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αγ shape parameter of a gamma distribution describing slow fast fading

β path loss exponent

βsf scale parameter of a gamma distribution

βγ scale parameter of a gamma distribution describing slow fast fading

δ(·) Dirac delta function

∆ scaling factor

γ SINR

γ̄ average SINR

γa SINR at location a

γD|U protection ration

γi SINR at receiver i
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γp SINR at primary receiver

γt SINR target

Γ(·, ·) incomplete gamma function

Γ(·) gamma function

η decision threshold

Θ fraction of the transmission power allocated for pilots

λ eigenvalue

µ mean path loss

µG mean path loss of a secondary signal

µNM mean of the maximal eigenvalue of the autocorrelation matrix

µTV mean path loss of a TV signal

νj transmission activity factor

σNM standard deviation of maximal eigenvalue of the autocorrelation matrix

σSU standard deviation of a secondary signal

σTV standard deviation of TV signal

Ω scenario

Ωp set of primary system technical parameters

Ωs set of secondary system transmitter parameters

ΩΘ set of the physical environment parameters
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1. Introduction

1.1 Motivation for the thesis

Our dalliance with Internet generates so much traffic that it cannot be served solely

by the radio spectrum allocated for data transmission. In the search for additional

bandwidth, we examined closely the spectrum currently used by other services. Sim-

ple measurements gave an impression that large parts of the spectrum are actually

underused [1]. Such measurements ignited the idea of secondary spectrum usage. A

secondary user (SU) will use the spectrum left free by the current license owners,

spectrum primary user (PUs).

A closer look reveals that the spectrum is actually relatively densely populated.

The seemingly free spectrum is in guard space or guard bands reserved for protecting

the systems from intersystem interference. Uncontrolled transmission in guard areas

would therefore break the fragile interference balance in the current systems.

Broadcast systems are characterized by large guard areas and low spatial spectrum

utilization. In such sparsely allocated systems, the spectrum utilization can be im-

proved by allowing transmission in the guard areas between the systems. In order to

permit such transmission, the following problem must be addressed: "How to design

a spectrum reusing system that improves the spectrum utilization and at the same time

retains the service quality of existing spectrum users?". Essentially, the coexistence

of the current television (TV) systems and new spectrum reusing systems requires

efficient interference control.

Interference minimization has been a topic of study already for over a hundred year.

In the early stages of radio communications, it was recognized that simultaneously

transmitted radio signals are interfering with each other. An easy way to reduce the

level of interference is by keeping different transmitted signals apart. This can be

done either by using orthogonal signaling or by taking advantage of the attenuation

of the channel.

In practice, the separation methods of the signals are limited by the technology
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we have at our disposal. Early wireless communication systems did not have any

complex signal processing abilities, the only practical option for separating different

users being the use of linear filtering. Linear filtering is an easy way to remove

the impact of signals transmitted in different frequencies. Such a simple separation

possibility made it natural to start isolating the radio systems by allocating different

frequency bands to them.

The long tradition of international frequency agreements started with the first In-

ternational Radiotelegraph Convention in 1906 [2]. The first agreement allocated

frequencies between 500 and 1000 kHz for maritime services and reserved the band

188 - 500 kHz for military communication. A broader allocation of frequencies took

place in 1927 in the International Radiotelegraph Conference. In that conference,

the frequencies from 10 kHz to 60 MHz were allocated. Today the regulation of the

frequency usage is made by the International Telecommunication Union (ITU) estab-

lished on 15th November 1947. In about 100 years the frequencies spanning from

tens of kHz till hundreds of GHz have been reserved [3].

Historically, systems providing different services were allocated to separate fre-

quencies. Such separation was made because the services were provided by using

different technical solutions. Development of communication methods and the avail-

ability of cheap computing power has lead to the convergence of technologies and

services. Differences between services have become blurred, various technologies

provide the same service, or alternatively one technology can be used to offer multiple

services [4]. One manifestation of this convergence is the development of software

defined radio [5]. A software defined radio (SDR) is able to change radio parameters

by using software [6]. It needs only a simple radio frequency front-end which can

easily be tuned to different spectrum areas. By using software defined radio, flexible

spectrum usage is no more limited by transceiver implementation issues but rather

with a need for spectrum usage control architectures and protocols.

A software defined radio could communicate at any available frequency. The pos-

sibilities brought by flexible radios have lured economists to propose new spectrum

usage strategies [7] [8] [9]. By putting the spectrum on the market, it is easier to find

somebody who could use it. Unfortunately most of the proposed strategies assume

a replacement of current network infrastructure, a slow and expensive process. A

short term, and cheaper, solution would be to leave the current network infrastructure

intact and to realize better spectrum utilization by only allowing secondary spectrum

usage. Secondary spectrum users would require a new network in any case.

The new secondary spectrum users have to guarantee the connection quality of

current spectrum using services. How to guarantee that is currently an open question.

Possible options are to arrange the secondary transmission as underlay, overlay, or
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interweave [10]. The choice of these arrangements has to be based on the spectrum

utilization benefits they provide. The spectrum utilization, however, is not the only

metrics needing to be considered. While designing the new system we also need to

know what kind of capacity a secondary system can expect.

1.2 Scope and content of the thesis

While investigating the secondary systems we have to answer the following ques-

tions: For what purpose is the secondary spectrum used? How should the secondary

access be arranged? How much capacity can the secondary system have? How well

should the primary system be protected?

The utilization of spectrum depends on how well the spectrum using systems com-

plement each other. This thesis is about the usage of TV frequencies for data trans-

mission. The combination of TV and wireless data systems is very attractive since

the TV transmitters are remotely located. The areas where the TV frequencies are un-

used can be populated with low power transmitters. The case where these low power

transmitters belong to a cellular system is studied in this thesis.

The TV transmission uses a large chunk of spectrum under 1 GHz. In Finland, the

frequencies allocated to TV transmissions are 470 − 862 MHz. Due to the nature

of TV system planning, the TV coverage areas are separated by large areas where

the TV frequency is not used. The area outside the coverage area of TV transmitters

that can be used for secondary transmission is called TV white space (TVWS). Chap-

ter 2 defines this white space and describes what is meant by the term TV spectrum

availability.

There is no shortage of proposals for organizing secondary spectrum usage [11].

Chapter 3 describes three main paradigms for arranging the secondary spectrum ac-

cess.

The secondary spectrum access is expected to be controlled by using a spectrum

sensing or a geolocation database assisted access. Chapter 4 gives an overview of

the most common detection methods and describes the methods that Publication VI

improves upon. Spectrum sensing is a simple decentralized spectrum access method.

In a sensing method, the most critical issue is how well the sensing is able to detect

signals with very low levels. Such low detection level is especially important in a

fading environment. Subsection 4.2 describes the algorithms and models used for

computing the detection performance in various fading environments. A model that

allows studying the detection performance if both fast and slow fading are present is

derived in Publication V.
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A centralized database can have much more precise information about the radio

environment than can be acquired by spectrum sensing. In the near future, database-

based spectrum access is considered as the only practical spectrum access option.

In Europe ECC and in the US FCC are considering slightly different proposals for

database functionalities. These two approaches are compared in Chapter 5. In Publi-

cation IV we investigate the performance of a cellular system deployed according to

the FCC requirements.

Chapter 6 provides an overview of the current state of the interference modeling

research as well as giving background information for Publication II and Publication

III. Secondary transmission generates interference to the TV receivers and to the

other secondary receivers. Most of the current interference models, however only

describe interference inside a single system. Only a few known models are tailored

particularly for describing aggregate interference from a secondary system. The in-

terference inside the single system limits the capacity of the system. An overview of

the common wireless data network capacity models is given in Chapter 7. In Pub-

lication IV, we use a simple model for assessing the secondary network capacity in

TVWS.

An important secondary spectrum usage study area is the estimation of the amount

of available spectrum. Chapter 8 illustrates how much secondary spectrum could

be made available in Finland and what data rate a secondary cellular system can

provide by using this spectrum. Chapter 8 is mainly based on the results derived

in Publication VII.

1.3 Contribution of the thesis

The TVWS usage research field is particularly vibrant with many new results appear-

ing literally every day. During the research for this thesis, we constantly monitored

the state-of-the-art and positioned our work to solve the issues needed for making the

secondary spectrum access possible.

1. In Publication I, we proposed a method for estimating the spectrum utilization

efficiency as a function of TV signal detector decision parameters. Near the TV cell

border the spectrum can be used even in the presence of a TV signal. In Publication

I we designed a signal model that can be used for describing the TV signal at the

TV coverage area border. The proposed model is used for improving the detector

performance and as a result we can achieve better spectrum utilization.
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2. A secondary spectrum allocation is limited by the aggregate interference from all

the secondary transmitters. In Publication II, we propose a method for a quick es-

timation of the aggregate interference from a large secondary network. Instead of

summing up the interfering powers from individual transmitters, the method inte-

grates over the average power density in the secondary network. The method also

incorporates the impact of fading in the aggregate interference and expresses the

moments of the aggregate interference. The suitability of the integration model for

describing the aggregate interference is described in Publication III. In Publica-

tion III we also extend the aggregate interference model to incorporate correlated

fading.

3. In Publication IV, we propose a method for optimizing the power allocation among

the secondary systems using cochannel and adjacent channel. We describe the

power allocation as an optimization problem. The proposed method allows us to

investigate the power allocation trade-offs in secondary systems.

4. In Publication V, we describe a power detector performance in a shadow and fast

fading environment. The proposed model is parametrized by the fading character-

istics. The model allows us to study the performance of detectors in various fading

environments.

5. In Publication VI, we propose a multiple antenna-based signal detection algo-

rithm. The method is applicable even if the signals from the antennas have different

front-end amplifications or the antennas measure independent fading. The method

groups the subsets of the measured samples and averages out the implementation

or environment related differences in different antennas.

6. In Publication VII, we compute how much TVWS spectrum is available in Fin-

land. In this publication we compare the achievable capacity while following spec-

trum usage rules by FCC and ECC. Particularly, we investigate how those rules

protect the incumbent TV receivers.
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2. Spectrum allocation

Radio spectrum is a range of electromagnetic frequencies that are used for wireless

communication. The spectrum is treated as a resource that is distributed among dif-

ferent communication systems.

Traditionally, the officials have taken a simple approach and licensed the spectrum

exclusively to one system only. The spectrum license allows the system to use the

given bandwidth in given space and time. The officials protect the license holders by

banning the other nearby transmitters from using the same or neighboring frequen-

cies.

Since there is very high demand for the spectrum this scarce resource has to be

used as efficiently as possible. In its recommendation ITU-R 1046 [12], the ITU

recommends to measure the spectrum usage by a spectrum utilization factor (UTF)

U = B · S · T (2.1)

where B is used frequency bandwidth, S is utilized geometric space, T is utilized

time. The T is the time the spectrum is denied from other users. The recommendation

ITU-R 1046 clarifies that the geometric space of interest may also be a volume, a line

(e.g. the geostationary orbit), or an angular sector around a point [12].

How well a particular system utilizes the spectrum allocated to it can be expressed

as spectrum utilization efficiency (SUE) [12]

SUE =
M

U
(2.2)

where M is defined as the useful effect obtained with the aid of the communication

system in question. For instance, M can be the number of calls the system can

support (in Erlangs) or the data rate the system can transmit.
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2.1 TV white space

Traditionally, a TV cell is covered by a signal from a single high power transmitter.

Such a transmitter can serve a large cell but it also generates interference into a very

large area. In order to avoid interference the cochannel TV cells are located far apart.

An example of the use of TV channel 30 in Finland is illustrated in Fig. 2.1. Between

the cochannel TV cells there are substantial areas where the frequency is not used.

We could increase the SUE by allowing some low power transmitters in this unused

space. Such spectrum using system would contain secondary spectrum user (SUs)

who could use the spectrum as long as the receivers in TV coverage area are not

disturbed.

(a) Coverage
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Figure 2.1. TV channel 30 use in Finland a) coverage area (black) b) SINR distribution at the cell
borders.

The TV service coverage is designed to sustain some interference from cochannel

transmitters. The quality of a received signal is expressed by its signal-to-interference-

plus-noise ratio (SINR) [13]

γ =
Pr∑

j
Ij + Pn

(2.3)

where Pr is the received signal power, Ij is the interfering power from transmitter j

and Pn is the noise power. The interference is computed as the aggregate interference

from all the active transmitters. It contains power received from other broadcasting

stations and from the secondary transmitters. The acceptable TV reception is possible

as long as the received SINR exceeds some target value, γ ≥ γt.
In this thesis, we investigate the channel availability in the TV white space:

Definition 1. TV white space (TVWS) is defined as the area outside of TV coverage

areas where the TV frequencies can be used such that the TV reception quality is

better than or equal to the minimum required reception quality level.
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The TV reception quality is defined by the target SINR level γt and the target outage

probability Ot. In a fading environment, the SINR is described by its distribution.

The situation where the instantaneous SINR is below the target SINR is called signal

outage. The primary system allows certain outage Oa ≤ Ot, where Oa is the outage

probability at the location a. The chance of the outage can be computed from the

SINR distribution

Oa = Pr (γa ≤ γt) (2.4)

where γa is SINR at the location a.

The received TV signal level varies in time and in space. The spatial changes are

the result of user movements, fast fading, and large objects, shadow fading. The

temporal changes are due to the changes in atmosphere since the signal propagation

depends on weather conditions. With those two random processes, the TV reception

quality is expressed as a function F (X,Y ) that describes the field strength that is

exceeded in X% of locations at Y% of time [14].

The spatial and temporal variations are due to the different independent factors. The

variations contribute to the channel model as two random variables that are summed

together [15]. This sum can be replaced by a new random variable in what case the

total fading is described by a single distribution and the outage is expresses as in Eq.

(2.4).

The system transmitting in TVWS is called a secondary spectrum user. For iden-

tifying whether we have a TVWS or not, we locate the secondary transmitters in

the candidate area. We have TVWS if we find these secondary transmission powers

that the target outage probability for receivers located in the TV coverage area is not

violated.

In practice we test the reception quality in the TV coverage area by selecting test

points and evaluating the outage probability at these points. The secondary transmis-

sion increases the interference level and by doing that it reduces the SINR value. The

TV reception can sustain additional interference only if at any of the test points the

outage constraint is not violated.

Whether we have a possibility for secondary transmission or not depends on the

current SINR level at the TV coverage area border. A current SINR levels on TV cell

borders is illustrated in Fig. 2.1b which describes the SINR on the test points in TV

cells using channel 30 in Finland.

In Finland, the TV transmission in channel 30 uses 64 QAM with coding rate 2/3

and in a Rician fading environment it requires SINR γt = 17.3 dB [16]. As we can

see, at some test positions the SINR is well above this target. Near to these locations

there is a potential for secondary transmissions.

The current recommendations consider three possible secondary spectrum access
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methods [17] [18]: the access to the spectrum is controlled by a database, the access

decision is based on the measurements in the given spectrum area, or the pilot signals

are introduced that will be detected by secondary users. Compared with its com-

plexity the pilot-based systems do not provide sufficient primary system protection.

Therefore, only sensing and database-based access are considered as viable options

for arranging the secondary access [19].

2.2 Spectrum allocation in network planning

The concept of secondary spectrum usage is supported by the experience gained from

planning of cellular wireless systems. In first generation wireless cellular systems,

frequency allocation was done during the network planning process [20]. At that

time, the technology for dynamic frequency change was not available and the trans-

mitters had to be equipped with frequency specific hardware. Nowadays the circuit

design allows us to design transceivers with relatively simple and quick frequency

tuning circuits. Therefore, the emerging wireless systems contain real time frequency

allocation that is done as a part of the radio resource management (RRM) opera-

tion [21]. Cellular networks have been good testbeds for real time spectrum usage

optimization. The secondary frequency allocation process can learn from the experi-

ences gained in cellular systems.

The common cellular network planning steps are illustrated in Fig. 2.2 [22] [23]. A

process with similar steps can be identified also for a TV network [24].

Figure 2.2. Network planning process steps.

The dimensioning stage is used for predicting the network cost. At that stage,

the available frequency spectrum is considered and the system designed to serve the

subscriber density with a given traffic and service mix. That design produces the

initial estimate of the amount of hardware needed to satisfy the QoS requirements.

The dimensioning stage produces only the site density information. In the planning

stage, we make the initial site allocation and use network planning tools that con-
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tain propagation condition information. During planning the actual site coverages,

capacities and service qualities are all computed.

The initial network plan is the input to the site survey and acquisition. The site

acquisition is accompanied with the frequency planning among the sites and with the

interference analysis.

