
Publication IV

Ramya Sri Kalyanaraman, Yu Xiao, Antti Ylä-Jääski. Network Prediction
for Energy-aware Transmission in Mobile Applications. International
Journal on Advances in Telecommunications, issn 1942-2601, Vol.3, no.1&
2, 72-82, September 2010.

c© 2010 Ramya Sri Kalyanaraman, Yu Xiao and Antti Ylä-Jääski.
Reprinted with permission.

97

Publication IV

Ramya Sri Kalyanaraman, Yu Xiao, Antti Ylä-Jääski. Network Prediction
for Energy-aware Transmission in Mobile Applications. International
Journal on Advances in Telecommunications, issn 1942-2601, Vol.3, no.1&
2, 72-82, September 2010.

c© 2010 Ramya Sri Kalyanaraman, Yu Xiao and Antti Ylä-Jääski.
Reprinted with permission.

97





Network Prediction for Energy-Aware Transmission in Mobile Applications 

Ramya Sri Kalyanaraman 
Helsinki Institute for Information Technology HIIT 

P.O. Box 15400, FI - 00076 Aalto  
Espoo, Finland 
ramya@hiit.fi 

 

Yu Xiao, Antti Ylä-Jääski 
Aalto University  

P.O. Box 15400, FI-00076 Aalto 
Espoo, Finland 

{yu.xiao, antti.yla-jaaski}@tkk.fi

 
Abstract— Network parameters such as signal-to-noise-ratio 
(SNR), throughput, and packet loss rate can be used for 
measuring the wireless network performance which highly 
depends on the wireless network conditions. Previous works on 
energy consumption have shown that the performance of 
wireless networks have impact on the energy efficiency of data 
transmission. Hence, it is potential to gain energy savings by 
adapting the data transmission to the changing network 
conditions. This adaptation requires accurate and energy-
efficient prediction of the network performance parameters. In 
this paper, we focus on the prediction of SNR and the 
prediction-based network adaptations for energy savings. 
Based on the SNR data sets collected from diverse real-life 
networks, we first evaluate three prediction algorithms, 
namely, Autoregressive Integrated Moving Average, Newton 
Forward Interpolation, and Markov Chain. We compare these 
three algorithms in terms of prediction accuracy and energy 
overhead. Later we propose a threshold-based adaptive policy 
which controls the data transmission based on the predicted 
SNR values. To evaluate the effectiveness of using network 
prediction in adaptation, we use a FTP as a case study and 
compare the network goodput and energy consumption under 
different network conditions. The experimental results show 
that the usage of adaptations improves the network goodput. 
Furthermore, the adaptations using prediction can save up to 
40% energy under specific network conditions when compared 
to the adaptation without prediction.  
 
Keywords-prediction; adaptation; SNR; power; context-
awareness; policy-based. 

I.  INTRODUCTION 
Mobile hand-held devices are more and more used for 

accessing rich multimedia content and various social media 
services. These new applications and services often call for 
more transmission capacity, processing power and high-
quality displays which increase the energy usage. The 
improved user experience might be compromised by the 
short battery lifetime of the device. Unfortunately the 
improvements in battery technology are rather slow that 
there is a strong motivation to invest in software techniques 
to save the energy usage of mobile devices. 

In network applications, major part of the energy is 
consumed by data transmission. The cost incurred during 
data transmission is not only dependent on the amount of 
data being transferred, but also the network goodput [2]. 
There is an indirect connection between the network goodput 
and other network performance parameters such as signal-to-
noise-ratio (SNR). For example, in the wireless networks 

with higher SNR, the network goodput is usually higher, and 
therefore the energy consumption per a unit of transmitted 
data is lower. Hence, it is possible to save energy by 
transferring data only under the conditions where SNR 
values are high.  

In this paper we focus on the prediction of SNR and its 
potential for improving the efficiency of an energy-aware 
network adaptation. With the help of the predicted future 
SNR values, it is possible to make a priori decisions as to 
when to schedule the data transmission over a wireless link. 
We propose a general solution of the prediction-based 
adaptive network transmission, including prediction 
algorithms of SNR and an adaptive policy. We evaluate our 
solution using FTP as a case study, while our solution is 
scalable to other network applications such as real-time 
streaming by taking the application-specific performance 
constraint into account in our adaptive policy. 

Although the prediction of network parameters [3, 4] and 
their use in context-aware mobile applications have been 
discussed in the literature [5, 6, 7, 8, 9, 10], using the 
predicted network parameters for energy efficiency has not 
been widely studied, especially the usage of SNR for 
adaptive network transmission. Our contributions include the 
following aspects. 

 
a) Comparing the performance of the prediction 

algorithms, namely, Auto Regressive Integrated 
Moving Average (ARIMA), Newton’s Forward 
Interpolation (NFI) and Markov chain (MC). We 
analyze the performance in terms of prediction 
accuracy, processing load and energy overhead. 

b) Proposing and evaluating a prediction-based power 
adaptation. The results show that the potential in energy 
saving under favorable network conditions can be up to 
40% with the help of the predicted SNR.  

 
This work is an extended version of our earlier 

publication [1]. Major portions of the experimental results 
have been updated, with enhancement in the offline training 
and online computation. In this work, we refine the 
evaluation by classifying the network conditions and 
analyzing the effectiveness of energy savings under different 
network conditions. In addition, the Linear Regression 
method used in [1] is replaced by MC, as MC shows better 
performance in short-term prediction.   

The remainder of this paper is structured as follows. 
Section 2 reviews the related work in network prediction and 



prediction-based adaptations. The prediction algorithms used 
in this study are introduced in Section 3, and the model 
fitting using these algorithms is described in Section 4.  
Section 5 describes a prediction-based adaptation. In 
addition, Section 5 includes the evaluation of the adaptation 
using FTP as a case study. In Section 6, we discuss the 
obtained experimental results. Finally, we present the 
concluding remarks and potential future work in Section 7.  

II. RELATED WORK 
Adaptive mobile applications are aware of and able to 

adapt to the changes in context such as the network signal 
strength, residual battery lifetime, and the user’s location. 
The key for providing such adaptive applications lies in the 
decision-making of adaptations based on the available 
context data and predefined policies.  

