
Publication III

Jan Lönnberg. Defects in Concurrent Programming Assignments. In Pro-

ceedings of the Ninth Koli Calling International Conference on Computing

Education Research (Koli Calling 2009), pp 11–20, Koli, Finland, November
2009.

c© 2009 ACM.
Reprinted with permission.

137

Defects in Concurrent Programming Assignments

Jan Lönnberg
Aalto University

School of Science and Technology
P.O. Box 15400

FI-00076 Aalto, Finland
jlonnber@cs.hut.fi

ABSTRACT
This article describes a study of the defects in the pro-
grams students have written as solutions for the program-
ming assignments in a concurrent programming course. I
describe the underlying causes of these defects and the ap-
plications in developing teaching, grading and debugging
of this information.

I present the effects of the students’ approaches to con-
structing and testing programs on their work, how teach-
ing can be and has been improved to support the students
in performing these tasks more effectively and how soft-
ware tools can be designed to support the development,
testing and debugging of concurrent programs.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education; D.1.3 [Programming tech-
niques]: Concurrent Programming

Keywords
Concurrent Programming, Defect Cause Analysis

1. INTRODUCTION
An important first step in improving a process is under-

standing where it fails to produce the desired result and
why. Quantitative information is particularly helpful in
this endeavour, as it allows accurate and easy prioritisa-
tion of possible improvements.

Students’ solutions to programming assignments provide
information that can be used to improve several inter-
linked processes. The purpose of an assignment is typic-
ally twofold: to allow students to learn to apply in prac-
tice what they have been taught and to evaluate how well
they have learned. The assignment solutions submitted
by students (submissions) can also be used to evaluate,
indirectly, the teaching the students have received. The
submissions can also be used to improve assignments and
assignment grading processes to make them determine the
students’ skills more effectively and accurately.

Information on the defects introduced by programmers
can be used as a starting point for the development of de-
bugging methodology and tools. Studying programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09 October 29 - November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$10.00.

assignments in education allows one to get statistically
meaningful data on errors made in a specific task. By con-
trast, in professional development contexts, large numbers
of programmers seldom implement the same specification.
In this article, I will describe the defects found in stu-

dents’ programming assignments in a course on concurrent
programming and their causes, to the extent they can be
deduced. I will then present some conclusions that can
be drawn from these data that are relevant to teachers,
assignment developers and graders.

1.1 Related Work
The work described here can be considered to belong to

two different areas of research: research on defects in pro-
grams and research on students’ problems with program-
ming. The former research field aims to improve quality
of software by understanding why programmers err, while
the latter aims at improving the quality of teaching.

1.1.1 Defects in Software
When studying program defects (discrepancies between

the actual program and the correct one, commonly known
as bugs), and the underlying programming errors (mis-
takes), several approaches can be taken that support dif-
ferent approaches to the overarching goal of improving
software quality.
One approach, used by e.g. Eisenstadt [8] with the goal

of understanding and mitigating difficulties in debugging,
is to concentrate on collecting anecdotal data on bugs that
were hard to fix and the debugging process involved. The
conclusions include types of bugs (such as writing out-
side allocated memory) that are hard to track down and
the methods used by the programmers who tracked them
down (e.g. adding print statements and hand simulation
of execution). Natually, this approach only provides data
on bugs that result in a story the programmer finds inter-
esting enough to remember and share.
Another approach, such as that used by Ko and Myers

[16] to form an understanding of errors in order to improve
error prevention, detection and correction, is to set up an
experiment that is videotaped and analysed in detail. This
approach can be used to get very detailed information on
error causes, especially if the programmers think aloud,
allowing their reasoning to be examined in detail. How-
ever, this requires a lot of time for analysis (40 h for 15
h of observation), making it prohibitively time-consuming
unless one only observes a few students doing a small pro-
ject. Furthermore, observation of this type is often hard
to do in the natural working environment of the students,
which may affect their behaviour.
Defects can be classified in a variety of ways, depending

on the relevant aspects. For example, Eisenstadt [8] and
Grandell et al. [11] form categories based on the observed

defects; others (such as Spohrer and Soloway [26]) con-
struct a classification based on distinctions they wish to
study, such as whether the defects are caused by miscon-
ceptions about programming language constructs. Defects
can be classified, for example, based on their symptoms
(how and when the defect manifests itself), or on the dif-
ference on the syntactic level between the incorrect code
and the intended correct code. In both cases, a variety
of different category sets have been formed by different
authors.

If sufficiently detailed information is available on the
underlying errors, defects can be classified based on the
underlying error. Errors can be classified, for example, by
the type of cognitive breakdown involved in the error (lack
of knowledge, mistake) (e.g. Ko and Myers [16]) or the part
of the program design that is incorrect (e.g. Spohrer and
Soloway’s goal/plan analysis [26]).

In a software development context, many different types
of information related to bugs are useful, resulting in a
multifaceted classification scheme such as the IEEE stand-
ard classification for software anomalies (deviations from
expectations observed in program operation or document-
ation, including bugs) [15]. In the IEEE classification,
bugs are classified according to a wide range of proper-
ties, such as how and when the defect was detected, the
type of the defect and the error underlying it and the im-
pact of the defect. Beizer’s classification [3] focuses on the
aspect of the program or development task that was in-
correctly developed, such as requirements, data structures
or data processing.

Eisenstadt [8] also classifies by two other aspects that
are interesting from a debugging point of view: why the
bug was hard to track down and how it was tracked down.

1.1.2 Students’ Programming Errors and Miscon-
ceptions

Several studies have been made of students’ errors in
programming assignments (e.g. [11, 26]) and misconcep-
tions about algorithms (e.g. [25]). The goal of these stud-
ies is usually to improve programming education by devel-
oping an understanding of students’ misconceptions and
errors.

The programming assignment studies mentioned above
all use the students’ code as data; either the final versions
submitted by the students [11] or every syntactically cor-
rect version compiled by the students [26]. This code was
then (mostly manually) analysed for defects.

1.2 Applications
As noted in the introduction, information on the types

of defects in students’ programs can be applied both in
developing teaching and grading and in the development
of debugging tools and methodology.