Before launching the network, the planned network quality is verified. At this

verification stage, prelaunch optimization and parameters tuning is also done. The

initial network tuning is based on the drive tests.

An operating network undergoes continuous optimization. The basis for which

optimization is the constant monitoring of network traffic and quality parameters

which gives the feedback that is used for the fine tuning of the network operational

parameters.

2.2.1 Secondary network access as a network planning problem

Secondary spectrum usage is closely related to network planning. The network plan-

ning methods can be used while performing the dynamic spectrum allocation to the

secondary system.

Before the spectrum will be opened up for secondary usage it is necessary to first

assess whether the white space is economically attractive or not. Such an assessment

contains an estimation of the amount of available spectrum and the cost of provid-

ing services in that spectrum area. This estimation is supported by planning tools,

that can help us to predict the cost of the secondary networks’ deployment and the

possible available data rates.

The dynamic spectrum control benefits from the experiences acquired while op-

erating RRM in cellular networks. The RRM provides the practical examples of

frequency allocations. Based on these examples, we know what kind of computing

power and signaling speed a realistic frequency allocation requires. We can treat

the cellular system as a testbed that illustrates the technical difficulties a secondary

spectrum allocation architecture has to face.

To be applicable to the secondary system design the conventional network planning

methods have to be adapted to the new dynamic environment. For instance, the plan-

ning of a classical cellular network is not tailored to cope with an uncertain amount

of available bandwidth or with the limitations on intersystem interference.

Usually, radio systems planners know the amount of available spectrum. The spec-

trum available to a secondary system, however, is not known beforehand. The amount

of the spectrum depends on the activity of primary spectrum users. Such uncertainty

makes the planning of an expensive network infrastructure very challenging. The
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problem can be avoided, fortunately, by using a special exclusive secondary license

or by deploying infrastructure free, ad hoc type, networks.

In Publication IV, we make the initial estimate of the capacity of a secondary cel-

lular network, the approach used being similar to the cellular system dimensioning

stage. We extended the conventional dimensioning with constraints on intersystem

interference and the limitation on the available transmission power. The proposed

approach can be incorporated into industrial level network planning tools.

The uncertainty related to the spectrum availability favors solutions with low infras-

tructure cost; for instance, suitable networks would use femtocells or Wi-Fi. The de-

sign of such networks is relatively straight forward, requiring only a minimal amount

of planning. However, we still need to estimate the business value of those networks.

The business value estimation process still needs supporting data from a network

planning tool, the development of which is not within the scope of this thesis.

The secondary spectrum allocation process is a similar operation to radio resource

management (RRM) done inside the system. Inside the network, the RRM manager

controls the transmitters’ access to the spectrum. A similar control process can be

observed in the secondary spectrum allocation process. Achieving a balance between

these two spectrum controls is an important study issue that provides directions for

future research in this field of study.
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3. Spectrum sharing paradigms

It is common to model a communication link as a scaled transmitted signal in additive

white Gaussian noise (AWGN) [13]

y =
√
Pg · s+ n (3.1)

where P ∈ R+ is the transmitted power, g ∈ R+ describes the attenuation on the

channel, s ∈ C is the complex baseband equivalent of the transmitted signal, and

n ∈ C is the complex additive circular Gaussian noise. The additive noise n has a

mean E {n} = 0 and variance E
{
|n|2

}
= N0

2 , where N0 is the one-sided power

spectral density of noise.

It is common to express the attenuation g as the combination of the path loss and

the impact of fading

g = 10µ/10x (3.2)

where µ is the mean path loss in dB and x is a random variable describing the fading

process. Slow fading is most commonly described by deriving x from a log-normal or

a gamma distribution and fast fading by deriving x from an exponential or a gamma

distribution.

The mean path loss is conventionally described by a simple power law model

µ = 10 logCrβ = 10 logC + 10β log r (3.3)

where r is the distance from the transmitter to the receiver, β is the path loss exponent,

and C is a correction term. The correction term C reflects the impact due to the

antenna height and due to the terrain on the transmission path. The power law model

is a basis for a commonly used Okumura-Hata channel model [25].

An alternative to the power law model is a table-based path loss model which is

described in ITU-R recommendation P.1546 [14]. This recommendation contains

tables of measured path loss values for different frequencies, terrain models and an-

tenna heights. The path loss at non tabulated distance is computed by interpolating

from the given values.
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The maximum amount of information that we can convey from the transmitter to

the receiver is called the channel capacity. In an AWGN channel, the channel capacity

can be achieved with a circular-Gaussian distributed signal x [26]

C (γ) = B log2 (1 + γ) (3.4)

where γ = Pg
BN0

= Pg
Pn

is the signal-to-noise ratio (SNR) and B is the signal band-

width. Eq. (3.4) describes the maximum amount of bits per second (bit/s) one can

transmit in an AWGN channel for the given SNR. Sometimes the links are described

also by their spectral efficiency (bit/s/Hz).

A general wireless network contains multiple transmitters and receivers. At any

moment, the network can have multiple active links. The received signal on an indi-

vidual wireless link can be modeled by augmenting Eq. (3.1) with signals from other

active transmitters. The received signal at the receiver i is

yi =
√
Pigi,i · si +

∑

j

√
Pjgj,i · sj + ni (3.5)

where index j stands for other transmitters and gj,i describes the channel between the

transmitter j and the receiver i.

In a wireless channel, the transmissions in concurrent links disturb each other’s

reception. An increase in power at one link also increases interference experienced

at other links. Given the power of each transmitter and the path loss in each link, we

can compute SINR of each user. The vector of the SINR values can be converted to

a vector of data rates that each link can support, each user can achieve. By changing

the transmission powers, we can change the vector of achievable data rates. The

capacity of the whole system is described as the closure of the achievable data rate

combinations over all the links [27] [28].

The Shannon capacity (3.4) describes only a single link. What would be a corre-

sponding equation for a spatially distributed system is unknown. The capacity can

be computed only for a particular system configuration. For instance, for a multiple

access channel or for a broadcasting channel [29].

Our application, TVWS, is a special type of a wireless network. The secondary

transmission has to be arranged such that the TV receivers can operate without any

change. Arranging the secondary transmission can be investigated by using a simple

two transmitter two receiver (2× 2) network. In Fig. 3.1a one link would correspond

to the TV transmission and the other to the secondary transmission. The received

signals in a 2× 2 system are expressed as

yp =
√
Ppgppsp +

√
Psgspss + np

ys =
√
Psgssss +

√
Ppgpssp + ns

(3.6)
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where index p and s describe the primary and the secondary transmitters, Pp, Ps are

the power of the transmitters, gpp, gsp, gps, gss are the corresponding attenuations

and np ns describe noise in the secondary and primary receivers.

(a) 2× 2 MAC channel (b) 2× 2 general interference channel

Figure 3.1. Two transmitter two receiver system as a system containing primary and secondary trans-
mitters and receivers.

The capacity of a 2× 2 system is defined as the set of achievable data rates at both

receivers. The system can also be interpreted as two multiple access channels, one

for each receiver. The capacity of such channel is derived in [30] and [27].

If a 2×2 system is interpreted as two MAC channels, both the transmitted messages

are independent and the transmitters do not share any common information. The

system can be described also as two transmitters having common and independent

parts of the messages (Fig. 3.1b) [28]. The set up used in [28] was modified for the

primary and secondary transmission environment in [31].

The model in Fig. 3.1b provides multiple alternatives for arranging the secondary

access. The interference to the primary system can be avoided by using one of the

following approaches [10]:

1. Secondary system transmission does not influence the primary connections at

all. That situation can occur if, for instance, the primary and the secondary

transmissions are orthogonal to each other.

2. There is positive margin between the current primary system connection qual-

ity and the target quality. Introduction of secondary transmissions will reduce

the current primary connection quality but will not violate the primary target

quality value.

3. The secondary system cooperates with the primary system and improves the

primary connection quality. The secondary signal can then bring this improved

quality down to the minimum required connection quality, the primary connec-

tion’s minimum target value.

These approaches lead to different spectrum access schemes: underlay, overlay,

interweave. The transmission schemes differ by the amount of information and the

type of information the secondary system uses. In general, the implementation of

29



Spectrum sharing paradigms

the methods assumes that the secondary system is able to collect information about

the PU transmission. Such educated transmission is also called the cognitive channel

[31] [32] [11]. A device that takes advantage of the collected knowledge is called

cognitive radio. The cognitive radio is interpreted as the equipment that not only

recognizes the channel state but also adapts its transmission to this state [33]. ITU [6]

defines the cognitive radio system (CRS) as:

Definition 2. A radio system employing technology that allows the system to obtain

knowledge of its operational and geographical environment, established policies and

its internal state; to dynamically and autonomously adjust its operational parameters

and protocols according to its obtained knowledge in order to achieve predefined

objectives; and to learn from the results obtained.

3.1 Underlay spectrum sharing

The underlay spectrum usage is the simplest secondary spectrum sharing approach.

To protect the primary receivers, the secondary transmitter does not need to know the

primary signal or primary transmission patterns. The coexistence of different systems

is based on appropriate selection of secondary transmission power.

The underlay approach is closely related to the interference temperature concept

[34] [35]. The interference temperature was defined by FCC as the interfering signal

temperature at the primary receiver. In order to comply with the interference temper-

ature requirement, the secondary system has to know the attenuation in the channel

and to limit its maximum transmission power. Current FCC TVWS usage propos-

als are not based on the interference temperature [18]. However, the specification

proposed in Europe by ECC has some similarities to this concept [17].

An underlay secondary transmitter selects its transmission power such that the

SINR target, γt, at any primary receiver is not violated. The SINR condition can

be expressed for a two transmitter case as

γp =
Ppgpp

Psgsp + Pn
≥ γt. (3.7)

There are two ways for limiting the SINR. First, if the secondary transmitter knowns

the attenuations, the primary system received power Ppgpp and attenuation gsp, it can

select its power Ps such that Eq. (3.7) is satisfied. Alternatively, if the received pow-

ers and attenuations are not known the interference can be limited by using signals

that have very low power spectral density, like ,for example, ultra wideband signals.

A wideband transmission simplifies the coexistence of the primary and secondary

systems. The systems do not need to know anything about each other. They are
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decoupled by limiting the amount of power the secondary system can emit in the

bandwidth allocated to the primary system.

A wideband signal can be created by using signaling with a short pulse or a se-

quence of short pulses. The latter one is known as a spreading operation [36]. Since

the spread signal has the same power as the initial signal, the power spectral density

is reduced. The power density of the spread signal in the information rate bandwidth,

R, is decreased by the spreading factor B
R , where B is the spread signal bandwidth.

By selecting the spreading factor and the transmission power, we can make the spread

signal nearly invisible to the narrowband spectrum users. Conversely, the spread sig-

nal is relatively immune to the narrowband interference [37].

Wideband signaling is proposed as a signaling scheme for various specifications.

The proposed implementations contain the usage of short pulses [38] or the creation

of wideband spectrum by using OFDM-based modulation [39].

In theory, wideband signaling offers a possibility to transmit with a very high data

rate [40]. Unfortunately, in a multipath environment, the wideband transmission is

plagued with implementation-related issues. For instance, it is extremely challenging

to estimate the channel and to synchronize the signals. Also, the implementations

have been very power consuming and unsuitable for practical applications.

If the attenuations on the channels are known, the transmitter could directly limit

its transmission power to meet the SINR requirement (3.7). Unfortunately, in the TV

coverage area, we could have thousands of receivers, with it being nearly impossible

to know the exact received signal level at each of them. The way around this problem

has been to guarantee the target SINR level at the TV coverage area border. In this

simplified situation, the secondary transmitter does not need to know attenuations at

particular receivers but just the attenuation at the border of the coverage area (see

Fig. 3.2).

Figure 3.2. TVWS access with protection area.
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The distance to the cell border can be identified by using simple signal level de-

tection [34]. The attenuation is related to the distance and therefore we can map the

measured signal level directly to the distance from the TV transmitter. Unfortunately,

in a fading channel the signal level is not a good approximation of the distance. For

guaranteeing the primary signal protection in a fading channel the detection level has

to be set very low [18]. Currently, the detection-based admission control is still under

study and no good solution is known for it.

3.2 Interweave spectrum sharing

The need for data transmission usually arises in bursts. A sequence of transmis-

sion bursts can be described by an ON-OFF model [41] [32]. The underlay spectrum

sharing approach tacitly assumes that, compared to the detection and secondary trans-

mission times, the durations of being in the ON and OFF states are very long. If that

is not the case, we can determine not only the signal level but also the ON-OFF pat-

tern of the primary activity. Such activity information is used in interweave spectrum

sharing.

The idea of interweave spectrum usage was born together with the of the cognitive

radio system concept [42]. The spectrum measurements indicated that licensed trans-

mitters use the spectrum only some of the time [1]. A cognitive radio was envisioned

as a piece of equipment that is able to interweave with the primary transmission.

Since the primary and secondary transmissions are separated in time they are or-

thogonal. The interweave spectrum usage resembles the classical time sharing sys-

tem. In the limiting case the secondary system is capable of filling all the free time

frequency space. The capacity of such a ideal time-sharing system is expressed as

RP ≤ αC
(
Ppgpp
Pn

)

RS ≤ (1− α)C

(
Psgss
Pn

) (3.8)

whereRP andRS are the data rates achievable by the primary and secondary systems

and α is the fraction of time the primary system uses the spectrum.

The full spectrum utilization depends on how well the secondary transmitter can

detect and fill the time gaps left by the primary systems. How easy it is to detect a

gap depends on the primary system ON-OFF pattern, the primary signal level at the

detector and the deployed detection method. The capacity in Eq. (3.8) is achieved

only if the secondary system is able to detect and to fill all the spectrum gaps.

The spectrum gaps could last only a few milliseconds or be as long as a few hours.

In an extreme case, the secondary transmitter attempts to interweave into time gaps

32



Spectrum sharing paradigms

occurring between transmitted packets. In order to identify the packet intervals the

secondary system needs to measure the channel with very high frequency. The col-

lected samples could fall into a border between an ON-OFF transition and even with

a high rate of measurements it is not guaranteed that the change of state will be de-

tected. The need for measurements can be reduced if the SU constructs a model of

the state dwelling times [43] [44].

The interweave operation resembles the functionality of a scheduler. The scheduler

with knowledge of global transmission needs can be interpreted as a genie-based

interweave system. The performance of a genie-based system can be achieved by

an ideal spectrum detector. An alternative approach would be to avoid the detection

and to communicate the locations of the spectrum holes to the secondary system in

some other way. The cooperation between the primary and secondary system can also

create spectrum holes. The primary system can free some time slots for secondary

transmission (as can be done in the DVB-T2 system [45]).

Like the overlay, also the interweave could be used for arranging spectrum access

outside of the TV coverage area. Outside of the TV coverage area the signals are

interweaved not only in time but also in space.

3.3 Overlay spectrum sharing

In interweave spectrum access, the secondary system utilizes only the knowledge

about the primary system transmission pattern. For the overlay spectrum access, the

secondary system needs to know not only the transmission pattern but the whole pri-

mary signal. The secondary system combines its own data with the primary message

and transmits this combined message synchronously with primary transmission. The

new message is constructed such that both the primary and secondary system’s signal

quality will be satisfied.

The overlay spectrum sharing requires that the secondary system knows the pri-

mary signal. Such knowledge can be expressed as an information exchange between

transmitters or as a common message known to both transmitters (Fig. 3.1b). The ca-

pacity of a 2× 2 system having a common message is analyzed in [28]. The analysis

of the channel with information exchange is adopted for the cognitive radio context

by [31] and [46].

The model in [28] splits the transmitted signals into three groups as presented in

Fig. 3.1b. Data to be transmitted to both receivers, w0, and the receiver’s specific

messages w1, w2. In the general case, both receivers decode all of the messages. The

sub case would be if a receiver decodes only a part of the messages [46]. For ex-
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ample, the primary receiver decodes messages w0 and w1 and the secondary receiver

messages w0 and w2.

In [46], the interference channel model is adopted for cognitive radio in the TVWS

context. In TVWS overlay access, we can set w1 = 0 and the common signal is the

TV signal w0 = wTV (Fig. 3.3a). The secondary system knows both messages. It

combines them into the transmitted message such that the secondary receivers can

decode ws. The common signal has to be decoded only by the primary receiver. The

TV signal rate cannot be changed and the capacity of the 2 × 2 overlay system is

described as the maximum data rate the secondary system can transmit.

(a) Simple decoding and decoding with DPC (b) Decoding with multiuser detection

Figure 3.3. Overlay information channel model for the TVWS usage.

