
Publication V 

Jari Vanhanen and Casper Lassenius. 2005. Effects of pair programming at the 
development team level: An experiment. In: Lucila Carvalho (editor). 
Proceedings of the 4th International Symposium on Empirical Software 
Engineering (ISESE 2005). Noosa Heads, Queensland, Australia. 17-18 
November 2005. IEEE. Pages 336-345. ISBN 0-7803-9507-7. 

© 2005 Institute of Electrical and Electronics Engineers (IEEE) 

Reprinted, with permission, from IEEE. 

This material is posted here with permission of the IEEE. Such permission of 
the IEEE does not in any way imply IEEE endorsement of any of  
Aalto University's products or services. Internal or personal use of this  
material is permitted. However, permission to reprint/republish this  
material for advertising or promotional purposes or for creating new collective 
works for resale or redistribution must be obtained from the IEEE by writing to 
pubs-permissions@ieee.org. 

By choosing to view this document, you agree to all provisions of the copyright 
laws protecting it. 



Effects of Pair Programming at the Development Team Level: An Experiment

Jari Vanhanen and Casper Lassenius 
Helsinki University of Technology, Software Business and Engineering Institute 

P.O. BOX 9210, FIN-02015 Finland 
firstname.lastname@hut.fi 

 
  

Abstract 

We studied the effects of pair programming in a 
team context on productivity, defects, design quality, 
knowledge transfer and enjoyment of work. Randomly 
formed three pair programming and two solo pro-
gramming teams performed the same 400-hour fixed-
effort project. Pair programming increased the devel-
opment effort of the first tasks considerably compared 
to solo programming, but later the differences were 
small. Due to this learning time the pair programming 
teams had worse overall project productivity. Task 
complexity did not affect the effort differences between 
solo and pair programming. The pair programming 
teams wrote code with fewer defects, but were less 
careful in system testing, and therefore delivered sys-
tems with more defects. They may have relied too much 
on the peer review taking place during programming. 
Knowledge transfer seemed to be higher within the 
pair programming teams. Finally, we also found weak 
support for higher enjoyment of work in the pair pro-
gramming teams. 

 

1. Introduction 

Pair programming is an intensive form of collabora-
tion where two programmers design, code and test soft-
ware together at one computer [1]. It has been reported 
that pairs produce better designs with fewer defects in 
the code, in shorter elapsed time and more enjoyably 
without using significantly more effort than solo pro-
grammers [2, 3]. Benefits for teamwork, knowledge 
transfer and learning have also been proposed [4]. Im-
proved knowledge transfer decreases the risk of having 
and losing critical persons and facilitates new persons 
in becoming productive developers. If the increase in 
the development effort is low or nonexistent, the reali-
zation of just some of the proposed benefits would 
make pair programming affordable from a project’s or 
organization’s viewpoint. Two economic models for 
evaluating the feasibility of pair programming in dif-
ferent development projects have been proposed [5, 6, 
7]. They contain variables such as effort difference, 

quality difference, personnel cost and economic value 
of shorter time to market. No experiences on using 
these models have been reported. 

The results of previous pair programming experi-
ments contain apparent contradictions [8] and have 
mostly studied individuals and pairs doing small tasks 
in isolation from other developers, i.e. in non-team 
context. Our objective was to execute a well-planned 
experiment where co-located teams develop a larger 
piece of software using either pair programming or 
solo programming, and as a result get more data on the 
effects of pair programming. 

Section 2 discusses earlier experiments. Section 3 
presents our hypotheses and the experimental setting. 
Section 4 presents and discusses the results of our ex-
periment. Section 5 evaluates the experiment. Conclu-
sions are drawn in Section 6. 

2. Related work 

Several pair programming experiments have been 
reported in the software engineering literature. Below 
we summarize the most relevant ones emphasizing 
those similar to our experiment. 

2.1. Experiments in non-team context 

Most experiments have studied the effects of pair 
programming on effort and quality when small, iso-
lated tasks were developed by pairs and individuals 
working as isolated entities instead of in a team. Effort 
increases of about 100% have been reported in [9, 10, 
11], a 42% increase in [3], and a 60% increase for the 
first task followed by a 15% increase later in [2]. 

Improvements in quality based on defect count or 
test case pass rate have been reported in [2, 3, 9, 12]. A 
similar level of quality of the work results was ensured 
only in [10] by measuring quality by the number of 
resubmissions to acceptance testing until all tests 
passed. No quality difference between pairs and indi-
viduals was found in [10], but the quality metric dif-
fered quite a lot from those used by other researchers. 
These experiments propose that pair programming im-
proves quality but requires some extra effort. 
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2.2. Experiments in a team context 

Three experiments [2, 13, 14] studied pair pro-
gramming in a team context on university courses. 
They are summarized in Table 1 and described below. 