1.2.1 Teaching and Assignments
The results of an assignment can be used to determ-

ine whether students are effectively learning what they
should. In particular, if a large number of students has
problems understanding or applying some relevant know-
ledge, the teaching of this knowledge should be improved.

If students, on the other hand, produce many defects
unrelated to the subject matter they are being taught, the
assignment may be testing the wrong knowledge and skills.
If the defects can be traced to misconceptions about the
assignment or the artificial environment in which it is done
(if it exists), the students may be distracted from learning
relevant matters by difficulties specific to the assignment.
Penalising students for defects that are arguably caused

by a badly-designed assignment rather than any problem
the student may have is hardly just, so it is important to
recognise or eliminate these defects.

1.2.2 Code Reviews and Manual Assessment
An experienced code reviewer can quickly spot common

defects in the programs he reviews, as he knows what to
look for. This applies even more strongly to a grader who
reads many similar programs. Information on common
defects can therefore be very useful to new graders in a
course as a substitute for actual experience (both gen-
eral and assignment-specific). Information on the errors
underlying a defect can be used to guess the error made
even in the absence of explanatory reports or comments.

1.2.3 Verification and Automatic Assessment
One of the simplest and most commonly used ways to

detect defects in a program is to test it and hope that
the defects cause failures (incorrect program behaviour).
However, testing is practically never exhaustive for non-
trivial programs [6] and often gives little indication of the
actual location of the defect, leaving the actual debug-
ging (finding and correcting the defect) to be done essen-
tially manually, with the aid of tools that help examine
program execution and detect common errors [23]. Ex-
haustive model checking is often applied to concurrent
programs, but this requires that the entire system be mod-
elled within the verifier and large amounts of memory and
processing time.
Programming assignments are assessed automatically in

systems such as BOSS [22] or CourseMarker (formerly
CourseMaster) [13] by executing tests on the code to be
assessed and assigning a grade based on the number of
tests that passed [1]. With larger programming assign-
ments, this technique is usually used as a supplement
to manual assessment instead of a substitute [1]. Test-
ing does not work as well with concurrent programs, as
the relative timing of the execution of different operations
can have a critical effect on both the desired and the ac-
tual behaviour of the program. For this reason, manual
assessment (using tests and/or model checking to check
functionality) or requiring students to apply model check-
ing to their own designs before implementation (e.g. [5])
seems to be favoured for assessing “real-life” concurrent
programs. However, automatic assessment has been used
for small and clearly delimited concurrent programming
assignments such as solving the reader-writer problem or
the producer-consumer problem in the SYPROS [12] in-
telligent tutoring system. SYPROS goes beyond mere as-
sessment to providing detailed feedback tailored to each
student while he tries to solve the assignment.
One of the problems with automatic assessment is that

it is hard to design tests that detect all common errors
and distinguish between different types of error without
empirical data on real students’ errors. This research into
error types and frequencies in concurrent programming
assignments is intended to mitigate this problem.

1.2.4 Testing and Debugging Tools and Methods
Current debuggers do not appear to fully make use of

potentially useful visualisation and interaction techniques;
most have very limited visualisations and many provide
only a graphical replacement for the traditional textual
user interface. A lot of visualisation research has been
done that involves exploring new visualisation techniques
based on what the researchers feel would be useful or filling
a niche in a taxonomy rather than studies of the require-
ments of programmers (see e.g. [14]). Most debuggers can

only show the current state of the program, even though
the cause of a program malfunction usually lies in the past.
Concurrency also makes debugging harder, as concurrent
processes often interact in unexpected ways. These prob-
lems combine to make it hard, even with a debugger, to
find bugs. Only a few debuggers (e.g. RetroVue [7]) are
specifically designed to aid in debugging concurrent pro-
grams, and they do not seem to be widespread.

Having quantitative data on programming errors would
provide a background against which debugging methods
and tools could be developed that address common real-
world problems [21]. One foreseeable problem with us-
ing data from university programming assignments is that
the data do not reflect the skills of professional program-
mers. This can be mitigated by using advanced university
courses.

2. SETTING
This study is centred around the Concurrent Program-

ming course at Helsinki University of Technology1 in Au-
tumns 2005 to 2008. The goal of this course is to teach
students the principles of concurrent programming: syn-
chronisation and communication mechanisms, concurrent
and distributed algorithms and concurrent and distributed
systems. Most students major in Computer Science or a
related subject such as Mobile Computing and have com-
pleted a Bachelor’s degree or a roughly equivalent part of
a Master’s degree.

This paper describes a study of the defects in the pro-
grams students wrote in the three mandatory program-
ming assignments2 of the Concurrent Programming course
at Helsinki University of Technology during the autumns
of 2005, 2007 and 2008. Due to differences in grading,
the autumn 2006 instance of the course has been left out.
All of the assignments were to be done in Java. Students
could choose to do the assignments alone or in pairs; in
both cases, the grading was the same. In 2005, students
were allowed to retry the assignment several times. This
was reduced to one resubmission in 2006. Resubmission
was eliminated completely in 2008; the grading was made
less severe and a test package provided to students to com-
pensate.

Students were required to submit both the actual pro-
gram source code and a brief report outlining how their
solution works with an emphasis on concurrency.

As the students were required to submit their solutions
through a WWW form that compiled their code, all the
submissions were valid Java programs. The last submis-
sion by a student or pair of students before the deadline
was assessed. Only submissions done before the initial
deadline have been examined in this research; late sub-
missions and resubmissions after receiving a failing grade
have been left out.

2.1 Trains
In the first assignment (Trains), the students are given

a simulated train track with two trains and two stations.
The students’ task is to write code that drives these trains
from one station to another by receiving sensor events and
setting the speed of the trains and the direction of the
switches on the track.

2.2 Reactor
1Since 1 January 2010, this is the Aalto University School
of Science and Technology.
2For details, see the course web sites at:
http://www.cs.hut.fi/~jlonnber/T-106.5600.html

The second assignment (Reactor) is about the Reactor
design pattern [24]. The students’ task is to, using the
synchronisation primitives built into the Java language,
implement a dispatcher and demultiplexer that can read
several handles that have blocking read operations at the
same time and sequentially dispatch the events read from
these handles to event handlers. The students then imple-
ment a simple networked Hangman game that uses this
Reactor pattern implementation.

