
Publication IV

Jari Vanhanen and Harri Korpi. 2007. Experiences of using pair programming in
an agile project. In: Ralph H. Sprague, Jr. (editor). Proceedings of the 40th
Annual Hawaii International Conference on System Sciences (HICSS 2007).
Waikoloa, Hawaii, USA. 3-6 January 2007. Los Alamitos, California, USA. IEEE
Computer Society. 274b, 10 pages. ISBN 978-0-7695-2755-0.

© 2007 Institute of Electrical and Electronics Engineers (IEEE)

Reprinted, with permission, from IEEE.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of
Aalto University's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

Experiences of Using Pair Programming in an Agile Project

Jari Vanhanen
Helsinki University of Technology, SoberIT

jari.vanhanen@tkk.fi

Harri Korpi
Helsinki University of Technology, SoberIT

hhkorpi@cc.hut.fi

Abstract

The interest in pair programming (PP) has in-
creased recently, e.g. by the popularization of agile
software development. However, many practicalities of
PP are poorly understood. We present experiences of
using PP extensively in an industrial project. The fact
that the team had a limited number of high-end work-
stations forced it in a positive way to quick deployment
and rigorous use of PP. The developers liked PP and
learned it easily. Initially, the pairs were not rotated
frequently but adopting daily, random rotation im-
proved the situation. Frequent rotation seemed to im-
prove knowledge transfer. The driver/navigator roles
were switched seldom, but still the partners communi-
cated actively. The navigator rarely spotted defects
during coding, but the released code contained almost
no defects. Test-driven development and design in
pairs possibly decreased defects. The developers con-
sidered that PP improved quality and knowledge trans-
fer, and was better suited for complex tasks than for
easy tasks.

1. Introduction

In pair programming (PP) two persons design, code
and test software together at one computer. The driver
controls the keyboard and the navigator observes the
driver’s work and thinks at a more strategic level. The
persons should communicate actively and switch the
roles periodically. [1]

PP seems to produce better designs with fewer de-
fects in the code, in shorter elapsed time and more en-
joyably than solo programming, and it also seems to
benefit teamwork, knowledge transfer and learning [2,
3, 4, 5]. It seems that PP requires somewhat more de-
velopment effort [2, 3, 4, 6, 7]. PP can be very intense
and mentally exhaustive [1].

Anecdotes of developing software together dating
back to the 1950s are reported in [1]. The first two ex-

periments studying a similar practice calling it mere
collaboration [8] or collaborative programming [3]
were reported in the 1990s. Being one of the manda-
tory practices in the popular Extreme Programming
(XP) software development approach [9] has made PP
better known lately. XP’s characterization of PP is
similar to [1], but XP requires using it for all produc-
tion code. However, PP can be used in a less disci-
plined way and in any development approach. Accord-
ing to a global survey PP was used in 35% of develop-
ment projects [10] indicating a high interest in PP even
though the research on PP is still inconclusive [11].

A PP research framework [11] proposes several
context variables affecting the outcome of PP: educa-
tion, experience and personality of developers, roles,
communication, switching partners, type of develop-
ment activity and task, development process and tools,
and workspace facilities. Organizations adopting PP
often have the possibility to control many of these vari-
ables, but they seem to understand poorly what would
be a good context for PP. The difficulty can be seen in
the practical questions we have faced when observing
the adoption of PP in non-XP, industrial contexts:

- Which tasks are performed using PP?
- … and which activities of the tasks (analysis,

design, code, test)?
- Who proposes the use of PP for a task and when?
- managers, developers or both?

- Who pairs with whom considering e.g. compe-
tencies, experience and personalities?

- How long does the same pair work together?
- If a pair does not do a whole task together:
- How much do they work together?
- Do they work separately with the same task?
- How do they synchronize after separation?
- How do they communicate during separation?

- What kind of infrastructure is good for PP?
- How does one behave during a PP session?
- How often are the roles switched?
XP gives some extreme answers, e.g., everyone

should use PP for all development tasks from the start

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

1©1530-1605/07 $20.00 2007 IEEE
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

to the end. The guidelines and examples in [1] also
mostly assume using PP in the XP way. However, as
discussed in Section 2.1, it seems than even XP pro-
jects seldom apply such an extreme approach and
therefore the answers from XP are not enough.

Generally, the answers are likely to depend on the
goals set for the use of PP, e.g. ensuring high quality
vs. mentoring a novice, and on the fixed context vari-
ables, e.g. the characteristics of the developers. Differ-
ent answers lead to different flavors of PP.

Having better guidelines for answering this kind of
questions especially in non-XP projects would be valu-
able. Detailed case studies about using different flavors
of PP in different contexts would allow researchers and
practitioners to gradually increase their understanding
and create better guidelines. This paper attempts to
provide detailed insights into applying PP in a small,
agile team. We also report some data that has not usu-
ally been reported, such as the amount of knowledge
transfer within the team and the amounts of time spent
together by the different pairs.

The paper is structured as follows. Chapter 2 pre-
sents experiences of the practicalities of PP from litera-
ture. Chapter 3 describes the research methodology of
our case study. Chapter 4 introduces the context of the
case study. Chapters 5 and 6 present and discuss the
results from the case study related to the practicalities
and effects of PP. Chapter 7 concludes the paper.

