Publication V

Esa A. Seuranen. 2007. Introducing playing style to computer go. In: Jaap van
den Herik, Jos Uiterwijk, Mark Winands, and Maarten Schadd (editors).
Proceedings of the Computer Games Workshop 2007 (CGW 2007).
Amsterdam, The Netherlands. 15-17 June 2007. Maastricht, The Netherlands.
Maastricht University. MICC Technical Report Series, 07-06, pages 81-91.

© 2007 Maastricht University

Reprinted by permission of Maastricht University.

Introducing Playing Style to Computer Go

Esa A. Seuranen

Department of Electrical and Communications Engineering
Helsinki University of Technology
P.O. Box 3000, 02015 TKK, Finland

esa.seuranen@tkk.fi

Abstract. We give a brief overview of go and the methods applied in
computer go. We discuss the weaknesses in the current approaches and
propose a design, which is aimed to overcome some of these shortcomings.
The main idea of the design is to handle the game with subgames. These
subgames consist of a part of the whole board and they have a list of
local purposes. The next move is chosen from the subgames according to
a playing style, which provides values for global goals. The moves which
strive towards the best outcome (in terms of global goals weighted with
the style) are preferred.

1 Introduction

Go is a 4000 year old two-player board game originating from China. For the
artificial-intelligence aspect go is quite interesting, because it is practically the
only classical complete-information board game in which the best computer play-
ers are defeated by average human players.

In this paper we discuss different aspects of go and computer go in order to
state our assumptions about the game. Based on these assumptions we propose
a design for a computer go player, agent, which should be able to overcome some
weaknesses in the current approaches.

The paper is outlined as follows. In Section 2 we give an introduction to
go. In Section 3 we survey the main ideas used in computer go. We introduce
the concept of playing style in Section 4 and propose a design for using it in
Section 5. The conclusions are given in Section 6.

2 Go

We will go over the basics briefly, that is, describe the (simplified Chinese) rules
of the game, discuss the hardness of the game and emphasize the important

! In chess and Chinese chess (Xiang Qi) computers have reached already the level of
best human players. In 2005 the Japan Shogi Association told the professional shogi
players not to play against computer players publicly without a permission, so ap-
parently the chance of defeat is quite real (http://en.wikipedia.org/wiki/Shogi,
[14.5.2007)).

aspects of playing the game skillfully. For information about the world of go the
reader is referred to [5].

A go game starts from an empty board, 19x 19 intersections being the most
common size. Black and white players make moves alternatively, i.e., place a
stone of their own color on an empty intersection on the board. Placed stones
remain on the board to the end of the game, unless they are captured. A set of
horizontally or vertically adjacent stones of the same color, block, is captured if
it has no adjacent empty intersections, liberties. A player is not allowed to place
a stone on the last liberty of any of his blocks, unless he captures a group of
opposing color by doing so. A move which repeats any previous board situation
is illegal. These situations are referred as kos.> The game ends when both players
pass, after which dead blocks (stones which could be captured even if they were
defended) are removed. The player who has more stones and surrounded empty
intersections on the board is the winner.

The rank scale of go is in Figure 1. Roughly speaking, a player is considered
to be a beginner for 30-11 kyu range and an average for 11-1 kyu range. Higher
dan ranks are considered to be quite strong amateur players. Professional players
(indicated with pro) are a chapter of their own, as the strongest amateur players
are considered to be similar strength to the weakest professional players. Kami
no Itte refers to “Hand of God”, i.e., perfect play. It is more or less generally
believed that the difference between the best professional players and perfect
play is 3—4 stones [32]. The rank difference between players gives directly the
amount of handicap stones, which the weaker player should place on the board
in order for both players to have equal chance of winning. For professional levels
three ranks equals one stone.

30 kyu 20 kyu 10kyu 7kyu 1 kyu 7 dan 9 pro Kf]‘gni
e
1 dan 1 pro Itte

Fig. 1. Ranks in go.

