
9HSTFMG*aefbbf+ 

ISBN 978-952-60-4511-5 
ISBN 978-952-60-4512-2 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Electrical Engineering 
Department of Automation and Systems Technology 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-D

D
 17

/2
012 

 

A
ntti R

em
es 

A
dvanced P

rocess M
onitoring and C

ontrol M
ethods in M

ineral P
rocessing A

pplications 
A

alto
 U

n
ive

rsity 

Department of Automation and Systems Technology 

Advanced Process 
Monitoring and 
Control Methods in 
Mineral Processing 
Applications 

Antti Remes 

DOCTORAL 
DISSERTATIONS 





Aalto University publication series 
DOCTORAL DISSERTATIONS 17/2012 

Advanced Process Monitoring and 
Control Methods in Mineral Processing 
Applications 

Antti Remes 

Doctoral dissertation for the degree of Doctor of Science in 
Technology to be presented with due permission of the School of 
Electrical Engineering for public examination and debate in 
Auditorium AS1 at the Aalto University School of Electrical 
Engineering (Espoo, Finland) on the 16th of March 2012 at 12 noon 
(at 12 o’clock). 

Aalto University 
School of Electrical Engineering 
Department of Automation and Systems Technology 
Control Engineering 



Supervisor 
Emeritus Prof. Heikki Koivo 
 
Instructor 
Emeritus Prof. Heikki Koivo 
 
Preliminary examiners 
Prof. Pertti Lamberg, Luleå University of Technology, Sweden 
Prof. Sirish Shah, University of Alberta, Canada 
 
Opponents 
Prof. Kauko Leiviskä, University of Oulu, Finland 
Prof. Sirish Shah, University of Alberta, Canada 

Aalto University publication series 
DOCTORAL DISSERTATIONS 17/2012 
 
© Antti Remes 
 
ISBN 978-952-60-4511-5 (printed) 
ISBN 978-952-60-4512-2 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 (printed) 
ISSN 1799-4942 (pdf) 
 
Unigrafia Oy 
Helsinki 2012 
 
Finland 
 
The dissertation can be read at http://lib.tkk.fi/Diss/ 



Abstract 
Aalto University, P.O. Box 11000, FI-00076 Aalto  www.aalto.fi 

Author 
Antti Remes 
Name of the doctoral dissertation 
Advanced Process Monitoring and Control Methods in Mineral Processing Applications 
Publisher School of Electrical Engineering 
Unit Department of Automation and Systems Technology 

Series Aalto University publication series DOCTORAL DISSERTATIONS 17/2012 

Field of research Control Engineering 

Manuscript submitted 13 June 2011 Manuscript revised 20 December 2011 

Date of the defence 16 March 2012 Language English 

Monograph Article dissertation (summary + original articles) 

Abstract 
In minerals processing the high material volumes yield the fact that benefits of even small 
improvements in the process efficiency are remarkable. On a daily basis, the efficiency of a  
concentrating plant relies on the performance of the process control system, and secondly, on 
the adequate information of the process state provided for the plant operators. This thesis 
addresses the problems in the monitoring and control of the selected, widely applied mineral 
concentration unit processes and the processing circuits. The case studies cover operations in 
the ore grinding stages, including size separation units, followed subsequently by the 
concentration and the thickening stages in the downstream process. The developed methods 
and applications are all verified with industrial data, industrially identified models or by the  
practical implementations and tests on the industrial case plants. 

Advanced control systems - including a rule-based, a fuzzy and a model predictive control, 
with different combinations and setups - are studied with simulated grinding and flotation 
processes. A new model-based expert system for controlling of the ground ore particle size and 
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In a plant-wide process monitoring, a data-based modeling approach is applied to predict the 
concentrate quality and the impact of the grinding stage parameters on that. The plant model, 
used for the monitoring, is updated adaptively; this enables timely information on the process. 
The monitoring system was set up based on the data of a chromite ore processing plant. 

Two unit operations, a hindered settling separator and a thickener, were modeled from a 
viewpoint of equipment monitoring and control purposes. The hindered settling separator 
incorporates both a mechanistic particle-settling model and a separation efficiency 
characterization curve in a novel manner. Separation characteristics in a pyrite concentrate 
case and in a ground apatite ore case were studied with the model. Operation of a thickener was 
modeled based on on-line mass-balance estimation. The monitoring application was 
implemented in an industrial apatite concentrate thickener. 

This thesis demonstrates the benefits of the above described monitoring and control methods. 
The metallurgical performance improvements are pointed out for each case. Also this thesis 
outlines the practical implementation and robustness issues for the methods. Thus the thesis 
promotes the advantages of more extensive use of plant models in process operation purposes. 
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1 Introduction 

1.1 Background 

The mining industry has a strong indirect impact on our daily life. The end 

products, metals � processed from the excavated ore minerals � are utilized 

in a wide range of manufacture, for example in transportation vehicles, 

constructions, electronics and consumer goods. For instance, currently  

around 50 % of the copper and 70 % of the steel of the world’s demands are 

supplied  by  processing  the  excavated  ore;  the  rest  of  the  material  is  

obtained  from  recycling  (Reuter  et  al.,  2005).  Processing  of  the  ore  is  a  

remarkable energy consumer having both economical and environmental 

effects. Due to the large material flows in the ore processing, even a small 

percentual improvement in the operations has a significant effect annually. 

In the mine sites, the mineral comminution circuits – carrying out the size 

reduction  of  the  excavated  ore  –  consume  typically  up  to  40  %  of  the  

electrical energy; of which only 1 % is attributed to the production of new 

surface area of the feed ore (Pokrajcic and Morrison, 2008). In addition to 

the energy efficiency of the comminution circuit, the overall process 

efficiency is determined by the particle size distribution and mineral 

liberation produced by the circuit, having an impact on the downstream 

concentration stages. Therefore, it is obvious that good operating practices, 

available process monitoring techniques and well-performing control 

methods, especially in the comminution stage, have a significant influence 

on the concentrator performance. 

According to the survey study of Wei and Craig (2009a and 2009b) over 

60%  of  grinding  circuits  were  controlled  merely  by  PID  (Proportional  

Integral Derivative) control. Multivariable and expert systems were applied 

in 20% of cases while the frequency of model predictive control cases was 

less than 10%. A brief description of commonly applied grinding process 

measuring, modeling, monitoring and also control techniques is given in 

Hodouin (2010). The author also suggests that when the control 

performance of a grinding circuit is evaluated, the impact on the 

subsequent concentration circuit should definitely be taken into account.  

Monitoring and Control of Grinding Circuits 

Rule-based control of the grinding circuits has been a widely applied 

method to handle process disturbances, typically originating from the ore 

feed. For example, at the Ok Tedi Mining the frequent and drastic ore type 
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and feed size variations have been tackled by gradual long-term 

development of a rule-based and fuzzy expert system for the SAG mill 

control, allowing increased throughput (McCaffery et al., 2002). Also rule-

based particle size control with encouraging results has been reported by 

Yianatos et al. (2002). From elsewhere, Duarte et el. (2001) pointed out the 

advantages of neural control in varying operating conditions, using a 

simulated Codelco-Andina grinding plant. In addition, Duarte et al. (1998) 

have performed a multivariable control test at the Codelco-Andina copper 

concentrator grinding section. Lestage et al. (2002) applied linear 

programming for finding the optimal ore feed rate and sump water addition 

rate set points as a function of operating constraints.  

In the grinding process, the ore grindability dictates largely the mill 

operating point and throughput. Gonzalez et al. (2008) has studied model-

based grindability detection with simulations. In addition, Mitra (2009) has 

studied the effect of uncertainties, both in the grindability model 

parameters and in the data, on the optimization of both circuit throughput 

and the percent of mid size passing fraction. It was concluded that 

particularly the accuracy of the grindability index has a strong impact on 

the optimization problem.  

Most recently, model predictive control has raised interest also in the 

mineral grinding applications. Several studies of model predictive control 

(MPC) in grinding processes have been reported: Pomerleau et al. (2000) 

performed a simulation study comparing different unit controller, 

multivariable control and model-based control scemes; Muller and de Vaal 

(2000) pointed out the robustness of the MPC to the model mismatches; 

Ramasamy  et  al.  (2005)  showed  that  the  MPC  performs  better  than  a  PI  

control when different operating conditions occur. Later on, Coetzee et al. 

(2010) have presented a nonlinear model predictive simulation control 

study, concluding that the practical implementation of the method is still 

currently unfeasible. Instead, a simulation study of a SAG mill predictive 

control with linear models was shown to be feasible (Garrido and Sbarbaro, 

2009). Also, Apelt and Thornhill (2009) showed by simulations the 

advantages of the MPC compared to the PID control in mill power draw 

stabilization. The applied model was developed based on the Northparkers 

Mines SAG mill data; utilization of the estimated nonlinear mill operating 

curve in the control system was also proposed. Elsewhere, an industrial 

application described in Gatica et al. (2009) and Nieto (2009) outlined 

implementation of a SAG mill model predictive control, based on the 

transfer function models identified from the process, at the Codelco Chile El 

Teniente division. According to the long term operation data, the mill 

throughput increased on average between 2% and 6%. 
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Monitoring and Control of Grinding – Concentration Process Chain  

Yianatos et al. (2000) simulated the grinding – flotation process chain to 

study the optimality in terms of the throughput, the grinding fineness and 

subsequently the flotation recovery. The model was calibrated with 

Codelco-Chile Salvador copper concentrator data; based on the results, the 

necessity for on-line particle size measurement was addressed. At the same 

time,  Sosa-Blanco  et  al.  (2000)  performed  a  study  of  the  flotation  

economics improvements by means of the grinding circuit tuning. A 

procedure for statistical monitoring of data from a grinding-flotation circuit 

was demonstrated in Groenewald et al. (2006), suggesting the inclusion of 

process performance indices and the model predictions into the monitoring 

scheme to further improve the analysis of the root causes. More recently, 

Wei and Craig (2009a) have still emphasized the importance of evaluating 

the grinding and concentration (flotation) as one assembly when different 

control setups are assessed. They have also performed a simulation study, 

demonstrating the effect of the model predictive control of a one-stage run-

of-mine mill on the subsequent flotation recovery and overall performance. 

1.2 Objectives and Asserted Hypothesis 

Mineral processing plants have a large potential for operational 

performance improvements in a wide range of applications. Even if the 

process flowsheet has been optimized during long-term development efforts, 

short-time disturbances can temporarily decrease the process performance 

significantly. Typically these performance measures can be directly 

indicated in metallurgical figures such as concentrate grade and recovery, 

which  can  be  –  on  the  other  hand  –  transformed  into  the  economical  

profitability figures of the plant. This thesis addresses the issue of 

maintaining the process profitability by applying various process 

monitoring and control methods in the selected mineral processing units. 

The applied methods are verified by means of process experiments, data-

analyses, simulations, and automation system implementations in the 

concentrators of three Finnish mines. The case plants are: the Outokumpu 

Chrome  Oy  Kemi  Mine,  the  Yara  Suomi  Siilinjärvi  Mine  and  the  Inmet  

Mining Co. Pyhäsalmi Mine. 

Therefore, this thesis asserts that by applying advanced process 

monitoring and control techniques in a novel way throughput, quality, 

grade or recovery of the product of a mineral processing plant or a unit 

process can be greatly improved, subsequently leading to economical 

improvements of the process operation. The obtained benefits for the 
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selected case unit processes and sequential processing stages are 

demonstrated and also the applicability of the methods is verified. 

1.3 Scope and Contribution of the Thesis 

In this thesis existing modeling, monitoring and control methods are 

further developed and applied in novel practices to the selected industrial 

case processes. The major impact of the approach is that the methods are 

proven to work robustly in accordance with the industrial plant tests or with 

industrially parameterized process models. The results are generic in the 

sense that the restrictions, the anticipated benefits and the work flow for 

the implementation procedure for other similar process cases can be 

outlined based on the results of this thesis.  

Contributions of this thesis in order to address the asserted objectives are 

as follows:

� Model-based grinding circuit control system: Frequent 

changeovers of the ore feed type require timely control actions to tune 

the grinding circuit to act in a proper operation state. In this thesis a 

plant test based simulator, comprising a model-based control of 

ground ore particle size distribution, was set up in conjunction with 

an expert control scheme for the circulating load of the grinding 

circuit. This novel approach was tested by simulations with long term 

plant data.  

Case application: Siilinjärvi apatite grinding circuit. 

� Hindered settling separators: Operation of a hindered settling 

separation can be difficult to stabilize when varying feed conditions 

are present. This can lead to an off-specification separation result, 

causing, for example, losses in recovery in the subsequent 

concentrating phase. The modeling approach, developed in this thesis, 

for examining the unit operation combines a slip velocity based 

particle movement calculation together with a separation efficiency 

characteristic in a novel way. 

Case applications: Pyhäsalmi pyrite pilot unit and Siilinjärvi apatite 

units. 

� Thickeners: Disturbances in slurry thickening can become a 

bottleneck for the whole concentrating plant, if not detected and 

tackled at an early stage. Here, the existing process measurements are 

utilized in a novel manner to estimate the thickener state to detect the 
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upcoming faults by using the proven Kalman filtering algorithm. The 

operation is verified with an industrially implemented solution. 

Case application: Siilinjärvi apatite concentrate thickener. 

� Plant-wide monitoring, based on adaptive data-based 

predictive model: Early responses in the ore feed characteristics 

can reduce fluctuations in the final concentrate grade and recovery. 

This thesis addresses the issue with a new adaptive prediction of the 

concentrate quality based on grinding section measurements. The 

model parameters provide information on the impact of the grinding 

stage operating parameter on the plant results. 

Case application: Kemi chromite grinding and gravity concentration. 

� Control studies of mineral beneficiation:  This thesis includes 

evaluation of the benefits of selected mineral processing control 

schemes. An expert system and model predictive control are studied 

with flotation simulators, a closed-loop particle size control for a 

grinding circuit is tested in plant operation and a grinding-flotation 

chain is studied with plant calibrated simulations. These evaluations 

pointed out economical and metallurgical impacts of the control 

improvements that have not been assessed before.  

Case applications: generic flotation simulators, Kemi chromite 

grinding circuit and Pyhäsalmi grinding – copper flotation chain. 

1.4 Summary of Publications 

The publications handle research work covering a time span of around five 

years, starting in 2005. The early research stage discussed in [P2] deal with 

a preliminary study of an expert system and model predictive control with a 

model obtained from the literature. Around the same time, the first plant 

experiment started at the Kemi concentrator grinding section. That work 

and the related data analysis are described in publication [P1]. 

A  major  part  of  the  research  was  carried  out  in  the  MinMo-project 

‘Advanced Methods in Monitoring and Control of Ore Concentration’

during 2007-2009. Using the data of publication [P1], a plant-wide model 

to predict the concentrate chromite grade based on the grinding parameters 

is presented in publication [P3]. Publication [P4] summarizes various 

monitoring and control schemes developed and tested in the Kemi case 

process. Elsewhere, in the Siilinjärvi plant case, a soft-sensor monitoring 

system for the apatite concentrate thickener was developed, tested and 

implemented; this is summarized in publication [P6]. Several experiments, 
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related modeling work and, finally, formulation of a model-based grinding 

control scheme were carried out at the Siilinjärvi plant. These are covered 

in publication [P7]. 

