauses quality in modern sat

solvers. In Proceedings of the 21st International Joint Conference on Artificial In-

telligence (IJCAI 2009). 399–404.

BABAI, L. 1979. Monte-Carlo algorithms in graph isomorphism testing. Tech. Rep.

DMS 79-10, Université de Montréal.

BAL, H. AND VERSTOEP, K. 2008. Large-scale parallel computing on grids. Electronic

Notes in Theoretical Computer Science 220, 3–17.

BALDUCCINI, M., PONTELLI, E., ELKHATIB, O., AND LE, H. 2005. Issues in parallel

execution of non-monotonic reasoning systems. Parallel Computing 31, 6, 608–647.

BEN-ELIYAHU, R. AND DECHTER, R. 1994. Propositional semantics for disjunctive

logic programs. Annals of Mathematics and Artificial Intelligence 12, 1-2, 53–87.

BIERE, A. 2008. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and

Computation 4, 2–4, 75–97.

BIERE, A. 2010. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010. Tech-

nical Report 10/1, Institute for Formal Models and Verification, Johannes Kepler

University.

BIERE, A. AND KUNZ, W. 2002. SAT and ATPG: Boolean engines for formal hardware

verification. In Proceedings of 20th IEEE/ACM International Conference on Com-

puter Aided Design (ICCAD 2002). Association for Computing Machinery, 782–785.

BLOCHINGER, W., SINZ, C., AND KÜCHLIN, W. 2003. Parallel propositional satisfiabil-

ity checking with distributed dynamic learning. Parallel Computing 29, 7, 969–994.

BLUMOFE, R. D. AND LEISERSON, C. E. 1994. Scheduling multithreaded computa-

tions by work stealing. In Proceedings of the 35th Annual Symposium on Founda-

tions of Computer Science (FOCS 1994). IEEE Press, 356–368.

BÖHM, M. AND SPECKENMEYER, E. 1996. A fast parallel SAT-solver: Efficient work-

load balancing. Annals of Mathematics and Artificial Intelligence 17, 4–3, 381–400.

BONACINA, M. P. 1999. A model and a first analysis of distributed-search contraction-

89

References

based strategies. Annals of Mathematics and Artificial Intelligence 27, 1–4, 149–

199.

BONACINA, M. P. 2000. A taxonomy of parallel strategies for deduction. Annals of

Mathematics and Artificial Intelligence 29, 1–4, 223–257.

BONACINA, M. P. 2001. Combination of distributed search and multi-search in Peers-

mcd.d. In Proceedings of the 1st International Joint Conference on Automated Rea-

soning (IJCAR 2001). Lecture Notes in Artificial Intelligence, vol. 2083. Springer,

448–452.

BORDEAUX, L., HAMADI, Y., AND SAMULOWITZ, H. 2009. Experiments with mas-

sively parallel constraint solving. In Proceedings of the 21st International Joint

Conference on Artificial Intelligence (IJCAI 2009). 443–448.

BORDEAUX, L., HAMADI, Y., AND ZHANG, L. 2006. Propositional satisfiability and

constraint programming: A comparative survey. ACM Computing Surveys 38, 4.

BOZZANO, M., BRUTTOMESSO, R., CIMATTI, A., JUNTTILA, T., VAN ROSSUM, P.,

SCHULZ, S., AND SEBASTIANI, R. 2005. MathSAT: Tight integration of SAT and

mathematical decision procedures. Journal of Automated Reasoning 35, 1-3, 265–

293.

BRYANT, R. 1986. Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers 35, 8, 677–691.

CHRABAKH, W. AND WOLSKI, R. 2006. GridSAT: a system for solving satisfiability

problems using a computational grid. Parallel Computing 32, 9, 660–687.

CHU, G., SCHULTE, C., AND STUCKEY, P. J. 2009. Confidence-based work stealing

in parallel constraint programming. In Proceedings of the 15th International Con-

ference on Principles and Practice of Constraint Programming (CP 2009). Lecture

Notes in Computer Science, vol. 5732. Springer, 226–241.

COOK, S. 1971. The complexity of theorem-proving procedures. In Proceedings of the

3rd Annual ACM Symposium on Theory of Computing. Association for Computing

Machinery, 151–158.