2. Related work

In this chapter we present and discuss experiences
from literature related to the areas we discuss in our
case study, i.e. adopting PP, pair formation and PP
sessions. We searched carefully for scientific papers
from IEEE Xplore, ACM Digital library and the
INSPEC database using keywords “pair programming”
or “collaborative programming” also going through the
reference lists of the found papers. We excluded papers
discussing PP used by students, because most of them
discuss novices performing small development tasks,
i.e. the context for PP is different from that of PP in
industry. Many papers were about XP projects and in
some of them PP was discussed only shortly among
other practices. Probably due to the concise form of
reporting, most papers discuss only some practicalities
of PP. The published reports may be biased towards
more positive experiences, because less successful
adoptions may be less likely published.

2.1. Adopting pair programming

At wotif.com, a three person team first used all XP
practices except PP. PP was not used because they ex-

pected it to require additional effort which was not in-
cluded in the effort estimates for the project. However,
the team started to think about adopting PP after they
faced a critical problem, which might have been
avoided with PP. Full PP use was still out of question
due to the expected increase in effort. Even after this
the developers did not really adopt PP. Only after the
team coach persuaded the developers into interacting
and the team lead started holding both partners respon-
sible for code quality did the use of PP improve. The
team used PP for all design work, but less for pro-
gramming work. A pair met several times a day and the
author updated the partner and they discussed prob-
lems. It is not explicitly mentioned in the paper, but it
seems that only one person worked with the task when
the pair was detached. They programmed together a
few times per week the reason being that the partner
had much knowledge about the task or the code was
very subtle, complex or involved high risk. When the
author finished a task the partner reviewed the work
with the author. Code reviews worked well because the
partner was familiar with the design and code. Devel-
opers enjoyed the flexibility of pairing. [12]

For a team developing firmware for Intel processors,
increasing knowledge transfer between too specialized
developers gave a reason for adopting PP. The team
ended up using PP for detailed design and initial cod-
ing, but splitting when coding got tedious. They had
problems in getting PP in frequent use due to the pres-
sure from stringent deadlines. The developers felt it
would be quicker to work alone in the area of their own
expertise, i.e. PP could increase effort and lead to miss-
ing a deadline. In order to ensure some use of PP they
started to require everyone to work one day per week
with something else than their core expertise. [13]

In Guidant Corporation PP was added to a quite tra-
ditional development process. Rules for the practicali-
ties of PP were established but the developers were
allowed to choose between PP and their old way. How-
ever, as a reward of using PP, the code from a pair did
not require a formal peer review. Five out of nine de-
velopers started using PP immediately and in a couple
of months the rest of the team agreed to adopt PP after
seeing the positive results. All tasks were jointly per-
formed by a pair. However, the pair was free to choose
its own style of working. Some worked very closely
together, whereas others split up the work , did it sepa-
rately, and then came together to share and review. [14]

At IBM in a team moving from a waterfall process
to XP the degree of PP increased from roughly 11% to
about 50% when PP was given as an alternative to for-
mal inspections. Cultural resistance was mentioned as a
reason preventing further increase of PP. [15]

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

2
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

In a ten-person XP team at Sabre the developers
ended up using PP for about 50% of their time. Most
developers saw no value in using PP for trivial tasks,
but all considered it valuable for solving problems and
overcoming technical difficulties. [15]

Secure Trading had a nine-person XP team. The de-
velopers spent about 30% of their time with a pair. Af-
ter initial experiences 28% of the developers reported
they prefer to work alone. About half of the developers
thought that they could not work with everyone. [16]

In an organization the staff agreed with the given
motivation for using PP but in practice they continued
coding alone and then reviewed the changes with the
partner before code check-in. After four months, things
started to move towards real PP. The developers real-
ized that it was more efficient to sit together all the
time than to update the partner and review changes.
The developers’ personal experiences were the key to
the move to systematic use of PP. [5]

At FJA Odateam an XP team used PP for difficult
tasks and for teaching new people, but otherwise they
tended to work alone. After the workspace was
changed to an open office and ownership of worksta-
tions was dropped they started to use PP for all
tasks. [7]

Aiken [17] presents experiences from three people
who have used some PP or followed its use. According
to them the organization’s culture may have a huge
impact on the success of PP. Reducing any potential
fears of judgment is important, and the developers’
learning styles and personal preferences should be re-
spected. PP creates issues initially and there are de-
creases in productivity when people are adjusting to it.

The main findings are summarized in Table 1. The
slow start for adopting PP was mentioned often. One
reason was the expected increase in effort. Several spe-
cial measures were used for increasing the use of PP.
Reserving one day per week for PP ensures a certain
amount of PP. The managers could persuade to its use
or emphasize that both partners are responsible for the
quality of a task. Others provided rewards for the use
of PP in the form of avoiding formal reviews or inspec-
tions. Moving to an open office and dropping the own-
ership of work stations also improved the use of PP.
Seeing the good results of PP was also a good motiva-
tor. Williams and Kessler [1] also report that most peo-
ple resist transitioning to PP, but almost all who try it
consider it better than working alone.

The amount of PP varied a lot between the cases. In
two papers on XP context, figures of 30% and 50% for
time spent with a pair were reported. This is much less
that proposed by XP. In one XP team PP was reported
to be used for all tasks.