The secondary overlay transmitter allocates a fraction, αPs, of its transmission

power for retransmitting the TV signal and a fraction, (1− α)Ps, for transmitting its

own signal. The retransmitted TV signal boosts the signal level at the TV receivers

and the SINR is increased. The secondary signal is perceived by the TV signals as

noise and the SINR is decreased. The fraction, α, is selected such that the SINR

target, γt, at the TV receivers will not be violated.

The overlay system is often studied by assuming that the channel gains are known

[47] [46]. In known channels, the transmitted signals can be precoded such, that at the

receiver the main TV signal and retransmitted signal sum in phase. In the TVWS set

up, the large number of receivers makes it impossible to be aware of all the channels.

In unknown Rayleigh fading channels the signals are combined not in phase but as

their powers. The data rate in such random channel can be limited as [48]

Cp = log2

(
1 +

Ppgpp + αPsgsp
Pn + (1− α)Psgsp

)
. (3.9)

In practice we can assume that the primary system data rate is fixed, Rp ≤ Cp.

In the system design, we select α such that it maximizes the secondary system data

rate given the constraints of the TV system data rate. If no interference compensa-

tion method is used, the secondary receiver treats the interference as noise and the

achievable capacity in the secondary link is

Cs = log2

(
1 +

(1− α)Psgss
Pn + Ppgps + αPsgss

)
(3.10)
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The interference can be removed by using complex signal processing methods.

Such signal processing methods are encoding on the transmitter side, by using dirty

paper coding (DPC) [49], or using multiuser detection on the receiver side [50]. After

interference compensation, the capacity of the secondary link is as if the interference

would not be present at all. Both of the interference compensation methods allow

us to construct systems that have the same achievable secondary link capacity. In

a Gaussian noise environment, this capacity is the same as the single link Shannon

capacity.

The DPC and multiuser detection provide guidelines how to construct the system

that achieves the promised capacity limits. The promised capacity is achievable only

in the ideal system that has exact channel knowledge. In a DPC case, the channel

has to be known at the transmitter while in multiuser case detection is at the receiver.

Unfortunately, in the presence of channel estimation errors, the promised capacity

cannot be reached.

Overlay with dirty paper coding

DPC is an effective way to simplify the reception by using the processing power at

the transmitter. The transmitter uses a code that contains the knowledge about the in-

terference. The channel combines the actual interference and the encoded messages.

The code is selected such that the interference becomes invisible to the receiver. By

using the DPC the achievable capacity in the link is the same as if the interference

would not be present at all [49].

DPC encoding presumes that the transmitter knows the interfering signal and the

channel gains gps, gss. If channel gains are not known, the method cannot be ap-

plied and the capacity is characterized by (3.10). Given the channel knowledge, the

secondary system capacity is

Cs = log2

(
1 +

(1− α)Psgss
Pn

)
. (3.11)

Overlay with iterative decoding

The DPC relies on the transmitter-side interference compensation. Alternatively, the

multiuser detection relies on the receiver-side compensation. The decoder first de-

codes the primary signal and then the secondary signal. The multiuser decoding can

reach the channel capacity only if both messages are decoded error free (Fig. 3.3b).

For successful decoding the achievable data rates have to satisfy the following equa-
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tions

Cp,s ≤ log2

(
1 +

PP gpp + αPsgsp
Pn + (1− α)Psgss

)
(3.12)

Cs ≤ log2

(
1 +

(1− α)Psgss
Pn

)
(3.13)

Cp,s + Cs ≤ log2

(
1 +

Ppgps + Psgss
Pn

)
(3.14)

where Cp,s is the maximum data rate at which the primary signal can be error free

when decoded at the secondary receiver. The capacity region bounded by (3.14),

(3.13) and (3.12) is a subset of capacity region of the two user Gaussian multiple

access channel. The equations here consider that the primary system data rate is

fixed and the iterative decoder first decodes the primary user signal. In this case,

(3.14) follows directly as a sum of (3.13) and (3.12).

The secondary receiver first decodes the primary signal. It is able to do it if the TV

data rate is less or equal to the constraint (3.12). Together Eq. (3.9) and (3.12) create

the set of constraints the TV data rate has to satisfy. Both of the constraints depend

on the fraction α. Since the TV data rate is fixed we have to set the α such that both

of the capacities Cp, Cp,s are greater than the TV data rate

RTV ≤ min
α
{Cp(α), Cp,s(α)} . (3.15)

The capacities depend on the attenuations in the channels. If the channels are known,

we can select α appropriately, on the other hand, if the channels are not known, the

data rates are difficult to guarantee.

In a special case, when the TV transmitter is switched off, the TV receiver reception

quality is guaranteed only by the secondary retransmitted signal. In this case, the

fraction of power allocated to the primary signal is such that [48]

SINRTV ≤
α

1− α. (3.16)

The overlay approach allows us to use secondary transmission also inside the TV

coverage area, TV black space [31] [48]. Since most of the users are currently located

inside the TV coverage area, such TV black space usage is very attractive from the

business point of view.
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Before the secondary system can transmit it has to identify whether the primary sys-

tem is using the spectrum or not. Such identification can be done by detecting the

presence or absence of the primary system signal. This spectrum access method is

known as the detection-based spectrum access or spectrum sensing-based access.

The simplest detection-based method assumes that the detector does not have any

information about the locations of TV transmitters’ and their transmission powers.

All the parameters needed for protecting the TV receivers have to be estimated from

the measurements. In spectrum sensing-based medium access, the user replaces all

the required estimations with TV signal level detection. If the signal level is detected

to be low enough, the spectrum is assumed to be free and can be used for transmis-

sion.

Spectrum sensing can be used to enable the underlay or interweave spectrum ac-

cess. In interweave settings, the secondary user has to identify spatially or temporar-

ily unused spectrum areas.

In TVWS, a secondary user should identify whether at the measured location the

spectrum is spatially unused. The TV transmitter stays in the ON or OFF state for

a relatively long time. For example, in Finland most of the TV transmitters transmit

continuously and there is no OFF state. We can assume that mostly the secondary

user has to determine whether it is placed inside or outside of a TV coverage area and

therefore decides only whether the spectrum is spatially unused or not.

The continuous transmission assumption does not hold in the case of wireless mi-

crophones. The wireless microphones are relative low power transmitters that occupy

certain TV bands. In these bands, the secondary spectrum user has to identify the

ON-OFF state of the microphone. In order to avoid the disturbance, the secondary

user has to make periodic measurements as was described earlier in Section 3.2. This

thesis, however, considers only the methods for identifying primary signal level. The

issues related to periodic measurements are well beyond the scope of this thesis.

The secondary transmitter has to control the interference it generates to the TV
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receivers. Such control requires the knowledge of the radio channel from the location

of the secondary transmitter to the TV coverage area border. The detection-based

spectrum access avoids the estimation of the channel. The method just attempts to

guarantee that the transmitter is far enough from the TV coverage area. To guarantee

that, the method uses the signal level as proxy for the distance. It is possible to do that

since the attenuation is the function of the distance and therefore also the signal level

reflects the distance to the transmitter. If the measured signal level falls below the

detection threshold, we can assume that the measurement is taken at certain distance

from the transmitter. With the appropriately selected detection threshold, it can be

assumed that the secondary user will transmit far enough from the TV coverage area

border.

Due to its simplicity, the detection-based spectrum access is a very attractive access

method for independent ad hoc type networks. Each transmitter could measure the

spectrum and make the access decision independently. Morevover, such a simple

access rule does not require any complex infrastructure.

Detection-based spectrum access also has some drawbacks. In a fading environ-

ment, the signal level is only loosely related to the distance. In order not to miss the

signal in deep fades, the detector should be able to identify very low signal levels.

Outside of the TV coverage area the required signal level could be well under the

noise level. The current agreement is that a secondary equipment should be able to

detect a TV signal as low as -114 dBm [18]. Such a low detection level means that

in most cases the spectrum can be used only at a significant distance from a TV cell

border.

We can avoid the impact of fading by averaging the measurements made by mul-

tiple users [51]. Such cooperative signal level detection allows us to reduce fading

margin and the spectrum can be used nearer to the TV coverage borders. The co-

operative sensors have to meet the regulatory requirements. It is, however, difficult

to specify and control the performance of a distributed sensor network. Therefore,

currently the officials cannot make the type approvals of systems using distributed

measurements.

4.1 Signal detection

A detector measures the spectrum and based on the measurements has to separate

between two conditions: the primary signal is present or the signal is absent. The

detector does not know which one of these two cases is present but we can construct

hypotheses about them [52]; The hypothesisH0 corresponds to the situation when we
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measure only noise, and alternatively the hypothesis H1 assumes that the measured

samples contain a signal and noise.

Which hypothesis is present is decided by comparing a statistics L with a threshold

η. The statistics L is computed from the measured samples

L = lg (p(yn|H0)PrH0)− lg (p(yn|H1)PrH1)
H0

≷
H1

η (4.1)

where p(yn|H0) and p(yn|H1) are the probability distributions of the described sig-

nals under the corresponding hypotheses; PrH0 and PrH1 are prior probabilities of

the occurrence of the hypotheses.

The decision rule (4.1) instructs us to prefer hypothesisH0 if L > η and hypothesis

H1 otherwise. The detection is described by one of the four possible courses of

action:

• p(H0|H0) PrH0 the signal is not present and we make correct decision.

• Pf = p(H1|H0) PrH0 the signal is not present but we decide otherwise. This

situation is known as the false alarm.

• Pm = p(H0|H1) PrH1 the signal is present but the detector miss detects its

absence. This situation is known as the miss detection probability.

• PD = p(H1|H1) PrH1 detection probability, the signal is present and we detect

it correctly.

If the prior probabilities PrH0 and PrH1 are equal we can ignore them in these equa-

tions.

The detector could have two erroneous courses of action, miss detection or false

alarm. The design of a detector is about of how to minimize these errors. By setting

the decision threshold, we can vary these errors. Unfortunately, the minimization

of them contains two contradictory requirements, by reducing one error we will in-

crease the other. The dependency between these two errors is illustrated graphically

by a receiver operating characteristics (ROC) curve. A ROC curve is a graphical

representation of the dependency between Pm and Pf as a function of the detection

threshold, η [52].

In many cases, the prior probabilities are not available. This problem can be by-

passed by simply limiting the false alarm probability Pf ≤ α and maximizing the

detection probability. A test designed following such criteria is called the Neyman-

Pearson test. We can redesign the test (4.1) by rearranging the decision procedure

lg (p(yn|H0))− lg (p(yn|H1))
H0

≷
H1

η − lg

(
PrH0

PrH1

)
= η′. (4.2)

In the test (4.2) the unknown prior probabilities are incorporated into the decision

threshold η′. The threshold is treated just as a level. The threshold is set such that
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the detection probability PD is maximized under the constraint Pf ≤ α. By treating

the threshold as a level identified through the optimization process we can ignore the

actual values of the prior probabilities.

The detection process grants the spectrum access if the decision variable is less

than the decision threshold, L < η′. This kind of event can occur not only when the

signal is not present but also when we miss detect the signal presence. Therefore, the

probability of miss detection describes the probability that the secondary transmitter

transmits while the primary signal is present. Such disturbance from the secondary

system can be limited by constraining the miss probability, Pm < Oa or (1−PD) <

Oa. The test is designed by minimizing the Pm under the constraint (1−PD) < Oa.

The Neyman-Pearson test does not incorporate the prior probabilities of the hy-

potheses. In a TVWS usage context, the prior probabilities describe the chance that

a randomly located secondary user finds the spectrum free or occupied. Such prior

probabilities can be computed in case of hypothesis H0 as the ratio of the area where

the spectrum can be used to the total area and in the case of H1 it is 1 − PrH0 . We

can incorporate prior information into the decision by designing the test according to

a Bayesian approach [52]. The Bayesian test is designed by using the prior probabil-

ities in the η computation in (4.2).

In Publication I we used prior probabilities to describe the efficiency of the ideal

detection algorithm. The ideal spectrum allocation algorithm is able to identify all

the locations where the spectrum can be used. For such an algorithm the detection

errors do not exist, Pm = 0 and Pf = 0. In Publication I we investigated how

a detection algorithm with certain Pm and Pf values has an impact on spectrum

utilization efficiency.

In a tightly planned network, the TV signal is always present and at each location

the measurements contain signals from at least one of the TV transmitters. In this

type of network network, PrH0 = 0 and Pm are sufficient to describe the secondary

spectrum usage. The spectrum will be used if the computed statistic is less than η.

A higher level of η means that the spectrum will be used closer to the coverage area,

while a lower η allows the spectrum usage only further away. Currently, it is agreed

that the decision level η = −114 dB provides a sufficiently large protection distance

to the TV receivers [18]. In 8 MHz TV bandwidth, it means that the threshold is

about 10 dB under the noise power level.

Reviews of the most common detection methods can be found in [53] [54] and [55].

These reviews explain the properties of typical detectors such as matched filter detec-

tors, cyclostationarity-based detectors and energy detectors. In [53] a detector using

wavelets is described also. The reviews in [54] and [55] contain the description of

correlation based detectors and eigenvalue-based detectors. At this time , the research
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of the detectors is very active and many different detection approaches are continu-

ously emerging. In the literature, we can find proposals for more exotic detectors

not described in the above referred reviews. For instance, in [56] a nonparametric

detection method is described.

The results in Publication V and Publication VI are related to power detectors and

correlation-based detection. In the following section, we describe the basic work-

ing principles and performance of these types of detectors. For comparison, we also

describe the most common detectors like matched filters, feature detectors and eigen-

value based detectors.

Matched filters A matched filter (MF) is the optimal detector of a known signal

in Gaussian noise. The matched filter correlates the known signal with the collected

samples [13]

L =
1

N

N∑

n=1

s∗nyn (4.3)

where s∗n is the complex conjugate of the known signal at the receiver and yn stands

for the collected samples.

The performance of the MF is superior to the methods that do not use the knowl-

edge of the signal structure. The information flow in a TV signal is random and

only the pilot symbols are known exactly. The MF can be applied on those known

symbols [57]. The performance of the filter can be expressed as

Pf = Q


 η√

N0
2 N




Pm = Q


η −

√
ΘPr√

N0
2 N




(4.4)

where Pr is the received signal power and
√

Θ is the fraction of the symbols reserved

for pilot symbols.

Cyclostationary detectors A cyclostationary detector searches for a periodic

structure present in most of the signals created by humans. A stationary white noise

does not have any periodicity. Therefore the presence of a periodic component in the

received samples is a clear sign of the existence of communication signals.

The simplest single cycle detector computes the spectral correlation function Ŝωy (f)

of the received signal yn and matches it with the complex conjugate of the spectral
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correlation function Sωs (f)∗ of the signal sn that is searched for

L =

fs/2∫

−fs/2

Ŝωy (f)Sωs (f)∗df (4.5)

where fs is the sampling frequency.

The spectral correlation function is computed from the localized Fourier transforms

of the continuous received signal y(t)

YT (n, f) =

nTs−T/2∫

nTs−T/2

y(t)e−i2πftdt (4.6)

where Ts is the sampling interval, n is the index of sample and T is the FFT window

size. The spectral correlation function is

Ŝωy (f) =
1

NT

N∑

n=0

YT

(
n, f +

ω

2

)
Y ∗T
(
n, f − ω

2

)
. (4.7)

In the case of hypothesis H0 (pure noise), the decision variable can be modeled by a

zero mean Gaussian distribution [58]. The performance of a cyclostationary detector

can be computed like the performance of an MF but now we have to consider not the

signal power but the cyclostationary component power Pc

Pf = Q


 η√

N0
2 N




Pm = Q


η −

√
P c√

N0
2 N




(4.8)

where Pc = d2(ω)Pr with Pr standing for the received signal power and d2(ω) is the

power of the searched periodic component ω [59]

d2(ω) =
√
N

∞∫

−∞

|Sωs (f)|2 df. (4.9)

The cyclostationarity depends on the channel, and on the particular periodicity of the

generated signal [58]. The method is computationally complex and sensitive to the

accuracy of the sampling time instant [60].

Energy detector The energy detector, or radiometer, computes the decision statis-

tics by summing up the powers of the measured samples [61]

L =
∑

n

|yn|2 . (4.10)
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If the signal is absent, the computed statistic contains only the noise power, otherwise

the measured samples contain noise and signal power. The detector does not need to

know the signal structure.

In the absence of the signal, the measured samples have a gamma distribution. The

power of the signal plus noise sample is described by a non-central gamma distri-

bution. The performance of the detector can be computed from the corresponding

cumulative distribution function (CDF) [61] [62]

Pf = Γ

(
N,

η

N0

)/
Γ (N)

Pm = 1−QN
(√

Nγ,

√
2η

N0

) (4.11)

where N0 is the noise power spectral density, N is the number of samples collected,

Γ(·, ·) is the incomplete gamma function andQN (·, ·) is the MarcumQ-function [13].