 
Table 1. Experiments done in a team context 

 Williams [2] Ciolkowski [13] Baheti [14] 

Com-
parison PP vs. solo 

PP vs. unsys-
tematic collabo-

ration 
PP vs. solo 

N 7 + 3 teams, 
4  in  a team  

3 + 3 teams, 
6 in a team 

9 + 16 teams,
2-4 in a team

PP 
training 

effective pp 
was taught 

some material 
was given ? 

Sw size ? ~4000LOC ? 
Effort ?  ~240h ? 
Length 4 weeks 5 weeks 5 weeks 

Results (PP vs. the other way) 
Effort -28% 9%  3% 

Quality -2% (passed 
test cases) 

smaller LOC 
and coupling 

factor  

1% better 
grade 

 
The experiment which studied isolated pairs vs. in-

dividuals in [2] was continued by assigning two pairs 
or four individuals to four-person teams performing 
four-week projects [2 p. 77-78, 100-101]. The pairs 
were formed based on with whom each student wanted 
to work. The proportion of high, average and low per-
formers classified based on their GPA was similar 
among pair programmers and solos. All teams contin-
ued using the same type of programming as before, i.e. 
pair programmers were already familiar with pair pro-
gramming and partly also with each other. The pair 
programming teams used 28% less effort, but passed 
2% less test cases.  

Ciolkowski and Schlemmer [13] had six-person stu-
dent teams spend 13 weeks and about 700 hours of 
effort for the projects. However, the experiment cov-
ered only the programming phases lasting 5 weeks and 
taking about 240 hours of effort. The researchers were 
not able to evaluate quality using defect metrics, but 
analyzed LOC and the coupling factor instead. These 
metrics showed slightly better values for the pair pro-
gramming teams. The pair programming teams spent 
9% more effort for the programming tasks (including 
test case writing). 

Baheti [14] studied pair programming with students 
working in self-selected teams of 2-4 persons. Each 
team chose whether they were going to use pair pro-
gramming or solo programming. Each team made one 
of several available assignments during a 30-day pro-

ject. The pairs needed 3% more effort for writing the 
same amount of LOC (14.8 vs. 15.2 LOC/h). The qual-
ity of the systems was evaluated by a teaching assistant 
based on only a 30 minute demo. The pairs received 
slightly better grades (93.6 vs. 92.4 on scale 0-110). 

Compared to the experiments where individuals and 
pairs worked as isolated entities doing small tasks, the 
effort increase incurred by pair programming was 
much smaller or even negative. Comparing quality is 
hard due to the different metrics used, but it seems that 
the quality improvements were smaller in the team 
context. However, it may be that the smaller effort 
used decreased the quality. None of the results of the 
team experiments were statistically significant as can 
be expected with such small numbers of teams. 

2.3. Other experiments 

Müller [15] made a slightly different experiment 
comparing pair programming to solo programming 
combined with code reviews using 27 experienced stu-
dents as the subjects. His results suggest that reviews 
produce the same code quality to a slightly lower cost 
than pair programming. The use of pair programming 
on introductory programming classes has been studied 
with hundreds of students at North Carolina State Uni-
versity [16, 17, 18] and University of California Santa 
Cruz [19, 20]. The results show some improvements in 
quality and some increase in the total effort. 

2.4. Summary of previous work 

In most experiments individuals and pairs worked 
as isolated entities doing small, isolated tasks. There-
fore it is hard to generalize the results to industrial set-
tings, where large systems are developed by teams. 
The experimental designs have been diverse between 
studies, they have not been described accurately, and 
some have contained deficiencies making their replica-
tion impossible or useless. LOC as a design quality 
metric or evaluating software quality based on a short 
demo are not reliable metrics. Comparing different 
projects such as GUI building or development of an 
algorithm may cause variation in the results. Allowing 
the subjects to choose their partners and whether to use 
pair or solo programming differs from a randomized 
setting.  

Probably due to all these differences and deficien-
cies the results of previous pair programming studies 
are quite varying and especially the results about the 
additional effort required differ considerably. More 
experiments using improved and accurately reported 
experimental designs are clearly needed. Next we de-
scribe our experiment, in which we tried to address 
some of the above shortcomings. 
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3. Research design 

The research consisted of an experiment whose de-
sign we describe below. Then we present the hypothe-
ses we aimed to study. We considered the guidelines 
for empirical research by Kitchenham et al. [21] when 
planning and reporting this experiment. 

