
9HSTFMG*aeebgd+

ISBN 978-952-60-4416-3
ISBN 978-952-60-4417-0 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Information and Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 13

6
/2

011

In contrast to traditional cryptanalysis that
targets a mathematical abstraction of a
cryptographic primitive, side-channel
analysis is a cryptanalytic technique that
targets the implementation of said
primitive. Timing attacks exploit a side-
channel consisting of elapsed time
measurements: for example, the duration
required for a primitive to produce its
output given an arbitrary input. Cache-
timing attacks exploit the fact that the
varying latency of data load instructions is
essentially governed by the availability of
said data in the microprocessor's data cache.
This dissertation contains a number of
contributions related to side-channel
attacks, timing attacks, and cache-timing
attacks: from novel high-dimension side-
channel signal processing techniques to four
devised and implemented attacks against
OpenSSL, arguably the most ubiquitous
cryptographic software library in use today.

B
illy B

ob B
rum

ley
C

overt T
im

ing C
hannels, C

aching, and C
ryptography

A
alto

 U
n
ive

rsity

Department of Information and Computer Science

Covert Timing
Channels, Caching,
and Cryptography

Billy Bob Brumley

DOCTORAL
DISSERTATIONS

Aalto University publication series
DOCTORAL DISSERTATIONS 136/2011

Covert Timing Channels, Caching, and
Cryptography

Billy Bob Brumley

Doctoral dissertation for the degree of Doctor of Science in
Technology to be presented with due permission of the School of
Science for public examination and debate in Auditorium AS1 at the
Aalto University School of Science (Espoo, Finland) on the 16th of
December 2011 at 12 noon.

Aalto University
School of Science
Department of Information and Computer Science

Supervisor
Prof. Kaisa Nyberg

Preliminary examiners
Prof. Bart Preneel, Katholieke Universiteit Leuven, Belgium
Prof. Juha Röning, University of Oulu, Finland

Opponent
Prof. Nigel Smart, University of Bristol, United Kingdom

Aalto University publication series
DOCTORAL DISSERTATIONS 136/2011

© Billy Bob Brumley

ISBN 978-952-60-4416-3 (printed)
ISBN 978-952-60-4417-0 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)

Unigrafia Oy
Helsinki 2011

Finland

The dissertation can be read at http://lib.tkk.fi/Diss/

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Billy Bob Brumley
Name of the doctoral dissertation
Covert Timing Channels, Caching, and Cryptography
Publisher School of Science
Unit Department of Information and Computer Science

Series Aalto University publication series DOCTORAL DISSERTATIONS 136/2011

Field of research Theoretical Computer Science

Manuscript submitted 29 July 2011 Manuscript revised 14 November 2011

Date of the defence 16 December 2011 Language English

Monograph Article dissertation (summary + original articles)

Abstract
Side-channel analysis is a cryptanalytic technique that targets not the formal description of a
cryptographic primitive but the implementation of it. Examples of side-channels include
power consumption or timing measurements. This is a young but very active field within
applied cryptography. Modern processors are equipped with numerous mechanisms to
improve the average performance of a program, including but not limited to caches. These
mechanisms can often be used as side-channels to attack software implementations of
cryptosystems. This area within side-channel analysis is called microarchitecture attacks,
and those dealing with caching mechanisms cache-timing attacks. This dissertation presents
a number of contributions to the field of side-channel analysis. The introductory portion
consists of a review of common cache architectures, a literature survey of covert channels
focusing mostly on covert timing channels, and a literature survey of cache-timing attacks,
including selective related results that are more generally categorized as side-channel attacks
such as traditional timing attacks. This dissertation includes eight publications relating to this
field. They contain contributions in areas such as side-channel analysis, data cache-timing
attacks, instruction cache-timing attacks, traditional timing attacks, and fault attacks.
Fundamental themes also include attack mitigations and efficient yet secure software
implementation of cryptosystems. Concrete results include, but are not limited to, four
practical side-channel attacks against OpenSSL, each implemented and leading to full key
recovery.

Keywords cryptography, covert channels, side-channel analysis, timing attacks, cache-timing
attacks

ISBN (printed) 978-952-60-4416-3 ISBN (pdf) 978-952-60-4417-0

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Espoo Location of printing Helsinki Year 2011

Pages 238 The dissertation can be read at http://lib.tkk.fi/Diss/

Preface

The following entities generously support the work in this dissertation.

• Helsinki Doctoral Programme in Computer Science - Advanced Computing

and Intelligent Systems (Hecse).

• Academy of Finland (project #122736).

• The European Commission through the ICT program under contracts ICT-

2007-216499 CACE and ICT-2007-216676 ECRYPT II.

• The Nokia Foundation.

I am indebted to the following individuals for their gracious support. Please

accept my sincerest thanks.

• Prof. Kaisa Nyberg, my supervisor and mentor.

• My fellow colleagues in the cryptography group at Aalto University School of

Science.

• My co-authors with whom I’ve had the pleasure to collaborate.

Espoo, November 14, 2011,

Billy Bob Brumley

1

Preface

2

Contents

Preface 1

Contents 3

List of Publications 5

Author’s Contribution 7

List of Acronyms 9

1. Introduction 11

2. Microprocessor Caches 21

3. Covert Channels 27

4. Cache-Timing Attacks 37

5. Cryptography Engineering 75

6. Conclusion 81

Bibliography 85

A. Recipes 93

Publications 99

3

Contents

4

List of Publications

This dissertation consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks. In

Advances in Cryptology - ASIACRYPT 2009, 15th International Conference

on the Theory and Application of Cryptology and Information Security, Tokyo,

Japan, December 6-10, 2009, LNCS vol. 5912, pages 667-684, Springer, 2009.

II Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. New results on in-

struction cache attacks. In Cryptographic Hardware and Embedded Systems,

CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August

17-20, 2010, LNCS vol. 6225, pages 110-124, Springer, 2010.

III Billy Bob Brumley, Risto M. Hakala, Kaisa Nyberg, and Sampo Sovio. Con-

secutive s-box lookups: a timing attack on SNOW 3G. In Information and

Communications Security - 12th International Conference, ICICS 2010, Bar-

celona, Spain, December 15-17, 2010, LNCS vol. 6476, pages 171-185, Spr-

inger, 2010.

IV Billy Bob Brumley and Nicola Tuveri. Cache-timing attacks and shared

contexts. In 2nd International Workshop on Constructive Side-Channel Anal-

ysis and Secure Design, COSADE 2011, Darmstadt, Germany, 24-25 February

2011, pages 233-242, Technische Universität Darmstadt / CASED, 2011.

V Billy Bob Brumley and Dan Page. Bit-sliced binary normal basis multi-

plication. In 20th IEEE Symposium on Computer Arithmetic, ARITH 2011,

5

List of Publications

Tübingen, Germany, 25-27 July 2011, pages 205-212, IEEE Computer Society,

2011.

VI Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still prac-

tical. In Computer Security - ESORICS 2011 - 16th European Symposium

on Research in Computer Security, Leuven, Belgium, September 12-14, 2011,

LNCS vol. 6879, pages 355-371, Springer, 2011.

VII Billy Bob Brumley, Manuel Barbosa, Dan Page, and Frederik Vercauteren.

Practical realisation and elimination of an ECC-related software bug attack.

Accepted for publication in Topics in Cryptology - CT-RSA 2012 - The Cryptog-

raphers’ Track at the RSA Conference 2012, San Francisco, CA, USA, Febru-

ary 27-March 2, 2012, LNCS, 18 pages, Springer, 2012.

VIII Billy Bob Brumley. Secure and fast implementations of two involution

ciphers. Accepted for publication in 15th Nordic Conference on Secure IT

Systems, NordSec 2010, Helsinki, Finland, 27-30 October 2010, LNCS vol.

7127, 14 pages, Springer, 2011.

6

Author’s Contribution

Publication I: “Cache-timing template attacks”

The current author is responsible for proposing this research topic, implement-

ing the side-channel and lattice portions of the attack, and the related writing.

Publication II: “New results on instruction cache attacks”

The current author is responsible for the attack portion of the work as well as

the related writing.

Publication III: “Consecutive s-box lookups: a timing attack on
SNOW 3G”

The current author is responsible for formalizing and implementing the side-

channel, proposing improvements to the state recovery algorithm, implement-

ing the bit-sliced version of the cipher, and the related writing.

Publication IV: “Cache-timing attacks and shared contexts”

The current author is responsible for proposing this research topic, interpreting

experiment results, and the related writing.

Publication V: “Bit-sliced binary normal basis multiplication”

The current author is responsible for proposing this research topic, implement-

ing the multiplication circuits, and the related writing.

7

Author’s Contribution

Publication VI: “Remote timing attacks are still practical”

The current author is responsible for proposing this research topic, devising the

attack, implementing the lattice portion of the attack, and the related writing.

Publication VII: “Practical realisation and elimination of an
ECC-related software bug attack”

The current author is responsible for proposing this research topic, implement-

ing the attack, and the related writing.

Publication VIII: “Secure and fast implementations of two involution
ciphers”

The current author is solely responsible for this work.

8

List of Acronyms

3GPP 3rd Generation Partnership Project

AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard Instruction Set

ALU Arithmetic Logic Unit

AMD Advanced Micro Devices

ARM Advanced RISC Machines

BPA Branch Prediction Analysis

CBC Cipher Block Chaining mode

CERT Computer Emergency Response Team

CFS Completely Fair Scheduler

CLMUL Carryless Multiplication

CPU Central Processing Unit

CTR Counter mode

CVE Common Vulnerabilities and Exposures

dcache data cache

DEC Digital Equipment Corporation

DES Data Encryption Standard

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman key exchange

ECDHE Elliptic Curve Diffie-Hellman key exchange, Ephemeral type

ECDSA Elliptic Curve Digital Signature Algorithm

FSM Finite State Machine

GCM Galois Counter Mode

GPGPU General Purpose computing on Graphics Processing Units

GPU Graphics Processing Unit

HMM Hidden Markov Model

HTT Hyper-Threading Technology

9

List of Acronyms

IBM International Business Machines

icache instruction cache

ISO International Organization for Standardization

KB Kilobyte, 1024 bytes

KVM Kernelized Virtual Machine System 370

LFSR Linear Feedback Shift Register

LFU Least Frequently Used

LNCS Lecture Notes in Computer Science

LRU Least Recently Used

MIPS Microprocessor without Interlocked Pipeline Stages

MIT Massachusetts Institute of Technology

MRU Most Recently Used

NAF Non-Adjacent Form

NIST National Institute of Standards and Technology

NSA National Security Agency

OR bitwise OR, logical disjunction

OS Operating System

PC Personal Computer

PGP Pretty Good Privacy

RAM Random-Access Memory

RSA Rivest, Shamir and Adleman public key cryptosystem

SIMD Single Instruction Multiple Data

SMT Simultaneous Multithreading

SPN Substitution Permutation Network

SSE Streaming SIMD Extensions

SSE2 Streaming SIMD Extensions 2

SSH Secure Shell

SSL Secure Sockets Layer

SSSE3 Supplemental Streaming SIMD Extensions 3

TCP Transmission Control Protocol

TCSEC Trusted Computer System Evaluation Criteria

TLS Transport Layer Security

VAX Virtual Address extension

VM Virtual Machine

VMM Virtual Machine Monitor

VQ Vector Quantization

XOR bitwise exclusive OR, exclusive disjunction

10

1. Introduction

Much like signal processing, cryptology is a peculiar science due to its symbi-

otic relationship with application. Theory alone without an express use case

can be difficult to justify in this field. One good example of this gap between

theoretical and applied cryptography is the problem of secure pseudorandom

number generation, perhaps for use in a stream cipher. On one hand, the ven-

erable Blum-Blum-Shub construction has an extremely strong security proof

and theorists might assert the problem solved. On the other hand, it is rarely

used in practice due to its implementation aspects: it is not particularly fast

and requires large area. The stream ciphers used in practice are instead built

using easily implementable components such as feedback shift registers and/or

native microprocessor instructions such as integer additions, but in contrast

little can usually be proved about the security of said constructions.

Proposals for cryptographic primitives such as a block cipher are expected

to be accompanied by extensive security proofs demonstrating resistance to

known cryptanalytic techniques such as differential and linear cryptanalysis.

Such proofs make certain assumptions about the abilities of the attacker and

are defined by the security model. If a primitive is at all useful, at some point

it must make its way from the formal written specification to a concrete im-

plementation, perhaps in software. This task is inevitably the burden of an

engineer.

When this leap from paper to practice occurs, a natural concern is how well

the physical implementation of the primitive preserves the assumptions of the

security model. Or perhaps, from another perspective, how well the theoretical

security model reflects the realities imposed by practical applied cryptography.

Over the past two decades, the irrefutable stance of both academia and in-

dustry is clear: implementation aspects can easily invalidate the assumptions

of the security model and lead to serious vulnerabilities. This breed of crypt-

analytic attack is known as side-channel analysis and additionally makes use

11

Introduction

of a platform, architecture, and/or implementation dependent signal procured

during the execution of a cryptographic primitive. Examples of side-channels

include power consumption measurements, electromagnetic radiation measure-

ments, acoustic emanations, computation faults, and various timing measure-

ments. These channels are not theoretical and are born out of practice.

This dissertation exclusively concerns side-channel attacks, and within this

area focuses on timing attacks. One specific type of timing attack exploits

the caching mechanism commonly featured in modern microprocessors. These

cache-timing attacks exploit the fact that the latency of fetching data from main

memory is essentially governed by the availability of said data in the cache and,

by definition and design, is not a constant duration. Cache-timing attacks are

the main topic of this dissertation.

The bulk of this dissertation consists of eight publications that represent

novel contributions and advance this field of study. A summary of said pub-

lications follows.

Publication I. One of the major challenges when implementing a cache-timing

attack is how to accurately and efficiently process the signal, i.e., the side-

channel made up of timing data. When attacking a block cipher that uses table

lookups the strategy is to directly interpret the timing data to infer part of

an index used into a lookup table, depending on how this lookup table maps

into the cache. In contrast, the implementation of a public key cryptosystem

often uses dynamic memory where a different strategy is needed: these types

of cache-timing attacks attacks are essentially more about memory access pat-

terns. With that in mind, Publication I presents a framework for efficiently pro-

cessing large quantities of this type of cache-timing data. The framework uses

Vector Quantization (VQ) and Hidden Markov Models (HMMs) to accomplish

this. Roughly speaking, VQ reduces the dimension of the data and the HMM

accounts for the control flow of the algorithm that produced the signal. This

framework is used as part of a cache-timing attack on OpenSSL’s implemen-

tation of ECDSA. After processing the cache-timing data with the framework,

the derived key material is used to mount a lattice attack to recover the private

key. The attack succeeds with only a few thousand traces and less than one

hour of offline computation on a single desktop machine. The current author

is responsible for proposing this research topic, implementing the side-channel

and lattice portions of the attack, and the related writing.

Publication II. In contrast to data cache-timing attacks that seek to exploit

key-dependent memory references, instruction cache attacks exploit the vari-

able execution of code segments that might be caused, for example, by a logic

12

Introduction

branch. Building on previous work on instruction cache-timing attacks, Pub-

lication II presents improved analysis techniques for these attacks and also

considers mitigation strategies. The signal of an instruction cache side-channel

is often quite similar to that of a data cache. The work applies the framework

in Publication I to timing data from the instruction cache. This is used to at-

tack OpenSSL’s implementation of DSA. Similar to the data cache attack in

Publication I, the first stage uses the framework to process the signal and last

stage using lattice methods to recover the private key. The work furthermore

proposes, implements, and evaluates a number of countermeasures to these at-

tacks at both software and hardware levels. The current author is responsible

for the attack portion of the work as well as the related writing.

Publication III. Based on the stream cipher SNOW 2.0, SNOW 3G is a software-

oriented stream cipher used in 3GPP mobile networks. Roughly speaking, the

cipher consists of some linear state implemented as a word-based LFSR and

some nonlinear state that emulates a block cipher round function: the linear

process masks the output of the nonlinear process to produce keystream words.

Both processes are often implemented using table lookups that pose a cache-

timing attack threat. Building on previous work that attacks the linear process

of SNOW 2.0, Publication III presents a cache-timing attack on SNOW 3G. The

attack intuition is that the lookups within the nonlinear process in fact leak

much more information than that of the linear process which can be leveraged

to dramatically trim the search space of a state recovery algorithm. At a high

level, the attack is an exhaustive search of the state space using a backtracking

algorithm where the side-channel data constrains the search space. Finally, the

work proposes and implements an efficient bit-slicing countermeasure that ap-

plies to batch keystream generation. The current author is responsible for for-

malizing and implementing the side-channel, proposing improvements to the

state recovery algorithm, implementing the bit-sliced version of the cipher, and

the related writing.

Publication IV. With respect to performance-critical software, dynamic allo-

cation of memory is an expensive operation. A logical strategy is to allocate

the data only once and save it for reuse later. A shared context is a software

mechanism that implements said strategy. OpenSSL uses a shared context to

initialize all of its element representations, such as integers or finite field ele-

ments. The mechanism works roughly like a stack, keeping a double linked list

of elements and dynamically allocating memory for new elements as required,

appending to the list. As suggested in Publication I, this behavior can lead to a

cache-timing attack vulnerability since temporary variables get reused in a de-

13

Introduction

terministic way. One countermeasure proposed, but not implemented, therein

suggests that the context should randomize its allocation. To this end, Publica-

tion IV explores the ability of a shared context to mitigate cache-timing attacks.

The work performs a detailed analysis of OpenSSL’s shared context implemen-

tation and, based on said analysis, implements a simple memory alignment

countermeasure. Surprisingly, the results suggest that this is ineffective and

that the allocation policy of a shared context has little to no influence on the

resulting signal. The work raises some interesting questions concerning the

true origin of the side-channel. The current author is responsible for proposing

this research topic, interpreting experiment results, and the related writing.

Publication V. Most mainstream processors feature at least some form of an

integer multiplication instruction that can be used to implement finite fields

with large prime characteristic. On the other hand, implementation of (large)

binary fields requires a carryless multiplication instruction that only a minor-

ity of processors feature. The textbook way to implement said fields involves

some online precomputation into a lookup table, then any number of methods

resembling schoolbook multiplication but with shifts, XORs, and lookups into

said table. This is not comparatively efficient and can also lead to a cache-

timing attack vulnerability. Two standard representations used for finite field

elements are a polynomial basis and a normal basis. The latter is normally

not particularly competitive with respect to performance. Bit-slicing is a soft-

ware technique where essentially a w-bit processor is used as w 1-bit proces-

sors to run w logic computations in parallel: this allows a quasi-hardware de-

sign approach to software components. Furthermore, bit-slicing has inherent

resistance to cache-timing attacks since state-dependent memory accesses are

replaced by their computational equivalent in terms of bit logic. Motivated by

cache-timing attacks and surveying existing hardware normal basis multiplica-

tion techniques, Publication V applies the bit-slicing approach to realize secure

parallel multiplications in software. The results encompass a multitude of field

sizes and compare the timings to those of an existing library for efficient polyno-

mial basis multiplication on a number of different platforms. The results sug-

gest that, for batch operations, the performance gap between polynomial and

normal basis multiplication is smaller than suggested in the literature. The

current author is responsible for proposing this research topic, implementing

the multiplication circuits, and the related writing.

Publication VI. In contrast to cache-timing attacks that often require some

malicious code executing locally, general timing attacks measure the overall ex-

ecution time of a high level operation. Hence both are side-channel attacks yet

14

Introduction

the latter is a much weaker attack. A key component to an elliptic curve cryp-

tography implementation is the scalar multiplication routine that computes

multiples of a point on the curve with itself. Montgomery’s ladder is one method

to perform said routine and has the inherent potential to resist many types of

side-channel attacks due to its extremely regular nature: it always performs

the same sequence of finite field operations regardless of the certain value of

a key bit. Exploiting a timing attack vulnerability in OpenSSL’s ladder im-

plementation, Publication VI devises and implements an attack that leads to

private key recovery. The attack is able to recover the private key of a TLS

server that authenticates using ECDSA signatures by using only the timings of

exchanged handshake messages, the messages themselves, and the signatures

on the messages. The final stage of the attack uses lattice methods to compute

the private key. The attack only requires a few minutes and is demonstrated to

succeed in both local and remote scenarios. The current author is responsible

for proposing this research topic, devising the attack, implementing the lattice

portion of the attack, and the related writing.

Publication VII. Fault attacks can be considered as a type of side-channel

attack in which, at some stage during operation, a device makes a computa-

tion error. This is traditionally a hardware-related topic. Modeling a known

OpenSSL software bug as a fault attack, Publication VII gives a detailed analy-

sis of said bug, discusses implications, and outlines a number of attacks exploit-

ing it. Briefly, the modular reduction routines in OpenSSL for some finite fields

associated with standardized elliptic curves can fail in very rare instances. Ex-

ploiting this bug, Publication VII devises and implements an attack against

various ECDH modes in TLS that recovers the server’s static private key by

querying the server with cleverly chosen inputs. The work postulates that for-

mal verification techniques, while challenging, could have prevented this bug.

The current author is responsible for proposing this research topic, implement-

ing the attack, and the related writing.

Publication VIII. Anubis and Khazad are two block ciphers that resemble AES

in many respects. But different from AES, they have an involution property:

decryption differs from encryption only by the key schedule, i.e., the code the

cipher executes in operation is the same both ways. Motivated by cache-timing

attacks and building on two recent results on AES software implementations,

Publication VIII gives both serial and bit-sliced implementations of these ci-

phers. The intuition for the serial Anubis implementation is that the nonlinear

layer has a very elegant implementation using a byte shuffler, e.g., that avail-

able through Intel’s SSSE3 instruction set. This version is competitive with the

15

Introduction

reference implementation that uses table lookups, yet in contrast is resistant

to cache-timing attacks. On the bit-slicing side, interestingly the results show

that, in software on the considered platform, the per-round operation of Anubis

is slightly faster than that of AES. The current author is solely responsible for

this work.

Themes and scope. With the previous description of the publications mak-

ing up this dissertation, a number of unequivocal themes emerge. A non-

exhaustive list of these themes follows, along with a short discussion of each

theme, defining the scope of this dissertation.

1. Naturally, the most prevalent theme of this dissertation is that of side-channel

analysis. There are many ways to approach this topic, but regarding microar-

chitecture attacks perhaps the most logical and classical in some respects is

to begin by constructing a covert channel from the microarchitecture mecha-

nism and determine how it can be used for information transfer. Then turn-

ing said channel into a side-channel by one of the party’s inadvertent use of

the channel. Publication I and Publication II include cache-timing attacks

on asymmetric key cryptosystems, Publication III a cache-timing attack on a

symmetric key cryptosystem, Publication VI a timing attack on an asymmet-

ric key cryptosystem, and Publication VII a fault attack on an asymmetric

key cryptosystem. While their channels are realized in very different ways,

these works all fall under the theme of side-channel analysis.

2. After successfully devising, and even implementing, a side-channel attack,

it is tempting to proudly disseminate the results, declare victory and move on

to the next conquest. This approach is not constructive. Successfully imple-

menting an attack gives the experimenter a unique perspective on the result,

including the intuition for why and how it works and, in particular, the best

way to prevent it. Indeed, countermeasures are an integral, even obligatory

part of the research process in this field. While all of the publications making

up this dissertation treat countermeasures at least as an aside, a number of

them deal exclusively with this crucial theme. In particular, Publication IV

focuses on a single cache-timing attack countermeasure for asymmetric key

cryptosystems, Publication V even more general timing-attack countermea-

sures for asymmetric key cryptosystems, and Publication VIII cache-timing

attack countermeasures for symmetric key cryptosystems.

3. In light of side-channel attacks, a practical concern is whether it is possi-

16

Introduction

ble to realize implementations that resist these attacks, yet at the same time

are still computationally efficient. Since side-channel attacks themselves are

implementation-specific and depend, for example, on the architecture where

the compiled code executes, it is natural to consider architecture-specific fea-

tures that can aid in side-channel mitigation. For example, parallel compu-

tation via Single Instruction Multiple Data (SIMD) featured on many com-

modity microprocessors is often used to improve efficiency but can also, in

some instances, be used to thwart timing attacks. This is sometimes even

an unintentional consequence of optimization. Efficient yet secure software

implementations of cryptosystems is a strong theme of this dissertation. In

particular, Publication V concerns asymmetric key cryptosystems and Publi-

cation VIII symmetric key cryptosystems. This theme relates to the previous

one, but approaches the issue from the opposite direction and with different

priorities.

In order to provide a concise yet thorough coverage on the subject matter and

avoid lengthy tangents, this dissertation attempts to restrict the scope as rea-

sonably as possible. With that in mind, regretfully there are a number of fasci-

nating topics that, although related to this dissertation in some respects, do not

fall under this scope. A short yet inevitably non-exhaustive list of these topics

follows.

1. Pioneered by Acıiçmez et al. [AScKK06, AcKKS07], another type of microar-

chitecture attack is that which exploits the behavior of the branch predictor.

To avoid excessively stalling the instruction pipeline, the job of a microproces-

sor’s branch predictor is to intelligently guess the outcome of a logic branch

based on previous outcomes, fetch the resulting instructions, and specula-

tively execute them. Branch predictor attacks execute malicious code that

essentially spies on the branch target buffer to determine if the victim code

takes a logic branch or not by measuring the execution time of its own branch

statements. If the victim executes key dependent logic branches, this yields

a side-channel that can be used for cryptanalytic purposes. This dissertation

omits this topic.

2. The framework in Publication I leverages two well-established signal pro-

cessing techniques: VQ and HMMs. VQ maps vectors from a given domain to

a finite set of vectors called a codebook. This is usually implemented by map-

ping said vectors to the closest codebook vector by Euclidean distance. HMMs

17

Introduction

are formal models of discrete-time stochastic processes. Given such a process

that, with certain probabilities, emits one of many observable events when

changing states, one use of an HMM is calculating the most likely sequence

of states that explains the observations. This dissertation does not cover the

theory behind these techniques. The textbook by Russell and Norvig is a

standard reference for HMMs [RN10].

3. Lattices are mathematical objects that have many uses in cryptography from

cryptographic primitives to attacking schemes with partially known secret

data. They are generally useful for finding small solutions to underdeter-

mined systems of equations. Lattice methods are an effective endgame for

many side-channel attacks: combining public information with (private) par-

tial key material derived in the analysis phase, i.e., procured from the sig-

nal, to recover the complete private key. The work of Howgrave-Graham and

Smart is an excellent example [HGS01]. Although three publications that are

part of this dissertation apply lattices accordingly, the scope does not encom-

pass the theory behind lattice methods.

4. This dissertation gives an extensive survey of existing results on cache-

timing attacks and also advances the field by presenting some novel contri-

butions to the topic. In the end, caching is the culprit here and one natural

response is to consider alternative cache designs and architectures that can

provide a higher degree of security. Such designs do indeed exist (e.g., Page’s

partitioned cache [Pag05]), but are not discussed in this dissertation.

5. Traditional models for provable security of ciphers fail to capture side-channel

attacks. In response, some recent models (e.g., leakage-resilient cryptogra-

phy), attempt to account for side-channels and even parameterize the secu-

rity as a function of the side-channel capacity. Such models are not a topic of

this dissertation. In fact, one can argue that such models are predisposed to

failure and can do more harm than good: see the work of Koblitz and Menezes

for an insightful discussion [KM11].

Outline. The structure of this dissertation is as follows. Chapter 2 contains

brief background on caching mechanisms. Chapter 3 contains background on

covert channels, including a selective chronological literature survey. Transi-

tioning from the previous chapter, Chapter 4 contains a selective chronological

literature survey of timing attacks that focuses on cache-timing attacks. Said

18

Introduction

survey is interleaved with discussions summarizing the main contribution of

the publications appearing in this dissertation, placing them in context to show

how they build and improve upon previous work. Chapter 5 is similar in struc-

ture, but is less extensive and concerns efficient and secure software methods

for cryptography engineering. Chapter 6 draws conclusions, summarizes the

impact of this dissertation, and examines outlook in this field. Much of the sub-

ject matter of this dissertation deals with concrete realization of side-channels,

and to this end Appendix A contains some helpful tools of the trade. This cul-

minates with the listed publications, in order.

19

Introduction

20

2. Microprocessor Caches

cache: a secure place of storage.
Webster’s New Collegiate

Dictionary

There are a number of thorough references for cache design that treat the

subject very formally. This dissertation is not one of them. In particular, the

textbooks by Hennessy and Patterson [PH90, 8.3], Patterson and Hennesey

[PH07, 7.2], and Page [Pag09, 8.3] are excellent references on the topic.

This chapter contains a brief review of practical cache architectures. These

concepts are useful in understanding the nature of the cache as a covert channel

and side-channel, that being the focus of subsequent chapters.

Microprocessor operation. Figure 2.1 illustrates typical microprocessor op-

eration. The instruction fetcher is responsible for fetching instructions to be

executed from main memory. It then passes these to the instruction decoder

that interprets these instructions. The result then gets executed, generally by,

for example, passing it to the arithmetic logic unit (ALU) that might operate on

a number of register values and store the result in a register or main memory,

or move a value between a register and main memory.

Cache architectures. The memory interface component depicted in Fig. 2.1

commonly contains at least two critical components: a data cache and an

instruction cache. The discussion focuses on the former. Moving values be-

tween registers is an extremely low latency operation, while movement between

registers and main memory suffers higher latency. The number of registers is

unfortunately limited. To offset the cost of such movement, modern micropro-

cessors employ a data cache; this has a much higher capacity than the working

set of registers, higher latency than register access, but much lower latency

than memory access. Data from main memory is stored first in the cache; when

the CPU needs data from main memory, it looks for it initially in the cache. If

it finds it, this is a cache hit and it looks no further; otherwise, a cache miss

21

Microprocessor Caches

��������	
�
������

���
��
���������

��������	
�
���
���

���	�����

���

�

���
��

Figure 2.1. Simplified microprocessor operation. Source: http://commons.wikimedia.org/
wiki/File:CPU_block_diagram.svg

and it reads the data from main memory. The blocks of memory in the cache are

called cache lines. There are three common ways to implement such a cache.