In Figure 2 the rank development of European players (who have played in
at least 50 tournaments and whose first rank in the system [33] was 20 kyu) is
displayed over the course of years they have participated in tournaments. The
triangle line is the average rank development of the players.® The average rank
of all European tournament players is around 7 kyu.

2 Every now and then a ko fight occurs, where players have to play threatening moves
somewhere else before they can return to play a local move. The player who runs
out sufficiently big threatening moves first will lose the ko fight and suffer a loss (at
least locally).

3 It is assumed that players’ ranks are unchanged after their last tournament appear-
ance.

6dan [P 1
1dan
1 kyu
4 kyu

7 kyu

Rank

10 kyu |

20 kyu
0 1 2 3 4 5 6 7 8 9 10 11

Years since the first tournament appearance

Fig. 2. Development of some human go players.

It can be said that there are four aspects in go, which make the game chal-
lenging. The first one is the difficulty of evaluating the game situation, i.e., who
is winning. The second aspect is the difficulty of deciding, what should be done.
The third one is about making efficient moves, i.e., finding the best local move.
The fourth aspect is timing—making the right moves at the right time.

2.1 Ewvaluating a Game Situation

It is quite hard to name precisely the aspects that are relevant to a situation
evaluation. We shall use here three terms—territory, influence and thickness—as
the basis. The go literature supports this view, although the used terminology
may vary to some degree. A situation evaluation is a combination of these three
concepts.

Territory is the amount of points the player can expect to have in the end,
i.e., the number of player’s stones and surrounded intersections. The player’s
influence represents both potential of making territory and preventing his op-
ponent from making territory. The thickness refers to the safety and stability
of player’s groups (nearby blocks of the same color). For instance, if a player
has many weak groups he will have to avoid ko fights as he would surely lose
something in such a fight.

2.2 Purposes of a Move

Like in any game, also in go a good move has a purpose. In fact, good moves
tend to have several purposes. Such purposes include: to attack an opponent’s

group, to defend one’s own group, to extend one’s own framework (potential
territory), to reduce the opponent’s framework, to keep sente (initiative), to
make a good shape (the formation of stones is efficient), to induce a bad shape
for the opponent, etc. For example, “a sente move, which attacks an opponent’s
group in order to secure some territory while defending a weak group” sounds
like a good efficient move.

These kinds of purposes represent the local aspect of the game. However, it is
the global aspect of go which makes the game both complicated and intriguing.
These global goals could include: to have at most one weak group at a time, to
stay ahead in territory, to prevent the opponent’s “sente moves, which attack
my group(s) in order to secure some territory while defending his weak group”,
etc.

2.3 Making Efficient Moves

After the purposes for a move have been selected, it is necessary to find the
best local move to accomplish the purposes—or if it seems that no move works,
modifying or changing the purposes should take place. For example, saving a
group might be the most important thing for the result of the game, but if there
is no way to accomplish the feat currently, something else must be done.

It is quite common for stronger players to omit playing in some relatively
important area if they do not find a good efficient move in the area or if they
have difficulty deciding between seemingly equally good moves—they are delaying
the decision on the local move further, until the game situation has changed so
that the decision is easier.

2.4 Timing

The common feeling among weaker players is that the stronger player often seems
to play the move the weaker player was planning to play next. And indeed, almost
always the best time to play a move is the very last moment it can be played.

Figure 3 demonstrates the timing aspect. In the left diagram the starting
position is shown with some possible moves for black to solidify his corner. We
will have to assume that white is strong in both sides (outside the diagram).
The middle diagram shows a very nice result for white, as he has managed to
reduce blacks framework (moves 5 and 7) as well as leave behind the potential of
making a living group in the corner with A. The right diagram shows the same
moves but in the wrong order, as black has become sufficiently strong outside to
resist white 5. It is a hard question, for example, when it is the correct time to
play probing moves like 1 or valuable moves like A in the middle diagram.

|
e
|
7
|
o _®
$%o°
7

e
®

Fig. 3. A probe example.