DARWICHE, A. 2001. Decomposable negation normal form. Journal of the ACM 48, 4,

608–647.

DAVIS, M., LOGEMANN, G., AND LOVELAND, D. 1962. A machine program for theorem

proving. Communications of the ACM 5, 7, 394–397.

DAVIS, M. AND PUTNAM, H. 1960. A computing procedure for quantification theory.

Journal of the ACM 7, 3, 201–215.

DE MOURA, L. M. AND BJØRNER, N. 2008. Z3: An efficient SMT solver. In Proceedings

of the 14th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS 2008). 337–340.

DECHTER, R. 1990. Enhancement schemes for constraint processing: Backjumping,

learning, and cutset decomposition. Artificial Intelligence 41, 3, 273–312.

DEQUEN, G., VANDER-SWALMEN, P., AND KRAJECKI, M. 2009. Toward easy parallel

SAT solving. In Proceedings of the 21st IEEE International Concerence on Tools

with Artificial Intelligence (ICTAI 2009). IEEE Press, 425–432.

DIMOPOULOS, Y., NEBEL, B., AND KOEHLER, J. 1997. Encoding planning problems

in nonmonotonic logic programs. In Proceedings of the 4th European Conference on

Planning (ECP 1997). Lecture Notes in Artificial Intelligence, vol. 1348. Springer,

169–181.

90

References

DRESCHER, C., GEBSER, M., GROTE, T., KAUFMANN, B., KÖNIG, A., OSTROWSKI, M.,

AND SCHAUB, T. 2008. Conflict-driven disjunctive answer set solving. In Proceed-

ings of the 11th International Conference on Principles of Knowledge Representation

and Reasoning (KR 2008). AAAI Press, 422–432.

EÉN, N., MISHCHENKO, A., AND AMLA, N. 2010. A single-instance incremental SAT

formulation of proof- and counterexample-based abstraction. Computing Research

Repository abs/1008.2021.

EÉN, N. AND SÖRENSSON, N. 2003. Temporal induction by incremental SAT solving.

Electronic Notes in Theoretical Computer Science 89, 4, 534–560.

EÉN, N. AND SÖRENSSON, N. 2004. An extensible SAT-solver. In Proceedings of the

6th International Conference on Theory and Applications of Satisfiability Testing

(SAT 2003), Selected Revised Papers. Lecture Notes in Computer Science, vol. 2919.

Springer, 502–518.

ELLERT, M., GRØNAGER, M., KONSTANTINOV, A., KÓNYA, B., LINDEMANN, J.,

LIVENSON, I., NIELSEN, J. L., NIINIMÄKI, M., SMIRNOVA, O., AND WÄÄNÄNEN,

A. 2007. Advanced resource connector middleware for lightweight computational

grids. Future Generation Computer Systems 23, 2, 219–240.

ERDEM, E. AND TÜRE, F. 2008. Efficient haplotype inference with answer set program-

ming. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI

2008). AAAI Press, 436–441.

FELDMAN, Y., DERSHOWITZ, N., AND HANNA, Z. 2005. Parallel multithreaded satis-

fiability solver: Design and implementation. Electronic Notes in Theoretical Com-

puter Science 128, 3, 75–90.

GANZINGER, H., HAGEN, G., NIEUWENHUIS, R., OLIVERAS, A., AND TINELLI, C.

2004. DPLL(T): Fast decision procedures. In Proceedings of the 16th International

Conference on Computer Aided Verification (CAV 2004). Lecture Notes in Computer

Science, vol. 3114. Springer, 175–188.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., SCHAUB, T., AND SCHNOR, B. 2011.

Cluster-based ASP solving with Claspar. In Proceedings of the 11th International

Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2011).

Lecture Notes in Computer Science, vol. 6645. Springer, 364–369.

GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. 2007. Clasp: A conflict-

driven answer set solver. In Proceedings of the 9th International Conference on

Logic Programmin and Non-monotonic Reasoning (LPNMR 2007). Number 4483

in Lecture Notes in Computer Science. Springer, 260 – 265.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic program-

ming. In Proceedings of the 5th International Conference and Symposium on Logic

Programming (ICLP 1988). MIT Press, 1070–1080.

