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1. Introduction

During the previous decade, the wireless industry has moved into the

Internet era and we have witnessed revolutionary changes in wireless

networks, mobile devices and mobile applications.

Mobile broadband networks that provide high-speed Internet access have

been widely deployed. In 2010, 3G cellular networks were available in

143 countries and had 694 million subscribers1. In addition, over 750,000

Wi-Fi hotspots had been installed and were used by 700 million people

around the world [24]. Compared with 3G cellular networks, Wi-Fi can

provide a much higher data rate, e.g. up to 54 Mbps for 802.11g Wireless

Local Area Network (WLAN), although the coverage of a Wi-Fi hotspot is

smaller than that of a 3G base station. Thus, it is popular to have both

3G and Wi-Fi interfaces in a single mobile device.

The increasing coverage of mobile broadband networks has been accom-

panied by a significant boost in the capabilities of mobile devices. Feature

phones and Personal Data Assistants (PDAs) are being replaced by smart-

phones and mobile Internet devices such as Nokia Internet Tablets.2 The

new ones are equipped with high-performance processors, large-volume

storage, multiple network interfaces, high-resolution displays and rich

sensors. All these capabilities together make it possible for mobile devices

to handle much more complex tasks. It opens a door to mobile applications

that require heavy computation, high-speed data transmission, and rich

context information.

In the previous five years, we have seen the explosion of the mobile ap-

plication market. Today, thousands of new applications are published ev-

1http://www.itu.int/ITU-D/ict/newslog/14+Of+Wireless+Subs+Connected+To+3G
+Networks.aspx
2Because the distinction between smartphones and mobile Internet devices is
diminishing, we will not distinguish between these two categories in the rest of
this thesis.
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Introduction

ery day through online shops like Android MarketPlace, Apple Store and

Ovi Store. The most popular mobile applications are no longer telephone

services, but Internet services, such as Facebook, YouTube, Google Maps,

Twitter and Pandora3. This phenomenon also reflects the ongoing trans-

formation of the wireless industry. Companies like Apple, Google and Mi-

crosoft, which previously were not wireless companies, are now playing

more and more important roles in the mobile device and application mar-

kets. On the other hand, the change in the usage of mobile devices poses

new challenges to the research on mobile computing. Energy efficiency in

mobile computing, especially in the wireless data transmission involved

in mobile applications, is one of these challenges that have attracted much

attention from mobile device manufacturers, mobile application providers

and network operators.

Compared with traditional telephone services like voice calls and short

message service, executing modern mobile applications consumes a lot

more computing and networking resources and therefore demands much

more energy. However, battery technology has not developed as fast as

mobile computing technology and has not been able to satisfy the increas-

ing energy demand. This has directly resulted in a dramatic decrease in

battery life. For example, the battery life of a mobile device may drop to

between 3 to 6 hours, if the mobile user is using Internet services such

as video streaming and web browsing. Hence, energy efficiency in mobile

computing, although it is a research area that has been established for

more than a decade, has once again become a hot topic.

A major target of this research area is to develop techniques for reduc-

ing the energy consumption of mobile devices while trying to maintain

the device performance. About a decade ago when this research area was

last popular, the research focus was on the energy efficiency of computa-

tion [5], such as the energy consumption of microprocessors, since mobile

Internet services such as email were still in their early stages. Today,

mobile devices, as well as application scenarios, have changed drastically.

With mobile Internet services becoming popular, wireless data transmis-

sion is becoming a major cause of energy consumption on mobile Internet

devices. Additionally, with more sensors like Global Positioning System

(GPS) receivers available on the devices, the context monitoring and its

energy consumption also becomes a challenge. Hence, now is the right

time to revisit energy-efficient techniques and to develop techniques to

3http://blog.nielsen.com/nielsenwire/online_mobile/the-state-of-mobile-apps/
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Introduction

solve the existing and upcoming challenges.

To develop energy-efficient techniques, the first step is to understand

how energy is consumed on a mobile device. A mobile device consists of

hardware components, such as microprocessors, wireless network inter-

faces, storage, cameras and a touchscreen, and software running on top of

these hardware components.

Hardware components are the actual energy consumers. Given a hard-

ware component, its power consumption usually consists of two parts,

static power consumption and dynamic power consumption. Static power

consumption, also known as leakage, persists, regardless of the state of

the hardware component. It depends on the physical characteristics of the

hardware component. In contrast, dynamic power consumption is caused

by the hardware activities, which are controlled by the software running

on top of the hardware component. The workload generated by the soft-

ware, in addition to the physical characteristics, determines the amount

of the dynamic power consumption. Thus, it is important to understand

how power consumption is related to hardware activities and software op-

erations.

Power measurement can tell how much energy is being consumed by the

mobile device, whereas it does not give us insight into the above relation-

ships. To solve this problem, power modeling is a technique that is often

proposed in the literature for describing the above relationships using

mathematical models. A power model can be specified for a certain hard-

ware component, a certain mobile device or a certain piece of software.

The information used for defining the model variables can be provided

by hardware, OS, and/or applications, while the coefficients of these vari-

ables can be derived from power measurement using deterministic and/or

statistical methods.

Power models provide hints on improving the energy efficiency in mo-

bile devices and applications. Regarding the software solutions, many

power management mechanisms have been proposed and some of them

have already been successfully commercialized. The commercial ones are

usually implemented as part of hardware resource management in mobile

OSs. They adapt the operating modes to system workload and try to gain

energy savings from the difference in power consumption between the op-

erating modes of hardware components like CPU and wireless network

interfaces. In other words, they try to leave the hardware components in

lower-power states as long as possible. For example, the power consump-

11



Introduction

tion of microprocessors increases with clock frequency. Dynamic Voltage

Scaling (DVS) [51, 16] is this kind of power management mechanism that

scales the clock frequency with the computational workload. Similarly,

the Power Saving Mode (PSM) [1] for Wi-Fi forces the Wi-Fi interfaces to

go to sleep if there is no data to transmit or to receive. Furthermore, the

display will be dimmed and later turned off for energy savings, if it has

been idle for a while, e.g. 1 minute.

These power management mechanisms have shown their potential in

saving energy. However, there are also downsides to using them. First,

they might cause performance degradation, such as increasing the round

trip times when using PSM [66]. Second, the transition between operating

modes takes time and costs energy. Sometimes, the overhead can even

overtake the energy savings gained by the transition.

One way to reduce the negative side effect is to improve the design of

the power management itself. Another way is to optimize the software

design so that the effectiveness of power management based on hardware

resource management can be fully utilized. For computation, typical ex-

amples include the proposals for taking DVS into account in the compila-

tion of mobile applications [3] and in the task scheduling in mobile OSs

[148]. For wireless data transmission, traffic shaping for streaming appli-

cations and web prefetching have been proposed for reducing the transi-

tion overhead and increasing the duration spent in the sleep mode. Note

that these solutions focus on changing the patterns of the load, and do

not necessarily reduce the workload of CPU processing and wireless data

transmission.

As the demand for hardware resources comes from mobile applications,

many energy-efficient mobile applications have been proposed in accor-

dance with the criteria of trying to reduce as much processing and/or data

transmission workload as possible. For example, the power consump-

tion of video playback depends on the quality of the videos. Transcoding

proxies were introduced into video streaming systems for compressing the

videos into ones with lower quality before forwarding them to the mobile

devices [81]. Another recent example of ways of reducing the workload

of the mobile devices is offloading computation from mobile devices to the

cloud [23, 28].

Energy savings that can be achieved from the above solutions depend

on the trade-offs between power consumption and performance, and/or

between computational cost and transmission cost. Predicting the near-

12
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Figure 1.1. Research methodology used in our work.

future values of context variables can help in deciding whether execut-

ing the adaptations defined in the solutions would save energy or not.

Accurate prediction requires knowledge of the system and its power con-

sumption. A challenge comes from the complexity of wireless data trans-

mission. Compared to computation, the execution of wireless data trans-

mission includes many more uncertainties because it depends on the net-

work protocols used for implementing the transmission, the network de-

vices carrying the data through the network, and the network environ-

ment where the transmission happens. If these influential factors can be

described using context, it follows that the power management software

must be aware of the context and be able to adapt to their changes.

Nowadays, it is very common for mobile devices to handle multiple tasks

concurrently. This requires the power management at system level to be

able to handle more complex situations. For example, it is possible that

multiple application-level solutions are applied to the same system, with

one solution for one running application. In that situation, power man-

agement software must extend its functionality from hardware resource

management to the management of these solutions, e.g. scheduling the

context sharing among solutions and avoiding the conflicts in resource

usage between them. Despite the increased complexity in power manage-

ment, we are also seeing the opportunities of coordinating these solutions

to further improve the energy savings.

13



Introduction

1.1 Research Question, Scope and Methodology

Existing techniques have contributed a lot to the energy efficiency of mo-

bile devices. However, new challenges are posed by the revolutionary de-

velopment of mobile networks, devices and applications. Hence, in this

thesis, we ask the following question: What is the power consumption of

mobile devices after the changes and what would be potential solutions

for the existing and upcoming challenges?