3 Computer Go

Computer go has been studied nearly 40 years, with the current state of the
art players attaining a strength around 7 kyu.* Here we will very briefly go
through the different techniques used in constructing agents. For more thorough
treatment, the reader is referred to [3,8,20], which cover the computer go field
quite well (excluding the recent advances with Monte Carlo Go). A bibliography
of go-related articles can be found in [11].

By looking at Figures 1 and 2 one can conclude that the gap between comput-
ers and the strongest humans is large. The reason for this gap is the unsuitability
of the applied methods, which have been very successful with other games. We
discuss evaluation functions in Section 3.1, move generators in Section 3.2 and
divide-and-conquer approach in Section 3.3.

3.1 Evaluation Function

Using an evaluation function with a tree search has been a successful approach
to many games—in go the difficulty of evaluating the game situation accurately
and the vast number of possible moves have prevented a breakthrough. There
are four main approaches.

The first and the traditional one is a manually crafted evaluation function,
which combines the estimates of territories and influence.® Then simply the move
leading to the best game situation is chosen. The thickness aspect is usually re-
garded by classifying moves to urgent and non-urgent moves, and always playing
an urgent move if there is one.

4 On KGS server (http://www.goKGS.com/) the best agents have stabilized around 4
kyu. In Finnish ranks this would most likely correspond to 6 kyu, but since there is
not that much information on agents playing in real human tournaments and people
tend to play less seriously on the internet, 7 kyu is probably a reasonable estimation.

5 Influence is usually considered to represent, more or less, the probability of a given
intersection belonging to a given player—which is not quite right. In practice the terri-
tory and influence estimation is implemented by letting stones radiate power to their
surroundings and summing it up. With proper radiation functions and thresholds
one gets numerical estimates for both territory and influence.

Another approach is to create (manually or automatically) a rule database,
which directly gives a move without any game situation evaluation [22,24]-the
advantage is the quickness and multitude of thumb rules (proverbs) around,
which unfortunately hold only for the most of the time.

A black-box approach involves a training of a neural network to predict the
winner for any game situation (for instance, see [7,17,23]). Neural networks
do learn, but the common raw presentation of the game board along with some
features has proven to be insufficient to construct a strong agent. NEUROGO [10]
with its more complex board representation is the only pure neural network
implementation with a moderate success.

The final approach is called Monte Carlo Go (MCG), in which simulations—
i.e., random games®—are used to determine the move giving the best winning rate.
Using an UCT algorithm [15] (running more simulations on the moves looking
promising instead of running equal number of simulations for each move) and
giving a proper bias for probable good moves have resulted in a very strong 9x9
agent [12]. The MCG/UCT approach is currently studied very actively in order
to see, how well the approach will scale to 19x19 and how far the point of the
diminishing returns is [31].” Based on their own experiments, the practitioners
of MCG/UCT seem quite optimistic on both subjects.

3.2 Move Generators

Many methods for move generators have been already mentioned in previous
sections, so there is not that much to be added here. The methods include
rule-based move generators [22], neural networks [26] or goal/purposed-driven
generators [34]. Usually each move generator gives a value for a move. The total
value of a move on a certain intersection is a combination of the values given by
different move generators.

The timing aspect of the game is not really modeled, although thinking in
terms of temperature seems quite natural in this context. However, the published
results (excluding the late part of the game) on the subject are scarce [6]. The
temperature can be viewed as the point difference depending on which player
makes a move to the area first. A point would here refer to a combined value
of territory, influence and thickness resulting from the move which makes the
estimation of temperature difficult (in the endgame influence and thickness play
no real role, so the estimation can be done accurately).

3.3 Divide-and-Conquer Approaches

A game of go has three phases: the opening (the board is divided into players’
areas), the middle game (the areas are reduced, enlarged and exchanged) and the

% The game is played to the end using random moves (the legal moves are allowed,
although some obviously bad moves are usually excluded).

