
Publication I

Jan Lönnberg and Anders Berglund. Students’ understandings of concur-

rent programming. In Proceedings of the Seventh Baltic Sea Conference on

Computing Education Research (Koli Calling 2007), pp 77–86, Koli, Finland,

April 2008.

c© 2008 Australian Computer Society.
Reprinted with permission.

113





Students’ understandings of concurrent programming

Jan Lönnberg1 Anders Berglund2,1∗

1 Department of Computer Science and Engineering
Helsinki University of Technology,

Espoo, Finland,
Email: jlonnber@cs.hut.fi

2 Department of Information Technology
Uppsala Computing Education Research Group, UpCERG

Uppsala University,
Uppsala, Sweden

Email: anders.berglund@it.uu.se

∗ Temporary affiliation

Abstract

This paper describes a qualitative, explorative study
of how students understand some concepts in con-
current programming. The study is based on inter-
views with students regarding the final programming
assignment in a concurrent programming course. We
use phenomenography to analyse the students’ state-
ments about tuple spaces, the concurrent data struc-
tures on which the assignments are based, and to find
the different ways in which they understand writing
and debugging a concurrent program. We then dis-
cuss the effects of these understandings on how stu-
dents construct concurrent programs, how teaching
can be improved to form more useful understandings
and how software tools can be designed to support
the development of concurrent programs.

1 Introduction

Concurrent programming is both an important tech-
nique and a challenge. On the one hand, concur-
rent programming provides a way to make effective
use of parallel and distributed systems and struc-
ture systems that perform many simultaneous tasks.
On the other, the unpredictability of interaction be-
tween concurrently executing processes also intro-
duces many pitfalls in the software development pro-
cess that may result in software defects that are hard
to find.

The research presented in this paper is part of a
larger project with the long-range goal of making it
easier to produce correct concurrent programs (i.e.
programs that consistently produce the right results
despite the aforementioned unpredictability) by sup-
porting the detection and elimination of defects (or
bugs).

In order to effectively develop methods and soft-
ware tools to help find and eliminate bugs in concur-
rent programs, it is necessary to understand the bugs
that can appear in these programs and the program-
mers’ reasoning underlying these bugs. While insights
about bugs per se can be gained by examining code,
an understanding of programmers’ reasoning, which
is the focus of this study, must be based on empirical,
explorative work.

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Seventh Baltic Sea Conference on Com-
puting Education Research (Koli Calling 2007), Koli National
Park, Finland, November 15-18, 2007. Conferences in Research
and Practice in Information Technology, Vol. 88. Raymond
Lister and Simon, Eds. Reproduction for academic, not-for-
profit purposes permitted provided this text is included.

In Section 2, we describe our long-range research
goals and how they relate to this study. In Section 3,
we explain the relevant concepts of concurrent pro-
gramming and previous research on students’ under-
standing of concurrent programming. In Section 4,
we summarise the basic concepts of phenomenogra-
phy and how it has been used in computer science
education research.

In Section 5, we describe how we interviewed the
students about a concurrent programming assign-
ment and used phenomenography to distill the stu-
dents’ different understandings from the interview
transcripts. In Section 6, we present these under-
standings and then, in Sections 7 and 8, we discuss
how these types of understanding affect the students
and what they mean for teaching concurrent program-
ming and for developing ways to support students in
developing correct concurrent programs.

2 Research questions

Our long-range goal is to help programmers create
software that works correctly by aiding them in un-
derstanding, testing and debugging concurrent pro-
grams. We approach this by developing methods and
tools to help programmers understand what a concur-
rent program does, especially when it is not working
as expected. We intend to achieve this through visu-
alisation of program execution and data.

Price et al. (1993) state that while software visu-
alisation (SV) “has tremendous potential to aid in
the understanding of concurrent programs”, few SV
systems have seen production use, especially in the
domain of tools for professional programmers. They
note that when a SV system is designed, the content
to be shown must be selected according to the goals
of the system, which, in turn, are based on the re-
quirements of the users.

Based on the above, our large-scale approach is
to first identify the needs of the programmers and
then design solutions to address them. The general
questions we therefore seek answers to are:

• What defects do programmers introduce in con-
current programs, and why?

• Which of these defects are difficult to locate and
why?

• What sort of visualisations (of a program execu-
tion or model checker counterexample) can assist
a programmer in finding these most problematic
defects, and how well do they work?



The intent of this study is to complement research
into defects found in concurrent programs and visu-
alisation of concurrent programs with information on
different ways of thinking about concurrent program-
ming. This will help when trying to reason about how
a defect was introduced and when constructing visu-
alisations to support programmers in understanding
what their program does, especially when it does not
behave as expected.

Naturally, this study can also be seen as part of
the process of improving the teaching of concurrent
programming by examining how students understand
the concurrent programming concepts they have been
taught.

2.1 Aims of this study

The purpose of the current work is to shed light on
how programmers understand some core concepts, so
that these insights can serve as a platform for explor-
ing possible sources of errors, especially those that
stem from insufficient or incorrect understandings. A
better understanding of errors will help us make bet-
ter debugging and development software.

We have chosen to focus on studying the un-
derstandings of students for three different reasons.
Firstly, we assume that students, particularly mas-
ter’s and doctoral students, can be used as a source
of information for designing tools and approaches that
will also be useful for professional programmers. Sec-
ondly, we can collect and analyse large amounts of
data from students, with less effort than from com-
mercial software developers. Thirdly, an understand-
ing of how students understand and approach con-
current programming is also important for improving
how concurrent programming is taught. We briefly
explain the relevant aspects of concurrent program-
ming and previous research on how students under-
stand it in Section 3.

In this study, we explore the different ways in
which students in a concurrent programming course
understand a concurrent data structure, the tuple
space, as well as their various understandings of
what developing and debugging a concurrent program
means. We do this using an empirical, qualitative re-
search approach called phenomenography (Marton &
Booth 1997), which we will describe in Section 4.