Direct mapped cache. The simplest form allows a block of memory to be

stored in one and only one location in a direct mapped cache, illustrated

in Fig. 2.2. The bits in a memory address are split into three parts. The tag is

a unique identifier for a block of memory. The line identifies which cache line

a block of memory can be stored in. The offset identifies the byte offset within

the block. Along with the data, the cache lines also have a tag associated with

them, representing what block of memory currently resides within a cache line.

The cache logic works as follows when processing a request for data at a given

memory address. The line portion of the address identifies the specific cache

line for the memory block; the cache controller compares the corresponding tag

of the cache line to the tag of the memory address. If they match, a cache hit

occurs and it uses the offset portion of the address to load the data at an off-

set within the given cache line. Otherwise, a cache miss occurs and it loads

the data from the next level in the memory hierarchy. Advantages of a direct

mapped cache include simplicity and low latency. The minimal amount of logic

means they are easy to implement compactly. Disadvantages can include poor

cache utilization and cache thrashing. Consider an extreme example where

only two memory blocks are accessed. By chance, these memory blocks have

22

Microprocessor Caches

address tag line offset

+--+----+ ------- --- ---- ------

0 | | | +--------------------- D831 D8 3 1

+--+----+ | 35A6 35 A 6

1 | | | | 937F 93 7 F

+--+----+ | 0384 03 8 4

2 | | | | 2B93 2B 9 3

+--+----+ | FA63 FA 6 3

3 |MM|YYYY| <--+ 4B91 4B 9 1

+--+----+ MM == D8 ? H : M 0F9C 0F 9 C

4 | | | CD44 CD 4 4

+--+----+ D49F D4 9 F

5 | | | 14BA 14 B A

+--+----+ E4F1 E4 F 1

6 | | | B319 B3 1 9

+--+----+ 14F3 14 F 3

7 | | | 3E09 3E 0 9

+--+----+ 13DA 13 D A

8 | | | 0C6E 0C 6 E

+--+----+ 6BBC 6B B C

9 | | | 44A2 44 A 2

+--+----+ 26D4 26 D 4

A | | | 04A3 04 A 3

+--+----+ 5F59 5F 5 9

B | | | 9FB3 9F B 3

+--+----+ 65DE 65 D E

C | | | D65B D6 5 B

+--+----+ 6D6F 6D 6 F

D | | | 8FAC 8F A C

+--+----+ 90DC 90 D C

E | | | C8E0 C8 E 0

+--+----+ 7A4B 7A 4 B

F | | | 76D3 76 D 3

+--+----+ 05A9 05 A 9

Figure 2.2. A 256B direct mapped cache with 16 lines of 16B each. The line portion of a memory
address points to a single line in the cache. Only said line can match the tag portion
of the memory address.

the same line portion of the address: they both map to the same cache line and

compete for the same cache space. The remaining cache lines go unused. When

memory accesses occur at these addresses, the cache controller evicts the cur-

rent data: it replaces the data in the cache line with the new data loaded as

a result of a cache miss. These evictions as a result of repeatedly accessing

different memory locations is called cache thrashing: the data ends up being

continually swapped out and the cache becomes a burden instead of an asset.

Fully associative cache. The disadvantages of a direct mapped cache are un-

fortunately fundamental; each memory block can only reside in one cache line.

To remedy this, one might consider an extreme solution and instead allow each

memory block to reside in any cache line; Fig. 2.3 illustrates a fully associa-

tive cache. The cache logic works as follows. The cache controller compares

the corresponding tag of each cache line to the tag of the memory address. If

there is a match, a cache hit occurs; otherwise, a cache miss. Advantages of

a fully associative cache include better cache utilization and minimal cache

thrashing. The main disadvantage is implementation complexity. Instead of

23

Microprocessor Caches

address tag offset

+--+----+ ------- --- ------

0 |NN|YYYY| <--+--------------------- D831 D83 1

+--+----+ | NN == D83 ? H : 35A6 35A 6

1 |ZZ| .. | <--+ 937F 937 F

+--+----+ | ZZ == D83 ? H : 0384 038 4

2 |LL| .. | <--+ 2B93 2B9 3

+--+----+ | LL == D83 ? H : FA63 FA6 3

3 |MM| .. | <--+ 4B91 4B9 1

+--+----+ | MM == D83 ? H : 0F9C 0F9 C

4 |TT| .. | <--+ CD44 CD4 4

+--+----+ | TT == D83 ? H : D49F D49 F

5 |YY| .. | <--+ 14BA 14B A

+--+----+ | YY == D83 ? H : E4F1 E4F 1

6 |HH| .. | <--+ B319 B31 9

+--+----+ | HH == D83 ? H : 14F3 14F 3

7 |KK| .. | <--+ 3E09 3E0 9

+--+----+ | KK == D83 ? H : 13DA 13D A

8 |WW| .. | <--+ 0C6E 0C6 E

+--+----+ | WW == D83 ? H : 6BBC 6BB C

9 |II| .. | <--+ 44A2 44A 2

+--+----+ | II == D83 ? H : 26D4 26D 4

A |GG| .. | <--+ 04A3 04A 3

+--+----+ | GG == D83 ? H : 5F59 5F5 9

B |RR| .. | <--+ 9FB3 9FB 3

+--+----+ | RR == D83 ? H : 65DE 65D E

C |UU| .. | <--+ D65B D65 B

+--+----+ | UU == D83 ? H : 6D6F 6D6 F

D |SS| .. | <--+ 8FAC 8FA C

+--+----+ | SS == D83 ? H : 90DC 90D C

E |XX| .. | <--+ C8E0 C8E 0

+--+----+ | XX == D83 ? H : 7A4B 7A4 B

F |JJ| .. | <--+ 76D3 76D 3

+--+----+ JJ == D83 ? H : M 05A9 05A 9

Figure 2.3. A 256B fully associative cache with 16 lines of 16B each. Any single line in the cache
can match the tag portion of the memory address.

needing to check only one cache line, the cache controller must check all cache

lines; this fundamental difference is noticeable in the input to the compare logic

in Fig. 2.3. Furthermore, the cache controller must also implement some kind

of intelligent policy for evicting data from the cache. Such policies are covered

later.

Set associative cache. The logical compromise between the previous two ap-

proaches is to allow each memory block to reside in one of many cache lines;

Fig. 2.3 illustrates a set associative cache. The cache logic works as follows.

The set portion of the address identifies the subset of cache lines in which the

memory block can reside; the cache controller compares the corresponding tag

of each cache line in the subset to the tag of the memory address. If they match,

a cache hit occurs; otherwise, a cache miss. A set associative cache enjoys the

benefits of both previous types. It is a trade-off between performance and com-

plexity. Compared to a fully associative cache, the cache controller can more

easily identify if a memory location resides in the cache, and the needed pol-

icy is easier to implement. This is by far the most widely implemented cache

architecture for modern microprocessors.

24

Microprocessor Caches

address tag set offset

+--+----+ ------- --- --- ------

0 | | | +--------------------- D831 D80 3 1

+--+----+ | 35A6 358 2 6

1 | | | | 937F 934 3 F

+--+----+ | 0384 038 0 4

2 | | | | 2B93 2B8 1 3

+--+----+ | FA63 FA4 2 3

3 |MM|YYYY| <--+ 4B91 4B8 1 1

+--+----+ | MM == D80 ? H : 0F9C 0F8 1 C

4 | | | | CD44 CD4 0 4

+--+----+ | D49F D48 1 F

5 | | | | 14BA 148 3 A

+--+----+ | E4F1 E4C 3 1

6 | | | | B319 B30 1 9

+--+----+ | 14F3 14C 3 3

7 |KK| .. | <--+ 3E09 3E0 0 9

+--+----+ | KK == D80 ? H : 13DA 13C 1 A

8 | | | | 0C6E 0C4 2 E

+--+----+ | 6BBC 6B8 3 C

9 | | | | 44A2 448 2 2

+--+----+ | 26D4 26C 1 4

A | | | | 04A3 048 2 3

+--+----+ | 5F59 5F4 1 9

B |RR| .. | <--+ 9FB3 9F8 3 3

+--+----+ | RR == D80 ? H : 65DE 65C 1 E

C | | | | D65B D64 1 B

+--+----+ | 6D6F 6D4 2 F

D | | | | 8FAC 8F8 2 C

+--+----+ | 90DC 90C 1 C

E | | | | C8E0 C8C 2 0

+--+----+ | 7A4B 7A4 0 B

F |JJ| .. | <--+ 76D3 76C 1 3

+--+----+ JJ == D80 ? H : M 05A9 058 2 9

Figure 2.4. A 256B set associative cache with 16 lines of 16B each and 4 ways. The set portion
of a memory address points to four distinct lines in the cache. Only one of these four
lines can match the tag portion of the memory address.

25

Microprocessor Caches

Cache replacement policies. When data at a memory location can reside

in more than one place in the cache, a policy must exist for evicting existing

data in the event of a cache miss. What data should be evicted from possible

cache locations to make room for the new data? Said logic defines the cache

replacement policy. The most common cache replacement policy is Least

Recently Used (LRU). The cache controller can implement this by maintain-

ing age fields for the cache lines; the cache line with the oldest field, or least

recently used, gets evicted. A microcontroller used for a common desktop work-

station generally benefits from such a policy. If data is used, it is likely to be

used again in the near future. For large data sets or random access patterns,

LRU poses a problem; an item from the set is not likely to be needed in the

near future once accessed. The exact opposite idea of a Most Recently Used

(MRU) policy would be more appropriate, where the cache controller instead

evicts the line with the youngest field. A microcontroller used for such a special

purpose would benefit from this. Instead of an age, a valuable metric might be

the number of times a memory block is accessed; a Least Frequently Used

(LFU) policy discards data that is used least often. Last but not least, a ran-

dom policy evicts a random line from the cache to make room for incoming data.

A big advantage of such a policy is ease of implementation: it involves very little

logic and does not hinge on any assumptions about the memory access habits

of a typical program.

26

3. Covert Channels

The topic of covert channels usually falls under the umbrella of system secu-

rity. Academic interest in this specific area dates back to at least the 1970s.

Roughly speaking, covert channels provide a method to transmit information

in an unconventional way in a system where such communication is not ex-

plicitly allowed. These channels can be either intentional and used between

consenting parties to communicate unregulated by the system, or uninten-

tional and used by a malicious party to monitor the activities of a legitimate

party. In this context, a party can be a user, program, or process. This chapter

contains a selective literature review of results pertaining to covert channels,

focusing mostly on covert timing channels, beginning from the initial works

and proceeding chronologically. These concepts build the foundation for side-

channel attacks (i.e., attacks that exploit unintentional covert channels) and,

in particular, cache-timing attacks.

The confinement problem. In his seminal work, Lampson defines the con-

finement problem [Lam73].

This note explores the problem of confining a program during its execution so that it

cannot transmit information to any other program except its caller.

He gives a number of examples of how a program might leak data, among them

the following that he attributes to A. G. Fraser at Bell Laboratories.

By varying its ratio of computing to input/output or its paging rate, the service can

transmit information which a concurrently running process can receive by observing

the performance of the system. The communication channel thus established is a

noisy one, but the techniques of information theory can be used to devise an encoding

which will allow the information to get through reliably no matter how small the

effects the service on system performance are, provided they are not zero. The data

27

Covert Channels

rate of this channel may be very low, of course.

This is an important example for a number of reasons, but mostly because it

captures the essence of covert and side-channels succinctly: the observation

that the ratio or rate at which a program performs a given task can provide

information. Classifying the channels for numerous examples of program leak-

age, he goes on to give an informal definition of a covert channel.

Covert channels [are] those not intended for information transfer at all.

Analyzing the confinement problem. Taking a more policy-based approach

and applying existing principles of computer security, Lipner further exam-

ines the confinement problem [Lip75]. The discussion on closing covert timing

channels suggest that the system assign a virtual time or virtual clock to each

process that depends solely on its own activity and not any outside process.

Continuing from the example of Lampson [Lam73], Lipner gives an example

of paging, i.e., the touching of each page must take a constant amount of time.

The work observes that the problem of limiting the observed time of a process

to the virtual one is indeed difficult: the program can choose to perceive the

passage of time however it wishes, independent of the virtual clock provided by

the system. The goals and implementation of a dynamic time-based scheduler

are counteractive to those of eliminating the ability of a process to correlate be-

tween virtual and real time. The compromise results in (at best) reduced timing

granularity: introducing more noise into the covert channel and reducing the

throughput.

Covert storage and timing channels. In 1972, IBM released an operating

system for their mainframes called VM/370. While retrofitting a security ar-

chitecture to this operating system called KVM/370, Schaefer et al. explore the

confinement problem [SGLS77]. They give their own informal definition of a

covert channel.

Covert channels are [data] paths not meant for communication but that can be used

to transmit data indirectly.

They further distinguish between two types of covert channels: storage chan-

nels and timing channels. This dissertation concerns mainly the latter.

28

Covert Channels

Storage channels consist of variables that are set by a system process on behalf of

the sender, e.g., interlocks, thresholds, or an ordering. In timing channels, the time

variable is controlled: resource allocations are made to a receiver at intervals of time

controlled by the sender. In both cases, the state of the variable (“on” or “off”, “time-

interval is 2 seconds”) is made to represent information, e.g., digits or characters.

They go on to give numerous examples of practical covert channels they en-

countered including CPU scheduling, I/O scheduling, and timing of I/O opera-

tions. One of the most interesting examples they give is disk arm movement

that exploits the disk scheduling algorithm. This is now one of the classical

examples of a storage channel. An elevator disk scheduling algorithm behaves

similarly to a normal elevator, moving the arm in one direction until no further

requests are pending in that direction, then starts moving in the opposite direc-

tion. They explain how a covert channel exists essentially because the order in

which cylinder requests are filled depends on the current direction of the arm.

Let R own a minidisk at cylinders 51 through 59 of some real disk, to which S has

read access. R issues a request for cylinder 55, loops until notified of its completion,

then relinquishes the CPU. S then issues a request for either cylinder 53 (to send a

0) or 57 (for a 1) and relinquishes the CPU. R then issues requests for both cylinder

58 and 52. If the request for cylinder 58 completes first, a 1 is received because S

left the arm at cylinder 57 and the algorithm continues the upward motion; a 0 is

similarly received if the request for cylinder 52 completes first.

They remain pessimistic about the feasibility of eliminating all said channels

and settle on mitigations that minimize the bandwidth and increase the noise

of the covert channels.

Identifying covert channels. In contrast to previous work that identifies co-

vert storage and timing channels in an ad hoc fashion, Kemmerer presents a

more rigorous methodology [Kem83]. He gives his own definition of a covert

channel, noting that it differs from that of Lampson [Lam73] due to the distinc-

tion between storage and timing channels.

Covert channels use entities not normally viewed as data objects to transfer infor-

mation from one subject to another. These nondata objects, such as file locks, device

busy flags, and the passing of time, are needed to register the state of the system.

29

Covert Channels

The methodology first identifies all shared resources of the system. This in-

cludes not only the resource itself, but possibly numerous attributes of the re-

source. For example, a file can be a shared resource but attributes like a lock

flag or file size are distinct attributes. It then identifies various primitives avail-

able on the system, for example read file or write file. One can then examine

every possible pair and determine what the potential throughput of the channel

is, if one exists. This allows incremental evaluation as new resources and prim-

itives are added to the system. Kemmerer lists quite concrete requirements for

the existence of storage and timing channels, the latter of which follows.

The minimum criteria necessary in order for a timing channel to exist are as follows:

1. The sending and receiving processes must have access to the same attribute of a

shared resource.

2. The sending and receiving processes must have access to a time reference such as

a real-time clock.

3. The sender must be capable of modulating the receiver’s response time for detect-

ing a change in the shared attribute.

4. There must be some mechanism for initiating the processes and for sequencing

the events.

The work reinforces the idea that it is infeasible to eliminate all covert channels

and efforts should concentrate on identifying such channels and minimizing

their throughput.

The Orange Book. The Rainbow Series is a collection of security-related guide-

lines issued jointly by the United States Department of Defense (DoD) and

the National Computer Security Center (NCSC), part of the National Security

Agency (NSA). Appearing in 1983, the first publication in the series is the DoD

“Trusted Computer System Evaluation Criteria” (TCSEC) fondly referred to as

the Orange Book. Its purpose is to more rigorously define security aspects of

computer systems and allow for a concrete evaluation with respect to the de-

fined criteria. It contains a chapter dedicated to covert channels and offers the

following definition [dod85, Sec. 8].

30

Covert Channels

A covert channel is any communication channel that can be exploited by a process to

transfer information in a manner that violates the system’s security policy.

It also differentiates between covert storage and timing channels, offering the

rather insightful definition of the latter.

Covert timing channels include all vehicles that would allow one process to signal

information to another process by modulating its own use of system resources in

such a way that the change in response time observed by the second process would

provide information.

Although now dated, the Orange Book heavily influences its modern successor,

the ISO Common Criteria. The inclusion of covert channels in the Orange Book

is significant because it formally recognizes covert channels as a security threat

in a documented standard. The guidelines suggest identifying covert channels

and their associated throughput.

A practical covert timing channel. Multiplexed Information and Computing

Service (Multics) is an operating system that began development in 1964 and

originally was a joint effort between MIT, General Electric, and Bell Laborato-

ries. In a concrete realization (on Multics) of the covert timing channel using

paging described by Lampson [Lam73], Van Vleck gives an account of what

is now one of the most classical examples of practical covert timing channels

[Vle90].

My friend, Bob Mullen, astounded me a few days later by showing me two processes

in the terminal room. You could type into one and the other would type out the same

phrase a few seconds later. The processes were communicating at teletype speed by

causing page faults and observing how long they took. The sender process read or

didn’t read certain pages of a public library file. The receiver process read the pages

and determined whether they were already in core by seeing if the read took a long

or short real time.

Considering mitigation of general covert timing channels, similar to the permis-

sion attribute that controls the reading and writing of files, Van Vleck suggests

a certification attribute that controls the execution of a program. Furthermore,

similar to review process of operating system kernels, software should be ex-

amined manually for covert channels to classify their certification level.

31

Covert Channels

Operating system design and covert channels. Ideally, security should be

considered a first class citizen when designing an operating system, and not

an afterthought through retrofitting. Digital Equipment Corporation (DEC)

adopted this principle beginning in 1981 when designing a VMM security ker-

nel for their VAX architecture, described by Karger et al. [KZB+90]. Somewhat

different from a modern operating system, the task of the VAX Virtual Machine

Monitor (VMM) is to manage virtual machines at different security levels. One

of its design goals is to identify covert channels from the onset and apply ap-

propriate countermeasures.

Disk scheduling algorithms and covert channels. In the early 1990s, a team

of researchers at DEC dedicated to the analysis of covert channels within the

VAX security kernel released a flurry of results to the academic community. In-

spired by the disk arm covert channel described by Schaefer et al. [SGLS77],

Karger and Wray analyze said channel with respect to VAX [KW91]. Building

on the existing result of the elevator disk scheduling algorithm covert channel,

the work examines a number of different disk scheduling algorithms for poten-

tial covert channels. They show that the straightforward countermeasure of

repositioning the arm after every request is, in general, too costly. One reason

the work is significant is because it demonstrates that covert channels are not

solely problems to consider at the operating system level. The specific related

hardware they work with implements an efficient disk scheduling algorithm on

the controller itself that provides a covert channel, yet the operating system has

no authority over the controller’s policy. Ironically, in deploying covert channel

countermeasures the operating system must spend disproportional time in nul-

lifying the optimizations implemented at the lower hardware level.

Mitigating covert channels with fuzzy time. The drawback of Lipner’s idea

to use virtual time to eliminate covert timing channels is that each process still

has some concept of real time, independent of whatever virtual time the oper-

ating system presents to it [Lip75]. Furthermore, exposing only a virtual time

to programs inherently imposes formidable restrictions on them: the function-

ality of those relying on being able to accurately measure the passage of time

comes into question. Focusing on the VAX security kernel, Hu proposes fuzzy

time to address these concerns and mitigate covert timing channels introduced

by either the operating system or attached hardware [Hu91]. To address op-

erating system clocks, fuzzy time randomizes the length of the operating sys-

tem tick interval and reduces the granularity of the system-wide time register.

To address I/O clocks, fuzzy time randomizes the response time of requests,

i.e., the time at which notification of the completion of an event occurs. Hu

32

Covert Channels

states that the implementation of fuzzy time within the VAX security kernel

proved to be an extremely effective mechanism to mitigate covert timing chan-

nels, overwhelmingly inhibiting their usability measured by increase of noise

and reduced throughput.

Data caching and covert channels. The line between a covert storage chan-

nel and a covert timing channel is not always clear, as demonstrated by Wray

[Wra91]. Using the disk arm storage channel example of Schaefer et al. [SGLS77]

previously discussed, Wray explains that if, in the final step, S issues only a

single request and measures the time required for the request to complete, S

can infer the exact same bit value by relatively comparing the obtained tim-

ings. Although this is the same physical channel, with respect to classification

it changes from a storage to a timing channel. As such, Wray questions the

common distinction between storage and timing channels since such a classi-

fication can be misleading, for example when auditing covert channels using a

classification-based methodology. For the purposes of this dissertation, one of

the most interesting examples Wray gives of a covert channel is as follows.

Consider a uniprocessor with a direct-mapped cache, running two processes contain-

ing covert channel exploitation programs. One, at low secrecy, reads sufficient mem-

ory locations to fill the cache with low secrecy data, and then relinquishes the CPU.

The other process, running at a high secrecy level, read certain memory locations,

causing some cache slots to be re-filled with high secrecy data, and then relinquishes

the CPU. Finally, the first process re-reads the data it read earlier, but measuring the

time of each read attempt against a reference clock. Those memory locations which

correspond to cache locations that were filled with high secrecy data will take signif-

icantly longer to read than the locations that still contain low secrecy data, as the

displaced low-secrecy data must be re-fetched from main memory. This exploitation

allows the timing of individual instructions to be modulated with precision.

This lovely example demonstrates how microprocessors equipped with caching

mechanisms run the risk of introducing a covert timing channel through the use

of a cache as a shared resource. Furthermore, it is another good example of a

covert channel introduced by the underlying hardware instead of the operating

system. An extended version of the work appears later in a journal [Wra92].

Data caching and further covert channels. As Wray’s example of the cache

channel illustrates [Wra91], hardware timing channels potentially pose a much

greater risk to security than software channels. This is in part due to their com-

33

Covert Channels

paratively higher throughput. Hu reiterates this point and uses the cache chan-

nel as a case study, providing the following example of its exploitation [Hu92].

The cache channel can be exploited as follows. Assume that there are only 2 user

processes in the system: a Trojan horse process at a high access class and a Spy

process at a lower access class. The Spy process initially loads the cache with known

values by making a series of memory references. It then releases the CPU. Since the

Trojan horse process is the only other process, the scheduler runs the Trojan horse

process next. To send a “1”, the Trojan horse process would overwrite all the contents

of the cache. To send a “0”, the Trojan horse process would immediately give up the

CPU so as to minimize its effect on cache contents. When the Spy process regains

the CPU, it reads the same memory locations it previously accessed and measures

the read latency. The read latency is just the amount of time it takes to read the

memory location. If the references take a relatively short time to complete, then

the Spy process knows that the references were satisfied from the cache. Thus, the

original cache contents were undisturbed, and the Trojan horse transmitted a “0”.

Otherwise, the Trojan horse transmitted a “1”.

Flushing the cache during context switching is a straightforward mechanism

to mitigate the cache channel. This usually has a detrimental effect on per-

formance and hence can only be applied in rare cases. One logical trade-off

is to flush the cache only when necessary, i.e., when lower secrecy data can

potentially evict higher secrecy data from the cache. This poses an interest-

ing research challenge: scheduling processes in a manner which minimizes the

invocation of costly timing channel mitigations, such as cache flushing in the

case of the cache channel. Hu proposes such a novel scheduler called a lattice

scheduler.

Architectural approaches to covert channel mitigation. Multilevel security

seeks to manage data with different sensitivity levels and users with different

clearances within a single system. There are different ways to realize this, but

any shared resource between security levels is a potential covert channel and/or

violation of the security policy. For example, a data cache in a multilevel proces-

sor can yield a covert channel. A disk scheduling algorithm in a multilevel disk

drive can yield a covert channel. A job scheduling algorithm in a multilevel

operating system can yield a covert channel. Lamenting the current state of

covert channel mitigation and research trends aimed at multilevel processors,

Proctor and Neumann argue that the problem of covert channels in multilevel

34

Covert Channels

security systems is insurmountable and suggest solutions at the architecture

level [PN92]. For example, instead of attempting to identify and mitigate all

possible covert channels in a multilevel processor (this is arguably not even

feasible, let alone practical), assign a single-level processor to each level. They

argue that the trend of decreasing hardware costs makes this approach viable.

Indeed, decades later a modern common desktop system is equipped with mul-

tiple CPUs and/or multiple computing cores, and even possibly one or more

graphics processing units (GPUs) with hundreds of computing cores. In con-

trast to covert channel security in multilevel processors, they suggest research

should focus on multilevel disk drives and networks, where covert channel se-

curity can be more adequately addressed and, in the end, provide more concrete

guarantees.

The Light Pink Book. Achieving the higher TCSEC security ratings detailed

in the Orange Book requires an analysis of covert channels and, in the case

of high bandwidth, assurance that the channel has been closed or sufficiently

throttled using documented countermeasures. Another entry in the Rainbow

Series, the Light Pink Book “A Guide to Understanding Covert Channel Analy-

sis of Trusted Systems” aims to help developers meet these criteria, in part by

identifying and classifying covert channels [ncs93]. The document contains a

number of interesting, practical examples of both storage and timing channels,

including those introduced by CPU scheduling, shared hardware resources, re-

source exhaustion, I/O scheduling, I/O operation completion, and memory man-

agement. The guidelines recommend various tools for identifying storage chan-

nels, but emphasize that the tools do not address timing channels.

35

Covert Channels

36

4. Cache-Timing Attacks

cache: a secure place of storage.

B. B. Brumley

A side-channel or side-band is an unintentional covert channel: one party

is knowingly communicating via the channel yet the other is unaware. This

chapter makes the transition from covert channels as a security topic to side-

channels as a cryptology topic, using them for cryptanalytic purposes. The topic

of side-channels is a history-rich one, dating back at least to World War II.

Koblitz and Menezes give a concise review of its origins [KM11, Sec. 4.1]. Aca-

demic interest in this specific area dates back to at least the 1990s.

In contrast to traditional cryptanalytic techniques such as differential and

linear cryptanalysis that target the formal mathematical description of a cryp-

tographic primitive, physical attacks or implementation attacks target a

concrete implementation of said primitive. A non-exhaustive list of physical at-

tack techniques includes power analysis, timing analysis, electromagnetic radi-

ation analysis, acoustic analysis, fault injection, power glitching, physical tam-

pering, bus probing, cold boots [CPGR05], and bug attacks [BCS08]: consult

Popp’s work for a survey [Pop09]. Standaert offers the following classification

of physical attacks [Ver10, p. 27].

1. Invasive vs. non-invasive: Invasive attacks require depackaging the chip to get

direct access to its inside components; a typical example of this is the connection

of a wire on a data bus to see the data transfers. A non-invasive attack only ex-

ploits externally available information (the emission of which is, however, often

unintentional) such as running time, power consumption.

2. Active vs. passive: Active attacks try to tamper with the devices’ proper function-

ing, for example, fault-induction attacks will try to induce errors in the computa-

tion. As opposed, passive attacks will simply observe the devices behavior during

37

Cache-Timing Attacks

their processing, without disturbing it.

As the above definitions connotate, hardware devices (e.g., smart cards and

cryptographic tokens) are ordinarily the main target of physical attacks. Side-

channel attacks are a class of physical attacks that often fall into the non-

invasive, passive category: they utilize a side-channel exposed through, for ex-

ample, power consumption or timing measurements.

The above physical attacks classification is more rigorous for hardware-based

side-channel attacks, while most of the side-channels considered in this disser-

tation are software-based. On the software side, a subset of the attacks will

require execution of a malicious program or spy process that runs in unpriv-

ileged user space [GGP07, Sec. 2]. Precisely how to place said attacks in the

above context of physical attacks is debatable. The following examples support

this statement.

1. The victim is a system. The spy process must execute within this system.

The attack is therefore invasive.

2. The victim is a legitimate process within a system. The spy process executes

in unprivileged user space, independent of the legitimate process. The attack

is therefore non-invasive.

3. The spy process influences the execution of the legitimate process indirectly

by manipulating the system state. The attack is therefore active.

4. It is normal, not disturbing, for a multitasking operating system to handle

multiple processes (including the spy process) pseudo-concurrently. The at-

tack is therefore passive.

Irrespective of how these attacks requiring execution of a spy process are clas-

sified as physical attacks, the threat model is clear. The typical attack scenario

is a spy process running concurrently on the same physical CPU as the victim

process (usually the execution of a cryptographic primitive). This dictates that

the attacker must gain authorization to execute the spy process locally. This

would be trivial, for example, if the attacker has valid login credentials to a

victim Secure Shell (SSH) server. This would be impossible, for example, if the

attacker cannot install and execute the spy process on the target system.

A timing attack is a side-channel attack that recovers key material by ex-

38

Cache-Timing Attacks

ploiting cryptosystem implementations that do not run in constant time, i.e.,

their execution time measured by the attacker is somehow state-dependent and

hence key-dependent. The previous chapter discusses covert channels, with

a focus on covert timing channels. One such covert channel was that made

available through the processor’s cache memory: cache-timing attacks ex-

ploit this as a side-channel. The focus of this survey is on cache-timing attacks,

but also includes selective results on more general side-channel attacks that

are partially related and build the foundation for cache-timing attacks. This

chapter proceeds chronologically through said related literature. The survey is

interleaved with discussions on the publications included in this dissertation,

outlining how said publications relate to the existing work.

Academic literature contains a plethora of results concerning cache-timing at-

tacks. Said results can be organized and presented in any number of ways: for

example, chronologically, by cryptosystem, by side-channel, or by attack model.

Indeed, it is feasible to produce a taxonomy of the results based on any of these

criteria. The approach in this dissertation to proceed chronologically is nei-

ther rash nor arbitrary. The major stimulus for results in this area is new

side-channels and new methods to exploit and/or realize them. This is largely

cryptosystem-independent and naturally occurs in a chronological fashion.