3.1. Experimental setting 

Five teams of four developers did a similar project 
using the same development process, work practices, 
tools, and specifications. The experiment had a one-
factor randomized design [22], where the factor was 
the type of programmer collaboration. Three teams 
used pair programming (PP) and two solo program-
ming (SP). The PP teams had to use pair programming 
for all development work whereas the SP teams were 
not allowed to use pair programming for more than 
occasional collaboration, i.e. not for implementing 
whole use cases together. Pair programming was 
taught to the PP teams on a one-hour lecture. 

The experiment was conducted as a non-compulsory 
J2EE course in the spring of 2004. We had twenty par-
ticipants, all at least 4th year computer science students 
at Helsinki University of Technology. Their program-
ming experience was 1.5-10 years (avg. 4.7), of which 
1-6 years (avg. 2.2) was using Java. Their average 
grade from previous programming courses was 3.9 on 
a scale from 1-5 (5=best), and they all considered 
themselves average or better programmers compared to 
their fellow students. 

We ranked the participants by their programming 
skills, i.e., the effort spent on two J2EE programming 
assignments, previous programming experience, aver-
age grade from programming courses, and their per-
sonal opinion on their skills compared to fellow stu-
dents. We formed the teams randomly so that all teams 
had one person from each quartile of the ranking. Fi-
nally we randomly selected whether a team should use 
pair programming or solo programming. The require-
ment of using pair programming by random partici-
pants was mentioned in advance. 

The course began with a two-week J2EE training 
period (about 15h of lectures) followed by a nine-week 
project. The course was evaluated on a pass/fail scale. 
Passing required participation in the J2EE training, 
working 100h for the project, following certain work 
practices and answering three questionnaires. 

The project included developing, testing and deliv-
ering a distributed, multi-player casino system using 
the J2EE technologies as described in a requirements 
specification containing, e.g., use case descriptions and 
HTML layouts for the web user interface. The teams 
were given a 10-page technical specification and a core 

architecture implementation including examples of 
suitable J2EE design patterns and a build script. The 
development tools used were Eclipse 3, J2EE 1.4 SDK, 
XDoclet, JBOSS with Tomcat, Hypersonic SQL, CVS 
and Ant. 

The project effort was fixed to 400 hours, i.e., 100h 
per person. Everyone had to spend at least 75% of the 
effort in co-located team sessions lasting 4-8 hours. 
The project consisted of a one-week project planning 
phase followed by two four-week implementation it-
erations. The teams had to follow work practices such 
as iteration planning, collective ownership, version 
control, coding standard, continuous refactoring, unit 
testing, system testing, time reporting, defect reporting, 
and documenting. The prioritized project goals were 
to: 1) follow the defined work practices, 2) minimize 
the amount of defects, 3) implement as many use cases 
as possible, and 4) avoid wasting effort on activities 
that do not directly contribute to the project. 

3.2. Hypotheses 

We derived a set of hypotheses to be studied in the 
context of comparing PP teams to SP teams. The hy-
potheses were derived mostly based on the literature 
but also on what we have personally learned from dis-
cussions with industrial developers who have used pair 
programming in their work. 

 
3.2.1. Productivity. We define productivity as the 
amount of work results divided by the effort spent. 
Project productivity is the sum of the implemented use 
cases divided by all effort spent for the project. Use 
case productivity is the inverse of the development 
effort (designing, coding, unit testing, bug fixing and 
documenting the code) of a use case.  

H 1.1: The PP teams have lower use case productiv-
ity than the SP teams. 

Previous research [2, 3, 9, 10, 11] has found an in-
crease of 15-100% in the programming effort when 
using pair programming without a team context for 
small, separated tasks. 

H 1.2: Higher use-case complexity favors PP teams 
as measured on use case productivity. 

Williams and Kessler propose using pair program-
ming at least for complex tasks [1]. We have heard 
from many practitioners that pair programming is quite 
useless for trivial tasks but helpful for complex tasks. 

We estimated the use case complexity by the opin-
ions of the solo developers who implemented the use 
cases. Their opinions reflect the complexity as per-
ceived when using the traditional way of programming.  

H 1.3: The PP teams have higher project productiv-
ity than the SP teams. 

Even though pair programming may cause some 
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additional effort for a programming task, it may in-
crease the overall project productivity because some 
proposed benefits of pair programming, such as better 
knowledge transfer, are likely to become more signifi-
cant in a project team context. 

Previous experiments [2, 13, 14] have found a dif-
ference between -28% and 9% in the project effort 
when comparing pair to solo programming. The worst 
result (9%) was reported in [13], but only the effort 
spent for the programming phase was analyzed, which 
may disregard some of the project level benefits of pair 
programming. 