3 Background

In this section we will briefly introduce concurrent
programming as it pertains to this study and is per-
ceived by experts (the textbook perspective, in Sub-
section 3.1) and students (the results of research into
students’ understanding of concurrent programming,
in Subsection 3.2).

3.1 Concurrent programming

A concurrent program is a program that contains two
or more processes that co-operate to achieve a goal,
where each process is a set of sequentially executed in-
structions like a sequential program. These processes
may actually be executing on separate hardware (mul-
tiple processors or execution cores in a single comput-
ers, or geographically separated computers). Alterna-
tively, the concurrency may be simulated on a single
processor by executing one process at a time for a
brief period of time (Andrews 2000, Ben-Ari 2006).

Most workstation and server operating systems
(e.g. Unix) provide support for dividing running pro-
cesses between processors. Alternatively, a simulator
can be used to simulate a multiprocessor machine for
research or teaching purposes (Pears 1995).

Although a primer on concurrent programming is
beyond the scope of this article, we will briefly de-
scribe the aspects of concurrent programming that
are relevant to this study.

The most important distinction between sequen-
tial and concurrent programs is the inherently non-
deterministic behaviour of concurrent execution; it is
unknown how much of one process is executed during
the time another one executes an instruction. The
greatest challenge in writing concurrent programs is
getting concurrent processes to reliably interact prop-
erly in the face of this nondeterminism (Andrews
2000, Ben-Ari 2006).

There are several approaches to ensuring cor-
rectness despite nondeterminism, including deduc-
tive proofs (usually manually constructed) and model
checking, which can be based on a simplified com-
putational model, such as in Spin (Holzmann 1997),
or an actual programming language, e.g. Java
PathFinder (Visser et al. 2003).

In order to co-operate, processes must be capable
of communicating with each other. Many different
mechanisms for interprocess communication (IPC)
are available for this; only those relevant to this study
will be described here.

One of the most common IPC mechanisms is
shared memory : memory that can be written to by
many different processes. This is typical of multi-
threaded systems written in languages such as Java.

Other IPC mechanisms are typically provided to
complement shared memory, some of which focus on
preventing processes from proceeding with potentially
harmful execution. The simplest is the lock or mu-
tex, which allows the programmer to designate critical
sections in a program, only one of which can run at
a time. The semaphore can be considered an exten-
sion of the lock; it is essentially a shared non-negative
integer value accessible through two operations: V,
which increases the value of the semaphore by one,
and P, which waits until the value of the semaphore
is positive and then decreases it by one. A variety
of message-passing mechanisms are often used in dis-
tributed systems; as the name implies, these involve
processes sending messages to each other and receiv-
ing them either by waiting for a message or by buffer-
ing messages for later reading.

Gelernter (1985) describes, as a central part of
the distributed programming language Linda, an in-
terprocess communication mechanism called a tuple
space. As its name implies, a tuple space consists of
a space containing tuples, data records consisting of
a tag (an identifier for the type of tuple) and (an
ordered list of) zero or more data values. A tuple
space can be accessed through three operations: in(),
out() and read(). out() takes a tuple as an argu-
ment and inserts it in the tuple space. in() takes as
its argument a pattern consisting of a tag and zero
or more data values or formal parameters. As soon
as a matching tuple is found, in() fills all the for-
mal parameters with the corresponding values from
the matching tuple, removes the tuple from the space
and returns. read() behaves like in(), but does not
remove the tuple from the space.

Tuple spaces can be used in many different ways.
Therefore, they can be considered to be generalisa-
tions of several different IPC mechanisms. On the
one hand, they are a form of shared memory; on the
other, they can be seen as semaphores with associated
data or a message-passing mechanism; all of these can
easily be implemented using a tuple space (Gelernter
1985).



3.2 Students’ understanding of concurrent
programming

Ben-Ari & Ben-David Kolikant (1999) describe how
high-school students’ concurrent programming con-
ceptions and working methods change during a course
on the subject, focusing on difficulties faced by the
students in dealing with concurrent programming.
They found that students have problems with lim-
iting themselves to operations permitted by the con-
currency model, make assumptions based on informal
concepts rather than use formal rules and avoid using
concurrency. The students also applied development
approaches that work well with sequential program-
ming but not with concurrent programming, such as
testing a program with a few representative inputs.

Ben-David Kolikant (2004) describes learning con-
current programming in terms of entering a commu-
nity of computer science practitioners. The focus of
her analysis is on the utterances of high school stu-
dents while they are solving a concurrent program-
ming assignment and the different perspectives on
programming they represent. Specifically, she finds
that the students, who have no programming experi-
ence but do have experience in using computer soft-
ware, initially approach the concurrent programming
assignment from a user’s perspective, in which only
the program behaviour seen through the user inter-
face is taken into account. While one of the two stu-
dents on which the analysis focused was able to switch
to a programmer’s perspective, allowing her to reason
about synchronisation goals and possible interleav-
ings and to systematically form a correct solution,
the other continued to maintain a user perspective.

Hughes et al. (2005) state that even though many
articles have been published on the subject of teach-
ing concurrent programming, their review of two im-
portant forums for computer science education re-
search uncovered no articles whatsoever on the sub-
ject of evaluating students’ learning of concurrent pro-
gramming. They argue that there is a need for quan-
titative empirical evidence.

4 Phenomenography

Marton (1981) notes that the world can be studied
in terms of two different perspectives that he terms
first-order and second-order. The first-order per-
spective involves examining and making statements
about selected aspects of the world (phenomena),
while the second-order perspective involves examining
and making statements about how people experience
these phenomena.

Marton argues that although educational research
often focuses on the first-order perspective, the
second-order perspective can also be fruitful in ed-
ucational research. He notes further that second-
order knowledge cannot normally be derived from
first-order knowledge; we have no effective way to de-
duce how different people think about the world from
what we know about it.