These functions are defined as

Γ(κ, η) =

∞∫

η

xκ−1e−xdt (4.12)

QN (κ, η) =
1

κN−1

∞∫

η

xNe−(x2+κ2)/2IN−1(κx) (4.13)

where IN (·) is the modified Bessel function of the first kind.

The energy detector is an optimal detector for detecting an unknown signal in Gaus-

sian noise. As we can see, the detection performance depends on the knowledge of

the noise power. The knowledge of the power level is especially important in detect-

ing very low signal levels. If the uncertainty of the noise power level is in the order

of the signal power, the energy detector becomes unusable [58].

Correlation properties-based detectors The autocorrelation detection searches

for the correlation in the received samples. It constructs an autocorrelation matrix and

determines whether it is an identity matrix or not. In a multipath channel, a detector

receives multiple delayed copies of the signal. The correlation matrix of a signal with

delayed copies has non zero off diagonal elements. White Gaussian noise does not

have such correlation and its correlation matrix is the identity matrix [63].

The detector creates from the received samples the followingM×(N−M) matrix

Y =




y0 y1 · · · yN 0 · · · 0

0 y0 · · · yN−1 yN · · · 0

...
...

. . . . . .

0 0 · · · y0 y1 · · · yN




(4.14)
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and computes the autocorrelation matrix Ry = YY∗. As we see M defines the size

of the correlation matrix.

In the reference [63] we can find two detection algorithms. Both of them are using

the covariance properties of the received signal. The simplest detector computes the

mean over the main diagonal elements of Ry and compares it with the mean over the

off diagonal elements

L =

1
M

∑
m
|rmm|

1
M(M−1)

∑
n 6=m
|rnm|

(4.15)

where rmm and rnm are the main diagonal and the off diagonal elements of the cor-

relation matrix Ry.

The false alarm probability of such detector is [63]

Pf ≈ 1−Q




1
η

(
1 + (M − 1)

√
2
Nπ

)
− 1

√
2/N


 (4.16)

As we can see, the autocorrelation detector performance does not depend on the noise

power level. As such it avoids the noise uncertainty problem that affected the energy

detector.

4.1.1 Detectors using multiple antennas

Multiple antennas allow us to make parallel measurements of the environment. The

detection algorithms using multiple antennas can be distinguished based on the mea-

surement combination methods. The simplest approach is to treat each antenna as a

separate detector and simply sum up the detection results. More advanced methods

treat the measurements from multiple antennas together. The common approach is to

compute the correlation matrix which eigenvalues or off diagonal elements indicate

the presence of the signal.

Treating antennas as independent detectors By treating the antennas as inde-

pendent sensors, we can apply in each of them any of the single detector algorithms.

How to combine the statistics from multiple sensors, antennas, is a classical fusion

problem. The fusion could take place before or after the initial decision.

If fusion takes place before the decision, usually all the antennas are assumed to

measure a similar source. The sources have the same signal distribution and the same

true hypothesis. This assumption allows us to apply single antenna-based detection

algorithms by creating a vector of all the samples from all the antennas.

If the analog front-ends for different antennas are not calibrated, the assumption

that the signals from different antennas come from similar sources does not hold.
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In this case, the samples can be combined by using the well-known maximum ratio

or equal gain combining algorithms [64]. By using these combining algorithms, it

is possible to construct a detector which combines the detection results at individual

antennas. In the literature, one could find the performance analysis of a multi-antenna

detector with energy detectors in individual antennas [65], or with cyclostationary

detectors in individual antennas [66].

The algorithms at the individual antennas still suffer from the problems we outlined

above for the single antenna detectors. The approach does not utilize the diversity the

multiple-antenna system provides.

Eigenvalue detectors An eigenvalue detector tests whether the largest eigenvalue

of the covariance matrix among the signals from different antennas contains only pure

noise or a signal plus noise.

The received signal from different antennas can be expressed in vector form as

yn = [y1n, y2n, . . . , ymn, . . . , yMn]T (4.17)

where the sample ymn is defined as the n-th received signal sample from antenna m.

We can compute the correlation matrix

Ry = E
{
yyT

}
. (4.18)

In eigenvalue detectors, the noise is usually assumed to be independent and spa-

tially white. All the eigenvalues of the correlation matrix of the noise have about the

same value. The eigenvalue detectors assume that if one of the subspaces contains

also the signal the corresponding eigenvalue will contain signal plus noise power.

That eigenvalue will be higher than the rest of the eigenvalues [67].

In order to remove the noise level uncertainty, we normalize the highest eigenvalue

with the estimate of the noise level. The estimate is computed by averaging over the

other eigenvalues. Using such an estimate is justified if it is assumed that the signal

is present only in one eigenvalue and the rest of the eigenvalues contain only noise.

The decision variable is computed as

L =
λi
M∑
i=2

λi

(4.19)

where λi are the eigenvalues of the matrix Ry.

The performance of the detector is computed only for a high number of anten-
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nas [67]

Pf = 1− FTW2

(
η − µNM
σNM

)

Pm = 1−Q



η
√
N(M − 1)

(
1− 1+γ

Nγ

)

1 + γ
−

√
N

1 + M−1
Nγ




(4.20)

where FTW2 is Tracy-Widom distribution of order 2 and

µNM =

(
1 +

√
M

N

)

σNM =
1√
N

(
1 +

√
M

N

)(
1√
N

+
1√
M

)1/3

.

(4.21)

Correlation-based multiantenna detector When antennas are treated as inde-

pendent sensors, we do not utilize the full diversity provided by multiple antennas.

The eigenvalue detector does not suffer from that problem. However, they are de-

signed with the assumption that the signal is in one subspace only, i.e. the signal

is arriving from one direction. Also, the performance characteristics in (4.20) are

derived only for a high number of antennas.

The correlation matrix-based detection that is described above for a single receiver

can be extended to cover multiple-antenna systems [68]. The correlation-based de-

tection algorithm assumes that the signal, if present, generates correlation between

the antenna elements. Such correlation generates the correlation matrix with nonzero

off diagonal elements in comparison with the zero off diagonal elements of a spatially

white noise.

The elements of the correlation matrix estimate are computed as the multiplication

of long vectors. Because the central limit theorem the distribution of the elements is

well approximated by a Gaussian distribution. In [68] the decision variable is com-

puted as a sum of the correlation matrix elements. The decision variable distribution

is described by its first two moments and Pf Pm are computed from the Q(·) func-

tion.

In multiple-antenna systems, the signals from different antennas could change dif-

ferently, changes which could occur due to the independent fast fading in different

antennas or due to the clock difference in the front-ends of antennas. If the fading in

antenna elements is independent, the computed covariance matrix becomes a diago-

nal matrix. In this case, we are not able to apply either the eigenvalue detectors or

correlation-based detectors. This problem occurs especially when the correlation ma-

trix estimate is computed from a large sample sequence where the channel amplitude

and phase changes during the sequence. Fortunately, we can compute the correlation
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matrix estimate from a short sequence where the channel change is not significant.

In Publication VI we used such insight and proposed a detection algorithm that can

operate in cases where the signals in different antennas have different changes but in

a short time interval the signals do not change significantly.

The algorithm proposed in Publication VI splits the measurements into subsets and

computes correlation matrices for each subset. The final correlation matrix estimate

is computed by averaging the correlation matrices of the subsets. The detection is

made by using the computed correlation matrix estimate as input to the correlation

detector [69]. The number of samples in the subset is selected such that the changes

during this samples collection time is insignificant. In Publication VI, we described

the Pm and Pf probabilities of the proposed detector. As seen in Fig. 4.1, the sim-

ulations and predictions from the analytical model are very close. The details of the

algorithm used for generating Fig. 4.1 can be found in Publication VI.

In a fading channel the proposed algorithm has a superior performance compared

with the simple correlation-based algorithm described in [68] and depicted in Fig. 4.2.

In that comparison both detectors have 4 and 2 antennas and each antenna element

observes independent fading. The fading is generated using a Jakes channel model

[70]. The fading is computed for a user speed of 20 m/s and carrier frequency of 500

MHz. The decision is made based on 106 samples collected during 100 ms.
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Figure 4.1. Comparison of computed and simulated ROC curves of the proposed detector. The simula-
tions are made for a 4 antenna detector with 105 samples and block size 100.

4.2 Detection in fading environment

In this section, we describe the computation of the detector performance in fading

environments. The detector performance is computed as follows
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Figure 4.2. Performance of the correlation based multiantenna detector proposed in [68] and the de-
tector proposed in Publication VI. The detectors have 4 and 2 received antenna and the
probability of false alarm is fixed to Pf = 0.1. The performance in evaluated in a fading
environment with a user speed of 20 m/s and carrier frequency of 500 MHz. The fading is
generated by using a Jakes model from [70]. The detection is made based on 106 samples
collected in 100 ms.

1. Compute the mean path loss by using the signal propagation model.

2. Use the fading model and scale the mean path loss with the random fading

amplitude.

3. Compute the detection probability by using the faded signal amplitude distri-

bution.

In numerical simulations, these three steps are usually separated. If they are sep-

arated, we can compute in the first two steps the mean signal level and in the last

step to use the detector performance expression in an AWGN channel. However, we

can simplify the computation by combining the last two steps. This can be done by

expressing the detector performance directly in the fading environment.

There are two ways to compute the detection probability in a fading environment.

First we can compute the miss detection probability Pm as a function of SINR. This

instantaneous Pm(γ) will be averaged over the fading distribution

Pm =

∞∫

0

Pm(γ)p(γ)dγ (4.22)

where p(γ) is the distribution of SINR in the fading channel.

An alternative method would be first to evaluate the distribution of the decision

variable by averaging over the fading and then to compute the cumulative distribution

of the decision variable

Pm =

η∫

−∞

∞∫

0

p(L | γ)p(γ)dγdL (4.23)
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where p(L | γ) is the decision variable distribution in an AWGN channel. As one can

see, the second approach also computes the distribution of the decision variable. This

intermediate result is useful for analyzing the performance of cooperative detectors.

For instance, cooperative detectors could improve the detection performance by sum-

ming up the statistics computed in individual detectors. The distribution of this sum

is a convolution of the distributions of the individual summed terms.

Computation of p(γ) requires knowledge of the slow and fast fading distributions.

4.2.1 Fast fading models

Fast fading is observed if the channel use time is longer than the channel coherence

time. Fast fading is characterized by the quick changes of the channel. These kinds

of changes occur due to the scattering of the signal while it is propagating from

transmitter to receiver.

Rayleigh distribution In a Rayleigh fading environment, the received signal is a

sum of multiple reflected signal components [71]. If there is no dominant component,

the amplitudes of all components are of the same order. The Sum of many random

components approaches a central complex Gaussian distribution. In polar coordi-

nates, a central complex Gaussian distribution has a Rayleigh distributed amplitude

and the phase that is uniformly distributed in the interval [0 . . . 2π]. The signal power

and SNR have an exponential distribution

pfast,Rayl(γ) =
1

γ̄
e
− γ
γ̄ (4.24)

where γ is the instantaneous SNR and γ̄ is the mean SNR.

Rician distribution In the existence of the line of sight between the transmitter

and the receiver, the direct signal component is much stronger than other signal re-

flections. Multiple reflected components still are summing up to a Gaussian distribu-

tion but now the line-of-sight component creates a noncentral mean. The amplitude

of this signal is described by a Rician distribution [71]. The SNR of the noncentral

Gaussian signal is described by the noncentral chi-square distribution

pfast,Rice(γ) =
Kc + 1

Km
e−Kc+

(Kc+1)γ
Km I0


2

√
Kc(Kc + 1)γ

Km


 (4.25)

where Kc = Pline
PRayl

is the noncentrality parameter and Km = Pline + PRayl is the

average power envelope, Pline is the power of the line of sight component and PRayl

is the power of the Rayleigh component.
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Nakagami-M distribution Signal amplitude is described by a Nakagami-M distri-

bution if the SNR of the signal has a central gamma distribution [71]

pfast,NakM (γ) =
1

Γ(m)

(
m

γ̄

)
γm−1e

−m
γ̄
γ
. (4.26)

With two degrees of freedom, m = 2, the gamma distribution is the exponential

distribution. A gamma distribution with higher degrees models a signal that is created

by summing up the powers of the multiple arriving components. A signal with a

strong line of sight component can be modeled by a non-central gamma distribution.

4.2.2 Shadowing models

Slow or shadow fading arises when the phase change in the channel is relatively con-

stant over the channel usage time. A slow channel change usually occurs due to large

objects on the signal path. The parameters of the slow fading are usually computed

by averaging the received signal field over an area of size 10-40 wavelengths. In a

wide range of environments, the shadow fading can be approximated by a log-normal

distribution. Nevertheless, there is no good physical explanation why this distribu-

tion arises. Some alternative distributions, such as the Nakagami M and the Gaussian

distributions, also turn out to be good approximations for shadowing [72].

Log-normal distribution A log-normal model of the slow fading is justified by

the “multiplicative interpretation” of the channel [72]. The CDF of the log-normal

distribution plotted in logarithmic arguments gives a straight line. The straight line is

easy to fit the measurement data. That simplicity has been one of the reasons for the

wide adoption of the log-normal model. The PDF of the log-normal distribution is

pslow,lg(γ̄) =
10/ lg(10)

γ
√

2πσ2
dB

e
− (10 lg(γ̄)−µ)2

2σ2
dB (4.27)

where µ is the mean of the shadow fading and σdB is the standard deviation of the

fading. Both of these parameters are given in dB. The shadow fading standard devi-

ation is usually measured to be in the range of 3− 8 dB [73].

Gamma distribution In some cases, the gamma distribution gives a better fit to

the measured data. The reason why the slow fading is well approximated by gamma

distribution can be explained by the scattering. A sum of scattered signals from ran-

dom rough surfaces approaches a gamma distribution [74]. While the log-normal
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distribution is a relatively simple model, it often does not allow an analytical treat-

ment. On the other hand, the gamma distribution often offers us a simple analytical

treatment.

The gamma and log-normal distributions can be approximated by each other by

matching their moments. The gamma distribution parameters expressed as the func-

tions of corresponding log-normal distribution are asf =
(
eσ

2
dB − 1

)−1
and βsf =

e
µ+σ2

dB
2

(
eσ

2
dB − 1

)−1
[75]

pslow,g(γ̄) =
1

Γ(αsf )β
αsf
sf

(γ̄)αsf−1 e
− γ̄
βsf . (4.28)

4.2.3 Hybrid models of fast fading and shadowing

The separation of the slow and fast fading is somewhat artificial. It is more com-

mon that the radio channel contains both: slow and quick amplitude changes. The

model describing the signal SNR in both shadowing and fast fading can be found by

averaging the fast fading over the slow fading

p (γ) =

∞∫

0

pfast(γ|γ̄)pslow(γ̄)dγ̄ (4.29)

where γ̄ can be interpreted as the mean around which the fast fading process occurs.

Suzuki distribution The model describing the signal power of the mixture of the

Rayleigh fading and the log-normal shadowing is called Suzuki distribution [76]:

p (γ) =

∞∫

0

1

γ̄
e
− γ
γ̄

10/ lg(10)

γ
√

2πσ2
dB

e
− (10 lg(γ̄)−µ)2

2σ2
dB dγ̄. (4.30)

Unfortunately, this integral does not have a closed form solution and has to be evalu-

ated numerically.

Generalized Gamma distribution A general distribution that encompasses both

slow and fast fading is proposed in [77]. A normalized form of it is a generalized

gamma distribution. The distribution is

p (γ, α, β, c) =
c (γ̄)α−1

βcα
e
−
(
γ̄
β

)c
Γ (α)

(4.31)

where the lower tail of this distribution is controlled by parameter α, the upper tail

by c and β is the normalization constant. This distribution captures the properties of
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the fast and shadow fading in a very simple form. The lower tail of the distribution

corresponds to the fast fading, the upper tail to the shadow fading distribution. A

study of matching this distribution to the measurement data is given in [78].

Gamma distribution In Publication V, we describe the combination of the slow

and fast fading environment by appropriately parameterizing a gamma distribution.

The benefit of this model is that the fast and slow fading parameters are clearly sep-

arated. At the same time, the model of the gamma distribution often allows for a

simple analytical treatment.

