
Publication V

Jari Vanhanen and Casper Lassenius. 2005. Effects of pair programming at the
development team level: An experiment. In: Lucila Carvalho (editor).
Proceedings of the 4th International Symposium on Empirical Software
Engineering (ISESE 2005). Noosa Heads, Queensland, Australia. 17-18
November 2005. IEEE. Pages 336-345. ISBN 0-7803-9507-7.

© 2005 Institute of Electrical and Electronics Engineers (IEEE)

Reprinted, with permission, from IEEE.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of
Aalto University's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

Effects of Pair Programming at the Development Team Level: An Experiment

Jari Vanhanen and Casper Lassenius
Helsinki University of Technology, Software Business and Engineering Institute

P.O. BOX 9210, FIN-02015 Finland
firstname.lastname@hut.fi

Abstract

We studied the effects of pair programming in a
team context on productivity, defects, design quality,
knowledge transfer and enjoyment of work. Randomly
formed three pair programming and two solo pro-
gramming teams performed the same 400-hour fixed-
effort project. Pair programming increased the devel-
opment effort of the first tasks considerably compared
to solo programming, but later the differences were
small. Due to this learning time the pair programming
teams had worse overall project productivity. Task
complexity did not affect the effort differences between
solo and pair programming. The pair programming
teams wrote code with fewer defects, but were less
careful in system testing, and therefore delivered sys-
tems with more defects. They may have relied too much
on the peer review taking place during programming.
Knowledge transfer seemed to be higher within the
pair programming teams. Finally, we also found weak
support for higher enjoyment of work in the pair pro-
gramming teams.

1. Introduction

Pair programming is an intensive form of collabora-
tion where two programmers design, code and test soft-
ware together at one computer [1]. It has been reported
that pairs produce better designs with fewer defects in
the code, in shorter elapsed time and more enjoyably
without using significantly more effort than solo pro-
grammers [2, 3]. Benefits for teamwork, knowledge
transfer and learning have also been proposed [4]. Im-
proved knowledge transfer decreases the risk of having
and losing critical persons and facilitates new persons
in becoming productive developers. If the increase in
the development effort is low or nonexistent, the reali-
zation of just some of the proposed benefits would
make pair programming affordable from a project’s or
organization’s viewpoint. Two economic models for
evaluating the feasibility of pair programming in dif-
ferent development projects have been proposed [5, 6,
7]. They contain variables such as effort difference,

quality difference, personnel cost and economic value
of shorter time to market. No experiences on using
these models have been reported.

The results of previous pair programming experi-
ments contain apparent contradictions [8] and have
mostly studied individuals and pairs doing small tasks
in isolation from other developers, i.e. in non-team
context. Our objective was to execute a well-planned
experiment where co-located teams develop a larger
piece of software using either pair programming or
solo programming, and as a result get more data on the
effects of pair programming.

Section 2 discusses earlier experiments. Section 3
presents our hypotheses and the experimental setting.
Section 4 presents and discusses the results of our ex-
periment. Section 5 evaluates the experiment. Conclu-
sions are drawn in Section 6.

2. Related work

Several pair programming experiments have been
reported in the software engineering literature. Below
we summarize the most relevant ones emphasizing
those similar to our experiment.

2.1. Experiments in non-team context

Most experiments have studied the effects of pair
programming on effort and quality when small, iso-
lated tasks were developed by pairs and individuals
working as isolated entities instead of in a team. Effort
increases of about 100% have been reported in [9, 10,
11], a 42% increase in [3], and a 60% increase for the
first task followed by a 15% increase later in [2].

Improvements in quality based on defect count or
test case pass rate have been reported in [2, 3, 9, 12]. A
similar level of quality of the work results was ensured
only in [10] by measuring quality by the number of
resubmissions to acceptance testing until all tests
passed. No quality difference between pairs and indi-
viduals was found in [10], but the quality metric dif-
fered quite a lot from those used by other researchers.
These experiments propose that pair programming im-
proves quality but requires some extra effort.

336

0-7803-9508-5/05/$20.00 (c)2005 IEEE

2.2. Experiments in a team context

Three experiments [2, 13, 14] studied pair pro-
gramming in a team context on university courses.
They are summarized in Table 1 and described below.

Table 1. Experiments done in a team context

 Williams [2] Ciolkowski [13] Baheti [14]

Com-
parison PP vs. solo

PP vs. unsys-
tematic collabo-

ration
PP vs. solo

N 7 + 3 teams,
4 in a team

3 + 3 teams,
6 in a team

9 + 16 teams,
2-4 in a team

PP
training

effective pp
was taught

some material
was given ?

Sw size ? ~4000LOC ?
Effort ? ~240h ?
Length 4 weeks 5 weeks 5 weeks

Results (PP vs. the other way)
Effort -28% 9% 3%

Quality -2% (passed
test cases)

smaller LOC
and coupling

factor

1% better
grade

The experiment which studied isolated pairs vs. in-

dividuals in [2] was continued by assigning two pairs
or four individuals to four-person teams performing
four-week projects [2 p. 77-78, 100-101]. The pairs
were formed based on with whom each student wanted
to work. The proportion of high, average and low per-
formers classified based on their GPA was similar
among pair programmers and solos. All teams contin-
ued using the same type of programming as before, i.e.
pair programmers were already familiar with pair pro-
gramming and partly also with each other. The pair
programming teams used 28% less effort, but passed
2% less test cases.