Table 1. Experiences of adoption

Topic Experiences

amount
50% of time (two different cases) [15]
30% of time [16]

applica-
tion

all design and some programming [12]
detailed design and initial coding [13]
each task was assigned to a pair, but the degree
of working together varied [14]
solving problems and technical difficulties, not
for trivial tasks [15]
difficult tasks and teaching, later all tasks [7]

limiting
factors

expected effort increase [12]
no time for PP due to deadline pressure [13]
only peer reviews before check-in [5]
developers cannot work with everyone [16]
organization’s culture [15, 17]

2.2. Pair formation

Two ways for pair formation are described in [1].
First, a short, daily meeting where the developers dis-
cuss their plans for the day and the possible problems
they are having. During the meeting people can volun-
teer as partners to people who they think they can best
help. If some developers are still without a pair after
the meeting, a manager can form the most appropriate
pairs out of them. Alternatively, a task owner can ask
help from anyone and nobody can say no. The assump-
tion seems to be that everyone works with a partner.

Pair rotation should be periodic [1]. It often occurs
very casually the developers themselves knowing the
optimal partners [1]. It works only if the tasks are bro-
ken into small, half day to one week chunks which are
assigned to an owner, who can then recruit a partner for
the task [1]. XP proposes rotation even every couple of
hours switching at natural breaks in the work [9].

Forming pairs in a daily meeting is common [18, 19,
20]. The daily rotation in a ten-person team made eve-
ryone pair with everyone at least once during a three-
week iteration [20]. In [14] the pairs were formed
based on the skill-set required and rotated when new
tasks arrived.

At Silver Platter Software a six-person XP team ex-
perimented with different attributes of PP. They found
that rotating pairs very often, e.g. every 90 minutes,
was most productive. Removing the person who had
been working longer with the task was most productive.
Initially most developers felt that switching was too
frequent but after a few weeks they realized the effects
on learning and got exited. The experimenters assume
that the reasons for the surprising results were that 1)
the developers worked with a “beginner’s mind” all the
time and 2) the most important information is usually
passed during the first hour of pairing. [21]

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

3
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Bryant [22] observed 14 one-hour PP sessions. She
was surprised about the fluidity of pair rotation. Often a
pair did not finish their task, but re-grouped easily
when another pairing was more appropriate. Overhear-
ing what other pairs were doing helped to realize when
more appropriate pairs could be formed.

Chong [18] also found that the dialogue produced in
the pairs made other developers aware of what the pairs
were working with. This allowed a developer to join
the pair when the pair was caught with a problem he
could solve easily. Probably as a consequence of this
the PP sessions were often interrupted when one or
both persons turned their attention to help others.

Experiences of pair formation are summarized in
Table 2. It seems that usually the pairs are formed
casually, and in some cases pairs are rotated very fre-
quently. There seemed to be no problems in forming
and rotating pairs.

Table 2. Experiences of pair formation

Topic Experiences

means
and

frequency

in daily meetings [1, 18, 19, 20]
change the person who joined the task earlier
every 1.5 hours [21]
when new tasks arrive [14]
overhearing allowed discovering situations when
another pairing was more appropriate [18, 22]

There are context-specific benefits and drawbacks
for different pairings with regard to e.g. skill levels and
personality. Some pairings do not work even though PP
works with most partners. Problems may occur, e.g.
with a person who has excess ego or when pairing a
novice with an expert having no mentoring attitude. [1]

PP experts warn about many possibly problematic
pairings. A novice can slow down and frustrate an ex-
pert who may lower the self-esteem of the former; two
experts can be inefficient, e.g. when the lack of in-
volvement frustrates the navigator, or when there is
constant ‘clashing of the minds’; two novices have the
risk of ‘the blind leading the blind’. [23]

Jensen [24] reports than in his experiment the most
troublesome pairings were those in which the partners
had about the same capability level. On the other hand
at Sabre large differences in expertise and age caused
resistance for using PP [15].

Table 3. Experiences of pairing

Topic Experiences

possibly
chal-

lenging
pairings

similar expertise [23, 24]
large differences in expertise [15, 23], when the
expert has no mentoring attitude [1]
large differences in age [15]
one of the persons having excess ego [1]

Experiences of pairings are summarized in Table 3.
It seems that there may be some issues with several
pairings, but the experiences are quite limited and to
some degree contradictory.

2.3. Pair programming sessions

According to Williams and Kessler [1] switching
roles periodically between the driver and navigator is
very important. It activates a possibly passive navigator
by letting him write.

When observing PP in four companies the research-
ers found that the roles were switched mostly when the
driver slid the keyboard over to the navigator. The
navigator seldom initiated control of the keyboard. [25]

In one XP team, switching did not happen. Even the
frequent intervention by the team coach did not help.
As a result, the driver’s attention would drift away and
also the knowledge transfer suffered. [19]

Bryant [22] observed the degree and type of interac-
tions within different pairs. Pairs formed of more ex-
pert pair programmers (PPers) had 27% fewer interac-
tions than pairs formed from novice PPers. She sug-
gests that expert PPers might be more selective about
their interactions and may have a better understanding
of the role and knowledge of themselves and their part-
ner. Bryant noticed that expert PPers spent time resolv-
ing differences in opinion, whereas novice PPers often
trashed between different strategies, depending on who
was driving. It seemed that all expert PPers behaved in
a certain role (driver or navigator) in a similar way to
each other. Novice PPers also changed their behavior
when changing the role, but each novice PPer had
his/her own style of behavior in a role. Therefore, Bry-
ant proposed that novice PPers might learn PP from
observing how expert PPers work in a PP session.