Marton also points out that people perceive con-
cepts in many different ways. Booth (1992) describes,
for example, the different ways in which students per-
ceive recursion. Eckerdal & Thuné (2005) provide a
recent example from the computer science domain:
novice Java programmers perceive objects and classes
in various ways.

Marton (1981) continues by describing the second-
order research approach, which he terms phenomenog-
raphy, as “research which aims at description, analy-
sis, and understanding of experiences” and states that
its focus is on understanding the variation in these
experiences. The outcome of a phenomenographic re-

search project is thus a set of categories of description,
where each category describes a qualitatively differ-
ent way in which a phenomenon is understood in a
cohort (Marton & Booth 1997).

Berglund (2006) describes the process of phe-
nomenographic research in computer science educa-
tion as consisting of a data collection phase and an
analysis phase. In the data collection phase, the re-
searcher interviews students about the phenomenon
under investigation. The students are chosen with the
intent of getting a diverse sample, in order to get a
rich variation in their experiences of the phenomenon.
Similarly, the interview must allow the student to ex-
press his understanding of the phenomenon of inter-
est in many different ways. The interviews are then
transcribed for analysis, during which the researcher
looks for quotes that illuminate the students’ various
understandings and classifies quotes into categories of
description. The analysis phase is typically iterative,
with the tentative categories changing repeatedly as
the researcher refines his analysis.

5 The study

In this section, we present the setting, how the data
were collected and how the analysis was performed.

5.1 Setting

The students in this study participated in the Con-
current Programming course at Helsinki University
of Technology during the autumn of 2006. All assign-
ments were to be done in Java (version 1.4 or ear-
lier). The assignments are described in more detail
on the course home page1. Students could choose to
do the assignments alone or in pairs; in either case,
each group of one or two students submitted one so-
lution that was graded the same way irrespective of
the size of the group. As the students were required
to submit their solutions through a WWW form that
compiled their code, all submissions were valid Java
programs.

The students were initially required to submit only
their Java source code. In the event that their solu-
tion was rejected, they were required to submit cor-
rected program code and reports explaining the rea-
soning behind the erroneous code and the steps they
took to correct it.

In the first assignment, Trains, the students are
given a simulated train track with two trains and
two stations. Their task is to write code that drives
these trains safely from one station to another using
semaphores to co-ordinate the trains’ movement.

The second assignment, Reactor, involves the Re-
actor pattern and its application to a simple multi-
player Hangman game. The students’ task is to im-
plement, using the synchronisation primitives built
into Java, a dispatcher and demultiplexer for classic
Java I/O, and to use this to implement a simple net-
worked Hangman game that uses this Reactor pattern
implementation.

The interviews focused on the third assignment,
Tuple space, in which the students implement a tuple
space using Java synchronisation primitives and use
this to construct the message-passing section of a dis-
tributed chat server. The students’ message-passing
code communicates with the rest of the chat server
system using method calls; a simple GUI front-end
to the system is provided to the students for test-
ing. The tuple space version in this assignment is
a simplification of the original version: the read()
operation has been removed, as it can be replaced

1http://www.cs.hut.fi/Studies/T-106.5600/2006/english.shtml



by an in() followed by an out() with the recently
removed tuple without compromising the correctness
of the operation. For consistency with Java naming
conventions and clarity, out() and in() have been
renamed put() and get() respectively.

5.2 Interviews

The first author conducted interviews with eight se-
lected students regarding the Tuple space assignment
of the Concurrent Programming course of Autumn
2006. The interviews were conducted between the
announcement of initial submission results and the
resubmission of failed assignments. The focus of the
interviews was on the development process, especially
the students’ reasoning behind their design.

Twelve groups of students (nine students who did
the assignment alone and three pairs who collabo-
rated on the assignment) were selected for interview
based on the assessments of their initial submissions
for the third assignment. In order to maximise the
variation of experiences based on the information
available to us about the students, we chose groups
with different types of problems with their code, as
determined by the teaching assistant who graded the
assignments. Ten out of 31 groups that failed the
(initial submission of the) assignment and two out
of 24 that passed the assignment (on their first try)
were chosen and invited to an interview. Out of these
groups, seven of the failing groups (six single students
and one pair) agreed to participate.

The interviewees were allowed to choose the lan-
guage of the interview: Finnish, English or Swedish.
Five groups were interviewed in Finnish. Two East
European students were interviewed in English, their
primary language of instruction at our university.
The two participating students who worked together
on the assignment were interviewed together.

The interviews were semi-structured, i.e. they were
in the form of a conversation using a set of prepared
questions as conversation starters, and lasted from 30
minutes up to almost an hour. The questions were
about tuple spaces, the design decisions made by the
students in solving the assignment, their approach in
determining whether their solution was satisfactory,
and problems found by the students or the teaching
assistant.

All of the interviews were recorded using a single
table-top microphone and transcribed by the inter-
viewer. The interviewer also wrote down the main
points of the interview directly after the interview.
These recordings and notes, as well as the code and
documents submitted by the students and the teach-
ing assistant’s assessments of the students’ submis-
sions, form the source material.

5.3 Analysis

The analysis was done by the first author in discus-
sion with the second author. Specifically, the au-
thors first discussed the contents of two interview
transcripts and then the iterative phase of the anal-
ysis was performed. In each iteration, the first au-
thor read through the transcripts looking for relevant
quotes and formed categories based on these, build-
ing on the results of the previous iteration. The cat-
egories were grouped into outcome spaces by the is-
sue they describe. The second author then examined
these categories and made suggestions on how to im-
prove them. The resulting categories from the last
iteration are presented in the following section.