2.3 Tuple Space
In the third assignment (Tuple space), the student im-

plements a simple tuple space [9] containing only blocking
get and put operations on tuples implemented as String
arrays. They are to do this using Java synchronisation
primitives and use this tuple space implementation to con-
struct the message passing part of a distributed chat server.

3. METHODOLOGY
The process applied here consists of three separate phases:

data collection, defect detection and defect classification.
They are described in this section.

3.1 Data Collection
The obvious source of information on defects in stu-

dents’ programs is the programs themselves. Furthermore,
since students’ programming assignments are graded by
checking them for defects, the grading process already in-
corporates much of the necessary defect detection work.
Initial experiments with Java PathFinder [28] in which

the model checker failed to complete verification even of
simplified versions of the programming assignments de-
scribed here, encouraged the use of testing to support our
grading. Hence, the choice was made to assess the pro-
grams manually, essentially by reading the code and the
students’ explanations of it and checking whether it is cor-
rect. Testing was used to find situations that the programs
did not behave correctly in.
This work was done primarily by hand by myself and

assistants working according to specifications I provided
and whose work I checked and, as needed, assisted with.
This classification is explained further in Subsection 3.2.

3.2 Defect Classification
In order to serve the requirements of both teaching and

tool development, I have classified the defects found in
the students’ programs using two separate classifications.
One classification is by the underlying error (to the extent
it can be determined), which helps determine what under-
standing or skill is lacking in the student who introduced
the defect. In the other classification, defects are divided
based on whether the program failures they cause occur
deterministically.
Note that apparently non-functional requirements (such

as using a mechanism that is not available) can be clas-
sified in this way by considering the execution of a call
to a forbidden feature as a failure or by considering the
operation to behave incorrectly. Since such requirements
are typically based on a notional execution environment,
it is natural to use the failure induced by this type of error
in such an environment for classification purposes. This
also makes this classification by failure consistent when
the limitations of a notional environment are artificially
introduced in the real environment, as in our Concurrent
Programming course.
Defects and failures are defined here with respect to

the written assignment specification, as interpreted by the
person assessing the assignment.

3.2.1 Classifying Defects by Error
Errors can be classified by the task the programmer was

performing when he made the error. This allows one to
easily determine the knowledge and skills involved and
provide feedback to the student to help him or her under-
stand his or her error.

Inadequate testing can be considered a separate prob-
lem as it does not introduce defects into the code, although
it (by definition) may prevent defects from being found.

I initially formed this classification by grouping together
defects based on similarities in how they deviate from the
corresponding correct solution; this is conceptually sim-
ilar to the goal/plan analysis of Spohrer and Soloway [26].
However, instead of constructing a full goal/plan tree for
each program (which was found to be very time-consuming
due to the size of the programs involved and not very
useful), only the incorrect parts of the program are con-
sidered. Defects are classified by the incorrect or miss-
ing subgoal or subplan in the most specific correct goal
or plan (assuming top-down development, this means the
students’ errors are assumed to be made as late as is plaus-
ible in the development process). Most defects can be
explained this way as errors in a specific plan or goal.
Similarly, goals are considered equivalent if a plan that
achieves them both is known. Plans are differentiated by
their subgoals. While this greatly decreases the amount of
different errors, this occasionally results in two otherwise
correct plans interfering with each other; these errors are
handled separately, as are cases where the students’ plans
cannot be determined. With some minor refinements and
additional defect classes, this classification was used as a
basis for assessment in 2007 and 2008.

Previously, I performed the analysis of defects [17] us-
ing only the students’ programs and reports as data and
constructed a classification schema based on the assess-
ment criteria of the Concurrent Programming course at
the time and on defect classifications found in the literat-
ure, especially the classification of Eisenstadt [8]. The top
level of classification in that analysis was a division into:

Concurrency errors Misconceptions or design errors re-
lated to concurrency

General programming errors Misconceptions or errors
related to the programming language or non-concurrent
algorithms

Environment errors Errors related to the environment
in which the assignment was performed

Goal misunderstandings Misunderstandings of the re-
quirements of the assignment

Slips Slips or other careless errors

One problem with this classification was that only a
small amount of the students’ errors could be unambigu-
ously placed in one of the above categories; only 23 %,
45 % and 34 % for the respective assignments. This was
because asking students to explain the reasoning behind
their entire solution in a written report did not give enough
information to reconstruct their errors. Another reason
was that some errors can fit into many classes.

Because of this, a phenomenographic analysis was done [19,
20] to provide an understanding of how students under-
stand concurrent programming in order to analyse their
defects meaningfully. The resulting phenomenographic
outcome spaces led to some changes to the classification.
While it would be possible to distinguish between errors

made in designing the solution and implementing it, stu-
dents did not consistently make this distinction [20, Table
3]. For this reason, it is hard in some cases and not very
useful to make this distinction. The distinction between
concurrency and general programming errors is similarly
ignored. One reason is that, in a concurrent programming
assignment, most programming errors are in some way re-
lated to concurrency; the question of where to draw the
line has no clear answer. Another reason is that the phe-
nomenographic study did not show that students make
this distinction. Some did, however, show an awareness
of the difference between deterministic and nondetermin-
istic errors [20, Table 4]. Understanding the requirements
of the assignment can be seen as a source of difficulties
that is great enough to structure one’s work around [20,
Table 3]. Alternative understandings of the goal of an as-
signment, which lead to understanding the requirements
differently, exist [20, Tables 1 and 2].
The distinction between the programming and the as-

signment environments is made in order to determine which
errors are irrelevant in assessing the students’ concurrent
programming knowledge and skill and could be reduced
or eliminated by changing the assignment.

Requirement-related error A programmer can fail to
understand part of a specification correctly or fail to
take it into account properly when designing or im-
plementing his solution. Some understandings of the
goals of a programming task (e.g. seeing a passing
grade as the goal of a programming assignment) can
lead to this. Pointing out the requirement and a fail-
ure in which it is violated should be enough to ex-
plain this type of error to the programmer. Commu-
nicating requirements as tests with a clear pass/fail
indication can help programmers detect these. Elim-
inating this type of error should be a priority when
designing programming assignments.