The context information includes the past, present, and 
future states of the contexts. Obviously, the past and present 
states of the contexts can be collected during runtime, 
whereas the future states are not available and have to be 
predicted based on the past and/or present states. The 
predicted states of the contexts are often used in context-
aware applications for enhancing the effectiveness of 
adaptations, such as improving the resource utility and 
system performance. In [3] prediction of long range wireless 
signal strength is presented, where prediction is utilized for 
efficient use of resources in dynamic route selection in multi-
hop networks.  

For network-aware adaptive applications, network 
conditions are the most important contexts and can be 
described using signal strength, SNR, goodput, bit error rate 
and other contexts that reflect the status of the network 
transmissions. The so-called Box-Jenkins approach is the 
most widely used technique for network prediction. The 
basic idea is to train models with different parameters to fit 
the pre-collected data sets. This approach is adopted by many 
linear and non-linear models, such as ARIMA [13] and 
Generalized Auto Regressive Conditional Heteroskedasticity 
(GARCH) [16]. In addition, Linear Regression [3], the MC 
[4], the Hidden Markov Model [7], and the Artificial Neural 
Network [17] have also been proposed for network 
prediction. In this paper, we apply ARIMA, MC and NFI 
[14] to the prediction of network SNR. 

As mentioned before, network conditions can be 
described using various parameters. Different prediction 
algorithms might fit different contexts better depending on 
the characteristics of the contexts and the algorithms 
themselves. Previous researchers have been trying to apply 
different prediction algorithms to the prediction of different 
contexts. For example, [4] and [20] predict the status of 
network connectivity and the future location of mobile 
device using the MC, [3] utilized a linear regression 
approach for long range signal strength prediction, and [21] 
used the Hidden Markov Model to predict the number of 
wireless devices connected to an access point at a given time. 
Link prediction and path analysis using Markov chains in the 
World Wide Web are presented in [22]. 

Different prediction techniques are compared in terms of 
k-step-ahead predictability and performance overhead. For 

example, one-step-ahead predictability can be measured by 
Mean Square Error (MSE), Normal Mean Square Error 
(NMSE)[3], Root Mean Square Error (RMSE) [11] and 
Signal-to-Error Ratio (SER). The performance overhead 
includes the computational cost such as CPU cycles and 
memory access counts, and also the energy consumption 
caused by the prediction itself.  

In most of the research work focusing on prediction for 
context-aware and adaptive applications, the motivation lies 
in increasing and analyzing the prediction accuracy of 
various prediction methods. In [11] various prediction 
methods such as Neural networks and Bayesian networks, 
state and Markov predictors are modeled for performing the 
next location prediction using the sequences of previously 
visited locations. In this paper, prediction accuracy has been 
considered as the main indicator for benchmarking the 
performance of various prediction techniques. To the best of 
our knowledge, our paper is the first one presenting the 
energy overhead of different prediction algorithms.  

Adaptive applications purely based on policies consist of 
the condition and action pairs for different contexts. Here the 
possibility of anticipating the future trend of the context is 
not utilized. In adaptive applications with the support of 
prediction based adaptation, the system is given a chance to 
know the future trend of the context, and act accordingly. 

Most of the existing adaptive network applications make 
adaptive decisions according to predefined policies. 
Predicted network contexts can be used as conditions of 
adaptive policies. In [18], the feasibility of implementing 
policy-based network adaptations in middleware architecture 
is presented. However, prediction-based network adaptations 
emphasizing possible energy conservation have not been 
widely studied. In this paper, we propose an adaptive file 
download in WLAN based on the prediction of network 
SNR, and compare the efficiency of prediction and 
adaptations among three different prediction techniques.  

III. NETWORK PREDICTION ALGORITHMS 
Dynamic adaptation to the environment and proactive 

behavior are key requirements for mobile adaptive 
applications. Prediction algorithms play a major role in 
providing a proactive nature for such applications [5]. In this 
paper we focus on predicting the network SNR that will be 
used for adaptive network applications.  

In our approach, the nature of input data we observe to 
make the network prediction reflects the time series pattern 
[11]. We choose ARIMA [12], the most general model for 
forecasting a time series pattern. Selecting NFI [14] allows 
us to fit non-linear data over the curve. In addition, we 
experiment with MC representing a discrete time stochastic 
process. While evaluating the best suiting algorithm for our 
application, a trade-off is made between prediction accuracy, 
processing load and energy consumption, instead of 
compromising between the highest accuracy and the lowest 
energy consumption alone. 

 



A. Auto Regressive Integrate Moving Average(ARIMA) 
Classical linear time series models are based on the idea 

that the current value of the series can be explained as a 
function of the past values of the series and some other 
independent variables. ARIMA is one of the most famous 
linear predictive models used for network prediction. It is an 
integration of three models, namely, an autoregressive model 
of order p, a moving average model of order q, and a 
differencing model of order d. According to the definition in 
[18], a process, , is said to be ARIMA(p, d, q) if  
 

 ,                 (1) 
 
where B is a backward shift operator,  is an 
autoregressive operator, is a moving average operator, 
and  is assumed to be a Gaussian white noise. The three 
operators can be expressed as below.  
 

,                           (2) 
     (3) 
    (4) 

 
where  and  are constants. 
     Let  be the predicted SNR value at time t, and Y(t-i) 
be the observed SNR value at time . The time series 
of SNR is considered to be an ARIMA (p, d, q) model if  
 

 

 ,                           (5)   
 
where  is the residual of prediction at time , 
and  is the intercept.  
     The values of p, d, q are identified based on the analysis 
of Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF), while the estimation of 
parameters , ,  are based on the least squares method 
which aims at minimizing the MSE of residuals as shown in 
Equation (6). The procedure of model fitting will be detailed 
in Section 4. 

                 (6) 

B.  Newton’s Forward Interpolation(NFI) 
The observation at time x in a time series is defined as a 

function , and the values of x are tabulated at interval h 
as shown in Equation (4).  
 

                              (7) 
 
where the first value of x is , and i is the number of 
intervals between x and . When only a few discrete values 
of  are known, NFI aims at finding the 
general form of  based on known values by using the 
finite difference formulas.   