Timing attacks. Giving a number of remarkably simple timing attacks, the

seminal work of Kocher is the first to consider side-channel attacks on cryp-

tosystem implementations [Koc96]. Consider a right-to-left square-and-multiply

algorithm for exponentiation. If the exponent bit is a 1, the algorithm performs

the assignments B := B · A then A := A2. Otherwise, a 0-bit and the algorithm

performs only the assignment A := A2. The attacker chooses operand A hence

its value in each iteration is known. To mount a timing attack, the attacker

is tasked with finding input A that distinguishes former cases from the latter.

This could be done by choosing A such that the former case incurs measurably

increased execution time over the entire exponentiation yet the latter case does

not. Varying the number of computer words in A could be one method to in-

duce this behavior. Starting with the least significant bit, the attacker repeats

this process to recover the key iteratively. In this manner, the attacker traces

its way through the states of the exponentiation algorithm using the timings

as evidence. Kocher gives further examples of software mechanisms that lead

to timing vulnerabilities as well as attack experiment results. Kocher focuses

on public key cryptosystems with a static key such as RSA and static Diffie-

Hellman. Effectively a harbinger of cache-timing attacks, Kocher closes with

the following statement.

39

Cache-Timing Attacks

Timing attacks can potentially be used against other cryptosystems, including sym-

metric functions . . . RAM cache hits can produce timing characteristics in implemen-

tations of Blowfish, SEAL, DES, and other ciphers if tables in memory are not used

identically in every encryption.

Remark. In a very general way, Kocher’s timing attack traces its way through

the states of the server-side execution of a known algorithm with states that

should critically remain secret. Viewing the state space as a tree, it decides

what paths are taken in this space using the timings as evidence. Therefore, it

requires some timing characteristic that:

1. Occurs with high enough probability that it is possible to find inputs that

induce said timing characteristic.

2. Occurs with low enough probability that said timing characteristic is un-

likely to occur for random inputs.

It seems reasonable to extend the attack to other side-channels. In fact, the

algorithm in Publication VII can be viewed as a fault attack (or bug attack

[BCS08], i.e., passive fault attack) analogue of Kocher’s timing attack. To be

specific, it requires a computational fault that:

1. Occurs with high enough probability that it is possible to find inputs that

induce said fault.

2. Occurs with low enough probability that said fault is unlikely to occur for

random inputs.

A nice, practical example of such a fault that Publication VII exploits is the

implementation of fast modular reduction routines for NIST standard elliptic

curves P-256 and P-384 in OpenSSL versions up to and including 0.9.8g. Due to

an implementation error, the modular reduction computes incorrectly in quite

rare instances: assuming random inputs to a modular multiplication or squar-

ing routine, the faulty reduction occurs with probability roughly 2−32 and for

that reason went undetected by test vectors. The attack in Publication VII uses

this fault to recover private keys of TLS servers supporting ECDH and ECDHE

ciphers; see Fig. 4.1 for an illustration of the TLS handshake. To be able to ex-

ploit the fault, the attacker must be able to observe whether its chosen inputs

40

Cache-Timing Attacks

induce the fault or not. This heavily depends on the cryptosystem or proto-

col under attack. To attack ECDH and ECDHE ciphers in TLS, the attacker

client does not explicitly see the result of the server-side computation of the

shared secret. Hence to determine if the fault occurred or not, the attacker in-

stead attempts to complete the handshake successfully. In the key confirmation

messages occurring at the end of the handshake, the server will terminate the

session if it does not receive the expected messages from the client encrypted

with a key derived from the shared key. Thus if the handshake completes suc-

cessfully, this tells the attacker that the fault did not occur. On the other hand,

if the handshake fails, this tells the attacker that the fault did indeed occur.

However, this does complicate matters for the attacker, since finding inputs

that induce the fault, i.e., a point on the curve, cannot be done freely by simply

choosing the coordinates of the point. To be able to complete the handshake

successfully, the attacker must know the discrete logarithm of its submitted

Diffie-Hellman key. The attack implementation in Publication VII resorts to

finding said inputs at random by generating random scalars and demonstrates

that this is computationally feasible. The attack in Publication VII is able to

fully recover private keys associated with ECDH-ECDSA and ECDHE-ECDSA

ciphers from s_server, OpenSSL’s generic TLS server, as well as applications

linked against OpenSSL (≤ 0.9.8g) such as the widely-deployed TLS wrapper

application stunnel.

Side-channel analysis: a cryptanalytic technique. Kocher is careful to point

out that measuring execution time is not the only possible side-channel and

other potentially harmful channels can exist. Kelsey et al. extend Kocher’s

work by considering side-channel attacks on product ciphers [KSWH98]. They

explain that mathematical attacks on block ciphers such as linear and differen-

tial cryptanalysis attempt to exploit some non-random behavior in the cipher.

Thus the goal of side-channel cryptanalysis is similar yet makes use of addi-

tional data available through the side-channel. They give examples of three

different side-channels along with attacks on block ciphers.

1. The first is a timing attack against IDEA, a block cipher by Lai and Massey

[LM90]. Most symmetric key primitives are straight-line in the sense that

they contain no logic branches. The IDEA block cipher is an exception. It

makes use of many constant-time operations on 16-bit words such as bitwise

XOR and integer addition modulo 216. However, it also contains multipli-

cations modulo 216 +1 where the all-zero word represents 216. In software,

this might be implemented by comparing the operands to zero and handling

41

Cache-Timing Attacks

Client Server

------ ------

ClientHello -------->

ServerHello

Certificate*

ServerKeyExchange*

CertificateRequest*+

<-------- ServerHelloDone

Certificate*+

ClientKeyExchange

CertificateVerify*+

[ChangeCipherSpec]

Finished -------->

[ChangeCipherSpec]

<-------- Finished

Application Data <-------> Application Data

* message is not sent under some conditions

+ message is not sent unless client authentication

is desired

Figure 4.1. Message flow in a full TLS handshake.

those cases separately without the use of a multiplication instruction. Such

a straightforward approach most likely involves a conditional branch and

causes the cipher to not execute in constant-time: if either operand is zero,

a multiplication instruction is not performed and the total execution time is

lower. The authors outline two attacks that make use of this side-channel.

One is a ciphertext-only attack that recovers words of the key iteratively

working backwards from the ciphertext and targeting the operands of differ-

ent modular multiplications using the timing data as evidence. The authors

state that this side-channel is inspired by the IDEA implementation in PGP

2.3 running on a 486SX-33.

2. The second attack is against RC5, a block cipher by Rivest [Riv94]. A proces-

sor flag is extra internal state that stores additional output from the result of

a computation. One such flag on x86 is the carry flag that stores any overflow

from the integer addition of two registers. RC5 makes use of two integer ad-

ditions modulo 232 per-round. The authors define a side-channel consisting of

the value of the carry flag after each modular addition. This model is partic-

ularly detrimental to RC5 because round keys are one of the integer addition

operands. The authors outline two simple attacks: one using ciphertext-only

and the other an adaptive chosen-plaintext attack. While the authors explain

42

Cache-Timing Attacks

the attacks in sufficient detail, it remains unclear how to realize this side-

channel. One novel feature in RC5 is its use of data-dependent rotations:

register rotation distances that are not constant or fixed but take their value

from a register. While this is simple to realize on x86, some architectures

are not equipped with a variable-distance rotation instruction. In either case,

the authors mention that the manner in which the developer implements the

variable-distance rotation can introduce a timing side-channel. The same ar-

gument carries over to hardware implementations where power consumption

may leak the rotation distance. It seems feasible to apply similar analysis

techniques to other ciphers that employ integer additions.

3. The third attack is against the DES block cipher. The authors first consider

the case where the Hamming weight of the state leaks after execution of the

penultimate round. A plethora of attacks then exist: the simplest is perhaps

guessing the last 48-bit round key and checking the result against a small

number of ciphertexts, i.e., peeling off the last round and checking the Ham-

ming weight of the resulting state. The authors extend this idea and describe

a more statistical attack that encompasses a wide range of side-channel mod-

els involving Hamming weight leakage.

The authors sympathize with Kocher’s concern on the data cache acting as a

side-channel [KSWH98, Sec. 7].

The purpose of this paper was to demonstrate the power of side-channel cryptanal-

ysis against product ciphers. Our attacks are by no means exhaustive; the algo-

rithms discussed have other possible side channels and other attacks are possible

given other side channel information. And other product ciphers are vulnerable to

similar attacks. We believe attacks based on cache hit ratio in large S-box ciphers

like Blowfish, CAST, and Khufu are possible.

An extended version of the work appears later in a journal [KSWH00].

A theoretical cache-timing attack on DES. The previously mentioned works

warn that a data cache can potentially be used as a side-channel to attack

implementations of cryptographic primitives. Developing this notion, Page

presents a theoretical cache-timing attack against the DES block cipher [Pag02a,

Pag02b]. This is the first public work to formalize a side-channel model for a

data cache. The cache architecture under consideration is a 1kB direct-mapped

43

Cache-Timing Attacks

cache with 4B cache lines, modeled around ARM and MIPS embedded proces-

sors at the time. The attack assumes the cipher execution begins with an empty

cache and that for each memory access in the cipher description, the attacker is

told whether the access generates a cache hit or miss. The DES description con-

tains eight S-boxes and the attack is carried out using relations derived using

the first two rounds of the cipher’s execution. The attack intuition is as follows.

Consider the execution of DES in the first two rounds. By definition, starting

with an empty cache all accesses in the first round are cache misses. In the sec-

ond round, a cache hit (miss) implies that the input for the corresponding S-box

lies (does not lie) on the same cache line as that of the first round. Using a sin-

gle S-box as an example, Page carefully expresses the inputs to the S-boxes for

the first two rounds as a function of round key bits and plaintext input, the lat-

ter of which is under the attacker’s control. The attacker carries out an efficient

search for key material by varying the plaintext input using carefully chosen

plaintexts and observing the resulting cache behavior. The attack requires 210

chosen plaintexts and a computational effort of 232 to recover the 56-bit key.

Page also considers countermeasures to these types of attacks. Pre-loading the

tables can be as costly as disabling the cache entirely. Randomizing the cache

state before cipher execution provides only probabilistic protection. The work

shows that non-deterministic cache placement, i.e., dynamically altering the

cache mapping policy, is too costly. The only countermeasure presented opti-

mistically is non-deterministic access ordering, i.e., executing the memory ac-

cesses in random order. This is not always possible and depends on the degree

of parallelism present in the cipher description, i.e., if the memory accesses are

inherently serial this countermeasure is not effective. Page’s work marks the

first theoretical cache-timing attack on a cryptosystem.

A practical cache-timing attack on DES. Page’s seminal work models the

side-channel as a series of cache hits and misses, each corresponding to a dis-

tinct memory access in the description of the cipher. Given the application, he

argues that such a model might be realized by power consumption measure-

ments, e.g., of a smart card. The attack is theoretical in the respect that no

implementation is presented in the work. Using a different (arguably weaker)

side-channel model, Tsunoo et al. devise and implement a cache-timing attack

on DES [TSS+03]. For example, consider the following simple round structure:

L1 = S(L0 ⊕ K0) and R1 = S(R0 ⊕ K1) where L0 and R0 are plaintext inputs

and K0 and K1 are round or subkeys. The attacker collects many plaintext-

ciphertext pairs along with the time required to produce the ciphertext: that is,

the side-channel model provides the total execution time of the cipher. Consider

44

Cache-Timing Attacks

the following two scenarios.

1. The equality L0⊕K0 = R0⊕K1 results in a cache hit and one infers L0⊕R0 =
K0 ⊕K1. Tuples with a lower encryption time experienced more cache hits

and the relation and differential are more likely to hold. Tsunoo et al. call this

the non-elimination method because the resulting exhaustive search proceeds

through key material from where the more probable differential holds to the

least probable, i.e., the attacker uses timing evidence to explore more likely

key material first [TSS+03, Sec. 2.4].

2. The inequality L0 ⊕K0 �= R0 ⊕K1 results in a cache miss and one infers L0 ⊕
R0 �= K0⊕K1. Similarly, Tsunoo et al. call this the elimination method because

the resulting exhaustive search proceeds through key material from where

the least probable differential holds to the most probable, i.e., the attacker

uses timing evidence to explore less likely key material last.

To attack DES, the authors concentrate on the elimination method, explaining

that the number of S-box evaluations per-round compared to the size of the

S-box means that collisions that ultimately lead to cache hits are less likely.

The above example overlooks the fact that a cache line normally holds a num-

ber of contiguous values and the attacker can only infer a relation on a portion

of the round keys, not the entire round key. The authors design an attack

targeting such a relation between the first and last encryption rounds. They

implement the attack on a Pentium III “Katmai” that contains a 16kB 4-way

set-associative L1 data cache with 32B lines. They use a C implementation of

DES for 32-bit platforms that unrolls the linear layer (bit permutations) fol-

lowing the non-linear layer (S-boxes): in practice, this means that the table for

each of the eight S-boxes is 64 ·4 bytes in size, spanning eight cache lines. So

while a theoretical attack cannot determine the least significant lg(8) = 3 bits,

interestingly the authors are able to reduce this to two bits in practice as a re-

sult of unaligned tables, i.e., the tables for each S-box will not always land on a

32B address boundary. As a result, they are able to derive relations on the four

most significant bits of the S-box inputs [TSS+03, Sec. 3.2]. With this setup, the

authors are able to recover the full 56-bit DES key using 223 known plaintexts

and 224 computation effort. This is the first published cache-timing attack on

DES with an implementation. The authors cite their previous work, a similar

attack against the block cipher MISTY, yet the publication is not readily avail-

able [TTMM02]. An extended version of the work appears later in a journal

45

Cache-Timing Attacks

[TTS+06].

Classifying and mitigating cache-timing attacks. The previous two attacks

by Page [Pag02b] and Tsunoo et al. [TSS+03] are similar in that they exploit

the behavior of the data cache on the CPU but differ in the side-channel model.

Page subsequently categorizes these two results and examines general counter-

measures to them [Pag03]. He terms the former trace-driven attacks where,

for each memory access in the description of the cipher, the attacker is told

whether said access induced a cache hit or cache miss [Pag03, Sec. 2.1]: this se-

ries of cache hits and misses is called a trace. He terms the latter time-driven

attacks that rely instead on the total execution time of the cipher and operate

under the assumption that a cache miss (hit) implies longer (shorter) execution

times [Pag03, Sec. 2.2]. He discusses a number of countermeasures considering

both trace-driven and time-driven attacks [Pag03, Sec. 3]. The following sum-

marizes three such countermeasures to time-driven attacks that Page proposes,

implements, and evaluates. He measures their effectiveness by implementing

the attack by Tsunoo et al., confirming the validity of their results [TSS+03].

The author states a success rate of approximately 97% with 217 chosen plain-

texts [Pag03, Sec. 4.2].

1. Time skewing performs a random number of dummy operations at the be-

ginning of the encryption [Pag03, Sec. 3.6]. It is up to the implementor to

ensure that the compiler does not remove these dummy operations during

optimization. This is a reasonable defense because the random time the al-

gorithm spends doing dummy operations masks the timing variation due to

caching effects. When performing dummy operations for up to 1000 cycles,

the original attack no longer succeeds [Pag03, Tbl. 2].

2. Miss skewing performs a random number of memory accesses into a dummy

table; Page calls such a “fake” S-box an F-box [Pag03, Sec. 3.7]. This induces

an unpredictable number of cache misses, removing the correlation between

the plaintext and the number of cache misses and hence execution time. Per-

forming up to 32 random accesses into the F-box per encryption reduces the

success rate of the original attack to 2% [Pag03, Tbl. 2].

3. Instead of starting the encryption with an empty cache, cache warming brings

all, or a portion of, the S-box entries into the cache prior to encryption [Pag03,

Sec. 3.4]. In this instance, full cache warming is quite detrimental to perfor-

mance and the author experiments with random cache warming that pre-

46

Cache-Timing Attacks

loads up to half of the S-box entries into the cache. This can be implemented

by simply performing a random number of random accesses to the S-box. This

reduces the success rate of the original attack to 5% [Pag03, Tbl. 2].

A remote timing attack on RSA. Many RSA implementations including that

in OpenSSL use Montgomery reduction to replace expensive modular reduc-

tions with cheaper modular reductions modulo a power of two. Said Mont-

gomery reduction step follows each multi-precision multiplication and squar-

ing step. If the output of the Montgomery reduction step is greater than one

of the modulus factors, an extra multi-precision subtraction is required. Wal-

ter and Thompson show how a side-channel consisting of the presence or ab-

sence of these extra reduction steps can be used to reveal exponent bits [WT01].

Schindler optimizes and slightly generalizes the attack [Sch02]. Furthermore,

OpenSSL varies its choice of multi-precision multiplication methods based on

the number of words in the operands. If the number of words are the same,

it applies the Karatsuba divide-and-conquer method. If the number of words

differ, it applies schoolbook multiplication. D. Brumley and D. Boneh devise

and implement a timing attack on OpenSSL that exploits the behavior of both

of these mechanisms: the extra reduction step and the varying multiplication

routine [BB03]. The attack is essentially an iterative binary search on the bits

of one of the modulus factors, starting from the most significant bit, using the

time required for the server to decrypt the attacker input as evidence of the

correctness of bit guesses [BB03, Sec. 3]. The authors give extensive experi-

ment results that demonstrate the effectiveness of their implemented attack in

a number of scenarios, including local, remote, and virtual machine environ-

ments [BB03, Sec. 5]. The attack requires roughly one million queries to a TLS

server and succeeds in roughly two hours. Before this work, the general view

of remote timing attacks was that they are impractical due to the noise intro-

duced by network and other latency. This work is one of the most significant in

its area because it changed that perception. An extended version of the work

appears later in a journal [BB05].

Remark. There are at least two major contributions in the discussed work by

D. Brumley and D. Boneh:

1. They analyze the feasibility of running remote timing attacks in a variety of

network scenarios with varying degrees of network latency. This contribution

is somewhat independent of the timing attack itself, i.e., it is seemingly rea-

sonable to replace the underlying timing attack vulnerability with any such

47

Cache-Timing Attacks

vulnerability where the server-side secret inputs are not changing.

2. They devise and implement a remote timing attack using two such vulnera-

bilities in OpenSSL’s implementation of RSA. One of the more practical sce-

narios they consider is using the timings of the messages exchanged during

the TLS handshake to recover the private key.

Regarding the first point, this is not necessarily an incredibly interesting cryp-

tology topic: it can indeed be an obstacle when mounting the attack, but from

the theoretical standpoint the security of the private key should be independent

of network latency. Regarding the second point, a natural concern is how such

timing attacks affect other ciphers that can be used for server authentication

in the TLS handshake. Considering DSA and ECDSA, these are quite different

from RSA since generating DSA and ECDSA signatures use nonces, i.e., the

secret input is always distinct for the most time consuming operation during

signature generation. This is in stark contrast with RSA with a fixed private

exponent. Building on the work of D. Brumley and D. Boneh, Publication VI

presents a remote timing attack on OpenSSL’s implementation of ECDSA. The

implementation of scalar multiplication of points on elliptic curves over binary

fields uses an algorithm that has a fixed cost per bit, i.e., performs the same se-

quence of curve and finite field operations regardless of the value that any par-

ticular bit takes. Contrast this with a left-to-right scalar multiplication method

that only performs point additions on non-zero key bits. As a result, in this

case the implementation has a fixed time and computation cost for a single it-

eration of the scalar multiplication loop. However, the computation starts from

the most significant bit: the implementation drills down using bit tests to find

the top bit of the scalar and begin the computations from there. As a result,

there is a direct correlation between the time required to compute a scalar mul-

tiplication and the number of bits (i.e., base two logarithm) in the scalar. After

identifying this vulnerability, Publication VI uses it to steal the private key of

a TLS server that authenticates using ECDSA signatures. The attack proceeds

in two phases. In the first phase, the attacker repeatedly opens TLS sessions

and measures the time required for the server to respond with a message au-

thenticating messages in the beginning of the TLS handshake with an ECDSA

signature. This is repeated for a moderate number of sessions (213 or 214). Due

to the identified timing attack vulnerability, those signatures with a lower time

measurement correspond to signatures with nonces that have a lower number

of bits. This provides the attacker information on the top part of the nonce. In

48

Cache-Timing Attacks

the second phase of the attack, the attacker uses this information to mount a

lattice attack to recover the private key. The attacker is essentially left with

an underdetermined system of equations for which a small solution must be

found, and such solutions should be quite rare. This is precisely where lattice

algorithms are useful. Implementing the attack, the attack results in Publi-

cation VI show that the attacker is able to succeed in both local and remote

attack scenarios with as few as 213 queries to the server. In response to the

attack in Publication VI, CERT issued1 vulnerability note VU#536044 and the

OpenSSL team integrated the countermeasure patch provided in Publication

VI into their development code for future stable releases.

A cache-timing attack on AES. AES is arguably the most relevant modern

block cipher. Software implementations of AES targeting high-speed applica-

tions are largely table-based, i.e., replacing low-level finite field operations in-

volved in the non-linear and linear layers with a series of table lookups that

compute the linear layer output from the non-linear layer input. Bernstein de-

vises time-driven cache-timing attack on such implementations [Ber04]. The

intuition is that, due to caching effects, the time required to encrypt one AES

block is correlated with (part of) the key, which can be exploited by examining

the distribution of said timings as a function of attacker-chosen plaintext. This

is used to recover (part of) the inputs to the table lookups in the first AES round,

which are a function of the key and plaintext, the latter being known to the at-

tacker. What follows is a simplified example of the attack. Consider a known

function f : X×Y → Z implemented with a table lookup by (x, y) �→ T[x⊕ y]. In a

profiling stage with an environment identical to that of the victim, the attacker

measures the (noisy) time to compute f (a,0) for many random a ∈ X . Consider

the average time as a function of a and assume this value is maximal for a

distinct b ∈ X . The victim computes f (a′, y′) with a′ ∈ X chosen by the attacker

and y′ ∈ Y private and fixed, discards the output, and returns the (noisy) time

required to compute f . The attacker submits many random a′ ∈ X and records

said time. Consider the average time as a function of a′ and assume this is

maximal for a distinct b′ ∈ X . The attacker deduces that b⊕0 = b′ ⊕ y′ holds

and solves for the only unknown y′. This scenario immediately applies to AES

because x is a plaintext byte and y a key byte. In this manner, the attacker

derives a single key byte: the same logic applies to the other key bytes with

additional profiling. The author’s implementation runs with a custom server

process that plays the role of the victim and returns the number of Pentium III

cycles required to encrypt a single block from the client with AES in OpenSSL

1http://www.kb.cert.org/vuls/id/536044

49

Cache-Timing Attacks

(0.9.7a). The 32-bit word-based AES implementation uses four distinct tables

with 256 words per table and performs a round using sixteen table lookups.

The profiling stage may not produce a distinct maximum but instead a num-

ber of candidates with which the attacker carries out an efficient search for the

key. The required 222 queries to the server dominates the attack effort. In re-

ality, the attacker is not given such an accurate cycle count: the author claims

that this can be compensated for by simply taking more measurements [Ber04,

Sec. 4]. This work is significant because of the ubiquity of AES and its software

implementations: the target is not a straw man implementation but one within

OpenSSL, a widely-deployed library. Furthermore, the author encourages re-

searchers to reproduce the results by providing the source code.

A trace-driven cache-timing attack on AES. Page describes his cache-timing

attack on DES under the assumption that the cache is completely empty when

the encryption begins and that the attacker procures the trace by measuring

the power consumption of the device, e.g., a smart card [Pag02a]. The simplest

software implementation of AES uses a 256B lookup table to implement the

SubBytes step; this is an 8-bit S-box S. Somewhat similar to Page’s attack

on DES, Bertoni, Zaccaria, Breveglieri, Monchiero, and Palermo give a trace-

driven cache-timing attack on such AES implementations [BZB+05]. The at-

tack assumes the attacker can execute malicious code in user space that manip-

ulates the state of the cache by referencing its own memory locations [BZB+05,

Sec. 4.1]. An example of the simplest version of the attack follows, assuming a

direct-mapped cache with single byte lines. Assume S[0] maps to line 0 with-

out loss of generality. The attacker submits an all-zero block for encryption.

With overwhelming probability all bytes of S are now present in the cache. The

attacker references an address mapping to line 0, replacing the line contents

with the value at said address. The attacker resubmits the all-zero block for

encryption and monitors the power consumption of the device. Encrypting the

all-zero block, the indices for the sixteen lookups in the first round are in fact

all the bytes of the key. If the power trace reveals a cache miss for any of these

sixteen lookups, the attacker deduces the corresponding key byte is 0. The at-

tacker iterates this process for all byte values. This requires two queries per

byte value, or a maximum of 512 queries total. In reality, a line contains a

number of bytes and the attacker cannot deduce the exact value of the lower

bits of the indices; they carry out experiments simulating a 4kB direct-mapped

cache with 8B lines, leaking the top five bits of each key byte, or 80 out of 128

bits. The authors give convincing results of running the attack in a simulated

environment [BZB+05, Sec. 5]. As a countermeasure they propose preloading

50

Cache-Timing Attacks

the S-box into memory, i.e., performing exactly the amount and type of mem-

ory references to bring all entries of the S-box into the cache [BZB+05, Sec. 6].

As noted by Page, as a general countermeasure performance-wise this is not

always feasible and depends on the size of the tables and the cache geometry

[Pag02a, Sec. 5.1].

Access-driven cache-timing attacks. With a single processor core, an oper-

ating system can only physically execute one process at a time. Modern operat-

ing systems implement multithreading through context switching, i.e., letting

a process run for a fixed time quantum then swapping it out for another pro-

cess. With two physical cores, the operating system can assign two processes

to run in parallel. For better resource allocation, another option is that a sin-

gle physical core present two logical processors to the operating system and

instead run two processes in pseudo-parallel. While this requires some duplica-

tion of architectural state such as registers and flags as well as arithmetic logic

units (ALUs), it allows some components to be shared: for example, data and

instruction caches. This type of hardware parallelism is called simultaneous

multithreading (SMT). Intel’s Pentium 4 is the first modern processor to fea-

ture SMT. Intel’s implementation is called Hyper-Threading Technology (HTT)

[MBH+02]. This also implies that the two processes running in pseudo-parallel

also compete for the shared data cache. As such, Percival identifies HTT as a

covert channel and security risk [Per05]. He provides a concrete realization of

the cache-based covert channel first described by Wray [Wra91]. Percival engi-

neers carefully crafted assembly that can be used to spy on the data cache of

the Pentium 4 [Per05, Sec. 3]. The intuition is to bring the cache to some prede-

termined state, then examine changes to this state induced by another process;

a brief description follows. The Pentium 4 has an 8kB 4-way set-associative L1

data cache with 64B lines. It divides its 128 lines into 32 sets, each with four

lines. Alice fills all the lines in a single set by reading from four addresses that

all share the same set portion of the address, yet do not share the tag portion.

Alice repeats this for all cache sets. Bob can then send 32 bits of data by, for

each cache set, choosing to read (a 1-bit) or not read (a 0-bit) an address that

maps to said set. A read changes the cache state by evicting one of Alice’s val-

ues from the set. Not reading does not change the state. Alice can receive the

32 bits from Bob by, for each cache set, measuring the time required to re-read

the data at her addresses. If the latency is large, this implies a cache miss in-

duced by Bob’s read, transmitting a 1-bit. If the latency is small, this implies

a cache hit and Bob did not read from the set, transmitting a 0-bit. Percival

uses this covert timing channel as a side-channel to spy on an OpenSSL 0.9.7c

51

Cache-Timing Attacks

process performing an RSA signature operation. This performs two modular

exponentiations using the sliding window technique, where a series of bits in

the exponent are used as an index into a lookup table. Percival shows there is

significant correlation between the timing traces obtained by the spy and said

indices, leaking critical private key material [Per05, Sec. 5]. He designs a fac-

toring algorithm that takes this partial key material into account. Briefly, the

algorithm is a breadth first search on the bits of two forms of the private expo-

nent, where at each level nodes get trimmed based on the partial key material

available and number-theoretic constraints [Per05, Sec. 6]. It is worth noting

that it is not difficult to derive the later-published algorithm by Heninger and

Shacham [HS08, HS09] from Percival’s version, although there are oversights

in the latter. For example, the description assumes that a single linear equation

with a single unknown has at most a single solution, but this does not always

hold in a ring. As a result, the partial solution space can grow larger than the

claimed two-fold. Nevertheless, this efficiently recovers the private key using

as little as a single cache-timing trace. Percival’s work marks the first practical

cache-timing attack on a public key cryptosystem. Moreover, the side-channel

itself is not one introduced by the operating system via scheduling and con-

text switching, but the underlying hardware itself: in the end, it is Intel’s HTT

running two processes in pseudo-parallel that makes this particular attack fea-

sible. In the literature, this breed of attack is now termed an access-driven

attack. These attacks are similar to trace-driven attacks, yet differ in the at-

tack model and the side-channel implementation. Here the attacker is allowed

to manipulate the cache state as the victim executes. This is a significantly

more powerful attacker that, in a theoretical model, for each memory access in

the cipher description, is told not only whether it induces a cache hit or miss

but also what cache set it maps to, and furthermore is able to evict all victim

data between successive accesses.

Remark. One of the major contributions of Percival’s work is explicitly provid-

ing a strategy and technical details for realizing a data cache spy process. This

allows researchers to verify the result. One significant issue is how to process

the resulting signal to recover internal algorithm state. This is precisely the

problem that Publication I addresses. At a very concrete level, the spy process

yields successive vectors of cache-timing data where each vector component is

a timing measurement for a distinct cache set. The framework that Publication

I proposes processes this vector timing data in two stages.

1. Vector Quantization (VQ) is a signal processing technique that approximates

52

Cache-Timing Attacks

vectors from a large input domain with a smaller set of vectors called a code-

book. It matches vectors to their closest (Euclidean distance-wise) represen-

tative in this codebook. It can be helpful to view VQ in the context of lossy

data compression. Instead of transmitting the original vector, the index of

the most similar codebook representative is transmitted. On the receiving

end, this index is converted back to the codebook vector: the original vector

is most likely not obtained, but the closest available approximation of it. The

framework in Publication I uses VQ for classification: it matches an incoming

timing vector to the closest existing timing vector in the codebook. The code-

book itself is produced in a profiling stage where the attacker spies on the

victim algorithm with its own known secret inputs, for example by execut-

ing the same algorithm in its own user space. To summarize, the first stage of

the framework in Publication I matches new incoming timing data to existing

timing data, the latter of which represents the algorithm in a known state,

and thus this known state is a good guess at the state for the incoming data.