Programming environment-related error Some mis-
conceptions of the goals of a programming task that
relate to the target environment, such as considering
unbounded memory usage to not be a problem, can
result in this type of errors. Alternatively, there may
be something about the language, API or other as-
pects of the execution environment the programmer
has not understood, in which case explaining the rel-
evant aspect (e.g. by referencing a specification) may
help. Finding problems in students’ knowledge of a
programming environment in general can be helpful
to them, but secondary in many advanced courses
to the actual topic of the course, such as concurrent
programming.

Assignment environment-related error Misconceptions
about the framework provided for a programming as-
signment can also result in errors. These are distin-
guished from errors in the previous category in that
they relate to systems that are only used in this par-
ticular programming assignment. Therefore, these
errors, like the requirement-related errors above, can
be seen as indications of the assignment being con-
fusing instead of lack of any understanding or skill
relevant to concurrent programming in general. This
type of error is avoided if no framework is provided
(as in the Reactor assignment); large amounts of this
error suggest that the framework is confusing and
should be simplified.

Incorrect algorithm or implementation Programmers
may introduce errors when creating or implementing

an algorithm. These errors vary from creating an al-
gorithm that does not work in all necessary cases to
forgetting to handle a case. Showing a programmer
how his code fails is enough if the error is not due
to insufficient or incorrect knowledge. Since some
students do not make a clear distinction between
creating an algorithm and an implementation, these
errors are grouped together. A programming assign-
ment should allow students to make errors of this
type, as they provide valuable indications of defi-
ciencies in the students’ knowledge or skill.

In each assignment, different subtypes of the aforemen-
tioned errors can be distinguished. They are described
in the following to the extent they merit interest either
by being common, surprising or illustrative of students’
understandings of concurrent programming.

3.2.2 Classifying Defects by Failure
An alternative classification is by the type of failure;

this is relevant for testing and debugging. Some students
showed an awareness of this distinction [20, Table 4].

Deterministic failures occur consistently for a given in-
put (or sequence of stimuli in the case of a reactive
program) and are thus easy to reproduce. This al-
lows traditional debugging, based on repeated execu-
tions, single-stepping and breakpoints and examin-
ing program states, to be used. History-based de-
bugging methods can also be used.

Nondeterministic failures are hard to duplicate; a logging-
based debugging approach is therefore more useful
than traditional debugging, since the failure only
needs to occur once while logging is being done.

Since the debugging technique must be chosen based
on the symptoms and nondeterministic failures may ap-
pear to be deterministic in many tests, it makes sense
to always use techniques appropriate for nondeterministic
failure when debugging concurrent programs.

This classification was done by examining the effect of
each defect class on program execution through testing
and reasoning.

4. RESULTS
In this section, I describe the defects found in the stu-

dents’ programs in terms of the defect classifications de-
scribed in Subsection 3.2. Detailed lists of defects are also
available [18].

4.1 Trains
An interesting aspect of the Trains assignment (described

in Subsection 2.1) is that, since the train simulation com-
bined with the student’s train control code takes no input
from outside, almost all failures are nondeterministic; a
deterministic failure would occur in every possible execu-
tion, making it easy to detect. It is therefore not surpris-
ing that all the deterministic failures are due to misunder-
standings of the requirements. Since the concurrent pro-
gramming aspect of the assignment is easy in comparison
to the other assignments, it is hardly surprising that most
of the students’ errors are related to the simulator and
what they are supposed to do with it. Figure 1 shows, for
the three yearly instances of the course that I have ana-
lysed, the total amount of submitted programs and the
amount of defects found in each class in both the error-
and failure-based classifications.

4.1.1 Requirement-related Errors
The train simulator used in the Trains assignment proved

to have some confusing aspects in its original form used
in 2005. Particularly problematic was that the students’
code could easily access information about the simulated
trains that was not supposed to be available. The trains
could also communicate with each other in ways that stu-
dents were not allowed to use in the assignment, such as
shared variables. This allowed students to avoid much of
the expected semaphore usage. The assignment also re-
quired students to implement the required random delay
at stations themselves, which in many cases was replaced
by a fixed delay. These problems were eliminated in the
2006 version of the assignment by redesigning the sim-
ulator and its API so that the options available to the
student in the simulation environment matched the re-
quirements.
After this, the most common form of requirement-related

error (accounting for almost all of the requirement-related
errors in 2008) is that at least one train uses the second-
ary choice for a track or station platform even when the
primary choice is free, ignoring the requirement to use
the upper platform or shorter track where possible. This
requirement exists to prevent statically allocating one al-
ternative to each train, removing the need for choosing
between alternative tracks. However, it is vague, hard to
test for (our test package does not detect it) and over-
looked by a few students every year.

4.1.2 Programming Environment-related Errors
In three cases in 2005, students had clear misunder-

standings of the Java language or API, such as accident-
ally generating negative random numbers or leaving out
the break statement at the end of a case of a switch and
insisting that the fall-through is a compiler bug. Before
2004, introductory programming was taught at Helsinki
University of Technology using Scheme instead of Java, so
some students may have been unfamiliar with Java.

4.1.3 Assignment Environment-related Errors
The train simulator used in the first assignment proved

to pose problems of its own by introducing issues of train
length, speed and timing that cause problems for stu-
dents unrelated to the learning goals of the assignment
and hence distract the student from the concurrent pro-
gramming the assignment is about. Some of the rules of
the simulation were also not obvious to the students.
By far the most common type of error here was pla-

cing the sensors used to release a track segment too near
a switch, allowing the other train to enter or change the
switch before the first has left. This type of error has de-
creased since 2005, probably because the simulator and its
documentation have been revised for clarity several times.
Other sensor-related issues, ignoring the crossroads at the
top of the track and setting the trains’ speed too low ac-
count for the rest of the errors in this category.