Due to the huge scale of the question, we limit our scope to the wireless

data transmission that is involved in mobile applications, and more pre-

cisely, to the application scenarios of Wi-Fi-based data transmission. We

follow the research methodology as illustrated in Figure 1.1 and look into

the following three issues from an application point of view.

a) Power modeling of wireless data transmission. As power consumption

of Wi-Fi-based data transmission is mainly caused by the operations of the

Wi-Fi network interface (WNI), previous power models were built mainly

based on the operating modes of the WNI, and on the PSM-induced tran-

sitions in the operating modes. The models did not look deeply into the

dependency of power consumption on the characteristics of the network

traffic generated by applications, and gave few hints for the development

of mobile applications with energy-efficient wireless data transmission.

Therefore, we seek to understand and to reveal the relationship between

power consumption and application design, and to provide hints on im-

proving existing power management mechanisms.

b) Energy-efficient wireless data transmission in mobile applications.

Many application-specific solutions have been proposed based on traffic

reduction and scheduling. In the power estimation made in these solu-

tions, the influence of varying network conditions has usually been miss-

ing. However, under different network conditions, the network transmis-

sion performance, and further, the energy cost of data transmission varies

a lot and could change the result of the energy savings. Therefore, we

should take the impact of such external factors into account to figure out

the trade-offs under different conditions.

c) Context-aware power management. As discussed above, wireless data

transmission and its energy cost is context dependent. Many application-

specific solutions have been proposed, each of which might be using the

same or different contexts existing in the mobile system. They make adap-

tations to the changes in contexts individually. Because there is a vari-
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ety of applications running on a mobile device nowadays, it is not clear

how these application-specific solutions could work compatibly with each

other, and collaboratively with the default power management software

installed on the devices. Hence, we need utilities for handling such situ-

ations and easing the implementation and deployment of energy-efficient

techniques on mobile devices.

Our methodology includes power measurement used in building power

models, and in evaluating the software solutions for energy savings. This

methodology is more practical since the power models and the software so-

lutions are implemented and tested on real mobile devices. On the other

hand, this poses a challenge in applying the models and the solutions to

mobile devices other than the experimental devices we have been using,

because the coefficients of the power models and the parameter settings

of the software solutions may be based on the power measurement on the

experimental devices. The power measurement needs to be repeated on

the new mobile devices although the modeling method and the design of

the software solutions can remain the same. In practice, this limitation

cannot be removed but can be alleviated by evaluating the research re-

sults on multiple mobile platforms.

We note the focus of this thesis leaves out the following important as-

pects of energy-efficient wireless data transmission.

a) Network architecture and protocols for improving energy efficiency

are out of our scope, since our focus is on the network applications, and

not the underlying network protocols.

b) Solutions for reducing the computational cost caused by wireless data

transmission are not addressed in this thesis, even though we look into

ways for modeling that part of energy cost.

c) Energy efficiency of data transmission in ad-hoc networks is not stud-

ied in this thesis, since we are focusing on the data transmission via the

WLAN operating in infrastructure mode.

d) Our example scenarios do not cover all kinds of network applications.

For example, location-based services including data transmission with lo-

cation servers are not discussed.

However, we point out that our study on power modeling could provide

knowledge for the development of solutions for issues omitted above. In

addition, much of the research conducted on these issues is orthogonal

to our design of energy-efficient mobile applications and context-aware

power management. Therefore, we expect our efforts to be largely com-
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plementary to the efforts focusing on the topics out of our scope.

1.2 Contributions

This thesis is a summary of five publications. The contributions of these

publications are briefly described below. More detailed discussion can be

found in Chapter III.

Publication I provides a practical model of Wi-Fi-based data transmis-

sion in which the model parameters can be easily obtained from applica-

tions and traffic statistics.

Publication II presents a system level power model of a mobile Internet

tablet, covering the energy consumption of wireless data transmission,

computation and display.

Publication III presents a framework of proxy-based lossless compres-

sion for reducing transmission cost involved in mobile applications.

Publication IV proposes to predict the network conditions, measured

by wireless signal-to-noise ratio (SNR), using statistical methods and to

adapt the network transmission to the predicted changes in SNR.

Publication V describes an event-driven framework for context-aware

power management. The framework includes utilities for the event gen-

eration based on the monitored contexts, the complex event processing,

and the scheduling of power management policies.

1.3 Structure of This Thesis

In chapter II, we go through the essential background that is necessary for

understanding the issues we address. After that, we discuss our contribu-

tions in Chapter III. The original papers are presented after a conclusion

in Chapter IV.
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2. Background

This chapter presents the background of power modeling and manage-

ment of mobile devices. We have limited ourselves to the work that is

essential for understanding the field of this thesis. As this thesis fo-

cuses on the software solutions for improving energy efficiency in wireless

data transmission, low-power hardware design, such as transistor sizing

[34], transistor reordering [53], and energy-efficient on-chip communica-

tion [103], are out of our scope.

We start with an overview of energy consumption on mobile devices in

Section 2.1 and move to the related techniques of power measurement

and modeling in Section 2.2 and 2.3. We focus on the power models using

the information that can be collected with software and leave the power

analysis of hardware design [18] out of our scope. After that, we clas-

sify the proposed techniques for reducing the energy cost of wireless data

transmission into three categories, and analyze the design criteria of each

category in Section 2.4. What follows after that in Section 2.5 is a discus-

sion of system-level power management for mobile devices.

2.1 Energy Consumption of Mobile Devices: An Overview

The first step towards energy-efficient mobile computing is to understand

how the energy is consumed on mobile devices. In practice, there are two

methods for achieving this goal: power measurement and power modeling.

Power measurement focuses on providing accurate measurement of power

consumption, while power modeling focuses on describing how the energy

is consumed using mathematical models. These two methods complement

each other.

Power measurement is only applicable to hardware. It can be conducted
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Figure 2.1. Interaction of hardware, software, mobile user and environment.

at system level or component level. The system-level power measurement

only provides the overall power of the mobile device, whereas component-

level power measurement can provide the power consumption of any spec-

ified hardware component. The techniques used in power measurement

will be introduced in Section 2.2.

Besides hardware components, which are the actual energy consumers,

a mobile device also includes software that controls the hardware opera-

tions. Power consumption of software, either mobile OSs or applications,

means the total power consumed by all the hardware components involved

in and during the software execution. In order to analyze the power con-

sumption of this software, power models, with the relevant factors ab-

stracted into the model variables, are needed for describing the relation-

ship between software execution and hardware activities, and between

software execution and power consumption.

As shown in Figure 2.1, software defines the workload of computing, I/O

access, encoding/decoding, etc, including the amount of the work and the

distribution of the work over time. The workload is transformed into a

set of circuit activities on the corresponding hardware components, and

the circuit activities consume energy. Therefore, through the workload

the software execution can be linked to the activities on the actual energy

consumers.

Figure 2.1 also shows that the workload can link the mobile device to
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its user and to the external environment. The inputs from the mobile de-

vice user and the influence of the external environment affect the work-

load of the software and hardware operations. For example, the network

interference might cause data retransmission during wireless data trans-

mission, which results in a change in the workload of I/O access. Hence,

it is possible to investigate the external factors that influence the power

consumption by applying workload analysis.

In Section 2.3, we will categorize the methodologies used in the power

modeling techniques into the classes of deterministic and statistical mod-

eling and their combinations. The information used in the techniques is

a description of the workload at various granularities. In practice, which

methodology to use depends on the information that is used for building

the power model. We will go through our categories and introduce repre-

sentative examples from the literature of the techniques in each category.

2.2 Power Measurement

Power measurement is a quantitative method of power analysis. It pro-

vides numerical data and statistics using metrics such as voltage, current,

power and energy. The two key concepts, power and energy, need to be

clearly defined when being used as metrics. "Energy is the total amount

of work a system performs over a period of time, while power is the rate at

which the system performs that work" [136]. In other words, power can be

defined as the amount of the energy that is consumed in a unit of time. In

practice, power is the product of voltage and current and is measured in

watts, while energy is measured in joules. Battery life that is often listed

in the product specification is determined by the amount of the energy

stored in the battery and the rate at which the energy is drained.

Power measurement has been widely used as a black-box method for

analyzing the power consumption of mobile applications, especially for

comparative studies. For example, Balasubramanian et al. [11] compared

the power consumption of downloading via Wi-Fi with that of download-

ing via 3G. Similar comparisons between Wi-Fi and Bluetooth [102], and

between 2G and 3G [89] have also been presented in the literature. In

addition, given a mobile application, its power consumption depends on

its settings and operations. The studies of mobile applications, such as

email [78], YouTube-like video sharing applications [140], cloud-based
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BitTorrent content sharing service [63] and sensor-enabled physical ac-

tivity monitoring applications [26], have been reported.