Ciolkowski and Schlemmer [13] had six-person stu-
dent teams spend 13 weeks and about 700 hours of
effort for the projects. However, the experiment cov-
ered only the programming phases lasting 5 weeks and
taking about 240 hours of effort. The researchers were
not able to evaluate quality using defect metrics, but
analyzed LOC and the coupling factor instead. These
metrics showed slightly better values for the pair pro-
gramming teams. The pair programming teams spent
9% more effort for the programming tasks (including
test case writing).

Baheti [14] studied pair programming with students
working in self-selected teams of 2-4 persons. Each
team chose whether they were going to use pair pro-
gramming or solo programming. Each team made one
of several available assignments during a 30-day pro-

ject. The pairs needed 3% more effort for writing the
same amount of LOC (14.8 vs. 15.2 LOC/h). The qual-
ity of the systems was evaluated by a teaching assistant
based on only a 30 minute demo. The pairs received
slightly better grades (93.6 vs. 92.4 on scale 0-110).

Compared to the experiments where individuals and
pairs worked as isolated entities doing small tasks, the
effort increase incurred by pair programming was
much smaller or even negative. Comparing quality is
hard due to the different metrics used, but it seems that
the quality improvements were smaller in the team
context. However, it may be that the smaller effort
used decreased the quality. None of the results of the
team experiments were statistically significant as can
be expected with such small numbers of teams.

2.3. Other experiments

Müller [15] made a slightly different experiment
comparing pair programming to solo programming
combined with code reviews using 27 experienced stu-
dents as the subjects. His results suggest that reviews
produce the same code quality to a slightly lower cost
than pair programming. The use of pair programming
on introductory programming classes has been studied
with hundreds of students at North Carolina State Uni-
versity [16, 17, 18] and University of California Santa
Cruz [19, 20]. The results show some improvements in
quality and some increase in the total effort.

2.4. Summary of previous work

In most experiments individuals and pairs worked
as isolated entities doing small, isolated tasks. There-
fore it is hard to generalize the results to industrial set-
tings, where large systems are developed by teams.
The experimental designs have been diverse between
studies, they have not been described accurately, and
some have contained deficiencies making their replica-
tion impossible or useless. LOC as a design quality
metric or evaluating software quality based on a short
demo are not reliable metrics. Comparing different
projects such as GUI building or development of an
algorithm may cause variation in the results. Allowing
the subjects to choose their partners and whether to use
pair or solo programming differs from a randomized
setting.

Probably due to all these differences and deficien-
cies the results of previous pair programming studies
are quite varying and especially the results about the
additional effort required differ considerably. More
experiments using improved and accurately reported
experimental designs are clearly needed. Next we de-
scribe our experiment, in which we tried to address
some of the above shortcomings.

337

3. Research design

The research consisted of an experiment whose de-
sign we describe below. Then we present the hypothe-
ses we aimed to study. We considered the guidelines
for empirical research by Kitchenham et al. [21] when
planning and reporting this experiment.

3.1. Experimental setting

Five teams of four developers did a similar project
using the same development process, work practices,
tools, and specifications. The experiment had a one-
factor randomized design [22], where the factor was
the type of programmer collaboration. Three teams
used pair programming (PP) and two solo program-
ming (SP). The PP teams had to use pair programming
for all development work whereas the SP teams were
not allowed to use pair programming for more than
occasional collaboration, i.e. not for implementing
whole use cases together. Pair programming was
taught to the PP teams on a one-hour lecture.

The experiment was conducted as a non-compulsory
J2EE course in the spring of 2004. We had twenty par-
ticipants, all at least 4th year computer science students
at Helsinki University of Technology. Their program-
ming experience was 1.5-10 years (avg. 4.7), of which
1-6 years (avg. 2.2) was using Java. Their average
grade from previous programming courses was 3.9 on
a scale from 1-5 (5=best), and they all considered
themselves average or better programmers compared to
their fellow students.

We ranked the participants by their programming
skills, i.e., the effort spent on two J2EE programming
assignments, previous programming experience, aver-
age grade from programming courses, and their per-
sonal opinion on their skills compared to fellow stu-
dents. We formed the teams randomly so that all teams
had one person from each quartile of the ranking. Fi-
nally we randomly selected whether a team should use
pair programming or solo programming. The require-
ment of using pair programming by random partici-
pants was mentioned in advance.

The course began with a two-week J2EE training
period (about 15h of lectures) followed by a nine-week
project. The course was evaluated on a pass/fail scale.
Passing required participation in the J2EE training,
working 100h for the project, following certain work
practices and answering three questionnaires.