4.1.4 Incorrect Algorithm or Implementation
Almost all the solutions were close enough to being cor-

rect for specific problems to be identifiable. Most of the
errors were found in the train segment reservation code.
Some solutions consisted of subsolutions that did not com-
bine properly or relied on train events happening in a
specific order; there is no indication that the students
considered the possibility that the order could be differ-
ent. Others had more localised problems, such as changing
switches at the wrong time or not at all, using the wrong
semaphore or the right semaphore at the wrong time or

2005 2007 2008
Submissions 128 60 52
Requirement 53 10 11
Programming 3 0 0
Assignment 70 20 10
Incorrect 28 16 5
Deterministic 39 2 0
Nondeterministic 115 44 26
Total 154 46 26

���� ���� ����

�

���

���

��	

���

��

��

��
����
�

�������������

�����������

����

�����������

������������

�������������

������������

������������

�������������

 �!"��������

�������������

#
�
$�

��
%�
"
&
�
��
�
��
�

Figure 1: Defects found in Trains assignment

initialising a semaphore to the wrong value; many of these
appear to be implementation slips since a correct solution
is described and similar situations are handled correctly
in the same program. A few unnecessarily complex solu-
tions introduced the possibility of deadlock by ignoring
the possibility of a sequence of semaphore operations be-
ing interleaved with operations made by the other train.

Only a few errors were obvious implementation slips,
such as forgetting a break or else, matching sensors incor-
rectly, parenthesising a logical expression wrong, making
an array one element too small or accidentally duplicating
or commenting out code.

4.2 Reactor
The Reactor design pattern in the second assignment

(see Subsection 2.2) turned out to be hard to understand
for some students; in many cases, the students’ programs
are correct solutions to what they consider to be the prob-
lem. Clarifying the intent and structure of the Reactor
pattern was clearly necessary, so I wrote a simplified ex-
planation of the Reactor pattern for the next year’s course.

The defects found are summarised in Figure 2. The
increase in defects between 2005 and 2007 can be mostly
ascribed to more aspects of the programs being taken into
account in assessment, such as memory use.

4.2.1 Requirement-related Errors
Until students were provided with a test package in

2008, many made changes to the Reactor API or the way
it uses threads to simplify the Reactor or the Hangman
server. These errors account for roughly a third of the
requirement-related errors. Similarly, problems with input
and output formats and the rules of the Hangman game
were common until the test package was introduced.

The most commonly ignored requirement was to ensure
that the Reactor does not buffer an arbitrary amount of
data if it cannot handle events quickly enough. In 2005
and 2006, this was not considered a problem, but in 2007
and 2008 it was found to occur in the majority of submit-
ted solutions. This error by itself accounts for more than
three quarters of the requirements issues found in 2008.
The fact that it remained common in 2008 is probably
due to the fact that the test package did not include a
test case for this scenario.

A few of the submitted Reactor implementations in 2005
submitted all events to all event handlers. It was found
that Schmidt’s pseudo-code for the Reactor implementa-
tion [24] can also be interpreted this way; for the 2006
course, I wrote a simpler explanation of the Reactor pat-
tern that eliminated this ambiguity. A similar ambiguity

involved the amount of events to dispatch for each call
to handleEvents(). Using busy waiting or polling in the
Reactor or Hangman and failure to terminate properly ac-
counts for the remaining cases.
The sharp decrease in deterministic errors in 2008 is

almost entirely due to failures to comply with the specified
APIs and I/O formats (about 80 % of the deterministic
errors) being essentially eliminated by the test package.

4.2.2 Programming Environment-related Errors
In 2005, the console I/O required by the Hangman cli-

ent was by far the most problematic aspect of the pro-
gramming environment. The client was deemed unneces-
sary and removed the next year. Several cases of using a
fixed TCP port number when required to use a free one
as shown in the example code have been found.
Four cases in 2005 were due to misconceptions about

Java.

4.2.3 Incorrect Algorithm or Implementation
Many solutions, especially in 2007, failed to correctly

handle events that were left undispatched after handle re-
moval or received after handle removal; again, there is no
indication that these students considered this sequence of
events. Some failed in other ways to correctly remove
handles from use. The increase in 2007 may be, like
the previous error, due to improved assessment guidelines.
Again, the testing package makes this type of error easier
to detect.
Several different cases were found of incorrect buffer

management algorithms in the Reactor implementation.
In some cases, status variables were set at the wrong time
or not at all. Two circular locking dependencies were
found, which can be seen as two subsolutions conflicting.
In some solutions, the defect involved notifying the wrong
thread or at the wrong time; again, with no indication
that such a possibility had been taken into account. In
some case, messages were overwritten or lost, either due to
possible interleavings not being considered or because the
student did not consider it relevant to handle certain situ-
ations, such as messages appearing faster than they can
be dispatched or before the main loop is entered. Only
a few cases of using collections or variables without the
necessary synchronisation were, however, found, mostly
involving a flag variable or the list of active handlers not
being protected by a synchronized block with no explan-
ation given.
A few obvious implementation slips were found, such

as having the Hangman server and client connected to
different ports, starting the same thread twice, declaring

2005 2007 2008
Submissions 107 51 40
Requirement 93 112 38
Programming 15 11 1
Incorrect 51 56 17
Deterministic 94 102 8
Nondeterministic 65 77 49
Total 159 179 57

���� ���� ����

�

���

�

���

�

���

�

���

�

�	
���

�

�������������

����
�
	���

���	

�����	�
	��

	����	�
	��

�
���
��
����

���������	��

	����	�
	��

�
���
��
����

!"��
�
	��

�
���
��
����

#

$

��
%�
"
&
�
��
�
��
	

Figure 2: Defects found in Reactor assignment

an array that was one element too small and using a stack
instead of a queue.

4.3 Tuple Space
In the tuple space assignment (described in Subsection 2.3),

the requirements of the assignment were once again prob-
lematic in the 2005 original. However, many of the de-
fects found were clear indications of careless or unskilled
concurrent programming. By this time, the Java program-
ming environment was apparently familiar to the students,
as no clear misunderstandings of the programming envir-
onment were found. The defects found are summarised in
Figure 3.

4.3.1 Requirement-related Errors
As in the first assignment, about half of the requirement-

related errors in 2005 were due to the requirement to pre-
tend that the chat system was running in a distributed en-
vironment. Making the corresponding error in later years
and causing failures in the distributed context was much
less common. There were fewer problems with the divi-
sion between tuple space and chat system than between
Reactor and Hangman. Polling occurred in a few cases in
either the chat system or tuple space.