Let , and the finite forward 
difference of a function  is defined by  
Higher orders, such as the  order forward 
difference , can be obtained by repeating the operations 
of the forward difference operator j times. For example,  
 

 
                        (8) 

 
       NFI model fits the observation at time x with an ith 
degree polynomial as Equation (9).  
 

     (9) 
 
When only the past i SNR observations are known, up to (i-
1)th order forward difference can be developed. The 
prediction of SNR at time x, corresponding to the (i+1)th 
observation, is defined as a function g(x) in Equation(10).    
 

           (10) 
 
Compared to f(x), the error term e(x) is approximated 
as Equation (11). 

            (11) 
 

Different from ARIMA, NFI could predict future values 
online directly based on past observations without offline 
training. Since the prediction accuracy of NFI depends on 
the size of N, the size of N can be selected by applying the 
least square method to the training data sets as used in 
ARIMA model fitting. The offline training and online 
implementation are described in Section 4.                                

C. Markov Chain(MC) 
MC is a discrete time stochastic process with the 

Markov property, where given the present state, the future 
and past states are independent. To determine the future 
state from the present state, a probabilistic approach is used. 
A state space is defined where all the possible states of the 
system are represented. The change of state from one to the 
other is called state transition. Let us consider a discrete 
time process, Xn: n>0 with discrete state spaces {i, j}. The 
transition probability from i to j is computed as given in 
Equation (12). 

           (12) 
 



The state transition involved in our model, and the online 
prediction of the state transition is explained in Section 4. 

IV. NETWORK PREDICTION 
Prediction of network related information adds value to 

ubiquitous applications, as the need for dynamic adaptation 
in a fluctuating network environment becomes a major 
requirement in such cases. In addition to network traffic and 
mobility prediction, predicting the value of SNR itself could 
provide a timely hint about possible changes in network 
conditions, and thus the application can prepare itself for 
adaptation.  

In this section, we present the steps involved in offline 
training and online computation of prediction algorithms. 
The workflow is described in Figure 1. To perform offline 
training we carry out data collection. The spots chosen for 
data collection involve physical interferences and 
disturbances. Offline training enables us to estimate the 
parameters required for online computation, and the 
performance of prediction algorithms can also be analyzed 
using offline training. In online computation, the prediction 
algorithms are applied during runtime and the outcomes are 
matched with the adaptation policy.  

A. Data Collection 
The offline training used in our methodology 

significantly depends on the data collection. The data sets 
were gathered considering the following factors. 

 
a) The user walked around a defined path, where the path 

involved different types of physical obstacles, 
interferences and noise. 

b) A total of 12 data traces were collected at different 
times during three days, where the collection of each 
set lasted for 17 minutes.  

c) The user walked around at a normal walking speed, and 
the signal strength and the noise level were recorded for 
every 100 millisecond. 

 
We performed the data collection in the Computer 

Science department building of the university. Figure 2 
shows the route map of the data collection. The defined path 
covered the first and second floors of the Computer Science 
department, which includes the corridor of the Data 
Communications Software lab, department library, café and 
the stairs to the second floor. To cover different network 
environments, we chose the path to include different types of 
physical obstacles, and interference. For example, the 
department corridor consists of physical obstacles such as 
wall structures and glass doors, and the library has metallic 
book shelves, and wooden structures. The open area in the 
cafe remains as a place with possible interferences due to 
multiple access points, and the significant presence of 
Bluetooth enabled devices.  

B. Data Analysis and Pre-processing 
By observing the collected data sets, we noticed that the 

SNR values remain unchanged for several milliseconds as 

shown in Figure 3. We therefore re-sampled the collected 
data sets at 1Hz, and used the new data sets for further 
processing. We chose 80% of the samples as the training 
data set, and the others for testing.  

Data smoothing is often used for figuring out future 
trends, such as the trend in marketing size or stock prices. 
However, for short-term prediction like SNR prediction in 
our case, it remained an interesting question whether data 
smoothing still helped to improve the prediction accuracy. 
We therefore applied data smoothing over the training data 
set, and compared the prediction accuracy between the 
models using a smoothed data set and the original training 
data set.  

 
 
 

 
 

Figure 1: Workflow of offline training and online 
computation 

 
 

 
 

Figure 2: Route Map for Data Collection 

Start

Data Collection

Estimate 
parameters 

required for online 
computation

Performance 
Analysis of 
prediction 
algorithms

Apply Prediction 
in adaptive 
application

Compute power 
consumption  
with/without 

prediction

Offline Training

Online ComputationPerform online 
SNR prediction 

D
C

S 
R

es
ea

rc
h 

G
ro

up
 C

o
rr

id
o

r

stairs

stairs

Door

Door

Library

Cafe

Hall



 
Figure 3: Samples of SNR values collected at 10Hz. 

 

 
Figure 4: Residuals of smoothing with window size 20. 

Table 1: Comparison of prediction accuracy among 
different models. 

 MSE NMSE SER 
ARIMA(0, 1,1) 97.58624 0.425374 7.456893 
ARIMA(1, 0,1) 89.26294 0.389093 7.844067 
ARIMA(2, 1,0) 174.4522 0.760430 4.934015 
NFI(N=3) 692.8996 3.015758 -1.0487 
NFI(N=4, 5) 99.3080 0.432879 7.380937 

 
To perform data smoothing, we apply the simple 

Moving Average algorithm [23] which is used for time 
series data set smoothing in the field of statistics. According 
to the moving average algorithm, from the collected N data 
points, we perform averaging for every W data set, where W 
is often termed as the window size. The general expression 
for the moving average is given as in Equation (13). 

                     (13) 
 

In general as the window size increases the trend of the 
smoothed data set becomes clearer, but with a risk of a shift 
in the function. To choose an optimal window size we 
performed smoothing with a varied window size, and 
selected the best one with the minimum MSE of the 
residuals. The residuals are the differences between the 
original values and smoothed values. According to our 
experimental results, smoothing with a window size of 20 
has the minimum MSE which is 9.5 as shown in Figure 4. 