The project included developing, testing and deliv-
ering a distributed, multi-player casino system using
the J2EE technologies as described in a requirements
specification containing, e.g., use case descriptions and
HTML layouts for the web user interface. The teams
were given a 10-page technical specification and a core

architecture implementation including examples of
suitable J2EE design patterns and a build script. The
development tools used were Eclipse 3, J2EE 1.4 SDK,
XDoclet, JBOSS with Tomcat, Hypersonic SQL, CVS
and Ant.

The project effort was fixed to 400 hours, i.e., 100h
per person. Everyone had to spend at least 75% of the
effort in co-located team sessions lasting 4-8 hours.
The project consisted of a one-week project planning
phase followed by two four-week implementation it-
erations. The teams had to follow work practices such
as iteration planning, collective ownership, version
control, coding standard, continuous refactoring, unit
testing, system testing, time reporting, defect reporting,
and documenting. The prioritized project goals were
to: 1) follow the defined work practices, 2) minimize
the amount of defects, 3) implement as many use cases
as possible, and 4) avoid wasting effort on activities
that do not directly contribute to the project.

3.2. Hypotheses

We derived a set of hypotheses to be studied in the
context of comparing PP teams to SP teams. The hy-
potheses were derived mostly based on the literature
but also on what we have personally learned from dis-
cussions with industrial developers who have used pair
programming in their work.

3.2.1. Productivity. We define productivity as the
amount of work results divided by the effort spent.
Project productivity is the sum of the implemented use
cases divided by all effort spent for the project. Use
case productivity is the inverse of the development
effort (designing, coding, unit testing, bug fixing and
documenting the code) of a use case.

H 1.1: The PP teams have lower use case productiv-
ity than the SP teams.

Previous research [2, 3, 9, 10, 11] has found an in-
crease of 15-100% in the programming effort when
using pair programming without a team context for
small, separated tasks.

H 1.2: Higher use-case complexity favors PP teams
as measured on use case productivity.

Williams and Kessler propose using pair program-
ming at least for complex tasks [1]. We have heard
from many practitioners that pair programming is quite
useless for trivial tasks but helpful for complex tasks.

We estimated the use case complexity by the opin-
ions of the solo developers who implemented the use
cases. Their opinions reflect the complexity as per-
ceived when using the traditional way of programming.

H 1.3: The PP teams have higher project productiv-
ity than the SP teams.

Even though pair programming may cause some

338

additional effort for a programming task, it may in-
crease the overall project productivity because some
proposed benefits of pair programming, such as better
knowledge transfer, are likely to become more signifi-
cant in a project team context.

Previous experiments [2, 13, 14] have found a dif-
ference between -28% and 9% in the project effort
when comparing pair to solo programming. The worst
result (9%) was reported in [13], but only the effort
spent for the programming phase was analyzed, which
may disregard some of the project level benefits of pair
programming.

In our experiment all teams spent the same total ef-
fort. The effort data was reported per use case or other
tasks such as system testing using a web-based system.
The amount of work results was measured as the
amount of successfully implemented use cases. All
teams implemented the use cases in the same order.
We tested the systems after delivery in order to ensure
that the use cases were implemented without major
defects and to count the number of defects.

The quality of work results must be similar in order
for the productivity comparison to make sense. Be-
cause a developer makes the final decision of the
readiness and quality of a piece of code, we urged them
to aim for high and thus hopefully similar quality.

3.2.2. Defects.

H 2.1: After coding and unit testing the PP teams
have fewer defects than the SP teams.

H 2.2: After system testing and bug fixing the PP
teams have fewer defects than the SP teams.

Several experiments report smaller defect counts for
pair programming [2, 3, 9, 12]. In our experiment each
team had to report all defects found related to a use
case after the unit testing and corresponding fixing of
the use case had been performed. The defects in the
delivered systems were counted based on a standard-
ized system testing round performed by a researcher.

3.2.3. Design quality.

H 3.1: The PP teams create better software design
than the SP teams.

Previous studies propose that pair programming im-
proves design quality [2, 10], but the claim has been
mostly based on a smaller value of LOC, which is quite
controversial as a metric of design quality, because
fewer lines of code is not always better. In [13] the
coupling factor metric was additionally analyzed and
showed a slightly smaller value for the PP teams’ code.
We have heard practitioners report that pair program-
ming produces more understandable code.

In our experiment the core architecture, which we
gave to the teams largely defined the system level de-
sign. Therefore we analyzed design quality on the

method level, which should be less affected by the core
architecture than the system level design. We used
NCLOC per method to characterize the method size,
McCabe’s cyclomatic complexity [23], i.e., the number
of flows through a method to describe the method
complexity, and the number of parameters to tell how
much information is passed to the method. Reasonably
small values for these metrics typically indicate good
design.

3.2.4. Knowledge transfer. Both the breadth and
depth of the understanding of a system can be ana-
lyzed. Depth characterizes how well a person under-
stands a certain module and breadth how many mod-
ules a person understands at some depth. The under-
standing can be analyzed also from the perspective of a
module, e.g., how many persons understand a module
at some depth.

H 4.1: In the PP teams each developer understands
more modules well than in the SP teams.