The model is derived by describing both slow and fast fading with gamma distri-

butions. These two distributions are combined and approximated by the new gamma

distribution. The final approximation is done by matching the moments (see Publi-

cation V for details).

p (γ, αγ , βγ) =
(γ)αγ−1

β
αγ
γ

e
− γ
βγ

Γ (αγ)
. (4.32)

The matched moments are αγ =
αsfn/2

1+αsf+n/2 and βsf = 1 + αsf + n/2 , where αsf

and βsf are slow fading parameters that can be computed if the log-normal parame-

ters are known, n is the number of independent fast fading blocks. The independent

fast fading blocks describe the situation where the channel coherence time Tcoh is

less than the measurement time NTs, where N is the number of samples and Ts is

the sampling interval. During the measurements, we observe n = NTs
Tcoh

independent

signal levels.

Fig. 4.3 presents the detector performance as a function of the number of received

samples and the number of fast fading blocks. Details of the computations of the

results in Fig. 4.3 are given in Publication V. In general, we can claim that the quickly

changed fast fading can be compensated by collecting samples over a sufficiently

long time. However, after averaging out the fast fading the detector performance is

dominated by the slow fading.

4.3 Spectrum utilization efficiency with detection methods

In Publication I, we look at the detection-based spectrum access from the spectrum

utilization point of view. The spatial spectrum utilization is expressed as the area

where the spectrum is used normalized to the total area. The protection area near the

cell border reduces the spectrum spatial utilization efficiency. The situation is illus-

trated in Fig. 4.4. With TV coverage area ATV and protection area A∆, a secondary

user can use the spectrum only if it is located in the area As. For a uniform user dis-
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Figure 4.3. Comparison of the detector performance by using (4.32) and simulated results in
Rayleigh/log-normal fading and Rayleigh/gamma fading. Two different fast block fading
channels a) samples collected from one fast fading block, b) samples collected from 20 fast
fading blocks.

tribution, the user will be in this area with probability Prs. The total spatial spectrum

utilization will be

U =
ATV +As

ATV +A∆ +As
=

ATV
ATV +A∆ +As

+ Pr s. (4.33)

Figure 4.4. Visualization of different types of spectrum access areas: ATV is TV coverage area, A∆ is
TV protection area, As is secondary user service area.

Spectrum utilization is improved if the spectrum can be used as close to the TV cov-

erage area as possible. Such usage requires signal detection close to the TV cell bor-

der. Near the TV cell border the decision problem is no longer identification whether

the TV transmitter is active or not but identification of the distance to the coverage

area border [79]. Detection close to the cell border has two specific features. First,

for protecting the primary users, the detection threshold has to be selected relatively

low. Second, the detector does not identify the presence or absence of the signal but

rather attempts to identify what is the particular signal level.
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Close to the TV cell border the signal is always present and the detection has to

identify only the signal level. This means that hypothesis H0 does not contain only

noise but it also contains the TV signal that has propagated outside of the TV cover-

age area. In Publication I, we propose to incorporate the signal presence probability

into the detection algorithm. The signal level outside the coverage area is modeled

by the uniform distribution. The validity of the proposed approximation is studied

also in [80].

The detection error means that the transmitter will not use the spectrum even if the

spectrum usage is allowed. This kind of error reduces the spectrum utilization further.

With detection error, the spectrum utilization becomes

U =
ATV

ATV +A∆ +As
+ (1− Pf ) · Pr s. (4.34)

Sometimes the spectrum can be used also in the protection area, A∆. For exam-

ple, if the secondary transmitter is inside a building or it is located in a valley, the

transmitted signal towards the TV coverage attenuates enough and does not disturb

the TV reception. Assume the amount of locations in A∆ where the spectrum can

be used is Pr∆2 . In the absence of detection and estimation errors, all the available

spectrum can be used and the spectrum utilization is

U =
ATV

ATV +A∆ +As
+ Pr∆2Pr∆ + Pr s. (4.35)
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Figure 4.5. Reuse comparison for proposed and detection-based decision scheme for different numbers
of measurement samples. The values used in the computations are Prs = 0.21, Pr∆ =

0.29 and Pr∆2 = 0.5.

The spectrum can be reused in the area As and in some location in area A∆. In the

areaA∆ the secondary user has to make an additional environment analysis and based

on that analysis decides whether the spectrum will be used. With the detection and

estimation errors, a secondary user can recover only a part of the available spectrum.
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Comparison of spectrum utilization with ideal detectors using Eq. (4.35) and with

actual detection is illustrated in Fig. 4.5. The details of the equations used for the

numerical evaluation are given in Publication I.

4.4 Discussion

In this chapter, a review of the detection methods used for identifying the existence of

a primary user signal is given. First, the most commonly used detection methods are

described, then it is portrayed how to compute the detector performance in a fading

environment, and, finally, it is illustrated how to estimate the spectrum utilization

given that the secondary system uses a detection-based spectrum access.

The detectors are used for identifying the presence or absence of a primary system

signal. Most common detector types are matched filters, energy detectors and fea-

ture detectors. In the presence of the known signal the matched filters have superior

performance compared to the two other types of detectors. Unfortunately, for its op-

eration a matched filter needs the knowledge of the signal structure. In the presence

of multiple types of primary systems it has to test the existence of signals from all of

them. For a large number of primary systems, such testing becomes very complex.

Energy detection is a simple option for detecting unknown signals. Since an en-

ergy detector does not need to know the signal structure, it is not able to distin-

guish among different primary signals. Such indifference becomes a limiting factor

if the secondary system wants to estimated the distances to multiple primary systems.

Moreover, for good performance at low SINR levels the energy detector requires the

exact knowledge of the noise power level. In practice the precise noise power level is

not available and therefore at low SINR levels the energy detector cannot, in fact, be

used [58].

Feature detectors utilize the signal features that do not exist in the white Gaussian

noise. The feature detectors can operate without the knowledge of the noise power

level. Also they can distinguish between signals with different features. However,

the feature detectors are relatively complex to implement and they are sensitive to the

carrier frequency offsets and sampling clock errors [60].

Some of the problems appearing in detectors with a single antenna can be avoided

by using detectors with multiple antennas. The antennas can be treated as indepen-

dent single antenna detectors whose outputs are fused together or the signals from

different antennas can be processed together.

One of the detection methods that treats the antennas together is the eigenvalue

detection. The eigenvalue detector does not need to know the noise power density

55



Detection-based spectrum access

level. It is also able to operate at very low SINR levels and is not very complex.

The signals in different antennas can undergo independent fading. In Publication

VI we proposed a new correlation-based detection algorithm that is insensitive to

the fading difference in different antennas. How the proposed method performs if

the noise power level is different at different antenna front-ends remains still to be

studied.

In the context of TVWS usage, the detector has to identify not only the existence

of the primary signal but also the distance to the TV coverage area border. Sufficient

distance to the primary system is guaranteed by setting sufficiently low detection

levels. In a fading environment detection level can be computed by conditioning the

detection probability with the fading distribution and averaging over all the fading

levels. In the academic literature, most studies of the detection methods consider

only slow or fast fading. In Publication V we describe how to derive the detection

level in the presence of both slow and fast fading. The proposed method can consider

the diversity in a block fading channel. The method is suitable for estimating the

performance of any detector whose miss and false alarm probabilities are described

by the Gamma distributions.

In a fading environment, a single detector can guarantee the protection of the pri-

mary receivers only by having a very low detection level. We can overcome this

problem by using multiple cooperating detectors. The cooperation methods are sub-

ject to practical limitations. Currently, in academic the community there is active

ongoing research into identifying the methods for optimal combinations of the mea-

surements from different detectors (see for instance review in [81]). The questions to

be answered are: How should the measurements be present? How should the mea-

surements be combined? How should the data exchange protocols be designed? How

should the distance among the detectors be described? How should the correlation in

the measurements be addressed?

The last section in this chapter describes the method for estimating the spectrum

utilization efficiency of a secondary system using spectrum sensing. The ideal spec-

trum using method discovers all the locations where the secondary spectrum usage is

possible. In Publication I we describe how the detection errors affects the spectrum

utilization. Because of the errors, the detection-based spectrum access is not able to

use the entire available spectrum.

The geolocation database controlled spectrum access can be assumed to operate

without detection errors. When estimating the amount of available secondary spec-

trum in Finland, we assumed that the spectrum access is controlled by the geoloca-

tion database. The spectrum access with geolocation database is described in the next

chapter.
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A detection-based access method estimates the distance to the TV coverage area by

measuring the TV signal level. In a fading environment, the signal level and the dis-

tance are very loosely related. The protection of primary receivers can be guaranteed

only by using very conservative decision levels. Such conservative levels account for

a severe fading and in most cases the detection level significantly overestimates the

actual distance to the primary receivers.

An ideal spectrum allocation algorithm would know the locations of users and path

losses between all primary and secondary users. Such ideal conditions can be ap-

proached by using a centralized controller, a geolocational database. The database

will have a global view of transmitters’ locations and coverage areas. Such global

knowledge allows the database to make a very tight spatial spectrum allocation.

What exact operations the database has to carry out and what information it will

provide to spectrum users is currently still under study. Some testbeds have emerged

[82] and even some servers running the spectrum availability database have been

implemented [83]. A set of functions the database could provide are reported by the

ECC working group for spectrum engineering, SE43, in ECC report 159 [17].

According to the ECC proposal, the secondary user measures its location and ini-

tiates a query to the database. The database responds with the information about the

available spectrum. The ECC report specifies what parameters the secondary user

should send to the database and what information the database will provide back to

the user. It leaves open how the database decides and allocates the spectrum. The

user applies to the database by providing the following information:

• Location

• Location accuracy

• Device type

• Device ID/model

• Expected area of operation (optional).

The database will respond with parameters:
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• Available frequencies

• Maximum transmit power

• The appropriate national/regional database to consult (optional)

• Time validity of the information provided

• If sensing is required (optional).

The allocation engine is illustrated in Fig. 5.1. The database is a central computing

unit that utilizes the primary user information, environment information, and the pre-

defined frequency allocation rules. The allocated frequency resources are stored and

stamped accordingly to the location and time.

We can say that the geolocation database tracks the location of the primary spec-

trum users and admits the secondary users based on the interference estimation. The

database can know the locations and relevant path loss information of all the trans-

mitters. The interference can be computed as aggregate interference from all the

transmitters. In Publication II, we propose an algorithm that simplifies aggregate

interference computation from a large number of transmitters.

Query
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Algorithm for selecting the channel
-Link budget estimation
-Power allocation
-Interference level estimation

Allocation decision 

Environment 
information

Allocation 
policy database

Geolocational database

TV BS

SU

registration Available  
Ch and Tx Power

Figure 5.1. Functionality of a geolocation database.

The spectrum allocation is relatively easy for a single secondary user operating

independently from other secondary users. In this case, the database needs only to

compute the path loss, use it in the SINR estimation, and allocate power such that

the interference constraint is satisfied. Since the location of any user is known, the

database computes the path loss by using the channel model and the terrain data.

The allocation of spectrum to a secondary system is much more complex than allo-
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cation to a single user. Radio systems usually contain their own resource control, ra-

dio resource management (RRM). RRM has an impact on the interference generated

from the system and the intersystem interference model has to contain such impact.

The RRM partly duplicates the functionality of the spectrum allocation database.

Both of them control the access to the spectrum, transmission moments and the emit-

ted powers. The interference control has to be shared between the database and the

RRM. How to do it efficiently is currently an open study issue.

The power allocation does not depend only on the user location but also on the

locations and transmission powers of other users. The power allocation should sat-

isfy the target SINR at primary receivers given the aggregate interference from all

the secondary transmitters. For computing such SINR, the database needs an ag-

gregate interference computation algorithm. An overview of interference modeling

approaches is presented in the next chapter. In Publication II, we propose a model

that allows us to quickly compute the interference from a cellular network where all

BSs use the same transmission powers.

The same aggregate interference level can be met with different power allocation

rules. However, different allocation rules provide different secondary system capac-

ity. In Europe ECC and in US FCC have adopted slightly different approaches for the

power allocation. Below we outline the main characteristics of these power allocation

rules.

Compared to the detection-based methods, a geolocation database-based frequency

allocation allows us to achieve tighter spatial frequency utilization. As such, the

database-based allocation provides a reasonable estimate of how much spectrum can

theoretically be used. In Publication IV and Publication VII, we estimated the capac-

ity of a cellular network operating in TVWS. In Publication IV, we used the approach

proposed by the FCC. In Publication VII we compared the efficiency of the power

allocation rules of the FCC and ECC.

5.1 White space usage with FCC rules

The FCC describes the secondary spectrum usage rules in its recommendation 174

(FCC 174) [18]. The FCC rules allow a fixed and portable secondary spectrum usage.

The portable users are assumed to be mobile terminals. A mobile user’s antenna

height is assumed to be about few meters and the maximum transmission power is

limited to 100 mW. The fixed transmitters are allowed to transmit 4 W of equivalent

isotropically radiated power (EIRP).

FCC 174 protects the TV receivers from fixed transmitters interference by reserving
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Table 5.1. Protection areas defined by FCC [18].

Antenna height

Required distance

from the TV coverage contour

co-channel adjacent

< 3 m 6.0 km 0.1 km

3 < 10 m 8.0 km 0.1 km

10− 30 m 14.4 km 0.74 km

a no transmission area (protection area) around the TV coverage area. The protec-

tion area is defined as the nearest distance to the TV coverage area border where a

secondary system can use the spectrum. The protection area is defined for both the

co-channel and two adjacent channels.

The fixed transmitters are classified based on their antenna height. Attenuation

from lower positioned antennas is less than from those positioned higher. Therefore,

the class of transmitters with lower antenna height needs a smaller protection area.

The protection areas required for co-channel transmission for different transmitters

classes are given at Table 5.1, the table is being adapted from [18].

The spectrum allocation rules proposed by FCC do not explicitly consider the im-

pact from multiple secondary transmitters. The spectrum allocation is done only for

a single user based on its location. The allocation does not need any information

about other users. It is assumed that the specified protection distances are sufficient

for keeping the aggregate interference under control.

5.2 White space usage with ECC rules

The ECC rules allow us to adapt the transmission powers based on the user location.

The co-channel spectrum can be used everywhere outside of the TV coverage area

but the transmission power has to satisfy an SIR requirement [17]:

Ps = µTV −µG−γD|U+q
√
σ2
TV +σ2

SU −MI − SM − FM (5.1)

where µTV , σTV are the mean and standard deviation of the TV signal, µG is the

mean path loss of the secondary signal, γD|U is the protection ratio in dB due to the

frequency offset between the TV receiver and the secondary device, q = Q−1(1−On)

is the Gaussian confidence factor and Q−1 is the inverse Q-function, MI , SM , and

FM are protection margins.

The ECC rules protect the TV receiver form interference generated by multiple

secondary transmitters by using appropriate interference margins, MI . The current
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proposal contains three different margin values MI = 3, 5, 6 dB for 2, 3 and 4 sec-

ondary interferers respectively. For more interferers, we can use the additional safety

margin SM . The fading margin FM incorporates various protections, for example

protection from fading [17].

Compared to the FCC rules, the ECC rules allow more flexible frequency use. The

power is allocation based on the actual interference level the user will generate. The

co-channel can be used everywhere, outside of the TV coverage area, as long as (5.1)

is satisfied. The adjacent channel can even be used inside the coverage area. For find-

ing the allowed power for an adjacent channel we have to change the protection ratio,

γD|U , to correspond to the interference level from the considered adjacent channel.

The TV reception sustainability to adjacent channel interference can be set based on

measurements, for instance the ones reported in [84].

5.3 Discussion

Since the geolocation database knows the location of all the transmitters it can es-

timate the generated interference. Such estimation can be used for controlling the

transmission powers and therefore the system is able to guarantee the primary system

connection quality.

The database-based access is particularly attractive for controlling white space us-

age. The TV broadcasting uses few high power transmitters. It is easy to construct a

database of their coverage areas. The database can predict the interference the sec-

ondary transmission generates and control the interference level. In the near future,

the geolocation database-based control is considered as the only option for TVWS

access.

The current recommendations contain only a very simple aggregate interference

control method. The recommendations are continuously updated and new approaches

are considered. Based on our work in Publication II, we have submitted to the ECC

a proposal for a new interference control method [19].

The proposed concept treats the interference that a secondary system can generate

as a resource which is distributed among the secondary transmitters. Each transmitter

can generate only a fraction of the total interference. The transmission power of a

single transmitter is constrained by this fraction.