GENT, I. P., JEFFERSON, C., KOTTHOFF, L., MIGUEL, I., MOORE, N. C. A., NIGHTIN-

GALE, P., AND PETRIE, K. E. 2010. Learning when to use lazy learning in con-

straint solving. In Proceedings of the 19th European Conference on Artificial Intel-

ligence (ECAI 2010). IOS Press, 873–878.

GIL, L., FLORES, P., AND SILVEIRA, L. M. 2009. PMSat: a parallel version of MiniSAT.

Journal on Satisfiability, Boolean Modeling and Computation 6, 1–3, 71–98.

GOMES, C. P. AND SELMAN, B. 2001. Algorithm portfolios. Artificial Intelli-

gence 126, 1–2, 43–62.

91

References

GOMES, C. P., SELMAN, B., CRATO, N., AND KAUTZ, H. 2000. Heavy-tailed phenom-

ena in satisfiability and constraint satisfaction problems. Journal of Automated

Reasoning 24, 1/2, 67–100.

GOMES, C. P., SELMAN, B., AND KAUTZ, H. 1998. Boosting combinatorial search

through randomization. In Proceedings of the 15th National Conference on Arti-

ficial Intelligence (AAAI 1998). AAAI Press, 431–437.

GRAMA, A. AND KUMAR, V. 1999. State of the art in parallel search techniques for

discrete optimization problems. IEEE Transactions on Knowledge and Data Engi-

neering 11, 1, 28–34.

GRESSMANN, J., JANHUNEN, T., MERCER, R. E., SCHAUB, T., THIELE, S., AND

TICHY, R. 2005. Platypus: A platform for distributed answer set solving. In Pro-

ceedings of the 8th International Conference on Logic Programming and Nonmono-

tonic Reasoning, (LPNMR 2005). Lecture Notes in Computer Science, vol. 3662.

Springer, 227–239.

GUO, L., HAMADI, Y., JABBOUR, S., AND SAIS, L. 2010. Diversification and inten-

sification in parallel SAT solving. In 16th International Conference on Principles

and Practice of Constraint Programming (CP 2010). Lecture Notes in Computer

Science, vol. 6308. Springer, 252 – 265.

HAMADI, Y., JABBOUR, S., AND SAIS, L. 2009a. Control-based clause sharing in par-

allel SAT solving. In Proceedings of the 21st International Joint Conference on Ar-

tificial Intelligence (IJCAI 2009). 499–504.

HAMADI, Y., JABBOUR, S., AND SAIS, L. 2009b. ManySAT: a parallel SAT solver. Jour-

nal on Satisfiability, Boolean Modeling and Computation 6, 4, 245 – 262.

HELJANKO, K. 1999. Using logic programs with stable model semantics to solve

deadlock and reachability problems for 1-safe Petri nets. Fundamenta Informat-

icae 37, 3, 247–268.

HERBSTRITT, M. AND BECKER, B. 2003. Conflict-based selection of branching rules. In

Proceedings of the 6th International Conference on Theory and Applications of Sat-

isfiability Testing (SAT 2003), Selected Revised Papers. Lecture Notes in Computer

Science, vol. 2919. Springer, 441–451.

HEULE, M. AND VAN MAAREN, H. 2006. March_dl: Adding adaptive heuristics and a

new branching strategy. Journal on Satisfiability, Boolean Modeling and Compu-

tation 2, 1–4, 47–59.

HEULE, M. AND VAN MAAREN, H. 2009. Look-ahead based SAT solvers. In Handbook

of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS

Press, 155–184.

HOOKER, J. N. AND VINAY, V. 1995. Branching rules for satisfiability. Journal of Au-

tomated Reasoning 15, 3, 359–383.

HUANG, J. 2008. Universal Booleanization of constraint models. In Proceedings of the

14th International Conference on Principles and Practice of Constraint Program-

ming (CP 2008). Lecture Notes in Computer Science, vol. 5202. Springer, 144–158.

HUBERMAN, B. A., LUKOSE, R. M., AND HOGG, T. 1997. An economics approach to

hard computational problems. Science 275, 5296, 51–54.