The field of flotation control [P5] and the pilot scale Floatex separator 

modeling [P8] are also studied. The flotation control case points out the 

benefits of an assay and machine vision based flotation control by means of 

a first principles simulator. In addition, the advantages of the feedforward 

flotation cell level control were demonstrated by simulations. In the other 

publication, [P8], a pilot scale hindered settling separator was calibrated 

and the operation was studied with the Pyhäsalmi pyrite experiment data. 

The publication is based on a similar model structure as applied earlier in 

the MinMo-project Siilinjärvi case; a slight difference is that in publication 

[P8] the model calibration was developed further.   

1.5 Structure of the Thesis 

This thesis is organized as follows. In Chapter 2 the operation principles of 

the mineral processing equipment related to the case processes are 

described  from  the  modeling  point  of  view.  The  description  is  relatively  

extensive since it forms the basis for the understanding of the 

characteristics of the case processes. Chapter 3 reviews the key 

methodology applied in the monitoring and control schemes of the thesis. 

The case concentrator plants - located in Kemi, Siilinjärvi and Pyhäsalmi – 

are  introduced in  Chapter  4.  The description summarizes  briefly  the  mine 

history, geology and the production. The process experiments, the 

application setups and the obtained results are presented in Chapter 5. The 

chapter starts with a description of the experiments and data sampling in 

each case, followed by the modeling and monitoring of the unit processes. 

Next the plant-wide monitoring case is described and finally the control 

studies are presented. Chapter 6 provides a conclusion of the work 

summing up the benefits, challenges and future prospects of the schemes 

applied and developed in this thesis. 
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2 Operation and Models of Selected 
Mineral Beneficiation Equipment 

After mining the ore is further processed in a concentrator plant. The main 

milling stages are: (i) liberation of the valuable minerals from the gangue 

and then, (ii) separation of them into concentrate and tailings streams 

(Wills and Napier-Munn, 2006). Liberation of the minerals is achieved by 

applying size reduction techniques. Machines for the size reduction of solid 

pieces are commonly based on four major effects; compression, impact, 

rubbing and cutting (McCabe, et al., 1993). In concentrators, the 

comminution process covers at least the crushing and typically also the 

grinding stages. In addition, the comminution stage often includes size 

classification equipments, such as screens and cyclones. The subsequent 

separation, or concentration of the ore, is commonly carried out with some 

physical methods, such as froth flotation and gravity separation. In case of 

solids-water slurry mixtures, the next process stage is dewatering, which 

typically includes gravity thickening and filtration. Moreover, the 

concentration can be carried out by leaching in a heap or in a reactor; also 

mineral concentrates can be further handled by leaching. The main 

successive steps in the mineral processing sequence from the mine to the 

port or smelting are presented in Figure 1. 

Figure 1. Main operation of a mineral processing plant (Sbárbaro and Villar 
(edit.), 2010). 

In the following subsections the operation of the major process 

equipment utilized in the case processes of this thesis are described in 

general. In addition, a more detailed explanation of the process phenomena 

and modeling practices is given for the countercurrent dense medium 

separators (Floatex), the flotation cells and the gravity thickeners, since 

these models are applied more extensively in the case studies in Chapter 5. 
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In modeling of mineral benefication the model type can vary largely based 

on usage. For process control purposes data based models can be highly 

suitable. However, for process audits and studies of unit operations for a 

certain ore processing and operating conditions, mineralogical information 

should be incorporated into the model. This type of model can be said to be 

a property based model, where the material is treated based on its physical 

and  chemical  properties  (Lamberg,  2010).  The  model  should  be  based  on  

known mineral composition, particle size classes, particles with defined 

properties (e.g. Satmagan value defining proportion of magnetic 

compounds), possibly mineral liberation analyzes, etc. Especially in 

flotation the property based model relies on floatability component model 

having different kinetic types – fast floating, slow floating and non-floating 

– for each mineral. The kinetic parameters should be preferably determined 

based on laboratory flotation test.  Recently, the link between floatability 

components and particle physical characteristics has been studied by 

Welsby et al. (2010). 

2.1 Grinding Mills 

The  size  of  the  crushed  ore  is  further  reduced  by  applying  impact  and  

abrasion forces, typically in tumbling mills. The purpose of the size 

reduction prior to concentration is to liberate the valuable minerals by 

continuing the breakage to the fineness of the mineral grain size. Also, the 

size reduction prepares the particles to be suitable size for the downstream 

processes, for example for flotation or pelletizing. The natural grain size of 

the same mineral in different ores can vary widely and over-grinding of the 

valuables should be avoided (Lynch, 1977). Therefore, the grinding circuits 

can also incorporate concentration equipment in order to remove certain 

particles at an early stage.  

Grinding mills can be classified into tumbling and stirred mill types, 

according to how the charge motion is generated (Wills and Napier-Munn, 

2006). Common tumbling mill types in mineral processing, in terms of the 

grinding media, are:  rod mills, ball mills, autogenous mills (AG), and semi-

autogenous mills (SAG).  If  hard  screened  ore  particles  are  used  as  the  

grinding medium together with steel balls, the mill is called a pebble mill.

Figure 2 presents a diagram of material flow through an overflow mill. In 

addition to the grinding media, the design of the mills varies in terms of the 

lifter shape inside the mill wall, and in the case of grate discharge mills, 

different  grate  and  pulp  lifter  options.  Moreover,  a  mill  can  be  equipped  

with a trommel screen after the discharge trunnion. 
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Figure 2. Schematic figure of overflow rod mill (Wills and Napier-Munn 2006). 

Grinding is the most energy-intensive mineral processing unit operation. 

Several formulas for predicting the mill power draw exits. Brochot et al. 

(2006) have presented equations used in a comminution modeling software 

package called USIM PAC.  It  provides  models  for  rod-,  ball-,  SAG-  and  

pebble mills. They incorporate parameters of mill dimensions, mill rotation 

speed, mill loading fraction, fraction of grinding media and properties of 

the solids in the mill. Similar parameterization for tumbling mills is utilized 

also in Napier-Munn et al. (2005), where calculation of the mill gross power 

is divided into no-load power and net power drawn by the charge. For rod 

mills King (2001) has presented a power draw formula incorporating a 

fraction of the mill volume loaded with rods, mill diameter and mill rotation 

speed.

The energy requirement increases when the size reduction is continued 

towards a still a finer product. Early modeling practices of the comminution 

were  formulated  in  the  19th century in the Kick and Rittinger laws, and 

later on in the 20th century in the Bond law, relating the applied energy and 

achieved breakage, in terms of change in a certain particle size class or 

passing size. Nowadays, modeling of the comminution can be categorized 

into the fundamental and black box models. Fundamental models 

incorporate laws of motion of the each single particle, utilizing discrete 

element method (DEM) computation. The method is computationally 

intensive; modeled contacts between the particles typically yield impact and 

abrasion/attrition energy distributions over a certain period of milling. An 

example in Figure 3 visualizes a result of a DEM simulation.  

Fundamental comminution modeling is computationally intensive, which 

is still limiting the use of it, especially with large-scale simulations (over 

100 000 particles) involving small particle sizes (Wills and Napier-Munn, 

2006). Recently, research efforts have focused on combining the simulated 

energy distributions and the resulting breakage. Datta and Rajamani (2002) 

proposed the use of population balance modeling, whereas Morrison et al. 

(2006) compared the DEM simulated and the laboratory mill charge 

motions and the rock wear rates. Powell and McBride (2006) described two 
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modeling schemes: (i) the use of the energy distributions after the 

simulation or (ii) modeling the particle breakage progeny during the 

simulation. Further, Powell et al. (2008) have discussed a unified 

comminution modeling scheme and addressed the key areas still needing 

development. Recently, Tuzcu and Rajamani (2011) have combined the 

DEM impact spectra based selection function into the population balance 

model to predict the resulting particle size distribution. The model was 

verified experimentally with a laboratory batch mill. The authors stated that 

the industrial SAG mills can also be modeled in a similar manner based on 

the drop-weight rock tests. 

Figure 3. A) Motion of 11 400 particles in Discrete element simulation of a mill 
B)  contact  events  during  the  same  time  instant  of  the  simulation  (Powell  and  
McBride, 2006). 

Black-box modeling of the grinding mills is well suited to flowsheet wide 

modeling; early simulation work carried out with several mill types and 

circuit configurations can be found in Lynch (1977). Commonly, the 

calculation of the mill outlet particle size distribution is presented in the 

following matrix form, with a breakage function ���  and a selection 

function T.  The breakage function is a vector defining the distribution of 

the material after an occurrence of the primary breakage; on the other hand 

the selection function defines the probability of the breakage rate in a size 

class. Thus the formula becomes, 

G = ��� � T � ( + (1 � T) � (, (1)

where G  and (  are product and feed particle size distributions. For ball 

milling, two commonly applied variations of the model exist: the 

population balance model, with a definition of the solids residence time, 

and the Whiten perfect mixing model, utilizing ratio of the rate of breakage 

and the discharge rate, which can be estimated from the actual feed and 

product  measurements.  In  the case  of  AG and SAG mills,  a  more detailed 

laboratory breakage and abrasion test is needed in order to define the 
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breakage appearance (term for the selection probability in the Whiten 

model context). Also, semi-empirical mill outlet flow rate functions for 

grate end mills exist. The grinding mill power draw for a certain ore type is 

related both to the throughput and fineness of the feed and the product. It 

can be predicted and implemented in simulations with Bond operating 

work index WIo (kWh/t) as applied later in Eq. (56). (Lynch, 1977; Prasher, 

1987; King, 2001; Napier-Munn et al., 2005; Wills and Napier-Munn, 2006) 

In this thesis the grinding mills are present in all of the case plants. The 

Kemi grinding-gravity separation monitoring is described in Section 5.3 

and  the  grinding  circuit  control  experiments  in  Section  5.4.  In  addition,  

the Pyhäsalmi grinding-flotation simulation study and the model-based 

control of the Siilinjärvi grinding circuit are described in Section 5.4. 

2.2 Floatex Density Separators 

A Floatex density separator can be utilized for the size separation and the 

concentration duties. A Floatex density separator (FSD) is a hydraulic 

classifier, based on a hindered settling of particles in conjunction with a 

countercurrent upward teeter water flow. The slurry and water form 

together an autogenous fluidized dense medium bed with a certain density 

and pressure. A simplified structure of the FSD indicating the directions of 

the feed-, over- and underflows and the teeter water feed pipelines 

throughout the cross section is shown in Figure 4. It has been reported that 

in the case of a multi component feed (fine coal), having both particle size 

and density distribution, at low pressures the FSD acted primarily as a size 

separator, whereas with higher bed pressures it was more effective as a 

concentrator, due to proper development of suspension density (Sarkar, at 

al., 2008; Sarkar and Das, 2010). 
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Figure 4. Flow directions in a Floatex density separator with a bed pressure 
control, and an illustration of size and density based separation of the particles 
in the fluidized bed. 

Particle motion in a Floatex density separator is a complex combination of 

the fluid-particle and particle-particle interactions, especially when 

inhomogenity of the raw material exists. To simplify the modeling, a steady-

state force balance can be considered. In hindered fluidized settling a 

particle experiences buyoyant, drag and gravitation forces  (Felice,  1995).  

All these will determine the terminal settling velocity of the particle. 

Separation of the particles takes place in a dense medium bed, established 

with the upward flowing teeter water. The velocity of the particle relative to 

the liquid, called the slip velocity, determines whether the particle reports 

to the overflow or underflow stream. 

Several equations for calculating the slip velocity have been proposed by 

various authors over relatively long period of time. Galvin et al. (1999a) 

presented an equation, modified from the Richardson-Zaki formula, 

covering also suspensions containing both particles of different sizes and 

densities. The proposed equation has been also concluded to have the best 

performance in an experimental test when compared with three other 

commonly available calculation formulas (Das and Sarkar, 2010). The slip 

velocity of the size fraction i and density j, Y�� (m/s) is a function of particle 

terminal settling velocity X
,��  (m/s) and the composition of the suspension 

as follows (Galvin, et al., 1999a) 

Y�� = X
,�� � �a�k�����a�k��_bL��<a�k�, (2)

where ~���(kg/m3) is the density of the particle, ~
H
  (kg/m3) is an average 

density of the suspension, �water (kg/m3)  is  the  density  of  the  fluidization  
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water and nij is a dimensionless Richardson-Zaki index. The average 

suspension density ~
H
  (kg/m3)  can  be  obtained  from  the  measured  

pressure E/ (kPa) and the pressure of water filled separator E>	
����= (kPa) 

with 

~
H
 = E/E>	
����= ~>	
��. (3)

The Richardson-Zaki index #��  is a function of dimensionless particle 

Reynolds number Q@
, and again,  several formulas for calculation of that 

exist. However, a logistic curve proposed by Rowe (1987), is claimed to be 

more accurate than another commonly used Graside Al-Dibouni formula 

(Das, et al., 2009). The index is obtained with 

#�� = 2�2.35 + 0.175Q@
!.� ��1 + 0.175Q@
!.� � . (4)

Terminal settling velocity X
,��  (m/s),  used  in  (1),  can  be  obtained  for  

spherical particles from the definition of the particle Reynolds number Q@

(in  the  terminal  settling  velocity),  see,  for  example,  McCabe  et  al.  (1993),  

resulting in 

X
,�� = Q@
|>	
����~>	
�� , (5)

where |>	
�� (Pa·s) and ~>	
�� (kg/m3) are the fluidization water viscosity 

and the density respectively and dp (m) is the particle diameter. Finally, the 

Reynolds number of a particle is calculated with an empirical correlation. A 

correlation  proposed  by  Hartman  et  al.  (1989)  is  claimed  to  predict  the  

terminal settling velocity with ±1 % estimation error, and is thus more 

accurate than another commonly used Zigrand and Sylvester (1981) 

correlation, used, for instance, in Galvin et al. (1999b). Moreover the 

Hartman correlation is claimed to be independent of the settling regime. 

The calculation procedure for the Reynolds number is (Hartman et al., 

1989): 

9C��!Q@
 = E(�) + 9C��!Q(�) (6)
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E(�) = [(0.0017795�� 0.0573)� + 1.0315]�� 1.26222 (7)

Q(�) = 0.99947+ 0.01853sin�(1.848�� 3.14) (8)

� = 9C��!��, (9)

where ��  is the dimensionless Archimedes number, which is calculated 

using the acceleration due gravity g  (m/s2) and the properties of the liquid 

and the particle with the above notations: 

�� = =¡¢4��_bL�(�a�k��_bL�)£�_bL�¤ . (10)

If the particles in the feed material are nonspherical, the equation (5) is 

not valid for calculation of the terminal settling velocity. Chhabra et al. 