H 4.2: In the PP teams more developers understand
each module well than in the SP teams.

Williams and Kessler propose that pair program-
mers, especially if the pairs are rotated, know more
about the overall system [1], but we have not seen any
studies on this.

When pair programming is used, tasks (use cases in
our experiment) are allotted to only half the number of
worker units (pairs) compared to solo programming.
Therefore in a PP team each developer participates in
twice as many tasks as in an SP team, if the same tasks
are completed in both teams. This distributes a devel-
oper’s involvement in the development of different
modules more broadly in a PP team.

 The amount of involvement surely affects the depth
of a developer’s understanding of a module. The ac-
quired depth of understanding with the same amount of
involvement may differ between solo programming
and pair programming. Pair programmers may learn
from their partner and acquire deeper understanding
than when working alone. However, a passive partner
may acquire only a shallow understanding.

We asked the developers’ involvement in and un-
derstanding of the modules after the project using a
web questionnaire.

3.2.5. Enjoyment of work.

H 5.1: In the PP teams developers enjoy their work
more than in the SP teams.

It has been reported that most developers like pair
programming [1]. Some developers have told us that
developing critical systems with a pair increases their
confidence in the code reducing work-related stress.

We asked the developers’ feelings about pair pro-
gramming after the project using a web questionnaire.

339

4. Results and discussion

All five teams finished the projects according to the
schedule and spending the required 400 hours. How-
ever, one of the PP teams abandoned rigorous pair pro-
gramming without notice in the middle of the project
because they considered it inefficient. Their productiv-
ity compared to the other groups did not change no-
ticeably after they started to use pair programming
only sporadically, and the team was the least successful
team based on the amount of use cases they completed.
Their data was removed from the analysis, because
they were neither a true PP nor SP team.

4.1. Productivity

Both SP teams finished more use cases than the PP
teams as shown in Table 2. The differences in the
amounts of implemented use cases are enlarged by the
smaller effort required for implementing the latter use
cases (see Figure 1). Therefore we estimated the size of
the systems by summing up the sizes of implemented
use cases. The size of a use case was estimated by the
median of the effort different teams spent on imple-
menting it. Based on the system sizes the PP teams had
29% lower project level productivity than the SP
teams. This corresponds to 40% ((266-190)/190)
higher effort refuting H 1.3.

Table 2. The sizes of the systems (µ=mean)

 PP1 PP2 SP1 SP2 µPP µSP PP vs. SP

use cases (#) 20 10 25 27 15 26 -42%
system size
(sum of use
case sizes)

226 154 258 273 190 266 -29%

The reason for the lower productivity can be seen in

Figure 1. Both of the PP teams performed very poorly
when implementing the first three (PP2) or four (PP1)

use cases. Thereafter the differences between the PP
and SP teams are minimal. Actually, PP1 spent less
effort than either of the SP teams for their last use
cases (17-20). Of course, when spending lots of effort
on the first use cases, the PP teams may have learned
something that helped them with the later ones.

Table 3 shows the efforts for certain subsets of the
use cases. For use cases 1-10, which were implemented
by all four teams, the PP teams used on average 44%
more effort than the SP teams. If we ignore use cases
1-4, where the PP teams performed poorly, the PP
teams used 5% less effort than the SP teams.

Table 3. The efforts for subsets of use cases

Use cases µPP µSP PP vs. SP
1-10 191h 133h +44%
1-4 121h 59h +107%

5-10 70h 74h -5%

The SP teams spent slightly more effort on general
bug fixing, some of which was probably related to cer-
tain use cases but is ignored in Table 3. There was al-
most no difference in the amount of effort spent for
non-implementation tasks meaning that the effects of
pair programming to the project’s productivity were
based on the differences in the use case efforts.

A similar inefficient learning time was reported in
[2] where the pairs spent 60% more effort for the first
and 15% more for the later assignments with the same
pair. In [13] the effort increase was 9% in both studied
iterations indicating no learning effect, but the reason
may be that the developers had worked as a team for
several weeks before the observed iterations. In our
experiment four use cases were needed before every-
one had pair programmed with everyone once, which
can explain the poor performance of the PP teams with
the first three or four use cases. If we ignore these use
cases, pair programming required the same or smaller
effort than solo programming refuting H 1.1.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
use case

ef
fo

rt
 (h

)

PP1 PP2 SP1 SP2

Figure 1. The efforts spent on individual use cases

340

The diamonds in Figure 2 show the complexity of
each use case as evaluated by the solo programmers
(1=very easy, 5=very difficult). The squares show the
ratio between the efforts used by the SP teams vs. PP
teams. For example, 0.5 means that the SP teams used
half the effort of the PP teams and 2.0 means doubled
effort. There is no Pearson correlation (r=-0.02) be-
tween complexity and effort difference refuting H 1.2.
This finding contradicts with the results in [1] and the
opinion of most pair programmers with whom we have
talked. It may be that the feeling of usefulness of pair

programming comes from the assumed higher resulting
quality, and thus developers’ opinions are not solely
based upon effort differences. The researchers of the
social facilitation theory dealing with the impact of
social presence on individual performance have found
that social facilitation effects impair performance in
case of complex tasks [24]. These studies have focused
on studying persons who are not familiar with each
other, which was also the case in the beginning of our
experiment, when the pairs performed poorly.

