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ABSTRACT
In this article, we present a system intended to help students
understand and debug concurrent Java programs. The sys-
tem instruments Java classes to produce execution traces.
These traces can then be used to construct a dynamic de-
pendence graph showing the interactions between the dif-
ferent operations performed in the program. These interac-
tions are used as the basis for an interactive visualisation
that can be used to explore the execution of a program and
trace incorrect program behaviour back from a symptom to
the execution of incorrect code.

Categories and Subject Descriptors
D.1.3 [Programming techniques]: Concurrent Program-
ming; D.2.5 [Software engineering]: Testing and debug-
ging—Debugging aids; K.3.2 [Computers and education]:
Computer and Information Science Education—Computer
science education

General Terms
Design, Performance

Keywords
Dynamic dependence analysis, execution replay, program
visualisation, Atropos

1. INTRODUCTION
Finding and correcting defects in concurrent programs

is well known to be difficult. Approaches that involve re-
executing a program are problematic due to nondetermin-
ism, and reasoning about what happens in a concurrent pro-
gram also becomes much harder. This suggests a need for
methods and software that would make it easier to find (and
then eliminate) these defects. Our long-term goal is to im-
prove the correctness of concurrent software by developing
better tools and teaching methods.
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Most of the previous work on debugging has concentrated
on studying the current state of the program and examin-
ing the execution of individual processes. Concurrent pro-
grams, however, are likely to have defects that involve un-
expected interactions between concurrent processes; these
interactions make it hard to debug using these methods.
A promising solution to this—which complements existing
verification and debugging techniques—involves visualisa-
tions designed to aid the programmer in understanding the
interactions between the operations performed in a program.
Students are, for several reasons, both an obvious target

audience and group of subjects for research. One is that
they do not yet have ingrained ways of working, so it is
easier to introduce new methods and tools to them. Second,
they have more difficulties due to incomplete knowledge and
lack of experience. Third, they have most of their career
ahead of them, so they will presumably have more chances
to benefit from new methods and tools. Finally, university
researchers have easy access to students and are familiar
with the courses taught and their subject matter.

1.1 Background
The work described in this paper is part of a larger pro-

ject to help students become more effective at working with
concurrent programs. This involves both identifying diffi-
culties students have with understanding concurrency [18]
and producing correct concurrent programs [17, 20], as well
as finding ways to assist them [21]. This project is centred
around the Concurrent Programming course1 at Aalto Uni-
versity. The goal of this course is to teach students the
principles of concurrent programming:

• Synchronisation and communication mechanisms

• Concurrent and distributed algorithms

• Concurrent and distributed systems

To enable students to apply this knowledge in practice and
assess their skill, the course includes a set of programming
assignments and exercises in Java. Students can either work
alone or work on one solution as a pair.

1.2 Research Questions
Our long-term research questions are:

1. Does visualisation of incorrect program executions help
students find the underlying defects in their concurrent
programs?

1Course web site at: https://noppa.tkk.fi/noppa/
kurssi/t-106.5600/etusivu



2. Does visualisation help them learn from their errors?

Effectively answering these questions requires studying
the effects of students using such visualisation. Clearly, the
quality of the visualisation will significantly affect the res-
ults, so we first sought to answer two other questions:

3. What is a“good”visualisation of a incorrect executions
of concurrent programs, where by “good” we mean a
visualisation that can enable students to find and to
understand the underlying defects in their programs?

4. How can such a visualisation be created algorithmic-
ally from an execution of a program?

As discussed below, we decided to approach research ques-
tion 3 using a visualisation based on exploring a dynamic
dependence graph. Hence, research question 4, the focus
of this paper, became: “How do we produce a dynamic de-
pendence graph representation of the execution of a Java
program?” The resulting visualisation tool, called Atropos2,
is presented in this paper. Research questions 1, 2 and 3
will be addressed in more detail in other papers.

Section 2 presents relevant related work, Section 3 de-
scribes our answer to RQ 4 and Section 4 evaluates whether
the design in Section 3 is a good answer to RQ 4.

2. RELATED WORK
Many existing fields of research are relevant to this re-

search. The most relevant aspects are summarised in this
section. As our setting is heavily Java-dominated, the fol-
lowing discussion focuses on methods relevant to examining
Java programs.