C. Offline training/Model Fitting 
1) ARIMA 
ARIMA offline training is to fit an ARIMA(p, d, q) model 

to the collected data sets. The outputs of the model fitting 
includes the orders of autoregressive, differencing, and 
moving average, p, d, q, and the estimated parameter values 
of the autoregressive operator, the moving average operator, 
and the intercept,  , , , as defined in Section 3.1. The 
model fitting includes the following five basic steps [18].  

a) Data transform. We plotted the data and observed 
the possible data transform. As introduced in Section 4.1, 
we applied smoothing to the raw data, and trained the 
models using both data sets and comparing the results.  

b) Model identification. The orders of autoregressive, 
differencing and moving average are identified by observing 
the ACF and PACF of the residuals. For orginal data sets, 
both ARIMA(0, 1, 1) and ARIMA(1, 0, 1) fit the data well 
and the differences in terms of the ACF and PACF of the 
residuals are negligible. Hence we trained both models and 
chose the better one after diagnostics. Similarly, for 
smoothed data sets with window size 20, ARIMA(2, 1, 0) 
fits better than other models for smoothed data sets. 

c) Parameter estimation.We estimated the parameters 
of the expected models which obtain the minimum MSE.  

d) Diagnostics.We applied the models obtained from 
the last step to the testing data sets and compared the 
accuracy among the models. First, we calculated the MSE, 
NMSE, and SER for each model. NMSE is a function of the 
MSE normalized by the variance of the actual data as 
defined in Equation (17). 

 
 .                  (17) 

 
SER is defined as in Equation (18).  
 

           (18) 
 
The smaller the MSE and NMSE are, the higher the 
accuracy is. Conversely, the bigger the SER is, the higher 
the accuracy is. The results of MSE, NMSE and SER for the 
three ARIMA models are listed in Table 1.  

e) Model Selection. According to Table 1, ARIMA(2, 
1, 0), with training based on the smoothed data set, showed 
the lowest accuracy compared to the models obtained from 
original data sets. ARIMA(1, 0, 1) fits the testing data sets 
better than others due to the smallest MSE and NMSE, as 
well as the highest SER. Hence we chose ARIMA(1, 0, 1) 
which is shown in Equation (14) for online SNR prediction.  

 

   (14) 

0

5

10

15

20

25

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

SN
R(

dB
)

Time(ms)

0

20

40

60

80

100

1

50
1

10
01

15
01

20
01

25
01

30
01

35
01

40
01

45
01

50
01

55
01

60
01

65
01

70
01

75
01

80
01

85
01

Re
si

du
al

s(
dB

)

Time(second)



 
Figure 5: Transition probability between States, S1 and S2.  

 
The implementation and online performance evaluation is 
presented in Section 4.3.  

2) NFI 
The accuracy of NFI prediction depends on the order of 

the forward difference N as explained in Section 3.3. We 
chose the size of N based on the least square method as used 
for ARIMA model fitting. As shown in Table 1, we 
compared the MSE when N is set to 3, 4, and 5 respectively. 
When N is 3, the MSE is much bigger than others, while the 
same predicted values and also the same MSE, NMSE, and 
SER values are obtained when either N= 4 or 5. Hence, we 
selected the order of the forward difference as 4 for online 
prediction. 

3) Markov Chain 
We designed a two-state Markov Chain model as shown 

in Figure 5, where S1 and S2 are the two possible states. 
Here S1 represents the SNR value less than or equal to the 
threshold, and S2 corresponds to a SNR greater than the 
threshold. Either S1 or S2 can represent the initial state 
depending upon the value of the SNR at the start of 
application. 

There are four possible state transitions involved in the 
state machine, with four different transition probabilities. 
Let St and St+1 represent the state of SNR at time t, and t+1. 
The four probable state transitions are as given below: 
 

SNR low, low (t) = Pr {St+1 = low | St = low}, 
SNR low, high (t) = Pr {St+1 = low | St = high}, 
SNR high, high (t) = Pr {St+1 = high | St = high}, 
SNR high, low (t) = Pr {St+1 = high | St = low}. 

 
The values of the four probabilities are obtained from 

the training of the data sets. During the training, we set a 
threshold for discreetizing the samples into low and high 
states to 19, and calculated the probability distribution. The 
values of the four probabilities are shown in Figure 5. The 
precision of predicted outcomes using the Markov chain is 
0.8191 as calculated according to Equation (19). 

 
       (19)       

 D. Online prediction 
We present the online SNR prediction with the same 

monitoring and prediction frequencies in this Section, and 
set the initial values of the frequencies to 1Hz.  

1) ARIMA(1, 0, 1) 
The monitored and predicted SNR values are recorded in 

arrays s[] and p[] respectively. The pseudo code of ARIMA 
(1, 0, 1) online prediction is described as below.  
 

//initialize the parameters of ARIMA(1,0,1); 
Set ar=0.7997, ma=-0.0052, intercept=22.1650; 

      Initialize s[], p[] to 0;  
i=0; 
Repeat every 1 second{ 
Monitor SNR and write into s[i]; 

 
if (i>0){ 

 err = s[i-1]-p[i-1]; 
 p[i]=intercept + ar*(s[i-1]-intercept) 

+ma*err; 
      } 

  
2) NFI 

Set the order of forward difference to be 4. The 
monitored and predicted SNR values are recorded in array 
s[] and p[] respectively. The 1st, 2nd, and 3rd order of forward 
differences are calculated during runtime, and are written 
into arrays delta[], delta2[], and delta3[] respectively. The 
pseudo code of the online NFI prediction is described as 
below. 
 

Initialize delta[], delta2[],delta3[],p[], s[] to 0; 
i=0; 
Repeat every 1 second{ 
 
Monitor SNR and write into s[i]; 
 
If (i>0) 

delta[i]=s[i]-s[i-1]; 
If (i>1) 

delta2[i]=delta[i]-delta[i-1]; 
If (i>2) 

delta3[i]=delta2[i]-delta2[i-1]; 
 
If (i>3) 
         p[i]=s[i-4]+3*delta[i-3]+3*delta2[i-2]+delta3[i-
1]; 
 

i++; 
} 

 
3) Markov Chain 
The Markov chain SNR predictor computes the probable 

next state (St+1), given the current state (St) of SNR, 
according to the probability of different transitions obtained  

S1 S2

0.983

0.0220

0.017 0.978



Table 2: Comparison of performance and power overhead 
among different models. 