0.7

2.4

0.6
0.9

2.0

0.70.80.8

5.3

0.50.4 0.5 0.4

1.1 1.2 1.2 1.2

4.65.0

0.6

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
use case

co
m

pl
ex

ity

0.1

1.0

10.0

SP
/P

P
ef

fo
rt

(lo

g.
 s

ca
le

)

complexity effort

Figure 2. Perceived complexity of a use case vs. effort ratio between the SP and PP teams

4.2. Defects

Pre-delivery defects are defects found by the team
during system testing at the end of an iteration or dur-
ing development if the defect was related to a use case,
which the responsible developer/pair considered to be
ready. Post-delivery defects are defects found by an
external tester after delivery. Defect density per im-
plemented use case and absolute amounts of defects
are listed in Table 4. The number of use cases for the
PP2 team is larger than in Table 2 because two use
cases were not accepted due to major defects.

Table 4. The defect densities of the systems

 PP1 PP2 SP1 SP2 µPP µSP PP vs. SP
use cases 20 12 25 27

pre-delivery 0.95
(19)

0.75
(9)

1.60
(40)

0.78
(21) 0.85 1.19 -29%

post-delivery 0.30
(6)

0.33
(4)

0.12
(3)

0.04
(1) 0.32 0.08 303%

sum 1.25
(25)

1.08
(13)

1.72
(43)

0.81
(22) 1.17 1.27 -8%

The SP teams found more pre-delivery defects than

the PP teams. The numbers are affected by both the
total number of defects in the software and the effec-
tiveness of finding them. The effectiveness may have
differed even though the total effort for system testing
between the teams was similar. The post-delivery de-
fects were found in standardized testing of all systems.

Therefore the sum of both defect types is our best es-
timate of the total defect count in the code when the
responsible developer(s) considered it ready. To con-
clude pair programmers made 8% less defects to the
code during the development supporting H 2.1.

Interestingly, after delivery the PP teams had con-
siderably more defects than the SP teams, refuting H
2.2. The reason was described above, i.e. the SP teams
found and fixed more defects before delivery. The per-
centage difference is huge, because the absolute
amounts of post-delivery defects were so small. The
small number is partially explained by the focus of the
post-delivery system testing on the basic functionality
and common error situations instead of more exotic
error situations, which the teams themselves tested.
Probably the PP teams had a less careful attitude to-
wards system testing due to relying too much on the
peer review during pair programming.

4.3. Design quality

We analyzed the source codes using the Metrics
plug-in for Eclipse. Table 5 shows the metrics for the
core architecture and delivered systems. The NCLOC
metric contains only non-blank, non-commented lines
inside method bodies. The systems contained addi-
tional 4200-5600 lines of comments mostly intended
for generating J2EE bean classes automatically by a
tool. Generated code is excluded from the metrics, but
the code for the core architecture is included, because
it cannot be separated from the rest of the code.

341

All the method level metrics show slightly better
average values for the PP teams. However, it seems
that the values correlate with NCLOC, which was natu-
rally higher for the SP teams, who implemented more
use cases. The core architecture had a good design, but
when more code was written on top of it, the less the
original code affected the metrics. Therefore it is hard
to say whether the smaller values are due to the smaller
NCLOC or due to the use of pair programming.

Table 5. The code metrics of the systems

Metric Core PP1 PP2 SP1 SP2
System level metrics
Use cases 0 20 12 25 27
Methods 202 565 525 643 704
NCLOC 1022 4180 2635 4956 5550
Method level metrics
NCLOC (avg.) 4.82 7.16 4.96 7.61 7.67
McCabe CC (avg.) 1.69 2.25 1.71 2.35 2.36
Parameters (avg.) 0.72 0.72 0.64 0.73 0.80
Proportion of bad methods (%)
NCLOC > 50 0.0 2.1 0.8 2.3 2.3
McCabe CC > 10 0.5 2.3 1.0 2.5 2.3
Parameters > 5 1.0 1.8 0.8 0.8 0.6

Analyzing the proportion of bad methods should be

less dependent on the size of the software. The propor-
tion of very long methods is smaller for the PP teams.
The proportion of complex methods is clearly smallest
for PP2, but for other teams there are no differences.
The proportion of methods with a long parameter list is
clearly best for SP2 and worst for PP1.

The differences between the PP and SP teams de-
pend on the metric used and the metrics may be af-
fected by the size of the analyzed system. Thus, we
cannot say anything conclusive regarding H 3.1.

4.4. Knowledge transfer

All 16 developers evaluated their involvement in the
development of each Java package and their under-
standing of the internal structure of the packages using
the scale shown in Table 6. All systems contained the
same packages originating from the core architecture.