(1999) have compared several available drag coefficient calculation 

methods for nonspherical particles. A formula by Chien has a relatively 

simple form for the drag coefficient ��,�� , using the particle Reynolds 

number at terminal settling velocity Ret and particle sphericity �  as 

parameters: 

��,�� = 30Q@
 + 67.289@iG(�5.03¥). (11)

The definition for the sphericity � is:  surface  area of  a  sphere  of  volume 

equals the particle divided by surface area of the particle. The values of the 

sphericity (or shape factor) vary from 0.1 … 1 (disc to sphere); for example, 

the sphericity of a cube is � = 0.806. It should be noted, when applying 

equation (11) to the particle size classes, that equal volume sphere 

diameters for calculation of Ret and corresponding CD,ij are also used. 

The grad coefficient equation (11) is applicable in the ranges 0.2 ¦ � ¦ 1
and Q@
 < ~5000. Also another formulation by Hartman et al. (1994) uses 

directly  the sphericity factor for the drag coefficient calculation; however 

the validity range of the sphericities is narrower (0.67 < �). In comparison 

with other methods, where a wide database of particle properties from 

literature was used, Chien’s method gave fairly good overall results; the 

maximum error occurred in the case of cone shaped particles (Chhabra, et 

al., 1999). For the spherical particles, equation (11) overpredicts the drag 
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coefficients. Thus for spheres, Eq. (5) should be used for the calculation of 

the terminal settling velocity instead. However, the drag coefficients with 

various non-unity sphericity factors calculated using Eq. (11) are well 

consistent with the graphical chart, presented in Rhodes (1998).  

For non-spherical particles the terminal settling velocity X
,��  (m/s) is 

finally obtained from the drag coefficient with a formula using the above 

notations, derived, for example, in Heiskanen (1993) 

X
,�� = ©4��~�� �~�� � ~>	
��� ~>	
��ª
3��,�� . (12)

Next, when the particle slip velocity is obtained by using Eq. (2), it is 

compared with the interstitial teeter water velocity. Particles having lower 

slip velocity than the interstitial teeter water velocity, report to the overflow 

stream. The separation efficiency depends on the average poroucity of the 

medium, called voidage w	]4, which is calculated using the average density 

of the particles ~	]4.�	�
����  (kg/m3), suspension density ~
H
  (kg/m3) and 

the water density ~>	
�� (kg/m3) (Das, et al., 2009) 

w	]4 = ~	]4.�	�
���� � ~
H
~	]4.�	�
���� � ~>	
��. (13)

From the superficial teeter water velocity (m/s) 

\
��
��.
H� = &
��
������	
��, (14)

the interstitial teeter water velocity (m/s) is then obtained  

\
��
��.�<
 = \
��
��.
H�w	]4 . (15)

Moreover a mass balance over the Floatex is written as 

&(�� = XA�� + BC��� (16)& = X + B, (17)
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where & is the feed mass flow rate (t/h), X (t/h) is the underflow mass 

flow rate, B (t/h) is the overflow mass flow rate, (��, A�� and C�� are density 

by size mass compositions of the respective streams. 

The above equations (2) – (17) describe the computational separation of 

the feed mass flow to the overflow and underflow streams of the Floatex 

apparatus. Thereby they determine the cut size of the separation � ! (m). 

However, this is still inadequate in order to compute detailed overflow- and 

underflow stream compositions.  To take into account the random 

movement of the particles, a separation efficiency curve is fitted to the pre-

determined cut size. Here, the separation efficiency o�p  is obtained from 

Venkoba Rao, et al. (2003). When written to fit the cut-size point the 

separation efficiency y¬p  has the form 

o�p = 0.5­1 + @�(����,��� �~�� � ~�� � ��®, (18)

where erf is the well-known error function (a sigmoid shape function 

obtained from Gaussian distribution), ~��  (kg/m3)  is  the  density  of  the  

solids, ~��(kg/m3) is the density of the total feed flow, ��,��  (m) is the 

particle mean size in the size class and c is an adjustable parameter. Thus 

formula (18) presents the size-density partition curve (or surface) relying on 

a stochastic Gaussian zero mean random variability of the particle velocity. 

It incorporates a settling velocity formula, yielding to the form (yp’), where 

the variance and other constants are lumped into parameters A and B. The 

parameters A and B are obtained from the calculated teeter interstitial 

velocity  Eq. (15), standard deviation of the particle slip velocity �],
��� (m/s), 

which  is  a  mineral  specific  adjustable  parameter,  and  from  the  pre-

calculated cut-size � ! (m) by the applying formula (Venkoba Rao, et al., 

2003)

� = \
��
��.�<
�],
���¯2 � (19)

and, when the particle settling velocity and fluid drift velocity are equal at 

the cut-size point, the parameter A can be derived from (Venkoba Rao, et al., 

2003)

� = ��~�� � ~��� !� . (20)
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It can be noted that the effect of the particle density and the feed density 

cancels  out  in   Eq.  (18).  The  parameters  A, B and c together capture the 

random particle motion effects. Roughly, parameter A accounts for the 

viscous forces, B for  the fluid drift  and c for the hydrodynamic conditions 

and turbulence (Venkoba Rao, et al. 2003; Venkoba Rao and Kapur, 2008). 

The procedure for applying the phenomenological equations of the 

Floatex density separation (FSD) to obtain the cut-size of each 

mineralogical species in the system and accomplishing the separation 

modeling with a separation efficiency dictated by the particle random 

motion yields the corrected efficiency curve or the corrected Tromp curve.

Similarly, the calculated cut-size refers to the corrected cut-size, which is 

also typically used in design and scale up of classifiers (Heiskanen, 2003).  

In addition, when taking into account the bypass portion of the fine end of 

the distribution, the uncorrected efficiency curve o�  is obtained (Wills and 

Napier-Munn, 2006):  

o� = o�p(1 � �) + �, (21)

where � is the part of the fine end lost into the underflow stream, carried by 

the water flow. The cut-size, called the Tromp partition index, resulting 

from Eq. (21) is finer than the cut-size of Eq. (18). 

In this thesis the Floatex density separators are modeled and studied in 

the  Pyhäsalmi  pilot  equipment  case  and with the  Siilinjärvi  process  data 

in Section 5.2.2. The model equations (2) - (21) describing the separation 

phenomena are utilized in the studies. 

2.3 Flotation Cells 

Froth flotation was patented back in 1906, since that time it has become the 

major mineral concentration technique. The concentration takes place in a 

solids-water-air –mixture, based on the different physico-chemical surface 

properties of the mineral particles. The solids transport from a pulp phase

(called also a collection zone) to a froth phase has three major mechanisms: 

(i) selective attachment to  air  bubbles,  referred  to  as  true flotation; (ii) 

entrainment with water and; (iii) the physical entrapment (or aggregation) 

of the particles.  
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The most common practice is to recover the valuable mineral into the 

froth phase in direct flotation; oppositely, in reverse flotation the gangue 

material is separated into the froth. The selective separation of different 

mineral particles with true flotation is achieved based on the differences in 

hydrophobicity of them. Thus, a mineral can be categorized into either 

polar or non-polar type;  the  latter  being  hydrophobic  and  having  a  

naturally high floatability. Anyhow, the kinetic characteristics of minerals 

are practically always affected by the treatment of flotation reagents. 

Collectors adsorb, during the required conditioning time, to the surface of a 

particle, making it hydrophobic and thus more likely to attach to an air 

bubble. Regulators include activators and depressants, affecting the 

attachment of certain minerals to the air, the regulators are also used for 

the  pH  control  of  the  pulp.  Frothers are  added  to  create  a  stable  enough  

froth phase.  

In addition to the reagent dosage, the most important control variables of 

a flotation cell are the pulp level, having impact on the froth height and the 

air feed rate; also, in some cases, the impeller speed can be controlled. The 

volume of the flotation cells in new installations can be more than 200 m3,

since the relative investment costs and operating costs decrease with 

increasing cell size (Allenius et al., 2008). An example of a typical industrial 

flotation cell is shown in Figure 5. 

Figure 5. Example of an industrial flotation cell with indication of main 
components. (CAD image: courtesy of Outotec Minerals Oy)

Flotation remains partly poorly understood phenomenon, and modeling 

of that for the simulation and scale-up purposes largely relies on semi-

empirical correlations. Modeling can be divided into the pulp zone and the 
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froth  zone  models  (see  Figure  5).  In  addition  to  them,  a  concept  of  the  

quiescent zone, which is less turbulent, but still provides perfect mixing of 

the water and the fine particles, can be distinguished between the pulp and 

the froth zones (Savassi, 2005).  

The floatability of material is related to the kinetic characteristic of that 

and thus forms the basis  for  the pulp zone modeling.  When modeling the 

froth zone, the entrainment, drainage and froth recovery can be treated 

separately. The key machine operating parameters are the superficial gas 

velocity 34 (m/s)  and  the  bubble  surface  area  flux  T� (1/s). The superficial 

gas velocity can be estimated by using the volumetric air flowrate to the cell MNOP(m3/s) and the cross sectional area of the cell ����� (m2) (Gorain et al., 

1999; Alexander et al., 2003) 

34 = MNOP�����. (22)

The superficial gas velocity can vary across the cell area as verified with a 

measurement probe in Gorain et al. (1996). The variation is most probably 

related to an uneven air bubble size distribution and gas hold up variations 

across the cell area, as measured in similar conditions by Gorain et al. 

(1995a and 1995b). 

It has been shown by industrial measurements in Dahlke et al. (2005) 

that a cell gas holdup is a linear function of gas velocity 34  in normal 

operating range (ca.  0.5  <  34 <  2.5  cm/s).  The gas  holdup affected by the 

cell meachanism, but also by slurry properties and chemistry, particularly 

frother dosage. Both the frother dosage and the superficial gas velocity have 

been shown to have an impact on the air bubble size; also industrially fitted 

functions are presented in Nesset et al. (2006). Air bubble size as a function 

of frothers, and determination of the critical coalescence concentration 

(CCC), as well as the 34 ��bubble size relationship has been studied in Grau 

et al. (2005). 

The bubble surface area flux T� (1/s) describes the available air bubble 

surface area per unit of the cell cross-sectional area. If the superficial gas 

velocity 34 (m/s) and the bubble size ��(m) are known, T� can be calculated 

using (Wills and Napier-Munn, 2006) 

T� = 634�� (23)
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To predict the bubble surface area flux under different operating 

conditions of industrial scale flotation, the following correlation has been 

proposed by Gorain et al. (1999)  

T� = 123?
!.� 34!.°°�
k!.�!E'!k!.°�, (24)

where ?
 is the impeller peripheral speed (m/s), 34  is the superficial gas 

velocity (cm/s) calculated using Eq. (22), �
 is the aspect ratio of the 

impeller and E'!  is  the  80%  passing  size  (μm)  of  the  slurry  solids.  The  

parameters were fitted based on 100 data sets. The authors also presented a 

slightly different parameterization based on another validation data, 

including also cases with self-induced air impellers. It was suggested that 

Eq. (24) could be improved by including the slurry viscosity instead of the 

particle size. As a limitation, model (24) was stated to overestimate values 

of T� when  flooding  (‘boiling’  of  the  air  bubbles)  due  to  high  34 or if high 

turbulence prevents the bubble size to decrease due to high ?
 velocities.  

The kinetic rate constant of flotation 8  (1/s) has been experimentally 

tested to have a linear relationship at shallow froth depths with 

dimensionless ore specific floatability E, the bubble surface area flux T�(1/s) 

and the froth recovery Q� (Gorain et al., 1998) 

8 = ET�Q�. (25)

Still, at intermediate and deep froth layers some non-linearity exists. 

Gorain et al. (1998) claimed that the relationship between 8 and T� should 

be independent of the impeller type. Later on, Heiskanen (2000) 

demonstrated the impact of the gas dispersion efficiency and thus the effect 

of the impeller types. He also pointed out that the rate constant starts 

decreasing for coarse particles at high superficial gas rates, as experienced 

in industry. 

The froth recovery Q� can be estimated by varying the froth depth of a cell. 

Linear extrapolation of the rate constant to the froth depth of zero yields 

the collection zone rate constant 8�  (1/s) and thus the following relationship 

(Alexander et al., 2003)  

Q� = 88�. (26)

In addition, recovery due to the true flotation QS�is obtained, when perfect 

mixing of the pulp zone is assumed, as 
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QS = 8��1 + 8��, (27)

where � (s) is the cell pulp zone residence time. In dynamic simulation 

applications the simulation time step is multiplied with the flotation rate 

constant and current mass of the mineral in the cell, yielding the 

concentrate mass flow rate, thus indirectly the recovery of the particles in 

that time span is obtained (Lamberg et al, 2009). 

The true flotation and froth recovery do not merely describe the overall 

flotation recovery. For the particles of sizes less than 50 μm the 

entrainment phenomenon starts to be a significant factor (Wills and 

Napier-Munn, 2006). The entrainment factor "#$ (normally between 0…1) 

is defined as a ratio of the entrained particles to the concentrate to the mass 

transfer of water to the concentrate. Recovery of solids due to the 

entrainment QR  is calculated linearly from the water recovery�Q>:

QR = "#$ � Q>. (28)

Moreover, recently Zheng et al. (2006b) have concluded that the above 

relationship is close to linear especially for the fines, based on industrial 

scale test work. To estimate the entrainment recovery QR   Savassi et al. 

(1998) have presented an empirical partition curve, that expresses the 

entrainment "#$ in terms of a particle cut size having 20% entrainment }
(μm) and a drainage parameter v , describing the drainage of coarse 

particles. The entrainment "#$�  for each particle size class �� (μm)  can  be  

calculated using the formula 

"#$�= 2@iG ±2.292 ���} �	=�² + @iG ±�2.292 ���} �	=�², (29)

where the drainage is impacting by means of an adjustment parameter, 

��6 = 1 + 9#(v)@iG ���} �. (30)
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The parameters  }  and v  are to be correlated (linearly) with the air 

residence time in the froth phase�x	�� (s), which depends on the froth height .�  (m) and the superficial gas velocity 34�(m/s): 

x	�� = .�34 . (31)

Elsewhere, Yianatos and Contreras (2010) have also presented an 

empirical entrainment factor model, where they have parameterized the 

model with the particle size and the drainage term. To estimate the water 

recovery Q>  as a decreasing function of the air residence time x	�� , the 

following equation was applied by Savassi et al. (1998) with experimentally 

fitted parameters a and b

Q> = �x	��� . (32)

Finally, calculation of the overall recovery, incorporating both the true 

flotation, froth recovery and the entrainment terms, can be written (Savassi, 

2005)

Q = 8��Q�(1 � Q>) + "#$Q>�1 + 8��Q��(1 � Q>) + "#$Q>. (33)

Recently, the froth recovery, the water recovery and the entrainment have 

been observed to be related to the amount of air recovered over the cell lip 

to the concentrate. The air recovery r can be calculated based on the froth 

image analysis by using the froth velocity \�(m/s) and depth of the froth 

over the launder lip 1 (m) with the lip length 9� (m)  and  the  air  feed  rate  

(m3/s) (Neethling and Cilliers, 2008) 

r = \�19�MNOP . (34)

The air recovery can be also determined based on image analysis of 

bubble collapse rate and the mean size of the bubbles. Estrada-Ruiz and 

Pérez-Garibay (2009) used this method to compare different air recovery 

models; they also proposed a semi-phenomenological model, based on 

volumetric flow rates and bubble diameter. For simulator usage, an 

equation where the air recovery is linearly dependent on the froth height .�
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(m)  and  maximum  froth  height  .�,/	�  (m), where the all bubbles are 

bursting, is convenient (Zheng et al., 2006a) 

r = 1 � .�.�,/	�. (35)

It has been shown that the air recovery has a maximum as the air rate is 

increased (Neethling and Cilliers, 2008). Also, the air recovery parameter r
can be used to predict the entrainment parameter "#$�  of different particle 

sizes with a theoretical formula based on the particle settling velocities 

presented by Neethling and Cilliers (2009). The formula takes into account 

the superficial gas velocity and the froth height as cell operating parameters. 