This stage essentially reduces the dimension of the side-channel to facilitate

further processing. This “templating” portion of the framework relates to the

template attacks concept by Chari et al. concerning power analysis [CRR02].

2. A Hidden Markov Model (HMM) is a statistical model of a discrete-time

stochastic process. The internal state of the process remains hidden, yet as

the process changes states it emits one of a number of observations with given

probabilities. HMMs are an effective signal processing technique to eliminate

noise in the signal, i.e., recover the (most likely) original states that the pro-

cess passed through by only observing the state emissions. It may come as

no surprise that HMMs have been applied in side-channel analysis before:

see the works of Karlof and Wagner [KW03] and Green et al. [GNS05]. The

framework in Publication I uses the output from the VQ stage as observation

input to the HMM stage. The goal of the HMM stage is to output the most

likely sequence of algorithm states that produced the observations. Similar

to the VQ stage, the HMM training takes place during a profiling stage.

As an example of applying this framework, Publication I mounts an access-

driven cache-timing attack on OpenSSL’s implementation of ECDSA. Said im-

plementation uses a textbook left-to-right double-and-add algorithm for scalar

multiplication and a wide modified Non-Adjacent Form (NAF) for scalar repre-

sentation where, in each point addition step, a lookup into a memory-resident

table of precomputed points takes place. The attack uses the framework to re-

53

Cache-Timing Attacks

Time

 0

 16

 32
C

ac
he

 S
et

 130

 140

 150

 160

 170

 180

 190

 200

Time

 0

 16

 32

 48

 64

C
ac

he
 S

et

 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260

Figure 4.2. Using the framework in Publication I, cache-timing data from a spy process running
concurrently with an OpenSSL 0.9.8k ECDSA signature operation; 160-bit curve
with a width-4 NAF. Top: Pentium 4 timing data, seven point additions denoted
with black metadata. Bottom: Atom timing data, eight point additions denoted
with black metadata. Repeated point doublings occur between the additions. The
top eight rows are metadata; the bottom half the VQ label and top half the HMM
state. All other cells are the raw timing data, viewed as column vectors from left
to right with time. Any timing data cell with a higher value, i.e., lighter shade,
suggests a cache miss. Any cell with a lower value, i.e., darker shade, suggests a
cache hit.

cover a portion of the nonce used for ECDSA signature generation. This small

portion of the nonce is then used as input to a lattice attack to recover the long-

term ECDSA private key from many such signatures. This requires only a few

thousand signatures to be collected, along with the corresponding side-channel

data, and runs in a matter of hours. The attack in Publication I gives imple-

mentation results for both the Intel Pentium 4 and Atom processors. Figure 4.2

illustrates the effectiveness of the framework. As mentioned in Chapter 1, an-

other microarchitecture attack breed is that which exploits the behavior of the

branch predictor. Further applying the framework to process the resulting side-

channel of the branch predictor is an important topic for future work.

Remark. Percival’s work also led to changes in the OpenSSL source code, im-

plementing countermeasures to the attack for RSA modular exponentiations

using a sliding window. This specific countermeasure aligns values in the pre-

computed lookup table so that lookups into said table reflect the same pat-

tern in the trace, the goal being to hide the lookup table index, i.e., exponent

key bits. While this can be effective, said countermeasure only applies to one

54

Cache-Timing Attacks

cryptosystem: namely, RSA. Treating the vulnerability in a more general fash-

ion, Publication IV examines the use of a shared context within OpenSSL as a

cache-timing attack countermeasure. A robust library such as OpenSSL uses

dynamic memory allocation to reserve space for objects such as multiprecision

integers, finite ring elements, and finite field elements. Since one object type

can be used for multiple cryptosystems, e.g., RSA, DSA, and ECDSA all use

multiprecision integers, only one implementation of these objects exists and is

very flexible with respect to size. That is, their size is not necessarily known

in advance, e.g., the integers in RSA are much larger than those in ECDSA.

This implies that dynamic memory allocation must be used at runtime to set

aside the needed amount of space for the object. However, all of the mentioned

cryptosystems need some temporary space for intermediate values. For exam-

ple, to compute x · y mod p, it first computes z = x · y where z requires twice

the space to be stored temporarily, then computes z mod p reducing the mag-

nitude. Dynamically allocating memory is a costly operation, so to optimize

functions where temporary space is needed repeatedly, it makes sense to store

the dynamically allocated memory and reuse it across functions: for example,

within a modular exponentiation function. This is precisely what OpenSSL

does (as well as other libraries offering multiprecision integer arithmetic) and

terms the mechanism a shared context. One general cache-timing attack coun-

termeasure suggested, but not implemented, in Publication I is to modify the

allocation policy of the shared context by randomizing its behavior. Taking a

more straightforward approach, Publication IV modifies the allocation policy of

the shared context to align all dynamically-allocated memory at the same ad-

dress boundary, said boundary determined at library compile time depending

on the architecture. The intuition is that if all dynamically-allocated data maps

to the same cache set, this significantly impedes access-driven cache attacks

since little to no information can be inferred about operands. After implement-

ing the countermeasure as a patch to the OpenSSL source code and evaluating

its effectiveness, Publication IV arrives at a counter-intuitive result. The traces

obtained for patched and unpatched versions are not significantly different,

suggesting that the allocation policy of the shared context has little impact on

the resulting side-channel, at least on the Intel Pentium 4 architecture under

consideration. This poses the open question of what software trait is triggering

some microarchitecture feature that contributes most to this signal.

Access-driven attacks on AES. Percival’s attack is a local attack in that it

requires the attacker to execute the spy program locally on the same processor

core as the victim program. Independent and concurrent to Percival’s work,

55

Cache-Timing Attacks

Osvik, Shamir, and Tromer develop a similar local cache-timing attack on AES

[OST05, OST06]. They consider both synchronous and asynchronous attacks.

In this context, synchronous means that the attacker can bring the cache to

some known state, trigger the victim to encrypt some known plaintext block,

then examine the cache after encryption of the block. That is, the attacker can

only examine the cache before and after the encryption, not during. The asyn-

chronous model allows the latter: it can be realized as a result of Intel’s HTT.

A short description of the synchronous attack follows. Denote key bytes ki and

plaintext bytes pi. The first nine out of ten AES rounds use four lookups into

each table T j for 0≤ j < 4. That is, sixteen lookups per round, one for each state

byte. The attacker fills the cache with his own data, submits sixteen bytes to be

encrypted, then tries to re-read his data cache set-wise. A cache miss implies

that the victim accessed that set. However, the attacker cannot infer much

from this: there are a total of 36 lookups into a single T j over the encryption

of one block and the attacker cannot deduce which lookup(s) led to the data

eviction. On the other hand, a cache hit implies that no lookup mapped to said

set. In the first round, the lookup indices are pi ⊕ ki and with pi known such

an observation eliminates a large number of candidates for ki. More precisely,

reasonably assuming 64B cache lines, each table contains 256 4-byte entries

and each line sixteen entries, hence this eliminates sixteen candidates for each

of four key bytes. The authors state the probability of this event occurring is

approximately 0.104 and iterating this strategy recovers 64 bits of the key us-

ing only a few dozen queries. The authors also show how to extend the attack

using relations between the first and second round of AES: this recovers the full

128 bits of the key after 8220 encryption queries and approximately 229 steps

in analysis. To carry out such cache-timing attacks in practice, one needs to re-

alize the side-channel. To this end, the authors propose two methods to obtain

cache-timing data; these methods are important because, to some extent, they

have become the de facto method of procuring said data for researchers in the

field.

1. In the first strategy, the attacker submits a plaintext block for encryption.

After the encryption completes, the attacker completely fills a single cache

set. The attacker then submits the same plaintext and measures the encryp-

tion time. If the average time is higher, this implies the victim suffers a cache

miss from accessing data mapping to said cache set. The authors term this

method Evict+Time [OST05, Sec. 3.4].

56

Cache-Timing Attacks

2. In the second strategy, the attacker first brings the cache to a known state.

Normally this involves either filling the entire cache or relevant cache sets.

The attacker then submits a plaintext block. After the encryption completes,

the attacker, cache set-wise, measures the time required to re-read the data

in the cache sets. High latency implies cache hits and that the victim accessed

data mapping to the cache set. There are two fundamental differences from

the former strategy. In the former, the attacker obtains only a single tim-

ing measurement for a single cache set. Here the attacker obtains a single

measurement for a number of cache sets. Also, here the attacker measures

the execution latency of its own instructions; in the former, the latency of the

victim’s instructions. The authors term this method Prime+Probe [OST05,

Sec. 3.5].

The authors carry out their attacks on AES through OpenSSL 0.9.8 function

calls as well as the dm-crypt disk encryption subsystem for Linux. An extended

version of the work appears later in a journal [TOS10].

An improved trace-driven attack on AES. As previously mentioned, the trace-

driven attack on AES by Bertoni et al. assumes that the encryption begins with

the cache in a state chosen by the attacker [BZB+05]. This is a much more pow-

erful attacker than one in Page’s model where, in contrast, encryption begins

with an empty cache [Pag02a]. Lauradoux adopts the latter model to develop a

trace-driven cache-timing attack on AES implementations that use the large T

tables [Lau05]. A brief description of the attack follows; assume 32-bit words

and 64B cache lines. The four indices into T0 during the first round are pi ⊕ki

for 0 ≤ i < 4. The first access induces a cache miss since the cache is empty.

The goal of the attacker is to derive relations of the form p0 ⊕ k0 = p j ⊕ k j for

all 1 ≤ j < 4 that hold on the four most significant bits. The attacker accom-

plishes this by cycling through all values in the four most significant bits of p0

yet fixing the four remaining bits and all other bytes pi. The attacker submits

these sixteen plaintexts for encryption and collects the corresponding traces.

One trace must reflect a hit for p1 ⊕ k1. This yields four relations on eight key

bits: four bits each of k0 and k1. Their are two options for the third access. One

possibility is that one trace must reflect a hit for p2⊕k2, meaning the change in

attacker-chosen input induced the cache hit. This yields four relations on eight

key bits: four bits each of k0 and k2. The other possibility is that all traces

reflect a hit, meaning the second access induced the cache hit. This also yields

four relations on eight key bits: four bits each of k1 and k2. Similar logic applies

to the fourth access. In total, this provides twelve relations on sixteen key bits.

57

Cache-Timing Attacks

Applying the same logic in parallel to the other T tables yields 48 relations on

64 key bits. With 16 chosen plaintexts and corresponding traces, this reduces

a brute force attack on the key to 280 steps, deferring a more in-depth crypt-

analysis to future work [Lau05, Sec. 3.1]. The author also analyzes the attack

against implementations that use only a single T table but with rotations: with

240 chosen plaintexts and corresponding traces, this reduces a brute force at-

tack on the key to 268 steps [Lau05, Sec. 3.2]. One non-trivial countermeasure

considers randomizing the addresses by using instead a number of permuted

tables that remain local and secret, decreasing the amount of information an

attacker can infer from the traces [Lau05, Sec. 4].

Cache-timing attack mitigations for AES. The previously discussed cache-

timing attacks by Bernstein [Ber04] and Osvik et al. [OST05] demonstrate

that cache-timing attacks pose a practical threat to software implementations

of AES. Brickell, Graunke, Neve, and Seifert recognize this threat and pro-

pose, implement, and evaluate a number of carefully devised countermeasures

[BGNS06]. A brief summary of three methods follows.

1. As the size of a table decreases, it spans fewer lines in the cache and reduces

the amount of information an attacker can infer from a cache hit or miss. In

an extreme case, if a table fits into exactly one cache line, then (in theory)

an attacker cannot infer any information whatsoever. The authors propose

to use the original, smaller 256-byte AES S-box, and furthermore prefetch

all of the lines in each round; for the common case of 64-byte cache lines,

this implies four extra memory references per round. This is generally effec-

tive against time-driven and access-driven attacks with limited granularity.

Unfortunately this approach dictates that the linear layer be explicitly com-

puted. SIMD through Intel’s SSE2 aids in keeping performance competitive.

2. The simplest cache-timing attacks against AES use relations derived from

either the first round or the last round: the cipher’s diffusion properties make

it difficult to derive exploitable relations involving variables from multiple

rounds. The authors propose to apply the previous countermeasure during

only these critical rounds, yet for all rounds between use the single large

compressed T table and unaligned loads. They suggest this compromise is ef-

fective when attackers can only obtain cache-timing measurements between

the contiguous execution of a number of AES rounds, i.e., access-driven at-

tacks with only limited granularity.

58

Cache-Timing Attacks

3. Lastly, the authors consider access-driven attacks with high granularity, i.e.,

capable of observing the cache a number of times per AES round. The authors

again suggest the smaller 256-byte S-box and prefetching all of the lines in

each round, but combining this with permuting the S-box with a dynamic

permutation changed frequently. Intel’s SSE2 aids this time in executing said

permutation.

When measuring the performance impact of these countermeasures, the au-

thors state that the execution time is between 1.35 and 2.85 of the stock AES

code, depending on what countermeasures are employed [BGNS06, Sec. 5.1].

Furthermore, they state that any of the proposed countermeasures are effec-

tive against Bernstein’s attack [Ber04]: the average execution times follow a

normal distribution [BGNS06, Sec. 5.2].

An access-driven attack on the last AES round. The first nine rounds of

AES are all identical in the sense that, as previously discussed, in software

each round contains sixteen table lookups, four into each T j for 0 ≤ j < 4. The

last round omits the MixColumns step and, as such, is exceptional. One way to

implement this is using a table T4 that holds the SubBytes output as 4-byte

words. The last round is then implemented as sixteen lookups into T4 com-

bined with some masking or shifting. Neve and Seifert design a cache-timing

attack against such implementations [NS06]. To implement a trace-driven

cache-timing attack on AES, one challenging practical issue is synchronizing

with the cipher: for example, determining where one round ends and the next

begins in a cache-timing trace. However, with the above implementation the

last round only makes memory accesses from T4 while all other rounds do not

access T4 at all: these accesses in the final round should be easy to distinguish

from the other accesses. The authors devise two attacks building on the two

search strategies of Tsunoo et al. [TSS+03]. Both methods seek to recover the

last round key and then derive the original key by easily inverting the key

schedule.

1. The non-elimination method first sorts all ciphertexts according to the value

of a given byte [NS06, Sec. 7.1]. All bytes that share the same value all made

the same memory access in the last round: each ciphertext byte is a function

of a single state byte and a round key byte in the last round. Hence all such

bytes that have the same value must reflect a cache miss for the correspond-

ing cache set in the trace, i.e., there will be one cache set amongst sixteen

reflecting all cache misses while access to other sets is fairly random; the au-

59

Cache-Timing Attacks

thors calculate the average number of sets accessed in the last round as 10.3

[NS06, Sec. 5], i.e., with t = 1 ciphertexts there are 10.3 candidates for the

correct cache line. Proceeding with t = 2 eliminates many of these candidates,

i.e., any lines that went unaccessed for this new ciphertext. With overwhelm-

ing probability, all lines will be accessed by t = 7 [NS06, Tbl. 1] and the correct

cache line can then be identified. This identifies the upper four bits of all state

bytes in the last round. Recover the lower four bits of each byte as follows.

Find bytes a and b, the top four bits fixed by the known state from the previ-

ous step, such that the difference T4[a]⊕T4[b] agrees with the corresponding

difference in their ciphertexts: the relation derived by summing the two ci-

phertexts. Most likely a and b will be unique, otherwise this process can be

repeated. This recovers the entire state at the beginning of the last round.

Express each byte of the last round key as a function of a single byte of said

state and a single byte of ciphertext. Finally, solve for all bytes of the last

round key. This method requires roughly 186 queries [NS06, Sec. 7.1].

2. The elimination method is more efficient and focuses instead on unrefer-

enced cache sets; the average number of these per trace is 5.7 [NS06, Sec. 7.2].

This method keeps a set of candidate bytes for each round key byte. An unref-

erenced set implies the corresponding upper four bits of state are not possible

for any state byte. Use the corresponding ciphertext to compute the result-

ing impossible key bytes. This eliminates up to sixteen key byte candidates

from each key byte, or 256 candidates total. The attack proceeds iteratively

through the traces in this fashion, trimming the candidate sets. Naturally as

more traces are processed less trims are made as collisions start occurring,

i.e., eliminating bytes that have already been eliminated, but the authors

show that roughly 20 queries suffices to recover the key using this method

[NS06, Sec. 7.2].

The authors consider three different levels of granularity in cache-timing traces

[NS06, Sec. 6]: low resolution that allows only one measurement for the encryp-

tion of multiple blocks, one line resolution that allows only one measurement

for the encryption of a single block, and high resolution that allows multiple

measurements throughout the encryption of a single block. The authors focus

mostly on one line resolution that is fairly easy to realize, for example with the

Prime+Probe strategy of Osvik et al. [OST05, Sec. 3.5]. The authors describe

implementing the attack by exploiting the operating system scheduler [NS06,

Sec. 3]. The spy slows down the victim process by using up nearly all of its al-

60

Cache-Timing Attacks

lotted time then yielding the remainder, allowing the victim process to execute

for only a very short period: this improves the resolution of the spy’s measure-

ments. This is an important result because it shows that SMT such as Intel’s

HTT is not a prerequisite for carrying out practical access-driven cache-timing

attacks.

Improved trace-driven attacks on AES. In the previously discussed trace-

driven attack on AES by Lauradoux, he mentions the possibility of using more

of the cache trace to reduce the 280 search space but defers the analysis to future

work [Lau05, Sec. 3.1]. The cache-timing attack on AES by Neve and Seifert is

access-driven and not trace-driven, i.e., the side-channel provides information

on specific sets that are accessed [NS06]. Acıiçmez and Koç build on both of

these results by, in the former case, extending the attack to relations across the

first two AES rounds and, in the latter case, developing a trace-driven attack

on the last AES round [AcKK06a, AcKK06b]. A summary of these two topics

follows.

1. The authors begin by reformulating the known attack in terms of hypothesis

key bytes, then performing a search trimmed by the relations derived from

the cache trace. Although not stated as such, the alluded algorithm is essen-

tially a backtracking search algorithm where the search space is all possible

16-tuples of key bytes. For example, consider the four accesses in to T0 in the

first round and a trace of MHMM. The first miss provides no information

due to the empty cache. The second hit implies the previously discussed re-

lation p0 ⊕ p1 = k0 ⊕ k1 on the four top bits. Tuples that do not satisfy this

relation get trimmed, and due to the backtracking as soon as possible, i.e.,

the second level of the search. The second miss implies p0 ⊕ p2 �= k0 ⊕ k2 on

the four top bits: this trims the search space at the third level. This in and

of itself is not novel. The novelty is the manner in which the authors further

trim the search space using trace data from the second round. This is done

by expressing the bytes of the second round key as a function of bytes in the

first round key, i.e., using how the AES key schedule evolves from the first

round to the second. The authors also point out that such a strategy cannot

extend beyond the first two round since AES achieves complete diffusion at

that point: after the first two rounds every state bit depends on every key bit

[AcKK06a, Sec. 3.4]. When simulating the attack their experiment results

state that this reduces the number of steps in analysis to roughly 248 with

fifteen traces or roughly 233 using 40 traces [AcKK06a, Sec. 5].

61

Cache-Timing Attacks

2. The trace-driven attack on the last AES round follows a similar strategy as

that of Neve and Seifert in that it starts with a set of candidate bytes for each

key byte and trims these sets based on the side-channel data [NS06]. Yet how

these sets are trimmed differs substantially because of the differences in the

two side-channel models. The intuition is as follows. Take a trace in the last

round that starts with MH. The first miss provides no information due to

the empty cache: no entry from T4 is accessed until the last round. Call the

inputs to the first and second lookups a and b, respectively. The cache hit

implies that the top four bits of a and b are equal. The ciphertext bytes are

cm = S[a]⊕ki and cn = S[b]⊕k j for some m,n, i, j where ki and k j are bytes of

the last round key. Or rearranged, a = S−1[cm⊕ki] and b = S−1[cn⊕k j]. Find

ki and k j such that the top four bits of S−1[cm⊕ki] and S−1[cn⊕k j] are equal;

the search space is 16 bits. This recovers two bytes of the last round key. To

implement this, the authors use a search strategy similar to that on the first

two rounds: it can be thought of as an exhaustive search on key bytes yet

trimming the search using equalities and inequalities derived from the trace.

When simulating the attack their experiment results state that this attack

requires roughly 235 steps using ten traces [AcKK06a, Sec. 5].

An improved time-driven attack on AES. In the time-driven attack on DES

by Tsunoo et al., the elimination method focuses on encryptions that experi-

enced high latency, i.e., those more likely to have incurred cache misses and

concentrates on an implied inequality between parts of the first and last round

states [TSS+03]. Bonneau and Mionov derive a related attack on AES that in-

stead focuses on encryptions that experienced low latency, i.e., those more likely

to have incurred cache hits [BM06]. The inferred equations are similar to, but

obtained independently from, those previously discussed by Neve and Seifert

[NS06] and Acıiçmez and Koç [AcKK06a]. The authors first outline an attack

exploiting cache hits in the first AES round [BM06, Sec. 5]. What follows is a

short summary of their final round attack [BM06, Sec. 6]. At the beginning of

the last round, consider two state bytes xi and xj such that xi = xj: the state

bytes collide. Then T4[xi] = T4[xj] holds and this induces a cache hit. This

furthermore implies cm ⊕ cn = km ⊕ kn for some fixed m and n: that is, a cache

hit should result in a low latency timing, and that particular key differential

will hold (or from the attacker perspective, is more likely to hold given only the

low latency as evidence). Based on this observation, the attacker triggers the

device to perform an encryption and measures the execution time. The attacker

then builds a table t[i, j,Δ] that holds the average execution time for the differ-

62

Cache-Timing Attacks

ential Δ: that is, with ciphertext c for each combination of ciphertext bytes ci

and c j increments a counter and accumulates the time at t[i, j, ci ⊕ c j]. After

iterating this process sufficiently, one particular differential for each i and j

combination will have a lower average execution time: the attacker will be able

to identify a distinct Δ′ such that t[i, j,Δ′] reflects a minimal average execu-

tion time. The attacker then uses these differentials to build a system of linear

equations and solve for the last round key. This method can be extended by con-

sidering cache line collisions instead of full state byte collisions: i.e, collisions

on only the upper portions of the state bytes [BM06, Sec. 7]. This is done by

expanding the table t to include 2-tuples of key bytes instead of only differen-

tials. That is, with ciphertext c for each combination of ciphertext bytes ci and

c j the attacker increments a counter and accumulates the time at t[i, j,ki,k j]

whenever the top bits of S−1[ci ⊕ ki] are equal to the top bits of S−1[c j ⊕ k j],

i.e., induced a cache hit in the last round. This requires more memory and

time in the analysis phase, but less measurements. The authors implement

the attack and, for example, carrying it out against AES software running on a

Pentium III requires as few as 213 ciphertexts and measurements. It is worth

mentioning that a single process is used to collect the timings and perform the

encryption, i.e., a single program that measures the latency of a function call.

In closing, the authors state that the simple countermeasure of eliminating the

T4 table dedicated to the last round, replacing it with lookups into the other

existing T tables and different masking techniques, has no measurable effect

on the cipher performance and deserves consideration [BM06, Sec. 9].

Cache-timing attacks and constraint satisfaction. The trace-driven AES fi-

nal round attack by Acıiçmez and Koç assumes that encryption begins with an

empty cache [AcKK06a]. Or more accurately, the authors adopt Page’s model

for trace-driven attacks where the assumption holds [Pag03]. Bonneau builds

on this result by developing a related trace-driven attack on the last AES round

that, in contrast, does not necessarily assume an empty cache [Bon06]. Some-

what similar to the elimination method in the attack by Tsunoo et al. [TSS+03],

the attack uses implied inequalities derived from cache misses in the trace.

A brief summary follows. Assume two ciphertext bytes c0 = T4[xm]⊕ k0 and

c1 = T4[xn]⊕ k1 for some fixed m and n and a cache trace starting with MM.

The first cache miss conveys no relevant information; consider the second cache

miss. This implies that xm and xn are not on the same cache line, thus do not

have the same values in the upper bits. In contrast, nothing can be immediately

inferred from a cache hit since this work assumes the previous cache state is

unknown. The attacker guesses byte k0 and computes xm = S−1[c0 ⊕ k0]. De-

63

Cache-Timing Attacks

pending on the number of values that a cache line fits, this eliminates a large

number of candidates for xn: all those that share the same upper bits with

xm. This eliminates a corresponding number of candidate k1 values using the

equation for c1, trimming the search space significantly. The author extracts

all such constraints from the side-channel and cleverly views the problem as a

one of constraint satisfaction [Bon06, Sec. 5]. As such, he is able to apply ex-

isting constraint propagation methods to carry out the search efficiently. This

is an elegant solution to the problem because, as opposed to much of the pre-

vious work, it leans on existing techniques instead of constructing a dedicated,

one-off algorithm. In that respect, the method can be adapted and applied more

generally to handle searches that should take into account constraints imposed

by side-channel data. The author simulates the attack for different cache line

sizes [Bon06, Sec. 6]. The results confirm those of Acıiçmez and Koç assuming

an empty cache requiring ten traces [AcKK06a, Sec. 5], but interestingly when

relaxing this assumption the average number of measurements needed is only

nineteen [Bon06, Tbl. 1].

An extended time-driven attack on AES. One novelty in the previously dis-

cussed trace-driven attack on AES by Acıiçmez and Koç is how the authors

extend a first round attack to an attack over the first two rounds by consider-

ing the trace data in the second round in combination with the operation of the

AES key schedule [AcKK06a]. The work is, however, theoretical as the attack

only simulates the side-channel. In contrast, consider the time-driven attacks

on AES by Bonneau and Mironov that remotely exploit the same features as

a trace-driven attack, i.e., whether table lookups in single round collide and

map to the same cache line or not [BM06]. The authors implement their last

round attack and demonstrate that it is feasible, at least when timing noise is

at a minimum. On the other hand, the first round attack the authors propose

leaves an impractical search space for the remaining key bits. Leaning on both

of these results, Acıiçmez, Schindler, and Koç implement a time-driven attack

on the first two AES rounds [AScKK07]. In a chosen plaintext attack scenario,

the authors are able to improve the attack complexity by fixing a number of

plaintext bytes, allowing individual key bytes to be attacked instead of 4-tuples

of key bytes [AScKK07, Sec. 3.4]. They implement their attack in two different

scenarios [AScKK07, Sec. 4]. They term the first an innerprocess attack: the

scenario is analogous to that of Bonneau and Mironov where a single process is

measuring the latency of an encryption directly through a function call [BM06].

This minimizes noise. They term the second an interprocess attack: it uses a

custom TCP client that takes timing measurements and server that encrypts

64

Cache-Timing Attacks

data. In their experiments, the client and server run on the same physical ma-

chine so there is no transmission delay, only that introduced from the network

stack. This is a much weaker attacker than the former and closer to a realistic

remote attack. In the latter case, the authors state that 106 million queries to

the server are enough to make the attack succeed and recover the entire 128-bit

AES key: the attack is carried out against OpenSSL 0.9.7e and Linux running

on an Intel Xeon with HTT [AScKK07, Sec. 4].

Process scheduling and cache-timing attacks. For access-driven attacks,

implementing such a spy process that exploits the OS scheduler can indeed

be a tedious task: as such Neve and Seifert omit the explicit details of its con-

struction [NS06, Sec. 3]. Tsafrir, Etsion, and Feitelson present a “cheat” attack

that can inadvertently be used to run local trace-driven cache-timing attacks

[TEF07]. They place the attack in a much more general context: a malicious

user program that is able to control the execution of another user program

in such a way that the latter consumes an arbitrary percentage of real CPU

time, yet this is undetectable through typical administrative auditing (such as

ps, top, etc.). An OS scheduler divides CPU time into evenly-spaced intervals

called ticks. At the end of a tick, the scheduler “bills” the running process,

i.e., increments a counter, determines whether said process has exceeded its

alloted time or quantum, and either continues running the process or performs

a context switch and runs another waiting process. The intuition of the “cheat”

attack is to have the malicious program start running immediately following

a tick, yet stop execution before the next tick and the scheduler allocates the

remaining time by resuming execution of a waiting process. Upon the next tick,

said resumed process is billed for the tick; the malicious program is no longer

running. To implement this, the authors use the CPU cycle counter rdtsc to

determine the approximate number of real CPU cycles in the duration of a tick.

Hence the malicious program can execute for any number of CPU cycles less

than said duration, continuously checking rdtsc during execution to ensure

that it does not exceed the tick duration. The malicious program synchronizes

with scheduler ticks by performing a dummy sleep request, causing it to wake

exactly upon the next tick. One can imagine a number of security threats this

poses. For example: a user is able to bypass administrator policies limiting

CPU time; avoid monetary liability for CPU usage; perform a denial-of-service

attack by consuming system resources. The authors outline a number of other

malicious uses [TEF07, Sec. 2]. While not explicitly stated as a use case, the

“cheat” attack can be used to carry out access-driven cache-timing attacks: the

malicious program is able to monitor the memory references of the program

65

Cache-Timing Attacks

that is resumed immediately following it. In this manner, the malicious pro-

gram slows down the execution of the victim program since it only receives

a very small window of the tick to execute during. The authors include the

complete source code for their malicious program [TEF07, Sec. 3.1] as well as

extensive experiment results [TEF07, Sec. 3.2].

Instruction cache-timing attacks. All of the previously discussed cache-timing

attacks exploit the data cache, i.e., the notion that the latency of retrieving val-

ues from memory depends on the availability of said data in the data cache.