HYVÄRINEN, A. E. J., JUNTTILA, T., AND NIEMELÄ, I. 2006. A distribution method for

solving SAT in grids. In Proceedings of the 9th International Conference on Theory

92

References

and Applications of Satisfiability Testing (SAT 2006). Lecture Notes in Computer

Science, vol. 4121. Springer, 430–435.

HYVÄRINEN, A. E. J., JUNTTILA, T., AND NIEMELÄ, I. 2008. Incorporating learning

in grid-based randomized SAT solving. In Proceedings of the 13th International

Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA

2008). Lecture Notes in Artificial Intelligence, vol. 5253. Springer, 247–261.

HYVÄRINEN, A. E. J., JUNTTILA, T., AND NIEMELÄ, I. 2009. Partitioning the search

space of a randomized search. In Proceedings of the 11th International Conference

of the Italian Association for Artificial Intelligence (AI*IA 2009). Lecture Notes in

Artificial Intelligence, vol. 5883. Springer, 243–252.

INOUE, K., SOH, T., UEDA, S., SASAURA, Y., BANBARA, M., AND TAMURA, N. 2006.

A competitive and cooperative approach to propositional satisfiability. Discrete Ap-

plied Mathematics 154, 16, 2291–2306.

IRGENS, M. AND HAVENS, W. S. 2004. On selection strategies for the DPLL algorithm.

In Proceedings of the 17th Conference of the Canadian Society for Computational

Studies of Intelligence (CCAI 2004). Lecture Notes in Artificial Intelligence, vol.

3060. Springer, 277–291.

JANAKIRAM, V. K., AGRAWAL, D. P., AND MEHROTRA, R. 1988. A randomized parallel

backtracking algorithm. IEEE Transactions on Computers 37, 12, 1665–1676.

JANAKIRAM, V. K., GEHRINGER, E. F., AGRAWAL, D. P., AND MEHROTRA, R. 1988. A

randomized parallel branch-and-bound algorithm. International Journal of Paral-

lel Programming 17, 3, 277 – 301.

JANHUNEN, T. 2006. Some (in)translatability results for normal logic programs and

propositional theories. Journal of Applied Non-Classical Logics 16, 1-2, 35–86.

JENSEN, H. T., KLEIST, J., AND LETH, J. R. 2005. A framework for job management in

the NorduGrid ARC middleware. In Proceedings of the European Grid Conference

(EGC 2005), Revised Selected Papers. Lecture Notes in Computer Science, vol. 3470.

Springer, 861–871.

JEROSLOW, R. G. AND WANG, J. 1990. Solving propositional satisfiability problems.

Annals of Mathematics and Artificial Intelligence 1, 167–187.

JURKOWIAK, B., LI, C., AND UTARD, G. 2005. A parallelization scheme based on work

stealing for a class of SAT solvers. Journal of Automated Reasoning 34, 1, 73–101.

KAUTZ, H. AND SELMAN, B. 1992. Planning as satisfiability. In Proceedings of the 10th

European Conference on Artificial Intelligence (ECAI 1992). John Wiley and Sons,

359–363.

LAGOUDAKIS, M. G. AND LITTMAN, M. L. 2001. Learning to select branching rules in

the DPLL procedure for satisfiability. Electronic Notes in Discrete Mathematics 9,

344–359.

LARRABEE, T. 1992. Test pattern generation using Boolean satisfiability. IEEE Trans-

actions on Computer-Aided Design 11, 1, 6–22.

LE, H. V. AND PONTELLI, E. 2007. Dynamic scheduling in parallel answer set pro-

gramming solvers. In Proceedings of the 2007 Spring Simulation Multiconference

(SpringSim 2007) Volume 2. Association for Computing Machinery, 367–374.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCAR-

CELLO, F. 2006. The DLV system for knowledge representation and reasoning.

ACM Transactions on Computational Logic 7, 3, 499–562.

93

References

LI, C. M. AND ANBULAGAN. 1997a. Heuristics based on unit propagation for satisfia-

bility problems. In Proceedings of the 15th International Joint Conference on Arti-

ficial Intelligence (IJCAI 1997), Volume 1. Morgan Kaufmann, 366–371.