Cockburn and Williams report that encouraging the
developers to think aloud improved the interaction be-
tween the partners [5]. In another case the PP practice
matured after introducing a team coach, whose task
according to XP is to take care that the XP team uses
certain practices [16].

In an XP team several developers mentioned that the
only way to solve communication problems with the
partner is to show more courage in criticizing the part-
ner’s work and more acceptance of the criticism. Fre-
quent pair rotation is needed for increasing learning
and the feeling of collective code ownership. [26]

At FJA Odateam in a PP experiment of about six
hours, the developers were found to switch roles very
often, from 6 to 42 times. The pairs formed of more
experienced developers switched roles more often. [7]

Experiences of PP sessions are summarized in Table
4. There seemed to be problems with switching the

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

4
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

roles during a PP session in many cases. Both this and
the lack of thinking aloud by the driver could lead to
insufficient interaction between the partners.

Table 4. Experiences of PP sessions

Topic Experiences

role
switching

periodic switching is very important [1]
mostly initiated by the driver [25]
did not happen and the navigator’s attention
would drift away [19]
roles were switched 6-42 times in different
pairs during a six-hour PP session [7]
more experienced developers switched roles
more often [7]

interaction

pairs of more expert PPers had 27% fewer
interactions than pairs of novice PPers [22]
overseeing needed for making PP work [5, 16]
solving communication problems by showing
more courage in criticizing the partner’s work
and more acceptance of the criticism [26]

3. Research methodology

This study was a single case study [27]. The case
was chosen based on its availability, i.e. a quite rare
opportunity emerged to closely observe an industrial
project using pair programming.

The research questions for the case study were:
1. How does the team apply PP during the project?
2. What are the effects of using PP?
Question 1 covers all the practicalities described in

Chapter 1 and Question 2 evaluates the effects on qual-
ity, effort, knowledge transfer and work enjoyment.

We used several data collection methods. These in-
cluded interviewing, inquiries, reporting requirements
and observation, as shown in Table 5.

The first author observed the project from the out-
side, and the second author participated in it as a de-
veloper, who also took responsibility for disciplined
collection of data from the team.

The developers tracked effort per task on a paper
and the second author collected the data at least
weekly. The customer reported to the team all defects
he or the end-users found and the second author
counted them.

After iterations I1, I2 and I3, each developer per-
formed an evaluation for each module in the system
with the question “How good is your knowledge about
module X?” (Questionnaires KQ1-KQ3). This data
allows evaluating knowledge transfer within the team.

After I4, the first author conducted a semi-structured
team interview (TI4). It gave insights into the practi-
calities of PP and its effects. After the interview, each
developer filled out a short questionnaire (IQ4) about
the perceived effects of PP and how well they liked it.

After I4, the developers evaluated the difficulty of
using certain practices on scale of “1=easy”–
“5=difficult”. They also ranked the practices based on
their effect on quality, knowledge transfer, productivity
etc. (questionnaire RQ4).

Table 5. Data collection instruments

What When How

effort daily
individual time reporting,
collected weekly

defects daily second author kept count
knowledge transfer after I1-I3 questionnaire (KQ1-KQ3)
practicalities of PP after I4 team interview (TI4)
effects and feelings
of PP

after I4 questionnaire (IQ4)

importance and dif-
ficulty of practices

after I4 questionnaire (RQ4)

The first author analyzed all the data. The qualita-
tive data from Interview TI4 and Questionnaire IQ4
was grouped and synthesized thematically, and finally
the correctness of the interpretation of the data and
missing details were discussed with a developer, who
was not the second author.

4. Case study description

The observed project was carried out in a large tele-
communications company in Finland. The goal of the
project was to develop an internal reporting system for
the company using Java technologies. Another goal
was to pilot agile practices.

All four developers of the project team were males.
They had not worked before with each other or in the
case organization. Their willingness to use agile prac-
tices was ensured when recruiting the developers. The
developers had 4-10 years of programming experience
of which 1.5-4.0 years with the technologies used in the
project. Three developers had not used PP before the
project and one had used it for about a month. Before
the project the attitudes of the developers towards PP
varied from slightly negative to quite positive.

 In practice all the developers were equal, even
though one of them acted as a team leader who took
care of, e.g. arranging the daily meetings. The second
author was one of the developers and he observed the
use of agile practices for his master’s thesis.

The development was done in six consecutive itera-
tions, usually lasting two weeks. They were preceded
by a two-week pre-project iteration, where the team
was given lectures about agile development covering
also PP. In the pre-project iteration, the team decided
about the process, selected the technologies, and ex-
perimented with both. The process was a collection of
practices from several agile methodologies.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

5
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

The team had a coach who helped in issues related
to the work practices. In the beginning of the project
the coach visited the team daily, e.g. by participating in
the daily meeting. However, the developers themselves
had the power to decide on the used practices. They
actually had a reflection meeting after each iteration
and thus continuously improved the used set of prac-
tices to better meet their needs.