Modern processors also feature an instruction cache (icache) that provides sim-

ilar functionality for program code. That is, to decrease the latency of fetching

instructions from main memory to be executed, once fetched said instructions

are cached to decrease the latency of subsequent requests. Acıiçmez demon-

strates that this microarchitecture feature can indeed be used as a side-channel

and poses a security risk [Acı07a, Acı07b]: a brief summary follows. Consider

a spy process that wishes to determine whether a victim process executes or

does not execute a certain code segment. The spy executes a series of dummy

instructions that map precisely to the same region of the icache as the target

code segment of the victim process. In this manner, the spy fills the icache

with its own code. Now assume the victim process is allowed to briefly exe-

cute. Similarly to data cache attacks, this could be realized through context

switching and exploiting the operating system scheduler or SMT such as Intel’s

HTT. Now the spy process is again allowed to execute. It measures the latency

of re-executing its dummy instructions. High (low) latency execution implies

that the victim process executed (did not execute) a code segment that maps

to the target region of the icache. In a proof-of-concept realization, Acıiçmez

describes a spy process that targets the multi-precision multiplication function

in OpenSSL 0.9.8d used during an RSA encryption via modular exponentiation

[Acı07a, Sec. 5]. Hence the spy process executes dummy instructions that map

to the same regions as said function and measures the total execution time: said

regions can be determined by disassembling the executable. Using this side-

channel to determine the sequence of modular squarings and multiplications,

the author states that this allows recovery of 200 bits out of each 512-bit expo-

nent [Acı07a, Sec. 6]. Although this is not carried over to a complete attack that

factors the modulus and recovers the private key, it does indeed demonstrate a

serious threat. This work is important because it demonstrates the dangers of

state-dependent code execution and calls for future work in this area, including

the reevaluation of security-critical software and methods to mitigate this new

breed of microarchitecture attack.

66

Cache-Timing Attacks

Remark. This new side-channel attack breed of icache attacks raises questions

about the most effective way to construct a spy process, i.e., realize the side-

channel. One way to accomplish this is to build an icache analogue of Percival’s

previously discussed data cache spy process [Per05]. This is one contribution

of Publication II. The generic icache spy process it proposes lays out a segment

of program code the same size as the icache. It steps through this code cache-

set wise with unconditional jumps: each code block completely fills an entire

cache line and, in each iteration, it jumps through numerous blocks of code

that map to a distinct cache set, enough to completely pollute said cache set. It

measures the time required to do so, then proceeds to the next cache set, then

repeats the entire process indefinitely. Abstractly, like Percival’s data cache spy

process jumps around in memory, the icache spy process proposed in Publica-

tion II jumps around in code. With the side-channel realized, another concern

is how to most effectively process the resulting side-channel data. The work

in Publication II proposes applying the framework in Publication I, originally

proposed for data cache-timing measurements, to icache timing measurements.

This turns out to be quite effective, demonstrated in Publication II by mount-

ing an icache-timing attack on OpenSSL’s implementation of DSA. Carried out

on an Intel Atom processor, the attack in Publication II uses the framework in

Publication I to identify the sequence of modular multiplications and squarings

in the sliding window modular exponentiation algorithm used in OpenSSL’s im-

plementation of DSA. Figure 4.3 illustrates the effectiveness of this approach.

This yields a significant amount of key material for the secret nonce, which

Publication II leverages in a lattice attack to recover the long term DSA key.

This requires only a few thousand signatures along with the corresponding

side-channel data, and a few hours of offline computation. The work in Pub-

lication II also considers general attack mitigations at many different levels,

such as the operating system and compiler level.

Further cache-timing attack mitigations for AES. From the work of Brickell

et al., as discussed one interesting countermeasure to AES access-driven cache

attacks they propose is the use of a random secret permutation to compute the

nonlinear layer [BGNS06]. Blömer and Krummel analyze said countermea-

sure and propose additional strategies [BK07a, BK07b]. They show that if the

secret permutation is not changed often enough, the countermeasure is ineffec-

tive. Specifically, using a random permutation to implement the last AES round

and assuming 64B cache lines, they calculate that roughly 2300 measurements

is usually enough to recover the complete round key for the last AES round

[BK07a, Sec. 7.1]. Seeking to reach the theoretical minimum amount of pos-

67

Cache-Timing Attacks

Time
 0

 8

 16

C
a
c
h
e
 S

e
t

 30

 60

 90

 120

Figure 4.3. Live I-cache timing data produced by the spy process in Publication II running in
parallel with an OpenSSL DSA sign operation; roughly 250 timing vectors (in CPU
cycles), and time moves left-to-right. The bottom 16 rows are the timing vector
components on 16 out of 64 possible cache sets. The top four are meta-data, of which
the bottom two are the VQ classification and the top two the HMM state guess given
the VQ output. Seven squarings are depicted in dark gray and two multiplications
in black. Any timing data cell with a higher value, i.e., darker shade, suggests a
cache miss. Any cell with a lower value, i.e., lighter shade, suggests a cache hit.

sible key leakage with the permutation approach, they continue by defining

a subset of random permutations called distinguished permutations [BK07a,

Sec. 7.2]. They give a method to construct said permutations that are suscepti-

ble to a cache-timing attack that reveals the minimal 64 out of 128 of the last

round key bits. In contrast, the implementation of distinguished permutations

does not require any updating of the permutation. Another interesting counter-

measure they propose splits the small 256B AES S-box S into smaller S-boxes

Si where each Si fits entirely within a single cache line [BK07a, Sec. 6]. A brief

description follows. Assume 64B cache lines. Construct four tables Si contain-

ing 64B such that Si[x] yields two bits of the result. Four lookups, one into each

table, yield a total of eight bits that are then concatenated together to arrive at

the desired result. The authors report that implementing this approach in the

last round only increases the running time of the cipher by a factor of 1.6 on a

Pentium M. In practice, this requires a fair amount of shifting, masking, and

bitwise operations. Although not stated in the work, one can instead accom-

plish the same goal more logically with a 4-to-1 “software multiplexer” using

the pseudocode shown in Fig. 4.4.

An instruction cache attack on RSA. As previously discussed, Acıiçmez de-

monstrates the feasibility of extracting the sequence of modular squarings and

modular multiplications within the modular exponentiation routine executed

during an RSA decryption using the icache as a side-channel [Acı07a]. With

the sliding window method and OpenSSL default settings, this reveals a signif-

icant amount of the (secret) exponent inputs into each of two modular exponen-

tiations, yet the attack stops there after identifying the vulnerability and does

not extend this to a key recovery attack. Acıiçmez and Schindler combine their

results to describe an icache attack against a well-protected RSA implementa-

tion that can lead to full key recovery [AS08]. The extra reduction step that

68

Cache-Timing Attacks

xl = x & 0x3F // mask off top two bits

v0 = S[xl] // pull out four possible values

v1 = S[0x40 | xl]

v2 = S[0x80 | xl]

v3 = S[0xC0 | xl]

i0 = sar(x << 1,7) // mask for LO control wire

i1 = sar(x ,7) // mask for HI control wire

t0 = ~i0 // mux it all together

t1 = ~i1

t2 = v0 & t1 & t0 // 0 0

t3 = v1 & t1 & i0 // 0 1

t4 = v2 & i1 & t0 // 1 0

t5 = v3 & i1 & i0 // 1 1

t6 = t2 | t3 | t4 | t5 // result: S[x]

Figure 4.4. Pseudocode for an alternate implementation of an 8 to 8-bit lookup using a 4-to-1
multiplexer to resist cache-timing attacks.

is sometimes required, as previously discussed in the attack of Brumley and

Boneh [BB03], is realized in a straightforward software implementation with a

logical branch that calls a multi-precision subtraction function. Acıiçmez and

Schindler describe an icache spy process that targets the multi-precision sub-

traction function [AS08, Sec. 3.1]. The spy executes dummy instructions that

map precisely to the same icache sets as said subtraction function. By measur-

ing the time required to re-execute these dummy instructions, the attacker is

able to infer whether the multi-precision subtraction function executes or not

during the Montgomery reduction step. The described attack can be success-

ful even in the presence of RSA blinding and modular exponentiation functions

with fixed windows, two strong side-channel countermeasures. This work is in-

teresting because it takes an existing theoretical attack and suggests realizing

it using the icache side-channel, yet still rather artificial since the spy process

is not implemented as an independent process but integrated into OpenSSL’s

modular exponentiation routine. In this respect, the attack is more proof-of-

concept.

An access-driven attack on a stream cipher. The eSTREAM project is a pub-

lic competition for stream cipher designs than ran from 2004 to 2008 [RB08].

One of the phase 3 candidates for software designs is Wu’s HC-256 that takes

a 256-bit key and 256-bit initialization vector [Wu04]. For this brief discussion,

the most relevant feature of HC-256 is that the internal state consists of two

large tables P and Q each with 1024 entries of 32-bit words. The contents of

these tables remains secret. The cipher performs lookups into these tables to

produce keystream words. Zenner devises a theoretical cache-timing attack on

HC-256 [Zen08]. The attacker is granted access to two oracles: one that pro-

69

Cache-Timing Attacks

vides keystream word i and the other that provides the unordered list of cache

line accesses made during the creation of keystream word i [Zen08, Sec. 3.2].

In HC-256, many of the per-round lookups into P and Q have public indices

based on the round number and hence do not reveal any secret state. However,

five lookups per-round are state dependent. Assuming 64B cache lines, P and

Q span 64 lines each in the cache and an attacker potentially learns the top six

bits of every lookup index. Four of these lookups are into distinct regions of ei-

ther P or Q where the low eight of the ten index bits are secret state-dependent:

this potentially leaks the top four bits of said state. The fifth lookup, however,

slightly complicates matters in Zenner’s model where the order of lookups is not

given. It potentially leaks six bits of internal state, but into the same region as

one of the four previous lookups. Zenner first gives an analytical method to de-

termine the order of said lookups and hence directly map the implied state bits

to their corresponding lookup in the cipher description [Zen08, Sec. 4]. He con-

tinues by describing a method to significantly trim the resulting search space,

and furthermore a backtracking algorithm to recover the full state. The attack

is theoretical in that it assumes the error-free side-channel is given and the at-

tack complexity is 267 thus no implementation exists, and also assumes known

keystream. Two interesting aspects of Zenner’s work are as follows. In contrast

to attacks on AES where the actions of the round function implemented by the

T tables are public, the tables P and Q in HC-256 are private, but in the end

can be recovered using the side-channel data. Lastly, the attack models that

Zenner defines abstract away the concrete implementation of the side-channel,

thus allowing cache-timing analysis of stream ciphers to focus solely on the

cryptanalytic aspects [Zen08, Sec. 6].

Further access-driven attacks on stream ciphers. One design pattern for

software-oriented stream ciphers is having a word-based Linear Feedback Shift

Register (LFSR), for example over IF232 , with state consisting of a number of

state words. As the cipher clocks, this LFSR updates its state in a linear

fashion. Stream ciphers combine this with a small number of state words

that evolve in a nonlinear fashion, for example using S-boxes, shifts, rotations,

XORs, and additions modulo 232. This is combined in some way to produce

keystream words. A number of stream ciphers fall under this description, in-

cluding SNOW, SNOW 2.0, SOSEMANUK, and SOBER-128. Leander, Zenner,

and Hawkes give a framework for cache-timing attacks against such stream

ciphers [LZH09]. Building on Zenner’s previous work, the authors assume the

same side-channel model: namely, the attacker is given access to a keystream

oracle and a side-channel oracle. The basic idea of the attack is in fact quite sim-

70

Cache-Timing Attacks

ple and focuses on the linear process. Consider an LFSR consisting of i bits with

a feedback function that leaks j bits per clock. The process is IF2-linear so after

i/ j clocks the attacker simply solves the resulting system of linear equations to

recover the complete LFSR state. The attacker uses basic guess-and-determine

techniques to recover any remaining state that evolves nonlinearly: this is done

in a straightforward way by guessing register values, clocking the cipher and

comparing the resulting keystream words with the known keystream words.

For a concrete example, consider the stream cipher SNOW 2.0 by Ekdahl and

Johansson [EJ02]. The LFSR consists of 16 words in IF232 and the cipher has an

FSM consisting of two 32-bit registers that evolve nonlinearly. To implement

the LFSR feedback function efficiently, two distinct tables with 256 entries of

4-byte words are used. Assuming 64B cache lines, lookups potentially leak the

top four bits of each index, or eight bits per clock. With 512 bits of LFSR state,

after 512/8 = 64 clocks the attacker can recover the LFSR state. The attacker

recovers the two 32-bit registers in the FSM by guessing the value of one reg-

ister, thus fixing the value of the other register in either the previous or next

clock, then clocking the cipher repeatedly and comparing the output to a few

known keystream words: this takes at most 232 steps. This work is interesting

because under a single framework the authors are able to devise theoretical

cache-timing attacks on an impressive number of stream ciphers.

Remark. The attack scenario that Leander et al. consider assumes a side-channel

that leaks part of the linear state of the cipher. This is reasonable since it al-

lows applying their attacks to many different ciphers. However, many stream

ciphers additionally employ some non-linear state that, similar to a block ci-

pher, is most efficient to implement with a table lookup. An example of such a

cipher is SNOW 2.0 and its variant SNOW 3G for mobile networks. Specifically,

SNOW 3G maintains three 32-bit registers that pass values between each other

through AES-like S-boxes. Building upon the work of Leander et al., Publica-

tion III presents an access-driven cache-timing attack on SNOW 3G that uses

the leakage from within this non-linear state and, optionally, combines it with

that of the linear state. This reduces the required number of observed clock cy-

cles, as well as the attack complexity (to roughly 216). The algorithm in Publi-

cation III is essentially a backtracking algorithm that runs a depth-first search

on the complete cipher state space, then trims this space as soon as the search

reaches an invalid state as evidenced by the information available through the

side-channel. Apart from this theoretical attack, Publication III also includes

a concrete implementation of the attack, mounted against the SNOW 3G refer-

ence implementation, running on an AMD Athlon 64 3200+ Venice with a 64KB

71

Cache-Timing Attacks

2-way associative L1 data cache and 64-byte cache lines, i.e., 512 cache sets. Ex-

periment results show that the average number of attack iterations to succeed

in this environment is only two and, due to the extremely low complexity of the

theoretical attack, the implemented attack requires only a few seconds to run.

As a countermeasure, Publication III presents a bit-sliced implementation of

the SNOW 3G cipher that runs 128 parallel instances and, in situations where

batch keystream generation is relevant, suggests that such a constant-time im-

plementation can be realized with no performance penalty when compared to

high-speed serial versions employing table lookups. It is worth noting that the

circuit-level design of the second S-box that Publication III presents is the most

compact publicly-available design, requiring 498 logic gates. What makes the

attack in Publication III particularly efficient is the presence of consecutive S-

boxes where values move between registers by only passing through an S-box

without any additional inputs: this provides the attacker with information on

both the input and output of the S-box. This observation yields insight into

cryptographic primitive design that is more resistant to side-channel attacks.

Process scheduling and access-driven attacks on AES. On of the interest-

ing features of the previously discussed access-driven cache-timing attack on

AES by Neve and Seifert is their description of a spy process that exploits the

operating system scheduler policy to obtain per-round granular measurements

AES [NS06]. The cheat attack by Tsafrir et al. also exploits the operating sys-

tem scheduler policy and the work goes into great detail on implementing a ma-

licious process to do so [TEF07]. Building on both of these results, Bangerter,

Gullasch, and Krenn present an access-driven cache-timing attack on AES that

is able to obtain per-lookup granular measurements [BGK10, BGK11, GBK11].

The spy process does this by exploiting the policy of the Completely Fair Sched-

uler (CFS) present in Linux from kernel version 2.6.23. The spy does this by

creating a large number of identical spy threads [BGK10, Sec. 4]. When ac-

tivated, a single spy thread takes the cache measurements then sets a timer

to wake up the next spy thread soon after the current thread’s alloted time

expires. This allows the victim to execute in an extremely small quantum,

at which time the next spy thread is activated and this process repeats. The

victim process makes very slow progress: the scheduler knows this and, ac-

cording to its policy, compensates by lowering the priority of the particular spy

thread that executed immediately preceding the victim. However, with many

spy threads, only one of which makes progress preceding the victim, the re-

maining spy threads have even higher priority than the victim. This is the

key observation that makes this particular spy process so effective. The au-

72

Cache-Timing Attacks

thors use this to mount an access-driven cache-timing attack on AES [BGK10,

Sec. 3]. Surprisingly, the attack target is the AES implementation in OpenSSL

0.9.8n that uses compressed tables, a frequently suggested countermeasure to

such attacks. With the stated granularity and assuming 64B cache lines, this

leaks five bits of each byte used in the table lookup per round: that is, 80 out

of 128 state bits. Using equations derived between two contiguous rounds this

reveals a large amount of key material. The authors are able to synchronize

with the cipher rounds by considering all sixteen possible offsets and finding

the particular offset where all the inferred key material agrees. Finally, the au-

thors recover the original key using this inferred round key material through a

clever heuristic search that is error-tolerant and considers the evolution of the

AES key schedule. This essentially searches for the full key that best explains

all of the inferred round key material, starting with the most probable of said

material. This work is significant because it demonstrates that an attacker

can indeed obtain extremely high resolution measurements with respect to the

victim’s memory accesses: restricting to per-round or per-iteration countermea-

sures to access-driven cache-timing attacks does not suffice.

73

Cache-Timing Attacks

74

5. Cryptography Engineering

As the previous chapter emphasizes, side-channel attacks are a serious threat

to cryptosystem implementations. The majority of the discussed countermea-

sures attempt to strike a balance between performance and security. Indeed,

realizing constant time implementations usually comes at a hefty cost. To carry

out parallel computations in software, one often needs to straight-line code, re-

moving logic branches and any control flow that is state-dependent. While the

goal of such parallel computation is to improve efficiency, oddly enough a com-

mon side effect is an implementation that runs in constant time. This can

greatly improve the side-channel security of software implementations. This

chapter discusses a number of results along those lines: in these approaches,

performance is top priority yet the applied methods have some inherent fea-

tures that improve resistance to side-channel attacks.

Fast and secure serial AES in software. Many of the previously discussed

cache-timing attack countermeasures for AES come at either a significant cost,

or do not provide sufficient guarantees in all attack scenarios. To achieve

constant time software implementations that are still competitive with fast

table-based implementations, one might consider architecture-specific features:

for example, Single Instruction Multiple Data (SIMD) capabilities available in

commodity microprocessors. Such instructions operate on vectors of values in-

stead of a single value. Hamburg leverages vector permute instructions to

obtain fast and secure software implementations of AES [Ham09]. The non-

linearity of the AES S-box comes from mapping finite field elements to their

multiplicative inverse. An intriguing hardware design technique used to real-

ize a compact AES S-box is to first use a finite field isomorphism IF28 → IF2
24,

i.e., representing the larger composite field as a pair of subfield elements. It

is then efficient to derive a formula for inversion in IF2
24 where the only in-

version explicitly computed is done in IF24, i.e., computing a single inverse in

the subfield to facilitate computing an inversion in the composite field. Lever-

75

Cryptography Engineering

aging this hardware technique, Hamburg first derives a novel representation

for this finite field to facilitate its computation with vector permute instruc-

tions [Ham09, Sec. 2]. The author considers vector permute instructions (i.e.,

variable byte shuffles) on a number of different platforms, but for concreteness

focuses on the AltiVec and Intel’s SSSE3. Their features differ slightly: Al-

tiVec’s vperm allows a 5-to-8 bit 16-way parallel table lookup while SSSE3’s

pshufb restricts to a 4-to-8 bit 16-way parallel lookup. Indeed, these are pow-

erful instructions allowing a constant-time dynamic byte shuffle. To be clear,

(the lower bits of) the component values in one register define shuffle indices

for values in another register (or many): i.e., the former are the indices into the

lookup table and the latter the lookup table itself. Figure 5.1 illustrates the op-

eration of Intel’s SSSE3 pshufb instruction that dynamically shuffles a 16-byte

vector: vector a shuffles the values in b resulting in r. Hamburg adapts clas-

sical logarithm-based multiplication for AltiVec [Ham09, Sec. 2]. The author

derives a number of formulae for finite field inversion that heavily leverage the

dynamic byte shuffler where formula choice will depend on the capabilities of

the underlying shuffle instruction [Ham09, Sec. 3]. Outside of this inner non-

linear layer, the linear layers are much simpler to account for since the maps

naturally decompose into a sum of multiple maps. The author also considers

byte-sliced approaches for parallel modes. Benchmarking the implementations,

Hamburg achieves a speed of 10.8 cycles per byte in (serial) CBC mode and 5.4

cycles per byte in (parallel) CTR mode on a Motorola PowerPC G4 7447a, and

10.3 cycles per byte in CBC mode on an Intel Core i7 920 [Ham09, Sec. 7]. These

figures represent a dramatic improvement over existing techniques. One of the

significant contributions is that the implementation approach applies not only

to parallel modes, but serial modes and thus is extremely flexible and applica-

ble.

Fast and secure parallel AES in software. In the previously discussed work,

Hamburg takes a byte-sliced approach for implementing parallel modes of AES

where, explicitly, a 16-byte vector holds sixteen values for the same byte index

in sixteen different instances of the same cipher under the same key. AES fea-

tures a high degree of parallelism where sixteen S-box substitutions occur in

parallel in the nonlinear layer. An alternative approach is to instead gather the

individual bits of each byte for each instance in a single register. For example,

running eight parallel instances where 128-bit registers are available, byte i of

the register r j holds bit j of state byte i for all eight instances of the cipher, each

instance at a fixed offset within said byte. In work occurring concurrently with

Hamburg’s, this is the bit-sliced approach that Käsper and Schwabe propose

76

Cryptography Engineering

�
�

� �������������

�� �

�

�	 �
 �	 �� �� ����

������ �� ������

�
���

��
���

��
���

�

	

�

Figure 5.1. Intel’s SSSE3 dynamic byte shuffle instruction pshufb. When used as a lookup
table or S-box, b defines the lookup table and a the inputs. Put another way, the
instruction implements a 16-to-1 multiplexer in 16-way parallel.

[KS09]. This incredibly novel representation for the AES state allows (fairly)

straight adoption of compact hardware designs for the AES S-box, where in

software the logic gates are realized in parallel with bitwise operations. Con-

sidering the nonlinear layer, the exact choice of which bit within the register

corresponds to which state byte and/or cipher instance is irrelevant, but of crit-

ical importance for the linear layer [KS09, Sec. 4.1]. Said representation im-

plies a conversion to bit-sliced form, but only at the beginning and end of the

encryption process. Käsper and Schwabe focus their efforts on the Intel plat-

form and their implementation achieves speeds up to 6.9 cycles per byte on an

Intel Core i7 920 [KS09, Sec. 6]. The implementation is constant-time and re-

sists cache-timing attacks, yet remarkably at the same time yields the fastest

public software implementation for AES without dedicated AES instructions.

Fast table-based implementations of AES are throttled by the sixteen required

lookups per round, and with ten AES round this inherently limits their speed

to ten cycles per byte: the techniques devised by the authors circumvent this

limit [KS09, Sec. 1]. The authors additionally consider AES-GCM mode for

authenticated encryption, recently standardize by NIST [KS09, Sec. 5]. Recog-

nizing the significant contribution, this work received a best paper award at its

conference.

Remark. An involution block cipher is a cipher where decryption differs from

encryption only in the key schedule. This is a useful feature to reduce the size

of implementations, since the same machinery can essentially be used for both

purposes. Anubis, operating on 128-bit blocks, and Khazad, operating on 64-

bit blocks, are two involution ciphers by Barreto and Rijmen [BR01a, BR01b].

77

Cryptography Engineering

These ciphers share many similarities with AES and, in light of the two previ-

ously discussed results on efficient and secure AES software implementations,

it is reasonable to apply and build on these techniques to realize fast and se-

cure software implementations of both Anubis and Khazad. This is precisely

the analysis that Publication VIII carries out. Considering Hamburg’s serial

AES implementations, the first contribution of Publication VIII is efficient im-

plementation of the nonlinear layer of Anubis and Khazad using a vector byte

shuffler. The nonlinear layers of these involution ciphers is identical, only dif-

fering in the number of parallel applications of the S-box. In contrast to the

algebraically-derived AES S-box, this particular 8 to 8-bit S-box is built using

a Substitution Permutation Network (SPN) where at each layer two distinct 4

to 4-bit S-boxes are applied in parallel, followed by a simple linear layer that

is only a permutation of bits. The observation in Publication VIII is that this

has an elegant implementation using a vector byte shuffler: facilitating a 4

to 8-bit lookup, Intel’s SSSE3 pshufb allows unrolling the linear layer follow-

ing the 4-bit S-box, then combining the result of the two parallel 4-bit S-boxes

with a bitwise OR. Considering the parallel bit-sliced AES implementations by

Käsper and Schwabe, Publication VIII applies an analogous approach to Anubis

and Khazad. The logic expressions for the nonlinear layer leads to a bit-sliced

implementation that requires fewer instructions (147) compared to that of AES

(167 [KS09, Tbl. 2]), but the bit-sliced implementation of the linear layer is

slightly heavier, intrinsically due to the fact that the entries in the matrix for

the linear map are larger than that of AES. Benchmarking the resulting imple-

mentations on an Intel Core 2 Duo E8400, Publication VIII reports speeds of

21.7 cycles per byte for serial modes such as CBC or up to 9.2 cycles per byte for

Anubis with parallel CTR (compared to 20.7 cycles per byte for the table-based

reference implementation), and 10.3 cycles per byte for Khazad with CTR (com-

pared to 19.8 cycles per byte for the table-based reference implementation). To

put these figures in context, Käsper and Schwabe’s benchmarked code on this

platform performs at 8.0 cycles per byte for AES with CTR. Hence the resulting

throughput of Anubis is lower, but Anubis performs twelve rounds compared to

AES with ten, suggesting that the per-round performance of bit-sliced Anubis

software is more efficient than that of AES. In conclusion, Publication VIII pro-

vides evidence that the nonlinear layer design decisions for Anubis and Khazad,

although initially intended for hardware optimization, can have a significant

positive impact on their software implementation as well.

Fast and secure parallel ECC in software. When implementing an Elliptic

Curve Cryptosystem (ECC), one weights numerous issues that drastically af-

78

Cryptography Engineering

fect implementation aspects. For example, to name a few: scalar multiplication

method, scalar representation, coordinate system, finite field, curve coefficients.

Such choices impact the speed and, ultimately, side-channel security of said

implementation. Using the recently proposed Edwards form of elliptic curves,

Bernstein presents a fast and secure implementation of batch scalar multipli-

cation [Ber09]. From the implementation perspective, Edwards curves have a

number of advantages, a prominent one being a complete addition law. Tra-

ditional elliptic curves in Weierstrass form must handle the identity element

explicitly as a special case. Edwards curves do not suffer from this drawback.

This is a useful feature to resist side-channel attacks. Bernstein’s bit-sliced

implementation takes a circuit-level design approach, using a width-w register

for w parallel 1-bit logic operations. The number of finite field multiplications

is a solid metric for the speed of an ECC implementation. Bernstein sets the

underlying finite field to IF2251 ∼= IF2[t]/(t251 + t7 + t4 + t2 +1). Multiplication in

characteristic two finite fields in software is normally more costly compared

to large characteristic, although Intel acknowledges the ubiquity of such fields

and, on recent processors, features a carryless multiplication instruction to fa-

cilitate multiplying polynomials in IF2[t]. To get an efficient ECC implementa-

tion, Bernstein gives a thorough analysis of polynomial multiplication in IF2[t]

with a focus on logic minimization [Ber09, Sec. 2]. The author devises a multi-

plication circuit with 33096 logic gates for multiplying two 251-bit polynomials

in IF2[t]; the final reduction step does not require significant logic. Simultane-

ously, the devised method also attempts to limit the code size and number of

loads and stores. While these are not necessarily goals in logic minimization,

when realizing a bit-sliced implementation excessive code size can adversely

affect performance, and the number of registers is quite restrictive (sixteen xmm

registers on AMD64) so in practice values must be pushed on the stack, re-

quiring extra CPU cycles. For curve operations, Bernstein uses differential ad-

dition and doubling along with Montgomery’s ladder for scalar multiplication,

realizing the key bit-dependent logic branches with a conditional bitwise swap

[Ber09, Sec. 3]. In the end, the implementation requires 44 million Intel Core2

cycles to compute 128 parallel scalar multiplications in constant time. This

work yields an extremely fast and secure implementation where batch opera-

tions are applicable, yet suffers from the drawback that said curve parameters

are not yet explicitly part of any standard.

Remark. In the discussion on polynomial multiplication in IF2[t], Bernstein

calls for a collaborative effort to reduce logic for multiplication of characteristic

two polynomials of varying degrees [Ber09, Sec. 2]. Regarding existing cryp-

79

Cryptography Engineering

tography standards, the application is finite field multiplication with respect

to a polynomial basis: this is the most common form implemented in the wild.

However, the standards often include a second representation for such finite

fields called a normal basis. Squaring elements of a characteristic two finite

field is a linear operation. With a polynomial basis, this involves simply rela-

beling the components then reducing the resulting polynomial. With a normal

basis, however, squaring is simply a rotation: this is an attractive feature when

performing many field squarings. Implementing a finite field with respect to

a normal basis is far less common due to implementation aspects. In parallel

to Bernstein’s work, Publication V explores bit-sliced implementations of batch

binary field multiplication with respect to a normal basis. Such methods are

constant time and address arguments that normal basis multiplication is inef-

ficient in software simply due to the tedious bitwise manipulations it requires:

bit-slicing allows a pseudo-hardware design approach to components where ac-

cess to individual bits is trivial. The analysis in Publication V begins with

a broad survey of existing hardware methods for normal basis multiplication,

and continues by implementing said methods over a wide range of field sizes

and providing timings of said implementations on a number of different archi-

tectures. The results in Publication V show that, when batching applies, sig-

nificant performance gains are possible with bit-sliced implementations when

compared to traditional serial methods for normal basis multiplication. Fur-

thermore, in some cases said implementations can be competitive when com-

pared to efficient serial methods for polynomial basis multiplication. Finally,

quoting Hankerson et al. [HMV04, p. 72]:

Experience has shown that optimal normal bases do not have any significant advan-

tages over polynomial bases for hardware implementation. Moreover, field multi-

plication in software for normal basis representations is very slow in comparison to

multiplication with a polynomial basis.