The problem of generating effective visualisations of fail-
ing executions of a program can be divided into three sub-
tasks: finding a failing execution, collecting the information
needed to visualise it and visualising an execution. These
subtasks can mostly be solved independently, and doing so
makes it easier to combine solutions in different ways to ad-
dress the requirements of different situations.

The third subtask involves issues both of finding a good
visualisation for our purposes (RQ 3) and generating the
visualisation (RQ 4). The other two subtasks are necessary
to create the visualisation; solving them is also part of an-
swering RQ 4.

2.1 Finding Failing Executions
There are two main approaches to finding ways a program

can fail: dynamic (in which programs are executed and the
results analysed) and static (in which the analysis is done
on program code without executing it). Here, we focus on
dynamic methods, as most work with a focus on concurrency
belongs to this category and the focus of static methods is
typically on finding patterns in the code that correspond to
common mistakes [27].

Model checkers find execution sequences that violate spe-
cified properties in software by systematically generating all
possible executions of a program, especially all the different
ways concurrent operations can interleave. Unfortunately,
since the entire execution environment must be contained
within the model that is checked, verification must typic-
ally be applied to a simplified model of the program. Java

2http://www.cse.hut.fi/en/research/LeTech/Atropos/

PathFinder [30] attempts to avoid this problem by using
Java as its modelling language. However, not all of the Java
standard library nor all behaviour of the Java virtual ma-
chine is implemented. Model checkers are also hard to apply
when the state space of a program is large.
An alternative approach to finding concurrency bugs is to

increase the chance of interleavings that lead to failure. One
straightforward and realistic way to do this is to distribute
the program’s threads over multiple processors. Stress test-
ing can also be used. Since no changes to the execution
environment are required, stress testing can be applied to
a wide range of programs. Another way to further improve
the effectiveness of testing is to introduce random and fre-
quent thread switches, which in the case of Java programs
can be done by adding calls to switch threads to the Java
bytecode [29].
The execution of a program can also be analysed at run-

time to find potential race conditions and deadlocks and spe-
cification violations. For example, Java PathExplorer [12]
(JPaX) instruments Java bytecode to output information
on execution that can be used to detect data races (in which
two writes or a read and a write to the same variable are
made simultaneously), deadlocks and violations of require-
ments specified in temporal logic. DBRover [7] can similarly
check requirements expressed in Metric Temporal Logic.
Brat et al. [2] present a detailed experimental comparison

of different approaches to verification and validation: test-
ing, runtime analysis (using JPaX and DBRover), model
checking (using JPF) and static analysis. Four pairs of de-
velopers (one for each approach) each attempted to find as
many defects as possible in the control code for a Mars rover
(seeded with additional defects found in earlier versions of
the code) within the allotted time using one of the aforemen-
tioned approaches. Runtime analysis and model checking
produced similar results in terms of the number of bugs that
were found, but runtime analysis resulted in fewer spurious
bugs. Model checking also required more initial work to
generate suitable abstractions of the code.

2.2 Collecting Executions
Traditional techniques for debugging rely heavily on re-

peated execution, stepping and breakpoints. This is prob-
lematic when a program does not behave deterministically.
Hence, collecting an entire program execution sequence for
later examination can facilitate debugging a concurrent pro-
gram. The typical approach to using this information is to
replay the execution of the program for examination in an-
other debugging tool. Two important facets of the quality
of replay are accuracy (how closely the replay matches the
original) and precision (how much the execution is changed
by collecting information on it) [4].
One approach to collecting and replaying execution in-

formation is to replace or change the underlying execution
engine. Since model checkers maintain an explicit model of
the executed operations, it is easy to collect information on a
program execution for further study; typically, model check-
ers can output a list of the operations that were executed or
the state transitions. For Java programs (within the limits
of what JPF can check), JPF provides a way to get detailed
descriptions of their executions.
Instead of completely replacing the JVM, modifying it

to collect the information needed to reconstruct an execu-
tion can suffice. For example, DejaVu changes the Jalapeño



JVM (which runs on a single processor) to keep track of
nondeterministic events (e.g. wall clock time) and thread
switches. DejaVu also allows the execution of a program
thus collected to be replayed for examination in, for example,
a traditional debugger. [4]

jreplay [28] similarly uses a modified JVM to collect in-
formation on when switches between threads are made, for
replay using a program instrumented to enforce a specifed
execution order on any JVM.