The developers had an open workspace i.e. they
shared the same room and had visual contact with each
other. There were no private workstations available.
The coach and a person acting in the customer role had
their own rooms close to the team.

Each task was usually self-assigned to a pair who
worked together with it. If a pair separated the partners
either continued with the task separately or sometimes
one of them could start another task.

5. Experiences of pair programming

5.1. Adopting pair programming

The pre-project iteration consisted of eight hours of
PP by each developer during four days. The developers
considered this was sufficient to start doing PP effi-
ciently. This is quite a short time considering that the
developers had to learn pair programming and to get
familiar with each other. Williams and Kessler [1] pro-
pose that it may take even some weeks before a pair
gets into the flow of PP.

The developers adopted PP thoroughly from the
start of the project, which contrasts heavily with the
adoption problems described in Section 2.1. The team
had only two high-end workstations and one (later two)
low-end workstations. This practically forced them to
use a lot of PP. The developers did not criticize the
setting, probably because of their approval of experi-
mentation with agile practices, but also because PP was
soon accepted as a good practice.

The developers’ opinions on the difficulty of using
certain practices (Questionnaire RQ4) are shown in
Table 6. Everyone considered using PP easy both abso-
lutely and compared to the other evaluated practices.

Table 6. Difficulty of using certain practices

Practice Answers

Pair programming 1, 1, 1, 2

Test-driven development 2, 2, 2, 3

Writing unit tests 2, 2, 3, 3

Working without real requirements 2, 2, 3, 3

Planning game 3, 3, 4, 5
Scale: 1=easy – 5=difficult

The degree of pair work in each iteration is shown
in Table 7. 72% of the programming effort in the pro-
ject and 52% of all effort was done in pairs. The use of
PP was slightly lower in iterations I2, I5 and I6 because
refactoring and fine-tuning activities took time away
from developing new features. These activities were
considered easier and therefore PP was used less. The
team size also decreased to only two developers after
I4. Iterations I1-I4 reflect the normal state of the pro-
ject better and for them the amounts of pair work were
77% of the programming effort and 66% of all effort.

The amount of pair work was quite high compared
to the experiences discussed in Section 2.1. The limited
number of high-end work stations was certainly an ex-
plaining factor and can be considered as a good tactic
to make developers use PP actively.

Table 7. Proportion of PP

 Pre I1 I2 I3 I4 I5 I6

Persons 4 4 4 4 4 2 2

Days 4 9 10 10 11 10 17 71

All effort 129h 233h 235h 264h 274h 147h 222h 1505h

N/A 135h 117h 159h 140h 42h 37h 628h
Pair work

N/A 82% 58% 73% 57% 28% 16% 52%

Pro-

gramming
32h 100h 127h 138h 107h 18h 60h 582h

32h 91h 79h 109h 85h 12h 11h 419h
Pair work

100% 91% 63% 79% 79% 67% 18% 72%

Developers considered PP especially useful for
complex tasks. Similar findings were reported in Sec-
tion 2.1. When doing simple copy and paste coding the
navigator soon lost his interest in the work. Some
straightforward tasks were done alone if they were easy
to split into two parts where the other part could be
performed at the low-end workstation by the partner.

5.2. Pair formation

Pairs were formed in the daily meetings. First the
formation of pairs was affected by e.g. trying to avoid
pairing the two most experienced developers, and
maybe also by the frequent habit of smoking by two of
the developers. In the first iterations the same two peo-
ple continued to pair the next day if the same task con-
tinued. After I1 the team considered that such an infre-
quent rotation was not sufficient for good knowledge
transfer. Frequent rotation was emphasized more in I2,
but it still did not happen very often. Therefore, starting
in I3 the team formed the pairs by casting a lot each
morning so that the pairs always rotated compared to
the previous day. If a pair did not finish their task by
the end of the previous day, one of them continued it

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

6
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

with a new partner. Regular rotation worked well and
simplified pair formation, because in a four-person
team rotating pairs after a task ends requires waiting
until the other pair also finishes their task.

Figure 1 shows how much the different pairs worked
together. In I2 two pairs were not used. In I1 and I3 the
pairing was more balanced. The distribution is similar
in I1 and I3 even though in I1 the same pairs could
continue several days together, whereas in I3 the pairs
were often rotated on a daily basis. We have not seen
industrial data from other researchers about this topic.

0

10

20

30

40

50

Iteration 1 Iteration 2 Iteration 3

h
o

u
rs

D1&D2
D1&D3
D1&D4
D2&D3
D2&D4
D3&D4

Figure 1. Working hours of the different pairs

5.3. Pair programming sessions

When starting a new task the pair made some speci-
fication work and consulted the customer for the details
of the task. Then the pair did some design work and
started programming. Sometimes the opinions on the
amount of design required before coding differed and
this could cause disagreement between the partners.

Communication was continuous with no silent mo-
ments. If a person was already familiar with the prob-
lem he acted as the driver and explained continuously
what he did. The developers felt it impossible to act as
the navigator without knowing what the code did.

PP could last the whole day, interrupted only by
lunch or other breaks every now and then. The roles
were switched 2-3 times a day, typically after the lunch
break or when the driver took a personal break and
temporarily left the workstation.