One important and necessary result in Publication V is that any inefficiency

of normal basis multiplication is, in contrast to popular belief, not due to its

unsuitability for software implementation, but instead its excessive logic gate

requirement compared to polynomial basis methods. The issue is one of algo-

rithm design, not of platform choice.

80

6. Conclusion

This chapter marks the end of the introductory portion of this dissertation, pro-

viding sufficient background and showing how the contributions of the publi-

cations that make up this dissertation relate to the existing literature. The

remainder of this dissertation consists of the eight aforementioned publica-

tions: the main topic is side-channel analysis. The most common side-channel

of study here is the cache-timing channel that exploits the behavior of vari-

ous caching mechanisms present on commodity microprocessors. Some of the

publications instead concern more traditional remote timing attacks and fault

attacks. Complementary to this, another topic therein is efficient and effective

countermeasures to these types of attacks. This requires a deep understanding

of the underlying side-channel, often gained as a result of implementing an at-

tack. The leveraged tools are often architecture-specific, side-channel attacks

themselves being implementation-specific.

The remainder of this chapter consists of a brief, conclusive analysis of the

main results achieved in this dissertation, followed by an outlook on future

developments in this field.

Publication I develops a powerful framework for processing access-driven

cache-timing data that can be generally useful for any high-dimension side-

channel data. The framework creates vector cache-timing data templates that

reflect the victim algorithm’s cache access behavior. It then uses VQ to match

incoming cache-timing data to these existing templates, effectively categoriz-

ing the vectors and reducing their dimension. This VQ output is then used as

observation input to an HMM that accurately models the control flow of the

victim algorithm. The HMM then provides the most likely sequence of algo-

rithm states, leading to partial key material. The work applies the framework

in combination with lattice methods to mount a data cache-timing attack on

OpenSSL’s implementation of ECDSA, leading to complete private key recov-

ery in less than an hour of computation on a desktop PC. Building on this work,

81

Conclusion

Publication II further applies the framework to instruction cache-timing data.

This is then used to mount an access-driven instruction cache-timing attack

on OpenSSL’s implementation of DSA. Similarly, the attack implementation

makes use of lattice methods and leads to complete private key recovery in less

than an hour of computation on a desktop PC. The success of these two attacks

is due in large part to the effectiveness of the developed framework: as such,

it is likely that it will be utilized to carry out further attacks, highlighting that

long term mitigation strategies are needed to address these vulnerabilities.

The main application of the above framework is to timing data procured by

a spy process, required to run locally and pseudo-concurrently with the vic-

tim process on the same physical CPU. In contrast, this is not a requirement

for traditional remote timing attacks that merely measure the response time

of the victim across a network. Remote timing attacks pose a much greater

threat in this sense. Publication VI identifies a remote timing attack vulnera-

bility in OpenSSL’s implementation of scalar multiplication for elliptic curves

over binary fields. Said scalar multiplication method (Montgomery’s powering

ladder) is widely-regarded as a highly side-channel resistant algorithm due to

its regularity: the same sequence of finite field operations are performed in

each iteration regardless of the value of any given key bit. In a twist of irony,

it is precisely this feature that Publication VI exploits: there is a direct cor-

relation between the time required for the server to produce a signature (i.e.,

authenticate in the TLS protocol) and the number of bits in the key. Devis-

ing and implementing an attack employing lattice methods, this work shows

that said vulnerability can be exploited to remotely recover the private key of

a TLS server in a matter of minutes. This caused CERT to issue1 vulnerability

note VU#536044 and the OpenSSL development team to integrate the proposed

source code patch as a countermeasure, enabled by default as of stable release

1.0.0e2. Hence this work directly impacts the way that hundreds of millions

of users around the world utilize cryptography. Furthermore, it highlights the

fact that side-channel attacks target implementations: an algorithm featuring

desirable physical security properties provides no guarantees with respect to

the implementation of said algorithm.

In conclusion, the contributions of this dissertation advance the field of ap-

plied cryptography by deepening the understanding of side-channel attacks,

the main emphasis falling on cache-timing attacks. In turn, this leads to a

better understanding and recognition of microarchitecture attacks as a serious

1http://www.kb.cert.org/vuls/id/536044
2http://www.openssl.org/news/changelog.html

82

Conclusion

threat to security-critical software.

The landscape of microprocessors is rapidly changing. The growth of GPUs for

general purpose computing and multi-core and SIMD-capable embedded pro-

cessors is astounding. Chip manufacturers are constantly challenged to push

the envelope in terms of computing performance, often at the expense of secu-

rity. If there is only one lesson to be taken away from this dissertation, it is this:

security must be regarded as a first-class concept in microprocessor design, and

not a retrospective afterthought. It seems that industry often sends a mixed

message with respect to side-channel consideration. For example, the Hyper-

Threading feature in Intel’s Pentium 4 has repeatedly been exploited to demon-

strate data cache-timing attacks. The first such public case is documented soon

after its 2003 release. As a result, one might assume that chip designers would

hesitate to feature such SMT capabilities. Indeed, no subsequent mainstream

microprocessor featured SMT. That is, until 2008 when Intel reintroduced HTT

in its Atom line, and continued this trend in 2009 with the Core i7 and later

Core i5. It seems Intel intends to propagate this trend. On the other hand,

around the same time in 2010 Intel introduced the AES-NI instruction set,

providing an on-chip implementation of AES, and the CLMUL instruction set

providing carryless multiplication for binary polynomial multiplication. Both

sets are strong cache-timing attack countermeasures. The message seems to be

that chip manufacturers are concerned with side-channel attacks, but are more

concerned with performance: they are willing to deploy countermeasures, but

not if they adversely affect chip performance. This quandary is compounded

by the fact that the concrete security of an executing cryptosystem ultimately

depends on many different layers. There is the hardware level where microar-

chitecture features such as SMT, instruction caching, data caching, branch pre-

diction, hardware prefetching, and speculative execution can adversely affect

security. There is then the operating system level where features such as job

scheduling, virtual memory, and virtual machine managers can adversely af-

fect security. Finally, there is then the application software level where features

such as variable control flow, memory-resident table lookups, and software bugs

can adversely affect security. What level is held accountable for the security of

a running program? While the ideal answer is all of them, unfortunately the

grim reality is that the current answer is usually none of them. With practical

examples of side-channel attacks spanning at least two decades, what catalyst

is needed to induce change in this answer? Quoting Bernstein [Ber04, Sec. 6]:

This area offers many obvious opportunities for cryptanalytic research . . . I do not

83

Conclusion

intend to pursue any of these research directions. As far as I’m concerned, it is

already blazingly obvious that the AES time variability is a huge security threat. We

need constant-time cryptographic software! Once we’ve all switched to constant-time

software, we won’t care about the exact difficulty of attacking variable-time software.

In one respect, Bernstein’s 2004 prediction has panned out: Intel’s AES-NI in-

struction set released six years later can be wielded as a blanket response to

any suggested cache-timing attack on AES. However, AES is only one cryptosys-

tem and this approach is not sustainable. Bernstein suggests the solution is a

radical change in software development habits. What catalyst is needed to in-

duce this change? While this question is rhetorical in nature, this dissertation

is at least part of that catalyst: the change can only come through repeatedly

demonstrating the dangers of bartering security for performance. This pushes

the current state closer to the alluded utopia that is ultimately unreachable.

84

Bibliography

[Abe06] Masayuki Abe, editor. Topics in Cryptology - CT-RSA 2007, The Cryp-
tographers’ Track at the RSA Conference 2007, San Francisco, CA, USA,
February 5-9, 2007, Proceedings, volume 4377 of Lecture Notes in Com-
puter Science. Springer, 2006.

[Acı07a] Onur Acıiçmez. Yet another microarchitectural attack: Exploiting i-cache.
Cryptology ePrint Archive, Report 2007/164, 2007. http://eprint.

iacr.org/.

[Acı07b] Onur Acıiçmez. Yet another microarchitectural attack: Exploiting i-cache.
In Peng Ning and Vijay Atluri, editors, CSAW, pages 11–18. ACM, 2007.

[AcKK06a] Onur Acıiçmez and Çetin Kaya Koç. Trace-driven cache attacks on AES.
Cryptology ePrint Archive, Report 2006/138, 2006. http://eprint.

iacr.org/.

[AcKK06b] Onur Acıiçmez and Çetin Kaya Koç. Trace-driven cache attacks on AES
(short paper). In Peng Ning, Sihan Qing, and Ninghui Li, editors, ICICS,
volume 4307 of Lecture Notes in Computer Science, pages 112–121. Spr-
inger, 2006.

[AcKKS07] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting se-
cret keys via branch prediction. In Abe [Abe06], pages 225–242.

[AS08] Onur Acıiçmez and Werner Schindler. A vulnerability in RSA imple-
mentations due to instruction cache analysis and its demonstration on
OpenSSL. In Tal Malkin, editor, CT-RSA, volume 4964 of Lecture Notes
in Computer Science, pages 256–273. Springer, 2008.

[AScKK06] Onur Acıiçmez, Jean-Pierre Seifert, and Çetin Kaya Koç. Predicting
secret keys via branch prediction. Cryptology ePrint Archive, Report
2006/288, 2006. http://eprint.iacr.org/.

[AScKK07] Onur Acıiçmez, Werner Schindler, and Çetin Kaya Koç. Cache based re-
mote timing attack on the AES. In Abe [Abe06], pages 271–286.

[BB03] David Brumley and Dan Boneh. Remote timing attacks are practical. In
Proceedings of the 12th USENIX Security Symposium, 2003.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical.
Computer Networks, 48(5):701–716, 2005.

85

Bibliography

[BCS08] Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug attacks. In David Wag-
ner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science,
pages 221–240. Springer, 2008.

[Ber04] Daniel J. Bernstein. Cache-timing attacks on AES, 2004. http://cr.yp.
to/papers.html#cachetiming.

[Ber09] Daniel J. Bernstein. Batch binary Edwards. In Halevi [Hal09], pages
317–336.

[BGK10] Endre Bangerter, David Gullasch, and Stephan Krenn. Cache games -
bringing access based cache attacks on AES to practice. Cryptology ePrint
Archive, Report 2010/594, 2010. http://eprint.iacr.org/.

[BGK11] Endre Bangerter, David Gullasch, and Stephan Krenn. Cache games -
bringing access based cache attacks on AES to practice. Constructive
Side-Channel Analysis and Secure Design – COSADE 2011, 2011.

[BGNS06] Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert.
Software mitigations to hedge AES against cache-based software side
channel vulnerabilities. Cryptology ePrint Archive, Report 2006/052,
2006. http://eprint.iacr.org/.

[BK07a] Johannes Blömer and Volker Krummel. Analysis of countermeasures
against access driven cache attacks on AES. Cryptology ePrint Archive,
Report 2007/282, 2007. http://eprint.iacr.org/.

[BK07b] Johannes Blömer and Volker Krummel. Analysis of countermeasures
against access driven cache attacks on AES. In Carlisle M. Adams, Ali
Miri, and Michael J. Wiener, editors, Selected Areas in Cryptography, vol-
ume 4876 of Lecture Notes in Computer Science, pages 96–109. Springer,
2007.

[BM06] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against
AES. In Louis Goubin and Mitsuru Matsui, editors, CHES, volume 4249
of Lecture Notes in Computer Science, pages 201–215. Springer, 2006.

[Bon06] Joseph Bonneau. Robust final-round cache-trace attacks against AES.
Cryptology ePrint Archive, Report 2006/374, 2006. http://eprint.

iacr.org/.

[BR01a] Paulo S. L. M. Barreto and Vincent Rijmen. The Anubis block cipher.
http://www.larc.usp.br/~pbarreto/anubis-tweak.zip, 2001.

[BR01b] Paulo S. L. M. Barreto and Vincent Rijmen. The Khazad legacy-level
block cipher. http://www.larc.usp.br/~pbarreto/khazad-tweak.

zip, 2001.

[BZB+05] Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo Monchiero,
and Gianluca Palermo. AES power attack based on induced cache miss
and countermeasure. In ITCC (1), pages 586–591. IEEE Computer Soci-
ety, 2005.

[CG09] Christophe Clavier and Kris Gaj, editors. Cryptographic Hardware and
Embedded Systems - CHES 2009, 11th International Workshop, Lau-
sanne, Switzerland, September 6-9, 2009, Proceedings, volume 5747 of
Lecture Notes in Computer Science. Springer, 2009.

86

Bibliography

[CPGR05] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Shredding
your garbage: Reducing data lifetime. In Proc. 14th USENIX Security
Symposium, pages 331–346, August 2005.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES,
volume 2523 of Lecture Notes in Computer Science, pages 13–28. Springer,
2002.

[dod85] Department of Defense. Department of Defense Trusted Computer System
Evaluation Criteria, December 1985. DoD 5200.28-STD.

[EJ02] Patrik Ekdahl and Thomas Johansson. A new version of the stream cipher
SNOW. In Kaisa Nyberg and Howard M. Heys, editors, Selected Areas in
Cryptography, volume 2595 of Lecture Notes in Computer Science, pages
47–61. Springer, 2002.

[GBK11] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games -
bringing access based cache attacks on AES to practice. In IEEE Sym-
posium on Security and Privacy, pages 490–505. IEEE Computer Society,
2011.

[GGP07] Philipp Grabher, Johann Großschädl, and Dan Page. Cryptographic side-
channels from low-power cache memory. In Steven D. Galbraith, editor,
IMA Int. Conf., volume 4887 of Lecture Notes in Computer Science, pages
170–184. Springer, 2007.

[GNS05] P. J. Green, Richard Noad, and Nigel P. Smart. Further hidden Markov
model cryptanalysis. In Josyula R. Rao and Berk Sunar, editors, CHES,
volume 3659 of Lecture Notes in Computer Science, pages 61–74. Springer,
2005.

[Hal09] Shai Halevi, editor. Advances in Cryptology - CRYPTO 2009, 29th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 16-20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer
Science. Springer, 2009.

[Ham09] Mike Hamburg. Accelerating AES with vector permute instructions. In
Clavier and Gaj [CG09], pages 18–32.

[HGS01] Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital
signature schemes. Des. Codes Cryptography, 23(3):283–290, 2001.

[HMV04] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryp-
tography. Springer, 2004.

[HS08] Nadia Heninger and Hovav Shacham. Reconstructing RSA private keys
from random key bits. Cryptology ePrint Archive, Report 2008/510, 2008.
http://eprint.iacr.org/.

[HS09] Nadia Heninger and Hovav Shacham. Reconstructing RSA private keys
from random key bits. In Halevi [Hal09], pages 1–17.

[Hu91] W.-M. Hu. Reducing timing channels with fuzzy time. In IEEE Sympo-
sium on Security and Privacy, pages 8–20, 1991.

87

Bibliography

[Hu92] Wei-Ming Hu. Lattice scheduling and covert channels. In IEEE Sympo-
sium on Security and Privacy, pages 52–61, 1992.

[Kem83] Richard A. Kemmerer. Shared resource matrix methodology: An approach
to identifying storage and timing channels. ACM Trans. Comput. Syst.,
1(3):256–277, 1983.

[KM11] Neal Koblitz and Alfred Menezes. Another look at security definitions.
Cryptology ePrint Archive, Report 2011/343, 2011. http://eprint.

iacr.org/.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, CRYPTO, vol-
ume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer,
1996.

[KS09] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant
AES-GCM. In Clavier and Gaj [CG09], pages 1–17.

[KSWH98] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side chan-
nel cryptanalysis of product ciphers. In Jean-Jacques Quisquater, Yves
Deswarte, Catherine Meadows, and Dieter Gollmann, editors, ESORICS,
volume 1485 of Lecture Notes in Computer Science, pages 97–110. Spr-
inger, 1998.

[KSWH00] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel
cryptanalysis of product ciphers. Journal of Computer Security, 8(2/3),
2000.

[KW91] Paul A. Karger and J. C. Wray. Storage channels in disk arm optimization.
In IEEE Symposium on Security and Privacy, pages 52–63, 1991.

[KW03] Chris Karlof and David Wagner. Hidden Markov model cryptoanalysis. In
Walter et al. [WcKKP03], pages 17–34.

[KZB+90] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason,
and Clifford E. Kahn. A VMM security kernel for the VAX architecture.
In IEEE Symposium on Security and Privacy, pages 2–19, 1990.

[Lam73] Butler W. Lampson. A note on the confinement problem. Commun. ACM,
16(10):613–615, 1973.

[Lau05] Cédric Lauradoux. Collision attacks on processors with cache and coun-
termeasures. In Christopher Wolf, Stefan Lucks, and Po-Wah Yau, editors,
WEWoRC, volume 74 of LNI, pages 76–85. GI, 2005.

[Lip75] Steven B. Lipner. A comment on the confinement problem. In SOSP,
pages 192–196, 1975.

[LM90] Xuejia Lai and James L. Massey. A proposal for a new block encryption
standard. In EUROCRYPT, pages 389–404, 1990.

[LZH09] Gregor Leander, Erik Zenner, and Philip Hawkes. Cache timing analysis
of LFSR-based stream ciphers. In Matthew G. Parker, editor, IMA Int.
Conf., volume 5921 of Lecture Notes in Computer Science, pages 433–445.
Springer, 2009.

88

Bibliography

[MBH+02] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and
M. Upton. Hyper-threading technology architecture and microarchitec-
ture. Intel Technology Journal, 6(1):4–15, 2002.

[ncs93] National Computer Security Center. A Guide to Understanding Covert
Channel Analysis of Trusted Systems, November 1993. NCSC-TG-030.

[NS06] Michael Neve and Jean-Pierre Seifert. Advances on access-driven cache
attacks on AES. In Eli Biham and Amr M. Youssef, editors, Selected Ar-
eas in Cryptography, volume 4356 of Lecture Notes in Computer Science,
pages 147–162. Springer, 2006.

[OST05] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of AES. Cryptology ePrint Archive, Report
2005/271, 2005. http://eprint.iacr.org/.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and coun-
termeasures: The case of AES. In David Pointcheval, editor, CT-RSA,
volume 3860 of Lecture Notes in Computer Science, pages 1–20. Springer,
2006.

[Pag02a] D. Page. Theoretical use of cache memory as a cryptanalytic side-channel.
Technical Report CSTR-02-003, Department of Computer Science, Uni-
versity of Bristol, June 2002.

[Pag02b] D. Page. Theoretical use of cache memory as a cryptanalytic side-channel.
Cryptology ePrint Archive, Report 2002/169, 2002. http://eprint.

iacr.org/.

[Pag03] D. Page. Defending against cache based side-channel attacks. Information
Security Technical Report, 8(1):30–44, April 2003.

[Pag05] D. Page. Partitioned cache architecture as a side-channel defence mech-
anism. Cryptology ePrint Archive, Report 2005/280, 2005. http://
eprint.iacr.org/.

[Pag09] D. Page. A Practical Introduction to Computer Architecture. Texts in Com-
puter Science. Springer, 2009.

[Per05] Colin Percival. Cache missing for fun and profit. In Proc. of BSDCan
2005, 2005.

[PH90] David A. Patterson and John L. Hennessy. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 1990.

[PH07] David A. Patterson and John L. Hennessy. Computer organization and
design - the hardware / software interface (3. ed.). Morgan Kaufmann,
2007.

[PN92] Norman E. Proctor and Peter G. Neumann. Architectural implications of
covert channels. In Proceedings of the 15th National Computer Security
Conference, pages 28–43, 1992.

[Pop09] Thomas Popp. An introduction to implementation attacks and counter-
measures. In 7th ACM/IEEE International Conference on Formal Meth-
ods and Models for Codesign (MEMOCODE 2009), July 13-15, 2009,
Cambridge, Massachusetts, USA, pages 108–115. IEEE Computer Soci-
ety, 2009.

89

Bibliography

[RB08] Matthew J. B. Robshaw and Olivier Billet, editors. New Stream Cipher
Designs - The eSTREAM Finalists, volume 4986 of Lecture Notes in Com-
puter Science. Springer, 2008.

[Riv94] Ronald L. Rivest. The RC5 encryption algorithm. In Bart Preneel, editor,
FSE, volume 1008 of Lecture Notes in Computer Science, pages 86–96.
Springer, 1994.

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Ap-
proach (3. internat. ed.). Pearson Education, 2010.

[Sch02] Werner Schindler. A combined timing and power attack. In David Nac-
cache and Pascal Paillier, editors, Public Key Cryptography, volume 2274
of Lecture Notes in Computer Science, pages 263–279. Springer, 2002.

[SGLS77] Marvin Schaefer, Barry Gold, Richard Linde, and John Scheid. Program
confinement in KVM/370. In Proceedings of the 1977 annual conference,
ACM ’77, pages 404–410, New York, NY, USA, 1977. ACM.

[TEF07] Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. Secretly monopolizing
the CPU without superuser privileges. In USENIX Security Symposium,
pages 239–256, Boston, Massachusetts, August 2007.

[TOS10] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks
on AES, and countermeasures. J. Cryptology, 23(1):37–71, 2010.

[TSS+03] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hi-
roshi Miyauchi. Cryptanalysis of DES implemented on computers with
cache. In Walter et al. [WcKKP03], pages 62–76.

[TTMM02] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi
Miyauchi. Cryptanalysis of block ciphers implemented on computers with
cache. In Proc. Int. Symp. on Inform. Theory and Its Applications (ISITA),
Beijing, China, 2002.

[TTS+06] Yukiyasu Tsunoo, Etsuko Tsujihara, Maki Shigeri, Hiroyasu Kubo, and
Kazuhiko Minematsu. Improving cache attacks by considering cipher
structure. Int. J. Inf. Sec., 5(3):166–176, 2006.

[Ver10] Ingrid M. R. Verbauwhede, editor. Secure Integrated Circuits and Sys-
tems. Integrated Circuits and Systems. Springer, 2010.

[Vle90] Tom Van Vleck. Timing channels. http://www.multicians.org/

timing-chn.html, May 1990.

[WcKKP03] Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors. Crypto-
graphic Hardware and Embedded Systems - CHES 2003, 5th Interna-
tional Workshop, Cologne, Germany, September 8-10, 2003, Proceedings,
volume 2779 of Lecture Notes in Computer Science. Springer, 2003.

[Wra91] J. C. Wray. An analysis of covert timing channels. In IEEE Symposium
on Security and Privacy, pages 2–7, 1991.

[Wra92] J. C. Wray. An analysis of covert timing channels. Journal of Computer
Security, 1(3-4):219–232, 1992.

90

Bibliography

[WT01] Colin D. Walter and Susan Thompson. Distinguishing exponent digits by
observing modular subtractions. In David Naccache, editor, CT-RSA, vol-
ume 2020 of Lecture Notes in Computer Science, pages 192–207. Springer,
2001.

[Wu04] Hongjun Wu. A new stream cipher HC-256. In Bimal K. Roy and Willi
Meier, editors, FSE, volume 3017 of Lecture Notes in Computer Science,
pages 226–244. Springer, 2004.

[Zen08] Erik Zenner. A cache timing analysis of HC-256. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptogra-
phy, volume 5381 of Lecture Notes in Computer Science, pages 199–213.
Springer, 2008.

91

Bibliography

92

A. Recipes

This appendix contains sample spy processes, sample timing data, and a small

example of constant-time table lookups using vector byte shuffles. Figure 1.1

shows the assembly logic for a data cache spy process written for the Pentium

4. Figure 1.2 shows a graphical representation of a portion of side-channel data

collected by said process. Figure 1.3 shows the assembly logic for an instruction

cache spy process written for the Atom. Figure 1.4 contains the encoded archive

for both of these spy processes: unpack, compile, and execute to procure timing

data. Figure 1.5 shows how to perform constant-time table lookups efficiently

in parallel using SSSE3 compiler intrinsics.

93

Recipes

mov $8192,%edi imul 0x19c0(%ecx),%ecx add %eax,%esi imul 0x1600(%ecx),%ecx

LOOPA: rdtsc ; cache set 16 imul 0x1e00(%ecx),%ecx

sub $4,%edi sub %esi,%eax imul 0x0400(%ecx),%ecx rdtsc

mov $1,(%ecx,%edi) movnti %eax,0x07(%ebx,%edi) imul 0x0c00(%ecx),%ecx sub %esi,%eax

jnz LOOPA add %eax,%esi imul 0x1400(%ecx),%ecx movnti %eax,0x18(%ebx,%edi)

xor %edi,%edi ; cache set 08 imul 0x1c00(%ecx),%ecx add %eax,%esi

rdtsc imul 0x0200(%ecx),%ecx rdtsc ; cache set 25

mov %eax,%esi imul 0x0a00(%ecx),%ecx sub %esi,%eax imul 0x0640(%ecx),%ecx

LOOPB: imul 0x1200(%ecx),%ecx movnti %eax,0x10(%ebx,%edi) imul 0x0e40(%ecx),%ecx

; cache set 00 imul 0x1a00(%ecx),%ecx add %eax,%esi imul 0x1640(%ecx),%ecx

imul 0x0000(%ecx),%ecx rdtsc ; cache set 17 imul 0x1e40(%ecx),%ecx

imul 0x0800(%ecx),%ecx sub %esi,%eax imul 0x0440(%ecx),%ecx rdtsc

imul 0x1000(%ecx),%ecx movnti %eax,0x08(%ebx,%edi) imul 0x0c40(%ecx),%ecx sub %esi,%eax

imul 0x1800(%ecx),%ecx add %eax,%esi imul 0x1440(%ecx),%ecx movnti %eax,0x19(%ebx,%edi)

rdtsc ; cache set 09 imul 0x1c40(%ecx),%ecx add %eax,%esi

sub %esi,%eax imul 0x0240(%ecx),%ecx rdtsc ; cache set 26

movnti %eax,0x00(%ebx,%edi) imul 0x0a40(%ecx),%ecx sub %esi,%eax imul 0x0680(%ecx),%ecx

add %eax,%esi imul 0x1240(%ecx),%ecx movnti %eax,0x11(%ebx,%edi) imul 0x0e80(%ecx),%ecx

; cache set 01 imul 0x1a40(%ecx),%ecx add %eax,%esi imul 0x1680(%ecx),%ecx

imul 0x0040(%ecx),%ecx rdtsc ; cache set 18 imul 0x1e80(%ecx),%ecx

imul 0x0840(%ecx),%ecx sub %esi,%eax imul 0x0480(%ecx),%ecx rdtsc

imul 0x1040(%ecx),%ecx movnti %eax,0x09(%ebx,%edi) imul 0x0c80(%ecx),%ecx sub %esi,%eax

imul 0x1840(%ecx),%ecx add %eax,%esi imul 0x1480(%ecx),%ecx movnti %eax,0x1a(%ebx,%edi)

rdtsc ; cache set 10 imul 0x1c80(%ecx),%ecx add %eax,%esi

sub %esi,%eax imul 0x0280(%ecx),%ecx rdtsc ; cache set 27

movnti %eax,0x01(%ebx,%edi) imul 0x0a80(%ecx),%ecx sub %esi,%eax imul 0x06c0(%ecx),%ecx

add %eax,%esi imul 0x1280(%ecx),%ecx movnti %eax,0x12(%ebx,%edi) imul 0x0ec0(%ecx),%ecx

; cache set 02 imul 0x1a80(%ecx),%ecx add %eax,%esi imul 0x16c0(%ecx),%ecx

imul 0x0080(%ecx),%ecx rdtsc ; cache set 19 imul 0x1ec0(%ecx),%ecx

imul 0x0880(%ecx),%ecx sub %esi,%eax imul 0x04c0(%ecx),%ecx rdtsc

imul 0x1080(%ecx),%ecx movnti %eax,0x0a(%ebx,%edi) imul 0x0cc0(%ecx),%ecx sub %esi,%eax

imul 0x1880(%ecx),%ecx add %eax,%esi imul 0x14c0(%ecx),%ecx movnti %eax,0x1b(%ebx,%edi)

rdtsc ; cache set 11 imul 0x1cc0(%ecx),%ecx add %eax,%esi

sub %esi,%eax imul 0x02c0(%ecx),%ecx rdtsc ; cache set 28

movnti %eax,0x02(%ebx,%edi) imul 0x0ac0(%ecx),%ecx sub %esi,%eax imul 0x0700(%ecx),%ecx

add %eax,%esi imul 0x12c0(%ecx),%ecx movnti %eax,0x13(%ebx,%edi) imul 0x0f00(%ecx),%ecx

; cache set 03 imul 0x1ac0(%ecx),%ecx add %eax,%esi imul 0x1700(%ecx),%ecx

imul 0x00c0(%ecx),%ecx rdtsc ; cache set 20 imul 0x1f00(%ecx),%ecx

imul 0x08c0(%ecx),%ecx sub %esi,%eax imul 0x0500(%ecx),%ecx rdtsc

imul 0x10c0(%ecx),%ecx movnti %eax,0x0b(%ebx,%edi) imul 0x0d00(%ecx),%ecx sub %esi,%eax

imul 0x18c0(%ecx),%ecx add %eax,%esi imul 0x1500(%ecx),%ecx movnti %eax,0x1c(%ebx,%edi)

rdtsc ; cache set 12 imul 0x1d00(%ecx),%ecx add %eax,%esi

sub %esi,%eax imul 0x0300(%ecx),%ecx rdtsc ; cache set 29

movnti %eax,0x03(%ebx,%edi) imul 0x0b00(%ecx),%ecx sub %esi,%eax imul 0x0740(%ecx),%ecx

add %eax,%esi imul 0x1300(%ecx),%ecx movnti %eax,0x14(%ebx,%edi) imul 0x0f40(%ecx),%ecx

; cache set 04 imul 0x1b00(%ecx),%ecx add %eax,%esi imul 0x1740(%ecx),%ecx

imul 0x0100(%ecx),%ecx rdtsc ; cache set 21 imul 0x1f40(%ecx),%ecx

imul 0x0900(%ecx),%ecx sub %esi,%eax imul 0x0540(%ecx),%ecx rdtsc

imul 0x1100(%ecx),%ecx movnti %eax,0x0c(%ebx,%edi) imul 0x0d40(%ecx),%ecx sub %esi,%eax

imul 0x1900(%ecx),%ecx add %eax,%esi imul 0x1540(%ecx),%ecx movnti %eax,0x1d(%ebx,%edi)

rdtsc ; cache set 13 imul 0x1d40(%ecx),%ecx add %eax,%esi

sub %esi,%eax imul 0x0340(%ecx),%ecx rdtsc ; cache set 30

movnti %eax,0x04(%ebx,%edi) imul 0x0b40(%ecx),%ecx sub %esi,%eax imul 0x0780(%ecx),%ecx

add %eax,%esi imul 0x1340(%ecx),%ecx movnti %eax,0x15(%ebx,%edi) imul 0x0f80(%ecx),%ecx

; cache set 05 imul 0x1b40(%ecx),%ecx add %eax,%esi imul 0x1780(%ecx),%ecx

imul 0x0140(%ecx),%ecx rdtsc ; cache set 22 imul 0x1f80(%ecx),%ecx

imul 0x0940(%ecx),%ecx sub %esi,%eax imul 0x0580(%ecx),%ecx rdtsc

imul 0x1140(%ecx),%ecx movnti %eax,0x0d(%ebx,%edi) imul 0x0d80(%ecx),%ecx sub %esi,%eax

imul 0x1940(%ecx),%ecx add %eax,%esi imul 0x1580(%ecx),%ecx movnti %eax,0x1e(%ebx,%edi)

rdtsc ; cache set 14 imul 0x1d80(%ecx),%ecx add %eax,%esi

sub %esi,%eax imul 0x0380(%ecx),%ecx rdtsc ; cache set 31

movnti %eax,0x05(%ebx,%edi) imul 0x0b80(%ecx),%ecx sub %esi,%eax imul 0x07c0(%ecx),%ecx

add %eax,%esi imul 0x1380(%ecx),%ecx movnti %eax,0x16(%ebx,%edi) imul 0x0fc0(%ecx),%ecx

; cache set 06 imul 0x1b80(%ecx),%ecx add %eax,%esi imul 0x17c0(%ecx),%ecx

imul 0x0180(%ecx),%ecx rdtsc ; cache set 23 imul 0x1fc0(%ecx),%ecx

imul 0x0980(%ecx),%ecx sub %esi,%eax imul 0x05c0(%ecx),%ecx rdtsc

imul 0x1180(%ecx),%ecx movnti %eax,0x0e(%ebx,%edi) imul 0x0dc0(%ecx),%ecx sub %esi,%eax

imul 0x1980(%ecx),%ecx add %eax,%esi imul 0x15c0(%ecx),%ecx movnti %eax,0x1f(%ebx,%edi)

rdtsc ; cache set 15 imul 0x1dc0(%ecx),%ecx add %eax,%esi

sub %esi,%eax imul 0x03c0(%ecx),%ecx rdtsc add $32,%edi

movnti %eax,0x06(%ebx,%edi) imul 0x0bc0(%ecx),%ecx sub %esi,%eax cmp <buffer len>,%edi

add %eax,%esi imul 0x13c0(%ecx),%ecx movnti %eax,0x17(%ebx,%edi) jge END

; cache set 07 imul 0x1bc0(%ecx),%ecx add %eax,%esi jmp LOOPB

imul 0x01c0(%ecx),%ecx rdtsc ; cache set 24 END:

imul 0x09c0(%ecx),%ecx sub %esi,%eax imul 0x0600(%ecx),%ecx

imul 0x11c0(%ecx),%ecx movnti %eax,0x0f(%ebx,%edi) imul 0x0e00(%ecx),%ecx

Figure 1.1. Data cache spy process for the Intel Pentium 4.