In the first iterations, the analysis focused on find-
ing as many quotes as possible that illustrated ways
in which the interviewees understood concurrent pro-
gramming and approached the assignment. Initially,

quotes were grouped together if they essentially said
the same thing (for example, tuples are, or are repre-
sented as, arrays). Then they were grouped together
into tentative categories representing similar under-
standings of a phenomenon, which were grouped into
tentative outcome spaces based on the phenomenon
being discussed.

The categories changed in many ways during the
analysis process. Starting from the third iteration,
the emphasis of the analysis shifted to refining the
preliminary categories. In some cases, only a few
quotes regarding a phenomenon were found, in which
case the data were deemed insufficient for further
analysis. By the fourth iteration, only two outcome
spaces remained in consideration as relevant for this
paper; they are presented in the following section.

6 Results

In this section we present the outcome spaces of our
phenomenographic analysis. In Subsection 6.1 we
present the different understandings of tuple spaces
that we found. In Subsection 6.2 we present the dif-
ferent understandings of developing and debugging a
concurrent program.

Quotes are used to illustrate the categories. In
these, the interviewer is denoted Int and the inter-
viewees are assigned, to preserve their anonymity,
the names Evgeniy and Elena (interviewed separately
in English), Filip, Fabian, Fritjof and Frans (inter-
viewed separately in Finnish) and Freja and Fredrik
(interviewed together in Finnish). The quotes from
the interviews in Finnish have been translated into
English by the interviewer.

6.1 Tuple space

In this subsection, we present the different ways in
which tuple spaces are described by the interviewees.
This is summarised in Table 1.

6.1.1 Specification

In this category, a tuple space is understood as a spec-
ification, i.e. as a set of operations and how their in-
puts and outputs relate.

An example can be found in the following extract
from the interview with Evgeniy:

Int: Could you briefly explain what a tu-
ple space does?

Evgeniy: There are two operations, to
put a tuple in and. . . to. . . say, get a tuple
in with a pattern. . . Uh, to get a matching
tuple.

Int: If you have several matching tuples,
which one do you get?

Evgeniy: Whichever, practically.
Int: And, if there’s no match?
Evgeniy: Then, the execution suspends

until there is one.

He explains what a tuple space is by referring to
its definition. Fabian gives a similar view:

Int: So, what’s the similarity [in the tu-
ples] between different machines, given that
you can’t refer to the same variable?

Fabian: So, like, there are similar
parts. There are like, the same, for exam-
ple, they’ve been marked. . . The ones that,
like, fit the pattern. . . It should match. And
there are certain parts that match it and cer-
tain parts can be anything. Yeah, that’s how



Label What is the tuple
space described
as?

What is in focus? Framework

1 Specification Operations on tuples The properties of the operations -
2 Implementation Data structures and

code
How a tuple space implementa-
tion works or could work

Part of a program

3 Usage A tool to achieve a
specific subgoal in a
program

What a tuple space can be used
for in a program

A program

4 Evaluation A better way of
co-ordinating dis-
tributed systems

The advantages of using the tu-
ple space

Other communication and
distributed data storage
mechanisms

Table 1: Categories of tuple spaces

you get. Then you can directly mark what
belongs directly, put some sort of identifier
at the start or. . . that way, what you want
to get from there. The message has the same
identifier, then.

This statement is still based on the definition, but
Fabian concentrates his explanation on the concept
of a pattern.

We have in this category encountered an under-
standing that resembles that of a textbook definition,
here exemplified by the following quote from Andrews
(2000):

A process extracts a data tuple from
TS by executing IN("tag", field1, ...,
fieldn); Each fieldi is either an expres-
sion or a formal parameter of the form ?var
where var is a variable in the executing
process. The arguments to IN are called
a template. The process executing IN de-
lays until TS contains at least one tuple
that matches the template, then removes
one from TS. (ibid, p. 335)

Here, both Andrews and the students explain tu-
ple space operations in terms of the operations on
the tuple space and the inputs, outputs and delays of
these operations.

Fritjof prefers to explain tuples in terms of pro-
gramming language constructs rather than as ab-
stract groups of values:

Int: Could you describe this tuple space?
Like, what you put in it, what it does, what
you get from it, sort of on that level?

Fritjof: Yeah. Uh. . . I don’t have a
fancy understanding of it, or one that is. . .
necessarily entirely correct, but I’d say it’s
just like a set or a space containing un-
ordered items. So, I don’t know about these
tuples, but I’d imagine, or I like to think of
them as sort of arrays of some sort of ele-
ments, so, for example, a tuple is some n-
element table in there.

Here, Fritjof uses programming language con-
structs such as arrays, but is still describing the tuple
space in terms of its interface (in this case, the data
format used to communicate with it).

Fredrik explains pattern matching in the tuple
space in similar terms:

Int: Yeah, how do you choose what to
get, for example?

Fredrik: It’s quite. . .
Freja: Isn’t it kind of like getting with

parameters that are ‘identifiers’ for these tu-
ples? So they sort of have an identifier.

Fredrik: Right, right, right, and, the
amount of fields or attributes and. . . also
null values.

The statements of Fritjof and Fredrik are inspired
by the requirements of the assignment, which pro-
vided a very specific definition of tuple space opera-
tions and Java-specific definitions of how tuples and
patterns are represented:

public interface TupleSpace

• public String[] get(String[] pattern)

Remove and return a tuple (an array of entries)
matching pattern (which may not be null) from
tuple space. Block until one is available. A tuple
matches a pattern if both have the same amount
of entries and every entry matches. A null entry
in the pattern matches any object in that entry
in the tuple. Any other object p in the pattern
matches any object t in the corresponding entry
in the tuple for which p.equals(t) (i.e. contains
the same character string). If several matching
tuples are found in the tuple space, any one of
them may be returned.

The returned tuple must have exactly the same
textual contents as the tuple that was put (con-
tain the same amount of String objects as the
original and each String equals the String in
the same position in the original), but may be a
different array object and may contain different
String objects).