In the report [19], the power allocation concept is illustrated only with a simple

channel model. The model still needs to be adjusted for a realistic radio environment

[85]. Also, the current model is not suitable for controlling the interference from a

cellular network with large cells (Publication III).
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In Publication IV we described the power allocation algorithm as a constrained

optimization problem. A geolocation database can use the proposed algorithm for

controlling and allocating the transmission powers of secondary transmitters’.
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6. Interference modeling

A secondary network designer has to answer two questions, how the new network

affects the TV receivers and how well the network can serve its users. Answer to

the first of these questions requires an intersystem interference model. Answer to

the second question requires the model that allows us to compute the capacity of

the network given the intersystem interference constraint. This chapter describes the

aggregate interference generated from cellular and ad hoc networks while the next

chapter contains the models used for evaluating the capacity of these networks.

The secondary spectrum usage creates a need to model the interference between

different types of systems. In the last few decades, interference modeling has been

mainly focused on a single system. Inside a single system, the interference mod-

els can take advantage of the known transmitter and receiver characteristics. Also,

often the system can sway significant control over the spectrum usage patterns of

transmitters. In order to be applicable in the primary secondary system set up, the

single system interference models have to be modified for the intersystem context.

The main difference between the single system interference and multi-system inter-

ference is that the transmitters in different systems are usually much more loosely

coupled.

6.1 Interference models for spectrum licensing

One area, where intersystem interference control has had pivotal importance has been

spectrum licensing. During the licensing process, the officials have to predict whether

the existing license holders will be protected. The protection is done by posing con-

straints on the design of the new spectrum using system. The posed constraints de-

pend on how the officials model the system in the interference analysis. Historically,

the spectrum usage license is issued for a particular service that is provided by using

a specific technology. A new trend is to issue technology neutral licenses which only
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protect other spectrum users and do not favor any specific technology. Anybody can

use the spectrum as long as others are not disturbed. The existing models used for

spectrum allocation are classified in [86] as

• Spectrum emission mask

• Block edge mask

• Power flux density

• Power spectral density

• Combined models

Spectrum emission mask (SEM) model is used in traditional spectrum sharing

analysis. The system can use transmitters and receivers with technical characteris-

tics specified in the license. Those characteristics contain, for instance, the spectrum

mask the transmitted signal should fit to, the definition of the type and height of

the antennas the transmitter can use. At the receiver side, the license specifies re-

quirements for sensitivity, selectivity etc. The target characteristics are enforced by

requiring the type approval of equipment.

The SEM specifications pose requirements on a single transmitter and receiver.

The interference among the systems is estimated by modeling the network populated

with users with specified characteristics. In the ITU recommendations, we can find

the basic criteria for the coexistence of various systems: criteria for the coexistence

of multiple fixed wireless systems are specified in ITU-R F.1706 [87], and criteria for

the coexistence of fixed wireless and other systems are described in ITU-R F.758 [88],

criteria for the coexistence of a fixed system and wireless mobile systems are in ITU-

R F.1334 [89]. The ECC has recommendations for the coexistence of a TV system

and fixed wireless links [90].

Block edge mask (BEM) is an attempt to use technology independent require-

ments. Compared to SEM, BEM model allows more flexibility for selecting the

transmission reception technology. The spectrum license is issued by specifying how

much power the transmitter could emit in a certain spectrum area (spectrum block).

That is done by giving the spectrum mask the transmitted signal should fit to.

The BEM supposes to contain the minimum set of requirements needed for the

peaceful coexistence of different spectrum using systems. The license holder could

deploy any technology that meets the BEM requirements. However, after the tech-

nology (a particular system) is selected, the interference analysis is still done for this

particular system with the system specific parameters.

The BEM model is used in ECC Rec.(04)05 to regulate the coexistence of a point

to multi-point (P-MP) and fixed wireless systems (FWS) in the 3.4-3.8 GHz band.

The BEM is a transmitter-specific requirement as it limits the power spectral mask

of an individual transmitter. The limitation can be imposed on the transmitted power
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or on the equivalent isotropically radiated power (EIRP). The constraint using EIRP

is more restrictive since it limits the gains provided by directional antennas.

Power flux density (PFD) model describes the aggregate interference from all the

transmitters. It is defined as the level of the aggregate interference the system can

generate at a certain point. Usually, this point is selected to be at the location of the

protected receiver. The SEM and the BEM are constraints imposed on the individual

transmitters. The control of each individual transmitter separately is not sufficient if

one wants to guarantee some target aggregate interference level.

The PFD is commonly used to protect the radio systems close to countries’ borders.

In this case, it is defined as the level of the power flux that cannot be exceeded at the

border of the neighboring country. A computer tool estimating the power flux over

the country borders is described in [91]. The PFD is also used while enforcing the

radio silence zone, and radio quiet zones for radio astronomy observation [92].

Aggregate power spectral density (PSD) model describes the allowed aggregate

transmitted power. It is measured as the sum over the transmission powers of the

transmitters in a given area.

The PFD specifies the interference levels at the receivers, however, these levels

are difficult to control. It is easier to control the total emitted power from all the

transmitters in a certain area. The control of power density in the area makes the

transmitters powers dependent on the powers of the other transmitters.

The PSD model limits the power at the transmitters before the antenna. Since

the antenna gain can vary, also the interference level can vary. For guaranteeing

the interference levels, the PSD model should be used not only setting the limits on

transmission powers but also making assumptions about the types of used antennas.

Hybrid approach is a combination of the various constraints described above. For

instance, we could limit the PFD at a certain location but at the same time we could

also limit the maximum transmission power of any of the individual transmitters

(BEM constraint).

6.2 Interference from wireless data networks

The aggregate interference I is affected by different system layers [93]. In a wireless

system, we can identify the following interference impacting factors:

• Attenuation in the radio channel. The radio channel is modeled by the mean path

loss and fading. The slow and fast fading are usually described separately but both

of them can be modeled by random variables.
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• Location of the interfering transmitters. Different types of networks have different

transmitters location patterns. For instance, in a cellular network downlink the base

station (BSs) can be assumed to have a regular location pattern and the locations

of the BS can even be assumed to be known. This assumption does not hold in an

ad hoc network, where the arbitrary locations of transmitters create the additional

source of randomness.

• Activity factor of transmitters. As all the transmitters are not active at the same

time, the level of interference can be controlled by scheduling the access to the

spectrum. This control is in the domain of RRM and medium access control

(MAC).

These factors are usually considered independent and therefore modeled separately.

The uncertainties they generate are specified by distributions and the aggregate inter-

ference is described by a random variable

I =
∑

j

Ij =
∑

j

νjPjgja (6.1)

where we have separated three sources of randomness: ν contains the impact of the

transmitters’ activity factor and medium access control, Pj stands for the transmis-

sion power that might affect a power control, gja is the attenuation from transmitter

j to the location a and it contains both fading and path loss from an unknown trans-

mitter’s location.

In a simple case, the activity of the transmitters is assumed to be ν = 1 and power

control is absent, Pj = const. In this situation, we can assume the only source

of the randomness is the radio channel. A direct evaluation of (6.1) can be done

by computing the attenuation from each transmitter, scaling the transmission powers

and summing all those interfering signals. The single interfering term Ij is modeled

by a distribution, since the channel model contains mean path loss and random fad-

ing terms. Summation of random variables is a convolution of their distributions.

Usually, such convolution does not have a closed form expression and for the most

common fading distributions, approximations have been proposed.

In Publication II we computed the aggregate interference in a shadow fading chan-

nel. It is conventional to replace the sum of log-normally distributed shadowed inter-

ferers’ with a new log-normal random variable

∑

j

Pj100.1(µ+xj) ⇒ 100.1(µs+z) (6.2)

where the left side contains the channel model from (3.2), µs is the aggregate mean

interference and z is the new Gaussian distributed random variable with mean zero
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and variance selected to match the moments of the distribution of the sum in the right

side.

Currently, the exact distribution of the sum of the log-normally distributed random

variables is unknown. The two most common methods for finding approximation to

this sum are the Schwartz-Yeh method [94] and the Fenton-Wilkinson method [95].

In contrast, the Schwartz-Yeh method computes the approximation in the log domain

by summing up the elements one by one. The Fenton-Wilkinson method selects the

random variables, µs and z, on the left side of (6.2) to have the mean and variance

the same as the mean and variance of the actual sum on the right.

The sum in (6.2) can be approximated also for other fading environments when the

fading variable x has different distributions. For instance, in [96] are given models

for Rayleigh, Rician, Suzuki, Log-normal and Nakagami-M channels. A study of

interferers with gamma distribution is made in [97].

The two most common network structures for providing wireless data connections

are cellular and ad hoc networks. The main difference between these two networks is

that a cellular network can be modeled with regular layout of transmitter while in an

ad hoc network the transmitters are located randomly. Based on these differences, we

can distinct among three different cases: cellular system downlink, cellular system

uplink, ad hoc system. These systems are illustrated in Fig. 6.1.

(a) Cellular DL (b) Cellular UL (c) Ad hoc

Figure 6.1. Interference from wireless networks a) cellular downlink, b) cellular uplink, c) ad hoc net-
work.

A downlink of a cellular network is served by a BS. Usually, the BS transmitter is

located in the center (or corner) of the cell and the antenna is relatively high. In the

uplink of a cellular system, the transmitters are the cellular users. The users could be

located anywhere in the cell. In an ad hoc network, the locations of transmitters are

modeled to be fully random. These three different distributions of transmitters result

in different intersystem interference models.
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6.2.1 Cellular system downlink

A model for a cellular system downlink was initially devised for broadcasting sys-

tems. In broadcasting systems, we have a high power TV tower surrounded by the

service coverage area. In early TV networks, the frequency reuse was very sparse

and the coverage area was evaluated solely based on the signal-to-noise ratio at the

cell border. When the TV frequency reuse became denser, a cellular approach was

proposed. In a cellular approach each TV coverage area is modeled as a cell with a

transmitter located at the center (or at the border) of the cell. At the end of the 1970’s,

the cellular approach was adopted to describe cellular mobile networks [98] [20].

In the context of a cellular network, the initial interference studies were concerned

about guaranteeing a sufficiently good SINR for the users at the cell border [20]. In

early cellular networks the interference at the cell border was controlled by selecting

an appropriate frequency reuse factor. The reuse factor is selected by computing the

interference for various frequency reuse patterns and selecting the smallest reuse that

still satisfies the SINR constraint at the cell border. Searching for the frequency reuse

can be described as a graph coloring problem [99]. The network is described as a

graph where vertexes represent the cells and edges connect the cochannel cells and

the coloring describes the frequency allocation.

Most modern cellular systems use in each cell the same frequency. In reuse one

networks the interference is controlled dynamically. The frequency allocation is de-

cided based on the instantaneous interference condition in the network. In a cellular

downlink the interference condition is computed from Eq. (6.1) by evaluating the at-

tenuation from each BS transmitter, scaling the transmitted powers and summing over

all the received interfering signals. Since the computation procedure is relatively sim-

ple, the studies have extended the interference modeling to include more advanced

system properties. For instance, in [100] the interference model also contains power

control. Some of the downlink interference models also incorporate the activity of

transmitters by estimating the average transmission power from a state model de-

scribing the transmission activity of the transmitter [101] or by simply scaling the

interference with the user activity factor [102].

6.2.2 Cellular system uplink

In a cellular system uplink, the transmissions come from the users located anywhere

inside the cell. Since these locations are not known, the model has to incorporate

a method of describing the distribution of interfering transmitters. Usually, the in-

terference is modeled as average interference. CDMA and ALOHA multiple access
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schemes do averaging implicitly. Both of these access methods permit multiple ac-

tive transmitters in a cell. The transmitters’ transmission activity and locations can

be assumed to be independent and random. Interference from such independently lo-

cated transmitters can be modeled by a Poisson point process (PPP) [103]. By using

the PPP model, we can easily describe the moment generating function (MGF) of the

interference distribution (such computation is described also below in Section 6.3.1).

In a cellular uplink, the PPP model can be extended to incorporate the power control

and handoff [104]. In [104], the interference is described by computing the mean and

variance of the SINR. Due to the model complexity, in this publication the suitability

of the model is illustrated by evaluating the moments numerically and comparing

them with the ones acquired from simulations. In [105], the PPP model is used to

compute the single user outage probability as a function of the number of active users

in a CDMA network. The results in [105] are mainly illustrated by using numerical

evaluation but it provides also a Chernoff bound for the outage.

6.2.3 Ad hoc networks

An ad hoc network is defined as an infrastructureless wireless network. It can be

modeled as randomly located pairs of transmitters and receivers. The interference

modeling problem in ad hoc networks is usually related to the need to find the SINR

at an arbitrarily located receiver. Good overviews of interference modeling methods

in ad hoc networks can be found in [106] [107] and [108].

The interference modeling in ad hoc networks is dominated by two approaches,

protocol models and physical models [109].

The protocol model is a suitable approach if the interference is dominated by a

single neighbor. According to this model, we do not evaluate the interference directly.

The model replaces the interference computation by enforcing exclusion areas. The

receiver is surrounded by a protection zone (circle) where the interfering transmitters

cannot transmit. Because of the simplicity of the model, it is commonly used in the

studies of higher layer protocols.

The protection zone conditions can be described as the requirement that the distance

to any interfering transmitter rji is more than a scaled distance of the communication

link rii.

rji ≥ (1 + ∆)rii (6.3)

where ∆ is the scaling factor selected such that the SIR requirement will be satisfied.

The protocol model does not consider the aggregate interference and therefore it is

suitable only for studying a sparse network. The aggregate interference is incorpo-

rated into a more complex physical model [109] which describes the SINR of each
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user. The physical model does not require exclusive spectrum usage area and it can

take into account the capture property. The model allows a gradual increase of the

interference and therefore the interference can be generated as long as the reception

is possible.

The protocol and physical models have many similarities [110]. In the protocol

model, the exclusion area defines the density of active transmitters. In [110], it is

shown that the density of the active transmitters in the protocol model can be selected

to be the same as the density of the users in physical model. Such a relation allows us

to connect the protocol model with the generated aggregate interference and to use

this connection for guaranteeing a certain SINR level.

The physical model describes the interference as a function of transmitter spatial

distributions. If the transmitters are located independently and uniformly, the inter-

ference can be computed from the PPP model. The PPP model is also modified for

a non-uniform (clustered) distribution of transmitters [111]. It turns out that com-

pared with the clustered interferers’ model, considered in [111], the uniform PPP

model provides a lower bound to the interference. An overview of various PPP-based

derivation of spatial interference models can be found in [108].

A PPP model is suitable for characterizing an ALOHA type medium access scheme

where each transmitter could transmit independently. Usually, the medium access

scheme does not allow an arbitrary transmission. For instance, a CSMA/CS proto-

col reserves a protection area. The transmitters is surrounded by the area where no

other transmitter will be active. This kind of reservation is modeled by a Matern

process [112]. Differently from PPP, the Matern process is not analytically tractable.

When using the Matern model, the moments of the interference distribution have to

be evaluated numerically.

6.3 Modeling of the aggregate interference from a secondary
system

The current secondary spectrum usage rules by the FCC [18] and the ECC [17] ad-

minister mainly a single secondary transmitter. Interference from a single transmitter

is much easier to control than that from multiple transmitters. An economically vi-

able secondary data transmission system would contain multiple transmitters. Most

of the models that are describing the secondary system aggregate interference have

evolved from the need to describe the internal interference of some radio system. We

can find models that compute the sum of powers from discrete transmitters and we

can also find modified PPP-based models.
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A straightforward approach to aggregate interference modeling is summing up all

the interfering powers. In [113], such a sum is found for a cellular secondary network

surrounding the TV coverage area. The source [113] finds how many cells are sur-

rounding the TV coverage area and then computes the interference from this number

of cells.

It is difficult to compute the interference from a large number of secondary trans-

mitters. We can simplify the computation by clumping the transmitters together.

After clumping, the interference is not treated as from discretely located transmitters

but as coming from a "sea" of transmitters which is described by the power density

emitted from a unit area [114], Pd = Ps
Af

, where Ps is the secondary transmitter trans-

mission power and Af is the "footprint" of the transmitter. The footprint describes

the area allocated for one transmitter. The footprint can be interpreted as the area

of the network divided by the number of cochannel transmitters in the network. In

a cellular network, the footprint contains the cell area and the co-channel protection

area surrounding it.

The "sea" model allows us to compute the aggregate interference by integrating the

transmission area. In general, such an integral is not analytically solvable. A closed-

form solution, describing interference from a half plain is given in [114] where the

interference model is derived for the case when the secondary transmitters cover an

area that is bordered with a straight line. The border line is touching the TV protection

area border. The line splits the area into two parts, the TV coverage area is on one

side of the line and the secondary transmitters are on the other side of the line. The

integral is evaluated over the half plain that is covered with the "sea" of transmitters.