 ARIMA NFI MC 
CPU_CYCLES:100000 445 432 623 
DCACHE_ACCESS_ALL:10
0000 

31 25 73 

Power(W) 0.365 0.366 0.474 
 
 
 

Table 3. Classifications of the network conditions.  
1 SNR mean is smaller than 15; SNR threshold is set to 15. 
2 SNR mean is between 15 and 20; SNR threshold is set to 15 

and 20. 
3 SNR mean is bigger than 20, and standard deviation of SNR 

is smaller than 5. SNR threshold is set to 20. 
4 SNR mean is bigger than 20, and standard deviation of SNR 

is not smaller than 5. SNR threshold is set to 15 and 20. 
 

from offline training. The pseudo code for predicting the 
transition probability of the future state of SNR is given as 
follows: 
 

//Monitor SNR and discreetize the received value.  
Get current_SNR; 
 
if (current_SNR <= Threshold) 
 Current_state = S1; 
else current_state = S2; 

 
//Determine next state. SNRt[]is the transition matrix 
obtained from offline training. SNRt[0] and SNRt[1] 
represents the probability of the state transition from S1 to 
S2 and vice versa .   
Generate a random number, X. 
if (current_state == S1) 
{  

if (X   SNRt[0])   
  next_state = S1; 
 else next_state = S2; 
} 
else 
{ 
 if (X   SNRt[1] 
  next_state = S2; 
 else next_state = S1; 
} 

D. Model Evaluation 
We measured the overhead of online SNR prediction in 

terms of CPU cycle count, data cache access rate and power 
consumption. We ran oprofile [26] on the Nokia N810 while 
running the online prediction algorithms for 1 minute, and 
monitored the events, namely, CPU_CYCLES and 
DCACHE_ACCESS_ALL. The CPU cycle count and data 
cache access counts caused by the SNR prediction are listed 
in Table 2. 

We used Nokia power measurement software to measure 
the power consumption during runtime. During 
measurements the display was turned off and the WLAN 
interface was turned on. The average power is 0.361 W 
when the system is idle and the power saving mode of 
WLAN is turned on, and 0.362 W when SNR monitoring is 
running at 1Hz at the same time.  We measured the average 
power consumption when different online SNR predictors 

were running, and the comparisons are listed in Table 2.The 
energy overhead is calculated as the difference between the 
power consumption when the prediction algorithms are 
running and the power consumption of the device when it is 
in IDLE state. The power overhead caused by online 
prediction is between 0.004W and 0.113W depending on the 
prediction algorithm used. 

V. PREDICTION-BASED NETWORK ADAPTATIONS 
Wireless transmission is considered to cost much more 

energy than local processing on mobile devices [15], and the 
energy consumed by wireless transmission varies with the 
performance of the wireless networks. The performance is 
highly dependent on the network conditions. Generally, 
wireless transmission under better network conditions is 
more energy-efficient. Hence, adaptive mobile applications 
are expected to adapt wireless transmission that the 
transmission can be conducted under relatively good network 
conditions in order to save energy. In this section, we 
describe an application performing power adaptation using 
network prediction. 

A. Overview 
Based on the comparison and analysis of prediction 

algorithms made in Section 4 we are able to distinguish 
between the pros and cons of using different prediction 
methods, especially in terms of prediction accuracy, 
performance and energy overhead. After performing the 
offline training, and the analysis of different prediction 
methods we continue forward to the second phase of 
network prediction, online computation. In this section we 
present a real time user scenario that demonstrates the need 
for adaptation in ubiquitous applications. Realizing the 
requirements for network adaptation from the presented 
scenario we apply network prediction in the application.  

Let us consider a practical scenario showcasing the need 
for prediction enabled adaptive applications.  

 
Alice’s mobile phone is connected to a WLAN network 

and she has been in the process of downloading a file. The 
network quality associated with the device fluctuates 
between poor to strong.  The application with the help of 
prediction foresees the status of network, and hence chooses 
an adaptive action accordingly in order to gain the optimal 
power saving. The adaptive action can be pausing, stopping, 
or continuing the file download. 



 
Figure 6: Flow chart representing online adaptation 

B. Adaptation Policy 
Adaptation policy defines the actions to be performed 

based on the changing context data. Adaptation is triggered 
in mobile applications as the outcome of the prediction is 
matched with a simple predefined adaptation policy. The 
adaptation policy can be defined by either the application 
developer or end-user. In the case of the end-user, policies 
can be in the form of user preferences for adaptive 
applications. The priority and conflict management between 
prediction results and current network condition however are 
outside the scope of this paper.  

In the file download scenario, we designed an adaptive 
policy which enables the application to pause or continue 
the file download depending on the predicted future SNR. 
The basic idea is to transfer the data only when the SNR is 
above a threshold. We classify the network condition into 
four types using the mean and standard deviation of SNR as 
described in Table 3. The threshold value is set depending 
on the type of the network condition. It is described as 
below. 

 
if (predicted_SNR < threshold) && (current_state == 
downloading)  
  Pause download; 
else if ((predicted_SNR  threshold) && (current_state == 
hold)) 
  Continue download; 
else  
  // Continue the same action state.  

Continue download | Pause download; 
 
While applying the above mentioned adaptive policy for 

the applications such as real-time streaming which is not 
delay-tolerant, the settings of the threshold value must take 
the tolerant delay into account. For example, the delay 
caused by the pause operation can be predicted based on the 
predicted SNR value. Only when the delay is tolerable, the 
download can be paused. The prediction based adaptation 
continues till the file download is completed. Figure 6 
describes the online adaptation performed in the file 
download scenario using the online prediction and defined 

policy. The implementation for online computation of the 
prediction forecast is combined with the adaptation code. 
Thus the prediction outcome is directly used for choosing the 
adaptation policy, and executes an adaptive operation in the 
file download application.  

C. Experimental results 
The prediction-based power adaptation is evaluated in 

terms of energy consumption, network goodput, and 
prediction accuracy, under different network conditions. For 
different network conditions, we test the adaptations with an 
SNR threshold of 15 and/or 20 with an exception for the MC 
method. For the MC method we set the threshold to be 19, as 
the offline training and online computation has to follow the 
same threshold value. Hence, our definitions of test cases 
include the network conditions in terms of the mean and 
standard deviation of SNR values, SNR threshold value, and 
possible network goodput range. Though the MC method 
follows a different threshold, the measurements obtained 
using the MC as the prediction method can still be 
accommodated within the test cases described. Based on the 
analysis of our experimental network conditions, we divide 
our test cases into four scenarios as listed in Table 3.  