Neethling and Cilliers (2003) have also given a theoretical model for the 

concentrate water flow rate calculation, based on the measurement or 

estimation of the air recovery, the froth bubble size and the superficial gas 

velocity. The model was compared with other water recovery formulas, and 

judged to be well suited for practical process control purposes (Zheng et al., 

2006a).

Later on, for the water recovery model by Neethling et al.  (2003), Smith 

and Cilliers (2010) have presented experimental parameter estimation 

based on rougher bank tests. For the froth recovery, Neethling (2008) has 

presented a theoretical model, based on gas rate, air recovery and the 

change  of  the  bubble  size  across  the  froth  layer.  The  model  takes  into  

account different particle sizes, having different settling velocities in the 

Plateau borders of the foam after a detachment of a particle from a bubble 

has occurred. It has been shown that the air recovery has a maximum value 

(peak air recovery, PAR), where also the maximum recovery of the valuable 

mineral occurs; this has been utilized successfully in flotation bank air 

profile optimization in Smith et al (2008) and Smith et al. (2010). 

When applying formulas involving the bubble size information provided 

by image analysis segmentation, the averaging method in calculation of the 

mean bubble size should be considered properly. The size estimation 

mismatches have been demonstrated with the Pyhäsalmi Mine rougher 

flotation test data in Neethling et al. (2003). Later on, a simulation case in a 

South African platinum mine showed that the largest error source originate 

from  the  estimation  of  the  overflowing  average  bubble  size  (Smith  et  al,  

2008).  In  addition,  it  was  remarked  that  the  foam  surface  bubble  size,  

measured using image analysis, is not the same as the lip overflowing size, 

and certain transformation calculus should be carried out. 
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In this thesis the flotation processes are present in the control simulation 

studies. Section 5.4.1 includes flotation simulation experiments with 

different control setups and a control study of a grinding-flotation process 

chain case. Especially, the flotation model equations (22) - (35) are utilized 

as  part  of  the  process  simulator  used  in  the  analysis  of  froth  velocity  

control benefits. 

2.4 Gravity Concentration with Spirals and Reichert Cones  

Generally, gravity concentration is sensitive to the presence of slimes 

(particle sizes less than around 10 μm), since it increases slurry viscosity, 

reducing the sharpness of the separation. Therefore, a common practice is 

thus to remove the slimes beforehand, for example with hydrocyclones. For 

the same reason the separation efficiency is sensitive to deviations from an 

optimal feed pulp density; which is therefore often a controlled variable. 

(Wills and Napier-Munn, 2006) 

Separation in Reichert cone units takes place in pinched sluices. Reichert 

cones are most efficient in the 100…600 μm particle size range (Wills and 

Napier-Munn, 2006). The feed slurry is distributed evenly, using the upper 

cone surface, down to a center toward cone. The thickness of the slurry bed 

increases  from  the  cone  periphery  (diameter  Ø  typically  2  m)  to  the  

concentrate drawoff slot around four times (Burt, 1984). Meanwhile, the 

particles form a stratified layer, where the high specific gravity minerals are 

placed near the concentrating surface. The concentrate is collected with a 

vertically adjustable slot mechanism, while the lighter particles pass over 

the gap heading to a tails pipe in the cone center. The Reichert cone can be 

structured as a single or double cone assembly. A schematic figure of the 

cone structures are shown in Figure 6a. 

Spiral concentrators – sometimes called Humphrey’s spirals according to 

the original inventor of them – are helical downwards conduits with ports 

for concentrate removal. The particle size range of  an efficient separation 

with the spirals  vary  between 50…1000 μm, depending on the device  type 

(Burt, 1984).  Nowadays, a wide range of different device constructions are 

available. An additional wash-water can be fed from the inner radius, 

carrying lighter particles to the outer edge of the spiral. However, recent 

developments in spiral technology have been wash waterless operation, 

having adjustable splitter ports at the bottom of the spiral. Figure 6b 

illustrates the separation of the low and high density particles to the tailing-, 

middling- and concentrate streams. (Wills and Napier-Munn, 2006) 
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a) REICHERT CONE b) SPIRAL

Figure  6.  Schematic  cross-section  figures  of  a)  Reichert  cone  and  b)  spiral  
gravity separators (Wills and Napier-Munn, 2006). 

Modeling of the particle separation in Reichert cones is based on potential 

energy variations, when particles of different densities change (vertically) 

places in a settled bed. This causes a stratification flux, which has an 

opposite diffusive flux caused by a random particle-particle and particle-

fluid interaction. In addition, experimental concentrate flowrate vs. 

feedrate slopes need to be defined by adjusting the slot settings. Equations 

describing the fluxes are solved in a dynamic equilibrium and the resulting 

stratified bed is split to match the experimental gap take-off flowrate, in 

order to calculate the compositions of the discharge streams of the cone. 

The calculation procedure with good experimental results is presented in 

King (2001). The method is further extended to incorporate the effect of 

particle size distribution, in addition to density/grade distribution, by 

Venkoba Rao (2007). 

Particle separation in spirals is based on a combination of the centrifugal 

and shear forces, hindered settling of the particles and the effect of 

interstitial trickling through the flowing particle bed (Burt, 1984; Wills and 

Napier-Munn, 2006). Holland-Batt (1989) has presented a semi-empirical 

procedure describing the calculation of slurry velocity components of 

downward and across the spiral through directions. The calculation utilizes 

the Manning equation for open channel flow velocities and a free vortex 

equation for the across spiral velocities. The calculated particle velocities 

were further used to predict the cut sizes and solids distributions of the 

streams. Later on the calculation was expanded also to take into account the 

shear forces in more details; the obtained predictions were compared 

experimentally by various authors (Loveday and Cilliers, (1994); Atasoy and 

Spottiswood, 1995, Holland-Batt, 2009). 
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In  this  thesis  the  process  data  applied  for  the  plant-wide  predictive  

modeling in Section 5.3 is obtained from a gravity separation process of 

the Kemi concentrator. The process includes both Reichert cone separators 

followed by subsequent spiral separators.

2.5 Gravity Thickeners 

Gravity thickeners are used for continuous slurry sedimentation on an 

industrial scale. The equipment is a relatively simple, large shallow tank (Ø 

varying  from  2  to  200  m)  with  slow  rotating  radial  rake  arms,  shown  in  

Figure  7.  The  feed  slurry  flows  downward  until  the  zone  of  equal  density,  

where it continues moving radially outwards at a decreasing velocity. 

Gradually the flow separates to downward flowing suspension and to 

upward flowing water being nearly free of solids. Vertical segments in the 

thickener can be categorized into the clarification zone above the feed level, 

the zone of the hindered settling and the compression zone near the bottom. 

Thick slurry is removed from the tank via an underflow cone with a sludge 

pump; the clarified water overflows to a weir. The sedimentation is usually 

boosted with coagulation and flocculation chemicals fed into the feed well. 

Coagulation chemicals bind together colloidal fine particles while 

flocculation is responsible for formation of more open agglomerates, where 

the reagent acts as a bridge between the particles. (McCabe, et al., 1993; 

Wills and Napier-Munn, 2006) 

Figure  7.  Construction  of  a  gravity  thickener  (McCabe  et  al.,  1993  /  Eimco  
Corp.).
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In control of the thickeners the underflow density is often the most 

important performance criterion. The control scheme includes: regulation 

of the reagents addition, regulation of the underflow withdrawal and the 

rake drive controls with a rising mechanism. In addition to conventional 

flow meters and slurry density sensors, a thickener is often equipped with a 

sediment bed level sensor. Also a sludge bed pressure sensor at the bottom 

of the thickener can be effective for control purposes, indicating the mass of 

solids in the tank. (Perry and Green, 2008) 

A common control strategy is to control the underflow slurry density by 

manipulating the underflow pump speed. The sediment bed can be 

controlled by adjusting the flocculation ratio; a higher flocculation rate 

compresses the bed height, which has been also experimentally verified by 

Johnston  and  Simic  (1991).  Subsequently,  at  the  same  feed  rate,  the  

changes in the sludge bed depth also affect the underflow density (Concha 

and Bürger, 2003).  

Therefore, an alternative control strategy is to compensate for variations 

in the underflow concentration by adjusting the flocculant dosage, while the 

slurry bed level is maintained by adjusting the underflow rate (Perry and 

Green, 2008). However, in the (multivariable) control philosophy it is 

important to take into account strong interactions between variables and 

long time delays and dead times and the possibility that the actual system 

response can be somewhat abnormal. For example, excessive flocculant 

addition may lead to, instead of increased underflow density, increased rake 

torque and disturbed operation that might require corrective action for 

several hours (Perry and Green, 2008).  

A rapid rise in the rake torque can originate from several different reasons. 

Increased torque can result if the material in the thickener accumulates 

faster than it is removed. This situation can arise when considerable 

amount of coarse fraction occur in the feed. Then the coarse solids can 

separate from the pulp, causing difficulties in raking and pumping. The 

situation  normalizes  –  in  addition  to  raising  the  rakes  –  when  the  fine  

fraction of the feed slurry starts accumulating in the basin, enhancing 

buoyancy and fluidity and thus lowering the torque.  

Another origin of the increased the torque, especially when the operating 

conditions remain unchanged, can be a formation of an island. The term 

means semisolidified mass accumulated in front of the rakes. The reason 

for the island formation is often an excessive use of flocculant, causing 

accumulation of a claylike consistent mass. This can be noticed from 

gradually increasing torque ending up in a torque spike. (Perry and Green, 

2008)
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Successful raking has an impact on the thickener overall operation and 

especially on even underflow density and flow rate. Over-raking causes back 

circulation in the outer parts of the thickener. On the other hand, 

insufficient raking increases the risk of rat-holing in the middle of the tank 

(Rudman, et al., 2008). In addition to the material transportation function, 

raking is the dominant mechanism in dewatering of the settled slurry, 

removing significantly intra-aggregate liquid (Farrow, et al., 2000). The 

raking efficiency has also been studied in Rudman et al. (2010); the ratio of 

the  rake  delivery  and  underflow  rate  was  observed  to  be  the  key  factor  in  

the thickener operation and the underflow rate was suggested to be 

adjusted on a daily or hourly basis. 

Modeling of a continuous thickener is based on a description of the total 

downward solids flux. The flux consists of the transport flux Gt where the 

solids are carried by the down flowing water and the settling flux Gs caused 

by particle settling through the water. The total flux G can be written 

(McCabe, et al., 1993) 

) = )
 + )
 = A��
 + ��q�$� �
, (36)

where �
 is the solids concentration, A��is the downward fluid velocity, and =³=
  is the settling rate. The settling rate is determined by carrying out a batch 

settling test known as the Kynch method. A steady-state simulation practice 

based on the ideal Kynch model has been presented in King (2001). 

In this thesis, the operation of an industrial concentrate thickener was 

monitored based on a simple dynamic mass balance calculation in 

conjunction with the mean density and the underflow cone pressure 

calculation formulas. In addition to the fresh concentrate slurry mass flow 

rate :�; , the concentrate dewatering sections have often a back circulation 

flow :�;  from the filtration stage to the thickener. When :´;  is the underflow 

mass flow, the net mass accumulation is 

1 2 3
solidsdm m m m

dt
� � �� � � . (37)

Next, the water mass is obtained, when the tank volume Vthickener and 

solids specific mass �solids are known, by  
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. (38)

Water balance over the thickener can be written as follows: 

1 2 3 _overflow water additionv v v v v� � � �� � � � � , (39)

1
,1 1water

solids

mv v
�

� �
�

� � , (40)

2
,2 3water

solids

mv v
�

� �
�

� �  , (41)

,3 ,1 ,2water water water overflowv v v v� � �� � � � , (42)

where \�; , \�;  and \ ;́  are the total volumetric flow rates of the two inflows 

and underflow respectively, \;>	
��,�, \;>	
��,� and \;>	
��,´ are the volumetric 

water flow rates of them. Also, possible water addition to the underflow line \;>	
��_	==�
��<  is taken into account. The overflow \;�]�����>  water is 

calculated by assuming it to be clarified solids free liquid. Subsequently, the 

underflow mass flow rate is obtained with 

solidswatervvm �
�� )( 3,33 ��� . (43)

Further, the thickener sludge average density is 

thickener

watersolids
thickener V

mm �
�� . (44)

Now, if the thickener is equipped with a pressure transmitter (in the 

underflow cone/line), also the calculated quantity of that can be obtained 

simply by 

_underflow cone thickener tp g h�� 
 
 , (45)

where ��is the acceleration due to gravity and 1
�is the height of the slurry 

bed to the sensor. 

In  this  thesis  a  gravity  thickener  is  assessed  by  studying  the  process  

operation data and carrying out process experiments at the Siilinjärvi 

concentrator. The process monitoring system was constructed by applying 

equations (37) - (45) to estimate the mass balances over the equipment. 
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The system was implemented in the Siilinjärvi apatite concentrate 

thickener. 

2.6 Particle Size Analyzers for Process Slurries  

Particle size analysis of process slurry lines can be carried out with three 

application manners: at-line, on-line or in-line. In the at-line method the 

sample is transported to the laboratory for analysis; in the on-line method 

the analysis is performed automatically close to the process line; and in the 

in-line analysis the sample is kept in the process line during the whole 

sample preparation and measurement procedure. Common mineral particle 

size analysis methods includes: laser diffraction, image analysis, the 

acoustic (ultrasonic attenuation) method, the electric sensing zone method, 

gravitational sedimentation, sieving, elutriation methods (such as a 

cyclosizer) and the physical caliper positioning method. The results of 

different analysis methods are not directly comparable, since the particle 

properties, such as the shape factor, affect essentially the result. Currently, 

the most common on-line particle size analyzers apply the laser diffraction, 

ultrasonic or the movement of a physical caliber method. (Perry and Green, 

2008; Wills and Napier-Munn, 2006; Napier-Munn et al., 2005)  

Currently, for on-line analysis the most frequent measurement fractioning 

over the defined size distribution range can be obtained by the laser 

diffraction method. The method is based on a physical phenomenon where 

the particles of different sizes scatter the coherent light by certain size 

dependent angles.  The principles for forming the diffraction patterns are 

illustrated in Figure 8. The spatial light distribution (Figure 8a) can be 

transformed to an angular distribution (Figure 8b) with a certain light 

intensity (Figure 8c). Currently two main algorithms, the Fraunhofer theory 

and the Lorenz-Mie theory, are available for calculation of the particle size 

distribution backwards from the measured intensity-angle pattern. The Mie 

theory is more computationally intensive but produces more accurate 

results especially for the sizes less than 50 μm. Moreover, the algorithm is 

applicable across the entire measurement range, and thus is a standard 

method in current laser diffraction analyzers. (Perry and Green, 2008; 

Jones, 2003) 
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Figure 8. a) Diffraction pattern of laser light for small and large particle sizes, b) 
conversion of the angular distribution I��) to a spatial distribution I(r), c) 
intensity distribution of a a small particle on a photodetector (Perry and Green, 
2008). 