In our experiment all teams spent the same total ef-
fort. The effort data was reported per use case or other 
tasks such as system testing using a web-based system. 
The amount of work results was measured as the 
amount of successfully implemented use cases. All 
teams implemented the use cases in the same order. 
We tested the systems after delivery in order to ensure 
that the use cases were implemented without major 
defects and to count the number of defects. 

The quality of work results must be similar in order 
for the productivity comparison to make sense. Be-
cause a developer makes the final decision of the 
readiness and quality of a piece of code, we urged them 
to aim for high and thus hopefully similar quality. 
 
3.2.2. Defects. 

H 2.1: After coding and unit testing the PP teams 
have fewer defects than the SP teams. 

H 2.2: After system testing and bug fixing the PP 
teams have fewer defects than the SP teams. 

Several experiments report smaller defect counts for 
pair programming [2, 3, 9, 12]. In our experiment each 
team had to report all defects found related to a use 
case after the unit testing and corresponding fixing of 
the use case had been performed. The defects in the 
delivered systems were counted based on a standard-
ized system testing round performed by a researcher. 
 
3.2.3. Design quality. 

H 3.1: The PP teams create better software design 
than the SP teams. 

Previous studies propose that pair programming im-
proves design quality [2, 10], but the claim has been 
mostly based on a smaller value of LOC, which is quite 
controversial as a metric of design quality, because 
fewer lines of code is not always better. In [13] the 
coupling factor metric was additionally analyzed and 
showed a slightly smaller value for the PP teams’ code. 
We have heard practitioners report that pair program-
ming produces more understandable code. 

In our experiment the core architecture, which we 
gave to the teams largely defined the system level de-
sign. Therefore we analyzed design quality on the 

method level, which should be less affected by the core 
architecture than the system level design. We used 
NCLOC per method to characterize the method size, 
McCabe’s cyclomatic complexity [23], i.e., the number 
of flows through a method to describe the method 
complexity, and the number of parameters to tell how 
much information is passed to the method. Reasonably 
small values for these metrics typically indicate good 
design. 
 
3.2.4. Knowledge transfer. Both the breadth and 
depth of the understanding of a system can be ana-
lyzed. Depth characterizes how well a person under-
stands a certain module and breadth how many mod-
ules a person understands at some depth. The under-
standing can be analyzed also from the perspective of a 
module, e.g., how many persons understand a module 
at some depth.  

H 4.1: In the PP teams each developer understands 
more modules well than in the SP teams. 

H 4.2: In the PP teams more developers understand 
each module well than in the SP teams.  

Williams and Kessler propose that pair program-
mers, especially if the pairs are rotated, know more 
about the overall system [1], but we have not seen any 
studies on this. 

When pair programming is used, tasks (use cases in 
our experiment) are allotted to only half the number of 
worker units (pairs) compared to solo programming. 
Therefore in a PP team each developer participates in 
twice as many tasks as in an SP team, if the same tasks 
are completed in both teams. This distributes a devel-
oper’s involvement in the development of different 
modules more broadly in a PP team. 

 The amount of involvement surely affects the depth 
of a developer’s understanding of a module. The ac-
quired depth of understanding with the same amount of 
involvement may differ between solo programming 
and pair programming. Pair programmers may learn 
from their partner and acquire deeper understanding 
than when working alone. However, a passive partner 
may acquire only a shallow understanding. 

We asked the developers’ involvement in and un-
derstanding of the modules after the project using a 
web questionnaire. 
 
3.2.5. Enjoyment of work. 

H 5.1: In the PP teams developers enjoy their work 
more than in the SP teams. 

It has been reported that most developers like pair 
programming [1]. Some developers have told us that 
developing critical systems with a pair increases their 
confidence in the code reducing work-related stress.  

We asked the developers’ feelings about pair pro-
gramming after the project using a web questionnaire. 
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4. Results and discussion 

All five teams finished the projects according to the 
schedule and spending the required 400 hours. How-
ever, one of the PP teams abandoned rigorous pair pro-
gramming without notice in the middle of the project 
because they considered it inefficient. Their productiv-
ity compared to the other groups did not change no-
ticeably after they started to use pair programming 
only sporadically, and the team was the least successful 
team based on the amount of use cases they completed. 
Their data was removed from the analysis, because 
they were neither a true PP nor SP team. 

4.1. Productivity 

Both SP teams finished more use cases than the PP 
teams as shown in Table 2. The differences in the 
amounts of implemented use cases are enlarged by the 
smaller effort required for implementing the latter use 
cases (see Figure 1). Therefore we estimated the size of 
the systems by summing up the sizes of implemented 
use cases. The size of a use case was estimated by the 
median of the effort different teams spent on imple-
menting it. Based on the system sizes the PP teams had 
29% lower project level productivity than the SP 
teams. This corresponds to 40% ((266-190)/190) 
higher effort refuting H 1.3. 