The involvement and understanding correlated
(Spearman’s rho > 0.5, significance level 0.01,
2-tailed) for eight of the ten packages. The number of
persons involved at least “quite a lot” in the develop-
ment of a package was higher in the PP teams for six
packages, the same for two, and lower for two pack-
ages. In the PP teams, on average 1.3 of 4 developers
were involved at least “quite a lot” in the development
of each package, compared to 1.1 in the SP teams.

Table 6 shows the number of packages that the de-

velopers on the average understood on at least a certain
depth. The differences between the PP and SP teams
are quite small and depend on the chosen threshold for
understanding. The developers in the PP teams under-
stood well, i.e. answered 4 or 5, 32% (4.5 vs. 3.4) more
packages. This supports H 4.1, but the situation
changes for the other thresholds.

Table 6. The understanding of the packages

Number of packages Depth of
 understanding PP (avg.) SP (avg.)
 =very much (5) 0.8 1.0
>=quite a lot (4) 4.5 3.4
>=some (3) 6.9 7.1
>=little (2) 8.9 8.5
>=none (1) 10 10

Next we analyzed how many developers understood

well each individual package. The PP teams had a lar-
ger value for seven packages, the same for two and
lower for one. In the PP teams, on average 1.8 of 4
developers understood each package well compared to
1.4 in the SP teams. This result supports H 4.2.

According to the Mann-Whitney U-test [25] none of
the differences between pair and solo programmers
presented below were statistically significant. This was
quite natural due to the small sample size.

4.5. Enjoyment of work

The enjoyment of the developers about the way
their team did the development work on a scale of “1-It
was terrible” to “5-I liked it a lot” are shown in Table
7. The SP2 team had the most satisfied developers.
However, seven developers in the PP teams liked the
way they worked (answered 4-5) compared to only five
in the SP teams. This gives some support for H 5.1.

Table 7. The enjoyment of work

 PP1 PP2 SP1 SP2
Enjoyment 4, 4, 4, 5 2, 4, 4, 5 2, 2, 3, 4 5, 5, 5, 5

Table 8. The feelings about pair programming

Which do you … PP SP Neutral
like more? 3 4 1
consider better for the overall
success of this kind of a project? 2 5 1

Two other questions were also asked (Table 8).

Three of the eight developers in the PP teams preferred
pair programming and four solo programming. How-
ever, in this kind of a project only two considered pair
programming the more successful choice.

342

5. Evaluation of the experiment

The strengths of the experiment and the threats to
the validity of the results are discussed next. Though
we aimed at performing a well-defined experiment as
carefully as possible, several threats to both internal
and external validity remain.

5.1. Strengths of the experimental design

The experiment was done in a context of a co-
located team and a moderately large project compared
to the other experiments. The requirement of co-
location for all teams is important, because it alone
may increase knowledge transfer within a team consid-
erably. It also enforces simultaneous work between the
developers thus increasing realism.

The participants represented quite well industrial
professionals. Their programming experience was on
average 4.7 years and many had experience of profes-
sional software development. Also due to the voluntary
participation and content of the course, the participants
were especially motivated and skilled programmers.

The project topic and technologies enticed quite
many students to the rather laborious course. The J2EE
training and the core architecture allowed the students
to start real work quite soon, and there were almost no
problems related to the requirements specification,
architecture, or any other materials.

The only comparable experiment whose experimen-
tal setting has been orderly planned and reported is
[13]. However, it analyzed only the programming
phases of the project, not including, e.g., design activi-
ties. They also failed to study any defect metrics. In [2]
the results of the team experiment were reported very
shortly, and in [14] neither a randomized study design
was used nor similar projects done by the different
teams. All the other previous studies have concentrated
on observing pairs as isolated entities.

5.2. Threats to internal validity

The teams had balanced average skill levels, but the
project productivity and the experience of the most
experienced developer in a team correlated highly. A
very skilled developer may have a huge effect in a pro-
ject that includes learning challenging new technology.

The participants were not fully controlled by the re-
searchers during the project. This may have affected
their discipline in following the development practices.
It has also been proposed that pair programmers are
more disciplined in following the process, which might
cause some differences between the PP and SP teams.

Reporting effort for a certain use case was not nec-
essarily uniform. Some consecutive use cases were

slightly related to each other and thus some work may
have contributed to several use cases. Bug fixing and
re-testing effort was also reported in a slightly different
way. These issues do not affect the project productivity
analysis, but may have introduced a small error for the
productivity analysis of individual use cases.

The productivity of the PP teams probably changed
during the project in a different way than that of the SP
teams due to inefficient learning time and better
knowledge transfer in the PP teams. This may have
caused inaccuracy to the analysis of the correlation
between use case complexity and the pair program-
ming efficiency.

Acceptance testing was done by a researcher, who
knew how many defects the teams themselves had
found and whether a system was done by a PP or SP
team. However, possible bias in testing was minimized
because the same test cases were run for all systems as
equally as possible, the only difference being caused
by the random outputs of the games.

Evaluating design quality with code metrics may
have been unreliable, especially because the compared
systems contained different amounts of functionality.
There is no common understanding of which code met-
rics best reflect good design, and code metrics may be
awkwardly affected by the size of the software. The
core architecture also certainly affected the metrics.