The use of PP got more loose later in the project.
For example, the developers did not necessarily sit at
the same workstation all the time when programming.
Especially when very simple things were programmed
the partner sometimes went to do other work or took a
break. Choosing to work alone with simple code has
been reported also by others [12, 13].

5.4. Dependencies with other practices

The developers considered that PP supported some
practices and was supported by some other practices.
The findings were similar to those proposed in XP.

The developers reported that as a pair they were
more disciplined in using at least “test-driven develop-
ment”, “coding standard” and “integrate often” prac-
tices because the navigator noticed the deviations from
their use. The navigator also helped decide when it was
truly appropriate not to use a practice instead of the
decision being made based on the laziness of the driver
to follow a practice.

PP supported also collective code ownership be-
cause at least two persons participated in each task.
Two persons were also better able to solve problems
related to writing testable code and designing good unit
tests. Test-driven development supported PP by in-
creasing communication of ideas between the partners.

PP increased collective task ownership through in-
creased collective code ownership. This together with
an information radiator, i.e. post-it notes moved on an
office wall according to their progress, created a shared
feeling of achievement when a task was finished.

The importance of the daily meetings was quite low
due to knowledge transfer through PP. However, the
daily meetings were needed for forming the pairs.

6. Effects of pair programming

6.1. Quality

The number of defects found from each iteration re-
lease is shown in Table 8. The numbers include defects
found by the customer in the acceptance testing after
the iteration and by the end users in production use.
The very low numbers seem to be reliable, because
after 1.5 years in active production use only five new
defects have been found. Over 200 000 items are daily
updated in the database, a few users generate small
reports daily, and an operator generates critical reports
distributed to dozens of managers every other week.

Table 8. Defects found after development

Variable I1 I2 I3 I4 I5 I6

Defects 1 4 3 4 3 2

Defects/KLOC 0.5 1.1 0.6 0.5 0.4 0.2

The developers considered that PP improved the
understandability of design. When the navigator could
no more understand the written code he forced the
driver to stop writing. Thus, most code was written so
that at least two persons were able to understand it. The
developers also considered that they understood well
even code that was not familiar to them if the code had
been written by a pair.

In Questionnaire IQ4 all developers reported that PP
lowers the number of defects and the measured defect
counts also showed a very low value. However, in

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

7
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Team Interview (TI4), the developers were somewhat
uncertain about the role of PP in decreasing the number
of defects because the navigator did not spot many de-
fects during the programming. It may be that PP pre-
vents the bugs before they are even written and there-
fore the navigator cannot point them out. This could
happen because the pair brainstorms the design and
writes unit tests together and thus thinks about the solu-
tion more thoroughly before writing the actual code.

The developers considered PP as the second most
important practice after test-driven development for
increasing the quality of the system and its design.

The improvements in quality are parallel with the
results of the experiments made by others [2, 3, 4].

6.2. Effort

The developers considered the effect of PP on the
development effort to be dependent on the type of task.
For complex tasks, the use of PP might lower the total
effort. The number of complex tasks was quite small,
but they were big tasks requiring about 50% of the total
project effort. The effort was considered higher for
simple tasks than when using solo programming. Gen-
erally, PP was considered the most important practice
affecting the project productivity positively. Others
have reported that PP increases the development effort
somewhat [2, 3, 4, 6, 7], but they have discussed this
aspect in the context of individual tasks or small pro-
jects.

Productivity as LOC/hour for each iteration is
shown in Table 9. Productivity was highest in I1 and
I4. In I2, I5 and I6 the lower productivity is probably
explained by the focus on refactoring and maintenance.
A possible explanation for the lower productivity in I3
compared to I1 and I4 is discussed in the next section.

Table 9. Productivity

 Pre I1 I2 I3 I4 I5 I6

LOC increase 517 2198 1411 1859 2290 248 700 8706

LOC/h 4.0 9.4 6.0 7.1 8.4 1.7 3.2 5.8

LOC/progr. h 16.2 21.5 11.2 13.4 21.3 13.8 11.6 14.9

6.3. Knowledge transfer

Each developer evaluated his knowledge of each
module after iterations 1-3. The number of modules
increased from 14 to 17 from I1 to I3.

The average of the evaluations of a module charac-
terizes the team’s knowledge of the module. The aver-
age of these characterizes the team’s overall knowledge
of the whole system (the first row in Table 10). The
changes in the team’s overall knowledge between the
iterations were small. It indicates effective learning

because the same knowledge was preserved even
though the system grew and became more complex.

We assume that the knowledge transfer within the
team is high if the differences (standard deviation) be-
tween the developers’ knowledge of each module are
small. The average of the differences from all the mod-
ules characterizes the overall differences (the last row
in Table 10) and thus the degree of knowledge transfer.
The overall differences decreased considerably in I3
indicating high knowledge transfer. The detailed data
reveals that most of the decrease in the differences is
explained by increases in the low values of knowledge
and only little by decreases in the high values.

In I3 the higher frequency of rotating pairs made the
developers work with more modules in I3 but also
spend less time with each individual module. There-
fore, the frequent rotation probably contributed both to
the increases in the low values and decreases in the
high values of knowledge. Table 9 showed much lower
productivity in I3 than in I4. It may be that the frequent
rotation first decreased the productivity as the develop-
ers worked more with modules unfamiliar to them and
spent time learning new things. The benefits of learning
were probably realized in I4.