LI, C. M. AND ANBULAGAN. 1997b. Look-ahead versus look-back for satisfiability prob-

lems. In Proceedings of the 3rd International Conference on Principles and Practice

of Constraint Programming (CP 1997). Lecture Notes in Computer Science, vol.

1330. Springer, 341–355.

LI, G.-J. AND WAH, B. W. 1990. Computational efficiency of parallel combinatorial

OR-Tree searches. IEEE Transactions on Software Engineering 16, 1, 13–31.

LIN, F. AND ZHAO, Y. 2004. ASSAT: computing answer sets of a logic program by SAT

solvers. Artificial Intelligence 157, 1-2, 115–137.

LUBY, M. AND ERTEL, W. 1994. Optimal parallelization of Las Vegas algorithms. In

Proceedings of the 11th Annual Symposium on Theoretical Aspects of Computer

Science (STACS 1994). Lecture Notes in Computer Science, vol. 775. Springer, 463–

474.

LUBY, M., SINCLAIR, A., AND ZUCKERMAN, D. 1993. Optimal speedup of Las Vegas

algorithms. Information Processing Letters 47, 4, 173–180.

MANCINI, T., MICALETTO, D., PATRIZI, F., AND CADOLI, M. 2008. Evaluating ASP

and commercial solvers on the CSPLib. Constraints 13, 4, 407–436.

MARQUES-SILVA, J. P. 1999. The impact of branching heuristics in propositional sat-

isfiability algorithms. In Proceedings of the 9th Portugese Conference on Artificial

Intelligence (EPIA 1999). Lecture Notes in Computer Science, vol. 1695. Springer,

62–74.

MARQUES-SILVA, J. P. 2008. Model checking with Boolean satisfiability. Journal of

Algorithms 63, 1-3, 3–16.

MARQUES-SILVA, J. P. AND SAKALLAH, K. A. 1999. GRASP: A search algorithm for

propositional satisfiability. IEEE Transactions on Computers 48, 5, 506–521.

MARTINS, R., MANQUIHO, V., AND LYNCE, I. 2010. Improving search space splitting

for parallel SAT solving. In Proceedings of the 22th IEEE International Conference

on Tools with Artificial Intelligence (ICTAI 2010). IEEE Press, 336–343.

MICHEL, L., SEE, A., AND VAN HENTENRYCK, P. 2007. Parallelizing constraint pro-

grams transparently. In Proceedings of the 13th International Conference on Prin-

ciples and Practice of Constraint Programming (CP 2007). Lecture Notes in Com-

puter Science, vol. 4741. Springer, 514–528.

MIRONOV, I. AND ZHANG, L. 2006. Applications of SAT solvers to cryptanalysis of hash

functions. In Proceedings of the 9th International Conference on Theory and Appli-

cations of Satisfiability Testing (SAT 2006). Lecture Notes in Computer Science,

vol. 4121. Springer, 102–115.

MOSKEWICZ, M. W., MADIGAN, C. F., ZHAO, Y., ZHANG, L., AND MALIK, S. 2001.

Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Au-

tomation Conference (DAC 2001). Association for Computing Machinery, 530–535.

NIEMELÄ, I. 1999. Logic programming with stable model semantics as a constraint

programming paradigm. Annals of Mathematics and Artificial Intelligence 25, 3-4,

241–273.

NIEUWENHUIS, R., OLIVERAS, A., AND TINELLI, C. 2006. Solving SAT and SAT mod-

ulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to

94

References

DPLL(T). Journal of the ACM 53, 6, 937–977.

OHMURA, K. AND UEDA, K. 2009. c-sat: A parallel SAT solver for clusters. In Proceed-

ings of the 12th International Conference on Theory and Applications of Satisfia-

bility Testing (SAT 2009). Lecture Notes in Computer Science, vol. 5584. Springer,

524–537.

OKUSHI, F. 1999. Parallel cooperative propositional theorem proving. Annals of Math-

ematics and Artificial Intelligence 26, 1-4, 59–85.

PAPADIMITRIOU, C. H. 1994. Computational Complexity. Addison-Wesley, Boston, MA.