The questionnaire about the involvement in and un-
derstanding of the packages was made in the end of the
projects using a web form listing all the packages. The
students were asked to answer the inquiry carefully,
but we do not know how careful they were and, e.g., if
they checked the code when answering. The scale may
also have been interpreted in a different way, e.g., the
respondents may have compared themselves to the
other team members. It would have been more reliable
to arrange an objective test of understanding and cross-
check the involvement from the time reporting data.

5.3. Threats to external validity

The requirement to use pair programming for all
development work was not the most natural and possi-
bly also not the most useful choice. The optimal
amount of pair programming may be anywhere be-
tween using it for all development tasks by everyone
and not using it at all. Pair programming was taught to
the students but we did not observe how actively they
changed roles and communicated during the pair pro-
gramming sessions. For example, Dick and Zarnett
report about a case where switching roles did not work
despite of frequent intervention by the team coach [26].

In our experiment all teams were having a kind of a
meeting whenever they had a team development ses-
sion and there were not any external co-workers

343

around disturbing them. In a typical industrial setting
pair programming may decrease the amount of inter-
ruptions by other people compared to when a person is
working alone, but this effect probably did not show up
in our experiment

We do not know how well the team members knew
each other and what kind of personalities they were.
Both of these variables may have affected the success
of the teams. Potential participants knew before enter-
ing the course that half of the participants must use pair
programming, which may have kept away people who
are strongly against pair programming.

The results are not statistically significant due to the
low number of teams and high variations in the re-
sponse variables within the SP and PP teams

6. Conclusions

This work studied the effects of pair programming
on development effort, software quality, knowledge
transfer and enjoyment of work. The results certainly
shed some more light on the topic, even though this
experiment, like all the previous ones, contained sev-
eral deficiencies such as the small sample size. Hope-
fully this work invites others to execute even better
pair programming experiments.

The PP teams had 29% lower project productivity
than the SP teams. However, the reason was the con-
siderably larger effort they spent for the first three or
four use cases. The inefficiency was probably caused
by the learning time involved in getting familiar with
new people and with the pair programming practice.
Later in the projects the PP teams spent 5% less effort
than the SP teams for implementing the use cases. If
the inefficient learning time is not taken into account,
the productivity of the PP teams seems to be equal to
that of the SP teams. In a typical software development
organization the learning time can usually be neglected
because most people already know each other and at
least after the first pair programming project are famil-
iar with pair programming. Even if there were still
some learning time involved, the cost of a day or two
per developer for learning is insignificant. The claim
that pair programming is most useful with complex
tasks was not supported by this experiment, at least
from the perspective of the required effort.

The code written by pair programmers contained
8% less defects per use case when the responsible de-
velopers considered the code ready. However, the SP
teams were much more successful in finding and fixing
the defects, and in the end of the project they delivered
systems with a lower number of defects per use case.
This indicates that pair programmers write code with
fewer defects, but this benefit may be lost unless care-
ful system testing is performed.

The PP teams had slightly better design quality
based on the method size and complexity metrics.
However, the reason may be the potential correlation
between software size and these code metrics. The PP
teams delivered systems with less functionality, and
therefore these metrics may show better values for
them.

In the PP teams developers generally had high in-
volvement in more packages than in the SP teams.
Probably related to this, there were generally more
developers (1.8 vs. 1.4) in the PP teams with good un-
derstanding of each package, and each developer un-
derstood more packages (4.5 vs. 3.4) well. This indi-
cates better knowledge transfer within the PP teams.

Even though about half of the developers in the PP
teams enjoyed solo programming more than pair pro-
gramming (and about half vice versa) most developers
still liked working in the PP teams. Thus developers’
feelings toward pair programming should not hinder its
deployment. However, the team which was removed
from the analysis abandoned the use of pair program-
ming against the rules of the experiment, which sug-
gests that they were strongly against pair programming
after a couple of weeks of experimenting with it. The
reason may be that pair programming really was an
unsuitable practice for this team, but another reason,
backed up by the fact that their productivity did not
improve later, may be that the frustration about their
slow progress led them to consider pair programming
as a new practice as the main cause for their problems.

It seems that the use of pair programming leads to
fewer defects in code after coding and better knowl-
edge transfer within the development team without
requiring additional effort if the learning time can be
avoided. These benefits are likely to decrease the fur-
ther development costs of the system and increase an
organization’s productivity due to improved compe-
tence of the developers.

In the future we will package the materials of the
experiment and publish them on the web in order to
provide help for those interested in replicating the ex-
periment. With only minor modifications the package
can be used for studying other development practices,
such as test driven development. We are planning im-
proving the experiment and replicating it with a greater
number of students.

Our research on pair programming will continue by
performing case studies at companies using pair pro-
gramming. In companies it is very challenging to ar-
range even quasi-experiments, but on the other hand
case studies can give valuable qualitative information
on, e.g., how pair programming should be practiced in
industry.

344

References
[1] L. Williams and R. Kessler, Pair Programming Illumi-
nated, Addison-Wesley, Boston, 2002.