• public void put(String[] tuple)

Insert tuple in tuple space. tuple is an ar-
ray of any length greater than zero and is not
null. tuple may not contain null values. Tu-
ples stored in the tuple space must remain un-
changed as long as they are in the space.

Thus, the two interviewees discuss what a tuple
or a pattern is, based on the definition given in the
assignment2.

In this category, the tuples per se are in focus.
Different aspects of them can be highlighted, such as
operations on them (Evgeniy) or the structure of the
tuple (Fritjof) or both (Fabian). The specification
might have its roots in the theoretical specification
(Fabian) or from the assignment the students were to
solve (Fritjof and Fredrik).

According to phenomenographic theory, when
someone experiences something, some aspects of the
experienced phenomenon stand out in the fore, while
other aspects of it or other contextually related phe-
nomena reside in the background (Marton & Booth
1997). However, this category shows a slightly dif-
ferent structure: as the tuples are seen in isolation,

2http://www.cs.hut.fi/Studies/T-106.5600/2006/english.shtml



in a decontextualized manner, they are experienced
not against any background, but as atomic objects in
their own right.

6.1.2 Implementation

In this category, a tuple space is understood as it is
implemented.

Let us listen to Fritjof, for example:

Int: . . . and the get operation does what?
Fritjof: So, if you call get() with a

certain pattern, something, you want from
there a specific tuple; it looks through the
tuple space for such a set or item. If it finds
it, it returns it directly, immediately. If it
doesn’t find, then it actually waits for some-
one to put an item there with the put() op-
eration.

This way of understanding tuple spaces also allows
the large-scale structure of the implementation to be
described, as in Frans’s statement:

Int: OK, right, and how does this trans-
fer affect the tuples, then?

Frans: Those tuples are somewhere in a
central place, so that means that if you get
something from there then it isn’t there any-
more. It should, uh, take into account that
it. . . If there’s some tuple there and some-
body gets it from there, then nobody else
can get it from there before that somebody
has returned it there.

His statement illustrates a problem with this way
of experiencing tuple spaces: the implementation
need not be the same everywhere.

Fredrik starts his description of a tuple space in
the following way:

Int: So how does it [the tuple space]
work, then? How is it used?

Fredrik: It’s a data container in which
it has been ensured that you don’t read and
write to it at the same time through syn-
chronisation.

Fredrik’s statements, that seemingly express a
high-level understanding, actually reflect his own im-
plementation of tuples in the assignment. There, he
relies on a single lock (implemented using the Java
synchronized keyword) that ensures that only one
operation at a time is performed on his tuple space.
This, in turn, ensures that the tuple space operations
behave atomically, as specified.

This category extends the previous, as the imple-
mentation is written to match a specification, or at
least is written to achieve a goal. In any case, the
externally visible behaviour (which the specification
describes) can be deduced from the implementation.

6.1.3 Usage

This category describes a tuple space as a data struc-
ture or a module that can be used as a part of a pro-
gram in order to achieve a specific subgoal in a pro-
gram.

This is illustrated by Frans’s answer, when asked
to explain how using a tuple space affects the pro-
gram:

Int: OK, so they’re [the tuple spaces]
intended for distributed systems that may
have a common space for many machines

or processes, despite not having variables in
common. How does this affect them?

Frans: Um, what are you getting at?
Apparently, with the help of the tuple space
you can implement some sort of monitor or
something, with which you can. . .

He states that synchronisation is the purpose (or
at least one purpose) of using tuple spaces. Clearly,
this statement refers to usage of the concept within a
program.

Fritjof explains how his chat system uses a tuple
space to get unique message numbers over several dis-
tributed processes:

Int: So, how does it [your implementa-
tion] work when it’s on several machines?

[. . . ]
Fritjof: I put these specific tuples there,

that always stay the same, so, like, even
though the message counter, that is. . . that
is, that way you keep track of those mes-
sages that are put in the tuple space, so we
have this single message counter tuple there,
and with the aid of that, uh, the remote
machines sort of synchronise their function-
ing, so the counter is fetched from there.
One machine gets the counter, then another
machine, even though it’s trying to get the
message counter tuple at the same time, it
doesn’t find it there. And. . . And when the
first machine has processed the tuple, got
the value from there, it puts the tuple back
in there and the other machine can then get
it from there.

In this case, he is describing the implementation
of a chat system that uses a tuple space for commu-
nication. The characteristic of this category is how a
tuple space is used, or its purpose in a program. This
implies a broader perspective than that of the previ-
ous category, since the tuple space must be seen in the
context of a program for its usage within a program
to be seen.

6.1.4 Evaluation

Here, the tuple space is seen in terms of the advan-
tages of using it in contrast to other data structures
or message passing mechanisms.

When asked how using a tuple space affects the
programs using it, Elena answered:

Int: OK, so if you have a distributed en-
vironment here, where you have one pro. . .
two different programs that might be in
completely different machines with a tuple
space, and, uh. . . ?

Elena: It makes, uh, the communica-
tion between them; it makes it very much
easier, so, um, between different. . . ah, im-
plementations, they can communicate with
each other by way of this pool.

Filip compares the tuple space with a semaphore:

Int: Could you explain what a tuple
space is; how it behaves in general. . . ?

[. . . ]
Filip: It’s kind of like an improved ver-

sion of a semaphore, so, in a semaphore,
like, you’ve got to know in advance what
the semaphore is connected to, but the tu-
ple, you can attach information to that. But
it. . . It’s like sort of. . . A semaphore is a spe-
cial case, you can also use a tuple in such a
way that it either has a flag set or not.



Here, he is contrasting the tuple space with a
semaphore, and noting that a semaphore can only in-
dicate that something has happened (typically, that a
resource is available), while a tuple can contain addi-
tional information (such as the contents of a message).

The purpose of using tuples as building blocks of
a program, which was in the fore of the previous cat-
egory, is taken for granted here. Instead, the benefits
of using tuple spaces are seen in relation to other ways
of communicating.