94

Recipes

Time

 0

 8

 16

 24

 32

C
a

c
h

e
 S

e
t

 120

 130

 140

 150

 160

 170

Figure 1.2. Live dcache timing data produced by the spy process in Fig. 1.1 running in paral-
lel with an OpenSSL RSA encryption operation, i.e., a left-to-right sliding window
modular exponentiation algorithm. It depicts seven modular multiplications (high
latency in sets 20-22), interleaved by a number of repeated modular squarings (high
latency in sets 24-27).

95

Recipes

xor %edi,%edi jmp L110 .rept 59 nop .endr L235: jmp L346 .rept 59 nop .endr nop L487:

rdtsc .rept 59 nop .endr L188: jmp L299 .rept 59 nop .endr L424: .endr rdtsc

mov %eax,%esi nop .endr L141: jmp L252 .rept 59 nop .endr L377: jmp L488 L461: sub %esi,%eax

jmp L0 .endr L94: jmp L205 .rept 59 nop .endr L330: jmp L441 .rept 59 rdtsc movb %al,0x27(%ebx,%edi)

.align 4096 L47: jmp L158 .rept 59 nop .endr L283: jmp L394 .rept 59 nop sub %esi,%eax add %eax,%esi

L0: jmp L111 .rept 59 nop .endr L236: jmp L347 .rept 59 nop .endr movb %al,0x0d(%ebx,%edi) jmp L40

jmp L64 .rept 59 nop .endr L189: jmp L300 .rept 59 nop .endr L425: add %eax,%esi .rept 49

.rept 59 nop .endr L142: jmp L253 .rept 59 nop .endr L378: jmp L489 jmp L14 nop

nop .endr L95: jmp L206 .rept 59 nop .endr L331: jmp L442 .rept 59 .rept 49 .endr

.endr L48: jmp L159 .rept 59 nop .endr L284: jmp L395 .rept 59 nop nop L488:

L1: jmp L112 .rept 59 nop .endr L237: jmp L348 .rept 59 nop .endr .endr rdtsc

jmp L65 .rept 59 nop .endr L190: jmp L301 .rept 59 nop .endr L426: L462: sub %esi,%eax

.rept 59 nop .endr L143: jmp L254 .rept 59 nop .endr L379: jmp L490 rdtsc movb %al,0x28(%ebx,%edi)

nop .endr L96: jmp L207 .rept 59 nop .endr L332: jmp L443 .rept 59 sub %esi,%eax add %eax,%esi

.endr L49: jmp L160 .rept 59 nop .endr L285: jmp L396 .rept 59 nop movb %al,0x0e(%ebx,%edi) jmp L41

L2: jmp L113 .rept 59 nop .endr L238: jmp L349 .rept 59 nop .endr add %eax,%esi .rept 49

jmp L66 .rept 59 nop .endr L191: jmp L302 .rept 59 nop .endr L427: jmp L15 nop

.rept 59 nop .endr L144: jmp L255 .rept 59 nop .endr L380: jmp L491 .rept 49 .endr

nop .endr L97: jmp L208 .rept 59 nop .endr L333: jmp L444 .rept 59 nop L489:

.endr L50: jmp L161 .rept 59 nop .endr L286: jmp L397 .rept 59 nop .endr rdtsc

L3: jmp L114 .rept 59 nop .endr L239: jmp L350 .rept 59 nop .endr L463: sub %esi,%eax

jmp L67 .rept 59 nop .endr L192: jmp L303 .rept 59 nop .endr L428: rdtsc movb %al,0x29(%ebx,%edi)

.rept 59 nop .endr L145: jmp L256 .rept 59 nop .endr L381: jmp L492 sub %esi,%eax add %eax,%esi

nop .endr L98: jmp L209 .rept 59 nop .endr L334: jmp L445 .rept 59 movb %al,0x0f(%ebx,%edi) jmp L42

.endr L51: jmp L162 .rept 59 nop .endr L287: jmp L398 .rept 59 nop add %eax,%esi .rept 49

L4: jmp L115 .rept 59 nop .endr L240: jmp L351 .rept 59 nop .endr jmp L16 nop

jmp L68 .rept 59 nop .endr L193: jmp L304 .rept 59 nop .endr L429: .rept 49 .endr

.rept 59 nop .endr L146: jmp L257 .rept 59 nop .endr L382: jmp L493 nop L490:

nop .endr L99: jmp L210 .rept 59 nop .endr L335: jmp L446 .rept 59 .endr rdtsc

.endr L52: jmp L163 .rept 59 nop .endr L288: jmp L399 .rept 59 nop L464: sub %esi,%eax

L5: jmp L116 .rept 59 nop .endr L241: jmp L352 .rept 59 nop .endr rdtsc movb %al,0x2a(%ebx,%edi)

jmp L69 .rept 59 nop .endr L194: jmp L305 .rept 59 nop .endr L430: sub %esi,%eax add %eax,%esi

.rept 59 nop .endr L147: jmp L258 .rept 59 nop .endr L383: jmp L494 movb %al,0x10(%ebx,%edi) jmp L43

nop .endr L100: jmp L211 .rept 59 nop .endr L336: jmp L447 .rept 59 add %eax,%esi .rept 49

.endr L53: jmp L164 .rept 59 nop .endr L289: jmp L400 .rept 59 nop jmp L17 nop

L6: jmp L117 .rept 59 nop .endr L242: jmp L353 .rept 59 nop .endr .rept 49 .endr

jmp L70 .rept 59 nop .endr L195: jmp L306 .rept 59 nop .endr L431: nop L491:

.rept 59 nop .endr L148: jmp L259 .rept 59 nop .endr L384: jmp L495 .endr rdtsc

nop .endr L101: jmp L212 .rept 59 nop .endr L337: jmp L448 .rept 59 L465: sub %esi,%eax

.endr L54: jmp L165 .rept 59 nop .endr L290: jmp L401 .rept 59 nop rdtsc movb %al,0x2b(%ebx,%edi)

L7: jmp L118 .rept 59 nop .endr L243: jmp L354 .rept 59 nop .endr sub %esi,%eax add %eax,%esi

jmp L71 .rept 59 nop .endr L196: jmp L307 .rept 59 nop .endr L432: movb %al,0x11(%ebx,%edi) jmp L44

.rept 59 nop .endr L149: jmp L260 .rept 59 nop .endr L385: jmp L496 add %eax,%esi .rept 49

nop .endr L102: jmp L213 .rept 59 nop .endr L338: jmp L449 .rept 59 jmp L18 nop

.endr L55: jmp L166 .rept 59 nop .endr L291: jmp L402 .rept 59 nop .rept 49 .endr

L8: jmp L119 .rept 59 nop .endr L244: jmp L355 .rept 59 nop .endr nop L492:

jmp L72 .rept 59 nop .endr L197: jmp L308 .rept 59 nop .endr L433: .endr rdtsc

.rept 59 nop .endr L150: jmp L261 .rept 59 nop .endr L386: jmp L497 L466: sub %esi,%eax

nop .endr L103: jmp L214 .rept 59 nop .endr L339: jmp L450 .rept 59 rdtsc movb %al,0x2c(%ebx,%edi)

.endr L56: jmp L167 .rept 59 nop .endr L292: jmp L403 .rept 59 nop sub %esi,%eax add %eax,%esi

L9: jmp L120 .rept 59 nop .endr L245: jmp L356 .rept 59 nop .endr movb %al,0x12(%ebx,%edi) jmp L45

jmp L73 .rept 59 nop .endr L198: jmp L309 .rept 59 nop .endr L434: add %eax,%esi .rept 49

.rept 59 nop .endr L151: jmp L262 .rept 59 nop .endr L387: jmp L498 jmp L19 nop

nop .endr L104: jmp L215 .rept 59 nop .endr L340: jmp L451 .rept 59 .rept 49 .endr

.endr L57: jmp L168 .rept 59 nop .endr L293: jmp L404 .rept 59 nop nop L493:

L10: jmp L121 .rept 59 nop .endr L246: jmp L357 .rept 59 nop .endr .endr rdtsc

jmp L74 .rept 59 nop .endr L199: jmp L310 .rept 59 nop .endr L435: L467: sub %esi,%eax

.rept 59 nop .endr L152: jmp L263 .rept 59 nop .endr L388: jmp L499 rdtsc movb %al,0x2d(%ebx,%edi)

nop .endr L105: jmp L216 .rept 59 nop .endr L341: jmp L452 .rept 59 sub %esi,%eax add %eax,%esi

.endr L58: jmp L169 .rept 59 nop .endr L294: jmp L405 .rept 59 nop movb %al,0x13(%ebx,%edi) jmp L46

L11: jmp L122 .rept 59 nop .endr L247: jmp L358 .rept 59 nop .endr add %eax,%esi .rept 49

jmp L75 .rept 59 nop .endr L200: jmp L311 .rept 59 nop .endr L436: jmp L20 nop

.rept 59 nop .endr L153: jmp L264 .rept 59 nop .endr L389: jmp L500 .rept 49 .endr

nop .endr L106: jmp L217 .rept 59 nop .endr L342: jmp L453 .rept 59 nop L494:

.endr L59: jmp L170 .rept 59 nop .endr L295: jmp L406 .rept 59 nop .endr rdtsc

L12: jmp L123 .rept 59 nop .endr L248: jmp L359 .rept 59 nop .endr L468: sub %esi,%eax

jmp L76 .rept 59 nop .endr L201: jmp L312 .rept 59 nop .endr L437: rdtsc movb %al,0x2e(%ebx,%edi)

.rept 59 nop .endr L154: jmp L265 .rept 59 nop .endr L390: jmp L501 sub %esi,%eax add %eax,%esi

nop .endr L107: jmp L218 .rept 59 nop .endr L343: jmp L454 .rept 59 movb %al,0x14(%ebx,%edi) jmp L47

.endr L60: jmp L171 .rept 59 nop .endr L296: jmp L407 .rept 59 nop add %eax,%esi .rept 49

L13: jmp L124 .rept 59 nop .endr L249: jmp L360 .rept 59 nop .endr jmp L21 nop

jmp L77 .rept 59 nop .endr L202: jmp L313 .rept 59 nop .endr L438: .rept 49 .endr

.rept 59 nop .endr L155: jmp L266 .rept 59 nop .endr L391: jmp L502 nop L495:

nop .endr L108: jmp L219 .rept 59 nop .endr L344: jmp L455 .rept 59 .endr rdtsc

.endr L61: jmp L172 .rept 59 nop .endr L297: jmp L408 .rept 59 nop L469: sub %esi,%eax

L14: jmp L125 .rept 59 nop .endr L250: jmp L361 .rept 59 nop .endr rdtsc movb %al,0x2f(%ebx,%edi)

jmp L78 .rept 59 nop .endr L203: jmp L314 .rept 59 nop .endr L439: sub %esi,%eax add %eax,%esi

.rept 59 nop .endr L156: jmp L267 .rept 59 nop .endr L392: jmp L503 movb %al,0x15(%ebx,%edi) jmp L48

nop .endr L109: jmp L220 .rept 59 nop .endr L345: jmp L456 .rept 59 add %eax,%esi .rept 49

.endr L62: jmp L173 .rept 59 nop .endr L298: jmp L409 .rept 59 nop jmp L22 nop

L15: jmp L126 .rept 59 nop .endr L251: jmp L362 .rept 59 nop .endr .rept 49 .endr

jmp L79 .rept 59 nop .endr L204: jmp L315 .rept 59 nop .endr L440: nop L496:

.rept 59 nop .endr L157: jmp L268 .rept 59 nop .endr L393: jmp L504 .endr rdtsc

nop .endr L110: jmp L221 .rept 59 nop .endr L346: jmp L457 .rept 59 L470: sub %esi,%eax

.endr L63: jmp L174 .rept 59 nop .endr L299: jmp L410 .rept 59 nop rdtsc movb %al,0x30(%ebx,%edi)

L16: jmp L127 .rept 59 nop .endr L252: jmp L363 .rept 59 nop .endr sub %esi,%eax add %eax,%esi

jmp L80 .rept 59 nop .endr L205: jmp L316 .rept 59 nop .endr L441: movb %al,0x16(%ebx,%edi) jmp L49

.rept 59 nop .endr L158: jmp L269 .rept 59 nop .endr L394: jmp L505 add %eax,%esi .rept 49

nop .endr L111: jmp L222 .rept 59 nop .endr L347: jmp L458 .rept 59 jmp L23 nop

.endr L64: jmp L175 .rept 59 nop .endr L300: jmp L411 .rept 59 nop .rept 49 .endr

L17: jmp L128 .rept 59 nop .endr L253: jmp L364 .rept 59 nop .endr nop L497:

jmp L81 .rept 59 nop .endr L206: jmp L317 .rept 59 nop .endr L442: .endr rdtsc

.rept 59 nop .endr L159: jmp L270 .rept 59 nop .endr L395: jmp L506 L471: sub %esi,%eax

nop .endr L112: jmp L223 .rept 59 nop .endr L348: jmp L459 .rept 59 rdtsc movb %al,0x31(%ebx,%edi)

.endr L65: jmp L176 .rept 59 nop .endr L301: jmp L412 .rept 59 nop sub %esi,%eax add %eax,%esi

L18: jmp L129 .rept 59 nop .endr L254: jmp L365 .rept 59 nop .endr movb %al,0x17(%ebx,%edi) jmp L50

jmp L82 .rept 59 nop .endr L207: jmp L318 .rept 59 nop .endr L443: add %eax,%esi .rept 49

.rept 59 nop .endr L160: jmp L271 .rept 59 nop .endr L396: jmp L507 jmp L24 nop

nop .endr L113: jmp L224 .rept 59 nop .endr L349: jmp L460 .rept 59 .rept 49 .endr

.endr L66: jmp L177 .rept 59 nop .endr L302: jmp L413 .rept 59 nop nop L498:

L19: jmp L130 .rept 59 nop .endr L255: jmp L366 .rept 59 nop .endr .endr rdtsc

jmp L83 .rept 59 nop .endr L208: jmp L319 .rept 59 nop .endr L444: L472: sub %esi,%eax

.rept 59 nop .endr L161: jmp L272 .rept 59 nop .endr L397: jmp L508 rdtsc movb %al,0x32(%ebx,%edi)

nop .endr L114: jmp L225 .rept 59 nop .endr L350: jmp L461 .rept 59 sub %esi,%eax add %eax,%esi

.endr L67: jmp L178 .rept 59 nop .endr L303: jmp L414 .rept 59 nop movb %al,0x18(%ebx,%edi) jmp L51

L20: jmp L131 .rept 59 nop .endr L256: jmp L367 .rept 59 nop .endr add %eax,%esi .rept 49

jmp L84 .rept 59 nop .endr L209: jmp L320 .rept 59 nop .endr L445: jmp L25 nop

.rept 59 nop .endr L162: jmp L273 .rept 59 nop .endr L398: jmp L509 .rept 49 .endr

nop .endr L115: jmp L226 .rept 59 nop .endr L351: jmp L462 .rept 59 nop L499:

.endr L68: jmp L179 .rept 59 nop .endr L304: jmp L415 .rept 59 nop .endr rdtsc

L21: jmp L132 .rept 59 nop .endr L257: jmp L368 .rept 59 nop .endr L473: sub %esi,%eax

jmp L85 .rept 59 nop .endr L210: jmp L321 .rept 59 nop .endr L446: rdtsc movb %al,0x33(%ebx,%edi)

.rept 59 nop .endr L163: jmp L274 .rept 59 nop .endr L399: jmp L510 sub %esi,%eax add %eax,%esi

nop .endr L116: jmp L227 .rept 59 nop .endr L352: jmp L463 .rept 59 movb %al,0x19(%ebx,%edi) jmp L52

.endr L69: jmp L180 .rept 59 nop .endr L305: jmp L416 .rept 59 nop add %eax,%esi .rept 49

L22: jmp L133 .rept 59 nop .endr L258: jmp L369 .rept 59 nop .endr jmp L26 nop

jmp L86 .rept 59 nop .endr L211: jmp L322 .rept 59 nop .endr L447: .rept 49 .endr

.rept 59 nop .endr L164: jmp L275 .rept 59 nop .endr L400: jmp L511 nop L500:

nop .endr L117: jmp L228 .rept 59 nop .endr L353: jmp L464 .rept 59 .endr rdtsc

.endr L70: jmp L181 .rept 59 nop .endr L306: jmp L417 .rept 59 nop L474: sub %esi,%eax

L23: jmp L134 .rept 59 nop .endr L259: jmp L370 .rept 59 nop .endr rdtsc movb %al,0x34(%ebx,%edi)

jmp L87 .rept 59 nop .endr L212: jmp L323 .rept 59 nop .endr L448: sub %esi,%eax add %eax,%esi

.rept 59 nop .endr L165: jmp L276 .rept 59 nop .endr L401: rdtsc movb %al,0x1a(%ebx,%edi) jmp L53

nop .endr L118: jmp L229 .rept 59 nop .endr L354: jmp L465 sub %esi,%eax add %eax,%esi .rept 49

.endr L71: jmp L182 .rept 59 nop .endr L307: jmp L418 .rept 59 movb %al,0x00(%ebx,%edi) jmp L27 nop

L24: jmp L135 .rept 59 nop .endr L260: jmp L371 .rept 59 nop add %eax,%esi .rept 49 .endr

jmp L88 .rept 59 nop .endr L213: jmp L324 .rept 59 nop .endr jmp L1 nop L501:

.rept 59 nop .endr L166: jmp L277 .rept 59 nop .endr L402: .rept 50 .endr rdtsc

nop .endr L119: jmp L230 .rept 59 nop .endr L355: jmp L466 nop L475: sub %esi,%eax

.endr L72: jmp L183 .rept 59 nop .endr L308: jmp L419 .rept 59 .endr rdtsc movb %al,0x35(%ebx,%edi)

L25: jmp L136 .rept 59 nop .endr L261: jmp L372 .rept 59 nop L449: sub %esi,%eax add %eax,%esi

jmp L89 .rept 59 nop .endr L214: jmp L325 .rept 59 nop .endr rdtsc movb %al,0x1b(%ebx,%edi) jmp L54

.rept 59 nop .endr L167: jmp L278 .rept 59 nop .endr L403: sub %esi,%eax add %eax,%esi .rept 49

nop .endr L120: jmp L231 .rept 59 nop .endr L356: jmp L467 movb %al,0x01(%ebx,%edi) jmp L28 nop

.endr L73: jmp L184 .rept 59 nop .endr L309: jmp L420 .rept 59 add %eax,%esi .rept 49 .endr

L26: jmp L137 .rept 59 nop .endr L262: jmp L373 .rept 59 nop jmp L2 nop L502:

jmp L90 .rept 59 nop .endr L215: jmp L326 .rept 59 nop .endr .rept 49 .endr rdtsc

.rept 59 nop .endr L168: jmp L279 .rept 59 nop .endr L404: nop L476: sub %esi,%eax

nop .endr L121: jmp L232 .rept 59 nop .endr L357: jmp L468 .endr rdtsc movb %al,0x36(%ebx,%edi)

.endr L74: jmp L185 .rept 59 nop .endr L310: jmp L421 .rept 59 L450: sub %esi,%eax add %eax,%esi

L27: jmp L138 .rept 59 nop .endr L263: jmp L374 .rept 59 nop rdtsc movb %al,0x1c(%ebx,%edi) jmp L55

jmp L91 .rept 59 nop .endr L216: jmp L327 .rept 59 nop .endr sub %esi,%eax add %eax,%esi .rept 49

.rept 59 nop .endr L169: jmp L280 .rept 59 nop .endr L405: movb %al,0x02(%ebx,%edi) jmp L29 nop

nop .endr L122: jmp L233 .rept 59 nop .endr L358: jmp L469 add %eax,%esi .rept 49 .endr

.endr L75: jmp L186 .rept 59 nop .endr L311: jmp L422 .rept 59 jmp L3 nop L503:

L28: jmp L139 .rept 59 nop .endr L264: jmp L375 .rept 59 nop .rept 49 .endr rdtsc

jmp L92 .rept 59 nop .endr L217: jmp L328 .rept 59 nop .endr nop L477: sub %esi,%eax

.rept 59 nop .endr L170: jmp L281 .rept 59 nop .endr L406: .endr rdtsc movb %al,0x37(%ebx,%edi)

nop .endr L123: jmp L234 .rept 59 nop .endr L359: jmp L470 L451: sub %esi,%eax add %eax,%esi

.endr L76: jmp L187 .rept 59 nop .endr L312: jmp L423 .rept 59 rdtsc movb %al,0x1d(%ebx,%edi) jmp L56

L29: jmp L140 .rept 59 nop .endr L265: jmp L376 .rept 59 nop sub %esi,%eax add %eax,%esi .rept 49

jmp L93 .rept 59 nop .endr L218: jmp L329 .rept 59 nop .endr movb %al,0x03(%ebx,%edi) jmp L30 nop

.rept 59 nop .endr L171: jmp L282 .rept 59 nop .endr L407: add %eax,%esi .rept 49 .endr

nop .endr L124: jmp L235 .rept 59 nop .endr L360: jmp L471 jmp L4 nop L504:

.endr L77: jmp L188 .rept 59 nop .endr L313: jmp L424 .rept 59 .rept 49 .endr rdtsc

L30: jmp L141 .rept 59 nop .endr L266: jmp L377 .rept 59 nop nop L478: sub %esi,%eax

jmp L94 .rept 59 nop .endr L219: jmp L330 .rept 59 nop .endr .endr rdtsc movb %al,0x38(%ebx,%edi)

.rept 59 nop .endr L172: jmp L283 .rept 59 nop .endr L408: L452: sub %esi,%eax add %eax,%esi

nop .endr L125: jmp L236 .rept 59 nop .endr L361: jmp L472 rdtsc movb %al,0x1e(%ebx,%edi) jmp L57

.endr L78: jmp L189 .rept 59 nop .endr L314: jmp L425 .rept 59 sub %esi,%eax add %eax,%esi .rept 49

L31: jmp L142 .rept 59 nop .endr L267: jmp L378 .rept 59 nop movb %al,0x04(%ebx,%edi) jmp L31 nop

jmp L95 .rept 59 nop .endr L220: jmp L331 .rept 59 nop .endr add %eax,%esi .rept 49 .endr

.rept 59 nop .endr L173: jmp L284 .rept 59 nop .endr L409: jmp L5 nop L505:

nop .endr L126: jmp L237 .rept 59 nop .endr L362: jmp L473 .rept 49 .endr rdtsc

.endr L79: jmp L190 .rept 59 nop .endr L315: jmp L426 .rept 59 nop L479: sub %esi,%eax

L32: jmp L143 .rept 59 nop .endr L268: jmp L379 .rept 59 nop .endr rdtsc movb %al,0x39(%ebx,%edi)

jmp L96 .rept 59 nop .endr L221: jmp L332 .rept 59 nop .endr L453: sub %esi,%eax add %eax,%esi

.rept 59 nop .endr L174: jmp L285 .rept 59 nop .endr L410: rdtsc movb %al,0x1f(%ebx,%edi) jmp L58

nop .endr L127: jmp L238 .rept 59 nop .endr L363: jmp L474 sub %esi,%eax add %eax,%esi .rept 49

.endr L80: jmp L191 .rept 59 nop .endr L316: jmp L427 .rept 59 movb %al,0x05(%ebx,%edi) jmp L32 nop

L33: jmp L144 .rept 59 nop .endr L269: jmp L380 .rept 59 nop add %eax,%esi .rept 49 .endr

jmp L97 .rept 59 nop .endr L222: jmp L333 .rept 59 nop .endr jmp L6 nop L506:

.rept 59 nop .endr L175: jmp L286 .rept 59 nop .endr L411: .rept 49 .endr rdtsc

nop .endr L128: jmp L239 .rept 59 nop .endr L364: jmp L475 nop L480: sub %esi,%eax

.endr L81: jmp L192 .rept 59 nop .endr L317: jmp L428 .rept 59 .endr rdtsc movb %al,0x3a(%ebx,%edi)

L34: jmp L145 .rept 59 nop .endr L270: jmp L381 .rept 59 nop L454: sub %esi,%eax add %eax,%esi

jmp L98 .rept 59 nop .endr L223: jmp L334 .rept 59 nop .endr rdtsc movb %al,0x20(%ebx,%edi) jmp L59

.rept 59 nop .endr L176: jmp L287 .rept 59 nop .endr L412: sub %esi,%eax add %eax,%esi .rept 49

nop .endr L129: jmp L240 .rept 59 nop .endr L365: jmp L476 movb %al,0x06(%ebx,%edi) jmp L33 nop

.endr L82: jmp L193 .rept 59 nop .endr L318: jmp L429 .rept 59 add %eax,%esi .rept 49 .endr

L35: jmp L146 .rept 59 nop .endr L271: jmp L382 .rept 59 nop jmp L7 nop L507:

jmp L99 .rept 59 nop .endr L224: jmp L335 .rept 59 nop .endr .rept 49 .endr rdtsc

.rept 59 nop .endr L177: jmp L288 .rept 59 nop .endr L413: nop L481: sub %esi,%eax

nop .endr L130: jmp L241 .rept 59 nop .endr L366: jmp L477 .endr rdtsc movb %al,0x3b(%ebx,%edi)

.endr L83: jmp L194 .rept 59 nop .endr L319: jmp L430 .rept 59 L455: sub %esi,%eax add %eax,%esi

L36: jmp L147 .rept 59 nop .endr L272: jmp L383 .rept 59 nop rdtsc movb %al,0x21(%ebx,%edi) jmp L60

jmp L100 .rept 59 nop .endr L225: jmp L336 .rept 59 nop .endr sub %esi,%eax add %eax,%esi .rept 49

.rept 59 nop .endr L178: jmp L289 .rept 59 nop .endr L414: movb %al,0x07(%ebx,%edi) jmp L34 nop

nop .endr L131: jmp L242 .rept 59 nop .endr L367: jmp L478 add %eax,%esi .rept 49 .endr

.endr L84: jmp L195 .rept 59 nop .endr L320: jmp L431 .rept 59 jmp L8 nop L508:

L37: jmp L148 .rept 59 nop .endr L273: jmp L384 .rept 59 nop .rept 49 .endr rdtsc

jmp L101 .rept 59 nop .endr L226: jmp L337 .rept 59 nop .endr nop L482: sub %esi,%eax

.rept 59 nop .endr L179: jmp L290 .rept 59 nop .endr L415: .endr rdtsc movb %al,0x3c(%ebx,%edi)

nop .endr L132: jmp L243 .rept 59 nop .endr L368: jmp L479 L456: sub %esi,%eax add %eax,%esi

.endr L85: jmp L196 .rept 59 nop .endr L321: jmp L432 .rept 59 rdtsc movb %al,0x22(%ebx,%edi) jmp L61

L38: jmp L149 .rept 59 nop .endr L274: jmp L385 .rept 59 nop sub %esi,%eax add %eax,%esi .rept 49

jmp L102 .rept 59 nop .endr L227: jmp L338 .rept 59 nop .endr movb %al,0x08(%ebx,%edi) jmp L35 nop