7 For discussions on these subjects the reader may consult the computer-go mailing
list archives, http://computer-go.org/pipermail/computer-go/.

endgame (the exact boundaries of the areas are determined). Moderate success
has been attained in opening [4,24], which is the most important part of the
game-although, with amateur players the player who made the last big mistake
tends to lose. The late endgame (where the board can be divided into inde-
pendent subgames) can be considered to be solved [2] with combinatorial game
theory [1]. The middle game has received the least attention and it is exactly
the phase where the current agents are being outplayed by humans.

Besides these phases, go has some subgames as well, which are called prob-
lems. In life and death problems one should be able to determine the status of a
group (alive, dead, depends on ko or whose turn it is) and find the correct moves
to save or kill the group. In capture problems one tries to determine, whether
given stones can be captured or not. And in connection problems one seeks for
an answer, if a pair of stones/blocks/groups can be connected/disconnected.
Several different approaches have been tried with some success, e.g., heuristics,
databases, neural networks [9,16,28] and exhaustive search [14,29, 30].

4 Playing Style

The current agents do not modify their way of play in accordance with their
opponents or their experience. The common argument for this is that it is better
to improve directly the agent against all the opponents (whereas learning has
not been implemented because the current designs are not really suited for it).
The argument is valid, but in our opinion a design which is capable of adjusting
itself is a faster and more effective way towards a strong agent.

One could say the set of players’ global goals and how he values them rep-
resent his style of play. Being strong at the local aspects of the game, tactics, is
essential for a good player. But without striving towards a good style the player
will not progress. Existence of styles manifests itself in the intransitive nature of
the game, e.g., players A, B and C with similar strength might consistently win
each other crosswise (A > B, B > C, but A < C).

We say a player’s playing style is a set of global features and weighted hy-
potheses over these features. The global features themselves are relatively sim-
ple, like “number of opponent’s weak groups”, “agent’s own estimated territory”,
“number of opponent’s big ko threats”, etc. For instance a hypothesis “number
of my weak groups < number of the opponent’s weak groups” could be part of
a good style.

5 Tactician—Strategist Design

The nature of go is twofold: the local (tactical) battles and the global (strategic)
war. If the global aspect is not handled properly, the war may be lost even if
most of the local battles are won—and similarly, the war cannot be won without
some prowess in the battles. Therefore we propose a two-part design consisting
of a tactician and a strategist. The tactician’s task is to determine the best
local moves in every area (with respect to the current game situation) and their

expected results as a list of accomplished purposes. The strategist then chooses
the most appropriate move (with respect to the strategist’s playing style) from
the ones proposed by the tactician.

5.1 Tactician

Section 3.2 lists some move generators that have been and are used for finding
good moves. The tactician is quite similar to a set of move generators, but
the relevant difference is how the purposes of different moves are combined. The
tactician constructs a subgame consisting of a part of the board and the winning
condition for the subgame is a list of purposes-if and only if every purpose is
fulfilled, then the subgame is won.

As there are a huge number of possible subgames, we will assume that go is
an incremental game most of the time. By incremental we mean that the result
of a subgame rarely chances by moves played outside the subgame, hence after
each move there are not that many subgames which have to be re-evaluated.
However, every now and then the result of a subgame does depend on the rest
of the board. These situations are studied in [25].

The tactician has failed, if it has not proposed a move in correct area or it
has estimated the result of a subgame incorrectly. High-quality game records
can be used to check, if the tactician proposes a move in the correct area—if not,
either the actual move in the record is bad/irrelevant or the purpose of the move
is unknown to the agent. The estimation errors in the subgame results can be
detected in retrospect.

For implementing the tactician we would propose to use the move generators
(see Section 3.2) to provide a list of moves along with their purposes. Nearby
moves are grouped together into a same subgame and the move purposes become
the winning condition for that subgame. This list of purposes is pruned until the
subgame can be won (or there are no purposes left). For the estimation of the
subgames’ result we propose the MCG/UCT approach, since it is quite suitable
for binary cases (the strongest play seems to result from maximizing the winning
probability instead of maximizing the winning margin), i.e., we only want to
know if all the listed purposes can be accomplished or not.