The adaptation code is implemented using C language. 
The power measurements for the adaptive file download 
with and without prediction were carried out on a public 
802.11g network in our campus with the power saving mode 
on. A TCP client wget (http://www.gnu.org/software/wget/) 
running on the N810 downloaded a MySQL software 
package from a remote file server [26]. The file name is 
MySQL-shared-compat-5.1.42-0.rhel3.x86_64.rpm with a 
size of 5072982 Bytes. We set both the prediction and 
monitoring frequency to 1Hz and performed one-step-ahead 
prediction. Adaptation is performed for each prediction 
output, which means the adaptation policy is executed every 
one second. 

We measured the power consumption in different 
scenarios without adaptation, and used the values as base line 
for comparison. The power measurement results are listed in 
Table 4. Since the energy consumption depends on the 
network goodput, and the network goodput can vary even in 
the same scenario, we list multiple samples in each scenario 
with possible network goodput. The testing results of each 
scenario are listed in Table 5. 

The download duration is the duration from the 
beginning to the ending of the file download, while the total 
energy includes the energy consumption of the mobile 
device during the download duration. Pause duration is the 
total duration when the file download is paused due to power 
adaptation, and the actual download duration is the download 
duration deducted by the pause duration. We calculate the 
network goodput as the downloaded file size divided by the 
actual download duration. The prediction accuracy is the 
ratio of the number of correctly predicted samples to the total 
number of predicted samples. For example, if the predicted 
SNR is higher than the SNR threshold and the real SNR is 
lower than the SNR threshold, or if the predicted SNR is 
lower than the SNR threshold while the real one is higher, it  

Start

Monitor SNR

Compute 
predicted SNR

if 
((predicted_

SNR) < 
Threshold)) 

Pause 
Download 

YES

NO

YES

if ((Download 
== Completed 

) 

Continue 
Download 

Stop

if 
(current_stat

e == 
Downloading) 

YES

NO

NO

if 
((current_
state == 
HOLD ) 

YES

NO



Table 4: Baseline of energy consumption in different network scenarios. 
Type SNR mean SNR standard deviation Energy(J) Network Goodput (KB/s) 
1 14.245 5.806 92.075 54.590 
1 11.391 5.454 118.945 36.765 
2 19.9 3.872 52.903 158.521 
2 19.346 6.425 43.943 178.526 
2 15.660 5.010 45.918 165.136 
3 24.273 4.548 38.990 225.196 
3 26.690 4.635 55.213 147.878 
3 26.952 3.290 63.745 120.828 
4 22.325 9.024 62.775 60.047 
4 21.900 8.110 45.813 176.925 
4 24.204 5.500 194.58 18.264 

 
Table 5: Experimental results for test cases under different network conditions. 

Type  SNR mean SNR standard 
Deviation 

Download 
duration(s) 

Pause 
duration(s) 

Network 
goodput 
(KB/s) 

Energy(J) Accuracy 
(%) 

Model Threshold 

1 13.450 4.625 78.751 44 142.559 68.463 85.00 ARIMA 15 
1 13.310 6.468 101.750 37 76.511 55.200 82.76 ARIMA 15 
1 14.926 7.387 54.001 25 170.825 59.296 77.78 NFI 15 
1 12.615 6.446 64.748 38 185.213 60.523 87.02 NFI 15 
2 17.567 6.026 40.499 12 173.834 49.098 78.38 ARIMA 15 
2 16.514 8.862 35.249 15 244.658 45.47 83.78 NFI 15 
2 17.283 4.662 133.999 90 115.298 108.733 92.54 ARIMA 20 
2 18.113 5.106 81.999 53 170.836 59.590 86.25 NFI 20 
2 18.901 4.867 60.000 31 170.800 59.718 78.43 MC 19 
3 27.864 4.560 22.001 1 235.898 39.030 90.91 ARIMA 20 
3 25.519 2.513 22.000 0 225.186 39.970 100 NFI 20 
3 24.296 3.831 30.501 4 190.538 46.87 74.07 MC 19 
4 34.206 7.014 32.251 0 153.61 38.213 100 ARIMA 15 
4 30.842 8.772 37.999 3 141.549 44.068 89.47 NFI 15 
4 28.926 11.198 30.251 9 233.122 38.423 96.43 ARIMA 20 
4 26.758 6.083 30.748 3 178.538 47.648 100 NFI 20 
 

Table 6: Experimental results with low network goodput. 
SNR mean SNR standard 

deviation 
Download 
duration(s) 

Pause 
duration(s) 

Network 
goodput(KB/s) 

Energy(J) Accuracy 
(%) 

Model Threshold 

28.436 5.543 276.250 1 17.998 189.645 98.91 ARIMA 15 
21.089 8.971 216.509 90 40.1 137.753 87.68 ARIMA 20 
24.5 7.104 195 50 34.165 137.617 70.97 MC 19 
 
is considered to be a wrongly predicted sample. 

In the network scenarios of Type 1, SNR fluctuates 
between 0 and 20 with the mean less than 15. When the 
threshold is set to 15, the file download is paused when the 
predicted values are lower than 15. According to Table 5, the 
pause durations take around 36% to 59% of the download 
duration, whereas the network goodput increase more than 
100% compared to the base line. The energy consumption 
with adaptation is reduced by 40% on average. 

For Type 2, when the threshold is set to 20, the pause 
duration becomes very big. The overhead caused by the 
adaptation includes the energy overhead of prediction itself 
and the energy cost during the pause duration. The total 
overhead is bigger than the energy savings caused by the 
adaptations. Hence, when the SNR is relatively stable with   

 
the standard deviation less than 5 and the mean value bigger 
than 15, it is not energy-efficient to adopt adaptation with a 
threshold of 20 even though the prediction accuracy is 
relatively high. When the threshold is set to 15, the download 
duration decreases and thus leads to energy savings when 
compared with the corresponding Type 2 scenario.  