In this thesis the on-line particle size distribution analyses of the ground 

ore slurries are obtained based on the laser diffraction technique. Similar 

analysis equipment is utilized in all case plants, measuring the outlet 

slurries of the grinding circuits. 
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3 Brief Overview of Main Methods 

This chapter describes the main methods used in the modeling and control 

studies of the case processes. Phenomenological modeling of the unit 

processes  are  described  in  Chapter  2.  Here,  the  data-based  PLS  (partial 

least squares) modeling and its recursive updating technique is reviewed. 

Also, the two higher level process control methods, applied in this thesis, 

the model predictive control (MPC) and the fuzzy control are described. In 

addition, the Kalman filtering method used in a process monitoring 

application is shortly explained.  

3.1 Partial Least Squares Modeling 

The partial least squares (PLS) regression model is formed by constructing 

linear mapping between the :-couple of the predicted variables YY and the #-couple of the predictor variables h , both having ?  rows of samples. 

Mapping of the variables is presented with the regression coefficient matrix ��  ( # ×: ) such that the estimates of the predicted variables mn are

composed mn = ��h. (46)

A similar regression coefficient representation as in Eq. (46) is obtained 

also with the multivariate least squares regression technique, computed by 

means of the pseudoinverse formula  ���� =� (hSh)k�hSm, (47)

where hSh is the covariance matrix and hSm  is the cross-covariance 

matrix estimated from the sample data. However, the covariance of h may 

not be invertible, or the calculation can be numerically unstable if 

collinearity (rows are not linearly independent) exists, especially if the data 

is noisy. In the partial least squares (PLS) technique this issue is avoided. In 

the  PLS  method  the  input  block  is  decomposed  into  a  sum  of  the  inner  

product of the score �V� and the loading F  vectors, the corresponding 

matrices are U (? × 9) and D (# × 9)
h =� V� F�S + V� F�S +¶+ V� F�S = UDS. (48)
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The original predictor data h is reduced and approximated in Eq. (48), by 

selecting the number of the latent variables less  than  the  rank  of  the  

matrix �h : 9 < �.  In  addition,  the  loadings  vectors  are  defined  to  be  

orthogonal, aligned into the directions of the largest variances in the 

original data. On the other hand, the scores U in Eq. (48) can be computed 

by multiplying the original data h with a weight matrix cd (# × 9)U = hcd. (49)

Note that the above construction of the scores differs from the case of 

principal component decomposition, where the score vectors for a given 

data can be calculated using the loadings: U = hD. In the same manner, as 

in Eq. (48), the predicted variables can be decomposed into “Y-scores” and 

the weights m = W�S. (50)

Instead of the original data samples in h the scores U  Eq.  (49)  are  the  

predictors of YY , thus Eq. (50) can be written 

m = U�S = �hcd�S. (51)

The Equation (51) looks like a multivariate regression model (46), where 

the regression coefficient matrix is expressed as �� = cd�S . Two main 

methods to calculate the PLS coefficients exist: NIPALS (Non-Iterative 

Partial Least Squares) and the kernel method; both having several 

modifications. In this thesis, the kernel-based recursive PLS algorithm, 

presented by Dayal and MacGregor (1997a), was applied. In the algorithm, 

the largest eigenvector of the product of the covariance matrices mSh andhSm is taken to obtain the first predictor weight vector g�d . The computation 

proceeds by determining the weights of the predicted variables, and further 

deflating the covariance  hSm by subtracting the effect of the latent vector 

direction. This is repeated up to the number of the PLS latent variables. A 

more detailed presentation of the PLS modeling with case examples – also 

in the mineral processing field - can be found in MacGregor and Kourti 

(1995), Dayal and MacGregor (1997a and 1997b), Wold et al. (2001), 

Hyötyniemi (2001) and Duchesne (2010).  

Recursive partial least squares regression was first introduced by Helland 

et al. (1992).  The adaptation is based on the update of the PLS covariance 

matrices when a new observation (·
and ¸
) is available. The old data are 

exponentially discounted with the forgetting factor �t by  updating  the  
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covariance matrices (hSh)
 and (hSm)
  as follows (Dayal and MacGregor, 

1997b): (hSh)
 = x
(hSh)
k� + ·
S·
 (52)

(hSm)
 = x
(hSm)
k� + ·
S¸
 (53)

Additionally, the forgetting factor can be adjusted continuously, to only 

discount the old data when the process is persistently excited, thus 

containing some new information. The variable forgetting factor can be 

calculated, as shown by Fortescue et al. (1981), with 

x
 = 1 � ¹�k·b�hºh�b·bº»%b¤¼J¤½J ,���x
 = xyz{ 2(��x
 < xyz{ (54)

where �o
2 is the expected measurement noise variance of the output 

variable, No is the nominal asymptotic memory length (determining the 

adaptation speed) and et is the error between the PLS estimate and the 

measurement. 

3.2 Kalman Filtering Based Process Monitoring 

A Kalman filtering method can be applied to reduce the measurement noise 

and, on the other hand, at the same time to estimate unmeasured process 

states, when a process model is available. The method was first introduced 

by Kalman (1960); the algorithm utilizes a discrete state-space system 

presentation. The computation can be conceived of estimating first the a-

priori process states ijk and then the a-posteriori process states ij, when the 

new process inputs A and the output measurements o are available. The 

Kalman filtering concept with state-space model matrix notations is 

illustrated in Figure 9. 
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The Kalman filtering consists of two tuning parameters, the covariance of 

process states M  and the covariance of the process measurements Q . In 

general, both of them are diagonal matrices, finally defining the weighting 

of the measured and modeled states in the filter output. Kalman filtering is 

based on minimization of the error covariance of the a-posteriori state 

estimates. As a result of that minimization, the Kalman gain matrix 7 is 

obtained. In case of non-linear process models, an extended Kalman filter, 

making use of model linearization, can be applied. A more comprehensive 

introduction on the topic and issues related on practical implementation 

algorithms of the Kalman filters can be found, for example, in Sorenson 

(1985), Love (2007) and Grewal and Andrews (2008). 

3.3 Model Predictive- and Fuzzy Control of Processes 

Model Predictive Control 

In model predictive control (MPC) a dynamic process model is utilized to 

predict the future process responses. These responses are further used in 

order to optimize the process in terms of a certain cost function. Based on 

the optimization, the control actions applied into the manipulated variables 

are determined. The first industrial applications using the early versions of 

the model predictive control scheme were presented in the late seventies. 

Nowadays, MPC is widely used especially in the chemical and 

petrochemical industries. Payback times for the MPC installations are 

usually  reported  to  be  3-12  months  (Perry  and  Green,  2008).  Currently,  

several  variants  of  the  MPC  algorisms  exist;  a  good  review  of  them  and  

vendors of the industrial packages can be found in Qin and Badgwell (2003). 

In addition, a summary of some current MPC and advanced control 

packages, especially for mineral processing plants, is reviewed in Cipriano 

A

a-posteriori state-estimate

B

C K

a-priori state-estimate

x̂
�x̂

u

y  measurement 

-

+
+

+

� � �

Figure 9. Block presentation of the Kalman filtering with a state-space model.
A = state transition matrix, B = input matrix, C = measurement matrix and K =
Kalman gain matrix (concept drawn after Welch and Bishop, 2006). 
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(2010). In general the MPC algorithm minimizes a quadratic objective 

function 3 at each time step $
� � � � � �

2
2

1 1

ˆ( ) 1 .
ne nu

y r u
i j

J t y t i y t i u t j� �
� �

� � � � � � � �� �� �� � (55)

The cost function (55) incorporates the following terms: yr is the output 

reference (set point), ŷ is the predicted output, �u is the control increment,

ne is the prediction horizon length, nu is the control horizon length, 8 is the 

current discrete time step, the y�  factors are the output weightings for the 

control error, and the u�  factors are the input weightings for the control 

increments. The optimization is repeated at each time step in a receding 

horizon manner, where only the first computed process input change uA is 

realized at a time.

A  brief  introduction  of  MPC  for  the  process  industries  is  available,  for  

instance, in Rawlings (2000), Bequette (2003) and Qin and Badgwell 

(2003), all of them handling briefly also the nonlinear MCP schemes. 

Nonlinear model predictive control is introduced more extensively, for 

example, in Findeisen and Allgöwer (2002), who outline theoretical aspects; 

Bequette (2007) describes implementation practices and underlies some of 

the common “pitfalls”; and Diehl et. al (2008) provide an overview the 

computational issues.  

Qin and Badgwell (2003) have anticipated that in the upcoming MPC 

applications the practical control engineering issues, related to 

commissioning and tuning for instance, have a greater importance instead 

of the algorithm development issues. They have foreseen that the process 

models  involved  in  the  MPC  are  to  be  constructed  with  a  graphical  

representation of the plant, comprising continuous-time fundamental 

models. 

Fuzzy Control 

Fuzzy  logic  is  used  to  model  the  decision  making  of  human  operators,  

having expert knowledge of the process. A fuzzy logic controller is set up by 

defining certain ranges for variables, having non-crisp ranges with 

linguistic descriptions. An example of such a variable fuzzification is shown 

in Figure 10, where a flotation column grade, recovery and aeration rates 

are classified to triangular shape fuzzy sets. The fuzzified inputs and 

outputs are linked by setting up an if-then rule-base. Finally the controller 

output is computed by a defuzzification procedure, where the degrees of the 

membership of each input in the output sets are determined. A common 
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method is to calculate the centre of gravity of the sets, as shown also in the 

example of Figure 10, where the resulting column air setpoint is about 53 %. 

The computed output of a fuzzy controller is fully deterministic, contrary to 

the popular belief.

The history of fuzzy logic starts in the mid-nineteen sixties in the work of 

Lofti Zadeh.  An introduction to the topic can be found, for example, in Lin 

and Lee (1996) and Love (2007); case examples of fuzzy control of mineral 

flotation columns are presented in Bergh et. al (1998), Bergh et. al (1999), 

Carvalho and Durão, (2002) and Núñez et. al (2010).  

Figure 10. An example of fuzzification, inference and defuzzification; grade and 
recovery are fuzzified into the sets: L=low, N=normal and H=high, inference 
rules are applied, and after defuzzification the air setpoint for the flotation 
column is obtained (Bergh et al., 1998). 

A drawback in setting up a large fuzzy control system is the tedious tuning 

work. However, adjustment of the parameters is still feasible if the number 

of rules is kept sufficiently small (Carvalho and Durão, 2002). In addition 

to that, another important parameter affecting also the control rules is the 

selection of the control period (Bergh, et al., 1998). The control cycle should 

be chosen based both on the process dynamics and the constraints set by 

the process measurements. Recently in the case of the Minera Los 

Pelambres (Chile) flotation column fuzzy control, Núñez et. al (2010) 

addresses the controller tuning still as a research area in order to improve 

the controller response time. 
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4 Description of the Application 
Process Plants 

4.1 Kemi Chromite Concentrator 

Geology and Production 

The Kemi layered intrusion, containing the chromite deposit, is about 15 

km  long  and  0.2  to  2  km  wide.  The  chromite  deposit  is  the  largest  of  all  

mineral  deposits  in  Finland,  having  162  Mt  estimated  resources  at  26  %  

Cr2O3. In addition to chromite, the ore contains serpentine, amphiboles, 

talc and carbonates as the primary gangue minerals. The natural size of the 

chromite grains varies greatly, and is characterized by microcracking and 

brokenness; in minerals procesing this reduces the size of purely ground 

chromite (Huhtelin, 2007). The chromitite in Kemi was first found in 1959 

during excavation of a fresh-water channel. The open pit mining started in 

1966, and the underground production in 2003, being the only mining 

method since 2006. The concentrator products are upgraded lumpy ore and 

metallurgical grade concentrate. Table 1 summarizes the production of the 

Outokumpu Chrome Oy Kemi Mine. (Huhtelin, 2007; Geological Survey of 

Finland, 2010b)  

Table 1. Production of the Outokumpu Chrome Oy Kemi Mine. 

Annual ore feed: 1.2 Mt 
Cr2O3: 26 % 

Product Annual 
production 

Grade Grain size

Upgraded lumpy 
ore 

200 000 t 35 % Cr2O3 12-100 mm 

Fine concentrate 350 000 t 45 % Cr2O3 0.2 mm 

Minerals Processing Plant 

The Kemi concentrator consists of crushing, dense medium separation and 

concentration sections. After separation of the lumpy ore by a sink-float 

circuit in the dense medium separation, the crushed ore is fed to the 

concentration section. First, the crushed ore is processed in a rod mill - ball 

mill grinding mills in a closed circuit with an 800 �m  screen.  The  

concentrating stage consists of Reichert cones and spiral separators. Fine 

slime, separated with hydrocyclones, is further processed in a high-gradient 

magnetic separation (HGMS) circuit. A process flowsheet of the Kemi 

concentrating plant is shown in Figure 11. 
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Figure 11. Flowsheet of the Kemi concentrating plant; notations of selected 
process sampling points: TMTCr2O3 = rod mill discharge assay, HRCr2O3 = fine 
concentrate assay and D50 = particle size analysis. (original CAD image: courtecy of 

Outokumpu Chrome Oy) 

The Kemi Mine is integrated to the ferrochrome smelter of Outokumpu 

Tornio  Works,  located  20  km  from  the  mine.  The  high  chromite  grade  of  

the concentrate is advantageous for ferrochrome production. Therefore the 

main operating goal at the Kemi Mine is to maximize the chromite content 

of the concentrate, used subsequently in the ferrochrome smelter, while 

keeping the concentrate production rate at a predefined value. 

4.2 Siilinjärvi Phosphate Concentrator 

Geology and Production 

The main minerals in the Siilinjärvi ore deposit are 10 % of apatite, 20 % of 

carbonates (calcite and dolomite) and 65 % of phlogopite mica. The first 

findings  of  the  ore  were  made  during  construction  of  the  Siilinjärvi-

Sysmäjärvi railroad connection in 1950. Later on production at the 

Siilinjärvi open pit mine started in 1980; now the open pit is around 2.8 km 

long and 200-700m wide. Currently, Siilinjärvi is the largest industrial 

mineral mine in Finland and also the only phosphate mine in Western 

Europe. It processes annually around 10 Mt of ore; more than 200 Mt of ore 

resources are still estimated to be available. Table 2 summarizes the 

production of the Yara Siilinjärvi Mine. (Geological Survey of Finland, 

2010a; Yara, 2010; Kemira, 2005) 

Table 2. Production of the Yara Siilinjärvi Mine. 