.rept 59 nop .endr L180: jmp L291 .rept 59 nop .endr L416: add %eax,%esi .rept 49 .endr

nop .endr L133: jmp L244 .rept 59 nop .endr L369: jmp L480 jmp L9 nop L509:

.endr L86: jmp L197 .rept 59 nop .endr L322: jmp L433 .rept 59 .rept 49 .endr rdtsc

L39: jmp L150 .rept 59 nop .endr L275: jmp L386 .rept 59 nop nop L483: sub %esi,%eax

jmp L103 .rept 59 nop .endr L228: jmp L339 .rept 59 nop .endr .endr rdtsc movb %al,0x3d(%ebx,%edi)

.rept 59 nop .endr L181: jmp L292 .rept 59 nop .endr L417: L457: sub %esi,%eax add %eax,%esi

nop .endr L134: jmp L245 .rept 59 nop .endr L370: jmp L481 rdtsc movb %al,0x23(%ebx,%edi) jmp L62

.endr L87: jmp L198 .rept 59 nop .endr L323: jmp L434 .rept 59 sub %esi,%eax add %eax,%esi .rept 49

L40: jmp L151 .rept 59 nop .endr L276: jmp L387 .rept 59 nop movb %al,0x09(%ebx,%edi) jmp L36 nop

jmp L104 .rept 59 nop .endr L229: jmp L340 .rept 59 nop .endr add %eax,%esi .rept 49 .endr

.rept 59 nop .endr L182: jmp L293 .rept 59 nop .endr L418: jmp L10 nop L510:

nop .endr L135: jmp L246 .rept 59 nop .endr L371: jmp L482 .rept 49 .endr rdtsc

.endr L88: jmp L199 .rept 59 nop .endr L324: jmp L435 .rept 59 nop L484: sub %esi,%eax

L41: jmp L152 .rept 59 nop .endr L277: jmp L388 .rept 59 nop .endr rdtsc movb %al,0x3e(%ebx,%edi)

jmp L105 .rept 59 nop .endr L230: jmp L341 .rept 59 nop .endr L458: sub %esi,%eax add %eax,%esi

.rept 59 nop .endr L183: jmp L294 .rept 59 nop .endr L419: rdtsc movb %al,0x24(%ebx,%edi) jmp L63

nop .endr L136: jmp L247 .rept 59 nop .endr L372: jmp L483 sub %esi,%eax add %eax,%esi .rept 49

.endr L89: jmp L200 .rept 59 nop .endr L325: jmp L436 .rept 59 movb %al,0x0a(%ebx,%edi) jmp L37 nop

L42: jmp L153 .rept 59 nop .endr L278: jmp L389 .rept 59 nop add %eax,%esi .rept 49 .endr

jmp L106 .rept 59 nop .endr L231: jmp L342 .rept 59 nop .endr jmp L11 nop L511:

.rept 59 nop .endr L184: jmp L295 .rept 59 nop .endr L420: .rept 49 .endr rdtsc

nop .endr L137: jmp L248 .rept 59 nop .endr L373: jmp L484 nop L485: sub %esi,%eax

.endr L90: jmp L201 .rept 59 nop .endr L326: jmp L437 .rept 59 .endr rdtsc movb %al,0x3f(%ebx,%edi)

L43: jmp L154 .rept 59 nop .endr L279: jmp L390 .rept 59 nop L459: sub %esi,%eax add %eax,%esi

jmp L107 .rept 59 nop .endr L232: jmp L343 .rept 59 nop .endr rdtsc movb %al,0x25(%ebx,%edi) add $64,%edi

.rept 59 nop .endr L185: jmp L296 .rept 59 nop .endr L421: sub %esi,%eax add %eax,%esi cmp <buffer len>,%edi

nop .endr L138: jmp L249 .rept 59 nop .endr L374: jmp L485 movb %al,0x0b(%ebx,%edi) jmp L38 jge END

.endr L91: jmp L202 .rept 59 nop .endr L327: jmp L438 .rept 59 add %eax,%esi .rept 49 jmp L0

L44: jmp L155 .rept 59 nop .endr L280: jmp L391 .rept 59 nop jmp L12 nop END:

jmp L108 .rept 59 nop .endr L233: jmp L344 .rept 59 nop .endr .rept 49 .endr

.rept 59 nop .endr L186: jmp L297 .rept 59 nop .endr L422: nop L486:

nop .endr L139: jmp L250 .rept 59 nop .endr L375: jmp L486 .endr rdtsc

.endr L92: jmp L203 .rept 59 nop .endr L328: jmp L439 .rept 59 L460: sub %esi,%eax

L45: jmp L156 .rept 59 nop .endr L281: jmp L392 .rept 59 nop rdtsc movb %al,0x26(%ebx,%edi)

jmp L109 .rept 59 nop .endr L234: jmp L345 .rept 59 nop .endr sub %esi,%eax add %eax,%esi

.rept 59 nop .endr L187: jmp L298 .rept 59 nop .endr L423: movb %al,0x0c(%ebx,%edi) jmp L39

nop .endr L140: jmp L251 .rept 59 nop .endr L376: jmp L487 add %eax,%esi .rept 49

.endr L93: jmp L204 .rept 59 nop .endr L329: jmp L440 .rept 59 jmp L13 nop

L46: jmp L157 .rept 59 nop .endr L282: jmp L393 .rept 59 nop .rept 49 .endr

Figure 1.3. Instruction cache spy process for the Intel Atom.

96

Recipes

begin-base64 644 spy.zip

UEsDBAoAAAAAAK+Uhz0AAAAAAAAAAAAAAAAEABwAc3B5L1VUCQADymL+TD5k

/kx1eAsAAQToAwAABOgDAABQSwMECgAAAAAAVpWHPQAAAAAAAAAAAAAAAA8A

HABzcHkvc3B5X2ljYWNoZS9VVAkAAwNk/kwEZP5MdXgLAAEE6AMAAAToAwAA

UEsDBAoAAAAAAHyUhz0AAAAAAAAAAAAAAAAPABwAc3B5L3NweV9kY2FjaGUv

VVQJAANrYv5MRWT+THV4CwABBOgDAAAE6AMAAFBLAwQUAAAACADqlIc9vB5+

07QOAADPrgAAGwAcAHNweS9zcHlfaWNhY2hlL3NweV9pY2FjaGUuY1VUCQAD

N2P+TFVj/kx1eAsAAQToAwAABOgDAADF3VtvG9cZheFr8VcMmBiQDNXmdxge

7CZA06aBAdspmqQ3iSHIEmUzlSmBpJK0Rf57KR9gz8oeaPDebCCAKIrc0hcs

aFl89uY8vN+cnTV/umq21/85WZ2dnr1efnLzwf5Lr0bb5a453bzaNvbg5Wo9

erlZnv678XZ0vtpeP1w1n1+fjTY369F2Nbr/cPTZan12eXO+bP683Z2vrh68

/rJz12a1fnV73+iz8+XFar1snv/w7F9f//X7b//5XWM+mUw+/cL3T549ef7N

d80073982McHfPuPvzTjdjH+9J6vmnG249Fotd41b05X68PbG/sf/uy4OXt9

umnu72//8uOLo+Z/o9HBu3suVpfL9emb5ePRweri8PaxzZeNHTUf7v/i7VPs

xf7ry8vtcv/Mg4Pr/Ry7i8PxD9vTV8tHzb1t8+OHh7/4aT0+bt4+Z/LiaP+k

g81yd7NZN5P97d/33/VmvV29Wi/P3/1AL3/8OOj+W4wOTk5Ot29OTpqTk1+u

Lk93+1X3nzSHo/FvV5vm3r3l+er43Yef1j/txqPx5ny3PXt/+83VL7dfO/3t

7UO2Hx7y85vr5unk/ScPTi/3377JyWL6/p6nk0efPnCaHx65WV7vmvH7/9Hv

71xfXX/48nJ9vvmwhHWXaMES3l1iCpaI7hIzsER2l5iDJdruEguwxLSzxGwC

lph1lzCwxLy7hIMlFt0lgkSrG88Zimc3nzOST+sGdEYCat2EzkhCrRvRGYmo

dTM6Ixm1bkjnJKTWTemcpNS6MZ2TmFo3p3OSU+/mdE5y6t2cztHv0W5O5ySn

3s3pnOTUuzmdk5x6N6dzklPv5nRBcurdnC5ITr2b0wXJqXdzuiA5jW5OFySn

0c3pguQ0ujldoMLv5nRBchrdnC5ITqOb0wXJaXRzahMS1JjJIiSpMZdFSFRj

IYuQrOZEFiFhTZNFSFrTZRES1wxZBP0LNWUREthsZRGS2JTEGklsSmKNJDYl

sUYSm5JYI4ltJbFGEttKYo0ktpXEGklsK4k1kthWEmvorypJrJHEtpJYJ4lt

JbFOEttKYp0ktpXEOknsVBLrJLFTSayTxE4lsU4SO5XEOknsVBLrJLFTSayj

VwIksUESO5XEBknsVBIbJLFTSWyQxM4ksUESO5PEBknsTBIbJLEzSWyQxM4k

sUESO5PEBknsTBKb6NUrSWySxM4ksUkSO5PEJknsXBKbJLFzSWySxM4lsUkS

O5fEJknsXBKbJLFzSWySxM4lsS1J7FwS26JXXCWxLUnsXBLbksQuJLEtSexC

EtuSxC4ksS1J7EIS25LELiSxLUnsQhLbksQuJLFTktiFJHZKEruQxE6REkhi

p8wJJLIMsiaSWWRZNpHQIs6yiaQWiZZNJLYItWwiuUWuZRMJLqItm0hykW7Z

RKKLgMsmkl1mXIJcBpVLssucS6DLmHQJdRmzLsEuY9ol3GXMuwS8jImXkJcx

8xL0MqZewl6G3MsEvgzJlwl9GbIvE/wypF8m/GXIv0wAzJCAmRCYIQMzQTBD

CmbCYIYczATCDEmYCYUZsjATDDOkYSYcZsjDTEDMkIiZkJghEzNBMUMqZsJi

hlzMBMYcwZiJjDmSMRMac0RjJjbmyMZMcMwRjpnomCMdM+ExRzxm4mOOfMwE

yBwBmYmQORIyEyJzRGQmRubIyEyQzBGSmSiZIyUzYTJHTGbiZI6czATKHEGZ

iZQ5kjITKnNEZSZW5sjKTLDMEZaZaJkjLTPhMkdcZuJljrzMBMwcgZmJmDkS

MxMyc0RmJmbmyMxM0MwRmpmomSM1M2EzR2xm4maO3MwEzhzBmYmcOZIzEzpz

RGcmdubIzkzwzBGemeiZIz0z4TNHfGbiZ478zATQHAGaiaA5EjQTQnNEaCaG

5sjQTBDNEaKZKJojRTNhNEeMZuJojhzNBNIcQZqJpDmSNBNKc0RpJpbmyNJM

MM0RpplomiNNM+E0R5xm4mmOPM0E1ByBmomoORI1E1JzRGompubI1ExQzRGq

maiaI1UzYTVHrGbiao5czcXVHLmai6s5OyMmrubI1VxczZGrubiaI1dzcTVH

rubiao5czcXVHLmai6s5cjUXV3Pkai6u5sjVXFzNkau5uJojV3NxNUeu5uJq

jlzNxdUcuZqLqzlyNRdXc+RqLq7myNVcXM3ZeTJxNWcnysTVHJ4pk+yyU2Xi

as7OlYmrOTtZJq7m7GyZuJqz02Xias7Ol4mrOTthJq7myNVcXM2Rq7m4miNX

c3E1R67m4mqOXM3F1Ry5mourOXI1F1cL5GourhbI1VxcLZCrubhaIFdzcbVA

rubiaoFczcXVArmai6sFcjUXVwvkai6uFsjVXFwtkKu5uFogV3NxtUCu5uJq

gVzNxdUCuZqLqwVyNRdXC+RqLq4WyNVcXC2Qq7m4WiBXc3G1QK7m4mqBXM3F

1QK5mourBXI1F1cL5GourhbI1VxcLZCrubhaIFdzcbVArubiaoFczcXVArma

i6sFcjUXVwvkai6uFsjVXFwtkKu5uFogV3NxtUCu5uJqgVzNxdUCuZqLqwVy

NRdXC+RqLq4WyNVcXC2Qq7m4WiBXc3G1QK7m4mqBXM3F1QK5mourBXI1F1cL

5GourhbI1VxcLZCrubhaIFdzcbVArubiaoFczcXVArmai6sFcjUXVwvkai6u

FsjVXFwtkKu5uFogV3NxtUCu5uJqgVzNxdUCuZqLqwVytRBXC+RqIa4WyNVC

XC3Y2y+KqwVytRBXC+RqIa4WyNVCXC2Qq4W4WiBXC3G1QK4W4mqBXC3E1QK5

WoirBXK1EFcL5GohrhbI1UJcLZCrhbhaIFcLcbVArhbiaoFcLcTVArlaiKsF

crUQVwvkaiGuFsjVQlwtkKuFuFogVwtxtUCuFuJqgVwtxNUCuVqIqwVytRBX

C+RqIa4W7L0bxdWCvXujuFqw928UVwv4Do6SXfYejuJqwd7FUVwt2Ps4iqsl

eyNHcbVk7+QorpbsrRzF1RK5WoirJXK1EFdL5GohrpbI1UJcLZGrhbhaIlcL

cbVErhbiaolcLcTVErlaiKslcrUQV0vkaiGulsjVQlwtkauFuFoiVwtxtUSu

FuJqiVwtxNUSuVqIqyVytRBXS+RqIa6WyNVCXC2Rq4W4WiJXC3G1RK4W4mqJ

XC3E1RK5WoirJXK1EFdL5GohrpbI1UJcLZGrhbhaIlcLcbVErhbiaolcLcTV

ErlaiKslcrUQV0vkaiGulsjVQlwtkauFuFoiVwtxtUSuFuJqiVwtxNUSuVqI

qyVytRBXS+RqIa6WyNVCXC2Rq4W4WiJXC3G1RK4W4mqJXC3E1RK5WoirJXK1

EFdL5GohrpbI1UJcLZGrhbhaIlcLcbVErhbiaolcLcTVErlaiKslcrUQV0vk

aiGulsjVQlwtkauluFoiV0txtUSuluJqiVwtxdWSXdlMXC2Rq6W4WiJXS3G1

RK6W4mqJXC3F1RK5WoqrJXK1FFdL5GoprpbI1VJcLZGrpbhaIldLcbVErpbi

aolcLcXVErlaiqslcrUUV0vkaimulsjVUlwtkauluFoiV0txtUSuluJqiVwt

xdUSuVqKqyVytRRXS+RqKa6WyNVSXC2Rq6W4WiJXS3G1RK6W4mqJXC3F1RK5

WoqrJXK1FFdL5GoprpbI1VJcrUWuluJqLXK1FFdrkauluFrLrpEmrtayi6SJ

q7XsKmniai27TJq4Wguvk5ayCsquuFrLrpQmrtayS6WJq7XsWmkfXa3/2tHn

v72/e3vz8t21pLt391xpevt603xuf3jo7RLnl8fN5PDe5PjtxauPPp2jMMVX

d0zx8d7bV35qzWPleQq/C+6a5/aVp1pTeHmKwu+iAVNYrSmiPEXhd+GAKbzW

FFmeovC7eMAUUWuKtjxFoQsGTJG1ppiWpyh00YAp2lpTzMpTFLpwwBTTWlPM

y1MUunjAFLNaUyx6+q/wj4EBY1SrcevrcVDkty9+V5ujp79LG43unmNarcCt

p8FLW50GzFGtwq2nw0ubrQbMUa3ErafFS9u9BsxRrcatp8dLG84GzFGtyK2n

yUtb3gbMUa3KrafLS5vuBsxRrcytp81L2/4GzFGtzq2nz0sbDwfMUa3PvafP

S1sfB8xRrc+97+9x1Oezen+Q9/R5afvngDmq9bn39HlpA+qAOar1uff0eWkL

7IA5qvW59/R5aRPugDmq9bn39HlpG/CAOar1uff0eWkj8oA5qvW59/R5aSv0

gDmq9bn39HlpM/aAOar1efT0eWk7+IA5qvV59PR5aUP63XPMq/V59L3Cjvp8

Xu8l9p4+L23KHzBHtT6Pnj4vHQsYMEe1Po+ePi8dTBgwR7U+j54+Lx2NGDBH

tT6Pnj4vHc4YMEe1Po+ePi8dDxkwR7U+j54+Lx1QGTBHtT7Pnj4vHZEZMEe1

Ps+ePi8d0rl7jkW1Ps+ePi8dExowR7U+zz4zR32+qIfmPX1eOio1YI5qfZ49

fV46rDVgjmp9nj19XjouNmCOan2ePX1eOrA2YI5qfZ49fV46Mjdgjmp9nj19

Xjq0N2COan3e9vR56djggDmq9Xnb0+elg4t3ztFOqvV529PnpaOTA+ao1udt

T5+XDm8OmKNan7d9u+BIn7eTetvgevq8dIB1wBzV+rzt6fPSEdoBc1Tr87an

z0uHeAfMUa3P254+Lx0jHjBHtT5ve/q8dJB5wBzV+nza0+elo9QD5qjW59Oe

Pi8d5r57DqvW59OePi8dJx8wR7U+n/6xz0/Pz5vPp/nuKR+WOdsPd8+69/28

XjZPJ59M//Xzv73/bH/rkc588Gj/XzPejJvDl0fHzXi1v/H8h2ffP3n25Pk3

3x3tvzi+/fHHx+PbH/Xdh9XbD9vV/tlHj0ejg4cPm+3uarNsNsvtzeVudLBa

75rV49HB3588/bq5f3G9v3lx/cXF1fVyfXixulyuT98s99/r15fj/fMPtqv/

Lk92za/NF83Fr5vVbnn48rjZT/XxxzhuLq5vH3lxdnm1XR6+/WR0sFnubjbr

ZvJ49Pvo/1BLAwQUAAAACABLgSc8GxvoGwoEAAAgCQAAHAAcAHNweS9zcHlf

aWNhY2hlL3NweV9pY2FjaGUucHlVVAkAA07rRUvgYv5MdXgLAAEE6AMAAATo

AwAAfVVdc+I4EHyOf8UkrCuw6yMYzGddHm7r7o3au/dN6krYApTYMiXJCfz7

6xHGmGw4KjHGGnWPenrGnduHypqHldIPu4PbljoIOiSyl8o6cltlaSeMKKST

hlxJ71vhKBXpVpKVztKhrOhdaMdruSoU32D/ujQk96LY5TIitT6HiTz3GxeB

3/5IRuiN7E6SHnZhkyBbrbC0CDp1wM9pFI+jeBKNRtEoiUa4mUZJEiXjKJlF

yTwaD6PxLBrPo0kcTYbPAT47o8B1f7cHYhjKTEXHr6cn/fTk7u6pQ/hF1pVG

Wiort6scrar1Gocs12swNxAmczY97WueFuUbI4q9B7YXwLYBTitjJGujCmkd

1Gj2vxQ7WoZZsy30ovwcPDcRfZGrjaZkMJ+0wIFiWEQsyYxQCmyjAVfsXVIu

DnwWSkvt1KYqK0uThFYHJyndVvoVJ11jMZPURW1Slx8ormuZKy17pDQwVjJH

dTq0HBDRMubLkPr9Pm7qL74ux/GALzEiHQBEvimNctsCKcqdJQW/CKfeJEjc

1pTVZkszypR1SqeuxWqZFVVXepN7T525kTwSGM5wmQ+RxXhCy9EQtKNZQssk

mR259UluzoOlxo1gH5avEQmd0UtVIKOVSF/ZpRyl5b7lYs/oDzoZe8Y5M46Y

ccqMMTOOmXGOSJye4ycjHzrl0JhDETCK5xw64tBpSx3NLYBvA53wDw3QBQVy

5nRxcOvzEq/olV9zPZa86wsdQZlePwi4vRQLd+qer7PeIrg5eQfOWrSspYIb

8Cv6HXb4OkXczXUbdtU39CKcxomQKgrYDIl4wbhcTOqnAvfIGahv5M7RHf34

+58/6K5pl3OALnctG+9EBoDUqVIz+smNtVstdS982eaROjMtoC4UspKyUt87

2kAiuZdp5WTGSmKAsVAgyyAyYOBs2T7+RW8T99D9G8xRviOpCvRZ27KNWT85

/uU4yPafCICxdhwV10OuDZU2ytbQl/gDBM8F8SaPbklFziXzvsLG4zTDGFUo

7iTBE9T8X1hq45/Wy98oxgpMUv/GKY9D+qaFwE/6Smdy3z2CcWEu4fwQ655B

e4jLpWbz2t7z5VFZjjDMchwm64bhIOKfmMq9lhvrWexTO5HSbc3zW/zsE7xu

5lZutaFPjXU5ANooLSd/v3Dy/1hZbITyRj4bWMA4/Drh8S+KstKud8HS9jEv

nLV/fKTBgj4n87LVcYP9gGDE+DjgbYE3qzS3aABnBGcF1JPfG1p0An0Js4hq

rVtaNWVq+sBI4XuAbZULe0WvFKqG8cf3K0B48vJM06zKac51ffPgj4fjhSIv

mC1Xq1d/PhSRE1srY49vQSiIvA33r+OBID96468ffzaKN69ZPFz88nZviR4E

/wFQSwMEFAAAAAgAfJSHPQ8OXEQ9BAAA6RwAABsAHABzcHkvc3B5X2RjYWNo

ZS9zcHlfZGNhY2hlLmNVVAkAA2ti/kxrYv5MdXgLAAEE6AMAAAToAwAAnZlb

b9s4EEafw18xUJuF5DixxnF8yaVPTYACRVNg37YJDF0oh7u2JEhykt2i/31J

R8k2YT9gSb+Yt0PPMWYeBhwNRJbRYUVt/fcyz5LsTv40PNJb10yHRbVR3WHR

JBt5WFeq7GTjidHhSrSyo6RZtcRHqSpF2sjkLxovRK7aeqTofZ2JZluKVonB

SIh3qszW21zSedvlqjq6+/B6aa3St2uNKldmTYxG73JZqFLS75/+uKSQz8/H

HP1qmReRsBfn1tk5L8ZCaBXaJKoMzUCrZEPK7pKGBnp8/+02ou9C7Jk9dSb2

zM6ACrWWpf4j6IKC4MxsF6Eh6QNx9LJ7sbuAbzUm162k71Rrma4Ig4emKle0

bZOVPLopg+iMGtltm5LiM/qhr9uWrVqVMu8DUem20D+VJet1lYXx43gex0OO

zqyD1auDxvEgfnw5/HCnAwvDVv0jl120u/Q3ih9nV1cRmdnBgXWoenWoej5U

VE2oLnSw6lxHE8dmdHAxnTzd803d6iBY/y/LZdJulktaLu+rddLpm/WEQhE8

Vg3t78tcDZ++bsqbLhBBk3dt1o831b3ZSx53R9rnI5+vr7+e9mO12a51bPr3

43A/jvTB+M3OHO0wZNhmfg6r3aZP8Qyfovsv2rJTzwGbmMJ97uWi/kyS578y

erGYQAu0w5Bhm/GxYHeLObRAOwwZthkfi7G7RQYt0A5Dhm3Gx+LY2YJhXSxg

9kOGbcbHYuJuAetiAbMfMmwzPhYn7hawLhYw+yHDNuNjMXW3gHWxgNkPGbYZ

H4uZs8UY1kUCsx8ybDM+FnN3C1gXCcx+yLDN+Fgs3C1gXSQw+yHDNuNjkbhb

wLpIYPZDhm3GxyJ1tjiGdZHC7IcM24yPReZuAesihdkPGbYZH4vc3QLWRQqz

HzJsMz4W0t0C1kUKsx8ybDM+FoWzxQTWRQazHzJsMx4W7N5fTGBdZDD7IcM2

42Ph3l9MYF1kMPshwzbjY+HeX0xgXWQw+yHDNuNj4d5fnMC6yGH2Q4ZtxsfC

vb84gXWRw+yHDNuMj4V7f3EC6yKH2Q8ZthkfC/f+4gTWRQ6zHzJsMz4W7v3F

FNaFhNkPGbYZHwv3/mIK60LC7IcM24yPhXt/MYV1IWH2Q4ZtxsfCvb+YwrqQ

MPshwzbjY+HeX8xgXRQw+yHDNuNj4d5fzGBdFDD7IcM242Ph3l/MYF0UMPsh

wzbjY+HeX8xgXRQw+yHDNuNj8f/7C7P8/njcH+4Xs01N+2/W/lxJuvzy8Xmm

T5hnkH6qN/oHkb1TGg2o2nb1tqPBSFD/OaWgCULzNKPdzLDqhyrYPRJFBlPl

WyowEQf6mI6k/25VP1eBYbJ1laaykTk1cqXaTjatuSEyT2JXnz5f0qCozXNR

fVFUtSzD55cxfcdDGpg3qeKhUZ3cBTQk/beZcIZU1Ls9fX0rw91E7L28kIkf

4l9QSwECHgMKAAAAAACvlIc9AAAAAAAAAAAAAAAABAAYAAAAAAAAABAA7UEA

AAAAc3B5L1VUBQADymL+THV4CwABBOgDAAAE6AMAAFBLAQIeAwoAAAAAAFaV

hz0AAAAAAAAAAAAAAAAPABgAAAAAAAAAEADtQT4AAABzcHkvc3B5X2ljYWNo

ZS9VVAUAAwNk/kx1eAsAAQToAwAABOgDAABQSwECHgMKAAAAAAB8lIc9AAAA

AAAAAAAAAAAADwAYAAAAAAAAABAA7UGHAAAAc3B5L3NweV9kY2FjaGUvVVQF

AANrYv5MdXgLAAEE6AMAAAToAwAAUEsBAh4DFAAAAAgA6pSHPbweftO0DgAA

z64AABsAGAAAAAAAAQAAAKSB0AAAAHNweS9zcHlfaWNhY2hlL3NweV9pY2Fj

aGUuY1VUBQADN2P+THV4CwABBOgDAAAE6AMAAFBLAQIeAxQAAAAIAEuBJzwb

G+gbCgQAACAJAAAcABgAAAAAAAEAAADtgdkPAABzcHkvc3B5X2ljYWNoZS9z

cHlfaWNhY2hlLnB5VVQFAANO60VLdXgLAAEE6AMAAAToAwAAUEsBAh4DFAAA

AAgAfJSHPQ8OXEQ9BAAA6RwAABsAGAAAAAAAAQAAAKSBORQAAHNweS9zcHlf

ZGNhY2hlL3NweV9kY2FjaGUuY1VUBQADa2L+THV4CwABBOgDAAAE6AMAAFBL

BQYAAAAABgAGABgCAADLGAAAAAA=

====

Figure 1.4. Source code for spy processes in uuencode format.

97

Recipes

void subbytes(__m128i *x) {

__m128i lo, hi, t0, t1;

lo = _mm_and_si128(mask,*x);

hi = _mm_and_si128(mask,_mm_srli_epi64(*x,4));

t0 = t1 = _mm_xor_si128(t0,t0);

for(int i=0; i<16; i++, t1 = _mm_add_epi8(t1,one))

t0 = _mm_or_si128(t0,_mm_and_si128(_mm_cmpeq_epi8(hi,t1),_mm_shuffle_epi8(S[i],lo)));

*x = t0;

}

Figure 1.5. C code with SSSE3 intrinsics for a 16-way parallel 8 to 8-bit lookup to resist cache-
timing attacks.

98

DISSERTATIONS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-D16 Hermelin, Miia.

 Multidimensional Linear Cryptanalysis. 2010.

TKK-ICS-D17 Savia, Eerika.

 Mutual Dependency-Based Modeling of Relevance in Co-Occurrence

 Data. 2010.

TKK-ICS-D18 Liitiäinen, Elia.

 Advances in the Theory of Nearest Neighbor Distributions. 2010.

TKK-ICS-D19 Lahti, Leo.

 Probabilistic Analysis of the Human Transcriptome with Side

 Information. 2010.

TKK-ICS-D20 Miche, Yoan.

 Developing Fast Machine Learning Techniques with Applications to

 Steganalysis Problems. 2010.

TKK-ICS-D21 Sorjamaa, Antti.

 Methodologies for Time Series Prediction and Missing Value

 Imputation. 2010.

TKK-ICS-D22 Schumacher, André

 Distributed Optimization Algorithms for Multihop Wireless Networks.

 2010.

Aalto-DD99/2011 Ojala, Markus

 Randomization Algorithms for Assessing the Significance of Data

 Mining Results. 2011.

Aalto-DD111/2011 Dubrovin, Jori

 Efficient Symbolic Model Checking of Concurrent Systems. 2011.

Aalto-DD118/2011 Hyvärinen, Antti

Grid Based Propositional Satisfiability Solving. 2011.

9HSTFMG*aeebgd+

ISBN 978-952-60-4416-3
ISBN 978-952-60-4417-0 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Information and Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 13

6
/2

011

In contrast to traditional cryptanalysis that
targets a mathematical abstraction of a
cryptographic primitive, side-channel
analysis is a cryptanalytic technique that
targets the implementation of said
primitive. Timing attacks exploit a side-
channel consisting of elapsed time
measurements: for example, the duration
required for a primitive to produce its
output given an arbitrary input. Cache-
timing attacks exploit the fact that the
varying latency of data load instructions is
essentially governed by the availability of
said data in the microprocessor's data cache.
This dissertation contains a number of
contributions related to side-channel
attacks, timing attacks, and cache-timing
attacks: from novel high-dimension side-
channel signal processing techniques to four
devised and implemented attacks against
OpenSSL, arguably the most ubiquitous
cryptographic software library in use today.

B
illy B

ob B
rum

ley
C

overt T
im

ing C
hannels, C

aching, and C
ryptography

A
alto

 U
n
ive

rsity

Department of Information and Computer Science

Covert Timing
Channels, Caching,
and Cryptography

Billy Bob Brumley

DOCTORAL
DISSERTATIONS

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 722
 412

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 722
 412

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 722
 412

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