For Type 3, the SNR values are high and the standard 
deviation is very small. The pause duration is very short, and 
the impact on network goodput is negligible.  The energy 
consumption depends on the network goodput, and the 
energy overhead is caused by the prediction algorithm, 
which is around 0.1W. For type 4, when the threshold is set 
to 15, it leads to energy savings, whereas when the threshold 
is set to 20 the energy saving is comparatively less.  



Due to the workload of the file server and network 
overload, the network goodput sometimes becomes much 
smaller under the same SNR conditions. As shown in Table 
6, for Type 4, when network goodput is relatively lower, the 
energy consumption is more than 190J. Compared to the 
similar case in Table 4, the adaptation can help save energy 
especially when the threshold is set to 20. 

VI. DISCUSSION 
It is well-known that network transmission at a higher 

data rate results in less energy consumption. Our adaptation 
aims at adapting the network transmission to network 
conditions in terms of SNR values by controlling the transfer 
operations depending on the one-step-ahead SNR prediction. 
In our adaptation based on the prediction method, if the 
predicted SNR value is lower than a predefined threshold, 
transmission will be paused or else continued. Through such 
adaptation, network goodput could be increased or 
maintained since the download speed is relatively higher 
under better network conditions in terms of higher SNR 
values. In addition, it is possible to reduce some unnecessary 
retransmission causing high loss rate in a noisy network 
environment.  

The effectiveness of our adaptation depends on the trade-
off between the energy overhead caused by the SNR 
prediction and the energy savings made by increased 
network goodput.  The former one is considered to be stable 
and independent of network conditions, whereas the latter 
one varies with network scenarios. To figure out the impact 
from different network scenarios on the effectiveness of our 
adaptation, we divide the experimental network scenarios 
into 4 types based on the mean and standard deviation of 
SNR values. The type classification is mainly due to the fact 
that in real time network measurements it is hard to get a 
stable SNR value.  

According to our evaluation results presented in Section 
5, when SNR values are generally low as in Type 1, the 
increase in network goodput is significant, and hence the 
adaptation is profitable. In the scenarios where the SNR 
values fluctuate heavily even though the mean of SNR is 
high, such as Type 4, our adaptation also could save energy 
to a certain extent. If the network conditions are relatively 
stable, for example, in Type 2 and 3, when the standard 
deviation is less than 5, there is not much advantage for the 
threshold-based adaptation. Energy consumption could not 
be saved, but is wasted due to the energy overhead caused by 
network adaptations. In addition to the SNR range, the 
selection of threshold has an impact on the effectiveness of 
our adaptation. For example, in the network conditions of 
Type 2, when the threshold is set to 20, the pause duration is 
close to 0. However, when the threshold is changed to 15, the 
adaptation becomes more energy efficient. Hence, in 
summary, threshold-based adaptation is energy-efficient 
when network conditions fluctuate in a big range or remain 
in a relatively bad state. In other words, when SNR values 
are generally low, such as lower than 15, or when the 
standard deviation of SNR values is big, network adaptations 
help save energy up to 40%. 

In this paper, we compare the prediction accuracy of 
different prediction algorithms during offline and online 
experiments. Our experimental results show that all the three 
algorithms could attain reasonable high prediction accuracy, 
and that the energy savings depend more on network 
conditions than prediction accuracy in our case. In the case 
that the predicted values are smaller or higher than the real 
values, it does not always follow that there is an impact on 
the results of adaptations. For example, when the wrong 
prediction causes an unnecessary pause of the download, or 
does not pause the download when the SNR value is very 
low, it might increase the download duration and waste 
energy. When both predicted and real values are bigger or 
smaller than the threshold, it does not change the adaptive 
operation.  

Among the three prediction algorithms, ARIMA has 
relatively higher prediction accuracy, and NFI performs 
better than MC. However, ARIMA requires offline learning.  
Hence in a new network environment which has not been 
trained, the accuracy might be lower and the energy savings 
might be reduced too. To choose the prediction algorithm to 
use for prediction, it would be better to apply ARIMA if the 
user’s moving paths could be predefined. For the application 
scenarios where the network conditions are totally new to 
mobile devices, it is wiser to choose NFI which can adjust 
itself to the new network scenarios quickly.  

VII. CONCLUSION AND FUTURE WORK 
To summarize our contribution in this paper, we have 

explored the possibility of applying network predictions to 
network-based power adaptation, and implemented three 
prediction algorithms, ARIMA, NFI, and the MC in adaptive 
file transfer on mobile devices. We compared the 
effectiveness of the algorithms while taking the performance 
of prediction like prediction accuracy and performance 
overhead into account. The experiments were conducted in a 
number of settings in public WLANs.  

From the lessons learned through prototype level 
implementation and experimental evaluation, we have 
figured out the future roadmap for our work that helps to 
improve the prediction and adaptation techniques used. The 
temporal difference (TD) method which is often used for 
reinforcement learning can be a potential topic to be 
investigated for enhancing our prediction techniques. The 
advantage of utilizing the TD method is the higher prediction 
accuracy, and it requires less memory for computation [24]. 
In addition, TD is applicable for multi-step prediction [25]. 
As indicated in Section VI the threshold based adaptation 
could lead to more energy savings, and we will explore the 
possibility of using dynamic threshold values. The dynamic 
threshold especially could be helpful in situations where the 
network behavior fluctuates. 

ACKNOWLEDGMENTS 
This work was supported by TEKES as part of the Future 
Internet program of TIVIT (Finnish Strategic Centre for 
Science, Technology, and Innovation in the Field of ICT). 
We also extend our thanks to Chengyu Liu for 



implementing the prediction algorithms, and 
Gopalacharyulu, PV for providing valuable suggestions 
while choosing prediction algorithms. 

REFERENCES 
[1] R. Sri Kalyanamaran, Y. Xiao, and A. Ylä-Jääski, “Network 

Prediction for Adaptive Mobile Applications”, UBICOMM’09: In 
Proceedings of the International Conference on Mobile Ubiquitous 
Computing, Systems, Services, and Technologies,  pp. 141 – 146, 
Malta, October  2009. 