Annual ore feed: 10 Mt 
P2O5: 4 %.
Apatite 10 %, Carbonates (calcite + dolomite) 20 %, Phlogopite 
mica 65 %  

Product Annual production Grade
Apatite concentrate 800 000 t 36.5 % P2O5

Calcite concentrate 100 000 t -
Mica 10 000 t -

TMTCr2O3 HRCr2O3D50
Crushed Ore
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Minerals Processing Plant 

At the Siilinjärvi concentrator the ore is first crushed in a three-stage 

crushing section, followed by homogenization with a stacker-reclaimer 

system. The grinding section consists of two parallel rod mill – ball mill 

circuits. Next, the apatite is separated in two parallel flotation circuits and 

purified with a high gradient magnetic separator. Finally, dewatering is 

carried out by thickening and filtration. The concentrator flowsheet is 

shown in Figure 12.  

Figure 12. Flowsheet of the Yara Siilinjärvi concentrator. (courtesy of Yara Suomi Oy)

The capacity of the concentrator depends greatly on the ore type. 

Especially the carbonates/mica ratio has a major impact on grindability; the 

average  is  around  0.3,  but  can  vary  between  0.15  and  0.7.  The  produced  

apatite concentrate is used totally in the phosphoric acid and fertilizer 

plants, integrated with the mine. 

4.3 Pyhäsalmi Copper-Zinc-Pyrite Concentrator 

Geology and Production 

The Pyhäsalmi deposit is one of the largest metallic mineral deposits in 

Finland. It is of VMS (volcanogenic massive sulphide) type of ore. The ore is 

mainly composed of sphalerite (Zn0.95Fe0.05S), chalcopyrite (CuFeS2) and 

pyrite (FeS2). The ore was found in 1958 when a local farmer was blasting 

rock in order to establish a water well. Interesting looking samples led soon 

to test drilling by Outokumpu Oy. Construction of the mine started next 
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year,  and  the  open  pit  mine  started  operating  in  1962.  Thereafter,  

underground  mining  was  started  in  1967.  A  new  significant  deep  ore  

deposit was found in 1996 and the current expectation is to have the ore 

resources until 2018. Annually the concentrator processes 1.4 Mt of ore. 

Table  3  summarizes  the  production  of  the  Inmet  Mining  Corporation  

Pyhäsalmi Mine. (Saltikoff et al., 2006; Mäki, 2008; Inmet Mining Co., 

2010; Webmineral, 2010) 

Table 3. Production of the Pyhäsalmi Mine Oy (Inmet Mining Co., 2010). 

Annual ore feed: 1.4 Mt 
Cu: 1.1 %, Zn: 2.2 %, S: 41 % 

Product Annual production Grade
Copper concentrate 50 000 t 29.0 % Cu 

Zinc concentrate 70 000 t 54.0 % Zn 
Pyrite concentrate 600 000 t 51.0 % S 

Minerals Processing Plant 

At the Pyhäsalmi plant, the ore is crushed in the underground mine. In the 

concentrator the crushed ore is first screened into lump, pebble and 

crushed fine ore. In the grinding section, the primary grinding is carried out 

in a semiautogenous (SAG) mill. Secondary and tertiary grinding stages are 

in a closed circuit with hydrocyclones. The hydrocyclone overflow is fed into 

sequential flotation circuits, where the copper, zinc and pyrite concentrates 

are separated selectively. Finally, the concentrate slurries are thickened and 

filtered in the dewatering section. A flowsheet of the concentrator is shown 

in Figure 13. 

Figure 13. Flowsheet of the Pyhäsalmi concentrator. (courtecy of Pyhäsalmi Mine Oy)
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5 Case Applications – Experimental 

5.1 Introduction to Experiments 

The process modeling, monitoring and control methods applied in this 

thesis were pilot tested based on the process data of three Finnish mineral 

concentrator plants. The plants are located in Kemi, Siilinjärvi and 

Pyhäsalmi; brief descriptions of the processes are given in Chapter 4. All the 

case applications cover modeling of the process to some extent. Therefore, 

prior to the studies, process experiments and data gathering periods were 

undertaken. In the following, the plant experiments and the exploited data 

periods are described.  

5.1.1 Process Experiments at the Kemi Concentrator 

Grinding circuit 

The grinding - gravity concentration process monitoring method described 

in this thesis was constructed based on a data set of January-February 2006. 

During the data collection, the grinding circuit control variables – the ore 

feed rate and the rod mill rotation speed – were varied stepwise to enhance 

the excitation of the data. In addition, slurry samples and crushed ore 

samples from the grinding circuit were collected in order to determine 

variations of the ore type and the amount of the circulating load. Figure 14 

presents a flowsheet of the grinding circuit with the location of the 

automatic on-line particle size measurement sampling point. Selected 

variables of the collected data set, described in [P1], are shown in [P3]. 

Figure 14. Flowsheet of the Kemi concentrator grinding circuit. 
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5.1.2 Process Experiments at the Siilinjärvi Concentrator 

Grinding Circuit 

To find out the dynamic responses of the grinding circuit to the changes in 

the control variables, a series of step response experiments were carried out 

while running several individual ore feed heaps. The experiments were 

carried out  during February -  March 2008,  covering six  days  with slightly  

different ores. The carbonate/mica ratio varied between 0.35 - 0.49, which 

represents fairly typical Siilinjärvi ore characteristics.  

The experiments were conducted with the smaller capacity grinding 

circuit (J1), while the second circuit (J2) was running normally. Both 

primary and secondary mill slurry densities were controlled by mill water 

addition. The circuit product slurry density – which is a calculated quantity 

– was controlled by manipulating the sump water addition valve. The 

circuit product particle size distribution was monitored with an on-line 

Outotec  PSI  500TM particle size analyzer. In addition, to inspect the 

analyzer operation, laboratory slurry samples from the analyzer calibration 

sampler were collected for each stabilized operation region. Figure 15 

presents the grinding circuit flowsheet with major measurements and the 

points (A, B and C) where the step changes were applied. The stepwise 

inputs were: 

� A) Ore feed rate: from an average of 500 t/h ± 50 to 100 t/h. 

� B) Circuit product slurry density / sump water addition: from an 

average density of 1360 kg/dm3 ± 30 to 40 kg/dm3. 

� C) Number of cyclones in use: variations between 6 and 8. 

An example data set of the applied step changes and the measured 

grinding circuit discharge particle size responses is presented in [P7]. 

Figure 15. Siilinjärvi grinding circuit and the applied step responses: A) ore 
feed rate, B) sump water addition C) number of hydrocyclones in action. 
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Apatite Concentrate Thickener 

The applied thickener monitoring scheme (see Section 5.2.1) was tested by 

conducting flow rate manipulation experiments (26 May 2009).  The 

thickener volumetric underflow rate set point was varied between 110 – 90 

– 110 m3/h. Also the filtration backflow feed rate was affected by taking one 

more pressure filter into action, in addition to the drum filter; this reduced 

the  flow  back  to  the  thickener.  Furthermore,  the  fresh  feed  flow  from  the  

high  gradient  magnetic  separator  (HGMS)  had  a  variation  due  to  the  

operation of the preceding process stages. The applied input manipulations 

and the thickener response are presented in [P6]. 

5.1.3 Process Experiments at the Pyhäsalmi Concentrator 

Floatex density separator 

Aim of the pilot test at the Pyhäsalmi Mine was to study the feasibility of 

separating the pyrite concentrate into fine and coarse fractions with certain 

specifications by using a hindered settling classifier. The plant personnel 

carried out the experiments in March 2010 with a pilot Floatex unit of 0.89 

m  hydrostatic  height  and  0.46  m  side  length.  The  equipment  included  a  

pressure sensor connected with a bed pressure controller manipulating the 

underflow discharge valve. The teeter water flow rate was stabilized as well. 

The feed-, overflow- and underflow compositions and flowrates were 

measured by collecting samples manually. The feed consists of pyrite slurry 

having an average density of 1910 kg/m3 and a flow rate around 2.5 t/h. The 

feed size distribution was typically 63.5 % of -74 �m fraction, while the 80 % 

passing size was 104 �m. The solids density of the pyrite (FeS2) concentrate 

was 5000 kg/m3.  The  sieve  analysis  covered  screen  sizes:  20,  37,  74,  105  

and 149 �m. The pilot Floatex was operated in several operating points by 

varying the bed pressure between 11…13 kPa and teeter water flows from 25 

l/min up to 60 l/min; the obtained data are presented in [P8]. A schematic 

diagram of the test apparatus is shown in Figure 4. 

5.2 Modeling and Monitoring of the Selected Unit Processes 

5.2.1 Concentrate Thickener 

At the Siilinjärvi concentrator the apatite concentrate slurry is dewatered 

with a 20 m diameter thickener followed by a drum and pressure filters (see 

the flowsheet in Figure 12). Occasionally, the thickening operation suffers 

disturbances, which may originate from the ore type variations, slurry 

particle size variations, varying slurry flow rates or uneven sedimentation 

flow pattern. The disturbances cause changes in the thickener solids mass 

throughput and water overflow rates. Also, water short-circuiting from the 
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clarification zone to the underflow can occur. Finally, the operational 

problems can lead to a pressure drop in the underflow cone, a rapid 

increase in the raking arm moment, underflow slurry pump cavitations and 

too low and/or uneven underflow slurry density. The disturbance periods 

can last from less than an hour up to several days. 

Therefore, the aim of the process development was to be able to monitor 

the thickener operation in more details to detect the upcoming disturbances 

earlier. In that way it may be possible to react to them and avoid or reduce 

the unwanted underflow fluctuations. The applied model is based on a total 

solids mass balance and water balance. Due to the presumed inaccuracies in 

the underflow mass flow measurement, the flow rate was also calculated 

from the volumetric flow balances, assuming the overflow to be clear water. 

The model applies Equations (37) to (45), the notations are shown also in 

the schematic diagram of the thickener in Figure 16a.  

In addition to the solids mass, the water flow rates and the solids flow 

rates, the average density of the thickener content and thus the underflow 

pressure were also calculated. The model was utilized in Kalman filtering, 

where the underflow mass flow rate and the pressure of the underflow cone 

were the measured output variables. Operation of the soft-sensor set up was 

tested  with  the  flow  rate  manipulation  experiments  (26  of  May  2009)  

described in Section 5.1.2 and in [P6]. The monitoring application was 

thereafter implemented into the plant automation system. Figure 16b shows 

the application user interface providing both the measured and estimated 

thickener state information for the plant operators.  

The system has been discovered to be useful in the daily plant operation; 

especially the estimated solids mass accumulation and the deviation in the 

estimated and measured cone pressure provides valuable information of 

possible progressing process disturbances (Aaltonen, 2010). 
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a) b)

Figure 16. Siilinjärvi thickener monitoring case: a) schematic figure showing 
the  thickener  streams  and  notations,  b)  operator  interface  window  of  the  
implemented monitoring tool (Courtesy of Yara Suomi Oy).

An example of a typical apatite concentrate thickening disturbance at 

Siilinjärvi (data period: May 2009), where the mass accumulation occurs, is 

shown in Figure 17. The figure shows an eighteen hours time period where 

the mass accumulation (a Kalman filter estimated value) has started around 

time 2 h. The accumulation has accelerated even more due to an increased 

feed flow from the high gradient magnetic separator (HGMS) after time 7 h. 

It is also possible that the mass has accumulated to the edges of the 

thickener, causing water short-circuiting. This may have caused the drop of 

the slurry underflow density and the increased rake torque, seen after the 

9h time point.

To normalize the operation, the rake arms have been raised, and also a 

secondary underflow pump has been started. This can also be seen from the 

increased filtration backflow and overflow water rates. The disturbance 

shown in Figure 17 has obviously included also slurry pump cavitation, as 

seen  from  the  volumetric  underflow  rate  drop  around  11.5  h.  Finally,  the  

secondary pumping drastically unloads the accumulated mass. The 

secondary pumping has been stopped after the primary underflow rate has 

reached the normal operation target. 
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Figure 17. Siilinjärvi thickener monitoring case: example of a propagating 
process disturbance due to excessive solids mass accumulation, leading to 
relatively sudden drop of the underflow density. 

Novelty of the Method 

The inferred information of the thickener solids mass is valuable for 

maintaining optimal operating conditions and preventing upcoming 

disturbances. Neither the slurry level measurement, the bottom cone 

pressure measurement nor the underflow slurry density measurement 

alone give that information themselves. By utilizing the existing process 

measurements a relatively simple and straightforwardly implementable 

method for estimation of the key physical quantities of a mineral slurry 

thickener can be obtained. The computation is based on the well-known 

and proven Kalman filtering technique. The monitoring concept of the 

industrial mineral concentrate thickener operation, applied in the Siilinjärvi 

case, have not been previously reported as such in literature. 

5.2.2 Floatex Density Separator 

Operation of the Floatex fluidized bed separators was studied by applying 

the model equations (2) – (21). The case examples cover a model calibrated 

with a pilot scale equipment data, and a model parameterized to describe 

the operation of the existing plant scale equipment.  
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Pyhäsalmi Pilot Scale Pyrite Concentrate Separator 

The model of the Pyhäsalmi pilot pyrite separator was calibrated based on 

the  experimental  data  described  in  Section  5.1.3  and  in  [P8].  First,  

separation efficiency curves, describing the partition of the feed reporting 

into the underflow as a function of the particle size, were determined for 

each experiment data set. Subsequently, the effect of the bypass of fines was 

compensated for by applying (21) conversely, to obtain corrected efficiency 

curves from the data. In addition, the corrected cut-sizes were determined. 

Next, the efficiency curve of form (18) was fitted to the data, the stochastic 

movement of the particle slip velocity �],
��� (m/s) being a free parameter. 

Further, the parameter �],
��� was correlated with the operating point of the 

Floatex, namely teeter water interstitial velocity. Another separation 

efficiency model parameter, the bypass fraction��, used in (21) was also 

determined  from  the  experimental  data.  The  bypass  of  fines  has  a  

functional correlation with the total underflow fraction of the solids feed. 

The model parameter correlations, defining the separation efficiency 

characteristics of the Pyhäsalmi pilot case, are shown in Figure 18. 

a) b)

Figure 18. Pyhäsalmi pilot Floatex case: experimental correlation of a) particle 
slip velocity standard deviation as a function of teeter interstitial velocity and b) 
underflow stream bypass fraction as a function of solids fraction reporting to 
underflow, for pyrite mineral particles. 

The simulations covered operating points ranging between 10…13 kPa bed 

pressures and 20…60 l/min teeter water flowrates.  The feed particle size 

distribution, modeled using the Rosin-Rammler cumulative distribution 

curve, was set to yield 32 % of a -37 μm fraction, 63.5 % of a -74 μm fraction, 

while the 50 % passing size was 56.6 μm. The size compositions and mass 

flow rates of the underflow and overflow streams were computed. 