 
Table 2. The sizes of the systems (µ=mean) 

 PP1 PP2 SP1 SP2 µPP µSP PP vs. SP

use cases (#) 20 10 25 27 15 26 -42% 
system size 
(sum of use 
case sizes) 

226 154 258 273 190 266 -29% 

 
The reason for the lower productivity can be seen in 

Figure 1. Both of the PP teams performed very poorly 
when implementing the first three (PP2) or four (PP1) 

use cases. Thereafter the differences between the PP 
and SP teams are minimal. Actually, PP1 spent less 
effort than either of the SP teams for their last use 
cases (17-20). Of course, when spending lots of effort 
on the first use cases, the PP teams may have learned 
something that helped them with the later ones.  

Table 3 shows the efforts for certain subsets of the 
use cases. For use cases 1-10, which were implemented 
by all four teams, the PP teams used on average 44% 
more effort than the SP teams. If we ignore use cases 
1-4, where the PP teams performed poorly, the PP 
teams used 5% less effort than the SP teams. 

 
Table 3. The efforts for subsets of use cases 

Use cases µPP µSP PP vs. SP 
1-10 191h 133h +44% 
1-4 121h 59h +107% 

5-10 70h 74h -5% 
 

The SP teams spent slightly more effort on general 
bug fixing, some of which was probably related to cer-
tain use cases but is ignored in Table 3. There was al-
most no difference in the amount of effort spent for 
non-implementation tasks meaning that the effects of 
pair programming to the project’s productivity were 
based on the differences in the use case efforts. 

A similar inefficient learning time was reported in 
[2] where the pairs spent 60% more effort for the first 
and 15% more for the later assignments with the same 
pair. In [13] the effort increase was 9% in both studied 
iterations indicating no learning effect, but the reason 
may be that the developers had worked as a team for 
several weeks before the observed iterations. In our 
experiment four use cases were needed before every-
one had pair programmed with everyone once, which 
can explain the poor performance of the PP teams with 
the first three or four use cases. If we ignore these use 
cases, pair programming required the same or smaller 
effort than solo programming refuting H 1.1. 
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Figure 1. The efforts spent on individual use cases
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The diamonds in Figure 2 show the complexity of 
each use case as evaluated by the solo programmers 
(1=very easy, 5=very difficult). The squares show the 
ratio between the efforts used by the SP teams vs. PP 
teams. For example, 0.5 means that the SP teams used 
half the effort of the PP teams and 2.0 means doubled 
effort. There is no Pearson correlation (r=-0.02) be-
tween complexity and effort difference refuting H 1.2. 
This finding contradicts with the results in [1] and the 
opinion of most pair programmers with whom we have 
talked. It may be that the feeling of usefulness of pair 

programming comes from the assumed higher resulting 
quality, and thus developers’ opinions are not solely 
based upon effort differences. The researchers of the 
social facilitation theory dealing with the impact of 
social presence on individual performance have found 
that social facilitation effects impair performance in 
case of complex tasks [24]. These studies have focused 
on studying persons who are not familiar with each 
other, which was also the case in the beginning of our 
experiment, when the pairs performed poorly. 
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Figure 2. Perceived complexity of a use case vs. effort ratio between the SP and PP teams 
 

4.2. Defects 

Pre-delivery defects are defects found by the team 
during system testing at the end of an iteration or dur-
ing development if the defect was related to a use case, 
which the responsible developer/pair considered to be 
ready. Post-delivery defects are defects found by an 
external tester after delivery. Defect density per im-
plemented use case and absolute amounts of defects 
are listed in Table 4. The number of use cases for the 
PP2 team is larger than in Table 2 because two use 
cases were not accepted due to major defects. 

 
Table 4. The defect densities of the systems  

 PP1 PP2 SP1 SP2 µPP µSP PP vs. SP
use cases 20 12 25 27    

pre-delivery 0.95 
(19) 

0.75 
(9) 

1.60 
(40) 

0.78 
(21) 0.85 1.19 -29% 

post-delivery 0.30 
(6) 

0.33 
(4) 

0.12 
(3) 

0.04 
(1) 0.32 0.08 303% 

sum 1.25 
(25) 

1.08 
(13) 

1.72 
(43) 

0.81 
(22) 1.17 1.27 -8% 

 
The SP teams found more pre-delivery defects than 

the PP teams. The numbers are affected by both the 
total number of defects in the software and the effec-
tiveness of finding them. The effectiveness may have 
differed even though the total effort for system testing 
between the teams was similar. The post-delivery de-
fects were found in standardized testing of all systems. 