6.2 What does it mean to write and debug a
concurrent program?

In this subsection, we present the different ways in
which the interviewees understand the process of de-
veloping and debugging their program. This is sum-
marised in Table 2.

6.2.1 Implementation

In the first category, writing and debugging a concur-
rent program means making it run; the coding itself
is the focus.

The programming of a complex sequence of events
can be experienced in this way. Fritjof explains his
message-writing implementation:

Int: So, how did you fix it [a race condi-
tion in using the message counter]?

[. . . ]
Fritjof: Anyway, the idea is that, like,

in that writeMessage(), uh, I right at the
start call, uh, that it fetches the message
counter tuple. . . and its. . . method that
it’s fetched with, it only removes the tu-
ple from there. . . the counter tuple, so, it,
like, fetches it for itself. . . So, this time, it
doesn’t, like, do those put()/get() opera-
tions in the same method, so it just takes
them from there, and then after that. . .
After that it, uh, writes the, uh, client’s
message, or makes a tuple that is the
client’s message, and uses the counter that it
fetched. And, uh. . . The message is always
put in the tuple space. After that, uh, the
message ID is incremented, which, of course,
is for every, uh. . . chat channel separate and
not until that is done, finally, the tuple is put
back in the tuple space.

Java constructs (e.g. methods, calls, incrementa-
tion) and the roles in which they are used (e.g. tu-
ples, counters) are taken for granted and constitute
the building blocks from which his explanations are
built.

While Fritjof discusses programming, we can hear
a similar discussion from Evgeniy when he discusses
debugging:

Int: In what did the first attempt. . . ?
Evgeniy: The first attempt uh. . . had

just the backlog of messages in the tu-
ple space. . . Uh, where, with a, I th. . . I
don’t remember was it counters or some-
thing where channel listeners would pick a
tuple from the space and return it until
the counter is zero and then discard it in-
stead, but, uh, for some reason; for some
obscure reason I don’t understand, still, it
didn’t work, uh, when there were more than
one channels, uh, more than one listeners or
with, with load it started to go all bad and
the. . . tuple started to disappear.

Evgeniy explains how an early version of his pro-
gram misbehaved in low-level terms. Although he
does not use language containing Java constructs, his
description is worded, as Fritjof’s above was in part,
in terms that correspond to specific Java constructs.
For example, Evgeniy’s counters are integers stored
as fields in tuples of a specific form.

Elena also takes her point of departure in the pro-
gram itself, when asked to explain her chat system
design:

Int: Was this design the first one that
occurred to you or did you consider some
other way of doing it?

[. . . ]
Elena: The basic idea, however, I can,

so when, ah, when, uh, when, uh, the
method writeMessage() of the server is
called, what it does is that it gets the. . . the
number, because there’s a tuple which keeps
the maximum number of servers.

[. . . ]
Elena: New, newcoming servers see

the. . . uh, get the tuple and update it with
an increased number. . .

In this quote, Elena specifically takes her point of
departure in the program execution at the level of the
programming language when she describes how data
must flow between different servers.

The three students whose quotes have served to
illustrate this category have all explained writing and
debugging of programs in terms of the implementa-
tion of the programs. The core of this category is
the execution of the program, and descriptions at the
level of Java code, regardless of whether the students
worded their explanations in Java terminology. This
is seen against a background delimited by the lan-
guage features that can be used in a certain situa-
tion. In other words, the reasoning does not extend
the program and its execution in any way, other than
assigning roles and purposes to the Java language con-
structs.

6.2.2 Solving technical problems

In this category, writing a concurrent program is ex-
perienced as solving technical problems.

Let us listen to Filip, for example:

Int: So, how is this information trans-
ferred [between machines], then, roughly?

Filip: Well, it remained kind of unclear
to me how it would be done in a practical ap-
plication, because, because, uh, one should,
like, be careful that the tuples are always the
same on all machines and then, if somewhere
an acquire is done, then the information is
transferred to them all before they can do
anything at all [. . . ] to the corresponding
tuple.

[. . . ]
Filip: Like, that all the, sort of, servers

have to know the same, like, tuple space.
They’ve got to have all tuples known to ev-
eryone.

He raises the issue that the tuple space is a data
structure intended for distributed computing and that
the different computers involved must co-operate to
ensure that operations performed on the space on one
computer are visible on all other computers. He dis-
cusses this in terms of a technical system, that is, he
describes ‘what happens’ and ‘how it functions’ in a



Label What is de-
veloping and
debugging
described as?

What is in focus? Framework

1 Implementation Writing and de-
bugging code

The code and its execution Relevant programming
language constructs

2 Solving technical
problems

Finding solutions
to a series of tech-
nical problems

Central ideas of concurrent pro-
gramming

The program, seen as a
technical entity

3 Producing an appli-
cation

Finding solutions
to real-life prob-
lems

What users need from the pro-
gram

Context in which program
is used

Table 2: Categories of developing and debugging

different way from that expressed in the previous cat-
egory, where the focus is on language constructs as
primitives.

Similarly, when asked to elaborate on his reasons
for choosing a particular chat system design, Fritjof
notes:

Int:Why’d you choose this particular so-
lution?

Fritjof: . . . a ‘send copies to everyone’-
style solution first came to mind, but, uh,
then it. . . Then it came to me that it isn’t
really clever to do it this way, so. . . So, one,
only one copy should be stored at a time.

Frans takes his point of departure in similar con-
cepts:

Int:Do you have any idea what messages
it can trans. . . leave undeleted?

Frans: When each active listener is sent
the messages, could it be that someone. . .
some listener, some active listener leaves be-
fore it’s read all the messages sent to it?

When asked why his system may incorrectly leave
some messages indefinitely in the tuple space (a form
of memory leak), Frans answers in terms of messages
being sent to listeners, the large-scale behaviour of
the system, rather than the underlying tuple space
operations.