Calculation of the stream compositions was carried out in an iterative 

manner, since the underflow fraction depends on the empirical correlation 

of the bypass fraction��  (Figure 18b). In addition, the underflow slurry 

density was determined based on a correlation derived from the 

experimental data. 
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Results of the simulations are presented in Figure 19. Figure 19a describes 

the separation efficiency of the corrected efficiency curve in terms of Ecart 

probable Ep, covering the manipulated bed pressure and teeter water 

operating points. The Ecart probable indicates the separation curve 

steepness by using particle sizes of 75 % and 25 % partitions to underflow: E¬ = ¿ÀÁk¿¤Á�  .  Thus  Figure  19a  presents  equation  (18)  in  each  cut-size  and  

operating conditions of the simulation. Subsequently, when the bypass 

effect (21) is taken into account, the separation efficiency of the fines 

decreases significantly especially under low teeter water and low bed 

pressure conditions. Here, the main interest was in the prediction of the 

separation  performance  of  the  fine  -37  μm  fraction.  Hence,  Figure  19b  

presents the recovery of the feed -37 μm material to the overflow. 

In  addition,  the  cut-size  surface  of  the  separation  (referring  to  the  

corrected cut size) is presented in Figure 19c. Correspondingly, Figure 19d 

shows the percentage of the -37 μm fraction of the overflow stream. It can 

be noted, that the parameterized separation efficiency characteristics bring 

also nonlinearity into the obtained size fraction response surface. A high 

portion  of  fines  in  the  overflow  stream  causes,  on  the  other  hand,  a  high  

fraction  of  the  feed  reporting  to  the  underflow,  shown  in  Figure  19e.   

Especially, low teeter water flow, causing insufficient fluidization, results in 

high solids recovery to the underflow even with high bed pressures. Vice 

versa, high teeter water flow rates cause high underflow slurry densities 

already with moderate bed pressures as seen from Figure 19f. 
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a) b)

c) d)

e) f)

Figure 19. Simulated Floatex performance surfaces of the Pyhäsalmi pilot case 
in  terms  of  teeter  water  flow  rate  (l/min)  and  bed  pressure  (kPa);  a)  Ecart  
probable separation efficiency, b) recovery of under 37 �m fraction from feed 
to  overflow,  c)  Cut-size  of  the  separation  (�m),  d)  overflow  fraction  (%)  of  
under  37  �m,  e)  fraction  of  feed  solids  to  underflow  stream  (%)  and  f)  slurry  
density of the underflow stream (kg/m3). 

Siilinjärvi Industrial Scale Ground Ore Separator 

In addition to the above presented simulation of the Pyhäsalmi pilot scale 

separation of one mineral species, a feasibility study for simulation of a 

multicomponent system with non-spherical particles was carried out. In 

that set up it was also possible to calculate the mineralogical composition of 

the underflow and overflow streams of the hindered settling classifier. Such 

a computation was tested using specifications corresponding to the 
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Siilinjärvi Floatex separators. The separators are currently installed in a 

closed circuit with the ball mill grinding mills, since the concentrator 

flowsheet  was  modified  in  2009  from  that  presented  in  Figure  12.  For  

simplicity, the model was parameterized using constant slip velocity 

standard deviation. The feed composition was parameterized based on the 

earlier laboratory sample results available. Passing sizes of the feed size 

distribution were set  to  P50 = 550 μm, P80 = 1200 μm, when the -74 μm 

proportion was 8 %. The feed consists of apatite (AP) 10 %, carbonate (KRB) 

20  %  and  phlogopite  (FLG)  70  %.  The  feed  composition  analysis  by  size  

fractions is shown in Figure 20a. In addition, the specific gravities and 

particle shape factors of each mineral were also defined; the mineral 

parameter setup was: 

� Specific gravities: AP 3200 kg/m3, KRB 2750 kg/m3, FLG 2850 kg/m3.

� Particle shape factors: AP 1, KRB 1, FLG 0.6. 

� Separation efficiency parameter, standard deviations of slip velocities: 

AP 3 mm/s, KRB 3 mm/s, FLG 4.5 mm/s. 

In addition to the total size distribution of the output streams, the size 

distributions of each mineral could be computed. Figure 20b shows a result 

of the mineral specific overflow size distributions when the above 

parameterization of the feed composition (Figure 20a) were used. For 

operation of the grinding circuit, estimation of the products mineral specific 

sizes is advantageous. The estimation method based on the Floatex model 

equations has a great potential to optimize the grinding operation, keeping 

the distribution of the valuable mineral optimal for the flotation.  

a) b)

Figure 20. Simulation of the Siilinjärvi Floatex operation; a) specified feed 
mineral  composition into the separator,  b)  simulated Floatex overflow stream 
cumulative particle size distributions of each mineral (AP = apatite, KRB = 
carbonate, FLG = phlogopite).  

Novelty of the Method 

In literature, most of the studies of the hindered settling separation in the 

Floatex density separators concern separation of coal slurries. Here, two 
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mineral concentrator application cases with the existing model structures 

were set up. The novelty of the modeling approach comes in the application 

of both slip velocity based particle movement calculation and the stochastic 

separation efficiency formula to determine whether a particle is reported to 

the  under-  or  overflow.  In  addition,  the  computation  of  the  separate  size  

distributions of three minerals into the under- and overflow was 

demonstrated in the Siilinjärvi case example.  In future, industrial scale 

modeling of the separation of each mineral needs still to be validated with a 

laboratory sampling campaign.   

5.3 Plant-wide Monitoring Case Study 

This thesis includes one case study, where a plant-wide process monitoring 

was demonstrated. The case process is at the Kemi concentrator, consisting 

of the grinding and gravity separation circuits. The collected time series 

consists of 153 samples of ten-minute average data. The output variable is 

the concentrate grade HRCr2O3 (expressed in %Cr2O3), measured by an on-

belt  XRF analyzer  after  the drum filter  (see  Figure 11).  The selected input  

variables were the feed slurry chromite on-line assay (%Cr2O3, TMTCr2O3 in 

Figure 11) and the on-line analysis of the 50 % passing size of the particles 

(μm) (D50 in Figure 11), measured from the grinding circuit. In addition, to 

describe  the  ore  in  terms  of  grindability,  the  Bond  operating  work  index  

(kWh/t) (WIo) was calculated by applying (Napier-Munn et al., 2005) 

80 80

1 110

WWIo

P F

�
� �

�	 
	 

� �

(56)

where W (kWh/t)  is  the  work  input  of  the  grinding  mills  and  P80 and F80

(μm) are the 80 % passing sizes of the grinding circuit’s product slurry and 

the ore feed respectively.  

The process was modeled using a recursive partial least squares method 

Eq. (52) – (54). The model structure for the Kemi plant, incorporating the 

grinding and gravity separation stages, is illustrated in Figure 21. The 

model dynamics was obtained by including a one step backward output 

estimate as one input of the system. For adaptation of the model 

parameters, thus changing the �t in Eq. (54), the effective memory length N

was set to 10 (standing for a 1.67 hours time slot), and the expected 

measurement noise of the output variable �o
2 was  set  to  0.04.  The  

minimum value limit  for  the forgetting factor  was set  to  0.85.  The first  15  
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data samples were used for calculation of the initial values of the covariance 

matrices. 

Evolution of the model regression coefficients for the data set is shown in 

Figure  22a,  while  Figure  22b  shows  the  evolution  of  the  forgetting  factor,  

affecting the speed of the coefficient adaptation. The regression coefficients 

change abnormally between samples 60-80; this is probably due to a failure 

in the chromite assay slurry sampler, causing the sudden change in the 

measurement. That can be deduced also from the original data in [P3]. 

a) b)

Figure 22. Adaptation of the model parameters in the plant-wide monitoring 
model for the Kemi gravity concentrator; a) regression coefficients of the PLS 
model b) forgetting factor, defining the adaptation speed; the sample interval is 
10 minutes, thus the length of the data set is approximately 26 hours. 

Next, the original time varying model parameters, shown in Figure 22a, 

were used for the calculation of the impacts of the changes in the input 

variables. Table 4 summarizes the effects of the changes in the model input 

variables on the predicted PLS model output, in terms of original unscaled 

Cr2O3 (%) concentrate grades. The listed numbers indicate the change of the 

model  output  resulting  from  a  10  %  increase  of  each  input  from  its  mean  

value, respectively. It can be seen that the feed chromite content (TMTCr2O3)

and  the  particle  size  (D50) cause the largest responses on the estimate of 

the concentrate grade, but in opposite directions. However, the magnitude 

of  the  impact  of  the  inputs,  and  even  a  sign  of  the  impact,  can  change  

drastically during the process operation, as seen from Figure 22a. Thus, an 

adaptive, model-based on-line monitoring system can give valuable 

information in advance, regarding the favorable control actions in the 

20 40 60 80 100 120 140

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sample

C
oe

ffi
ci

en
t

Recursive PLS: regression coefficients, adaptive �

TMTCr2O3
WIo
D50
HR(k-1)

20 40 60 80 100 120 140
0.75

0.8

0.85

0.9

0.95

1

1.05

Sample

�

Recursive PLS: adaptation of the forgetting factor �

PLANT

�

TMTCr2O3

WIo
D50 

32OCrHR

32
ˆ

OCrRH residual

)4(ˆ �ky

)4( �ky)(ku

)3(ˆ �ky

MODEL

Figure  21.  A  scheme  of  the  model  structure  for  the  Kemi  grinding-gravity 
separation plant. 



54

beginning of the process chain. The operation parameters in the gravity 

concentration section were assumed to be unchanged during the time span.  

The adaptive model scheme can be useful, for example, in deciding the 

optimal grinding fineness in changing ore type conditions. Similarly, in the 

on-line use of the adaptive model, the current input variable coefficients 

indicate the impact of each input on the concentrate grade, since the gravity 

separation control variables are kept unchanged. 

Table  4.  Simulated  net  changes  in  the  chromite  concentrate  grade  for  
the  whole  23  hours  time  period,  when  10  %  increase  of  each  input  
variable were applied respectively; pre-calculated varying model 
parameters were applied. 

Input
variable 

10 % of the 
variable’s 

mean 

2 3
ˆ

Cr OHR� (%) when the 
input change is 10 % of 

the mean 
TMTCr2O3 2.6 0.26 

WIo 1.0 0.08 
D50 6.7 -0.19 

Novelty of the Method 

A data-based method for a plant-wide monitoring was applied based on the 

well-known and computationally robust linear recursive partial least 

squares model with a dynamic model structure. The monitoring scheme 

was demonstrated with data from a grinding-gravity separation process 

chain.  This  type  of  monitoring  scheme  has  not  been  reported  earlier.  The  

main advantage is to gain prior knowledge of the favorable directions of the 

control actions in the grinding circuit, based on the adaptation of the model 

parameters. This has especially potential in determination of the optimal 

grinding fineness, in the cases when the ore type is changing and the grain 

size of the valuable mineral is unknown. An early response in the grinding 

stage can reduce the fluctuation of the concentrate grade and the losses in 

recovery.

5.4 Control Studies of the Mineral Processing Cases 

This chapter describes the control studies of grinding and flotation circuits 

of simulated and real mineral processing plants. First, preliminary surveys 

exposing the characteristics, limitations and applicability of the selected 

control systems, when applied into mineral processing, were carried out. 

Then a novel model-based control system for stabilizing both the circuit 

outlet slurry particle size and the circulating load at the Siilinjärvi grinding 

process was formulated. Advantages of the presented system were pointed 

out by simulations. 
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5.4.1 Preliminary Surveys of Advanced Control Feasibilities and 
Benefits 

The preliminary control studies were carried out to gather information from 

simulated and experimental implementations of the common rule-based 

and model-based control methods in mineral processing applications. The 

cases cover studies of the impact of a rule-based expert system and a model 

predictive control on performance of flotation processes with different 

configuration setups. Also, a practical experiment of the control of a 

grinding circuit outlet slurry particle size by manipulating the mill rotation 

speed was carried out. Finally, a control simulation study with a simplified 

grinding – flotation model was also performed. 

I) Effect of an Expert Control System and Model-Based Control on 
Flotation Performance 

The flotation control with base-layer stabilization and high-level advanced 

optimization was first studied with a flotation process simulator. The 

flotation circuit simulations were set up with HSC-Sim® dynamic flotation 

flow sheet simulator, in connection with an expert control system. The 

applied simulator partly incorporates the flotation kinetics, in manners 

described in Section 2.3. The simulated copper flotation circuit was set up 

with closed loop rougher-, scavenger and cleaner stages, shown in [P5]. 

The base-layer control system, implemented in the simulator 

environment, includes cell level feedback controllers combined with feed 

forward controllers, compensating for the fluctuations originating from the 

feed. The higher level expert controller utilizes the feed-, tailings- and 

concentrate Cu assays, and the froth speed measurements of each cell, 

available from the simulator. The control variables were the cell levels and 

the aeration rates. The rule-based control hierarchy was set up as follows: 

� Froth velocity set points were calculated based on Cu assays, the aim 

was to keep the concentrate and tailings Cu-% within predefined 

limits. 

� The froth velocity in each cell was maintained by manipulating the 

aeration rates and the cell levels. 

The targets for the control system were to keep the concentrate grade 

above  29  %-Cu  and  the  tailings  at  less  than  0.043  %-Cu.  Four  different  

simulation cases were run with a setup interconnecting the simulator and 

an advanced control platform: simulation without the cell level or aeration 

setpoint changes, control with a 10 minutes interval, control with a 30 

minutes interval, and finally control with a 30 min interval with additional 

measurement errors of 10 rel.-% and 7 rel.-% for the concentrate and 

tailings respectively. An eight hours dataset consisting varying feed Cu 

grades (%) and the feed rates (t/h), obtained from a real process plant, were 
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the inputs for each of the simulations. The results of the simulations are 

summarized in Table 5 in terms of the grade, recovery, and the total mass of 

the recovered copper on a daily basis. Roughly, advanced control increased 

the recovery by nearly a 1% unit compared to the base case. 

Table 5. Results of the simulated flotation control cases. 

Simulation Case Concentrate 
grade (Cu-%) 

Recovery 
(%) 

Total Cu 
tons/day in 
concentrate 

Base case: manual 
operation, setpoints 

unchanged 
28.6 91.8 124.5 

Expert control: 10 min 
assay delay 29.2 92.6 125.6 

Expert control: 30 min 
assay delay 29.2 92.6 125.5 

Expert control: 30 min 
assay delay and 
decreased assay 

accuracy 

29.3 92.4 125.4 

In addition, another study assessing the effect of the control interval for 

both the rule-based and the model predictive control was carried out in [P2]. 

The applied simulated flotation process is described in Hodouin et al. 

(2000). The process disturbances originated from variations of the feed 

grade and the flow rate, the manipulated variables were the air feed rate 

and the collector flow rate.  The control interval was varied based on 

different assay delay cases.  The control performance was evaluated based 

on the ISE (integral square error) index, when set point changes and input 

disturbances were applied in the simulations. As expected the longer assay 

delay  (from  6  to  30  min)  decreases  the  control  performance.  More  

significant was the finding that a change from the rule-based control to the 

model predictive control typically decreased the variation in controlled 

variables more than 50%.  

Observations Based on the Study 

This study pointed out that a simulation model with detailed flotation 

kinetics is well suited for control studies examining different setups in 

similarly repeatable process conditions. The benefits are obvious, when 

developing control strategies for an existing or a new flotation plant. 