An alternative approach is to execute the program using a
normal Java Virtual Machine (JVM) and collect information
on the program’s execution from there through instrumenta-
tion: the addition of code to collect information, as done by
e.g. JaRec [10]. Like jreplay, JaRec can then enforce the be-
haviour required for replay through an instrumented version
of the program.

RetroVue [3] and ODB (Omniscient Debugger) [15] use in-
strumentation of Java bytecode to collect information about
all operations performed by an executing Java program. In-
stead of replaying the execution, these tools enable the pro-
grammer to examine the execution history through a graph-
ical debugger with the capability to show execution histories
as a list of operations and to step through different states of
the execution that are shown in a manner similar to that of
traditional graphical debuggers. A similar approach is used
by MVT [19] to trace the execution of Java programs, al-
though it does not provide a list view of the execution like
RetroVue and ODB.

2.3 Visualising Concurrent Execution
Identifying the aspects of debugging that require the most

effort from programmers is important for the development
of useful debugging tools. Both von Mayrhauser and Vans
[31] and Eisenstadt [8] have shown that programmers spend
a lot of time tracing the data and control flow of programs
in order to find causes for bugs. They also show that pro-
grammers often require information on the causes of an event
and connections between parts of a program or its execution
when looking for hard-to-find defects. Eisenstadt in partic-
ular emphasises that complex cause-effect relations that can
be computed (e.g. data flow links) should be computed by
the debugger rather than forcing the programmer to work
them out. He also points out that the information needed
is often at a higher level of abstraction and granularity than
the values of individual variables.

A few debuggers and program visualisation systems have
been designed with concurrency in mind. Most of them (e.g.
JAVAVIS [25] and JAN [16]) use sequence diagrams or mes-
sage sequence charts to display method calls; JaVis [23]
adds collaboration diagrams to show interactions between
objects. These diagrams have a level of detail suitable for
debugging, but become cumbersome for complex executions.

Finding a defect from a model checker counterexample is
similar to debugging in that the program is known to behave
incorrectly and the programmer seeks to find the underlying
defect. Bogor [26], for example, enables the user to examine
the counterexample using visualisations similar to those of
DDD [34] and RetroVue). Spin [13] can produce message
sequence charts that show interactions between processes.

2.3.1 Slicing and Dependence Graphs
When looking for reasons for the incorrect behaviour of a

program, many programmers look at the (incorrect) value of

a variable and try to find a reason for this value by tracing
the execution of the program backwards. In essence, they
try to concentrate on the part of the program that could
have affected the value of the variable. Parts of programs
that could have affected the value of a specified variable at a
specified point in the execution of a program are called slices
and the process of calculating slices is called slicing [32, 33].
In order to understand slicing, let us first consider sli-

cing of a sequential program. The original form of slicing,
static slicing, is done through static analysis of control and
data flow in a program. Each statement (such as assign-
ment, read, write or conditional branch statements3) uses
and defines a set of variables (including all containers for
data values that are passed between statements) and has a
set of successor statements, forming a flow graph.
A statement has a control dependency on another state-

ment if whether it executes or not depends on the other.
More formally, i has a control dependency on j if j has suc-
cessors k and l and all paths to the end of the program from
k go through i while at least one path from l to the end of
the program does not contain i.
A statement i has a data dependency on statement j �= i if

j defines a variable that i uses and a path in the flow graph
from j to i exists in which the variable is not defined by any
other statement on the path than j and, possibly, i.
Control and data dependencies define the edges of a pro-

gram dependence graph. Given a statement i and a variable
v in the program, a static slice with respect to i and v is
the set of statements reachable from the statements that
define a value of v that can be used in i through the pro-
gram dependence graph with its edges reversed. It contains
all the statements that can affect the value of the variable
at the specified point; essentially, it is a (hopefully) smaller
program that always gives the same value of v at i. [1, 32]