Here, we have seen a way of experiencing writing
and debugging programs in which the task is seen as
solving a series of technical problems. This is viewed
and expressed in terms of general and central ideas
of concurrent programming and the system that is
constructed. This can be contrasted with the previ-
ous category, in which the basic entities are the pro-
gramming language and the constructs expressed in
it. Thus the current category has a broader perspec-
tive.

6.2.3 Producing an application

In this final category, the programming task is under-
stood as solving problems relevant for a usage context.

Filip demonstrates this viewpoint when respond-
ing to the teaching assistant’s complaint that his so-
lution does not allow messages to be repeated or be
empty:

Int: So you mean you’ve planned your
solution to sometimes duplicate messages
and then compensated by deleting them
later?

Filip: Yeah, I figured the duplicate re-
moval didn’t hurt, especially since it doesn’t
happen randomly, but when a new user joins

the channel. Then, uh, the empty messages,
that’s just that I’ve assumed that you don’t
want to put empty messages. It’s, both in
the transmission and reception, been tested
whether an empty message has come, but
this was also an error that led to failing the
assignment.

As opposed to the previous categories, the techni-
cal concepts here become tools for solving a real-life
problem. The student is no longer working to imple-
ment a specification; he is trying to meet the needs
of the users. The background is therefore no longer a
purely technical context (the program); it is the real-
world situation for which the program is intended. In
addition to the system-level technical concepts of the
previous category, the basic entities now include user
requirements and desires.

7 Discussion

In this section we will examine the categories pre-
sented in the previous section from different perspec-
tives. First we will discuss the meanings of the dif-
ferent categories from an educational point of view.
We will then discuss what the categories mean for our
long-term research.

7.1 Tuple spaces

Bloom’s taxonomy of educational objectives (Bloom
1956) is widely used in higher-education course de-
sign to ensure a proper balance between rote learning
and high-level skills such as synthesis and evaluation.
However, its applicability to computer science teach-
ing is debatable, as the goal of computer science is
often perceived by teachers to be application. (John-
son & Fuller 2006)

Johnson & Fuller (2006) therefore propose a re-
vised Bloom taxonomy which retains knowledge, com-
prehension and application in their original order,
places analysis, synthesis and evaluation as equals
above the lower three and adds higher application,
application informed by analysis, synthesis and eval-
uation, at the top. The revised taxonomy is partic-
ularly relevant when computer science is approached
from an engineering perspective where application is
clearly the goal. This motivates a comparison with
our tuple space categories, in which students under-
stand a concurrent programming concept in terms re-
lated to different skills and tasks.

The specification category is essentially knowl-
edge; the students are explaining the tuple space de-
scription given to them in the textbook, lectures or
assignment specification.

In the implementation category, the students have
constructed their own implementation, which at least



requires application of the specification and concur-
rent programming in Java.

The usage category is another form of application,
except here the tuple space knowledge is being applied
to achieving a program’s goals using a tuple space.
Finally, the evaluation category clearly corresponds
to evaluation.

The tuple space categories therefore span a large
portion of the revised Bloom taxonomy, although
analysis and synthesis do not appear. Although lack
of evidence is not evidence of lack (especially since
only students who failed the assignment were inter-
viewed), this does raise the question of whether the
teaching of concurrent programming can be improved
by encouraging students to analyse and synthesise.

7.2 Development

Software engineering emphasises ways of managing
complexity and quality that rely on different perspec-
tives on the software that is being developed. The
categories of developing that we found are similar to
several of the different views needed in many common
software development processes.

The implementation categories of both developing
and tuple spaces are obviously necessary for practical
software development, in which formulating an im-
plementation in a programming language is essential.
The solving technical problems category corresponds
to design. In this assignment, what the students are
performing is essentially module design, as the speci-
fication the students are provided with is more or less
a finished architecture design. This specification is
also seen in the specification category of tuple spaces.
The design of the chat application also involves us-
age of tuple spaces; evaluation is not necessary in the
assignment, as the use of tuple spaces was mandated.

These first two categories of developing can also be
considered facets of what Ben-David Kolikant (2004)
calls the programmer’s perspective, which includes
reasoning in terms of both the concurrency model and
the implementation.

As the assignment is to perform the low-level de-
sign and implementation of parts of a system with
clearly specified requirements, we did not expect any
consideration of the user of the system. The applica-
tion production category, which is suited for require-
ments analysis, is therefore unexpected in this study.
As seen in Subsubsection 6.2.3, it can become a hin-
drance in programming assignments such as the one
in this study. Adherence to the specification is con-
sidered by the teaching staff to be the goal of the
assignment. This leads to problems when the student
moves beyond the specification to address perceived
user requirements instead. This also demonstrates
that having a skill or understanding is not enough;
the student must also learn to use it in the appropri-
ate context.

Each one of these categories is suitable for some
task in software engineering. Taken as a whole, these
three categories more or less span the perspectives
necessary for a full software development process.
This suggests the idea of teaching students require-
ments analysis for concurrent programs instead of
keeping the teaching and assignments on the design
and implementation levels. This could also help stu-
dents understand the appropriate situations in which
to use each skill.

8 Conclusions

In this paper we present different categories of un-
derstanding tuple spaces and developing a concur-
rent program. We describe the relationship between

these categories and the skills we want students to
develop. We then discuss how this information can
be used in developing concurrent programming ed-
ucation, by exposing students to different views of
the same phenomena. We also discuss the use of
this study in our long-range research in supporting
concurrent programming, first by helping develop a
model of how bugs are introduced in concurrent pro-
grams, and second by developing software to display
information about these programs in a fashion con-
sistent with the programmer’s understanding.

8.1 Long-term research impact

In the previous section we concentrated on an edu-
cational perspective on the results of this study. We
will now consider our results in terms of our long-
range research questions, as described in Section 2.