The most commonly ignored requirement of the chat
system’s functionality was that messages stay in order.
As an example of the variety of other errors of this type,
a few students in 2005 and 2007 allowed their chat sys-
tem to combine messages stored in the log for delivery to
new listeners into one message that looked the same to
the user of the provided GUI, arguing that they could ig-
nore the specification as long as the user experience is the
same. Yet again, the test package seems to help students
understand they have a problem.

The semantics of the tuple space also caused problems.
Most of these errors involved limiting the tuples in some
way, such as considering the first element in a tuple to be
a String used as a key as in the textbook. Some solutions
changed the blocking, matching or copying semantics of
the get operation. One error of note of this type (which
the test package did not detect) is storing references to
tuples in the tuple space rather than copying their con-
tents, which only 2 students in 2007 did, but 10 in 2008.
This suggests that students rely on the test package to
detect errors in conforming to requirements such as these.

Again, most of the decrease in deterministic errors in
2008 can be attributed to the test package helping stu-
dents understand they have misinterpreted the specifica-
tion (more than two thirds of the deterministic errors in
2005 and 2007).

4.3.2 Assignment Environment-related Errors
The GUI provided to the students to make the require-

ments easier to understand sends messages when listen-
ers leave (and, in 2005, when they join) a channel; this
caused some students to require this behaviour for their
implementation to work.

4.3.3 Incorrect Algorithm or Implementation
The tuple space proved to be unproblematic to imple-

ment. Only a few cases of critical sections having the
wrong extent and notify() being used instead of no-

tifyAll() were found. More common was for the tuple
space to match patterns against tuples incorrectly. A few
solutions also corrupted their own data structures while
executing, for various reasons including implementation
slips, understanding returning an object to mean return-
ing its contents and using library classes incorrectly.
Cleaning up after a handle is removed for use appears to

often have problems, as does ensuring memory use stays
within reasonable limits. Similarly, getting rid of unused
tuples is a difficult area, accounting for roughly a third of
the errors in this category. In some cases (especially those
where no cleaning up is done at all), this could be because
cleanup is not considered by the student to be relevant to
the assignment (i.e. the intended execution environment is
not understood to have limited memory). However, most
of the reports of students with this error suggest an aware-
ness of memory limitations and a choice to use a simple
algorithm that wastes memory rather than a complex one
that conserves it, suggesting this is a compromise to save
time and/or decrease chances of a programming error.
Initialisation proved to be surprisingly problematic, es-

pecially, interestingly enough, the ChatServer constructor
for connecting to an existing chat system, which often did
not replace all the tuples it got. This invariably causes
the system to grind to a halt when the third server node
is connected. Outside this method, forgetting to replace
tuples was uncommon.
The buffer of messages that the chat system has to main-

tain for each channel proved to be problematic, with fail-
ure to handle a full buffer or simultaneous writes, insuf-
ficient locking of the buffer or related sequence numbers
and indices being common in 2005 and 2007. The test
package may account for the decrease in 2008. Circular
locking dependencies, on the other hand, became much
more common in 2008, typically in the form of the lock-
ing for different operations, such as writing messages and
closing listeners, interfering with each other.

5. DISCUSSION

2005 2007 2008
Submissions 84 49 39
Requirement 93 49 21
Assignment 3 0 0
Incorrect 70 51 36
Deterministic 98 58 28
Nondeterministic 68 42 29
Total 166 100 57

���� ���� ����

�

���

�

���

�

���

���������

	
�����
�����

���
�����	�

����

�����������

������������

��
	���������

�����	������

������������

��
	���������

������������

��
	���������

�
�
��
�
��
��
�
�
�
��
�
��
�

Figure 3: Defects found in Tuple space assignment

This study suggests several areas in which students have
problematic understandings that lead to incorrect concur-
rent programs. These problematic understandings are re-
lated both to assignment goals and to the concurrent pro-
gramming concepts or development practices that are be-
ing taught.

The quantitative results appear to show dramatic de-
creases in certain types of defect in the students’ pro-
grams as the intended result of certain changes to the
assignments. In particular, providing tests helps students
notice their problems with understanding assignment re-
quirements. It is possible that other changes to the course
(for example, changes to the resubmission policy) or the
participating students (for example, the course no longer
being mandatory except for international master’s stu-
dents) may also have affected the results.

5.1 Understanding Program Execution
The large amount of defects found in students’ programs

that cause failures nondeterministically is not surprising,
since these defects are both hard to find and correct. Test-
ing software that helps make these defects manifest will
help students find such defects by themselves. The results
of the Reactor assignment seem to bear this out. How-
ever, no such dramatic improvement can be seen in the
Tuple space assignment. One plausible reason for this is
that the students were not capable of debugging their pro-
grams despite knowing that they contain bugs. Reasons
cited by students include not understanding the tests and
being unsure whether the tests timed out due to deadlocks
or their code being too slow. The latter can be mitig-
ated by providing debugging tools that can clearly show
pending and previous operations on semaphores, monitors
and tuple spaces, allowing students to determine what the
exact failure is.

Many students introduce defects in their programs that
appear to be caused by misunderstanding or reasoning
incorrectly about concurrent program execution. In par-
ticular, many difficult concurrency bugs the students in-
troduce appear to stem from two different parts of their
programs interacting badly. Students should either be en-
couraged to consider their program as a whole or design it
in such a way that interaction between parts is minimised.
Another common source of bugs is that some possible or-
derings of events have not been taken into account. It may
be helpful to increase the emphasis on designing programs
to avoid unexpected interactions between processes. In
both cases, the bugs can also be found, naturally, during
verification.