It is interesting to note that the interference from this half plain can be expressed as

an increase of the path loss exponent I ≈ Pdr
β+2, where r is the distance to the

protection area border. The results of [114] are also validated in [115].

An alternative treatment of interference is based on the usage of the PPP model.

Unlike traditional PPP models, the secondary system transmitters are located outside

of the TV protection area. Like the "sea" model, also the PPP approach derives the

interference parameters by integrating the whole secondary system deployment area.

The closed-form solution of the PPP-based interference model can be found in [116].

In [116], the moments of the interference distribution are found by integrating from

the protection area border to infinity. The PPP model indicates that for certain cases

the interference distribution resembles a Gaussian distribution. The Gaussian approx-

imation is suitable for a relatively high density of secondary transmitters [117].

In the next section, we compare the moments of the interference computed by using

PPP and the "sea" models.
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6.3.1 Aggregate interference from a Poisson Point Process

The interfering signal from location a is expressed as I1,a (Ps, x) = Psg(rai)xwhere

rai is the distance from location a to the point i where the interference is computed,

g(rai) is the corresponding average path loss, Ps is the transmission power, and x

is the random variable describing the fading. The distribution of this signal can be

constructed by combining the distributions of the transmission power, fading and

probability that the transmitter is located at a,

p(I1,a) = pP (Ps)pX(x)pA(a) (6.4)

where pX(x) is the fading distribution and pA (a) is the probability density at location

a (the location probability of the user). Without power control, the power is constant

p(Ps) = δ(Ps) where δ(·) is the Dirac delta function. Assume that the user can be

located anywhere in the secondary system coverage area A. The interference I1 (x)

from such a single user is described by averaging the interferences from the possible

user locations

I1 (x) = PsxE {g(rai)} = Psx

∫

A

g(rai)pA (a) da. (6.5)

For uniformly distributed users pA(a) = 1
A . The moment generating function of the

interference distribution is

M1(s) =

∫

x

pX(x)

∫

A

esxPsg(rai)
1

A
dadx. (6.6)

As the PPP model says, the probability of having k users in an area is given by the

Poisson distribution

Pr(k) = Nk e
N

k!
(6.7)

where N is the average number of users in the area A and it is computed as N = λA

where λ is the node density per unit area.

The average moments over the amount of users are given as

F (s) =
∞∑

k=0

E {M(s)|k}Pr(k). (6.8)

The conditional moments of interference from k independent transmitters are

E {M(s)|k} = M1(s)k. (6.9)

By using (6.7) and (6.9) in (6.8) we get the moment generating function for the ag-

gregate interference distribution [118]

FP (s) =

∞∑

k=0

E {M(s)|k} N
ke−N

k!
= eN(M(s)−1). (6.10)
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We compare the interference moments of the PPP with the moments of the inter-

ference from a cellular system by using the same power density in both systems

Pd =
Ps
Af

(6.11)

where Af = A
N and Af is the footprint of one transmitter.

The mean and the variance of the aggregate interference can be computed from the

first two derivatives of (6.10). In this computation, we use (6.11) and get

E {IP } = F ′(s)
∣∣
s=0

= PdE {x}
∫

A

g(rai)da (6.12)

E
{
I2
P

}
= F ′′(s)

∣∣
s=0

= P 2
dAfE

{
x2
}∫

A

g2(rai)da+ P 2
d


E {x}

∫

A

g(rai)da




2

(6.13)

where IP stands for the aggregate interference from the PPP.

6.3.2 Aggregate interference from a cellular system

Assume a cellular system deployed in the area A with one cell footprint Af . In the

center of each cell is a BS using transmission power Ps. The interference from such

a system can be directly computed by summing the interference from each individual

transmitter j.

IC =
N∑

j

Psxjg(rji) (6.14)

where N = A
Af

is the number of cells in the area, xj is the fading from the BS j,

i describes the location where the interference is evaluated. Again we assume no

power control and describe the fading by the distribution pX(x).

The first moment of the interference is

E {IC} = PsE {x}
N∑

j

g(rji) (6.15)

where g(rji) is the average path loss from transmitter j to location i, and in each path

the mean path loss is the same, E {x} = E {xj} ∀j.
The second moment of the interference from a cellular system is

E
{
I2
C

}
= P 2

s

∑

n

∑

m

g(rni)g(rmi)E {xnxm} (6.16)

≈ P 2
sE
{
x2
n

} ∑

n=m

g(rni)g(rmj)

+P 2
sE {xnxm}

∑

m 6=n
g(rni)g(rmi). (6.17)

73



Interference modeling

We assume an independent fading with the same mean at all the locations. In

this case, the cross terms can be assumed to be equal to the power of the mean

E {xnxm} = E2 {x} and we get

E
{
I2
C

}
= P 2

s

(
E
{
x2
n

}
−E2 {x}

)∑

n=m

g(rni)g(rmj)

+P 2
sE

2 {x}
∑

n,m

g(rni)g(rmi) (6.18)

≈ P 2
d

(
E
{
x2
n

}
−E2 {x}

)
Af

∫

A

g(rai)
2da

+P 2
dE

2 {x}



∫

A

g(rai)da




2

(6.19)

where in (6.19) we replace Ps with power density and approximate the sums with

integrals

1

Af

∑

n

g(rni)
2Af ≈ 1

Af

∫

A

g(rai)
2da

1

A2
f

∑

n

∑

m

g(rni)g(rmi)A
2
f ≈


 1

Af

∫

A

g(rai)da




2

.

Comparison of the interference from a cellular system and from a PPP

In Publication II, we derived the equation describing the aggregate interference from

a cellular system in a shadow fading environment. We noticed that the moment

matching method by Fenton-Wilkinson allows us to derive easily the first and sec-

ond moments of the aggregate interference (Eq. (6.15) and (6.17)). The Fenton-

Wilkinson approximation replaces the sum of log-normal distributed random vari-

ables with a new log-normal random variable that has the same mean and variance.

This replacement is illustrated in Eq. (6.2) above. Such an approximation allows

us to bring the fading mean and variance in front of the summations in Eq. (6.15)

and (6.17). This is similar to the operation done in Eq. (6.5).

Interestingly, the cellular and point process have the same mean interference (the

first moment is the same). The difference is in the second moment. We see that the

variance of the interference from the PPP is higher than the variance from a regular
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cellular system. The non-central moments are

E
{
I2
C

}
≈ P 2

dE
{

(x− E {x})2
}
Af

∫

A

g(rai)
2da

+P 2
dE

2 {x}



∫

A

g(rai)da




2

(6.20)

E
{
I2
P

}
≈ P 2

dE
{
x2
}
Af

∫

A

g(rai)
2da

+P 2
dE

2 {x}



∫

A

g(rai)da




2

. (6.21)

These two second moments are related as

E
{
I2
C

}
+ P 2

dE
2 {x}Af

∫

A

g(rai)
2da = E

{
I2
P

}
. (6.22)

A can be seen in Fig. 6.2, the contribution of the first parts of the sums in (6.20)

and (6.21) is small. Therefore, both variances are very close to each other and we can

approximate the variances as

E
{
I2
C

}
≈ E

{
I2
P

}
≈ P 2

dE
2 {x}



∫

A

g(rai)da




2

. (6.23)
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Figure 6.2. Variance of the aggregate interference computed for cellular and PPP models evaluated as a
function of the cell footprint Af . For comparison is also provided the value of the common
term in the interference Eq. (6.23).

In Publication II, we extend the aggregate interference computation model pro-

posed in [114] to also contain shadow fading. This publication also describes the

algorithm that simplifies the numerical evaluation of the aggregate interference. The

proposed quick evaluation method allows us to study the interference from a large
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area. By using this algorithm, we are able to describe how the size of the secondary

network affects the interference level. In Fig. 6.3, it is illustrated how the interference

will change if the area from where the interference is calculated is increased. (The

details of the computation used for generating Fig. 6.3 are given in Publication II).
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Figure 6.3. SINR if the area from where the interference is computed is changed. K describes fre-
quency reuse in the cellular system. A different set of curves correspond to different cell
sizes, 200, 500, 100 m.

The applicability of the "sea" model depends on how well the approximation in (6.20)

holds. In Publication III, the model is tested by evaluating the interference directly

and comparing it with the results from the "sea" model. The model turns out to be

suitable even when the radius of the cells is as large as 4 km (see Fig. 6.4, the details

of the computation are described in Publication III).
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Figure 6.4. Comparison of the aggregate interference computed as an integral over power density and
as a sum over interference from individual transmitters in a cellular network.
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6.4 Discussion

The intersystem interference modeling has its roots in system licensing. Tradition-

ally, the spectrum usage license is issued for a certain system with predefined trans-

mitter receiver characteristics. Such licenses limit the spectrum users’ freedom to

select among competing technologies. A new trend in the spectrum licensing is not

to define the system that can use the spectrum but only to pose constraints on the in-

terference the spectrum user is able to generate for other users. The license owner is

free to select any technology as long as the selected technology meets the constraints

described in the license.

After selecting the technology, the technology independent license owner still has

to estimate the interference the particular selected system will generate. Such com-

putation can be done by general interference estimation models. The suitable models

are categorized as direct sum-based models or statistical models.

The direct sum-based model estimates the generated interference by summing up

the interfering power from each transmitter. Such a model requires information about

the transmission powers, the locations of transmitters, and attenuations on the chan-

nels. For a large number of transmitters, the direct sum computation becomes time-

consuming.

A statistical model does not consider the particular location of each transmitter. It

describes the system by corresponding distributions: distribution of locations, distri-

bution of transmission powers, distribution of attenuations in the channel. The mod-

els expresses the disturbance at the receiver as the distribution of interfering power.

The most commonly used statistical model is the PPP model. The PPP model

assumes that each transmitter is arbitrarily located in the service coverage area. Ac-

cording to PPP model each transmitter can transmit independently, therefore the suit-

ability of PPP model to describe a wireless system with scheduling protocols has

been questioned. A scheduling can be modeled as no transmission area around the

transmitter. In order to describe the scheduling process the PPP model has been mod-

ified, for instance, by introducing an exclusion area around each located transmitter

as is done in the model with the Matern process [112].

In Publication II and Publication III we studied the interference generated by a

cellular system. In the considered system, each cell has one active transmitter. In

Publication II the interference distribution from such a cellular network is derived.

In this chapter, we illustrate that for the same power density the interference distri-

butions from a cellular system and from a PPP process are very similar. The mean

interference levels of those models are the same and the difference in the second

moment is relatively small.
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Whether the white space will be opened for secondary use or not depends on how

attractive it is economically. While analyzing the TVWS, we are not only interested

in how much spectrum is available but what data rate density we can support in

the available spectrum. Wireless data transmission systems are compared based on

the data rate density per area [bit/s/Hz/km2] they can offer. Since the capacity of

a wireless network is not known we can express only the achievable data rate for a

particular network implementation. This is not the capacity in a Shannon sense since

it is not proved to be the maximum achievable data rate in the system. However,

because it describes the achievable data rate for a particular network implementation

it is often known as the wireless network capacity. In this chapter we use the capacity

term as it is used in the context of the wireless networks.

In this Chapter we consider again the ad hoc and the cellular networks (See Fig. 7.1).

The cellular system capacity is an important parameter used in the network planning

and therefore it is extensively studied and modeled. However, in the planning pro-

cess, the technology the planned system will use is known. In TVWS study, we have

to describe the capacity of a hypothetical system. We do not have equations describ-

ing the capacity of a general wireless network. While estimating the capacity of a

cellular system in the TVWS, we considered the simplest cellular system model. We

wished to disengage our model from any specific technical solutions. The derived

results describe the capacity in the worst case situation when the cellular system does

not use any advanced capacity enhancement methods. Such capacity description can

be the basis for the initial spectrum value estimation. After all, the white space will

be used by some new emerging technologies and in the future the system capacity

still has to be re-evaluated for particular yet unknown methods.
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(a) Ad hoc (b) Cellular DL (c) Cellular UL

Figure 7.1. Network models a) ad hoc network, b) cellular down link, c) cellular uplink.

7.1 Ad hoc network capacity

If in an ad hoc network the transmitter directly communicates with the receiver, we

have a single hop network. If this is not possible, intermediate transmitters have to

forward the message and the network is called a multihop network.

The ad hoc network capacity can be described as transport capacity or transmission

capacity. The transport capacity is defined as the end-to-end throughput scaled with

the end-to-end distance [109]. The throughput of the network is limited by the inter-

ference level. In ad hoc networks, the interference is a random variable that depends

on the locations and the density of transmitters. The transport capacity is usually

expressed and studied as a function of the user density per area [109].

The transport capacity is not a good measure for characterizing single hop net-

works which are better described by the achievable rates on the links, the transmis-

sion capacity [119]. The transmission capacity is defined as the number of successful

transmissions in the unit area normalized by the transmission attempts in that area.

Like the transport capacity, also the transmission capacity depends on the density

of transmitters. In the literature, we can find models that compute the transmission

capacity in the case of nonuniform distribution of nodes [120] or in the case of trans-

mitters using space time multiple access [121].

The transport and transmission capacities can be evaluated analytically only for

very simple systems. Usually, the analysis contains the assumptions that the network

covers an infinite area and the noise level is uniform over the whole area. The result-

ing closed-form equations are not directly applicable to describe realistic network

configurations. For instance, in TVWS the interference level in the secondary net-

work is affected by interference from TV transmitters. Such additional interference

is nonuniform and currently we do not have a model accounting for its impact on ad

hoc network capacity.
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7.2 Cellular network capacity

A cellular network is an infrastructure-based system that covers the service area with

a cellular structure. A classical cellular system has cell sizes from a few hundred

meters to tens of kilometers. With the advent of femtocells, the difference between

single hop ad hoc and cellular system models has become somewhat vague. The

femtocells are small cells that are allocated relatively randomly. A network with

such cells resembles more an ad hoc network than a traditional cellular system. In

our studies, we used only a classical interpretation of cellular systems.

A cellular system serves multiple users in a cell. As explained in Chapter 3 the ca-

pacity of a system with multiple users is described as the closure of tuples of achiev-

able data rates of individual users. The achievable data rates depend on the radio

technology used in the system, instantaneous attenuations in the channels between

the users, and the scheduling technology used in the system.

A particular system operates at the certain point of the capacity region, it selects

one tuple of user data rates. The capacity of a system can be described by the sum

of the data rates in the selected tuple (one number only). For one cell, this number

describes the cell capacity, i.e. cell throughput.

In the publications, we described the achievable capacity of a secondary cellular

system. This is achieved by computing the throughput in individual cells. In general,

this description requires that we specify the physical layer technology of the cellular

system. We have to decide whether we describe the capacity in uplink of downlink,

what kind of advanced technologies the system uses, and what kind of scheduling

method is applied.

A cell has a very particular communication structure. The transmission from the

BS to users is a communication from one to many. It is called downlink and often

described as a broadcast channel (BC), see Fig. 7.1b. The transmission from the

users to the BS, uplink, is a communication from many to one and described also as

a multiple access channel (Fig. 7.1c).

Uplink and downlink operate in different interference conditions. The capacity

achievable in uplink is usually less than in downlink [73]. However, most of the In-

ternet services generate more traffic in downlink. Because of this unbalanced traffic,

the service quality is considered to be limited by the downlink capacity. The down-

link is also more critical in the aggregate interference analysis. As shown in [122],

more than sixty uplink transmitters are required to produce aggregate interference

equal to the interference generated by one BS in downlink.

It is relatively easy to compute the capacity of a single cell. In that case, the intercell

interference does not exist and the sum capacity depends only on the location of the
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users in the cell. The equation describing the cell throughput with proportionally fair

scheduling can be found in [123] or in [124]. The analysis in [124] also contains

the capacity model that contains the impact of a fading channel. The impact of the

scheduling on the cell capacity is elaborated later in this section.

The single cell capacity approximates reasonably well the capacity of the cells in

a network with high frequency reuse. If the nearby cells use the same frequency, we

will not be able to ignore the intercell interference and therefore the single cell ca-

pacity differs significantly from the actual network capacity. The classical approach

to incorporate the impact of neighboring cells is to describe the intercell interference

as the fraction of the own cell interfering power αI [125].

γi =
Pigji

(1 + α)
∑
j 6=i

Pjgji + Pn
(7.1)

where γi is the SINR at receiver i, Pigii is the useful signal power and the correspond-

ing attenuation,
∑
j
Pjgji is the interfering power from all the transmitters simultane-

ously active in the cell and α is the scaling factor that considers the neighboring cell

interference. The model (7.1) stems from CDMA networks where the interference

is dominated by interference from other users in the same cell. Howerver, the use

of the model is not limited to CDMA networks. It has been successfully applied to

approximate SINR in TDMA based networks [126] [127].