Therefore the sum of both defect types is our best es-
timate of the total defect count in the code when the 
responsible developer(s) considered it ready. To con-
clude pair programmers made 8% less defects to the 
code during the development supporting H 2.1. 

Interestingly, after delivery the PP teams had con-
siderably more defects than the SP teams, refuting H 
2.2. The reason was described above, i.e. the SP teams 
found and fixed more defects before delivery. The per-
centage difference is huge, because the absolute 
amounts of post-delivery defects were so small. The 
small number is partially explained by the focus of the 
post-delivery system testing on the basic functionality 
and common error situations instead of more exotic 
error situations, which the teams themselves tested. 
Probably the PP teams had a less careful attitude to-
wards system testing due to relying too much on the 
peer review during pair programming. 

4.3. Design quality 

We analyzed the source codes using the Metrics 
plug-in for Eclipse. Table 5 shows the metrics for the 
core architecture and delivered systems. The NCLOC 
metric contains only non-blank, non-commented lines 
inside method bodies. The systems contained addi-
tional 4200-5600 lines of comments mostly intended 
for generating J2EE bean classes automatically by a 
tool. Generated code is excluded from the metrics, but 
the code for the core architecture is included, because 
it cannot be separated from the rest of the code. 

341



 

All the method level metrics show slightly better 
average values for the PP teams. However, it seems 
that the values correlate with NCLOC, which was natu-
rally higher for the SP teams, who implemented more 
use cases. The core architecture had a good design, but 
when more code was written on top of it, the less the 
original code affected the metrics. Therefore it is hard 
to say whether the smaller values are due to the smaller 
NCLOC or due to the use of pair programming. 

 
Table 5. The code metrics of the systems 

Metric Core PP1 PP2 SP1 SP2
System level metrics 
Use cases 0 20 12 25 27 
Methods 202 565 525 643 704 
NCLOC 1022 4180 2635 4956 5550
Method level metrics 
NCLOC (avg.) 4.82 7.16 4.96 7.61 7.67
McCabe CC (avg.) 1.69 2.25 1.71 2.35 2.36
Parameters (avg.) 0.72 0.72 0.64 0.73 0.80
Proportion of bad methods (%) 
NCLOC > 50 0.0 2.1 0.8 2.3 2.3 
McCabe CC > 10 0.5 2.3 1.0 2.5 2.3 
Parameters > 5 1.0 1.8 0.8 0.8 0.6 

 
Analyzing the proportion of bad methods should be 

less dependent on the size of the software. The propor-
tion of very long methods is smaller for the PP teams. 
The proportion of complex methods is clearly smallest 
for PP2, but for other teams there are no differences. 
The proportion of methods with a long parameter list is 
clearly best for SP2 and worst for PP1. 

The differences between the PP and SP teams de-
pend on the metric used and the metrics may be af-
fected by the size of the analyzed system. Thus, we 
cannot say anything conclusive regarding H 3.1. 

4.4. Knowledge transfer 

All 16 developers evaluated their involvement in the 
development of each Java package and their under-
standing of the internal structure of the packages using 
the scale shown in Table 6. All systems contained the 
same packages originating from the core architecture.  

The involvement and understanding correlated 
(Spearman’s rho > 0.5, significance level 0.01, 
2-tailed) for eight of the ten packages. The number of 
persons involved at least “quite a lot” in the develop-
ment of a package was higher in the PP teams for six 
packages, the same for two, and lower for two pack-
ages. In the PP teams, on average 1.3 of 4 developers 
were involved at least “quite a lot” in the development 
of each package, compared to 1.1 in the SP teams. 

Table 6 shows the number of packages that the de-

velopers on the average understood on at least a certain 
depth. The differences between the PP and SP teams 
are quite small and depend on the chosen threshold for 
understanding. The developers in the PP teams under-
stood well, i.e. answered 4 or 5, 32% (4.5 vs. 3.4) more 
packages. This supports H 4.1, but the situation 
changes for the other thresholds. 

 
Table 6. The understanding of the packages  

Number of packages Depth of 
 understanding PP (avg.) SP (avg.) 
  =very much (5) 0.8 1.0 
>=quite a lot (4) 4.5 3.4 
>=some (3) 6.9 7.1 
>=little (2)  8.9 8.5 
>=none (1)  10 10 

 
Next we analyzed how many developers understood 

well each individual package. The PP teams had a lar-
ger value for seven packages, the same for two and 
lower for one. In the PP teams, on average 1.8 of 4 
developers understood each package well compared to 
1.4 in the SP teams. This result supports H 4.2. 