Table 10. Team’s knowledge of the system

Statistical value I1 I2 I3

Average of averages of each module 3.82 3.74 3.91

Average of std.deviations of each module 1.04 0.96 0.69

Scale: 0=never heard – 5=like my own pockets

On a personal level there were large increases in
knowledge for developers D1 and D2 in I3 (Table 11).
D3 spent much less time for development than the oth-
ers during I3, which explains his decreased knowledge.

Table 11. Personal knowledge of the system

Developer I1 I2 I3

D1 3.71 3.53 4.12

D2 3.71 3.65 4.41

D3 4.00 3.88 3.24

D4 3.86 3.88 3.88
Scale: 0=never heard – 5=like my own pockets

All developers considered that PP increased their
knowledge of the system more than solo programming.
Two developers considered that PP helped them learn
the development tools better, but the other two found
no difference in this knowledge transfer aspect. The
developers ranked PP as the most important practice
for increasing team communication. The next most
important practices were the open workspace and daily
meetings.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

8
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

6.4. Work enjoyment

The developers considered the team spirit very
good. Some believed that co-location was a sufficient
factor for this, but some considered PP to be more im-
portant. All agreed that PP promoted the formation of
good team spirit in the beginning of the project. The
information radiator and the open workspace were also
mentioned as contributors to good team spirit. Two of
the developers liked PP more than solo programming
and two found no difference.

7. Discussion and conclusions

7.1. Lessons learned

Our findings are discussed below. They increase the
body of knowledge of PP, help others in industry to
apply PP, and help the research community to build
improved guidelines for PP.

 Learning PP took place quickly and developers
considered its use very easy. Adoption seemed to be
much easier than reported by other researchers. Having
a smaller number of high-end workstations than there
were developers certainly contributed to the quick
adoption and rigorous use of PP. Surprisingly, the de-
velopers did not criticize the lack of own computers.

It seems that PP was better suited for difficult tasks.
The developers avoided its use for trivial tasks if it was
possible to split the task in two parts, i.e. one for each
partner. The development effort was considered lower
for PP than for solo programming with complex tasks
but for easy tasks the situation was reverse. Similar
findings have been reported by others [13, 15].

Initially pair rotation occurred only after a task was
finished. In order to improve knowledge transfer the
team started to actively rotate pairs each morning even
if their tasks were not finished. The data about the de-
velopers’ knowledge of the modules indicates that this
change may really have increased the knowledge trans-
fer within the team. However, there was a drop in pro-
ductivity after the change, but the productivity rose
again in the next iteration.

The driver/navigator roles were switched only 2-3
times a day. This may passivize the navigator [1, 19],
but in our case study the partners maintained active
communication. The use of PP became slightly more
relaxed later in the project and the pairs could split up
when the driver did some easy programming.

PP and especially the presence of the navigator in-
creased discipline in using many other practices, such
as test-driven development, coding standard and fre-
quent integration. On the other hand, collaborative task

ownership, test-driven development and daily meetings
supported the use of PP.

The developers considered PP to be a contributing
factor for the low defect counts in the system. This ef-
fect of PP has been identified also by others [2, 3, 4].
However, contrary to the literature, the navigator sel-
dom found defects during the programming, meaning
that some other aspect of PP, such as designing and
test-driven development together, probably helped to
avoid injecting defects.

The team spirit was very high, at least partially
thanks to PP. Nobody was against PP and half of the
developers liked it even more than solo programming.

7.2. Limitations

There were some factors that should be considered
when generalizing the results of this study. All the de-
velopers were recruited based on their interest in using
agile practices including PP, which can cause a positive
bias towards the use of PP. The project started from
scratch regarding the development process and prac-
tices. There was no old way of doing things that could
have e.g. slowed down the adoption of PP. Because the
project acted as a pilot for testing new practices, reflec-
tion of the practices and process measurement were
more disciplined activities than in a typical project. The
developed system was quite small and simple.

Much of the data is based on the opinions of the de-
velopers because only some things, such as defects,
could be measured objectively. The reliability of the
data was improved by having a researcher participate in
the project. This gave a detailed insight into the pro-
ject. In addition, the first author interviewed the team,
did the data analysis and also discussed all results and
conclusions afterwards with one more developer in
order to ensure correct interpretation.

The participating researcher may have affected the
team. However, he was a developer just as the others,
who additionally collected experiences of all practices
used in the project. He did not have a bias towards any
particular practice, and therefore the effect of his par-
ticipation to the team’s use of PP should be negligible.

Measuring the knowledge of the system modules by
asking about it of the developers and analyzing the
knowledge transfer based on this data contains reliabil-
ity problems. However, it provides at least some in-
dicative data on a topic that is difficult to measure

Measuring productivity by LOC/hour may be mis-
leading e.g. when doing lots of refactoring or copy and
paste coding. However, if these kinds of issues are
taken into account, its use to at least compare the
changes in productivity between the iterations of the
same project is justified.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

9
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

7.3. Future Work

One must be careful when generalizing the findings
of a single case study to other context. The research
community needs to do new, detailed case studies and
also experiment the use of PP in industry in many dif-
ferent contexts in order to provide better guidelines for
organizations interested in adopting PP.