Planners compute the network capacity for the particular system they are about to

roll out. The system uses a specific multiple access scheme which is used in the

capacity computation. To describe the capacity of a general cellular system, it is

necessary to decide how to consider the impact of the multiple access.

The multiple access scheme which provides the highest network capacity has been

long debated. Initially, it was assumed that CDMA offers higher capacity than TDMA

or FDMA [102]. In those initial studies, the CDMA system contained advanced ca-

pacity enhancing methods such as, power control and voice activity factors. It turned

out that with rate adaptation and advanced scheduling, the capacities of TDMA and

FDMA systems are nearly the same as the capacity of CDMA-based systems [128] [125].

The network capacity is highly dependent on the system ability to use the spatial

dimension. We can find capacity studies investigating the impact of MIMO [129]

[130] [131] [132], directed antennas [133] [134] [135] [136], advanced frequency

allocation methods [137] [138] [139] [140], and cooperative transmission between

the users [141] [142] [143]. These advanced methods use sophisticated signal pro-

cessing and their performance is implementation dependent. Most of these methods

make the network capacity computation to be relatively complex. In describing avail-

able capacity in TVWS we prefer a simple model that can quickly be evaluated in a

country-wide network. By omitting these complex methods, it is possible to obtain a
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lower bound for the available data rate.

In early versions of GSM the cell capacity was limited by the data rate guaranteed to

the user at the cell border. At that time, the technology was not able to take advantage

of SINR differences inside the cell and all the users had to be served with the same

data rate. In order to guarantee the connection quality to all users in the cell the data

rate in the cell was bound by the SINR at the cell border.

The SINR conditions at the cell border can be improved by using different frequen-

cies in adjacent cells. The frequency band is divided into K sub-bands, where K

is the frequency reuse factor. The frequencies are allocated with such reuse pattern

that the distance between cells using cochannel bands is maximized [20]. The fre-

quency reuse improves the SINR at the cell border but at the same time it reduces the

bandwidth allocated to the cell. The reduction of bandwidth is usually compensated

by using complicated frequency allocation algorithms [137] [138] [139]. However,

simulations indicate that by using the whole bandwidth in all the cells offers about

the same capacity as can be achieved with higher frequency reuse factors that are

combined with complex frequency allocation algorithms [140].

Which tuple of possible achievable user data rates is selected depends on how the

system schedules the users, i.e. how the system shares the available resources. In

general, the scheduling algorithm strives for the fair allocation of resources [144].

However, the definition of what is fair is up to the system designer. Two common

scheduling algorithms are Max-Min fair and round robin scheduling. The former

attempts to equalize the data rate of all users and the latter equalizes the time share

allocated to the users [145].

In a cellular system, the SINR depends on the user location in the cell. Near to

the BS the SINR is higher than at the cell border. In time division multiplexing the

system selects a user and schedules its transmission. The achievable data rate for this

user depends on its SINR and how long it can transmit. The capacity of a cell with

adaptive modulation and coding can be computed by evaluating the data rate at each

location in the cell and using a weighted average over those data rates. The weighting

function is selected to reflect the time share each user will use for its transmission.

The interference situation in the cellular downlink is illustrated in Fig. 7.1b. For a

particular location a the SINR is

γa =
Pigia∑

j 6=i
Pjgja + Pn

(7.2)

where Pi is the transmission power from the BS in the cell and Pj are the powers

of neighboring cells, gia and gja are attenuations from the corresponding BS to the

location a. The corresponding data rate at location a is R(a) ≤ C (γa).

The round robin scheduler allocates the equal time share to each user. As a result,
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all data rates are used equally. With uniform user density in the cell, the capacity can

be expressed as the average of data rates R(a) in the cell

CRR =

∫

A

R(a)da (7.3)

where the integral is over the cell area A.

Notice that with the round robin scheduling the users near the BS will have higher

data rates than the ones at the cell border. As the name indicates, the Max-Min

fair scheduling attempts to maximize the minimum data rate [145]. It does it by

allocating less time share for users having higher data rate and more time share to the

users having lower data rate. If the allocated time shares are selected as t(a) = 1
R(a) ,

all users will be served with the same data rate

CMM =
1∫

A

1
R(a)da

. (7.4)

The capacity CMM also describes the average service rate in the cell.

In a practical system, (7.3) and (7.4) have to be evaluated numerically. The TVWS

covers the whole country. In such a large area, the numerical evaluation of (7.3)

and (7.4) is time-consuming. Therefore, in our analysis in Publication IV, the cell

capacity by the throughput at the cell border is described. The cell border through-

put describes the worst SINR in the cell and provides the lower bound for the cell

capacity.

The results are computed for a system where the TV coverage area is surrounded

with no transmission area. The cellular system covers the space outside of the no

transmission area (the set up is illustated in Fig. 3.2). The x describes the size of the

no transmission area.

In Publication IV, we study the achievable capacity of a secondary cellular system.

We describe an algorithm that helps to find the capacity maximizing power allocation

among cochannel and adjacent channel transmitters. In one channel, cochannel or

adjacent channel, all the transmitters use the same transmission power level. The

optimization algorithm searches for power levels such that the total capacity over

the cochannel and adjacent channel is maximized. The power level is computed by

estimating the maximum power density that still meets the interference constraint on

the TV receivers. The interference level is computed by assuming a TV coverage

area that is surrounded by a no transmission area with size ∆. The setup is illustrated

in Fig. 3.2. The found capacity at the cell border is illustrated in Fig. 7.2. (The details

of the computation process are provided in Publication IV.)

It is interesting to note that for all selected cell sizes the adjacent channel has

enough power to drive the cells to operate in a power-limited range. In that range,

the cell border capacity is limited by the interference from other cells and for all cell
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Figure 7.2. Capacity of the secondary cellular system as a function of the no-transmission area (x
axis) surrounding a TV coverage area (see system model in Fig. 3.2). The capacity is
expressed as the sum of the capacities on cochannel and adjacent channel. The capacity
is computed as the minimum capacity observed at any of the secondary cell borders. The
minimum capacity is maximized by finding the power allocation for the cochannel and
adjacent channel such that the SINR target at the TV cell border is satisfied. The secondary
system has hexagonal cells and covers the whole area available for it. The computations
are made for networks with cell radiuses 100, 1000, 10000 m. The TV system parameters
are: transmission power 200 kW, TV cell size 140 km, TV target SINR 15.4 dB, and path
loss exponent 3.2.

sizes the cell border capacity is about the same. In cochannel, the allocated power is

not sufficient to drive the large cells into a power-limited range. The noise level still

has significant impact on the SINR level and therefore the capacities of the networks

with different cell sizes vary significantly.

7.3 Discussion

In this chapter, we describe the capacity of a wireless network. Such a description is

needed for assessing the achievable data rate of a secondary system.

Currently, the capacity of a general wireless network is not known. For practical

purposes, the capacity is defined as the achievable capacity of the particular network

implementation. The achievable data rate is described as the closure of the vectors of

the achievable data rates of all users. Which point in the closure is selected depends

on how the system schedules the users.

The achievable data rate depends on the physical layer implementation. For in-

stance, the network capacity can be improved by employing MIMO, directed an-

tennas, only using cooperative transmission, etc. How to quantify the impact of the

combinations of those methods is still not well understood. While assessing the value

of TVWS we assumed the simplest wireless system. The results describe the lower
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bound of the capacity since they do not consider the impact of any of the advanced

methods.

In this chapter we described the system capacity with Max-Min and round robin

scheduling. The capacity evaluation contains integration over the cell coverage area.

Such integration has to be evaluated numerically and for a large network it is time

consuming. The capacities of the systems using these scheduling methods are lower

bounded by the data rate of the user with worst SINR. In a cellular setup the user with

the worst SINR is located at the cell border.

We use the data rate of the user at the cell border to describe the achievable data

rate of the cell. The data rate of the cellular system is evaluated by computing the

capacity of each cell. This simple description makes the least assumption about the

technology the secondary system deploys.

86



8. Amount of available white space in
Finland

At the current stage of the TVWS studies, there is a need to estimate the amount

of available spectrum and to estimate the business value of the spectrum. On the

one hand, the secondary system has to satisfy the constraints posed by primary con-

nections. On the other hand, the secondary system has to meet its users’ demands.

In order to meet these constraints, the spectrum allocation can be done through an

iterative allocation process.

A secondary system with fixed cells can use only certain transmission power levels.

If the available levels area not sufficient to meet the expected users demand, it is nec-

essary to change the secondary system configuration and to evaluate the new set of

available transmission power levels. We continue with such iterations till a satisfac-

tory configuration is found. If there is no configuration that satisfies the constraints,

we can claim that there are not enough resources available, i.e. there is no spectrum

opportunity.

After the FCC fixed the spectrum usage rules, it became possible to compute the

amount of available spectrum. The most extensive country-wide estimation of the

amount of available spectrum has been made in [146]. In Publication VII we fol-

lowed the approach used in [146] and the TVWS estimation for both FCC and ECC

spectrum usage rules. Additionally, we studied how those rules protect the TV re-

ceivers if the secondary system is a country-wide cellular network. By using a cellu-

lar network as the secondary system, we were able to estimate the secondary system

capacity. The computed amount of available spectrum and the achievable data rate are

described in Fig. 8.1 and 8.2 respectively. Capacity per area in Finland is expressed

also by its cumulative distribution function (CDF) in Fig. 8.3.

The cellular network approach used in Publication VII provides a realistic estima-

tion of the density of the secondary transmitters. This density is used for computing

the aggregate interference in Fig. 8.4. As can be observed, the current rules are not

able to fully protect the TV receivers. It turns out that the ECC rules actually provide

better capacity and better protection for TV receivers.
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(a) FCC (b) ECC

Figure 8.1. The number of available channels in Finland calculated based on (a) FCC rules (b) ECC
rules. The computation with FCC rules is done with protection distances rp = 14.4 km for
the cochannel and rp = 0.74 km for the adjacent channel.

(a) FCC (b) ECC

Figure 8.2. Capacity per area calculated based on (a) FCC rules, (b) ECC rules. The computation with
FCC rules is done with protection distances rp = 14.4 km for the cochannel and rp = 0.74

km for the adjacent channel. The computation with ECC rules is done with safety margin
SM = 10 dB. In both systems, the capacity is computed for the secondary cell size d = 2

km and antenna height h = 30 m.

8.1 Discussion

In this chapter, we evaluated the achievable data rate of a cellular system deployed

in the TVWS in Finland. The value of TVWS is not described only by the amount

of available spectrum but also by the data rate the secondary system can offer. The

achievable data rate was computed by maximizing the achievable capacity given the

interference constraint of the primary system.

The white space studies found in the literature either measure the available spec-

trum or compute the available spectrum. The measurements usually do not indicate

the transmission power levels the secondary system can use [1]. The computations of

the white space evaluate the amount of spectrum available at certain locations given

the coverage area of the TV cells [146]. Such numerical studies are missing the ex-
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Figure 8.3. Distribution of the capacity per area calculated based on (a) FCC rules, (b)ECC rules. The
computation with FCC rules is done with protection distances rp = 14.4 km for the cochan-
nel and rp = 0.74 km for the adjacent channel. The capacity for FCC based system is
evaluated with two different antenna heights h. The computation with ECC rules is done
with the antenna height h = 30 m and different margins MI + SM . The capacities are
evaluated for different secondary cell sizes d.

tensive analysis of the secondary system, what transmission powers it can use, and

what data rates it provides. For instance, in [146] the secondary system analysis con-

tains intersystem interference but does not evaluate the secondary system aggregate

interference at TV receivers.

In Publication VII we outlined the method for computing the capacity of the cellular

secondary system operating TVWS. The proposed methodology not only describes

the amount of available white space spectrum but also identifies the usefulness of that

spectrum.
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Figure 8.4. Distribution of the SINR at the TV cell borders in the presence of interference from the
secondary cellular system. The calculations are made for the systems based on (a) FCC
rules, (b) ECC rules with antenna height h = 30 m. (c) ECC rules with antenna height
h = 1.5 m. The computation with FCC rules is done with protection distances rp =

14.4 km for the cochannel and rp = 0.74 km for the adjacent channel. The FCC rules
based system is evaluated with two different antenna heights h. The computations for the
system with ECC rules are done for two different margins levels MI + SM . The SINR
is computed by considering the aggregate interference from all the secondary transmitters.
The distributions are evaluated for different secondary cell sizes d.
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9. Summary

In this thesis, the author analyzes methods that enable TVWS usage for data trans-

mission. The studied questions are related to how to discover the free spectrum,

how the secondary transmitters will affect the primary receivers and what data rates

a secondary system can provide.

The secondary spectrum access is arranged either by using spectrum sensing or

database-based access control.

The sensing-based spectrum access relies on the detection of the primary signal

level. A suitable detector should be able to discover primary signals with very low

power level. The conventional detectors who use only a single measuring antenna

are either very complex or incapable of detecting low signal levels. Such problems

can be avoided by using multiple antennas. Detectors using multiple antennas can be

made very simple but still provide good performance at low signal levels.

In a fading environment, the different antennas observe different channel changes.

The conventional detection algorithms will not operate well if such changes are large.

In this thesis, the author proposes a detection algorithm that copes with the indepen-

dent signal variations in antennas. The algorithm is a modification of the correlation-

based detection algorithm. The detector performance is described by deriving the

false alarm and miss probabilities of the algorithm.

The secondary system should be able to detect a primary signal in a fading envi-

ronment. In this thesis, the author proposes a model that describes a detector perfor-

mance in the presence of slow and fast fading. The model illustrates how a single

detector is able to average over the variations due to the fast fading. Such averaging

is not possible for the slow fading. Therefore a single detector does not have a good

method for combating slow fading. Currently, in a slow fading environment the sin-

gle detector can guarantee the protection of the primary receivers only by using very

low detection thresholds.

In order to achieve a tight spectrum reuse, the primary signal level detection-based

spectrum access has to allow spectrum usage also near to the TV cell border. Close
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to the TV cell border, the detection does not identify the existence or absence of the

TV signal, but rather the secondary transmitter’s distance to the TV coverage area

border. In a fading environment, the signal level detection is a non efficient method

for such distance estimation. A low detection level means that the TV cell border

will be surrounded by an area where the spectrum will not be used. That is because,

in most of the locations in this area the TV signal is not in the fade and therefore

exceeds the detection threshold and therefore can not be used.

The impact of fading can be removed by using multiple collaborating detectors,

i.e. cooperative sensing. The cooperative sensing can improve the spectrum usage

efficiency. However, the cooperative sensing has its own challenges [81]. Whether

the cooperative sensing can become a viable option for the spectrum access remains

to be seen.

Because of its poor performance, currently, the sensing-based access is not consid-

ered as an option for secondary spectrum access. The spectrum access is arranged

only by using a geolocation database. The geolocation database assisted spectrum

access can use relatively precise location knowledge. The problems of the database-

based access are how to control the interference the secondary system generates at

the TV receivers and how much capacity a secondary system will have. In this the-

sis, the author proposes the model for computing the secondary system generated

interference and the method for evaluating the secondary cellular system capacity.

The aggregate interference is the interference generated from all the transmitters.

In this thesis a model is put forward that estimates the aggregate interference as an in-

tegral over the secondary network coverage area. The interference level is expressed

as the function of the network emitted power density. The proposed model demon-

strates a good match to the conventional interference estimation based on the sum of

powers received from each secondary transmitter.

The interference is not generated only from the co-channel but also from the ad-

jacent channel. The author considers the power allocation process among the co-

channel and adjacent channel as an optimization problem. The solution to this prob-

lem indicates that high power transmitters are only permitted to use adjacent chan-

nels. Since at least in central Europe, all the adjacent channels are co-channels to

some other TV station, it becomes questionable if high power secondary transmitters

could be used at all. Our initial results indicate that in Finland, in certain situations,

the secondary cellular BS could use relatively high transmission powers. The al-

located power depends on the power used by other nearby secondary transmitters.

The high power can be used if there are not many nearby secondary users, i.e. the

secondary network is sparse.

By selecting the secondary system to be a cellular network, we are able to de-
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scribe the achievable capacity of the secondary system. In this thesis, such capacity

is computed in the TVWS of Finland. The results are presented as the function of

the secondary cell size. With given parameters, it turns out that in Finland there is a

considerable TV spectrum resource available.
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Errata

Publication VI

The legend in Figure 1 should be read in the reverse order:

◦ SINR= −16 dB

� SINR= −18 dB

� SINR= −20 dB
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