PETRIK, M. AND ZILBERSTEIN, S. 2006. Learning parallel portfolios of algorithms.

Annals of Mathematics and Artificial Intelligence 48, 1-2, 85–106.

PITKANEN, M. J., ZHOU, X., HYVÄRINEN, A. E. J., AND MÜLLER, H. 2008. Using the

grid for enhancing the performance of a medical image search engine. In Proceed-

ings of the 21st IEEE/ACM International Symposium on Computer-Based Medical

Systems (CBMS 2008). IEEE Press, 367–372.

PONTELLI, E., VILLAVERDE, K., GUO, H.-F., AND GUPTA, G. 2007. PALS: Efficient

or-parallel execution of Prolog on Beowulf clusters. Theory and Practice of Logic

Programming 7, 6, 633–695.

PRESTWICH, S. AND MUDAMBI, S. 1995. Improved branch and bound in constraint

logic programming. In Proceedings of the 1st International Conference on Principles

and Practie of Constraint Programming (CP 1995). Lecture Notes in Computer

Science, vol. 976. Springer, 534–548.

RANJAN, D., PONTELLI, E., AND GUPTA, G. 1999. On the complexity of or-parallelism.

New Generation Computing 17, 3, 285–307.

RICE, J. R. 1976. The algorithm selection problem. Advances in Computers 15, 65 –

118.

ROSSI, F., VAN BEEK, P., AND WALSH, T., Eds. 2006. Handbook of Constraint Pro-

gramming. Elsevier, Amsterdam, The Netherlands.

SCHUBERT, T., LEWIS, M., AND BECKER, B. 2009. PaMiraXT: Parallel SAT solving

with threads and message passing. Journal on Satisfiability, Boolean Modeling and

Computation 6, 4, 203–222.

SCHULZ, S. AND BLOCHINGER, W. 2010. Parallel SAT solving on peer-to-peer desktop

grids. Journal of Grid Computing 8, 443–471.

SEBASTIANI, R. 2007. Lazy satisfiability modulo theories. Journal on Satisfiability,

Boolean Modeling and Computation 3, 3–4, 141–224.

SEGRE, A. M., FORMAN, S. L., RESTA, G., AND WILDENBERG, A. 2002. Nag-

ging: A scalable fault-tolerant paradigm for distributed search. Artificial Intelli-

gence 140, 1/2, 71–106.

SELMAN, B. AND KAUTZ, H. 1993. An empirical study of greedy local search for satis-

fiability testing. In Proceedings of the 11th National Conference on Artificial Intel-

ligence (AAAI 1993). AAAI Press, 46–51.

SHAPIRO, E. Y., WARREN, D. H. D., FUCHI, K., KOWALSKI, R. A., FURUKAWA, K.,

UEDA, K., KAHN, K. M., CHIKAYAMA, T., AND TICK, E. 1993. The fifth generation

project: Personal perspectives. Communications of the ACM 36, 3, 46–103.

SIMONS, P., NIEMELÄ, I., AND SOININEN, T. 2002. Extending and implementing the

stable model semantics. Artificial Intelligence 138, 1-2, 181–234.

95

References

SOININEN, T. AND NIEMELÄ, I. 1999. Developing a declarative rule language for appli-

cations in product configuration. In Proceedings of the 1st International Workshop

on Practical Aspects of Declarative Languages (PADL 1999, Co-located with POPL

1999). Lecture Notes in Computer Science, vol. 1551. Springer, 305–319.

SOOS, M., NOHL, K., AND CASTELLUCCIA, C. 2009. Extending SAT solvers to cryp-

tographic problems. In Proceedings of the 12th International Conference on Theory

and Applications of Satisfiability Testing (SAT 2009). Lecture Notes in Computer

Science, vol. 5584. Springer, 244–257.

SÖRENSSON, N. AND BIERE, A. 2009. Minimizing learned clauses. In Proceedings of

the 12th International Conference on Theory and Applications of Satisfiability Test-

ing (SAT 2009). Lecture Notes in Computer Science, vol. 5584. Springer, 237–243.

SPECKENMEYER, E. 1989. Is average superlinear speedup possible? In Proceedings of

the 2nd Workshop on Computer Science Logic (CSL 1988). Lecture Notes in Com-

puter Science, vol. 385. Springer, 301–312.