Most of the results reported in the literature are obtained from system-

level power measurement but not component-level power measurement,

although component-level power measurement is supposed to provide more

details of power consumption. It is mainly because the information re-

quired for component-level power measurement [110, 19], such as the cir-

cuit design of the mobile device, is not publicly available except for very

few products like the FreeRunner mobile phone 1, the one used by Carroll

and Heiser in their work on component-level power modeling [19].

There are two methods of system-level power measurement, which are

often used in the literature.

First, obtaining battery information including instantaneous voltage and

current directly through the application programming interfaces (APIs) of

the mobile OS [33], or from the energy profiling software such as Nokia

Energy Profiler (NEP) [39] for Symbian phones [11, 140].

Second, using physical power meters to measure the voltage, current or

directly the power [22, 146]. This method can also be applied to component-

level power measurement, if the required information is available. The

power meters can be directly attached to the battery to measure the work-

ing voltage over the battery and the current through the battery [113,

114]. Alternatively, the meters can be connected to a battery adapter,

which is a circuit connecting the mobile device with an external DC power

supply, or to a resistor that is connected in series with the battery adapter.

Comparing the above two methods, each one has its own strengths and

weaknesses. The sampling frequency of physical power meters, e.g. 5KHz

for the Monsoon Power Monitor 2, is much higher than that of the NEP-

like software (at most 4Hz for NEP). However, the NEP-like software is

more feasible for measurement in mobility scenarios and can be deployed

in distributed mobile systems. As the APIs or the software that can be

used for obtaining battery information are not available for all the mobile

platforms, the first method is not always feasible. Hence, the choice of

method depends on the availability of instruments and the requirements

of power measurement. We have seen the hardware power instrumenta-

tion combined with a system activity monitor into energy profiling tools

like PowerScope [40], and integrated into a wireless network testbed for

1http://www.openmoko.com/freerunner.html
2http://www.msoon.com/LabEquipment/PowerMonitor/
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Figure 2.2. Power modeling techniques overview.

the power analysis of network protocols and applications [124].

2.3 Power Modeling

As shown in Figure 2.2, both deterministic and statistical methods can be

used for building power models. The basic idea of the deterministic power

modeling is to map software operations to hardware activities based on

expert knowledge and to estimate the power consumed by the hardware

components involved based on their activities. Differently from the deter-

ministic power modeling, the statistical power modeling aims at finding

out the relationship between power consumption and the model variables

based on statistical models like linear regression. Examples of these two

methods and their combination are given below.

2.3.1 Deterministic Power Modeling Based on Operating Mode

Many hardware components are able to work in several power states that

correspond to different levels of power consumption. During runtime, the

power state is determined by the activities that are carried out and the

processing capacity of the hardware component at any particular moment.

From a software viewpoint, each hardware component has several operat-
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ing modes, corresponding to different activities and processing capacities.

In other words, each of these operating modes can be mapped to a power

state at physical level. Given an operating mode, it is possible to derive

the power consumption of the hardware component.

In this subsection, we introduce the power modeling of a hardware com-

ponent based on the analysis of its operating mode. We first give a general

form of the power model. As shown in Equation 2.1, the energy consump-

tion of a hardware component over a duration is composed of the energy

spent in each operating mode and the overhead caused by the transitions

between operating modes.

E(t) =
∑
j

Ej(tj) +
∑
j

∑
k

Ej,k × Cj,k(t), (2.1)

where E(t) is the total energy consumed by the hardware component over

the duration t, tj is the duration spent in operating mode j and Ej(tj) is

the energy cost during tj . Ej,k is defined as the overhead caused by the

transition from operating mode j to k, while Cj,k(t) shows how much of

this transition has occurred during t. The energy wasted in waiting for

the transition into a lower-power state is often called tail energy.

The operating mode can be tracked using two methods. One is to di-

rectly read it from mobile OS. For instance, Quanto [42], a network-wide

energy profiler for embedded network devices, adopts this method. How-

ever, Quanto requires modifications to device drivers so the drivers can

expose the power states of the underlying hardware components during

runtime. The other method is to derive the operating mode from a work-

load description based on transition rules. Transition rules determine

when to switch to another operating mode. Based on them, tj and Cj,k(t)

can be estimated.

In the literature, the power of a hardware component is usually assumed

to be approximately constant in each power state [42]. Based on that

assumption, Ej(tj) is the product of the constant power and tj . When

the assumption fails, Ej(tj) can be a function of the energy consumption

with the operating mode, workload description and duration as variables.

Ej,k depends on the physical characteristics and is usually assumed to be

constant. The value of Ej,k can be measured using the methods presented

in Section 2.2. Sometimes, the transition overhead is not counted in the

energy consumption, because the transition overhead is small enough to

be safely ignored, or the monitoring of transition is not feasible.
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Operating Modes of Wireless Network Interfaces

The activities of wireless network interfaces are under the control of the

software running on top of them, including the hardware drivers, the net-

work protocol stack and the network applications. The software uses a set

of I/O access operations, such as sending/receiving a unit of data through

a wireless network interface, in addition to computational operations like

network protocol processing. These I/O access operations are transformed

into the activities on the wireless network interfaces. Accordingly, the

physical activities can be abstracted into operating modes that indicate

the software operations being carried out while executing these physical

activities.

A wireless network interface may have several operating modes, each of

which corresponds to a software operation. Take the WNI as an example,

it can work in TRANSMIT, RECEIVE or IDLE mode, while the network

interface is transmitting, receiving or listening for traffic. These software

operations determine the workload of the WNI, in terms of the direction,

the interval and the size of the network traffic going through the WNI.

Accordingly, the transitions caused by these software operations can be

detected from the changes in the traffic.

With low-power states at physical level becoming increasingly available,

some of them have been utilized by the power saving mechanisms imple-

mented in mobile OSs or hardware management applications. As a result,

new operating modes of the hardware components, corresponding to these

low-power states, are defined by the power saving mechanisms. We use

the power state machine, as proposed by Benini et al. [14], to describe

the transitions between operating modes, with each operating mode of

the hardware component defined as a state. We take WNI as an example

again and show how the power saving mechanisms could have changed

the power state machine of the hardware component.

The PSM is a power saving mechanism defined in the 802.11 standards

[1] for WLANs. It introduces a SLEEP mode, which consumes much less

power than the IDLE mode, into the power state machine of the WNI.

When the WNI stays in the SLEEP mode, it only wakes up at a granu-

larity of beacon intervals (e.g. 100ms) to check for incoming traffic. The

traffic that arrives between beacons is either buffered at the access point

or simply dropped if the buffer overflows. To reduce the potential per-

formance degradation, an adaptive version of PSM, also known as PSM

Adaptive, has been proposed and widely adopted in commercial products.
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Figure 2.3. Power State machine of the WNI with the PSM Adaptive or the CAM enabled.
CAM is enabled when PSM Adaptive is disabled, and vice versa. PT , PR, PI ,
and PS represent the power consumption at TRANSMIT, RECEIVE, IDLE
and SLEEP mode, respectively.

In PSM Adaptive, the network interface will stay in the IDLE mode for

a fixed period of time, such as 100 ms, before going to sleep. We call the

length of this period the PSM timeout, whose default value varies from

device to device. As shown in Figure 2.3, the transition from IDLE to

SLEEP mode is defined using the PSM timeout.

Besides the SLEEP mode, which is designed for reducing the energy

wasted in IDLE mode, some low-power states have been used for improv-

ing the energy efficiency in TRANSMIT and RECEIVE modes. For exam-

ple, on Android G1, the TRANSMIT mode of the WNI is refined into two

sub-states [87]. Each of these sub-states corresponds to a certain level

of power consumption. Given a sub-state, the power consumption of the

WNI is assumed to be constant. The WNI works in the sub-state with

higher power consumption only if the packet rate is over a certain thresh-

old. This is similar to the DVFS used in the microprocessor, which adapts

the clock frequency to processing workload [136].

The above examples describe the transitions determined by the traffic

interval and the packet rate. They show that the transitions caused by

power saving mechanisms could also be derived from the traffic informa-

tion. As traffic information can be described with various granularity,

different methods will be applied for the model building, depending on
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the traffic description.

Packet-level Power Modeling of Wireless Data Transmission

On a mobile device, the energy consumption of wireless data transmission

is mainly caused by the operations on wireless network interfaces. The

workload on the wireless network interface depends on the traffic to be

handled over a certain duration. Given the traffic is composed of packets,

the workload can be modeled as a packet arrival process.

We take WNI as an example to explain how to obtain the values of the

parameters listed in Equation 2.1 from packet-level traffic traces. The

traces can be collected using packet analyzers like tcpdump 3, which have

been ported to many mobile OSs, including Maemo, Android and iOS. As-

suming that the WNI adopts PSM Adaptive as illustrated in Figure 2.3,

the power model of the WNI can be built following the two steps below.

First, detecting the TRANSMIT and RECEIVE modes based on the trans-

mission direction of the packets. The time spent in TRANSMIT and RE-

CEIVE modes can be derived from the traffic size and the processing ca-

pacity of the WNI in the corresponding operating mode. The processing

capacity is also known as the throughput of the WNI. Given an operat-

ing mode of the WNI, the processing capacity can be assumed to be fixed.