Besides, the case study demonstrated the advantages of an expert control 

system for a flotation circuit, based on manipulation of the froth speed, 

even though the control algorithm was kept relatively straightforward. 
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II) Benefits and Limitations of the Particle Size Control - Case in 
Practice 

Use of the on-line particle size analysis in the grinding control was studied 

at the Kemi concentrator. A rule-based particle size – rod mill rotation 

speed control system was set up and the operation of that in practice was 

tested in various process conditions, described in [P4]. The on-line particle 

size control was tested in two periods. In both of them, the rule-based 

control interval was set to 45 minutes, allowing also the return flows from 

the Reichert cones to stabilize. The aim was to keep the particle size D50 

passing size at the 40 μm set point, measured with an on-line analyzer. At 

around 250 minutes (Figure 23a) the effect of a change in the ore type (fed 

from the separate ore bins to the crushed ore heap: from VVPohja2 to 

Mama1) starts to appear in the response of the particle size. It can be seen 

that the control actions could not keep the process in the original set point 

(minimum mill rotation speed is approximately 12 RPM), and the set point 

was changed at 390 min to 35 μm, being more suitable for that ore type. 

The next operating period was run from Mama1 ore bin (Figure 23b). The 

data set includes a measurement break around 330-420 minutes; 

subsequently causing one erroneous control action pointed out in Figure 

23b. However, during the test period the particle size was successfully kept 

near the set point. When compared to the manually operated grinding 

adjustments, the rule-based variable mill rotation speed control decreases 

the particle size standard deviation on average by more than 20 %. 
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a)

b)

Figure  23.  Control  of  the  Kemi  grinding  circuit  product  particle  size  by  
manipulating the rod mill rotation speed. a) 1st of November 2007 and b) 2nd of 
November 2007.  

Observations Based on the Study 

This practical control study addressed the significance of a proper data pre-

processing and an on-line analysis validity assessment. Still, the 

experiments proved that the variation in the ground product particle size 

distribution can be notably decreased by applying closed loop control. Here, 

the control system manipulated the mill rotation speed. Moreover, it was 

noticed that significant disturbances, such as drastic changes in the ore type, 

can require adjustments of the particle size set point to meet the grain size 

optimality for the mineral indeed. 
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III) Study of the Control Performance of a Grinding-Flotation Chain 

Finally, control of a grinding-flotation process chain was assessed with a 

simulation model of the Pyhäsalmi grinding – copper flotation circuits. The 

simulations were based on the dynamic autoregressive models of the 

grinding section, identified from the process data. The primary mill charge 

model inputs were: the crushed ore feed rate (t/h) the lumpy ore feed rate 

(t/h)  and  the  mill  power  (kW).  The  grinding  circuit  outlet  particle  size  

model inputs were: the total ore feed rate (t/h), the ratio of the crushed and 

lumpy ore,  the  ball  mill  power (kW) and the pressure  of  the  circuit  outlet  

hydrocyclone (bar). The model set up was accomplished with the primary 

mill charge – rotation speed – power dependency surface, estimated from 

the  data.  In  addition,  to  model  the  impact  of  the  ground  product  particle  

size on the copper flotation performance, a concentrate grade – feed 

particle size – recovery dependency, shown in Figure 24, was fitted based 

on the process data. 

Figure  24.  Concentrate  recovery  (%)  vs.  grade  (%)  and  the  particle  size  of  the  
feed slurry (under 74 μm fraction, %) at the Pyhäsalmi copper circuit; blue dots 
are the data (23.-25.10.2008). 

The simulation model was operated with a dataset of 4.2.-4.3.2009, 

consisting of averages on a six-minute basis. As a base case, the Case A in 

Table 6, the simulation was run with the process data only. Instead, in the 

Case B the particle size was controlled and in the Case C, in addition to that, 

also the primary mill charge was controlled in a rule-based manner. The 

control setup was defined as follows: 

� Particle size -74 μm fraction set point: 60%, with target limits: +/- 1%. 
� Primary mill charge set point: 42%, with target limits: +/- 1%. 
� Particle size is controlled by manipulating the crushed ore with 

2.25...0.75 t/h steps. 
� Primary mill charge is controlled by manipulating lumpy ore with 

0.25 t/h steps. 
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� Crushed ore is limited between 120…140 t/h. 
� Pebble feed is considered to be constant 20 t/h. 
� The Cu concentrate grade was set to be 29%. 

The process disturbances, representing mainly the ore type variations, 

were obtained from the original process data. These were: the zero means 

primary mill  charge (%) (summed up with the simulated charge),  the  ball  

mill power (kW) and the hydrocyclone feed pressure (bar) (both as an input 

to the particle size simulation model).  The resulting simulated grinding 

circuit responses as well as the copper flotation responses are summarized 

in Table 6; the amount of produced copper concentrate increased around 

1.7 % from the Case A to the Case C.

Table 6. Average results of the simulated control cases by using the data based 
models  of  the  Pyhäsalmi  grinding-flotation  circuits,  the  simulations  were  
operated using a process data set 4.2.-4.3.2009. 

Simulation 
Case

Crushed
ore (t/h) 

MANIPU-
LATED 

VARIABLE

Lumpy 
ore
(t/h) 

MANIPU-
LATED 

VARIABLE

Total 
feed
rate 
(t/h) 

Primary 
mill 

charge
(%) 

Ground 
ore

particle
size

fraction 
<74µm 

(%) 

Cu
flotation 
recovery 

(%) 

Concentrate
production  

(t/h) 

A) 
Simulation 

run with 
real 

process 
data

130 20 170 41.6 60.0 96.4 5.9 

B) Particle 
size 

controlled
132 20 172 41.7 59.8 96.5 5.9 

C) Particle 
size and 

primary mill 
charge 

controlled

132 21 173 42.0 59.7 96.5 6.0 

Observations Based on the Study 

This study briefly demonstrated the impact of the improved grinding circuit 

control to the subsequent flotation performance.  The simulations were 

carried out by utilizing data-based dynamic and static models. In this case 

application, stabilization of the primary mill charge closer to the predefined 

limit increased the mill throughput. In addition, stabilization of the circuit 

outlet particle size distribution prevented abrupt changes in that, thus 

reducing occasional recovery losses. 
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5.4.2 Model-based Control Study for the Siilinjärvi Grinding 
circuit

At the Siilinjärvi apatite concentrator, changes in the ore type introduce the 

majority of grinding circuit disturbances. Since the crushed ore is 

homogenized in heaps, the heap changeovers cause sudden changes in the 

ore type fed to the grinding circuit. In addition, classification at the ends of 

the heaps causes often a simultaneous change in the feed size. The 

subsequent disturbances in the grinding circuit outlet particle size can 

diminish performance of the following flotation circuit; especially recovery 

of coarse apatite can be poor. At the studied circuit and control setup 

(Figure 12), the major constraint was set by the allowed circulating load. At 

this circuit case, the most powerful variable to control the circulating load is 

the number of cyclones taken in action. 

Requirements for the control system were to be able to manage discrete 

cyclone pattern control tasks while rejecting the disturbances from the 

circuit outlet particle size distribution. Therefore, a combination of fuzzy- 

and model predictive control was set up. The control configuration is shown 

in  Figure  25.  Both  the  ore  feed  rate  (t/h)  and  the  circuit  outlet  slurry  

density (kg/dm3) were the manipulated variables in controlling of the 

product particle size (%).  The disturbance variable was the measured 

hydrocyclone feed pressure (kPa). Abrupt changes in that were due to 

changes in the number of operating hydrocyclones. The hydrocyclone 

valves were manipulated by a fuzzy logic, keeping the circulating load (%) in 

the predefined limits. 

Figure 25. Fuzzy-MPC control scheme to control the circuit product particle 
size while the circulating load is kept in predefined limits (MPC: DV = 
disturbance variable, CV = controlled variable, MV = manipulated variable). 

The proposed control scheme was set up and tested by simulations; 

parameterization of the MPC block is presented in [P7]. The MIMO plant 

model can be presented as follows   

FFuuzzzzyy
CCoonnttrrooll

MMooddeell
PPrreeddiiccttiivvee

CCoonnttrrooll

GGrriinnddiinngg
CCiirrccuuiitt

Set point: +210 µm (%) 

Limits: Circulating 
load (%) 

Hydrocyclone feed 
pressure (kPa) 

+210 μm product 
size fraction (%) 

-74 μm product 
size fraction (%) 

Circulating load 
(%)

DV 

CV1 CV2

MV1

MV2

Ore feed (t/h) 

Slurry density 
(kg/dm3)

Number of 
hydrocyclones
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1 11 12 13 1

2 21 22 23 2

3 31 32 33 3
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where 1y  and 2y  are  the  particle  size  fractions  of  -74μm  (%)  and  +210μm  

(%) and 3y  is the circulating load (%); the inputs are: ore feed rate (t/h) 1u ,

circuit outlet slurry density (kg/dm3) 2u and hydrocyclone feed pressure 

(kPa) 3u . The transfer functions )��(+)  were determined based on the 

experimental data of the Siilinjärvi process. The transfer functions and step 

responses of them are presented in [P7]. 

In addition, the reliability of the control system when plant model 

mismatches were present was verified by set point tracking simulations. Up 

to 30 % changes both in the model time constants and gain parameters 

were applied.  In addition, up to 1 rel.-% measurement errors were added to 

the simulated particle size and circulating load values. In all cases the 

control system was robust; the model errors had notably minor impact on 

operation  in  terms  of  the  ISE  control  index.  In  practice,  the  model  

mismatches occur when the process conditions, especially the feed ore type, 

change during the daily plant operation. 

Finally, the fuzzy – model predictive grinding circuit control scheme was 

assessed  by  simulation  of  around  one  week  period  of  the  plant  data.  The  

data (July 21 – 29, 2009) includes five separate ore heaps ran through the 

mill. In the original data, the ore feed was kept constantly at 480 t/h, slurry 

density at 1360 kg/dm3, and the number of cyclones at 7 set points. In the 

control simulation set up, the original measured particle size variation 

around the mean value was summed with the simulated result, and used 

further in feedback control. Also, the original measured hydrocyclone 

pattern feed pressure and circulating load variations were fed to the control 

system while summed with the simulated results.  

Hence, the system was analogous to the scheme shown in Figure 25 where 

the dotted line feedback signals included also fluctuations obtained from 

the process data sequence. The set point for the coarse +210 μm fraction 

was set to 50.6 %, which was the mean value of the process data sequence. 

The resulting control simulation – in addition of the original process data – 

for the one week data period is shown in Figure 26. 
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Figure  26.  Process  data  set  of  the  +210  μm  (%)  particle  size  fraction  and  the  
circulating load (%) (dotted lines), and the simulated results (solid lines) when 
the  feed  rate  (t/h),  the  slurry  density  (kg/dm3)  and  the  number  of  cyclones  -
control actions with fuzzy-MPC set up were applied for the same data; changes 
of the ore heaps are indicated with the triangle symbols. 

As a result of the data run, shown in Figure 26, the ore feed rate increased 

on  average  1.8  %  within  the  data  period.  Meanwhile  the  variation  of  the  

coarse particle size fraction was reduced � for the total dataset 67 % and for 

processing of one feed ore heap 26 % � apparently still increasing the plant 

capacity from improved flotation recovery. 

Novelty of the Method 

A control system for an industrial grinding circuit, incorporating data-

based process models and working patterns based on operator knowledge, 

was formulated.  The control assessment pointed out that the model-based 

control was robust and suitable for drastic ore type changeover 

management. Moreover, it was discovered that the expected model 

mismatches did not significantly reduce the control performance.  The 

scheme of fuzzy circulating load control in conjunction with model 

predictive particle size control has not been presented and verified with an 

industrially parameterized case elsewhere prior to this. 
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6 Conclusions  

This thesis examines monitoring and control issues of several mineral 

processing units and process chains. The work covers topics of the state 

monitoring of a concentrate thickener, the model-based assessment of 

hindered settling separation and the predictive data based plant-wide 

monitoring and control studied with grinding and flotation circuits of 

different setups. In some of the cases the applied methods were tested or 

implemented in real plant operation and, on the other hand, some of the 

methods were tested with the aims of the plant data parameterized 

simulations. Hence, the work included extensively practical plant 

experiments for gathering the process input - output response data, and the 

analysis of the data set up the process models. The case plants of this thesis 

were:  the  Outokumpu  Chrome  Oy  Kemi  Mine,  the  Yara  Suomi  Siilinjärvi  

Mine and the Inmet Mining Co. Pyhäsalmi Mine. 

The applied novel model-based techniques provided promising results for 

all the unit operations and processing circuits focused on in this thesis. The 

obtained results can be directly used in plant practices by adopting the 

model-based information as a part of the process operation, using the 

process models for equipment design, scale-up and troubleshooting, and 

also, by utilizing the proposed new control setups. The common factor in all 

the studied cases is that the operation of the processes depends strongly on 

the particle size distribution of the processed material. This addresses the 

importance  of  stable  and  optimized  operation  of  the  grinding  circuit  of  a  

concentrator. This has been the key theme in the studies of the grinding-

concentration chains of all of the cases. 

In this thesis, the most extensive grinding circuit control study focused on 

the Siilinjärvi apatite ore concentrator. The proposed model predictive 

particle size control with fuzzy circulating load control gave good results 

when simulating several ore heap changeovers with the plant data. The 

control system managed to reduce the long term fluctuation of the coarse 

particle size fraction significantly when running the process from one feed 

type to  another.  Even during the processing of  one ore  type (one separate  

heap) the simulated reduction in the slurry particle size variation was well 

over 20 %. The economic impact of that in the minerals processing recovery 

is obvious. Based on the observations of the clustered long term plant data, 

for  a  certain  ore  type,  even  2  %-unit  increment  in  the  coarse  slurry  size  

fraction can lead to nearly 1 % losses in recovery. On a yearly basis, this is a 
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significant loss due to high throughput volumes of ore processing plants, 

even if the number itself seems to be small. 

When comparing different types of process model based control methods, 

the data based methods offers an attractive way to construct the plant 

model with standard mathematical forms. In large systems the fuzzy 

controls can be time consuming to tune up. Therefore, among the applied 

methods here, the model predictive control is considered to be preferable. 

However, the most reliable model based controls for minerals processing 

applications are achieved with predictive models, which are based on 

mineralogical setup of the feed composition and include unit process 

models treading the material based on their physical and chemical 

characteristics. Such a control system can be preferably accomplished with 

soft-sensors based on similar models with mineralogical properties. 

Parameter estimation techniques, such as Kalman filtering, can offer 

proven methods for reliable model adaptation for the model on-line usage. 

In general, this thesis suggests a more extensive use of unit models and 

plant-wide process models in the plant design and control. Around a decade 

ago Lynch and Morrison (1999) predicted that dynamic mineral process 

simulators will be utilized more and more commonly in automatic control 

and for operator training purposes. This work showed that the model-based 

approaches can indeed provide highly useful estimates of the unmeasured 

states. Also the predictive use of models can bring the concentrator control 

closer to the optimum. Especially they provide valuable support for 

operators in the making of correct control decisions. 
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