According to the Mann-Whitney U-test [25] none of 
the differences between pair and solo programmers 
presented below were statistically significant. This was 
quite natural due to the small sample size. 

4.5. Enjoyment of work 

The enjoyment of the developers about the way 
their team did the development work on a scale of “1-It 
was terrible” to “5-I liked it a lot” are shown in Table 
7. The SP2 team had the most satisfied developers. 
However, seven developers in the PP teams liked the 
way they worked (answered 4-5) compared to only five 
in the SP teams. This gives some support for H 5.1. 

 
Table 7. The enjoyment of work  

 PP1 PP2 SP1 SP2 
Enjoyment 4, 4, 4, 5 2, 4, 4, 5 2, 2, 3, 4 5, 5, 5, 5

 
Table 8. The feelings about pair programming 

Which do you … PP SP Neutral
like more? 3 4 1 
consider better for the overall 
success of this kind of a project? 2 5 1 

 
Two other questions were also asked (Table 8). 

Three of the eight developers in the PP teams preferred 
pair programming and four solo programming. How-
ever, in this kind of a project only two considered pair 
programming the more successful choice. 
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5. Evaluation of the experiment 

The strengths of the experiment and the threats to 
the validity of the results are discussed next. Though 
we aimed at performing a well-defined experiment as 
carefully as possible, several threats to both internal 
and external validity remain. 

5.1. Strengths of the experimental design 

The experiment was done in a context of a co-
located team and a moderately large project compared 
to the other experiments. The requirement of co-
location for all teams is important, because it alone 
may increase knowledge transfer within a team consid-
erably. It also enforces simultaneous work between the 
developers thus increasing realism. 

The participants represented quite well industrial 
professionals. Their programming experience was on 
average 4.7 years and many had experience of profes-
sional software development. Also due to the voluntary 
participation and content of the course, the participants 
were especially motivated and skilled programmers. 

The project topic and technologies enticed quite 
many students to the rather laborious course. The J2EE 
training and the core architecture allowed the students 
to start real work quite soon, and there were almost no 
problems related to the requirements specification, 
architecture, or any other materials. 

The only comparable experiment whose experimen-
tal setting has been orderly planned and reported is 
[13]. However, it analyzed only the programming 
phases of the project, not including, e.g., design activi-
ties. They also failed to study any defect metrics. In [2] 
the results of the team experiment were reported very 
shortly, and in [14] neither a randomized study design 
was used nor similar projects done by the different 
teams. All the other previous studies have concentrated 
on observing pairs as isolated entities. 

5.2. Threats to internal validity 

The teams had balanced average skill levels, but the 
project productivity and the experience of the most 
experienced developer in a team correlated highly. A 
very skilled developer may have a huge effect in a pro-
ject that includes learning challenging new technology.  

The participants were not fully controlled by the re-
searchers during the project. This may have affected 
their discipline in following the development practices. 
It has also been proposed that pair programmers are 
more disciplined in following the process, which might 
cause some differences between the PP and SP teams. 

Reporting effort for a certain use case was not nec-
essarily uniform. Some consecutive use cases were 

slightly related to each other and thus some work may 
have contributed to several use cases. Bug fixing and 
re-testing effort was also reported in a slightly different 
way. These issues do not affect the project productivity 
analysis, but may have introduced a small error for the 
productivity analysis of individual use cases. 

The productivity of the PP teams probably changed 
during the project in a different way than that of the SP 
teams due to inefficient learning time and better 
knowledge transfer in the PP teams. This may have 
caused inaccuracy to the analysis of the correlation 
between use case complexity and the pair program-
ming efficiency.  

Acceptance testing was done by a researcher, who 
knew how many defects the teams themselves had 
found and whether a system was done by a PP or SP 
team. However, possible bias in testing was minimized 
because the same test cases were run for all systems as 
equally as possible, the only difference being caused 
by the random outputs of the games. 

Evaluating design quality with code metrics may 
have been unreliable, especially because the compared 
systems contained different amounts of functionality. 
There is no common understanding of which code met-
rics best reflect good design, and code metrics may be 
awkwardly affected by the size of the software. The 
core architecture also certainly affected the metrics. 

The questionnaire about the involvement in and un-
derstanding of the packages was made in the end of the 
projects using a web form listing all the packages. The 
students were asked to answer the inquiry carefully, 
but we do not know how careful they were and, e.g., if 
they checked the code when answering. The scale may 
also have been interpreted in a different way, e.g., the 
respondents may have compared themselves to the 
other team members. It would have been more reliable 
to arrange an objective test of understanding and cross-
check the involvement from the time reporting data. 