Different errors can be the result of completely dif-
ferent ways of thinking. In some cases, such as the
application production category described in the pre-
vious section, approaching a problem from the wrong
perspective may lead to erroneous conclusions. In
other cases, the nature of the errors depends on the
perspective or task at hand. Thus understanding how
the programmer is thinking is important in finding
ways to prevent errors from being made as well as de-
termining the errors to look for in verification. For ex-
ample, if a programmer misunderstands the require-
ments or specification of a system or module, he will
be also be testing according to his erroneous under-
standing of the requirements. One way to address this
is to include test cases in the specification, providing
both clarifications to the programmer and test cases
that are not dependent on his understanding.

This is one way in which this study supports our
long-range goals: as software defects are the results of
programmer error, i.e. incorrect thinking, it is neces-
sary to understand how programmers think in order
to construct a model of errors. For example, goal-
plan analysis (Spohrer et al. 1985) provides a way to
identify and categorise bugs based on a model of the
problem-solving process. For each goal, there are one
or more plans for achieving it, each with several sub-
goals; this is expressed as a goal and plan (GAP) tree.
Spohrer et al. (1985) infer the GAP tree from the pro-
grams. Knowledge of how programmers understand
their development process is both a source of possible
plans and empirical support for the plans identified
from the programs.

Another way in which the results of this study can
be used in our research is in designing useful visual-
isations of programs and their execution. Debuggers
traditionally focus on code, as in the implementation
category. However, the solving technical problems
category suggests an alternative perspective on de-
bugging: that it would be useful to provide support-
ing tools, such as execution visualisations that show
program behaviour in ways that support the user’s
understanding. This could be done by allowing the
user to group together parts of the code or execution
to correspond to his understanding, similarly to the
ability to change between program- and algorithm-
level behaviour suggested by Price et al. (1993). The
tool would then visualise the behaviour of the pro-
gram in a fashion closer to the programmer’s view.
For example, if the programmer sees his program as
a set of communicating entities, the tool should be
able to show him the communication between these
entities and the relevant aspects of their state even
though this state may be spread out over several ob-
jects, and part of the communication is implicit in
locking mechanisms.



8.2 Future analysis of the data

The semi-structured format of the interviews allowed
the interviewees to express themselves on a wide range
of subjects related to concurrent programming and
the associated teaching and assignments. One pos-
sible topic for future analysis of these interviews is
the types of errors students make and the factors
that contribute to them. Another is how students
approach and understand the learning of concurrent
programming and the testing and debugging of con-
current programs. It is also possible to examine the
categories presented in this article in greater detail,
examining different conceptions and misconceptions
within each category.

References

Andrews, G. R. (2000), Foundations of Multithreaded,
Parallel, and Distributed Programming, Addison-
Wesley.

Ben-Ari, M. (2006), Principles of Concurrent and
Distributed Programming, second edn, Pearson Ed-
ucation.

Ben-Ari, M. & Ben-David Kolikant, Y. (1999), Think-
ing parallel: The process of learning concurrency,
in ‘Fourth SIGCSE Conference on Innovation and
Technology in Computer Science Education’, Cra-
cow, Poland, pp. 13–16.

Ben-David Kolikant, Y. (2004), ‘Learning concur-
rency as an entry point to the community of com-
puter science practitioners’, Journal of Computers
in Mathematics and Science Teaching 23(1), 21–46.

Berglund, A. (2006), ‘Phenomenography as a way to
research learning in computing’, Bulletin of Applied
Computing and Information Technology 4(1).

Bloom, B. S. (1956), Taxonomy of Educational Ob-
jectives, Handbook 1: Cognitive Domain, Addison
Wesley.

Booth, S. (1992), Learning to program: A phe-
nomenographic perspective, Acta Universitatis
Gothoburgensis, doctoral dissertation, University
of Gothenburg, Sweden.

Eckerdal, A. & Thuné, M. (2005), ‘Novice Java pro-
grammers’ conceptions of “object” and “class”, and
variation theory’, SIGCSE Bulletin 37(3), 89–93.

Gelernter, D. (1985), ‘Generative communication in
Linda’, ACM Transactions on Programming Lan-
guages and Systems 7(1), 80–112.

Holzmann, G. (1997), ‘The model checker Spin’,
IEEE Trans. on Software Engineering 23(5), 279–
295.

Hughes, C., Buckley, J., Exton, C. & O’Carroll, D.
(2005), ‘Towards a framework for characterising
concurrent comprehension’, Computer Science Ed-
ucation 15(1), 7–24.

Johnson, C. G. & Fuller, U. (2006), Is Bloom’s
taxonomy appropriate for computer science?, in
A. Berglund & M. Wiggberg, eds, ‘Proceedings of
6th Baltic Sea Conference on Computing Educa-
tion Research, Koli Calling’, Uppsala University,
pp. 120–123.

Marton, F. (1981), ‘Phenomenography — describing
conceptions of the world around us’, Instructional
science 10, 177–200.

Marton, F. & Booth, S. (1997), Learning and Aware-
ness, Lawrence Erlbaum Associates.

Pears, A. N. (1995), Using the DiST simulator to
teach parallel computing concepts, in ‘International
Forum on Parallel Computing Curricula’, Welles-
ley, Massachusetts.

Price, B. A., Baecker, R. M. & Small, I. S.
(1993), ‘A principled taxonomy of software visu-
alization’, Journal of Visual Languages and Com-
puting 4(3), 211–266.

Spohrer, J. C., Soloway, E. & Pope, E. (1985),
‘A goal/plan analysis of buggy Pascal programs’,
Human-Computer Interaction 1, 163–207.

Visser, W., Havelund, K., Brat, G., Park, S. & Lerda,
F. (2003), ‘Model checking programs’, Automated
Software Engineering Journal 10(2), 203–232.