[2] Y. Xiao, P. Savolainen, A. Karpanen, M. Siekkinen, A. Ylä-Jääski,   
“Practical power modeling of data transmission over 802.11g for 
wireless applications”, e-Energy’10: In Proceedings of the 1st 
International Conference on Energy-efficient Computing and 
Networking,  pp.  75 – 84, Passau, Germany, April, 2010. 

[3] X. Long and B. Sikdar, “A Real-time Algorithm for Long Range 
Signal Strength Prediction in Wireless Networks”, WCNC 2008: In 
proceedings of IEEE Wireless Communications and Networking 
Conference, pp. 1120 – 1125, 2008. 

[4] Y. Vanrompay, P. Rigole, and Y. Berbers, “Predicting network 
connectivity for context-aware pervasive systems with localized 
network availability”, WoSSIoT'07: In Proceedings of 1st 
International Workshop on System Support for the Internet of Things, 
Lisbon, Portugal, March, 2007. 

[5] R. Mayrhofer, “An Architecture for Context Prediction”, In Advances 
in Pervasive Computing, Volume 176, Austrian Computer Society 
(OCG), pp. 65 – 72, 2004.  

[6] C.Anagnostopoulos, P. Mpougiouris, and S. Hadjiefthymiades, 
“Prediction intelligence in context-aware applications”, In 
Proceedings of the 6th international conference on Mobile data 
management, MDM’05, pp. 137 – 141, 2005. 

[7] Y. Wen, R. Wolski, and C. Krintz, “Online Prediction of Battery 
Lifetime for Embedded and Mobile Devices”, In Proceedings of 3rd 
International Workshop on Power-Aware Computer Systems,  pp. 57 
– 72, December, 2003. 

[8] A. Gupta and P. Mohapatra, “Power Consumption and Conservation 
in WiFi Based Phones: A Measurement-Based Study”, SECON’07: 
In Proceedings of the 4th Annual IEEE Communications Society 
Conference on Sensor, Mesh, and Ad Hoc Communications and 
Networks, pp. 122 – 131, June, 2007. 

[9] M . Vukovic, I. Lovrek, and D. Jevtic, “Predicting user movement for 
advanced location-aware services”, SoftCom: In Proceedings of 15th 
International Conference on Software, Telecommunications, and 
Computer Networks,  pp. 1 – 5, 2007. 

[10] D. Narayanan, J. Flinn, and M. Satyanarayanan, “Using History to 
Improve Mobile Application Adaptation”, WMCSA '00: In 
Proceedings of the Third IEEE Workshop on Mobile Computing 
Systems and Applications, pp. 31 – 40, 2000.  

[11] J. Petzold, F. Bagci, W. Trumler, and T. Ungerer, “Next Location 
Prediction Within a Smart Office Building”, ECHISE’05: In 

proceedings of 1st International Workshop on Exploiting Context 
Histories in Smart Environments at the 3rd International Conference 
on Pervasive Computing,  Munich, Germany, May, 2005. 

[12] A. S. Weigend, and N. A. GershenField, “Time Series Prediction: 
Forecasting the Future and Understanding the Past”, SFI Studies in 
the Sciences of Complexity, Proc. Vol XV, Adisson-Wesley, 1993. 

[13] G. E. P Box, and G. M. Jenkins, “Time Series Analysis: Forecasting 
and Control”. San Francisco: Holden Day, 1970, 1976.  

[14] F. B. Hildebrand, “Introduction to Numerical Analysis” (2nd edition) 
McGraw-Hill. ISBN 0-070-28761-9,  Pp 43-59, 1974. 

[15] K. C. Barr and K. Asanovic, “Energy-aware Lossless Data 
Compression”, ACM Transactions On Computer Systems. Vol. 24, 
No. 3, pp. 250 – 291, August, 2006. 

[16] Y. Hao, L. Chuang, S. Berton, and L. Bo, and M. Geyong, ”Network 
traffic prediction based on a new time series model”, International  
Journal of Communication Systems, Volume 18, Issue 8, pp. 711–
729, October, 2005.  

[17] N. Sadek, and A. Khotanzad, “Multi-scale network traffic prediction 
using k-factor Gegenbauer ARMA and MLP models”, AICCSA’05: 
In Proceedings of the ACS/IEEE 2005 International Conference on 
Computer Systems and Applications, 2005. 

[18] J. Z. S. Tenhuen, and J. Sauvola, “CME: a middleware architecture 
for network-aware adaptive applications”, PIMRC’03: In Proceedings 
of the 14th International Symposium on Personal, Indoor, and Mobile 
Radio Communications, , pp. 839 – 849, Beijing, China, Septemer, 
2003. 

[19] R. H. Shumway, and D.S. Stoffer, “Time Series Analysis and Its 
Applications: With R Examples”, Springer Texts in Statistics, 2nd 
Edition,  pp. 85 – 154, 2006. 

[20] D. Katsaros, and Y. Manolopoulos, “Prediction in wireless networks 
by markov chains”,  IEEE Journal on Wireless Communications, 
Volume 16, No. 2, pp. 56 – 63, 2009.  

[21] MD. O. Gani, H. Sarwar, and C.M. Rahman, “Prediction of state of 
wireless network using markov and hidden markov model”, Journal 
of  Networks, Volume 4, No. 10, pp. 976 – 984, 2009. 

[22] R. R. Sarukkai, “Link prediction and path analysis using markov 
chains”, In Proceedings of the 9th International World Wide Web 
Conference on Computer Networks, pp. 337 – 386, 2000.  

[23] Y. L. Chou, ”Statistical Analysis", Holt International, 1975 
[24] R. S. Sutton, “Learning to predict by the Methods of Temporal 

Differences”, Journal for Machine Learning, Volume 3, Number 1, 
pp. 9 – 44, Springer Netherlands,  August, 1988.  

[25] X. Z. Gao, S.J. Ovaska, and A.V. Vasilakos, ”Temporal difference 
method-based multi-step ahead prediction of long term deep fading in 
mobile networks”, In Computer Communications, Volume 25, Issue 
16, pp. 1477 – 1486, October, 2002.  

[26] OProfile, System profiler for Linux, 
http://maemo.org/development/tools/doc/chinook/oprofile/ 

[27] MYSQL Software Download Site, http://vesta.informatik.rwth-
aachen.de/mysql/Downloads/MySQL-5.1  

 