5.2 Strategist

There has been some research (besides the numerous studies how to improve the
evaluation function) about how one should model the global part of the game
[18,19,27]. The lack of success with these models may result from insufficient
testing or failure to model the game well. Qur proposal is to incorporate playing
style into the agent (see Section 4) in a form of a strategist.

The strategist should receive a list of areas and purposes, which can be
fulfilled by playing in the corresponding area. The strategist then chooses the
area, which gives the best result in accordance with the strategist’s playing style.
The weights of the style can be adjusted by training against high-quality game
records: given that a proper area of play was suggested by the tactician and it

was not chosen by the strategist, weights can be changed towards such values in
which the correct area would have been selected. And with correct predictions
the current weights can be reinforced. The hypotheses may be manually crafted,
or the agent can try new random hypotheses out every now and then.

6 Conclusion

Like in any system design process, one must know what to aim at. Obviously,
we would like to construct a strong agent, but it is useful if the agent can
provide accessible reasons for its moves—for the benefit of detecting deficiencies
and teaching beginners. In Sections 2 and 3 we provided some background to go
and computer go, while pointing out that currently the biggest bottleneck is the
middle game. We proposed a design aimed at the middle game. The advantage
of the design is that self-learning can be incorporated into the system. Most
of the current approaches suffer from their design, in which one may expect
improvements only with manual tuning or by increased computing power. In
addition, several different playing styles can co-exist, making it possible to choose
a style according to the opponent.

On the other hand, the proposed design needs a good representation of the
board—which is a difficult problem by itself (some discussion about the subject
is given in [13,21]). Also, managing the timing aspect may prove to be very
challenging, i.e., how one can include temperature into the hypotheses in an
effective way. And finally, how the subgames whose results depend on some
other part of the board can be handled correctly.

Acknowledgements

The author thanks the Tekniikan edistdmissdatié and the Nokia Foundation
for financial support. The author is grateful to his colleagues, especially Jouni
Karvo, and anonymous referees for suggestions and corrections.

References

1. E.R. Berlekamp, J.H. Conway, and R.K. Guy, Winning Ways for You Mathematical
Plays, Academic Press, London, 1982.

2. E.R. Berlekamyp, and D. Wolfe, Mathematical Go: Chilling Gets the Last Point, A
K Peters Ltd, Natick, 1994.

3. B. Bouzy, and T. Cazenave, Computer go: an Al-oriented survey, Artificial Intel-
ligence Journal 182 (2001), 39-103.

4. B. Bouzy, and G. Chaslot, Bayesian generation and integration of k-nearest-
neighbor patterns for 19x19 go, In IEEE 2005 Symposium on Computational In-
telligence in Games, G. Kendall and Simon Lucas (Eds.), Colchester, 2005, pp.
176-181.

5. R. Bozulich, The go player’s almanac 2001, Kiseido Publishing Company, Tokyo,
2001.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

. T. Cazenave, Comparative evaluation of strategies based on the values of direct
threats, In Board Games in Academia V, Barcelona, 2002.

. H'W. Chan, Application of temporal difference learning and supervigsed learning
in the game of Go, Master’s thesis, Chinese University of Hong Kong, 1996.

. K. Chen, Computer Go: Knowledge, search, and move decision, ICGA 24 (2001),
203-215.

. F.A. Dahl, Honte, a Go-playing program using neural nets, 1999.

. M. Enzenberger, Evaluation in go by a neural network using soft segmentation, In

10th Advances in Computer Games conference, 2003, pp. 97-108.

M. Enzenberger, Computer Go Bibliography, [23.5.2007],

http://www.cs.ualberta.ca/"emarkus/compgo_biblio/

S. Gelly, Y. Wang, R. Munos, and O. Teytaud, Modifications of UCT with patterns

in Monte-Carlo Go, Tech. Report 6062, INRIA, France, 2006.

T. Graepel, M. Goutrié, M. Kriiger, and R. Herbrich, Learning on graphs in the

game of go, Lecture Notes in Computer Science 2130 (2001), 347-352.

A. Kishimoto and M. Miiller, Search versus knowledge for solving life and death

problems in go, In Twentieth National Conference on Artificial Intelligence (AAAI-

05), 2005, pp. 1374-1379.