Part of the problem is that the runtime behaviour of a
concurrent program, a necessary part of the programmer’s
perspective, is hard to examine or interpret, preventing
students from effectively understanding what their pro-
gram does and reasoning in terms of the relevant concur-
rency model. Another possible problem is that the mod-
els of concurrency used in textbooks such as the one by
Ben-Ari [4] used in the course do not match the concur-
rency model of e.g. Java [10] in all the relevant aspects.
For example, Java allows compilers and multiprocessor ar-
chitectures to reorder operations within a thread as long
as all the operations within this thread produce the same
result. This means that other threads may read combin-
ations of values of variables that are impossible in text-
book concurrency models. To address this, I suggest a
greater emphasis in teaching concurrent programming on
real-world concurrency models than the aforementioned
textbook models. In order to understand how their pro-
grams fail, students should be shown how their programs
really behave so that they can realise that their under-
standing of concurrency is incomplete and correct it.
I suggest that what students need to effectively under-

stand what their concurrent programs do is a tool to gen-
erate execution history visualisations automatically from
a running program that are easy to understand and nav-
igate and provide the information needed by the student
in an easily understandable form. The large amount of
nondeterministically manifesting defects in students’ pro-
grams demonstrates a clear need for debugging tools that
do not rely on repeated execution and stepping as is the
traditional approach. Instead, the information needed for
debugging should be captured for post-mortem examina-
tion from a failing execution when it occurs.
Giving students tools to study memory allocation would

help them understand how their programs use (or misuse)
memory. In its most basic form, this could involve using a
profiler to get information on the maximum memory use of
their program. More detailed visualisations, such as charts
that show memory use over time categorised by where
the memory is allocated, can be used to help students
understand memory use in more detail. Other resource
usage issues, such as use of CPU time or network or disk
capacity, can be addressed using similar visualisations.

5.2 Verification
Students have a wide range of approaches to testing.

Some students used completely unplanned, cursory, test-
ing. Some tried to ‘break’ the system, while others covered
a variety of different cases. Moreover, some students found
they cannot test their program adequately by themselves

and need help from another person or tool, that testing
in itself is not sufficient or that you have to prove your
program correct by hand. [20, Table 4]

The students’ verification approaches could be improved
by providing testing tools to generate scenarios that are
hard to discover using normal testing procedures and more
explicit and detailed guidance on how to apply different
verification techniques in practice. The assignment itself
could be changed to encourage students to learn and ap-
ply different verification techniques by explicitly requiring
models, as done by Brabrand [5], or by requiring students
to create suitable tests, e.g. using test-driven development.

Adapting programs to a model that can be checked us-
ing a model checker is often hard and error-prone work.
This makes this approach especially impractical for stu-
dents to use in an assignment unless the modelling of
their solution is in itself a goal of the assignment as in
Brabrand’s course above or the assignment is carefully de-
signed to facilitate efficient model checking.

An alternative approach to finding concurrency bugs is
to increase the chance of interleavings that lead to failure.
Stress testing is a well-known approach, and its usefulness
can be further improved by making sure interleavings oc-
cur often and in many places. One straightforward and
realistic approach is to distribute the program’s threads
over multiple processors. Another way to do this is to
automatically and randomly change the thread schedul-
ing to make concurrency failures more likely to occur (e.g.
[27]). This is the approach used by the automated testing
system of our concurrent programming course.

5.3 Communicating Goals
Students may have a different understanding of what

they are trying to achieve than their teachers. Many of
the students in this study wrote programs that were miss-
ing required functionality or implemented this functional-
ity in ways that conflicted with requirements or required
additional limitations on the runtime environment. One
reason we found for this was that students had different
aims in their assignment, seeing it primarily as something
they have to do to get a grade or as an ideal problem in an
ideal context in which simplifying assumptions apply [20,
Table 1]. The students also considered different potential
sources of problems: the hypothetical user of the program
(even when the assignment was specified in terms of the
input and output of methods, not user requirements), un-
derlying systems that could fail, especially network con-
nections in a distributed system, and the programmer (the
student) as a error-prone human [20, Table 2].

These purposes of the programming task and sources
of failure of the students suggest that many of the er-
rors made by students are misunderstandings of what their
program is supposed to do and what situations it is expec-
ted to cope with rather than actual misunderstandings of
concurrent programming itself. It is hard for a student to
discover such problems by himself if all he has to go on is
a specification in natural language that is open for several
different forms of misinterpretation.

In a course that, like our Concurrent Programming course,
has as its goal to teach students software implementation
techniques with an emphasis on reliability and correctness,
it is desirable to have programming assignments with clear
and specific goals. One reason is to guide the students
into applying the techniques that they are expected in the
course to learn to apply. Another reason is that it is hard
to say how correct a program is if it is not clear what it
is supposed to do. Hence, requirements should be self-
contained in the sense that they should be unambiguous

and not require specific knowledge of a (hypothetical) us-
age context or users. The teachers and students can then
focus on issues more relevant to the learning goals of the
course, such as correctness and efficiency. Finally, if the
requirements are specific enough to be expressed as test
cases or some other form that can be checked automatic-
ally, it is much easier to use automation to assist in assess-
ment and in helping students determine whether they are
solving the right problem and whether they are solving
it correctly. All this suggests that teachers should, when
designing programming assignments for implementation-
oriented courses, make assignment goals more explicit and
concrete. Naturally, in courses that are intended to teach
students to determine user requirements or design systems
to meet user requirements, this approach is not applicable;
there is a clear need for students to be able to cope with
vague or unknown requirements.
One important aspect is that the goals should specify

what the student should achieve rather than how, allowing
students to find their own solutions to problems. The
student should be able to see his program clearly fail to
work correctly rather than be told afterwards that he did
something the wrong way or failed to take a usage scenario
into account.
Two different types of measures have been taken on our

Concurrent Programming course to address these issues.
One was to change the environments in which several of
the assignments were done to make limitations more con-
crete, such as actually making the Trains and Tuple space
assignments function as distributed systems (in the form
of separate processes) rather than as threads within one
virtual machine. The other major change was made after
several students each year requested that they be given ac-
cess to the package of tests for the assignments used by the
course staff to support assessment. Giving the students a
test package that clearly states whether their solution ful-
fils the specification’s demands appears to have decreased
the amount of errors even in assignments where students
had easy acccess to tests, such as Trains. Naturally, giv-
ing students pre-written tests can easily eliminate their
motivation for designing their own test cases. Introducing
a test package is similar to introducing automatic assess-
ment and allowing students to resubmit each assignment
many times. Even when unlimited access to automatic as-
sessment has been given, it seem that only a small minor-
ity of students make use of repeated reassessment rather
than trying to correct their mistakes independently [2].