8. Acknowledgements

This study was part of the ITEA-AGILE research
project. We would like to thank Nokia Technology
Platforms for making the case project possible, and the
coach Tuomo Kähkönen, the customer Jari E. Määttä,
and the development team (Lasse Moisio and Timo
Tenkanen from Affecto, and Seppo Sahi and Harri
Korpi from HUT) for their participation in the study.

References

[1] L. Williams and R. Kessler, Pair Programming Illumi-
nated, Addison-Wesley, 2002.

[2] L. Williams, The Collaborative Software Process, Ph.D.
dissertation, University of Utah, 2000.

[3] J. Nosek, “The Case for Collaborative Programming”,
Communications of the ACM, 41(3), 1998, pp. 105-108.

[4] J. Vanhanen and C. Lassenius, Effects of Pair Program-
ming at the Development Team Level: An Experiment, In
Proceedings of the International Symposium on Empirical
Software Engineering (ISESE2005), 2005.

[5] A. Cockburn and L. Williams, The Costs and Benefits of
Pair Programming, In Extreme programming examined, Ad-
dison-Wesley, 2001, pp. 223-243.

[6] J. Nawrocki and A. Wojciechowski, Experimental
Evaluation of Pair Programming, In Proceedings of the 12th
European Software Control and Metrics Conference, 2001,
pp. 269-276.

[7] M. Rostaher and M. Hericko, Tracking Test First Pair
Programming – An Experiment, Extreme Programming and
Agile Methods - XP/Agile Universe 2002, pp. 174-184.

[8] J. Wilson, N. Hoskin, and J. Nosek, The Benefits of Col-
laboration for Student Programmers, In Proceedings of the
24th SIGCSE Technical Symposium on Computer Science
Education, 1993, pp. 160-164.

[9] K. Beck, Extreme Programming Explained, Addison-
Wesley, 2000.

[10] M. Cusumano, A. MacCormack, C.F. Kemerer and B.
Crandall, “Software Development Worldwide: The State of
the Practice”, IEEE Software, 20(6), 2003, pp. 28-34.

[11] H. Gallis, E. Arisholm, and T. Dybå, An Initial Frame-
work for Research on Pair Programming, In Proceedings of
the International Symposium on Empirical Software Engi-
neering (ISESE2003), 2003.

[12] G. Luck, Subclassing XP: Breaking its rules the right
way, In Proceedings of the Agile Development Conference
(ADC’04), 2004.

[13] B. Greene, Agile Methods Applied to Embedded Firm-
ware Development, In Proceedings of the Agile Development
Conference (ADC’04), 2004.

[14] A. Pandey, N. Kameli and A. Eapen, Application of
Tightly Coupled Engineering Team for Development of Test
Automation Software – A Real World Experience, In Pro-
ceedings of the 27th Annual International Computer Software
and Applications Conference (COMPSAC’03), 2003.

[15] L. Williams, Extreme Programming Practices: What’s
on Top?, Agile Project Management, Executive Report,
12(5), Cutter Consortium, 2004.

[16] R. Gittins, S. Hope, and I Williams, Qualitative Studies
of XP in a Medium Sized Business, In Proceedings of the XP
2001 Conference, 2001.

[17] J. Aiken, “Technical and Human Perspectives on Pair
Programming”, ACM SIGSOFT Software Engineering Notes
29(5), 2004.

[18] J. Chong, Social Behaviors on XP and non-XP teams: A
Comparative Study, In Proceedings of the Agile Develop-
ment Conference (ADC’05), 2005.

[19] A.J. Dick and B. Zarnett, Paired Programming & Per-
sonality Traits, In Proceedings of the XP 2002 Conference,
2002.

[20] H. Sharp and H. Robinson, “An Ethnographic Study of
XP Practice”, Empirical Software Engineering, 9(1-2), 2004,
pp. 353-375.

[21] A. Belshee, Promiscuous Pairing and Beginner’s Mind:
Embrace Inexperience, In Proceedings of the Agile Devel-
opment Conference (ADC’05), 2005.

[22] S. Bryant, Double trouble: Mixing qualitative and quan-
titative methods in the study of eXtreme Programmers, In
Proceedings of the 2004 IEEE Symposium on Visual Lan-
guages and Human Centric Computing, 2004, pp. 55-61.

[23] M. Ally, F. Darroch, and M. Toleman, A Framework for
Understanding the Factors Influencing Pair Programming
success, In Proceedings of the XP 2005 Conference, 2005.

[24] R. Jensen, “A Pair Programming Experience”,
CrossTalk, 16(3), 2003, pp. 22-24.

[25] S. Bryant, P. Romero, and B. du Boulay, Pair program-
ming and the re-appropriation of individual tools for collabo-
rative programming, In Proceedings of the 2005 international
ACM SIGGROUP conference on Supporting group work,
2005.

[26] B. Tessem, Experiences in Learning XP Practices: A
qualitative Study, In Proceedings of the XP 2003 Confer-
ence, 2003.

[27] R.K. Yin, Case Study Research: Design and Methods,
2nd ed., Sage Publications, 1994.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

10
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