In case the TRANSMIT and/or RECEIVE mode includes sub-states, each

of which corresponds to a certain processing capacity, each sub-state is

treated as an individual operating mode.

Second, detecting IDLE and SLEEP modes based on packet intervals

and the PSM timeout, and counting the transitions that happen during

the data transmission. Only if the packet interval is bigger than the PSM

timeout, does the transition from IDLE to SLEEP mode occur and is the

packet interval divided into two parts. The one equal to the PSM timeout

is spent in the IDLE mode, while the rest of the interval is spent in the

SLEEP mode. Depending on whether the network interface stays in IDLE

or SLEEP mode at the end of each packet interval, the transition from

IDLE/SLEEP mode to TRANSMIT/RECEIVE mode can also be derived.

The above method can also be applied for the power analysis of the 3G

WCDMA network interface [96], whose power state is defined by the Ra-

dio Resource Control(RRC) protocol [2]. The inactivity timers defined in

RRC control the state transitions in the same manner as the PSM timeout

used in PSM Adaptive [48, 95].

3http://www.tcpdump.org
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Figure 2.4. Workload description of data transmission.

Going Beyond Packet-level Power Models

Packets captured over a certain duration can be generated by different

flows or even applications, as it is possible for a mobile device to run

multiple network applications at the same time, and to have more than

one flow involved in one network application. Each flow includes all the

packets exchanged between the same source and destination IP addresses

and having the same port pair. Accordingly, traffic statistics at the flow,

application and network interface levels can be derived from the packet

information. On the other hand, the packet-level power models can be

transformed into the models with these traffic statistics. As illustrated

in Figure 2.4, these traffic statistics are also related to transmission per-

formance metrics, application parameters or the metrics that reflect the

utilization of the WNI.

Concerning the power analysis of mobile applications and network pro-

tocols, the power models at flow and application levels can provide a more

meaningful insight than the others, because the traffic statistics at the

flow and application levels are more related to the parameters of the mo-

bile applications and network protocols. On the other hand, it is not al-

ways feasible for the packet-level traffic profiling to be run on mobile plat-

forms, because it usually requires root access and causes more overhead

than the traffic profiling with finer-granularity. Hence, it is worth devel-

oping power models based on the statistics at flow or application level al-
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though their accuracy might be lower than that of the packet-level power

models.

2.3.2 Statistical Power Modeling Based on Hardware Utilization

Statistical methods have been used for modeling the power consump-

tion of hardware components. The model variables are defined using

the performance metrics, which can reflect the utilization of the hard-

ware components. Additionally, a linear regression model is often used

as a base model, with the variable coefficients fitted to the collected data

sets including the variable values and the corresponding power measure-

ment. For example, Snowdon et al. [127] proposed performance-counter-

based power models for microprocessors using the least square regression

method.

In actual fact, the performance counters and the values derived from

them have been widely used in the power models of microprocessors [56,

70, 25]. These counters are a set of special-purpose registers built into mi-

croprocessors. They store the counts of hardware-related activities, such

as retired cycle count and L1 cache miss count. The values of these coun-

ters can be obtained using system profiling tools like Oprofile 4 for Linux.

The result models can be used for estimating the computational cost

of network applications, such as the cost of reading/writing data from/to

memory. The model-based power estimation can be utilized for online

power management as well as the energy efficiency analysis of design

choices at software design stage [61].

Equation 2.2 shows a general form of a linear regression model with p

predictor variables [38].

f(yi) = β0 +
∑
j=1..p

βjgj(xi,j), (2.2)

where gj(xi,j) is a preprocessing function of the original value of the pre-

dictor variable xi,j . Given n observations including the values of p predic-

tor variables and the values of the corresponding responses yi (i = 1..n),

the values of the intercept β0 and each coefficient βj (j = 1..p) are auto-

matically adjusted during the model fitting towards a model in which the

response can be the best predicted from the predictor variables. After the

model is built, given the values of the predictor variables, the estimated

power consumption will be outputted.

4http://oprofile.sourceforge.net/
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Based on the linear dependency of the output on the values of the pre-

dictor variables, the values of the coefficients in linear regression models

can reflect which variables have relatively more effect on the power con-

sumption. The bigger the coefficient value is compared to others, the more

effect the corresponding variable has on the power consumption. Accord-

ing to this, the power models presented in [127] showed that instruction

and cache accesses have significant effect on computational cost.

The above method can be applied to other hardware components than

microprocessors. For example, the power consumption of a H.323 video

encoder was modeled as a function of the bit rate [75]. For wireless net-

work interfaces, the power models can be built using network transmis-

sion performance metrics like throughput and packet rate as variables.

Statistical method is also feasible for the power modeling of software

components or functional units. For example, it has been used for build-

ing a linear energy model of a software encryption module based on en-

cryption parameters such as the number of encryption rounds [22].

2.3.3 Power Modeling at Function Level

Hardware Function level power estimation was earlier used for predict-

ing the power dissipation of the microprocessor [98, 69] at design stage.

This method assumes that the energy required to execute a functional

unit is approximately constant, and calculates the total energy consump-

tion as the aggregate of the per-functional-unit cost. As this assumption

could also hold for some software functional units, this method has been

extended to the power modeling of mobile OSs and applications.

The study in [130] identified the energy components of an embedded

OS by studying its internal operations and classified them into system

functions. It proposed to obtain the base energy of each system function

from the power measurement, and to calculate the energy consumption of

an embedded OS based on the base energy per system function. Similarly,

Li et al. [71] profiled the execution of mobile OS as a set of kernel service

routines, and calculated its energy consumption based on the energy per

kernel service routine.

Mobile applications can also be decomposed into software functional

units. The functional unit can be defined with various granularities, de-

pending on the software structure. For instance, Feeney et al. [37] pro-

posed a collection of linear equations for calculating the energy consump-
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tion of the WNI in ad-hoc mode. Each linear equation corresponds to a

software activity, such as sending a point-to-point data packet. A simi-

lar method has been applied for the power modeling of data transmission

through other network interfaces such as Bluetooth [85], and also for ana-

lyzing the processing overhead of protocols such as TCP [137] and Secure

Sockets Layer (SSL) protocol [93].

2.3.4 Analyzing External Influencial Factors of Energy Consumption

User Behavior

User behavior has significant effect on the workload and energy consump-

tion of a mobile device. For example, users can choose which applications

to use and how to use those applications, such as when to send a search

request and which video to watch. Moreover, to some extent, they can also

decide which access point to connect to and where to store the data.

Some user studies [122, 135] have focused on the relationship between

the user behavior and the power consumption of the mobile device. A typ-

ical methodology is to install a context monitoring application on users’

mobile devices. The application tracks the mobile device settings, hard-

ware resource consumption, network traffic and/or the user inputs. This

information is then used for estimating the power consumption based on

power models and for matching user activities with the power consump-

tion. For example, Shye et al. [122] developed a logger application for

Android G1 mobile phones and used it for collecting traces of real user

activity. The log included the hardware utilization information, such as

the CPU utilization at each CPU operating mode, the brightness of screen,

and the count of bytes transferred with Wi-Fi during a given interval. The

log was inputted into a linear regression power model to obtain the power

consumption corresponding to user activities.

As shown in the user study presented in [104], most mobile users had no

knowledge of the power characteristics of their devices and applications.

Moreover, most mobile users underutilize the power saving settings of

their mobile devices. Hence, in addition to improving the energy efficiency

of hardware/software by taking user behavior into account, we also firmly

believe that the tools that can show the predicted battery life [111] and

can demonstrate the relationship between power consumption and user

activities will help mobile users to extend their device battery lifetimes.
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Environmental Factors

Environmental factors such as geography, temperature and network in-

terference cannot be controlled by mobile users or software. Nevertheless,

these factors can influence user behavior, the functioning of the software,

and even the physical characteristics of the hardware components. For

example, the performance of a GPS receiver on a mobile device can be af-

fected by reflecting elements like vehicles, buildings, and trees [112]. The

longer it takes for the GPS device to lock to the satellites and the longer

it takes to receive data, the more energy will be consumed. Moreover, the

SNR of wireless networks has been shown to have a significant impact on

the performance [145], as well as the energy consumption of wireless data

transmission [118].

2.4 Energy-efficient Wireless Data Transmission

Our summary of the solutions for energy-efficient wireless data trans-

mission reveals three categories: workload-based adaptation of operating

modes, workload scheduling, and workload reduction. These solutions are

motivated by the results obtained from power measurement and model-

ing.

Power measurement of mobile applications shows that the default power

management for WNIs on commercial mobile devices (the so-called PSM

Adaptive introduced in Section 2.3.1) is inefficient in many application

scenarios. To solve this problem, many revisions have been proposed (Sec-

tion 2.4.1). The power models discussed in Section 2.3 reveal that the

power consumption is dependent on the workload, including both its size

and its pattern. These findings provide a theoretical support for the so-

lutions of energy-efficient wireless data transmission based on workload

scheduling (Section 2.4.2) and workload reduction (Section 2.4.3).

2.4.1 Adapting Operating Mode to Workload

The PSM Adaptive controls the transition from IDLE to SLEEP mode,

based on the PSM timeout. Depending on the mobile device, the PSM

timeout might be set to a different value. This value has a significant im-

pact on the effectiveness of energy savings. Compared with CAM, which

always keeps the WNI in idle mode during traffic intervals, the maximum
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energy savings that could be gained by the PSM Adaptive from each traf-

fic interval can be estimated by using Equation 2.3.

Esavings =

0, ift ≤ T,

(t− T − Toverhead)× (PI − PS)− Eoverhead, ift > T,
(2.3)

where T is the PSM timeout, t is the traffic interval, and PI and PS are the

power consumption at IDLE and SLEEP modes, respectively. In addition,

Toverhead denotes the time overhead caused by the transitions between

IDLE and SLEEP modes, and Eoverhead denotes the corresponding energy

overhead. In the case of the WNI being turned off instead of entering into

SLEEP mode, (PI -PS) should be replaced by PI , while Toverhead should be

the time overhead that is caused by turning off and waking up the WNI.

According to Equation 2.3, the energy savings depends on the distribu-

tion of traffic intervals. In the application scenarios where most packet

intervals are smaller than the PSM timeout, such as web browsing and

streaming [21, 73], the PSM Adaptive has proven to be very inefficient.

Furthermore, recent studies on mobile traffic [76, 36] have shown that

web browsing and streaming applications contribute a major part of to-

day’s mobile traffic. Thus, it is essential to improve the power manage-

ment of the WNI.

Many proposals have focused on reducing the energy waste in IDLE

mode through intelligent control over the transitions between operating

modes. Intelligent control is based on both the adaptation to the traffic

characteristics and on the performance requirements of the mobile appli-

cations. For example, STPM [8] proposed to switch between CAM and

PSM based on two factors: the potential energy savings and the possi-

ble performance degradation. It estimated the energy savings following

Equation 2.3, and compared the delay that could be tolerated by mobile

applications with the maximum latency that might be generated by the

usage of PSM. It enabled PSM only when the energy savings could be

achieved while the latency was tolerable. The results showed that STPM

was better suited for delay-tolerant applications than the delay-sensitive

applications such as streaming. Similarly, Weissel et al. [138] classi-

fied applications based on their traffic characterization and adapted the

switch between CAM and PSM based on the application profile.

As oppopsed to STPM, which focused on coarse-granularity adaptation,

Liu and Zhong [73] proposed micro power management (µPM) for reduc-

ing the busy-time power consumption of WNI. Here, busy-time means
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that the idle intervals are shorter than a small value (e.g. 100ms). µPM

tries to put the WNI into power saving mode during idle intervals, which

can be as short as several microseconds. To control the frame delay and

data loss, µPM determined when to wake up and how long to stay awake

to receive any possible retransmitted data. The decisions were made

based on the history-based prediction of the next incoming and outgo-

ing traffic frames and the load of the access network. The evaluation of

µPM through simulation showed that more than 30% of energy could be

reduced without perceptible quality degradation for certain applications

such as audio streaming.

A key issue in the above solutions is the prediction of the future incom-

ing and outgoing traffic. There are different ways to implement the pre-

diction. One is to use the hints disclosed by mobile applications [8]. The

hints reveal when the applications will transfer data, how much data to

transfer, and the maximum delay the applications could tolerate. Anand

et al. [7] proposed a framework for enabling the applications to provide

such hints to the power management modules. Another method is to pre-

dict statistically the next arrival time based on the history of the previous

packet arrival information [73]. Regarding the traffic generated by inter-

active applications, the traffic prediction also requires the input from the

prediction of user interaction [27, 68].

The above solutions try to save energy by switching the WNI to SLEEP

mode. Other proposals have tried to push the energy savings further by

turning off the WNI completely during traffic intervals. For instance, it

was proposed to turn off the WNI during the bursty transfers in streaming

applications until the amount of data remaining in the playback buffer

was less than a predefined threshold [15]. The threshold value was chosen

on the basis of the network bandwidth and the WNI characteristics.

An issue that exists in the above solutions with the WNI turned off for

some time is how to awaken it. Different methods have been proposed

for addressing this issue. For example, Wake-on-Wireless [121] used a

second special-purpose radio to serve as a wake-up channel for the WNI,

while Cell2Notify [4] used cellular radio to wake up the WNI when there

was incoming traffic. In these systems, an intermediate proxy or server

is needed for monitoring the incoming traffic and waking the WNI. Some

solutions like Wake-on-Wireless [121] also require modification to the mo-

bile devices in order to support the wake-up implementation.

As shown in Equation 2.3, the energy savings generated by the differ-
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ence in power consumption between the different operating modes must

overtake the transition overhead. Otherwise, the transition itself might

waste more energy. To reduce the transition overheads, one way is to

schedule the data transmission in such a way that the smaller intervals

can be merged into bigger ones to reduce the number of transitions. The

work related to this issue is introduced in Section 2.4.2.

Except for energy consumption during traffic intervals, some researchers

have been trying to reduce the energy consumption in transmit mode. For

example, transmit power control, which was earlier proposed for improv-

ing the throughput of wireless networks [83, 45], has also been used for

reducing the cost in transmit mode [97, 108]. The basic idea is to use the

minimum required power level to transmit data.

2.4.2 Workload Scheduling

Traffic Shaping

In the previous section, we discussed the solutions for configuring the

operating mode of the WNI to make it more traffic-aware. In addition

to traffic-awareness, another way of increasing the energy savings is to

shape the traffic so that the traffic-aware adaptations of operating modes

can be fully utilized. Since PSM Adaptive is inefficient for traffic with

small intervals, traffic shaping based solutions have been focusing on

merging the packets with small intervals into bursts. In practice, traffic

shaping can be implemented as either a hardware or software utility on

the sender, on the receiver or on intermediate proxies. In this subsection,

we limit our scope to the software solutions of traffic shaping.

Buffering has been commonly used for shaping traffic on the senders or

on the proxies located on the way [32, 52, 62]. This method is independent

of the transport layer protocols and can be applied to different mobile

applications. For example, Catnap [32] was designed for data-oriented

applications, such as web browsing and file transfers. It is assumed that

these kinds of applications do not mind small delays for individual packets

as long as the overall transmission time does not increase. Assuming a

wireless access link with a high bandwidth and a wired link with a lower

bandwidth on the path to the Internet, Catnap proposed to separate the

wireless and wired segments by using a proxy. The proxy, which can be

deployed on an access point, was expected to buffer the data coming from

the wired network before forwarding it to the mobile device in bursts, so
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that the small packet intervals can be merged to form a bigger interval

during which the WNI can go to sleep.

Traffic shaping solutions like [52, 80, 20] focused on delay-sensitive ap-

plications such as audio streaming. In these solutions, delay constraints

have been taken into account when configuring the traffic shapers. For

example: for streaming applications, the buffer size on the proxy depends

on the downloading rate from the streaming server, the bandwidth of the

link between the proxy and the mobile client, the playback buffer size

on the mobile client and the tolerable delay of the data. In situations

where a proxy serves more than one mobile client [46], traffic shaping

needs to be combined with the traffic scheduling under packet contraints

among mobile clients. In addition, most traffic shaping solutions are de-

signed for the scenario involving a single application. Considering those

situations where multiple applications run concurrently, the scheduling

between the application-specific traffic shapers can be achieved similarly

to the buffering-based workload scheduling for processing tasks [109].

In addition to grouping the packet intervals, traffic shaping can also be

utilized for making the traffic intervals more predictable. For example,

Chandra and Vahdat [21] proposed to shape the streams into the traf-

fic with predictable intervals on streaming servers, so that mobile clients

are better informed about the future arrivals of the streaming data, and

could, therefore, more accuractly adapt their operating modes to the traf-

fic. Their experiment results showed that the combination of traffic shap-

ing and power management for the WNI could improve the energy effi-

ciency of receiving data on mobile clients by up to 83%.

Besides buffering, it is also possible to implement the traffic shaping on

the receiver side for TCP-based data transmission. The idea is to utilize

the flow control mechanism of TCP protocol to shape the traffic into peri-

odic bursts, as proposed in [129, 106]. When the receiving window size is

set to 0, the TCP server will stop sending and will start buffering the data

until the window size is reset to a value greater than 0.

Regardless of how the traffic shaping is implemented, the efficiency of

traffic shaping partly depends on whether the traffic shape could be main-

tained when the traffic arrives at the mobile device; this is because the

shape might change on the way. The change might be caused by the in-

terference in the access network [21], or by the fluctuation in the quality

of the link between the traffic shaping proxy and the access point [52].

Generally speaking, it is better to have as little interference as possible
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and to locate the traffic shaping as close to the end device as possible [52].

Traffic shaping and sleeping mechanisms could also be utilized for re-

ducing the energy consumption of other network elements such as routers

and switches [84]. Since we are focusing on mobile devices in this thesis,

we leave the readers to refer to [84] for details.

Traffic Scheduling at Access Point

The traditional first-come-first-serve policy of wireless access points is not

optimal for energy efficiency, because the mobile devices might need to

stay awake while the access point is serving other mobile devices. Hence,

Zheng et al. [144] proposed an optimal scheduling algorithm for minimiz-

ing the awake duration while taking the fairness of energy consumption

as well as performance requirements into account.

Because background network traffic has a significant impact on the

power consumption of devices stations, He et al. [50] and Rozner et al.

[117] focused on scheduling algorithms for reducing background network

traffic, and further, energy consumption. Both focused on the background

traffic generated by the mobile devices within the range of a single access

point. Instead of merely looking into the contention inside the range of

a single access point, SleepWell [77] focused on reducing the energy con-

sumption of mobile clients by reducing contention between different APs.

Traffic scheduling at AP can also aim at shaping the traffic into longer

intervals so that the mobile stations can remain in sleep mode for longer

periods. For example, [125] proposed a scheduling algorithm based on

time slots. This algorithm aimed at grouping packets into bursts within

given QoS requirements.

Workload Scheduling Between Wireless Network Interfaces

Mobile devices are increasingly being equipped with multiple and hetero-

geneous wireless interfaces, such as 3G, Wi-Fi and Bluetooth. These wire-

less interfaces differ from each other in terms of communication range,

throughput, and the energy efficiency of data transmission. According to

the quantitative measurement of mobile devices [100, 43, 11, 88], Wi-Fi

supports a relatively high data rate (e.g. 54Mbps for 802.11g) compared

with 3G and Bluetooth, whereas Bluetooth could be an order of magni-

tude more energy-efficient than Wi-Fi. On the other hand, Wi-Fi is more

energy-efficient than 3G for bulk transfer, although its communication

range is typically less than 100 meters, much smaller than 3G, and Wi-Fi
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connectivity is not always available either.

With each wireless interface having their own strengths and weaknesses,

many intelligent strategies for wireless interface selection have been pro-

posed in an attempt to leverage the strengths of these interfaces to achieve

energy savings. Examples include offloading data transfer from cellular

networks to Wi-Fi whenever Wi-Fi connectivity is available [9, 134, 105],

using Bluetooth instead of Wi-Fi in a personal area network [43, 88], and

handover between Wi-Fi and other wireless networks like WiMax [141]

and WiBro[57]. Techniques like multipath TCP have also been proposed

to avoid the session breakage during handover [90].

A challenge to these strategies comes from the overheads caused by

non-communicating modes such as searching for and associating with an

available Wi-Fi access point, scanning and pairing with a Bluetooth de-

vice, and staying in idle mode. A detailed report on the power consump-

tion of Wi-Fi and Bluetooth in non-communicating modes can be found

in [43].

To reduce the overheads caused by the searching for Wi-Fi availabil-

ity, Context-for-Wireless[105] proposed to use cell-tower information as

location information to predict Wi-Fi availability because collecting cell-

tower information requires much less energy than periodic scanning of

Wi-Fi access points. Blue-Fi [9] proposed to combine cell-tower informa-

tion with the Bluetooth contact-patterns to improve the prediction accu-

racy of Wi-Fi availability. In addition, Blue-Fi proposed a collaborative

prediction framework in which information concerning visible Bluetooth

devices, cell-tower and other available Wi-Fi connectivity can be collected

by mobile users and shared with each other through peer-to-peer commu-

nications or centralized web servers.

Given the overheads, the potential energy savings to be gained from

intelligent wireless network interface selection could be estimated based

on the predicted workload of data transmission. Besides energy savings,

performance requirements like delay and throughput should also be taken

into account when making the selection [134, 100].

Similarly with the workload scheduling between wireless network in-

terfaces, tasks can be offloaded from one hardware component to another

for energy savings, provided both components can implement the soft-

ware functionality although with different energy efficiency. For exam-

ple, it has been proposed that compass and accelerometer can be used

together with a GPS receiver for energy-efficient positioning and trajec-
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tory tracking [65, 132]. Cell-ID [86] and Wi-Fi fingerprint [64] have also

been proposed to provide more energy-efficient localization. In addition,

LittleRock [94] and Turducken [128] proposed to add additional low power

processors to the mobile device. By offloading the sensing tasks to the ad-

ditional processors, the rest of the mobile device can remain in sleep mode

and therefore reduce energy consumption.

2.4.3 Workload Reduction

The power consumption of a hardware component depends on the amount

of workload given to it. Hence, the power consumption can be decreased

if the workload is reduced.

Data compression [123, 41, 120] has been widely used for reducing the

data size. Compression is often executed on remote proxies before the data

is delivered to the mobile devices [41]. The compression ratio that deter-

mines how much the traffic can be reduced depends on the compression

algorithm [12] and on the type of the media to be compressed. The amount

of energy saved is determined by the trade-off between the decrease in the

communication cost and the potential increase in the computational cost

for compressing and decompressing the data. If both sender and receiver

are mobile devices, global power management (as discussed in [91]), can

select which transcoder to use and where to implement the transcoding

based on the predicted energy savings and the predicted effect on perfor-

mance.

The trade-off between computational and communication cost here is

similar to the trade-off faced in computation offloading from mobile de-

vices to the cloud [23, 101]. In addition, the tradeoff exists in the collab-

orative computation among multiple processors [142], among a network

of collaborative nodes [29] and among mobile device and the sensors con-

nected to it [60].

The traffic scheduling that can reduce retransmission could also be con-

sidered as an energy-efficient solution based on traffic size reduction. Ex-

amples have been presented in the previous section. Besides traffic size

reduction, it is also possible to reduce the cost by removing unnecessary

functional components. For example, some fields in network protocols are

not necessary and could be disabled to achieve energy savings.
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2.5 System-level Power Management for Mobile Devices

Benini et al. [13] classified dynamic power management techniques into

two categories: predictive schemes and stochastic optimum control schemes.

Predictive schemes can be utilized for predicting the idle interval [67,

54] and the hardware utilization [47, 126]. The stochastic optimum con-

trol schemes model the system as stochastic processes [17, 55], such as

Markov chains, and formulate power management as the optimization of

decision making based on the tradeoff between power and performance.

The input of the optimal algorithm is the future workload that can be pro-

vided by the predictive schemes or by the stochastic models of the work-

load [131]. We note that the above two kinds of schemes can be used

individually, and also collaboratively if the input of the stochastic optimal

algorithm is generated by the predictive schemes.

The above schemes have been mostly used in the power management of

individual hardware components. However, minimizing the per-component

energy does not necessarily minimize the overall energy of the mobile

device [115, 72]. Since a mobile device may be thought of as a combi-

nation of hardware components, system-level power management, with

its focus on the overall energy consumption of the mobile device, must

take the interactions between the different hardware components into ac-

count. The above schemes have therefore been further worked into the

workload-based joint adaptations of hardware components and into holis-

tic optimization of power management.

Some mechanisms [79, 92] have been proposed for coordinating the power

management strategies of the various hardware components in order to

gain more energy savings. For example, Min et al. [79] proposed to use

the information gathered from the WNI to control the CPU voltage and

frequency. Furthermore, Poellabauer and Schwan [92] proposed to coordi-

nate the power management of CPU with the power management of WNI

and traffic shaping. In order to enhance the burstiness of the traffic, the

CPU frequency was scaled down when the packet scheduler queue was

empty in order to delay the generation of new packets, and it was scaled

up when the first packet was generated.

Devadas and Aydin [30] proposed an optimal algorithm for minimizing

the system-level energy consumption. The algorithm determined the op-

timal speed of the DVS-enabled CPU and the state transition of I/O de-

vices. Similarly, Ashwini et al. [10] defined the system-level power state
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as the combination of the power states of the hardware components. They

proposed an optimal algorithm for selecting the power state of each hard-

ware component based on the application requirements. These so-called

optimal algorithms utilize the difference in power consumption between

operating modes or power states. Some optimal power management algo-

rithms are also based on the nonlinear discharging process of the battery

[107]. For example, Zhang et al.[147] presented an optimal algorithm,

aiming at minimizing the charge loss through DVS-based job scheduling

under job deadline constraints.

If we look at the system-level power management solutions from the

viewpoint of software architecture, the proposed solutions can be imple-

mented on OS, middleware or application levels.

For example, the coordination of DVS and PSM is usually implemented

at OS level. In addition, as hardware resource management is one of the

major functionalities of a mobile OS, some revised OSs, such as ECOsys-

tem [143] and Cinder [116], have been proposed with improvement in the

resource allocation among competing tasks. Take Cinder [116] as an ex-

ample; it provides mechanisms for controlling how many resources to allo-

cate to each application, and how fast the resources can be consumed. Cin-

der includes a cooperative and energy-restricted network stack. Before

handling a network system call, the network stack first checks whether

the allocated energy is enough to turn the radio on and to perform the

transmission.

At middleware level, Ashwini et al. [10] provided interfaces for applica-

tions to reveal their application requirements. In the case of proxy-based

power management, such as Parm [82] and Dynamo [80], the middleware

provides interfaces for the contextual information exchange between mo-

bile devices and the proxies. Recently, proxy-based power management

has been developed into computation offloading [23] in the mobile cloud

computing paradigm.

At application level, Liu et al. [74] proposed to allow each application

to make local power management decisions based on CPU demand and

availability, instead of globally optimizing the system-wide energy con-

sumption. In order to implement this, OS or middleware are supposed to

provide interfaces for applications for monitoring the hardware resource

consumption [31] and for controlling the hardware operating modes.
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2.6 Summary

In this section, we have introduced the techniques used for power mea-

surement and power modeling. Our introduction to power modeling cov-

ered the deterministic method, statistical method and their combinations.

Then, we presented the solutions for energy-efficient wireless data trans-

mission focusing on the adaptation of hardware operating mode, workload

scheduling and workload reduction, before we moved on to the discussion

about system-level power management.

Our discussion about energy-efficient wireless data transmission only

cover the network protocol layers that are related to our work. We leave

readers to refer to the surveys for details about the solutions at physical

layer [58, 49], such as dynamic modulation scaling [119], and the energy-

efficient routing protocols at network layer [6, 35]. At MAC layer, we

introduce the revisions to PSM and the traffic scheduling at access point.

At transport layer, we present the traffic shaping based on TCP flow con-

trol mechanisms. At application layer, we discuss the solutions related to

workload scheduling, workload reduction, and system-level power man-

agement.
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3. Modeling and Managing Energy
Consumption of Mobile Devices

This chapter discusses the published contribution of this thesis. The

contribution consists of power models, the schemes of adaptive wireless

data transmission for energy efficiency, and an event-driven framework

for system-level power management. The future work is discussed at the

end of this chapter.

3.1 Power Modeling

PSM1 for Wi-Fi has proved to be inefficient for many application scenar-

ios. As discussed in Section 2.4.1, the efficiency of PSM depends heavily on

the traffic generated by mobile applications. To increase the energy sav-

ings, it is essential to optimize the design of the PSM, as well as to make

mobile applications more PSM-friendly. This requires software develop-

ers to understand how the energy consumption is related to the traffic and

to the application design. All of this motivates us to develop a practical

power model that can reflect such relationships.

We follow the deterministic method that is described in Section 2.3.1 to

build a power model of Wi-Fi-based wireless data transmission. We base

our model on the operating mode of WNI estimated from traffic traces.

Unlike the packet-level power models, our models estimate the operating

mode from the detected burst information.

As illustrated in Figure 3.1, we define a burst as a group of packets

flowing in the same transmission direction, and where each packet inter-

val is smaller than a threshold. The operating mode of WNI is assumed

to be fixed over the burst duration. As the packet intervals inside a burst

are always set to be smaller than the PSM timeout, transitions between
1In this chapter, we use the abbreviation PSM to refer to PSM Adaptive as done
in Publications I-V.
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Burst Duration TB

Burst Interval TI

Packet Interval ≤ Threshold

Bin Duration T= TB+TI

Figure 3.1. Burst definition.

IDLE and SLEEP modes only occur during the intervals between bursts.

In Publication I, we compare the power consumption with and without

using PSM and find that according to our power model, the PSM does not

save energy if the data rate is high. This provides the theoretical support

for the power management solutions that switch the WNI into CAM for

bulk transfers [8].

Our power model is independent of transport layer protocols. Due to

space limitations, we only show the results for TCP transmission, even

though our model can also be applied to UDP transmission. We first

present a power model using network data rate and burst size as vari-

ables. We notice that the burst size is related to certain application pa-

rameters, such as the encoding rate of a streaming application. Our model

also provides hints on implementing energy-efficient strategies based on

traffic burstiness. An example of such a strategy is the traffic shaping

discussed in Section 2.4.2.

We also show a simplified power model using only network throughput

as input. Obtaining a throughput reading is relatively easy for the appli-

cations if we compare it with the collection of the system-wide packet-level

traffic trace which requires root privileges on the mobile devices. This

simplified model is thus highly useful in estimating the power consump-

tion of mobile applications such as YouTube during runtime.

In addition to power, we present another power metric: the energy util-
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ity. Energy utility quantifies how many bits can be transferred with a

single unit of energy. The metric does not include information on the du-

ration and is hence often used when describing proxy-based adaptations

such as computation offloading.

We validate our model with physical power measurement on three mo-

bile phones: Nokia N810, HTC G1 and Nokia 95. The experimental re-

sult shows that the power consumption of wireless data transmission in-

creases with the data rate meaning that the general assumption of fixed

power consumption during data transmission (which is often made in

the relevant literature) does not hold in practice. This result also shows

that energy efficiency does not conflict with transmission performance. It

follows, therefore, that the techniques developed for improving network

throughput might well be borrowed for the studies on energy efficiency.

The linear dependency on data rate is later leveraged in building the

system-level power model, as presented in Publication II. Our power model

is based on a linear regression model. The model variables are selected

from the metrics that are able to reflect the hardware utilization of CPU,

the WNI and the display. As proposed earlier in the literature, we use

Hardware Performance Counter (HPC) based variables for describing the

microprocessor utilization. Our main contribution is that we propose to

use a linear regression model with non-negative coefficients. The fea-

tures of non-negative coefficients help towards an efficient reduction in

the number of variables in the model. This solves the problem of being

able to monitor only a few HPCs simultaneously on mobile microproces-

sors. The test cases we use for collecting the data sets are also described

in Publication II.

Extending from the HPC-based computational power model, we show

how to integrate the computational power model with a transmission

power model by using linear regression. Motivated by the power models

described in Publication I, we use downlink and uplink data rates to de-

scribe the hardware utilization of the WNI. We also use another variable

to indicate whether the CAM is enabled or not. In the final model, the co-

efficients for the downlink/uplink data rates are close to the per-unit data

download/upload costs obtained from the power measurement. The coef-

ficient for the CAM indicator is close to the difference between the IDLE

and SLEEP modes in power consumption. This result is consistent with

the model presented in Publication I, as we can see that the estimated

power increases with the downlink/uplink data rates. Publication II also
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shows the feasibility of a statistical model of the transmission cost, based

on an abstracted workload description at a higher level as discussed in

Section 2.3.1.

At the end of Publication II, we discuss the process-level power analysis.

In the literature, power consumption per mobile application or process is

often estimated by assuming that the power consumption of each applica-

tion can be directly summed up into the overall power consumption of the

mobile device. We argue that this assumption cannot be directly applied

to the power analysis of wireless data transmission because there is no

common rule about how to divide the energy cost during traffic intervals,

or the tail energy between applications or processes.

3.2 Adaptive Wireless Data Transmission for Energy Efficiency

Energy consumption of wireless data transmission depends on how much

traffic is delivered and how the delivery is implemented. Publication III

presents a proxy-based framework for energy-aware lossless compression

in which the incoming data can be first compressed at a proxy and then

forwarded to the mobile receiver. Our major contribution is a decision-

making algorithm based on the trade-off between the computational and

communication costs. Taking a different approach to previous work, we

consider the potential impact of network conditions on the communication

cost, in addition to the factors that affect computational costs.

We define the metric ‘compression effectiveness’ for evaluating the po-

tential energy savings brought by the compression. Only when the com-

pression effectiveness is greater than 1 is it more energy-efficient to use

compression. We model the energy utility of decompression statistically

by using the compression ratio as a parameter. Moreover, prompted by

the linear relationship between power and network throughput, we define

the energy utility of transmission as a function of the network through-

put. We predict the network throughput based on its history, and derive

its energy utility from that of the closest reference data rate based on the

linear relationship.

We evaluate this framework using mobile Email as a case study. The re-

sults prove that the energy savings are highly dependent on the efficiency

of data compression and network conditions. The efficiency of data com-

pression depends on the type of data and on the available compression
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algorithms, which are usually fixed. Network conditions, however, intro-

duce factors of uncertainty: when the network throughput is very high,

the costs of decompression might overtake the energy savings, and when

the network throughput is low enough, compression saves energy.

Our decision-making algorithm can be extended to other proxy-based

workload reduction and offloading scenarios. For example, in computa-

tion offloading, there is a tradeoff between computational and communi-

cation costs. When estimating the communication costs, network condi-

tions should be taken into account, since they have a significant impact

on the results. In addition, our framework is scalable to other mobile ap-

plications such as web browsing. Due to space limitations, the evaluation

of other applications is not presented in Publication III.

Publication III points out that the network conditions have a significant

impact on transmission cost. In Publication IV, we make a deep study

of this impact and investigate the adaptation of network transmission to

the network conditions for energy savings. We chose SNR, an indicator of

wireless link quality, as our measurement metric for network conditions.

The value of the SNR depends on many factors, such as the distance from

the access point, the transmit power of the WNI, and the interference near

the mobile device.

Generally, better link quality, indicated by a higher SNR, can lead to

a higher network throughput and therefore to a higher energy efficiency.

Inspired by this, we propose to adapt the network transmission to the

future trend of SNR in mobility scenarios. We set a threshold for the

SNR. When the SNR is predicted to cross the threshold, the adaptation

is triggered. In practice, network transmission is paused when the SNR

falls below the threshold. Otherwise, network transmission continues.

We propose three prediction algorithms for predicting SNR, Autoregres-

sive Integrated Moving Average (ARIMA) [99], Newton Forward Interpo-

lation (NFI) [44], and Markov Chain [59]. Except for the NFI, the other

two prediction algorithms require offline training. In Publication IV, we

explain the procedure of model building, including data collection, model

training and evaluation.

By using the prediction algorithms to compare the prediction accuracy

and the energy savings of adaptive network transmission, we notice that a

more accurate prediction does not necessarily lead to more energy savings

in adaptive network transmission. In other words, we may ignore an error

in prediction if it does not wrongly estimate the point when the threshold
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is crossed.

We measure the network throughput and transmission costs both with

and without adaptations under different network conditions. To ease the

analysis, we classify the network conditions into four scenarios using the

mean and the standard deviation of SNR. Our results show that the ef-

fectiveness of our adaptation varies from scenario to scenario. If we look

deeply into the reasons behind the variation, we find that the effective-

ness depends on that fraction of time during which the SNR is lower than

a certain value (e.g. 15). For example, in the scenarios where the mean

SNR is lower than 15, or where the mean is higher than 20 but the stan-

dard deviation exceeds 5, it is profitable to conduct the adaptation. On the

other hand, if the SNR is not high and the standard deviation is also very

small so that the SNR itself rarely becomes very small, the adaptation

could not bring much benefit. This finding gives more insight into the im-

pact of SNR in data transmission performance and energy cost. Although

we have only tested it in Wi-Fi, we believe our work can also provide valu-

able insight into the SNR-based adaptation in 3G networks [118].

3.3 System-Level Power Management for Mobile Devices

In the context of Publication V, power management refers to the software

solutions that manage the energy consumption of wireless data transmis-

sion by controlling the behavior of mobile devices and applications. As

discussed above, the energy consumption of wireless data transmission

depends on both the size and type of the transferred data and on the con-

ditions in which the transmission takes place. The effectiveness of power

management depends greatly on how well it can adapt the operations of

the mobile devices and applications to varying conditions.

Publication V presents an event-driven framework for power manage-

ment in mobile devices. The changes in contexts are defined as events,

and the changes in conditions are described as different combinations of

events. As a result, context-aware power management applications can

be described with event-driven adaptations. The main components of our

framework are the event generator, the event processing agent, the sched-

uler, the context storage and the rule base. The most important contribu-

tion of this framework is to introduce complex event processing techniques

into event-driven power management. To the best of our knowledge, our
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framework is the first event-driven power management framework that

supports both complex event processing and simple event processing.

We argue that complex event processing is more suitable for power man-

agement than simple event processing, especially in wireless data trans-

mission scenarios. In Publication III and IV, we have seen that predic-

tion is very much needed in implementing adaptive network transmis-

sion. However, simple event processing can only generate events that are

based on the contexts that can be directly measured. It cannot generate

events based on changes in predictions. In contrast, however, complex

event processing, as shown in Publication V, can create events based on

statistics and prediction of contexts. In Publication V, we also discuss

traffic scheduling scenarios where the detection of traffic patterns is the

basis for adaptations. The detection of traffic patterns cannot be handled

by simple event processing, and complex event processing is needed. We

show how to apply the functions of complex event processing, such as in-

stance partitioning, filtering, derivation and pattern matching, in traffic

scheduling based power management in Publication V.

From the viewpoint of the corresponding policy management, complex

event processing is often compared with simple event processing within

the framework of the event processing itself. Complex event processing

leads to simple policy management, whereas simple event processing is

usually accompanied by complex policy management. We argue that com-

plex event processing brings extra benefits for power management at OS

and middleware levels, because it can provide more meaningful infor-

mation about the conditions, which in turn makes it easier for applica-

tion developers to define policies and to detect the potential conflicts be-

tween policies. Furthermore, the situational information might need to

be shared between applications. By using complex event processing, the

applications do not need to repeat the same processing for atomic events.

Our framework provides user-friendly interfaces for implementing and

configuring power management applications. We propose to use event-

condition-action (ECA) rules to describe which actions to invoke upon the

occurrence of an event conforming to certain conditions. Developers only

need to define the rules using structural XML and leave the rule-based

adaptation scheduling to the framework. The rules used for processing

atomic events into more meaningful ones can also be defined as ECA rules

and can therefore be processed using the same processing engine.

We demonstrate the framework using two power management applica-
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tions: traffic-aware WNI control, and the SNR-based transmission adap-

tations. The first one is an example of using complex event processing.

It focuses on prediction-based traffic scheduling. As opposed to the work

using application hints for traffic prediction, we propose to predict the

no-data intervals based on the self-similar burstiness of network traffic

and to learn the traffic patterns online based on statistics. The other sce-

nario is based on the work shown in Publication IV. In Publication V, we

focus on its implementation using an event-driven framework. The exper-

imental results from these two case studies prove the functionality of our

framework and show more than 10% energy savings in each scenario.

3.4 Open Questions

In this subsection, we discuss future work that can be based on the results

of this thesis.

First, as discussed above, network conditions have a significant impact

on power consumption. It remains an open question, though, how to show

the impact explicitly in the power models that are designed for applica-

tion developers. Our suggestion is to measure the impact as the change

in workload such as the increase in traffic size and the increase in burst

count and to apply the power models presented in Publication I for the

traffic description, including both background and foreground traffic. The

accuracy of such power models need to be evaluated under different net-

work conditions. Moreover, the model we presented in Publication I did

not consider the transmit power control, because transmit power control

was not supported by our experimental devices. If transmit power control

becomes available in the near future, our models can be updated by re-

placing the fixed power consumption of TRANSMIT and RECEIVE modes

with adaptive ones.

Second, the power analysis for hardware at design stage has been widely

studied, but not for software. We believe it is worth investigating the tools

that can offer suggestions to application developers for improving the en-

ergy efficiency of mobile applications at design stage, especially with re-

spect to the energy efficiency of wireless network transmission. Mobile

device emulators are widely used for testing mobile applications. The

power models presented in Publication I and II can be integrated into the

emulators in order to compare the energy-efficiency of different design
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choices, if the model variables can be obtained.

Third, most of the existing strategies have been designed and evaluated

for a specific application in mind. In real life, different kinds of appli-

cations might access networks from a mobile device concurrently, which

means the wireless network interface might be serving more than one ap-

plication at the same time. In those scenarios, optimizing part of the data

transmission does not necessarily lead to the minimization of the overall

transmission cost. Therefore, the application-specific strategies and the

other power management software on the mobile device need to cooperate

to optimize the holistic energy efficiency of the mobile device. In practice,

the complex event processing presented in Publication V can be used for

analyzing the aggregated traffic on the basis of the traffic information of

each single application.

Fourth, contextual information collected from mobile devices can be shared

among themselves through central web services or peer-to-peer informa-

tion sharing. The sharing of context information, such as the SNR traces

and location, can help reduce the energy consumption spent in context

monitoring and processing. Crowd-sourcing techniques can be utilized for

implementing such collaborative power management solutions [139, 133].

On the mobile side, our event-driven framework presented in Publication

V can be extended to support the collection and sharing of different kinds

of contexts.
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4. Conclusions

Energy consumption is an important issue for mobile devices, applica-

tions and networks. It has attracted much attention from the industry

and academia. Considerable efforts have been put into developing low-

power hardware, energy-efficient software and wireless networks, but de-

spite these efforts, the research achievements could still not address all

the challenges posed by the emerging mobile devices, applications and

networks.

In this thesis, we have focused on understanding and describing the

energy consumption of mobile devices, with special focus on the energy

consumption caused by wireless data transmission. We have shown that

transmission costs are dependent on various contexts, including Inter-

net traffic characteristics, power-saving mechanisms, and network envi-

ronment. We have leveraged the power models by developing concrete

strategies based on reducing or scheduling the workload of wireless data

transmission.

We have also investigated the management of energy-efficient strate-

gies on mobile devices and have proposed an event-driven architecture for

implementing context-aware and policy-based power management. We

introduced complex event processing into power management and have

shown its advantage through a proof-of-concept power management plat-

form.

The evaluation of energy-efficient techniques consists of the analysis of

the effects the techniques have on the energy consumption and the appli-

cation performance. The contributions of this thesis not only focus on the

potential energy savings and the performance improvement, but also on

how to assist the development of energy-efficient techniques. We believe

that the solutions presented in this thesis could provide great insight into

the development of energy-efficient mobile systems in the future.
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