6. CONCLUSIONS
The analysis of defects found in students’ concurrent

programs described in this paper shows that students of-
ten have difficulties understanding requirements and tak-
ing them into account and in noticing defects that lead to
nondeterministic failures. It seems that both issues can be
addressed by providing students with test packages that
show them how their programs fails to meet requirements.
Nondeterministic execution is also difficult for students
and debugging tools based on capturing and visualising
execution histories can help address this.

7. ACKNOWLEDGEMENTS
I’d like to thank the teaching assistants who did much

of the hard work of finding the students’ bugs: Teemu
Kiviniemi, Kari Kähkönen, Sampo Niskanen, Pranav Sharma,
Yang Lu, Ari Sundholm and Pasi Lahti. I’d also like to
thank the people who’ve given me feedback on this work,
in particular Lauri Malmi and the reviewers.

References
[1] K. Ala-Mutka. A survey of automated assessment

approaches for programming assignments. Computer
Science Education, 15(2):83–102, 2005.

[2] K. Ala-Mutka and H.-M. Järvinen. Assessment pro-
cess for programming assignments. Advanced Learn-
ing Technologies, 2004. Proceedings. IEEE Interna-
tional Conference on, pages 181–185, 30 Aug.-1 Sept.
2004. doi: 10.1109/ICALT.2004.1357399.

[3] B. Beizer. Software Testing Techniques. International
Thomson Computer Press, 2 edition, 1990. ISBN
1850328803.

[4] M. Ben-Ari. Principles of Concurrent and Distrib-
uted Programming. Pearson Education, second edi-
tion, 2006.

[5] C. Brabrand. Constructive alignment for teaching
model-based design for concurrency. In Proc. 2nd
Workshop on Teaching Concurrency (TeaConc ’07),
Siedlce, Poland, June 2007.

[6] I. Burnstein. Practical Software Testing. Springer,
2003.

[7] J. Callaway. Visualization of threads in a running
Java program. Master’s thesis, University of Califor-
nia, June 2002.

[8] M. Eisenstadt. My hairiest bug war stories. Com-
munications of the ACM, 40(4):30–37, 1997. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/248448.
248456.

[9] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, Jan. 1985.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java Language Specification. Sun Microsystems, third
edition, 2005.

[11] L. Grandell, M. Peltomäki, and T. Salakoski. High
school programming — a beyond-syntax analysis of
novice programmers’ difficulties. In Proceedings of the
Koli Calling 2005 Conference on Computer Science
Education, pages 17–24, 2005.

[12] C. Herzog. From elementary knowledge schemes to-
wards heuristic expertise — designing an ITS in the
field of parallel programming. In C. Frasson, G. Gau-
thier, and G. I. McCalla, editors, Proceedings of 2nd
International Conference on Intelligent Tutoring Sys-
tems, volume 608 of LNCS, pages 183–190. Springer,
June 1992.

[13] C. Higgins, P. Symeonidis, and A. Tsintsifas. The
marking system for CourseMaster. In Proceedings of
the 7th annual conference on Innovation and Tech-
nology in Computer Science Education, pages 46–
50. ACM Press, 2002. ISBN 1-58113-499-1. doi:
http://doi.acm.org/10.1145/544414.544431.

[14] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko.
A meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing, 13(3):
259–290, June 2002.

[15] IEEE. IEEE standard classification for software an-
omalies. Technical Report Std 1044-1993, IEEE,
1994.

[16] A. J. Ko and B. A. Myers. A framework and meth-
odology for studying the causes of software errors in
programming systems. Journal of Visual Languages
& Computing, 16(1-2):41–84, 2005.

[17] J. Lönnberg. Student errors in concurrent program-
ming assignments. In A. Berglund and M. Wigg-
berg, editors, Proceedings of the 6th Baltic Sea Con-
ference on Computing Education Research, Koli Call-
ing 2006, pages 145–146, Uppsala, Sweden, 2007.
Uppsala University.

[18] J. Lönnberg. Understanding students’ errors in con-
current programming. Licentiate’s thesis, Helsinki
University of Technology, 2009.

[19] J. Lönnberg and A. Berglund. Students’ understand-
ings of concurrent programming. In R. Lister and
Simon, editors, Proceedings of the Seventh Baltic Sea
Conference on Computing Education Research (Koli
Calling 2007), volume 88 of Conferences in Research
and Practice in Information Technology, pages 77–86.
Australian Computer Society, 2008.

[20] J. Lönnberg, A. Berglund, and L. Malmi. How stu-
dents develop concurrent programs. In M. Hamilton
and T. Clear, editors, Proceedings of the Elev-
enth Australasian Computing Education Conference
(ACE2009), volume 95 of Conferences in Research
and Practice in Information Technology, pages 129–
138. Australian Computer Society, 2009.

[21] J. Lönnberg, L. Malmi, and A. Berglund. Helping
students debug concurrent programs. In A. Pears
and L. Malmi, editors, Proceedings of the Eighth Koli
Calling International Conference on Computing Edu-
cation Research (Koli Calling 2008), pages 76–79.
Uppsala University, 2009.

[22] M. Luck and M. Joy. A secure on-line submission
system. Software - Practice and Experience, 29(8):
721–740, 1999.

[23] R. C. Metzger. Debugging by Thinking. Elsevier,
2004.

[24] D. C. Schmidt. Reactor: An object behavioral pat-
tern for concurrent event demultiplexing and dis-
patching. In J. O. Coplien and D. C. Schmidt, edit-
ors, Pattern Languages of Program Design. Addison-
Wesley, 1995.

[25] O. Seppälä, L. Malmi, and A. Korhonen. Observa-
tions on student errors in algorithm simulation ex-
ercises. In Proceedings of the 5th Annual Finnish /
Baltic Sea Conference on Computer Science Educa-
tion, pages 81–86. University of Joensuu, November
2005.

[26] J. C. Spohrer and E. Soloway. Novice mistakes: are
the folk wisdoms correct? Communications of the
ACM, 29(7):624–632, 1986. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/6138.6145.

[27] S. D. Stoller. Testing concurrent Java programs us-
ing randomized scheduling. In Proceedings of Second
Workshop on Runtime Verification (RV), volume
70(4) of Electronic Notes in Theoretical Computer
Science. Elsevier, July 2002.

[28] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. Automated Soft-
ware Engineering Journal, 10(2):203–232, Apr. 2003.