SPECKENMEYER, E., MONIEN, B., AND VORNBERGER, O. 1988. Superlinear speedup

for parallel backtracking. In Proceedings of the 1st international conference on Su-

percomputing (SC 1987). Lecture Notes in Computer Science, vol. 297. Springer,

985–993.

STERLING, L. AND SHAPIRO, E. Y. 1987. The Art of Prolog. MIT Press, Cambridge,

MA.

WALSH, T. 1999. Search in a small world. In Proceedings of the 16th International Joint

Conference on Artificial Intelligence (IJCAI 1999). Morgan Kaufmann, 1172–1177.

WALSH, T. 2000. SAT v CSP. In Proceedings of the 6th International Conference on

Principles and Practice of Constraint Programming (CP 2000). Lecture Notes in

Computer Science, vol. 1894. Springer, 441–456.

WIERINGA, S., NIEMENMAA, M., AND HELJANKO, K. 2009. Tarmo: A framework for

parallelized bounded model checking. In Proceedings of the 8th International Work-

shop on Parallel and Distributed Methods in verifiCation (PDMC 2009). Electronic

Proceedings in Theoretical Computer Science, vol. 14. 62–76.

WILLIAMS, R., GOMES, C. P., AND SELMAN, B. 2003. Backdoors to typical case com-

plexity. In Proceedings of the 18th International Joint Conference on Artificial In-

telligence (IJCAI 2003). Morgan Kaufmann, 1173–1178.

WINTERSTEIGER, C. M., HAMADI, Y., AND DE MOURA, L. M. 2009. A concurrent port-

folio approach to SMT solving. In Proceedings of the 21st International Conference

on Computer Aided Verification (CAV 2009). Lecture Notes in Computer Science,

vol. 5643. Springer, 715–720.

ZHANG, H., BONACINA, M., AND HSIANG, J. 1996. PSATO: A distributed propositional

prover and its application to quasigroup problems. Journal of Symbolic Computa-

tion 21, 4, 543–560.

ZHANG, L., MADIGAN, C. F., MOSKEWICZ, M. H., AND MALIK, S. 2001. Efficient

conflict driven learning in a Boolean satisfiability solver. In Proceedings of the In-

ternational Conference on Computer-Aided Design (ICCAD 2001). Association for

Computing Machinery, 279–285.

ZHANG, L. AND MALIK, S. 2003. Validating SAT solvers using an independent

resolution-based checker: Practical implementations and other applications. In

96

References

Proceedings of the 2003 Design, Automation and Test in Europe Conference and

Exposition (DATE 2003). IEEE Press, 10880–10885.

97

DISSERTATIONS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-D15 Heikinheimo, Hannes.

 Extending Data Mining Techniques for Frequent Pattern Discovery:

 Trees, Low-Entropy Sets, and Crossmining. 2010.

TKK-ICS-D16 Hermelin, Miia.

 Multidimensional Linear Cryptanalysis. 2010.

TKK-ICS-D17 Savia, Eerika.

 Mutual Dependency-Based Modeling of Relevance in Co-Occurrence

 Data. 2010.

TKK-ICS-D18 Liitiäinen, Elia.

 Advances in the Theory of Nearest Neighbor Distributions. 2010.

TKK-ICS-D19 Lahti, Leo.

 Probabilistic Analysis of the Human Transcriptome with Side

 Information. 2010.

TKK-ICS-D20 Miche, Yoan.

 Developing Fast Machine Learning Techniques with Applications to

 Steganalysis Problems. 2010.

TKK-ICS-D21 Sorjamaa, Antti.

 Methodologies for Time Series Prediction and Missing Value

 Imputation. 2010.

TKK-ICS-D22 Schumacher, André

 Distributed Optimization Algorithms for Multihop Wireless Networks.

 2010.

Aalto-DD99/2011 Ojala, Markus

 Randomization Algorithms for Assessing the Significance of Data

 Mining Results. 2011

Aalto-DD111/2011 Dubrovin, Jori

 Efficient Symbolic Model Checking of Concurrent Systems. 2011

�������	
������

