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CHAPTER 1

Introduction

1.1 Overview and Motivation

During the past decades, advances in computer technology have enabled
a fundamentally new, data-driven approach to research. Instead of con-
ducting meticulous theoretical work to come up with new ideas and hy-
potheses, it is possible to gather and analyze unprecedented amounts of
experimental data with the intent of letting the data point out new ideas
instead of just verifying them. This “discovery science” [1, 2] paradigm
brought the need for data mining, that is, using computational methods to
explore large datasets for significant and interesting pieces of information
called patterns. This knowledge can then be used for the better under-
standing of the underlying phenomena or for making predictions.

Example 1.1. A supermarket gathers information about their customers through
the use of loyalty cards that can be used for tracking customer behavior. In ad-
dition to modeling the sociological phenomenon and finding new marketing tech-
niques from the models, the supermarket can simply use the collected data to see
what is actually happening and optimize its marketing directly based on what
works best in computer simulations.



1. INTRODUCTION

Finding new information from data is not enough. Large amounts of
data always contain also large amounts of details occurring merely by ran-
dom chance. Instead of using theory to generate hypotheses then verified
by data, the data-centric process requires theoretical work to verify the hy-
potheses generated by data. However, testing the significance of patterns
in a correct manner has proven to be surprisingly difficult [3, 4]. In ad-
dition to the philosophical problems in significance testing, there are also
pitfalls in formulating the null hypothesis that defines the particular claim
evaluated and in testing the significance of the null hypothesis.

With time there has been a growing interest in seeking out a wider
range of different types of patterns from data and avoiding standard as-
sumptions such as gaussianity in cases where they cannot be reasonably
validated. Assessing the probability of a pattern arising by random chance
in such a setting requires good modeling of the data source incorporating
this model to the significance test. This work describes a framework suit-
able for situations where the data source is difficult to model. In principle,
this is done by letting the practitioner choose high level properties that he
wishes to preserve in the data samples and then it is the duty of the frame-
work to establish a resampling scheme in accordance with these wishes.

The work of this thesis emphasizes also a transition towards data-
centric thinking in significance testing. Just as in the discovery science
paradigm where the findings from data are evaluated with theory, this
work develops significance testing methods around what the data con-
tains and how it behaves instead of estimating these traits from theory,
which is the common earlier approach to significance testing. Transition-
ing to a data-centric setting in significance testing simultaneously shifts
the problem closer to computer science and data mining and further from
traditional statistics.

Example 1.2. The supermarket has identified an interesting pattern in their data
and now wishes to test whether this pattern is significant and worth putting to
use. Instead of evaluating the probability of the pattern to arise from some model
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1.1 Overview and Motivation

of customer behavior, the supermarket can evaluate the probability that the pattern
exists in datasets that are similar to the original data.

With the data source properties gathered, we can state a property-based
null model for our testing which, given a dataset and possible parameters,
defines a probability distribution over all datasets in the sample space. In
basic terms, a property-based null model is simply a collection of prop-
erties and rules on how they need to be preserved when choosing the
data samples. Property-based null models are defined and studied more
closely in Section 3.2.

The samples from the null model are produced using Markov chain
Monte Carlo methods. These methods gradually perturb a dataset with
local operations and control the process by managing the movements of
the Markov chain. However, many data properties are difficult to mea-
sure and manage effectively, complicating their use in significance testing,
especially in cases where these properties are an integral part of the char-
acter of the data. This problem can, in some cases, be overcome with the
use of data representations that expose these properties and suitably sep-
arate them from the rest of the data.

The ability to include diverse and multiple properties in a null model
makes it easier also to iteratively modify the null model and compare the
significance results. With such measures it is then possible to understand
better which data patterns depend on or are implied by certain data prop-
erties. Different null models correspond to different contexts for the orig-
inal data, for the patterns tested and for the results of significance tests.
These results might or might not be similar for different contexts.

The use of data mining has gradually expanded from the relatively
simple applications for static database data such as in Examples 1.1 and 1.2
to a wide variety of complex data sources such as social networks, indus-
trial process monitoring or gene behavior. These complexities on the data
source level are then combined with mining increasingly convoluted pat-
terns, requiring high adaptability also from the significance tests that are
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1. INTRODUCTION

used.

Example 1.3. Electroencephalography (EEG) and functional Magnetic Reso-
nance Imaging (fMRI) are two technologies used for monitoring brain activity.
The properties of the ensuing datasets are however rather different. For example,
the poor and convoluted spatial resolution of EEG is compensated by its excellent
temporal resolution, whereas for fMRI the situation is reversed. The complica-
tions in these methods are fundamental and can be dealt with only once the data is
analyzed. In addition to these complications, significance testing for these datasets
may require taking into account specific features such as physiological time delays,
prior knowledge of brain structure and comparisons or aggregates across multiple
test subjects.

The purpose of this work is to highlight some of the present prob-
lems in significance testing and find ways to make the process more au-
tomated for wider use while providing reliable significance assessment.
The work has two main themes. First, one core element of the work is the
use of property-based null models that can be used to reduce the amount
of application-specific theoretical work needed. Second, providing better
access to the components of a null model through the use of data repre-
sentations is explored. These main themes of the work are accompanied
by significance testing methods for specific applications to demonstrate
practical use cases.

The rest of the thesis is organized as follows. Chapter 2 discusses the
basics of statistical significance testing and defines the core aspects. Chap-
ter 3 discusses the randomization approach to significance testing and in-
troduces the concepts of property-based null models and representation-
based randomization. Applications of these ideas are discussed in Chap-
ter 4, where problems in testing the significance of complex null hypothe-
ses are demonstrated within various fields of science. Finally the work is
concluded in Chapter 5.
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1.2 Summary of the Publications and Contributions
of the Author

Publication I discusses the problem of randomizing real-valued matrices
that have comparable rows and comparable columns. The paper considers
two separate tasks where either the means and variances or the full value
distributions of each row and column are approximately preserved during
randomization. Two main algorithms are introduced for the problem and
these algorithms are then combined with various local modification op-
erations and error measures. The first published version [5] of the paper
considers only the simpler task of preserving the means and variances.

In the first published version [5] of Publication I, the methods were de-
veloped jointly with Markus Ojala. The current author developed most of
the theory while the experiments were mostly performed by Ojala. The
text was written jointly by all authors. Most additional work in Publica-
tion I was made by Ojala.

Publication II considers the problem of finding independent patterns from
data. The paper proposes a general scheme of randomization where pre-
viously found patterns are iteratively added to the null model and fixed
during randomization, allowing patterns not explained by the earlier find-
ings to be found. The approach is tested with binary matrices for which
row and column sums, itemset frequencies and cluster structure are used
as different pattern types.

Forming the original idea and the theory for the work and designing
and interpreting the experiments were conducted jointly by the authors.
Hanhijarvi and Ojala implemented the algorithms and conducted the ex-
periments.

Publication III proposes a solution for testing the significance of patterns
against the null hypothesis “structure in the data is a result of the cluster
structure”. The proposed method bases itself on the theoretical connec-
tions between principal component analysis and the k-means algorithm.

5



1. INTRODUCTION

The paper discusses applications in exploring the relations of results in
unsupervised and supervised learning for a dataset and in finding pat-
terns that are independent from the cluster structure of the dataset. The
paper is briefly expanded to include multiple other forms of structure in
data.

Forming the original idea and theory and running experiments was
done by the current author. Verifying the theory, planning experiments
and writing the paper was jointly done with Kaski.

Publication IV proposes a wavelet-based null model for the significance
testing of time series collections and introduces a randomization method
that is compatible with this null model. The null model is built on three
constraints on the perturbation in time, frequency and across the individ-
ual time series in the collection. The model is compared with multiple
other (implicit) null models often used for the task. Experimental results
for the different randomization methods are compared with each other
and reflected against the theoretical analysis.

The current author was responsible for the original idea, theory and
running experiments. Verifying the theory, planning experiments and writ-
ing the paper was jointly done with Kaski.

Publication V proposes a new approach for testing the significance of gene
cyclicity by comparing the observed expression levels to the others in the
dataset. The main advantage of this approach is its suitability for the inher-
ently low quality data that also contains unnatural substance arising from
the experimental setting. Theoretical analysis and experimental results are
used for measuring the success of the approach and for comparing it with
other methods. The general process of the problem is also discussed in
detail and best practice recommendations are made.

The design and development of the methods was done by all authors.
The current author carried out the mathematical analysis, whereas Kallio
implemented the method and carried out the experiments. The manuscript
was written jointly by the current author and Kallio.



CHAPTER 2

Significance Testing of Patterns in
Data Mining

Data mining is the general concept for exploring large datasets on the look-
out for interesting patterns, that could be of some use [6]. The large amount
of data to be processed is often construed to be one of the conditions in
qualifying an activity as data mining. This condition sets limits on the in-
tricacy of the analysis tools, but also implies that the data is usually filled
with a myriad of various details any of which could be deemed interesting
in someone’s opinion. Therefore the process of data mining is split into a
set of different analyses that explore different aspects of the data.

A data mining algorithm f is used for searching the patterns of the
pattern collection Py. Given a dataset & as input, the algorithm outputs a
set of patterns f(X) =P C Pr. However, not all of these patterns deserve
a second look and it is important to prune out the trivial patterns from P to
improve the efficacy, cost and quality of the data mining process. The main
source of these trivial patterns is the fact that although the data mining
algorithm f is of general purpose, no dataset is ever just “generic”. Any
dataset has its set of special features intrinsic to the data source, features
that are considered trivial for the data coming from this source, but not in
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the general case.

Example 2.1. Depending on the dataset and our prior knowledge and expecta-
tions on its structure, correlations in data can be called interesting in some case
if they are strongly positive or negative, close to zero or anything there between.
Suppose then that we are exploring national statistics of law enforcement and
restrict our interest in strong correlations between variables. Despite this restric-
tion, high correlations between city size, the level of law enforcement funding
and the amount of crime are certainly not interesting, but the correlation between
funding per capita and the amount of crime may be interesting, regardless of its
value.

To improve the data mining results we thus face the problem of auto-
matically recognizing the reported patterns that might or might not de-
serve further analysis [7]. To this end we begin with an assumption of
the ground truth that includes our prior information on the features of the
data source. We then conduct statistical significance testing [8], where we
call a pattern significant and accept it for further analysis if we find it un-
likely that the pattern could have arisen by sheer chance from the ground
truth.

The decision on the significance of a pattern can of course never be de-
terministically correct as long as we live in a probabilistic world. Therefore
the best we can hope for is to provide probabilistic bounds on our degree
of confidence in the significance of a pattern. Nonetheless, there is also an-
other, bigger problem in assessing the significance of patterns. As defined
above, significance is always a relative term. This means that the quality of
significance testing results is a direct consequence of our ability to specify
the ground truth both correctly. Deficiencies in specifying the features of
the ground truth result in spurious patterns declared significant, qualita-
tive errors that are often very difficult to detect even in closer analysis. The
difficulties in understanding the ground truth are additionally highlighted
in the present tendency towards more complex null hypotheses.
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2.1 Examples of Patterns in Data Mining

A pattern in data can be any type of extractable piece of information that
might be of value in the analysis of the data. The use of the word “infor-
mation” is intentional, because a pattern can be of use only if it delivers
non-trivial information of the dataset in the sense of information theory
and Shannon entropy [9].

Generally patterns can be divided into two classes based on the type
of information they provide. The first class contains descriptive patterns
that give new knowledge on what types of non-random structures the data
contains. The second class contains predictive patterns that can be used for
inference. In the usual workflow of data analysis [7] we start with pattern
mining in the sense of “nugget searching”: exploring the dataset for de-
scriptive patterns. After this has been achieved, our enhanced understand-
ing of the data allows us to move on to doing machine learning: seeking
predictive patterns and utilizing them for data-driven decision making in
operative real world applications. Thus the technical descriptive patterns
provide an initial stepping stone for devising practical solutions to real
world problems.

The borderline between the two pattern classes is somewhat vague,
but in general a descriptive pattern tells us something that is certain and
reduces the corresponding entropy to zero whereas a predictive pattern
reduces the uncertainty and residual entropy (limited by the mutual infor-
mation). For example, “all sheep have four legs” is a descriptive pattern,
but “most sheep are white” is a predictive pattern. Relative to the pattern
classes, there is a dual separation of data mining tasks into unsupervised
methods that seek out descriptive patterns and supervised methods that
attempt to find the most useful predictive patterns for a given task.

Simple examples of descriptive patterns are correlations of variables,
frequent itemsets, subgroups of data points or temporal dependency and
variations. Despite their predictive nature, association rules are also de-
scriptive patterns that enumerate a certain class of possibly useful infer-

9



2. SIGNIFICANCE TESTING OF PATTERNS IN DATA MINING

ence rules. Similarly possible clustering in data is also a descriptive pat-
tern, which can be used for associating points with each other. More spe-
cialized examples of descriptive patterns include behavioral profiles of
traffic flows [10] and biological [11] or computer viruses [12], function-
alities of a gene [13] or the seriation of paleontological data [14].

Supervised methods generate predictive patterns that attempt to esti-
mate the values of some output function given the inputs in data. In clas-
sification the output function designates data points with pre-determined
labels. In regression tasks there are no necessary constraints to the nature
of the target function. For example, a face recognition system may con-
duct the task of classifying subjects to men and women, but also conduct
regression to estimate their age.

2.2 Statistical Significance of Data Mining Results

The meaning and nature of statistical significance remains a somewhat
controversial topic in statistics [15]. In this work, however, we take a prac-
tical view of the matter and work along the lines generally accepted for
use in the data mining community.

The ground truth on which our significance testing is based is called
the general hypothesis. This hypothesis contains all the fundamental prop-
erties of the data source and also any data-specific properties that we wish
to treat as an integral part of the data. The realism of these properties is an
essential part of the realism of our significance testing results.

The significance of a pattern P is tested with a pair of null hypothesis
and alternative hypothesis. The null hypothesis Hy corresponds to the claim

“ Pattern P is a consequence of the general hypothesis ”
In other words, it corresponds to the case of finding no significance in pat-
tern P. The alternative hypothesis is the complementary claim of declaring

the pattern P significant. Statistical significance testing assesses whether

10



2.2 Statistical Significance of Data Mining Results

the null hypothesis can be accepted or rejected with some required level
of confidence.

Example 2.2. A supermarket gives its customers loyalty cards, which can be used
to get discounts for purchases. This function allows the supermarket to record
each customer’s shopping history to a common matrix of customers and products,
each entry showing the number of bought items by the customer. The supermar-
ket has identified some interesting behavioral patterns among its customers, but
before proceeding with these findings it wants to see whether the discoveries are
significant and worth pursuing or mere coincidence.

The general hypothesis in this significance testing scenario must, in the least,
acknowledge the highly sparse nature of the data as no customer can ever make
purchases of a significant subset of all the 10 000 different products offered. Addi-
tionally the general hypothesis may assume properties on how many transactions
are approximately conducted per month, how popular each item is in general or
how often different customers come to shop and how much they buy in item count
or in dollar amount.

All these properties and many more need to be evaluated before conducting
significance testing to ensure that the results reflect whatever was the purpose of
the assessment.

In mathematical terms, assuming the null hypothesis Hj corresponds
to limiting the probability space (2 and modifying its probability measure
Pr to suit the general hypothesis. The assessment on the null hypothe-
sis is based on comparing the values of a certain test statistic ¢, given by
some measure of interest that indicates the strength of pattern P in a given
dataset. Choosing the measure of interest has very few requirements. Any
function t : D — R is admissible, where D is the space of the datasets.

Example 2.3. Let pattern P be a certain correlation between two data features.

In this case the value of the correlation can be chosen as the measure of interest,
indicating the strength of P in a dataset.

11
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Example 2.4. The supermarket of Example 2.2 has found out that customers
who buy eggs and milk often have also sugar in their cart. To test the significance
of this association rule {eggs, milk} — sugar, commonly used measures like
support (number of transactions which contain all three products), confidence
(how often sugar is bought in cases where eggs and milk are) or lift (comparison
to the case of random recombination) can be utilized as the test statistic.

However, in many cases the choice of the measure is not as simple to
make and the analysis must take into account the effect of the measure-
ment choice in the significance testing results. For example, there is no
simple way to measure the strength of cluster structure in data. Different
choices may range from eigenvalue-related measures [16] or clustering er-
rors with given methods and parameters to computing conductance [16]
or the Dunn index [17] or to general measures such as the Bayesian Infor-
mation Criterion [18].

Once the test statistic t has been chosen, the strength of pattern P in
dataset D as measured by t is computed. Pattern P is assessed more sig-
nificant the more the value f(D) deviates from what one could expect to
observe under the null hypothesis. In a one-tailed test only exceptionally
large (or small) values of (D) are considered interesting. In this case the
significance of P is a monotonically increasing function of (D). If we on
the other hand are interested in both large and small values of #(D), the
test is called a two-tailed test.

Example 2.5. When assessing the significance of correlations both a one-tailed
or a two-tailed test can be utilized, depending on the specific goals of the analy-
sis. Using a two-tailed test on the value of the correlation reports both strongly
negative or strongly positive correlations as significant. The same can be accom-
plished by utilizing a one-tailed test to the absolute correlation value. On the other
hand, testing the original correlation value with a one-tailed test will test only for
exceptionally strong positive correlations.

For the ease of presentation, let us now consider only the case of a
one-tailed test. The null hypothesis is rejected with level of confidence « if
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2.2 Statistical Significance of Data Mining Results

Pr(t(X) > t(D)|Hy, D) < «. In other words, the probability of observing
a value at least as extreme as t(D) should be at most « under the null
hypothesis.

Definition 2.6. The probability Pr(t > t(D)|Hy) is called the p-value of the
pattern P that the test statistic t tests for. To compute the p-value, the distribution
of the values of t under Hy needs to be estimated. This distribution is called the
null distribution and the underlying probabilistic model in the sample space is
called the null model [19, 20].

In most cases it is not possible to explicitly state the null distribution
as either the data source is not known well enough or the null hypothesis
is too complex [21, 22]. In analytical significance testing the null distribu-
tion is explicitly known. In this case the p-values can be exactly computed
from the cumulative distribution function. Typical analytical null distri-
butions include the x?, binomial, Student’s t-distribution and the Fisher’s
F-distribution [23]. In many cases more complicated null distributions can
also be simplified with the central limit theorem. Additionally, also the
use of general probability bounds such as the Chebyshev and Chernoff
bounds or the Azuma-Hoeffding inequality is considered analytical sig-
nificance testing.

Example 2.7. Acme Inc. has recently received complaints claiming that the com-
pany discriminates obese people in recruitment. Foregoing the complexities aris-
ing from gender, age and ethnicity among other factors, the company acquires
public research results on the body mass index averages of the general population
and then conducts an anonymous survey for its workforce.

Assuming that both data follow normal distributions of equal variance, the
Student’s t-test can be used for testing whether the data means differ in signifi-
cant extent. In this case the test statistic is the difference between the two data
means normalized by sample size and variance. The final p-value used for assess-
ing the validity of the claims is then the probability that a random draw from the
relevant Student’s t-distribution would have a lower value than the value of the
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) Original data
Analytical

. Original data
Empirical

Figure 2.1: [llustration of analytical and empirical significance test-
ing. The filled blue areas indicate the p-value, in other words, the
cumulative probability of test statistic values exceeding the value
for the original dataset. In the analytical test this value of the cu-
mulative distribution function can be directly computed whereas
in empirical testing it needs to be estimated from a histogram.

test statistic. This can be done by a simple evaluation of the cumulative distribu-
tion function.

In the usual case of not being able to compute exact p-values from an
analytical null distribution, empirical significance testing, also called Monte
Carlo testing, is used to provide empirical p-values [21]. This may be neces-
sary in a case where the probability density function (pdf) of the null dis-
tribution is known, but it is not possible to integrate over it. In other cases
the pdf is known only in proportion without knowledge of the normaliza-
tion constant. In some cases the pdf is in its entirety unknown. However,
empirical significance testing has been found useful also in cases where
analytical testing is feasible, but cumbersome [21]. Figure 2.1 gives an il-
lustration of the difference between analytical and empirical testing.

A special advantage of empirical significance testing is that it allows
the use of almost arbitrary test statistics, whereas the user of analytical sig-
nificance testing is constrained to those test statistics whose probabilistic
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2.2 Statistical Significance of Data Mining Results

behavior is known. The only general requirement for conducting empir-
ical significance testing is the capability to sample from the null distribu-
tion. The sampling process makes empirical significance testing usually
considerably slower than analytical significance testing procedures.

Empirical significance testing employs the law of large numbers to ob-
tain reliable estimates on the p-value [24]. Let us denote the true p-value
with p* = Pr(t > t(D)|Hp). The null distribution is sampled for N inde-
pendent and identically distributed (i.i.d.) samples D;, for each of which
the event “t(D;) > t(D)” follows the Bernoulli distribution with success
probability p*. Combined with the original dataset D for which the null
hypothesis is assumed true, there are N + 1 i.i.d. samples which can be
used for estimating the p-value. The sum of their test statistic values fol-
lows the binomial distribution Bin(N + 1, p*). Therefore the unbiased em-
pirical estimator of the true p-value p* can be written as

N
p= Nil(l + Z;]I(t(Di) > H(D))).

The variance of this estimate is p*(1 — p*) /N denoting how the quality of
an empirical p-value improves as the number of samples N grows.

Example 2.8. A biology student comes up with a hypothesis that the trees in
a nearby little grove are not randomly distributed but rather form clusters. She
estimates the shape and size of the grove and measures the distances from each
tree to its closest neighbor, letting the sum of these distances to form her test
statistic. Then she generates random samples by placing the same amount of trees
uniformly at random to a same-shaped grove on her computer. Finally she tests
her hypothesis by comparing the original sum of distances to those obtained from
the random samples.

There are few differences between analytical and empirical significance
testing. In general, analytical testing can be seen as an aspiration and em-
pirical testing as the reality check needed in the majority of cases. Re-
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gardless of the type, the process of statistical significance testing goes as
follows:

1. Choose the general hypothesis, the “ground truth”.

2. Choose the null hypothesis Hy, the claim whose truth value we are
evaluating.

3. Choose a test statistic f that can be used to evaluate Hy.
4. Choose the required level of confidence a for rejecting Hy.

5. Estimate or compute p = Pr(t > t(D)|Hy) and reject Hy if p < a.

2.3 Multiple Hypothesis Testing

In exploratory data analysis there is never only one single data pattern
that we are looking for. Rather, the analysis will give us a large collection
of different patterns that we then need to validate for significance. Testing
the significance of all these patterns separately is equivalent to having a
separate null hypothesis for each of the tested patterns. This simultaneous
significance testing is called multiple hypothesis testing [25, 26].

Testing the significance of multiple hypotheses is even more compli-
cated than the case of a single null hypothesis. Additionally, there is no
single correct way to conduct it. Instead, the user needs to decide what he
or she wants to accomplish and correspondingly choose an appropriate
method for the purpose.

Example 2.9. Suppose we are mining a matrix of size m X n for significant cor-
relations between attributes (columns) and use a statistical test of level  for sig-
nificance testing. The total number of attribute pairs and thus of null hypotheses
is () and each true null hypothesis is declared false (Type I error) with proba-
bility «. This however means that even if the data is fully random and all null
hypotheses are true, on expectation «(5) null hypotheses are declared false and the
probability of having no false positives shrinks to (1 — &)@ ~ e=*(),
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To analyze the setting of multiple hypothesis testing we express all the
different possible outcomes in a two-way table as shown in Table 2.1 [27].
In the case of multiple null hypotheses the concept of significance becomes
more complicated [27, 28, 29]. Should we minimize the number of false
negatives T, false positives V or both? Or should maximize the “signal-to-
noise” ratio S/ R of true positives to the total count of significant findings?
These questions do not have a definitive answer and each application re-
quires its own consideration of what are sufficient and necessary require-
ments for the results of significance testing. This consideration involves
striking a balance between risks and costs for acting on different types of
error [29, 30].

Table 2.1: Common table representation used for analyzing mul-
tiple hypothesis testing. The entries in the table correspond to the
following terms: U: True negative, V: False positive (Type I error),
T: False negative (Type Il error) and S: True positive.

Declared Declared

non-significant significant Total
True hypotheses u Vv mo
False hypotheses T S m — mo
Total hypotheses m— R R m

Example 2.10. Filtering incoming e-mail for spam or analyzing criminal evi-
dence to indicate the guilty requires a strict control of false positives V. On the
other hand, in detecting computer viruses or terrorists attempting to sneak a bomb
somewhere it is preferable to cause some false positives to maximize the true posi-
tive count.

A statistical test A is called more conservative than test B if A outputs
less false positives than B. Conversely, B is called more optimistic than

17
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A. In addition to these attributes, multiple hypothesis tests are qualified
also based on how they behave in situations where a varying proportion
of the null hypotheses are true or false. A statistical test provides strong
control if it successfully controls the Type I errors for an arbitrary number
of true or false hypotheses, that is, for any value of m in Table 2.1. A
test has weak control on the other hand if it can reliably control the Type
I errors only under the complete null hypothesis my = m. In general,
weak control without any other safeguards is unsatisfactory for decision
making. See [29] for a more comprehensive review of these terms and
concepts.

Data mining is an exploratory data analysis task whose results are used
as input to more elaborated analysis phases. The main objective of such
screening activity is to substantially reduce the set of tested hypotheses
(m in Table 2.1) while carrying over all the true positive cases to the next
analysis phase [31].

Example 2.11. In drug discovery large amounts of chemical compounds are
screened for effectiveness. A false negative in this process carries the cost of lost
profit on a new drug while a false positive incurs only the cost of running addi-
tional analysis on the compound. This skewed cost structure promotes using some
version of the S/R ratio for significance testing.

There are two main control measures of significance in multiple hy-
pothesis testing. The familywise error rate (FWER) [32, 33, 34] is defined
as the probability Pr(V > 0) of reporting any false positives. Control-
ling the FWER assigns high costs on any false positives. As discussed
above, high hypothesis counts m create problems with the FWER since it
becomes increasingly difficult to control Pr(V > 0) even if the ratio R/m
does not change. The Holm-Bonferroni procedure [33] is the most com-
monly used method for the strong control of the FWER. With threshold
« this procedure starts by sorting all the p-values into descending order
p1 = p2 > - -+ > ppn and multiplying each p-value with its index: g; < ip;.
After this, the null hypotheses are evaluated in the increasing order of the
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numbers g;. Hypothesis i is rejected if 4; < a and all hypotheses prior to
i have also been rejected. If null hypothesis i is accepted, all hypotheses
j > i are also accepted without further evaluation.

The other common measure of significance is the false discovery rate
(FDR) [35, 27]. Assuming R > 0, the FDR is defined as the expected
ratio E[V/R] of false positives from all subjects reported as significant.
The FDR is clearly less conservative than FWER although controlling FDR
does provide weak control on FWER. However, this also means that the
FDR is much better at preventing false negatives, which is usually more
important in data mining. The classical procedure for controlling the false
discovery rate is the Benjamini-Hochberg method [27], which is valid for
hypothesis families that are pairwise independent or positively correlated.
This procedure, originally introduced in [34] for the weak control of FWER,
proceeds similarly to the Holm-Bonferroni method discussed above ex-
cept that the sorted p-values are multiplied by m /i instead of i, that is,
gi < mp;/i. The Benjamini-Hochberg-Yekutieli method [36] is the exten-
sion of this procedure that is valid under arbitrary dependency structures.

The FDR ratio E[V/R] is not well defined if Pr(R = 0) > 0. Addi-
tionally, controlling the FDR becomes overly optimistic when Pr(R = 0)
is high. A solution to this problem, called the positive FDR (pFDR) and
defined as E[V/R|R > 0], is introduced in [31]. As a distinct theoretical
advantage, the pFDR is equal to the Bayesian posterior probability of a
null hypothesis being true when modeling the test statistic as a probabilis-
tic mixture of cases where the null hypothesis is true or false.

As a final note, whereas multiple hypothesis testing is not the topic of
this work, it is an important part of analyzing the significance of patterns
in data mining and has been widely used in the publications of this thesis.
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CHAPTER 3

Randomization in Significance
Testing

Sampling a probability distribution of unknown character is a general
problem widely faced not only in data mining and machine learning, but
also, for example, in physics [37]. Lacking knowledge of the exact null dis-
tribution, it is necessary to estimate it. Considering the expanse of possible
probability distributions, it is often easier to start with the null model that
describes the null distribution in more general terms. Although the null
model and the specific null distribution are simply two different views of
the same probabilistic entity, the higher level view and the lesser amount
of detail makes the null model a better initial approach when the underly-
ing data source is not fully understood.

It is not obvious how to conduct empirical significance testing with-
out defining an explicit null distribution. Such testing task is often done
by taking the original dataset and manipulating it with certain operations
until the result is somehow determined to be independent of the original
data. This procedure is then repeated multiple times to attain the needed
test samples. It is important to ensure that the final manipulation result of
the randomization process meets the requirements set in the null model.
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3. RANDOMIZATION IN SIGNIFICANCE TESTING

The next two sections 3.1 and 3.2 discuss two different approaches to
randomization. Explicit null models describe the null distribution in a de-
tailed sense, but leave some of the specifics to be decided, for example,
based on the actual dataset. In practice this often means choosing the fam-
ily of the null distribution upfront and then fixing the parameterization of
the null distribution by fitting it to the dataset that is tested.

Property null models, on the other hand, are used when little confi-
dence can be placed on assumptions about the details of the null distribu-
tion. Instead, property null models describe the properties that the null
distribution must possess without directly dictating the way this require-
ment materializes in the distribution. In practice, one way to convert these
requirements to an actual null distribution is to let the required properties
vary based on normal distributions. However, the underlying null distri-
bution in the sample space is usually not known explicitly. Sections 3.2
and 3.3 will discuss this in more detail.

3.1 Explicit Null Models

A null model is called explicit if it explicitly defines the corresponding null
distribution. In the typical case the available knowledge about the data
source and the test statistic are used for choosing a class of probability
distributions as the explicit null model. The estimated null distribution is
then constructed from this class of parameterized distributions based on
parameter values inferred from data. The whole process of explicit null
model based randomization is depicted in Figure 3.1.

Example 3.1. The son of a famous statistician wants to test whether a coin his
father gave him is fair, that is, with equal odds. His null hypothesis states that
the probability of the coin ending up as "heads’ is 0.5 and also rules out any other
outcomes than "heads” and 'tails’. This provides him an explicit null model where
the number of "heads’ H resulting from a row of N tosses follows the binomial
distribution: H ~ Bin(N,0.5). The boy then proceeds to toss the coin for, say,
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Expert knowledge, theory

Figure 3.1: A diagram explaining the process of explicit null model
randomization

a hundred times (N = 100). Once this is done, he evaluates the surprise value
of the number of "heads’ h he received by computing its two-tailed p-value: p =
Pr(|[H—N/2| > |h—N/2|).

Usually when testing explicit models with Monte Carlo methods, the
dataset to be tested is given and the null distribution needs to be approxi-
mated by sampling it. However, in Example 3.1, the null distribution H is
analytical and known in beforehand whereas the data to be tested needs
to be generated by sampling, that is, by tossing the coin. Thus, despite
its common nature, Example 3.1 depicts an unusual instance of testing ex-
plicit null models.

Example 3.2. The brain activity of a patient is recorded with a single electroen-
cephalography (EEG) sensor fixed to the scalp. The data received from the sensor
is the chaotic looking time series shown in Figure 3.2 (a). We construct a null
model for the data by fitting an autoregressive (AR) model of order 1 to the data.
This assumes that each data point is dependent only of the previous data point.
The randomized samples of the data, one of which is shown in Figure 3.2 (b), are
generated by simulating this AR model.
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(a) Original data (b) Randomized data

Figure 3.2: Example EEG data before and after explicit model
based randomization, see Example 3.2.

Example 3.3. A supermarket wishes to analyze the shopping patterns of its loyal
customers based on their transaction histories. The analyst assumes that each cus-
tomer visits the supermarket at random times and intervals. Therefore he chooses
an explicit null model that models each customer as a Poisson process and infers
the rate parameter of the process based on the transaction history of the customer.
The random data samples for each customer are then generated by simulating the
corresponding Poisson process for the duration of the customer’s history.

Example 3.4. Some datasets contain significant cluster structure whose forma-
tion is well understood and it is desirable to nullify the effects of this structure
from the significance testing results. One simple approach for this task, based on
an explicit null model for this task, is to fit a mixture model of Gaussian distribu-
tions to the data. This requires making decisions on the mixture component count
and component covariance type (identity, diagonal, or full), based on either expert
information or data-centric model selection tools.

3.2 Property Null Models

In contrast with the examples of Section 3.1, sometimes either the data
source or the null hypothesis is so complex that it is not possible to choose
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any explicit null model that realistically models the actual null distribu-
tion. Therefore there is a need to find alternative ways to construct ran-
domization methods that realistically sample the null distribution.

This process begins with identifying specific properties of the data
source and of the null hypothesis. The properties of the data source dictate
the general type of data we are handling and what is or is not possible to
occur in data coming out of this source. The properties of the analyzed
null hypothesis on the other hand limit the scope of patterns assessed as
significant.

Example 3.5. We are evaluating interesting patterns in a social network dataset.
It is reasonable to pick the degrees of the nodes or their distribution as a data
property, because the degrees in these networks tend to follow the power law. De-
pending also on the pattern analyzed, we might choose the number of common
neighbors for node pairs or the number of second neighbors as a property in the
null model.

Example 3.6. Suppose our dataset is a collection real-valued numbers. If we wish
to test the dependence of data patterns and the data mean, we should include the
mean as a property in the null model. Similarly we may end up with properties
such as data variance, skewness, kurtosis or the shape of the data histogram.

In property model based randomization the goal is to generate ran-
dom samples, most often uniformly, from the collection of datasets that
fulfill these property requirements. The main difference to explicit model
based randomization is that the null distribution of a property model is
only implicitly determined and never directly sampled from. The general
process of conducting property null model based randomization is shown
in Figure 3.3.

A property null model is a model of the data source that, given a dataset
and possibly parameters, defines a probability distribution over all the
data samples covered by the general hypothesis. This resulting distribu-
tion determines the effect of the given requirements to the randomization
results and is used for computing the empirical p-values.
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Figure 3.3: A diagram explaining the process of property null
model randomization

In strict terms, the property null model is a probability space (), F, Pr),
where Q) = [[pyQpp is a product of probability spaces specific for a
dataset D and parameters 6. The probability measure Pr is the product
measure of the individual spaces and F is the standard c-algebra defined
similarly to a Tikhonov topology. Once a dataset Dy is given, the null
model is restricted to the subset Q)p, .. If the behavior of the null model
parameters is understood well enough, we may give a prior probability
Pr(6) for the parameters. In this case the p-values for a test statistic f are
defined as

p= /Pr ) > F(Do) | Qpy o) Pr(6)de.

Usually this is not feasible and a point estimate 6y (using Dirac delta as
prior) is used, resulting in the common version

p = Pr(f(X) > f(Dy) | Do, 6)

with more convenient notation.

In a typical resampling application, however, all this underlying com-
plexity can be waived. In fact, a property null model can be seen as a sim-
ple compilation of the given requirements for the data source and the null
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hypothesis. As a property null model may not define an explicit probabil-
ity distribution, extensive care needs to be used not only in the description
of the properties of the null model, but also in constructing a random-
ization method that outputs samples from the correct null distribution.
Whereas the null model describes the requirements set for the resampling
task, it is the responsibility of the randomization method to have a mecha-
nism to enforce them. Randomization methods that sample from the null
distribution of a null model are compatible with the null model.

Example 3.7. Suppose that we are exploring binary datasets for significant cor-
relations. We combine the binary property of the data source with the null hy-
pothesis

“ Correlations in the data are explained by the total number of
1s in the data ”

Random samples from this null model can be generated by uniformly at random
permuting all the entries of the data matrix. Even though the resulting random
samples are certainly from the null distribution, it is not necessary to state the
actual distribution from which we are sampling.

Example 3.8. Permutation methods have been widely used for testing the ca-
pabilities of binary classifier methods on a specified problem at least since the
1980s [38]. The simplest test compares the classification performance on the orig-
inal data to the performance results run on data where the input data is retained
as original, but the labels of each data point are randomly permuted [39].

This randomization implies a uniform null distribution of all possible binary
classifiers whose output for the given data (and only for this data) includes exactly
as many labels of each type as does the output of the original classifier. Once
again, the null model and distribution are simple to describe, but still the actual
null distribution cannot be described in closed form.

The use of randomization with learning methods is discussed more broadly in
Section 4.3
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Both examples above illustrate simple permutation tests [24] that have
historically been the main approach to empirical significance testing. The
permutation methods however are often used without any reference to the
null model they impose [40, 41], resulting in concerns over the realism of
such methods and their compatibility with the null hypotheses actually
tested. Such use of randomization implies using an implicit null hypoth-
esis that assumes that no dependencies or behavioral differences exist. In
some cases the resulting significance testing results may have little rele-
vance to the null hypothesis that was intended to be tested. For examples
on how to evaluate and compare null models of different significance test-
ing methods, see [42, 43] and Publication IV.

One of the main purposes of property null models is to enable the in-
clusion of relatively complex properties in the null model. This makes it
also somewhat difficult to both 1) explore all the coherent datasets and 2)
exclude all undesirable datasets. On the other hand, property null models
are also used when the required properties of the null model are difficult
to state with precision, which translates to a rather wide grey area be-
tween what is and what is not a good randomized data sample. Therefore
property null models are often (but not always, see Example 3.9) sampled
using soft constraints that can be seen as ranking the elements of the sam-
ple space based on how well they fit the property model instead of using
hard constraints that classify the samples strictly into sets of acceptable
and unacceptable ones.

Example 3.9. Sampling binary matrices that have given sums of entries in each
row and column is an old statistics problem, discussed in more detail in Sec-
tion 4.1. The common approach with an explicit model [44] uses soft constraints
for the sums and can be interpreted as a maximum entropy solution to the prob-
lem [45, 46]. The common approach with a property model [47] on the other hand
uses hard constraints, allowing no deviation from the original sum values.

The use of soft constraints is not purely an implementation issue. Con-
sidering the original dataset, in most cases it is not a product of some de-
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terministic process but rather a consequence of a combination of proba-
bilistic events. For example, the transaction history of a supermarket cus-
tomer shows signs of daily decisions such as “which supermarket should
I visit?”, “which brand and flavor of yoghurt should I buy?” and “should
I get some ice cream for evening snack or not?”. To model this uncertainty
in the original data, we associate the property null model constraints with
probability distributions and fix, for instance, the mode or mean of the
distributions to the values of the constraints in the original data.

We rarely have knowledge on what this probability distribution for the
constraints of the null model should be. Lacking further information and
in the interest of simplicity and implementability we thus choose to use
the normal distribution and fix the original value of the constraint as the
mean of the distribution. We will come back to the topic of choosing the
variance later.

Combining multiple constraints to a single null model is common. For
example, the null model of Publication I contains 2(m + 1) constraints for
anm x n input data matrix, namely mean and variance constraints for each
row and column. It is obvious that in this example, and in practically any
other application too, the constraints are not independent from each other.
Combining constraints together for modeling their dependencies would
not only be a difficult modeling task, but might also render the sampling
of the model overly difficult, slow or impossible.

The variances allowed for each constraint need to be handled both in
a general level and per constraint to ensure a balanced and sufficient con-
sideration of the constraints. The relative variances of the constraints are
chosen based on the relative importance and behavior of each constraint
function. The general level of error allowed in the model constraints is reg-
ulated with a coefficient w that acts on all the constraint variances. Large
values of w penalize more strongly deviating from the properties of the
original dataset, but make sampling slower and increase the risk for false
negatives. Smaller values of w act in reverse, encouraging stronger ran-
domization with less attention to the null model constraints and higher
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risk of false positives. Tuning w effectively for each null model and ap-
plication remains difficult despite some theoretical work in Publication I
and additional modeling of the behavior of the randomization is needed
to make this task more reliable.

Denoting the original data with D, each constraint function with f;, 1 <
i < n., and data samples with X, the combination of multiple constraints
with Gaussian distributions results in a null distribution with density

ne (x) — f: 2
§- (1 ‘lw))), -

20;

where 0; is the variance related to the ith constraint distribution. The den-
sity of Equation (3.1) is reminiscent of the Boltzmann distribution in simu-
lated annealing [48], the computer science equivalent of thermodynamics.
In this analogy, the error in the null model constraints gives the energy
of the system and w is the inverse temperature. The whole system on
the other hand attempts to simulate the data source and the conditions
that generated the original dataset. However, instead of seeking the en-
ergy minimum of this system with some cooling schedule that regularly
increases w, the system states are sampled and used as such with constant
temperature. These samples are then assumed to be comparable samples
with the original dataset, generated from a similar data source under sim-
ilar conditions.

In summary, property null models allow significance testing for null
hypotheses whose null distributions are too difficult to be modeled di-
rectly. This flexibility, however, brings with itself mounting difficulties in
ensuring the realism of the null model and the compatibility of the ran-
domization method with the null model.
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3.3 Markov Chain Monte Carlo Methods for
Sampling Property Models

3.3.1 Markov Chain Monte Carlo

Permutation methods that directly generate samples from a property null
model are typically not usable with all but the most stripped-down prop-
erty models. The property constraints in the null model often limit the
number of acceptable samples to such a small fraction of the space of
datasets that we are able to sample at all that constructing acceptable ran-
dom samples from scratch becomes impossible. Nevertheless, samples
can be generated by adjusting a prior acceptable sample so that the result
still fulfills the null model constraints. This can be accomplished with a
Markov chain whose state space is some easily managed superset of the
set of acceptable samples.

A standard solution to this task is the use of Markov chain Monte Carlo
(MCMC) methods [49, 50]. MCMC methods draw random samples from
a given distribution by using a Markov chain whose equilibrium distri-
bution is the target distribution. This approach, however, brings with it
all the general problems of sampling from the equilibrium distribution of
a Markov chain, including the convergence of the chain [51], correlation
of the samples and heavy computational requirements arising from these
two problems. Although many solutions [51] exist for these problems such
as coupling methods [52], diameter and ergodicity estimation, Gelman-
Rubin diagnostic [53] and autocorrelation estimation [54], these methods
are not generally usable in randomization applications, where datasets are
large and high-dimensional and the number of possible values in each di-
mension may range from thousands up to the continuum.

MCMC methods were visibly promoted for randomization purposes
in [22], where examples were given for sampling explicit null models with
MCMC methods. The paper introduces two statistical methods for gener-
ating exact empirical p-values with MCMC sampling. These methods and
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related topics are discussed in detail in Section 3.3.2 for their critical role
in the feasibility of using MCMC methods for significance testing.

In this work we concentrate in the use of MCMC for sampling prop-
erty null models. The discussion of Section 3.2 and Equation (3.1) indicate
the need to sample a distribution which we know only in proportion. The
Metropolis-Hastings algorithm [49, 55] was introduced in the 1950s for sam-
pling the Boltzmann distribution of Equation (3.1) and later generalized by
Hastings.

The Metropolis-Hastings algorithm defines a Markov chain that has
the desired equilibrium distribution by weighting the transition proba-
bilities in the chain. In particular, suppose we have an arbitrary irre-
ducible Markov chain X in a space that we wish to sample with a den-
sity proportional to P(x). As a general idea we need to promote tran-
sitions to states for which the density P is higher than the equilibrium
distribution of the original chain X and respectively discourage transi-
tions to states whose presence we wish to reduce. Let us now denote by
Tij = Pr(X(k+1) = xj | X(k) = x;) the transition probabilities of X'.
We may now construct a new Markov chain Z with the desired equilib-
rium distribution by accepting each transition x; — x; to occur only with
probability

Pr(Z(k+1) = x| Z(K) = x;) = min< D) T 1> |

P(x;)T;;

It is important to note that this construction of the chain Z requires no
knowledge about the original equilibrium distribution of X and addition-
ally the target equilibrium distribution of Z is needed only in proportion,
without the normalizing constant.

What still remains a problem in the use of MCMC methods is the vast
size of the sampling space. An MCMC method that always simply moves
to a neighboring state can reasonably sample only space whose size is sig-
nificantly smaller than the number of steps undertaken. In applications,
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3.3 Markov Chain Monte Carlo Methods for Sampling Property Models

however, it is impossible to ever sample more than trivial amounts of the
sample space.

Example 3.10. Resampling the hard constraint case of binary matrices with fixed
row and column sums in Example 3.9 can be done with an MCMC method, de-
scribed in detail in Section 4.1. However, the sample space of this Markov chain
grows very rapidly as a function of the matrix size. In fact, looking only at n x n-
matrices where each row and column sum is equal to k, the number of these ma-
trices exceeds (n!)¥/ (k1" =~ (n/k)"™ [56, 57].

In applications where n = 500 and k = 50 this number is approximately
10?49, Thus it is impossible to sample this space in any meaningful amount.

3.3.2 Validity and Nature of Empirical p-values

Traditionally conducting empirical significance testing requires generat-
ing independent and identically distributed (i.i.d.) samples from the null
distribution. This however is very difficult to implement with MCMC
methods, as subsequent samples in general depend on each other. Fur-
thermore, general methods for exact sampling of Markov chains, such as
coupling from the past [52], cannot be used due to the huge state space.

In [22] it is noted that independence of the samples is not actually nec-
essary in the limited use of MCMC methods for significance testing. In-
stead, the simpler requirement of exchangeability of the samples is suffi-
cient for producing exact (unbiased) and correct p-values. As originally
defined by de Finetti and strongly advanced by Diaconis [58, 59] and oth-
ers, a sequence Sy, Sy, S3, ... is called exchangeable if the joint distribution
P of any n variables S; (datasets in our case) for any # is invariant under
any permutation 7 of {1,2,...,n}:

P(S1,52,-.,51) = P(Sx(1),Su(2) - -+ S(m))-

Two different methods for producing exchangeable samples from a
Markov chain Z were introduced in [22] and illustrated in Figure 3.4.
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3. RANDOMIZATION IN SIGNIFICANCE TESTING

Starting from the tested dataset Z(0) = Xo, the parallel method of Fig-
ure 3.4 (a) first runs the chain backwards for N steps to reach a state
Z(—N) = R. Each data sample X; is then generated separately by run-
ning the chain forwards from R for N steps.

Lemma 3.11 (Besag and Clifford [22], given there without full proof). The
randomized samples X1, Xy, ..., X, resulting from the parallel method and the
original dataset X are exchangeable.

Proof. Let us denote the forward and backward transition densities of Z
with P and Q respectively and let 7t be the equilibrium distribution of Z.
Note that we may assume that under the null hypothesis Xj is sampled
from 7t. Basic properties of Markov chain time reversal [51] then state that

(x)P*(x,y) = 7(y)Q" (y, x),
which we will here employ in form
Pr(Xo=a9)Pr(R =y | Xo =4a9) =Pr(R=y)Pr(Xo=a9 | R =y).
Therefore the joint distribution of Xy, Xj, ..., X, allows the decomposition

PI‘(X() = ao,X1 =d4ai,.. .,Xn = an)
n

= /Pr(Xo =a))Pr(R=y | Xo=a0) [ [Pr(X;=a; | R =y) dy
i=1

— [Pr(R =) Pr(Xo = a0 | R =) [[Pr(Xi —ai | R = y) dy.  (32)

i=1

The last expression in Equation (3.2) is symmetric for X, X3, ..., X, and
the claim follows since the distributions Pr(X;|R), 0 < i < n are all equal,
because Xy, Xi, ..., X, are contemporaneous, that is, generated from the
same chain with the same number of steps starting from the same state.

O
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(a) Parallel method (b) Serial method. The place-
ment of the original data in the
chain is chosen at random.

Figure 3.4: Illustrations of the parallel and serial method of [22].
The large yellow circle depicts the original data and the blue circles
are the randomized data samples.

In the serial method (Figure 3.4 (b)) the total number # of generated sam-
ples is first chosen and integer r is drawn uniformly at random from the
set {0,1,2,...,n}. The original dataset is then designated as data sample
X,. Foreach 0 <i < n,i # r, the randomized data sample X; is generated
by running the chain either

1) backwards from X, for (r — i) N steps (when 0 <i < r) or
2) forwards from X, for (i — r)N steps (whenr < i < n).

We refer the reader to the original papers [22, 60] for details of the serial
method and discussion on both of these methods.

The two methods produce results of similar quality. However, the
strong parallel nature of the parallel method can give it a clear advantage
in modern computing and thus it has been used in Publications I to IV of
the thesis.

Despite the need for ensuring the correctness of the empirical p-values
in the particularly difficult case of MCMC randomization, most earlier
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3. RANDOMIZATION IN SIGNIFICANCE TESTING

publications on the field have leaned on the assumption that long enough
runs of the chain will produce samples that are independent enough [61,
47]. This assumption is given a reason through experiments that show
the behavior of test statistics to have strong symmetry and homogeneity
throughout the sample space. This assumption is not only convenient,
but also necessary since the general theory of Markov chains is typically
not useful here. For example, the mixing time of the Markov chain in Ex-
ample 3.10 is calculated in [62]. As expected, the resulting required run-
ning time of the chain is not practicable in applications and also clearly
more than what is heuristically considered to stabilize the chain’s behav-
ior in [47].

The same experimental observations of symmetries can also be used
to suggest that it is not actually necessary to sample the whole sample
space. As the test statistic t maps the high-dimensional sample space to a
real number, it also folds together multiple symmetric areas of the space.
For example, suppose our test statistic ¢ is the correlation between two
variables. Now any common permutation of the target variables in the
original dataset generates a large number of new samples throughout the
sample space. However, the local topology of t is similar around each of
these new samples and around the original data. However, no theoretical
proofs or evidence has been given to this conjecture and this remains a
central problem in the future research of MCMC-based randomization.

By using the parallel method (or the serial method) we can avoid the
problem of needing independent samples as the samples generated by this
method automatically produce correct p-values. However, they are correct
only in the context provided by the implicit general hypothesis, defined by
the underlying Markov chain and the step count N. To see this, consider
Figure 3.5. Based on the parametrization of the Markov chain and the step
count N, the chain can reach different subsets of the whole sample space
with the chain parameters determining the shape and the step count N
determining the size of the subset. These subspaces are the context of the
significance test as the significance of patterns in the original dataset is
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Sample space

Figure 3.5: [llustration of different contexts for significance testing.
The big yellow circle depicts the original data and the ellipses A, B
and C depict different areas of the sample space that are sampled.

tested only relative to the samples within this context.

Therefore the purpose of running the MCMC chain long enough is not
to produce correct p-values but merely to choose a broader context for the
significance test. Usually a balance is needed between having a reason-
able running time and a wider context. Another possible way to improve
the sampling is to use parallel tempering [63], which combines the ad-
vantages of good mixing in high temperatures and stricter constraints in
low temperatures. Measuring the changes in test statistics can be used for
evaluating the sampling context when the chain is run for longer periods
or when otherwise tuning the parameters.

3.4 Representation-based Randomization

As discussed in sections 3.2 and 3.3, sampling property models is not as
straightforward and easy as it is with explicit models. Although the gen-
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3. RANDOMIZATION IN SIGNIFICANCE TESTING

eral “squared error in constraints” model (3.1) can accommodate almost
any types of constraints in the null model, using complex constraints may
require extensive computing time. Additionally, the smoothness of the
error function (3.1) is important for the MCMC sampler to efficiently tra-
verse the state space, a matter that may incur problems with complex con-
straints.

Example 3.12. Consider the topic of Section 4.3.2, randomizing data while pre-
serving its cluster structure. One simplistic way to conduct such task could be to
build a property model that constrains the clustering error from a given clustering
algorithm such as k-means. Despite recent advances in the efficient computation
of a k-means clustering [64, 65], evaluating the clustering error in each step of the
MCMC procedure is not practical. Due to the nature of clustering, the minimums
of the error function (corresponding to the most relevant areas for resampling) are
represented in the state space by numerous and widely distributed sharp peaks of
high density but low density mass. This makes proper MCMC sampling of this
null model difficult.

To improve upon these two problems it is necessary to somehow ex-
tract the constraints of the null model from data into more accessible form.
In Publication III the use of invertible representations for datasets is dis-
cussed for this purpose. The rationale of this is shown in Diagram (3.3).

Original p e f(C,R)
l lmndomize R (33)
Randomized D Lombine f(C,R)

Here the constraints C of the property null model are separated from the
data D to make randomization easier. When directly randomizing the
original data, in this setting it may be necessary to repeatedly invert f
to evaluate the effect of randomization on the constraints. On the other
hand, if successful, representing data in a different form can significantly
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simplify managing the constraints of the null model during randomiza-
tion. In addition, representations open new possibilities of iterative pat-
tern mining, discussed in more detail in Section 4.6.

In any event, the original form of data is never more than one subjec-
tive view, not necessarily the optimal one for any single purpose. For ex-
ample, the Box-Cox transformation [66] is a very common tool in statistics
and econometrics for manipulating the data to a more suitable form. Thus
tinding the best representation of the dataset should always be a part of the
analysis process. Many useful representations of data are robust against el-
ementary transformations. For example, the PCA decomposition remains
invariant under affine transformations (dilation, rotation, and translation),
which may be desirable.

The concept of representation-based randomization was first defined
in Publication III, but it has been implicitly used already earlier for han-
dling time series data in Fourier and wavelet space [67]. See Section 4.4
for more details.
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CuarTer 4

Randomization Methods

The need for more advanced significance testing methods has recently
arisen for various reasons. First, many application fields that handle com-
plicated types of data have seen research reports warning about negli-
gence and carelessness in evaluating pattern significance [68, 4, 3, 69, 70,
71, 72]. Second, the increase in computational resources has resulted in
interest for larger and larger datasets and for more complex data patterns
that are not only more descriptive and harder to compute, but also decid-
edly more difficult to assess for significance. Third, advances in pattern
mining have built up interest in analyzing sets of patterns and their joint
behavior, resulting in more complex null hypotheses that cannot be tested
with standard statistical tools.

Example 4.1. Suppose that we are comparing two text corpora, one containing
all the publications ever published in a certain data mining journal and another
containing the publications of some journal focused on machine learning. Now let
us ask whether the vocabularies used in the two collections of publications differ
significantly from each other or not.

Answering this question requires not only wading through the huge dataset
and comparing the frequencies of words, but considering also things like the dis-
tributions of the words across publications, probably even across time. Also lin-
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4. RANDOMIZATION METHODS

quistic information such as associations of words could be incorporated to a more
rigorous analysis.

Complex hypotheses arise when the specifications of a data source are
less simple, but also when there are additional constraints on how to in-
terpret the information in the dataset. A simple example of such a case is
when the data contains some pattern that we have already identified and
analyzed. In such a case we might wish to brush aside this pattern and its
effects from the data and see what other meaningful patterns exist. This
line of thought brings us to the concept of iterative data mining, discussed
in Section 4.6. Property models are a useful tool with more complex null
hypotheses since modifying them is relatively straightforward.

While Chapter 3 focused in building a general framework for using
randomization with complex null hypotheses, this chapter looks at some
of the accomplishments in this field in more detail. We begin with prop-
erty null models for specific types of datasets. Sections 4.3 and 4.4 demon-
strate the use of representations for accessing complex null hypotheses
and finally Section 4.6 examines the case of pattern sets and their iterative
significance testing.

4.1 Significance Testing for Databases

Data mining began as a practice of exploring databases for their efficient
use in knowledge discovery. Due to their relative simplicity and practical
abundance, relational databases have ever since remained a basic theme
in data mining. The simplest task in mining relational databases is the
analysis of a single database table, whereby the table is usually expressed
as a matrix of its entities and attributes. When discussing pattern min-
ing from databases, the database tables are usually represented as simple
binary matrices.

Resampling of binary matrices has throughout time revolved around
the idea of preserving the sum of values in each row and column. This
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problem arose from the need in community ecology to resample contin-
gency tables [61]. Contingency tables are nowadays central not only in
ecology, but also in topics such as paleontology [73], social sciences [74],
psychology [44] and marketing [75].

The early method for resampling contingency tables is given in [44] by
Rasch. The method samples each entry (i, ) of the matrix independently
from a Bernoulli distribution with probability of a "1” entry equal to

exp(—7ri —¢;)
1+exp(—ri—¢j)’

where r; and ¢; are the corresponding row and column sums, respectively.
This seemingly naive method is also the maximum entropy solution to the
problem [45], but preserves the row and column sums of the matrix only
in expectation.

Swap randomization [61, 47] is a commonly used MCMC-based algo-
rithm for exactly preserving the row and column sums in the data sam-
ples. An illustration of a single step of the method is given in Figure 4.1.
The method continues swapping quartets of matrix elements until the tar-
get measure whose significance is tested has converged. Based on exper-
iments, Gionis et al. suggest running the chain for a total of 5L iterations,
where L is the number of ones in the data matrix. The swapping method is
significantly slower than the Rasch method as the exactness requirement
prevents the use of immediate sample generation. However, with suitable
index structures the swapping algorithm can be made very efficient and
even matrices with tens of millions of elements (with 10 % matrix fill rate)
can typically be randomized in a few seconds.

Mining patterns from graphs can be seen as a similar problem to that
with databases, since standard unweighted graphs can be represented as
binary adjacency matrices. Especially the randomization of graph data
can be seen as an analogous problem to that of database tables, the only
significant exception is that in an undirected graph the upper and lower
triangle parts of the adjacency matrix need to remain synchronized during
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Figure 4.1: An example of a single step in swap randomization.
The rows i; and i; (and columns j; and j,) may be arbitrarily or-
dered. The row and column sums are preserved in each step.
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Figure 4.2: Examples of the graph randomization methods intro-

duced in [76]. The rightmost method has an additional require-
ment that the degrees of nodes 1 and w must differ by exactly one.

randomization. Such modifications of the standard swap randomization
were introduced in [76] by Hanhijérvi et al. The three suggested graph
operations are illustrated in Figure 4.2.

It is possible to also conduct significance testing with explicit models
for graphs. The baseline to start from in case is to use a graph model [77]
such as Erdos-Rényi [78] (uniform graph structure), Watts and Strogatz [79]
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or Barabasi—Albert [80, 81, 82] (power-law /scale-free structure).

Analyzing tables in a database separately may easily miss the wealth
of information a database as a whole portrays. One possibility to counter
this problem is to combine several tables into one with Cartesian products.
This however easily leads to huge datasets. Using the results of previous
data analyses can help in replacing the indiscriminate Cartesian products
with selective join operations that not only can cut down the data size
considerably, but also may help in detecting the relevant data patterns in
a more focused analysis [83, 84].

Significance testing of patterns spanning multiple database tables [84]
is considered by Ojala in [85]. The paper suggests using swap random-
ization not only to selective database tables but also to the natural join
relations between tables. The latter operation can be seen as a simple per-
mutation of the foreign keys that determine the join operation in question.
This additional randomization choice enables iterative testing of null hy-
potheses that assess whether a given pattern in the database is a conse-
quence of some specific table or a subset of tables or of the way two types
of data (tables) in the database are connected with each other.

The problem of mining interesting patterns from databases and assess-
ing their significance has seen lots of successful research. With the problem
of finding the relevant patterns from data partially solved, the problem of
distilling this information to a compact form for human users has seen in-
creasing attention more lately [86]. Especially the problem of finding the
most significant or most explanatory k patterns and the problem of find-
ing independently significant patterns have been considered and remain
still without an exhaustive answer. The latter one of these problems is
discussed in more detail in Section 4.6.

4.2 Randomization Methods for Real-valued Data

The use of computational methods in various fields of research has seen
significant proliferation during the past decade. With this shift, the predat-
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ing focus of data mining research into binary data and databases has been
supplemented with various types of real-valued data. Although intervals
can always be used for discretizing data, a great deal of information is lost
in the process. Therefore new methods and approaches are needed for this
task.

The richness of information in continuous data makes the process of
null model formulation more difficult than in a discrete case. With real-
valued data it is not enough to merely fix the sum of elements in each of the
columns and rows as is done with binary matrices. For example it is not
sensible to compare the set of customer ages {13,44, 60} in the database to
a random sample {—100, 0,217} or perhaps even to {39, 39, 39}. Therefore
a minimal requirement for the realistic resampling of real-valued data is
the preservation or regulation of the variance in data.

Constrained randomization of real-valued matrices was studied in [5],
where the means and variances of each row and column of the data were
constrained. The work based on extending the idea of a Markov chain of
local operations from [47]. Two local operations suitable for real-valued
matrices were suggested, SwapRotation of Figure 4.3 (a) and MaskAddi-
tion of Figure 4.3 (b). In the extended version Publication I of this pa-
per three additional local operations were tested: ElementReplacement (Fig-
ure 4.3 (c)), ElementResampling (Figure 4.3 (e)) and ElementPerturbation (Fig-
ure 4.3 (d)).

In running the Markov chain of [5], the error in the property model
constraints between the original matrix and the current state of the chain
is measured. For each row and column the squared error in the first and
second moments is separately computed and combined as the error func-
tion
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i1 i Jil J2
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(a) SwapRotation (b) MaskAddition
Il I
i7 --- U(min(A),max(A)) --- i - Ha
(c) ElementReplacement: Replace with ran- (d) ElementPerturbation

dom number from uniform distribution

(e) ElementResampling: Replace entry
with one random original matrix entry

Figure 4.3: Local operations used with the randomization Markov
chain in [5] and Publication I for original data matrix A. In fig-
ures (b) and (d) the value of perturbation a is chosen randomly
from the uniform distribution U(—s, s) for some s.
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where A is the original data matrix, X is the current state of the Markov
chain and

n m
M _ . M _ .
Moy My, M=y My,
j=1 i=1
M < 2 M = 2
Ri — Z%Ml]’ C] - ZlMl]
j= 1=

are the row and column moments for matrix M with elements M;;. This
error function of Equation (4.1) is then inserted into Equation (3.1) and the
Metropolis-Hastings method is used to generate random samples. Addi-
tionally the work of Besag and Clifford discussed in Section 3.3.2 is used
to generate exact p-values.

To weigh equally both moment types in rows and columns, the pa-
rameters of the null model in Equation (4.1) were chosen as w, = m/n
and ws = 11in [5]. Other parameters needed in the randomization are the
“inverse temperature” w of the randomization process in Equation (3.1)
and the number of steps to run the chain. Tuning these parameters is
not straightforward, requiring further research despite some theoretical
results and recommendations in Publication I.

Another approach to randomizing real-valued matrices is to discretize
the matrix values with suitable granularity. The SwapDiscretized method
discussed in [5] and Publication I discretizes the values of the matrix sep-
arately for rows and columns, runs a Markov chain of SwapRotation oper-
ations and accepts the state transitions if and only if the row and column
distributions of the discretized values remain unchanged in the operation.
Therefore the method approximately preserves not only the means and
variances of the data, but also the full row and column value distributions.

The capabilities of the SwapDiscretized method were substantially ex-
tended in [87] to include handling of dissimilar data attributes, sparse data
and missing values. Additionally, this paper introduces the use of the
Kolmogorov-Smirnov test [88] for evaluating the quality of randomization
results. The Kolmogorov-Smirnov test evaluates whether it is reasonable
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to say that the rows and columns of both the original and randomized data
follow the same distributions.

For further details on the SwapDiscretized method we refer the reader
to the original papers [5, 87] and Publication I. The advantages of the
method include its speed and ease of use. However, the artificial value
boundaries in discretization make it slightly awkward when all the data
attributes are of truly continuous type.

Including only means and variances of variables (columns) or entities
(rows) in the property null model constraints has in experiments shown to
prefer a Gaussian distribution for these sets of values. Although this fits
well with the maximum entropy principle [46], the known properties of
the data source or the null hypothesis itself may require a stricter control
over the null distribution. This necessitates departure from the Gaussian
construct to more precise data modeling for conducting better significance
testing.

Example 4.2. A significant share of observation data from nature or from man-
made sources follow a so-called 1/ f-type distribution [89, 90] (see Section 4.4
for additional notes) whose spectrum is biased towards the lower frequencies. In
bioinformatics, gene expression data has been shown to follow a power law distri-
bution [91]. Sparsity of data is another phenomenon that commonly is an essential
part of how a data source behaves.

In Publication I the work of [5] was extended to allow value distribu-
tion constraints in the null model. The paper uses the L;-distance of un-
normalized cumulative distribution functions [92] for evaluating the error
in each row and column distribution. Consider an original dataset A of
size m x n. Denote by A;. the vector of elements in a single row i sorted
ascending and by A;. its randomized counterpart also sorted ascending.
The error between the distributions of A;. and /T,: is defined as

n
E(Ai, Ai) =) |Aij — Ayl (4.2)
j=1
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The total error between two matrices is defined as the simple sum of errors
in all rows and columns and the randomization is conducted as in [5].

However, updating the distribution errors in each row and column
during the randomization is computationally demanding. Updating the
error when a single element A,'j is moved needs O(I + logn) time, where
[ is the number of elements in the sorted vector gi. between the old and
new values of ﬁij as for these elements the sum terms of Equation (4.2)
need to be re-evaluated. In practice, the value [ is a linear fraction of n to
facilitate sufficient perturbation, leading to slow randomization with large
datasets. To counter this, Publication I suggests using histogram approxi-
mations for each row and column. With this modification the update times
for a single row or column drop down to O(b) for a histogram approxi-
mation of b bins. This time needed is not anymore related to data size, but
it may depend on the complexity of data as more varied distributions re-
quire more bins for sufficient modeling. In contrast, the SwapDiscretized
method and the methods of [5] that constrain only means and variances of
rows and columns reach constant update times per iteration.

4.3 Learning Methods and Randomization

4.3.1 Evaluating Supervised Learning Methods

Learning from data is a central goal in data mining. Patterns in data
that enable effective classification or regression are not only sought out,
but their characteristics are also analyzed to improve the learning results.
Traditionally tasks like feature or model selection and validation are con-
ducted with methods such as cross-validation, regularization and various
minimum description length (MDL) [93] or Vapnik-Chervonenkis theory (VC-
theory) [94] based approaches. Permutation tests are a relatively new ar-
rival to evaluating learning methods. Although used in different forms
since 1980s [38], an important landmark was the paper by Mukherjee [39]
where permutation tests are used to evaluate the following null hypothe-
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sis:

“ A given family of classifiers cannot learn to accurately predict the
labels of a test point given a training set. ”

The test of [39] is based on breaking the connection between the data at-
tributes and labels by permuting the labels. This idea was more recently
extended for the general evaluation of generalization error by Magdon-
Ismail and Mertsalov in [95]. In both publications the validity of the ap-
proach is proven with VC-theory.

Permutation tests have been utilized also for feature selection in [96,
97] with the general idea of comparing the prediction performance before
and after permuting the values of a given feature. The work of Francois et
al. [97] is closely related to the general process of empirical significance
testing discussed in Section 2. In [97] the significance of each data feature
is separately tested by using the mutual information of the feature and
the target output values as the test statistic. Once the significance testing
is concluded, features assessed non-significant are pruned out from the
data.

In addition to analyzing the trustworthiness of machine learning re-
sults, randomization methods have also been used for testing the prop-
erties of learning methods and their suitability for a given dataset. In [98]
permutation tests are used for assessing whether a learning method is able
to use interdependencies between data attributes to improve classification
results. This test uses the null hypothesis

“ Data attributes are mutually independent given the class label. ”

The test of [98] independently permutes the values of all data attributes
within each class label separately. The learning method conducts classi-
fication for the resulting randomized dataset not unlike the naive Bayes
method which computes the likelihoods of each attribute value separately
and then combines them.
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4.3.2 Patterns in Clustered Data

Clustering, despite its most vague definition, is perhaps the most promi-
nent of unsupervised learning concepts. The strong visual character of
cluster structure also means that it is a global pattern of a dataset, affect-
ing the results of almost any data analysis that considers the dataset as a
whole. For example, a cluster in data, that is, a group of points situated in
the same region of space, is also a group of points in which several data
attributes correlate strongly with each other. More importantly, clusters
are often useful patterns when learning from data.

Considering this pervasive nature of cluster structure among the fam-
ily of data patterns, we may ask to what extent does the cluster structure
of a dataset predefine the results of a data analysis task. This question is
studied in Publication III with the null hypothesis:

“ Patterns in data exist independently from the cluster structure of
the data. ”

The paper introduces a new algorithm PCARand that combines the ideas
of Publication I and [99] with representation-based randomization (see
Section 3.4). By operating in the space of principal components the al-
gorithm gains access to the cluster structure of data, making it possible
to preserve it during randomization. Although the underlying theory
from [99] applies directly only to cluster structure as defined by the k-
means method, other clustering concepts can be easily used with the ker-
nel trick [100].

Compared with the approach of Example 3.4, where a Gaussian mix-
ture model is used as an explicit null model for cluster structure preserving
randomization, the PCARand algorithm does not need any input parame-
ters that fix the cluster count. This is notable, as such a parameter pre-
vents a randomization method from preserving any cluster structure that
does not fit the pre-chosen model. Additionally, the experiments in Pub-
lication III suggest that randomizing data based on the Gaussian mixture
model may easily fail to actually randomize the data to a sufficient extent.
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(a) UCI OCR dataset (b) UCI LETTER dataset

Figure 4.4: Visualizations of two UCI [101] datasets. Data points
are colored differently based on their class labels. Straight blue
lines depict Voronoi diagrams for k-means clustering results. Data
is mapped to the plane by using its first two principal components.

Publication III considers also the problem of relating unsupervised and
supervised classification results for a dataset. The PCARand method of the
paper can be directly used for this purpose as the chosen classification
structure can be seen as a data pattern among others. As an example of the
relation between these two different classification types, see Figure 4.4. In
the figure the classification structure of two datasets [101] is shown with
the coloring of the data points and a single instance of k-means clustering
on the datasets is shown as a Voronoi diagram. In Figure 4.4 (a) it appears
that the clusters in the dataset follow the class labels quite closely whereas
in Figure 4.4 (b) this appears not to be the case. This difference indicates
how differently the cluster structure may interact with the class labels de-
pending on the underlying dataset.

The case of Figure 4.4 can be demonstrated also with the numbers in
Table 4.1 that show the multi-class classification accuracies reached with
support vector machines (SVM) [94] for original and randomized datasets.
These accuracies show how, despite the similar SVM accuracy for the orig-
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Table 4.1: Support vector machine classification accuracies be-
fore and after randomization for the two datasets of Figure 4.4.
GeneralMetropolis is an MCMC-based algorithm from Publica-
tion I, which preserves the row and column distributions of data.

Randomization UCI OCR UCI LETTER
Original data 99.4 % 97.9 %
PCARand (Publication IIT) 90.0 % 50.2 %
GeneralMetropolis (Publication I) 69.9 % 32.7 %

inal datasets, the two datasets in question contain a very different relation
between unsupervised and supervised classification structure. With the
UCI OCR dataset a good accuracy of 90 % is still reached after random-
izing the data with PCARand, effectively removing all but the cluster struc-
ture from the data. This means that the different classes of the dataset
form clearly distinct and round clusters (in the Euclidean sense) in the
data and there is little other structure in the data relevant for classifica-
tion. With the UCI LETTER dataset, on the other hand, the SVM accuracy
drops sharply down to 50 % although there exists clear class structure in
the original data. Therefore the classes cannot be distinguished with round
and equal-sized clusters provided, for example, by the k-means algorithm.
However, this does not mean that the different classes in the data were not
separated as clusters of some form. Comparison with the results of the
GeneralMetropolis algorithm shows how only a small part of the clus-
ter and classification structure in both of the datasets can be seen to be
dependent of the row and column distributions alone.

The work of Publication III concentrates in the relation of unsuper-
vised and supervised learning in real-valued data, but the approach can
be transplanted also to the case of binary data. A combined property
model based randomization method that uses k-means clusters and fre-
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quent itemset supports as model constraints was introduced in Publica-
tion II. The preservation of cluster structure in binary data is a simpler
problem and the methods of this paper can be easily used for conduct-
ing similar tests as in Publication III. Additionally, it might be interesting
to test the relation of association rules and classification results in binary
data such as document collections. For this task, however, there are no
ready-to-use solutions, although the work of Publication II can probably
be extended to this task with limited effort.

4.4 Randomizing Time Series Data

Time series are a ubiquitous type of data that arise in various applica-
tions such as finance, medicine, climate research and industrial monitor-
ing. Usually time series data contain a large numbers of samples and the
data sources describe a collection of synchronous time series that measure
different aspects of the same or related phenomena. In addition, sources
of time series data are often not so well understood making them difficult
to model.

Added to the above mentioned complexities in time series data, the
inherent autocorrelation of nearby observations in time series makes the
formalization of realistic null models and thus the task of significance test-
ing for this data type especially complicated.

Significance testing for time series data was historically conducted with
analytical Gaussian noise models for the data itself or its differences [102,
103, 104]. Analytical testing has been used also with more elaborate mod-
elling for functional Magnetic Resonance Imaging (fMRI) data [105]. Sev-
eral bootstrapping and autoregression schemes have been suggested [40,
106, 107, 108] and model-based resampling based on ideas such as phys-
ical attractors [109] and maximum entropy [110] have received attention
more lately.

Harmonic methods such as Fourier and wavelet [111] analysis have
clear advantages in analyzing time series and their use has grown steadily,
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promoted especially by the research community of medical imaging that
has been a strong contributor to time series research [112]. Increasing at-
tention to temporal variation in non-stationary time series has caused the
earlier resampling methods based on Fourier analysis [113, 114, 115, 116]
to give way to wavelet methods [117, 118, 119, 67, 120]. Additionally, the
special implications of multiple hypothesis testing for using wavelet meth-
ods has been studied in [121] by Sendur ef al. While wavelets have been
used in fields outside medical research such as finance [122, 123], there has
been no substantial work in conducting wavelet-based significance testing
in these research areas.

An additional special advantage in the use of wavelets for significance
testing is their nature of optimally decorrelating signals with a 1/ f-type
spectrum [124, 90, 125]. This decorrelation of data points has been an
important factor in arguing the validity of the rather crude permutation-
based resampling methods in wavelet domain [117, 118, 119].

As already mentioned, time series data comes often not alone but in
a collection of simultaneous measurements of the same or related phe-
nomena. Such data requires significance testing to take into account not
only the temporal and frequency information in the data, but also the de-
pendency structures that link the various time series of the data collection
together. This type of work has been conducted especially in the field
of medical time series such as electroencephalography (EEG) and func-
tional Magnetic Resonance Imaging (fMRI) research [113, 119] and more
lately in finance [126]. In these applications there are several channels gen-
erating synchronized time series data having strong inter-dependencies.
Wavelets have been widely accepted as the solution of choice in both appli-
cation areas, since they are very good at localizing patterns simultaneously
in the temporal and frequency domains. Especially, the wavelet meth-
ods used with stand-alone time series have been exported to the problem
of time series collections through multi-dimensional wavelet decomposi-
tions [119, 127, 128].

Despite the significant efforts spent in finding suitable wavelet repre-
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sentations for time series significance testing, the common method used
for the definitive resampling has usually always been some variation of
simply permuting the wavelet detail coefficients. Among others, permut-
ing coefficients in each frequency scale independently or in tandem [117],
shifting the coefficients circularly [118] and permuting blocks of coeffi-
cients [118] have been suggested. Another approach was used in [128],
where the signs of wavelet packet transform detail coefficients were ran-
domly reassigned. The improvements of these more recent resampling
methods over the historical bootstrapping methods have been due to us-
ing the properties of the wavelet transform.

The alternative approach to improving the quality of significance test-
ing by concentrating in replacing simple bootstrapping with something
more elaborate has seen much less attention than the harmonic analysis
based approach. The early work of [129] suggests conducting property-
based randomization with the Metropolis-Hastings algorithm (see Sec-
tion 3.3.1). The paper suggests using a randomization constraint that pre-
serves the values of the autocorrelation function

1 N-1
CP(T) = N Z XnX(n—1)mod N
n=0
for all delays 0 < T < N/2, where N is the length of the time series. This
approach, however, leaves open the problem of temporal variation in the
data, as it constrains only the global correlative properties in the data.

A method for combining the benefits of wavelet analysis and modern
resampling methods was introduced in Publication IV. The paper studies
a specific setting of homogeneous time series collections, where the time
series are, a priori, assumed to be indistinguishable from each other. In
other words, the formalized null model assumes that there is no prior in-
formation on the data source that is specific to any fixed subset of the time
series.

The null model of Publication IV is built on a model of the data source
where external events induce responses of varying breadth, strength, de-
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lay and duration in the time series. These events are assumed to be in-
trinsic to the data source, that is, natural and not determined significant.
Therefore these properties of the data source need to be modeled and in-
corporated to the null model to ensure that the significance test will not
report spurious patterns.

Example 4.3. Recording EEG data from a patient involves attaching an array of
electrodes (few tens up to hundreds) to the scalp. If we assume no prior medical
knowledge of the functions of a brain, the collection of the simultaneous EEG
recordings from the electrodes is a homogeneous time series collection.

The external events in this example are related to, for example, asking the
patient to tap his left hand index finger, showing him pictures or inflicting pain.
The null model of Publication IV attempts to preserve the characteristic effects
related to these events while being indifferent of the exact timing and locality
(among the different electrodes) of the events and their effects shown in the EEG
signals.

Examples of patterns that could be found interesting would include cases
where a certain EEG channel seems to react especially strongly and with higher
frequency than the others to a certain event or an occasion of no meaningful re-
sponse from a few channels by the time of a broad general response.

In summary, the null model allows controled mixing to occur through
time, because there is no prior knowledge on the timings of the external
events. Additionally the homogeneity assumption implies that controlled
mixing may be conducted also between the different time series. How-
ever, mixing between different frequency bands should not be allowed
since this would affect the expected distribution of the types of the external
events. In addition to this, studies of Breakspear et al. in [118] have shown
that perturbation over different frequency bands causes large distortions
to the linear properties of the time series, which then leads to excessive
Type I errors.

For an illustration of the properties of this null model, consider Fig-
ure 4.5 that shows an example of a pattern assessed as significant by the
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null model. The null model enforces two properties on each frequency
band. First, at each point in time (that is, for each k), the spatial profile of
the resampled collection of the time series must agree with that of the orig-
inal data. In particular, in Figure 4.5 each time point must have two series
with activity and two series with no activity. Second, for each time series
(that is, for each i), the temporal profile of the resampled collection must
agree with the original data. Thus in Figure 4.5 each series must have two
time points with activity and two time points without activity.

To bring this conceptual null model into practice, Publication IV poses
three requirements on how to manage the temporal, spatial and frequency
domain information during randomization. These requirements are ap-
proached in Publication IV through the use of scale-wise matrices of wavelet
detail coefficients. For a time series collection X of M time series, the scale-
wise matrix of the jth wavelet scale (frequency band) is

Wja Wiz - Wik

Wj _ W2j1 Wajz - W2 K;
. . - 7

WMl Wmj2 - WMjK;

where K; is the number of detail coefficients on scale j and w; j is the kth
detail coefficient on scale j of the ith time series in X. In other words, the
W) matrices collect together all the wavelet detail coefficients of all the
time series for each scale separately.

Based on the Wé( matrices, the precise null model formulation of Pub-
lication IV states the following:

REQUIREMENT 1. (PERTURBATION IN FREQUENCY)
Scale-specific detail coefficient sets w. ;. must be resampled separately. In other

words, the randomization of each Wé( matrix needs to be conducted independently
from the others.
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Figure 4.5: An intuitive illustration of a pattern in data considered
significant by the null model of Publication IV (top) versus a re-
sampled dataset from the null distribution (bottom). A fixed band
of frequencies is shown for a collection of four time series indexed
by i, with the temporal dimension indexed by k.
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REQUIREMENT 2. (PERTURBATION IN TIME)
The distribution of coefficients w. ;  must be preserved for each frequency. In other

words, the column distributions of W, for each j are constraints of the property
null model.

REQUIREMENT 3. (PERTURBATION IN SPACE)
The distribution of coefficients w; ;. must be preserved for each i and j. In other

words, the row distributions of Wﬁg for each j are constraints of the property null
model.

These requirements were derived from an analysis of the time series
collection randomization problem. However, it is readily seen that the re-
quired properties of this null model fit directly into the framework of Pub-
lication I, which considers randomizing real-valued matrices while pre-
serving their row and column distributions. The proposed new random-
ization method of Publication IV thus centers around randomizing each

W%( separately with the methods of Publication I.

4.5 Significance Testing with Low Quality Data

Time series are a standard example of data whose modeling is difficult
due to the complexity and high amount of data. However, datasets of
low quality have their own problems, as the lack of sufficient data or the
lack of confidence on the data requires the significance test to be careful
in its conclusions. This section reviews the significance testing research
conducted in two major areas of low quality data: uncertain data and data
that is missing values. A specific contribution given by Publication V in
the domain of bioinformatics is also discussed.

Missing values are probably the most common cause for datasets of
low quality. They can occur when, for example, the data acquisition pro-
cess is imperfect, the data gets corrupted or data points are intentionally
erased to anonymize data. There exists a wide set of methods, called impu-
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tation methods, for filling in missing values in data [130]. Of these meth-
ods, especially the multiple imputation technique [131] deserves attention
for its Monte Carlo nature. Multiple imputation creates multiple imputed
datasets for each of which the missing values are filled in differently, al-
though usually using the same imputation method. Mixed use of different
methods for this task was considered by Jornsten et al. in [132].

Manipulating the original dataset with imputations affects also the
patterns that are found from the data and their significance. Therefore
there has also been research done to evaluate the impact of various impu-
tation methods for the significance testing results, although the research
has mainly concentrated around regression problems. An analytical so-
lution that combines the separate significance testing results for each im-
puted dataset into one p-value while also taking into account the unknown
variability in the missing values was introduced in [133, 134]. More re-
cently [132] introduced an ensemble method that attempts to optimize the
combination of results from multiple separate imputation methods. The
results of the paper indicated that this strategy not only improves the qual-
ity (reduces the error) of imputed data points, but also the quality of the
eventual p-values.

As a further complication to the idea of multiple imputation, many
survey conducting organizations publish their data to researchers in a
multiply-imputed form. In such datasets missing values are first imputed,
but after this the values of attributes that are more sensitive or identifiable
are fully imputed, in other words replaced with resampled values. Ex-
tending previous research to conduct significance testing with multiply-
imputed datasets was done in [135, 136].

A special problem concerning missing intervals in time series and their
effect to the values of the cross-correlation function is discussed in [137].
The paper suggests two new Fourier transform based significance test-
ing methods for the problem. Both of the methods begin with estimating
the spectrum of the original data. On the general level the methods then
conduct some randomization in the spectral space and reconstruct ran-
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domized signals with the inverse Fourier transform. Finally the intervals
missing from the original data are removed also from these generated data
samples and the significance of cross-correlation values is then evaluated.