5.3. Threats to external validity 

The requirement to use pair programming for all 
development work was not the most natural and possi-
bly also not the most useful choice. The optimal 
amount of pair programming may be anywhere be-
tween using it for all development tasks by everyone 
and not using it at all. Pair programming was taught to 
the students but we did not observe how actively they 
changed roles and communicated during the pair pro-
gramming sessions. For example, Dick and Zarnett 
report about a case where switching roles did not work 
despite of frequent intervention by the team coach [26]. 

In our experiment all teams were having a kind of a 
meeting whenever they had a team development ses-
sion and there were not any external co-workers 
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around disturbing them. In a typical industrial setting 
pair programming may decrease the amount of inter-
ruptions by other people compared to when a person is 
working alone, but this effect probably did not show up 
in our experiment 

We do not know how well the team members knew 
each other and what kind of personalities they were. 
Both of these variables may have affected the success 
of the teams. Potential participants knew before enter-
ing the course that half of the participants must use pair 
programming, which may have kept away people who 
are strongly against pair programming. 

The results are not statistically significant due to the 
low number of teams and high variations in the re-
sponse variables within the SP and PP teams  

6. Conclusions 

This work studied the effects of pair programming 
on development effort, software quality, knowledge 
transfer and enjoyment of work. The results certainly 
shed some more light on the topic, even though this 
experiment, like all the previous ones, contained sev-
eral deficiencies such as the small sample size. Hope-
fully this work invites others to execute even better 
pair programming experiments.  

The PP teams had 29% lower project productivity 
than the SP teams. However, the reason was the con-
siderably larger effort they spent for the first three or 
four use cases. The inefficiency was probably caused 
by the learning time involved in getting familiar with 
new people and with the pair programming practice. 
Later in the projects the PP teams spent 5% less effort 
than the SP teams for implementing the use cases. If 
the inefficient learning time is not taken into account, 
the productivity of the PP teams seems to be equal to 
that of the SP teams. In a typical software development 
organization the learning time can usually be neglected 
because most people already know each other and at 
least after the first pair programming project are famil-
iar with pair programming. Even if there were still 
some learning time involved, the cost of a day or two 
per developer for learning is insignificant. The claim 
that pair programming is most useful with complex 
tasks was not supported by this experiment, at least 
from the perspective of the required effort. 

The code written by pair programmers contained 
8% less defects per use case when the responsible de-
velopers considered the code ready. However, the SP 
teams were much more successful in finding and fixing 
the defects, and in the end of the project they delivered 
systems with a lower number of defects per use case. 
This indicates that pair programmers write code with 
fewer defects, but this benefit may be lost unless care-
ful system testing is performed. 

The PP teams had slightly better design quality 
based on the method size and complexity metrics. 
However, the reason may be the potential correlation 
between software size and these code metrics. The PP 
teams delivered systems with less functionality, and 
therefore these metrics may show better values for 
them. 

In the PP teams developers generally had high in-
volvement in more packages than in the SP teams. 
Probably related to this, there were generally more 
developers (1.8 vs. 1.4) in the PP teams with good un-
derstanding of each package, and each developer un-
derstood more packages (4.5 vs. 3.4) well. This indi-
cates better knowledge transfer within the PP teams. 

Even though about half of the developers in the PP 
teams enjoyed solo programming more than pair pro-
gramming (and about half vice versa) most developers 
still liked working in the PP teams. Thus developers’ 
feelings toward pair programming should not hinder its 
deployment. However, the team which was removed 
from the analysis abandoned the use of pair program-
ming against the rules of the experiment, which sug-
gests that they were strongly against pair programming 
after a couple of weeks of experimenting with it. The 
reason may be that pair programming really was an 
unsuitable practice for this team, but another reason, 
backed up by the fact that their productivity did not 
improve later, may be that the frustration about their 
slow progress led them to consider pair programming 
as a new practice as the main cause for their problems.  

It seems that the use of pair programming leads to 
fewer defects in code after coding and better knowl-
edge transfer within the development team without 
requiring additional effort if the learning time can be 
avoided. These benefits are likely to decrease the fur-
ther development costs of the system and increase an 
organization’s productivity due to improved compe-
tence of the developers. 

In the future we will package the materials of the 
experiment and publish them on the web in order to 
provide help for those interested in replicating the ex-
periment. With only minor modifications the package 
can be used for studying other development practices, 
such as test driven development. We are planning im-
proving the experiment and replicating it with a greater 
number of students. 

Our research on pair programming will continue by 
performing case studies at companies using pair pro-
gramming. In companies it is very challenging to ar-
range even quasi-experiments, but on the other hand 
case studies can give valuable qualitative information 
on, e.g., how pair programming should be practiced in 
industry. 
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