L. Kocsis, and C. Szepesvari, Bandit Based Monte-Carlo Planning, In Proceedings

of the 17th European Conference on Machine Learning, Springer-Verlag, Berlin,

LNCS/LNAI 4212, 2006, pp. 282-293.

B. Lee, Life-and-death problem solver in go, Technical Report CITR-TR-145, Uni-

versity of Auckland, 2004.

A. Lubberts, and R. Miikkulainen, Co-Evolving a Go-Playing Neural Network,

In 2001 Genetic and Evolutionary Computation Conference Workshop Program

(GECC0-2001), San Francisco, CA: Kaufmann, 2001, pp. 14 19.

A B. Meijer, and H. Koppelaar, Pursuing abstract goals in the game of Go, In 15th

Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2001), Amster-

dam, 2001.

A B. Meijer, and H. Koppelaar, Towards multi-objective game theory — with appli-

cation to go, in 4th International Conference on Intelligent Games and Simulation,

London, EUROSIS, 2003, pp. 243-250.

M. Miiller, Computer go, Artificial Intelligence 134 (2002), 145-179.

L. Ralaivola, L. Wu, and P. Baldi, SVM and pattern-enriched common fate graphs

for the game of go, in ESANN 2005, Bruges, 2005, pp. 27-29.

S. Sei, Memory-based approach in go-program KATSUNARI, In Complex Games

Lab Workshop, 1. Frank, H. Matsubara, M. Tajima, A. Yoshikawa, R. Grimber-

gen, and M. Miiller (Eds.), Electrotechnical Laboratory, Machine Inference Group,

Tsukuba, Japan, 1998.

K.O. Stanley, and R. Miikkulainen, Evolving a roving eye for Go, In Genetic and

Ewolutionary Computation - GECCO 2004, New York, Springer-Verlag, 2004, pp.

1226-1238.

D. Stern, R. Herbrich, and T. Graepel, Bayesian pattern ranking for move pre-

diction in the game of go, In ICML °06: Proceedings of the 23rd international

conference on Machine learning, ACM Press, New York, 2006, 873-880.

T. Thomsen, Lambda-search in game trees — with application to go, Lecture Notes

in Computer Science 2063 (2001), 19-38.

E.C.D. van der Werf, J.W.H.M. Uiterwijk, E.O. Postma, and H.J. van den Herik,

Local move prediction in Go, In drd International Conference on Computers and

Games, Edmonton, 2002.

27.

28.

29.

30.

31.

32.

34.

S. Willmott, A. Bundy, J. Levine, and J. Richardson, Applying adversarial planning
techniques to Go, Theoretical Computer Science 252 (2001), 45-82.

M.H.M. Winands, E.C.D. van der Werf, H.J. van den Herik, and J.W.H.M. Uliter-
wijk, Learning to predict life and death from go game records, In Proceedings of
JCIS 2003 7th Joint Conference on Information Sciences, Ken Chen et al. (Eds.),
Research Triangle Park, North Carolina, 2003, pp. 501-504.

T. Wolf, The program GoTools and its computer-generated tsume go database, In
The Game Programming Workshop in Japan ‘94, M. Matsubara (Ed.), Hakone,
1994, pp. 84-96.

T. Wolf, Forward pruning and other heuristic search techniques in tsume go, In-
formation Sciences 122 (2000), 59-76.

H. Yoshimoto, K. Yoshizoe, T. Kaneko, A. Kishimoto, and K. Taura, Monte Carlo
has a way to go, In Twenty-First National Conference on Artificial Intelligence
(AAAI-06), Menlo Park, 2006.

R. van Zeist, The Magic of Go column 157, [23.5.2007],
http://shinbo.free.fr/TheMagic0fGo/index.php?tmog=157

EGF official ratings, [13.12.2006], http://gemma.njf.cas.cz/ cieply/G0/gor .html
GNU Go, [23.5.2007], http://www.gnu.org/software/gnugo/