Let us now move on to the topic of uncertainty in data. Acquiring data
that is noisy either inherently or due to the acquisition process requires as-
sociating the data points with probabilities of its possible values. Another
source of uncertainty arises when results of predictive patterns are stored
in a database, because such derived data in general always contains some
uncertainty even if the underlying data were fully known and determinis-
tic.

Example 4.4. Satellite photos in the visible wavelength are collected and stitched
together to form continuous view of the earth’s surface. However, radiation from
the cosmic rays deteriorates the image quality at the time of its taking and also as
it is stored in the satellite [138].

Additionally, producing useful satellite imagery requires automatically rec-
ognizing areas of cloud cover from the photos so that unobstructed data can be
provided throughout the view. This recognition task is probabilistic and recording
the cloudiness of each pixel in the photos results in a large database of uncertain
data.

The topic of uncertain data is a rather recent one and there has been
no definite research on significance testing for this data type. The most
relevant work discuss the problem of accurately estimating the support of
itemsets in an uncertain database [139]. In [140] Calders et al. show how
this problem can be efficiently solved with simple probability tools such
as the central limit theorem and Hoeffding’s inequality, assuming that the
database elements are pairwise independent. The case of more complex
probabilistic models for the data remains open.

Another case of low quality data, but of rather different type, arises in
bioinformatics. Genes that relate to DNA replication and to the cell cycle
(phases of cell division) are sought out by finding genes whose activity
levels present substantial cyclical nature [141, 142]. Since the search for
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these cyclical genes begun, there has been a number of experiments sug-
gesting large sets of genes to be cyclical, but the results have had surpris-
ingly little in common. Reasons such as high noise levels and variation
and bias in experiment arrangements [41], but also lapses in conducting
proper significance testing [71], have been cited as the cause.

Publication V studies the problems arising from high noise and ex-
periment arrangements. The paper contains theoretical analysis for the
behavior of some randomization methods most commonly used for de-
tecting significant periodicity in genes. This analysis especially highlights
the changes in randomization results when the number of samples in the
data changes. The theoretical results are also reflected with experiments
on the behavior of p-values. The results of the analysis, as seen in Fig-
ure 4.6, indicate that increasing the sampling frequency from the common
1 sample per 10 minutes may substantially improve the quality and also
the reliability of the periodicity testing results.

One of the problems in recognizing cyclical genes is the need to syn-
chronize all the cells of the experiment before the testing period by, for
example, limiting their nutrient supply or altering the temperature away
from normal levels [143]. These procedures may put the cells to a stressed
state, causing them to act abnormally and produce false results in find-
ing cyclical genes [71]. To counter this practical problem that causes ab-
normal periodic behavior in the genes, Publication V introduces a simple
randomization method that tests the cyclicity of the genes against each
other instead of a static background of pure noise. This method splits the
data series into parts every half-cycle and randomly recombines the latter
half-cycles with the former ones.

The null model of this method assumes that the majority of the genes
in the data do not express cyclical behavior and so their expression lev-
els can be used for constructing an approximate null distribution. On
the other hand, preserving the order of time points and the original ag-
gregate expression levels at each time point successfully handles cases of
global patterns such as the problematic stress response. As a comparison,
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Figure 4.6: Examples of how the sample count (x-axis) affects the
p-values (y-axis) reported by two commonly used randomization
methods. In both figures, each separate curve corresponds to a
standard sine wave at interval [0, 47|, with noise added so that the
sine signal accounts for 5 %, 10 %, ..., 100 % of the total signal
energy.

the autoregression-based resampling method suggested by Futschik and
Herzel [71] cannot factor in such global erratic behavior as their method
resamples the expressions of each gene separately and considers only the
average variation across the whole time of the experiment. Additionally,
on expectation the method produces samples where the general expres-
sion level of each resampled gene is a direct function of the first measured
value, which is somewhat arbitrary.

The periodicity at frequency w in the time-wise expressions E(g,t) of a
gene g is computed using the commonly used Fourier score [141, 142]

2

2
F(g) = (Zt:sin(wt)E(g,t)> + <Zt:cos(wt)E(g,t)> .
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The automatic analysis of the genes with these methods is naturally only
the first step in assessing the properties of the genes. Therefore false pos-
itives are preferred to false negatives and the significant periodicities are
reported by controlling the false discovery rate at level 0.05. Whereas Pub-
lication V conducts this using the Benjamini-Hochberg method, Futschik
and Herzel [71] use a heuristic method to find a suitable periodicity score
threshold using which results in an approximately correct false discovery
rate. Such estimates, however, tend to produce too optimistic significance
testing results, see [144] and references within.

4.6 Iterative Pattern Mining

As we have already noticed in the earlier sections, data sources are often
modeled as a compilation of various properties. Additionally, complex
null hypotheses arise often from using multiple different types of con-
straints on the resampled data. These constraints are built up when, in
the progress of data analysis, new properties of data are learned and these
have to be taken into account also in significance testing.

Previously unknown properties of the data source are however not the
only class of constraints that may be included to the null hypotheses. By
limiting the scope of data analysis to the specific dataset under review,
any pattern P that exists in the dataset can be seen as a feature of the data
source. Adding a constraint that forces the presence of P to the null hy-
pothesis enables the data analysis to discount the effects of P from any
other analysis results, making it possible to conduct a more precise anal-
ysis. This process of adding more patterns to the null hypothesis as they
are found is called iterative pattern mining.

Example 4.5. Suppose that we are analyzing the gene expression levels of a yeast
cell in varying environments. We have discovered that gene g has an exceptionally
high expression level in the cold and dry environment e. This data point (g,e),
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however, affects also the analyses of, for example, the general expression level of
all genes in e and the general expression level of g and its variance.

If this property of the gene g is then considered normal behavior from g, we
should constrain the resampling process to reflect this piece of information. On
the other hand, even if this behavior is assessed as surprising and specific to this
tissue sample, adding the constraint to the null model allows us to better evaluate
which other patterns in the data exist in their own right and not simply as a
consequence of the surprising level in (g, e).

The problem of iteratively finding more patterns is closely related to
the problem of finding the “top-k patterns” from binary or discrete data
that have the highest importance by some measure [145, 146, 86]. This
problem has been studied extensively in the contexts of comparing ex-
planatory data models [38, 147], pruning of hypotheses [148] and using
joint entropy [149, 150] or changes in partitioning of the transactions in
data [151]. Also several approaches to adjusting p-values when encoun-
tering new patterns have been suggested [152, 153]. The top-k task is NP-
hard to solve [154], but in some cases where the importance measure is
submodular, the greedy approach has a proven approximation ratio of
(e—1)/e[154].

In any case, the goal is to provide a minimal amount of information to
the actual user of data analysis while maximizing the usefulness of the re-
sults. This can be seen as a refinement of the goal in significance testing to
provide the human expert evaluating the results with only those patterns
that bear the most importance.

Publication Il introduces a new randomization-based approach to find-
ing out only the most important patterns. Instead of the more common
approach which prunes out patterns from the set of all discovered pat-
terns, the algorithm of Publication II starts with an empty set of patterns
and whereas earlier work such as [152] by Gallo ef al. use null models of
independent variables or transactions, the work of Publication II enables
the use of arbitrary null models with iterative mining through the use of
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property-based null models.

The general idea of the algorithm in Publication II is to run in itera-
tions, with iteration choosing the pattern of lowest p-value and adding
it as a constraint to the property model. For example, suppose that we
have found a highly frequent itemset 7 = { flowers, chocolate, milk } with
frequency 8192 from our data. As in Equation (3.1), we add a Gaussian
constraint that penalizes data samples where the frequency of this item-
set differs significantly from this original frequency. Therefore this pattern
and patterns that depend on it will not show up during the next iterations
of the process.

The progress in the number of patterns found can be seen in Figure 4.7.
In the figures, itemsets of size 2 and 3 are iteratively mined and with each
iteration the itemset of the smallest p-value is added as a constraint to
the null model. It is evident that there are numerous dependencies be-
tween the found patterns in the two datasets as most iterations substan-
tially shift around the number of significant patterns. It is also useful to
note how the pattern count can also increase instead of decreasing. This
occurs when there is anti-correlation between patterns, that is, they exhibit
“either or” type of behavior and co-exist less often than what random com-
bining would produce.

The iterative process may be continued, for example, until no patterns
of some pre-chosen significance are found anymore or until a sufficient
amount of patterns is discovered. A particular advantage in using prop-
erty null models for this task is that the patterns that are sought out and
constrained are not limited to one fixed pattern type, but can be more
freely chosen. In Publication II this is demonstrated by mixing patterns
of fixed row or column margins and frequent itemsets, whose supports in
the original dataset are used as the property model constraints.

Publication IT uses also k-means clusters as constraints to its null model.
This constraint, however, is not as flexible as the later work in Publica-
tion III and cannot be included in a property-based null model. Instead,
Publication I modifies the standard swap randomization method (see Sec-
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Figure 4.7: Number of significant itemsets in each iteration while
adding the most significant itemset as a constraint to the null
model. The COURSES data is a “student - courses completed”
dataset gathered in University of Helsinki. The PALEO data
contains information on what species fossils are found in given
palaeontological sites [155].

tion 4.1) so that swaps may be conducted only within the clusters of a
given clustering solution.

As already discussed in Section 3.2, it is debatable whether hard of soft
constraints should be used for a given problem. For the case of constrain-
ing itemset frequencies, however, this is not the case. Publication II proves
that successful randomization using simultaneous hard constraints for the
row and column sums and for the frequencies of some itemsets would im-
ply the claim “RP = NP”. Therefore this cannot be done, at least to the
current knowledge.
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CHAPTER D

Conclusion

Modern science is increasingly leaning towards data-driven solutions for
finding new ways to understand the surrounding world. Significant pat-
terns in large swaths of data can not only verify theoretical conjectures, but
also stimulate new discoveries. However, in many cases the pattern lead-
ing to a discovery can only be detected by analyzing extensive amounts of
data and automatically rejecting spurious patterns.

This difficulty builds great needs for providing applicable and reliable
data analysis tools. Not only does the hidden nature of some patterns
in data make their sensitive detection difficult, but the need for this sen-
sitivity increases the risks for reporting false patterns. Additionally, this
trade-off between the risk of missing real patterns (false negatives) and
the risk of reporting false patterns (false positives) is always specific to
every individual data analysis and dataset.

The modern “discovery science” [2, 156] way of doing research needs
efficient, reliable, sensitive and especially flexible significance testing tools.
This work has concentrated in building a framework upon property-based
null models that can address these issues. Implementing and using the
general method has been discussed, along with emphasis for the correct-
ness of the significance testing context and the ensuing p-values. The latter
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part of the work focused on representing use cases and solutions for spe-
cific applications such as real-valued matrices and time series collections.
Additionally attention has been given to using data representations for
improved data modeling and to conducting iterative significance testing
with the framework.

Whereas the introduced MCMC-based randomization scheme is highly
customizable and flexible, its power makes it also more computationally
demanding than the historical analytical or model-based significance tests.
However, randomization is inherently a strongly parallel task and the cur-
rent and the foreseeable trend in advances of computing abates this defi-
ciency.

The significance testing methodology discussed in this work is still in
an early phase in many ways and additional research to improve both its
scope and easy applicability is needed. For example, better evaluation of
the convergence of the randomization process is needed. The current work
should be seen more as a foundation or a template which can be used for
developing specialized significance testing setups rather than as a compi-
lation of tools ready for use. Future work in improving the methodology
includes theoretical work in understanding better the role of randomiza-
tion parameters in controlling the process and assessing further the capa-
bilities of using representations for randomization.

In summary, testing the significance of complex null hypotheses with
property null models and MCMC methods has shown to be a valid ap-
proach in many cases and I believe that they will be increasingly used in
the future once their theory is better understood and as their advantages
become better known among the researchers in need of these tools.
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