[2] L. Williams, “The Collaborative Software Process”,
Ph.D. dissertation, University of Utah, 2000.

[3] J. Nosek, “The Case for Collaborative Programming”,
Communications of the ACM, 41(3), 1998, pp. 105-108.

[4] A. Cockburn and L. Williams, “The Costs and Benefits of
Pair Programming”, In Extreme programming examined,
Addison-Wesley, Boston, 2001, pp. 223-243.

[5] L. Williams and H. Erdogmus, “On the Economic Feasi-
bility of Pair Programming”, In International Workshop on
Economics-Driven Software Engineering, 2002.

[6] F. Padberg and M.M. Müller, “Analyzing the Cost and
Benefit of Pair Programming”, In Proceedings of the Soft-
ware Metrics Symposium, 2003, pp. 166-177.

[7] F. Padberg and M.M. Müller, “Modeling the Impact of a
Learning Phase on the Business Value of a Pair Program-
ming Project”, In Proceedings of the 11th Asia-Pacific Soft-
ware Engineering Conference, 2004, pp. 142-149.

[8] H. Gallis, E. Arisholm and T. Dybå, “An Initial Frame-
work for Research on Pair Programming”, In Proceedings of
the 2003 International Symposium on Empirical Software
Engineering, 2003, pp. 132-142.

[9] E. Arisholm, “Design of a controlled experiment on pair
programming”, ISERN 2002 Annual Meeting, [online] 2002,
http://fc-md.umd.edu/projects/Agile/ISERN/Arisholm.ppt
(Accessed: 21 April 2005).

[10] J. Nawrocki and A. Wojciechowski, “Experimental
Evaluation of Pair Programming”, In Proceedings of the 12th
European Software Control and Metrics Conference, 2001,
pp. 269-276.

[11] M. Rostaher and M. Hericko, “Tracking Test First Pair
Programming – An Experiment”, In Extreme Programming
and Agile Methods - XP/Agile Universe 2002, 2002, pp. 174-
184.

[12] J. Wilson, N. Hoskin and J. Nosek, “The Benefits of
Collaboration for Student Programmers”, In Proceedings of
the 24th SIGCSE Technical Symposium on Computer Science
Education, 1993, pp. 160-164.

[13] M. Ciolkowski and M. Schlemmer, “Experiences with a
Case Study on Pair Programming”, In Workshop on Empiri-
cal Studies in Software Engineering, 2002.

[14] P. Baheti, E. Gehringer and D. Stotts, “Exploring the
Efficacy of Distributed Pair Programming”, In Extreme Pro-
gramming and Agile Methods - XP/Agile Universe 2002,
2002, pp. 208-220.

[15] M.M. Müller, “Are Reviews an Alternative to Pair Pro-
gramming?”, Empirical Software Engineering, 9(4), 2004,
pp. 335-351.

[16] C. McDowell, H. Bullock, J. Fernald and L. Werner,
“The Effects of Pair-Programming on Performance in an
Introductory Programming Course”, ACM SIGCSE Bulletin,
34(1), 2002, pp. 38-42.

[17] C. McDowell, B. Hanks and L. Werner, “Experimenting
with Pair Programming in the Classroom”, In Proceedings of
the 8th Annual Conference on Innovation and Technology in
Computer Science Education, 2003, pp. 60-64.

[18] C. McDowell, L. Werner, H. Bullock and J. Fernald,
“The Impact of Pair Programming on Student Performance,
Perception, and Persistence”, In Proceedings of the 25th
International Conference on Software Engineering, 2003, pp.
602-607.

[19] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe, K.
Yang, C. Miller and S. Balik, “Improving the CS1 Experi-
ence with Pair Programming”, ACM SIGCSE Bulletin, 35(1),
2003, pp. 359-362.

[20] B. Hanks, C. McDowell, D. Draper and M. Krnjajic,
“Program quality with pair programming in CS1”, In Pro-
ceedings of the 9th annual SIGCSE conference on Innovation
and technology in computer science education, 2004, pp.
176-180.

[21] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D.
Hoaglin, K. El Emam and J. Rosenberg, “Preliminary guide-
lines for empirical research in software engineering”, IEEE
Transactions on Software Engineering, 28(8), 2002, pp. 721-
734.

[22] N. Juristo and A.M. Moreno, Basics of Software Engi-
neering Experimentation, Kluwer Academic Publishers,
2001.

[23] T. McCabe, “A Software Complexity Measure”, IEEE
Transactions on Software Engineering, 2(4), 1976, pp. 308-
320.

[24] J. Aiello and E. Douthitt, “Social Facilitation from
Triplett to Electronic Performance Monitoring”, Group Dy-
namics: Theory, Research and Practice, 5(3), 2001, pp. 163-
180.

[25] S. Siegel, Nonparametric statistics for the behavioral
sciences, McGraw-Hill Kogakusha, 1956.

[26] A.J. Dick and B. Zarnett, “Paired Programming & Per-
sonality Traits”, In Proceedings of Extreme Programming
and Agile Processes in Software Engineering, 2002, pp. 82-
85.

345