Slices can also be calculated using dynamic analysis of a
specific execution history of a program, in which case the
slice (a dynamic slice) contains all the operations (execu-
tions of statements) in the execution history that could have
affected the value of the variable at the end of the execution
history. In other words, the static slice is based on any pos-
sible execution history, while the dynamic slice is based on
a specific execution history. [1, 32]
A dynamic slice is based on a dynamic dependence graph

(DDG). A DDG is a directed graph whose vertices are the
statements that have been executed (one vertex for every
time a statement is executed) and whose edges are—as in a
static dependence graph—the data and control dependencies
between these operations. Essentially, the DDG contains
every way in which one operation is affected by a previous
one (data values, control flow). Specifically, a data depend-
ency exists from j to i if a variable used by i was defined
by j and not redefined until it was used by i. A control
dependency exists from j to i if the statements sj and si
have a control dependency and j is the last execution of
sj before i. A dynamic slice is the set of executed state-
ments that are reachable (traversing edges backwards) from
a specific statement; intuitively, the part of the program ex-
ecution that affected the specified statement (e.g. the value
obtained when a variable is read) [1, 35].

3There is some leeway in how far statements must be broken
down for this analysis and some languages may use the term
‘statement’ differently.
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Figure 1: Information flow between parts of Atropos

For our purposes it is more useful to see a dynamic de-
pendence graph as a series of explanations for why each op-
eration in a program was performed and where the data it
used came from. A control dependency shows which earlier
decision ensured an operation was executed, while the data
dependencies of a statement show which statements defined
the variables that the statement used.

DDGs can be generalised to concurrent programs by add-
ing synchronisation and communication dependencies. The
communication dependencies represent data values that are
transferred between threads, similarly to data dependencies;
in Java, this occurs through shared memory. Synchronisa-
tion dependencies occur when a thread cannot proceed until
an action is taken by another thread; in Java, a wait de-
pends on the notify that woke it. [24, 36]

2.3.2 Visualisation and DDGs
DDGs can be used for visualisations that aid in finding

and understanding cause-effect chains and answering quer-
ies about the reasons for events and states in a program. The
Whyline visualisation has been found useful in some types
of debugging situations in educational visual programming
environments. The Whyline uses a DDG-based visualisa-
tion (together with the other elements of the Alice IDE) to
answer queries such as “Why was this statement (not) ex-
ecuted?” or “Why does this variable have this value?”; this
is called interrogative debugging. The answer is (part of) a
slice of a dynamic dependence graph (DDG). In many cases,
this DDG enables the programmer to find the reason for in-
correct behaviour of a program very quickly by tracing the
cause-effect chain from the bug to the symptom backwards
along the DDG. The DDG can further be used to quickly
navigate to sections of the program and its execution relev-
ant to the bug. [14]

3. DESIGN
A replay system typically generates an execution trace

file that can be replayed at a later date. This is particularly
useful in our context: a teaching assistant can send a student
an execution trace file that demonstrates defects that the
assistant found in the student’s code, allowing the student
to examine the failing execution in more detail.

The execution traces are collected through bytecode in-
strumentation of class files. For simplicity, compatibility
and ease of debugging the instrumenter, this is done by cre-
ating instrumented copies of the class files before execution.

The trace files are then used to direct the replay and de-
pendence analysis of program; the result of this is a dynamic
dependence graph of the execution. This graph can then be
explored through the visualisation.

This process is summarised in Figure 1.

3.1 Generating Execution Traces
In this section we describe the process of creating an ex-

ecution trace from a user’s program. This includes the pro-

cess of instrumenting the user’s program to generate an ex-
ecution trace and running the instrumented program.

3.1.1 Applicability of Existing Software
In order to decide what information to collect for an ex-

ecution trace and how to do it, one must determine what
sort of program behaviour one is interested in. The systems
described in Subsection 2.2 have different advantages and
disadvantages in our situation.
Collecting the information needed for program execution

visualisation from a model checker is mostly a matter of
parsing its output. Collecting the execution trace does not
affect how the program is executed, either. In a context
where model checkers can be effectively applied, it would be
easier to use a model checker to collect executions for visu-
alisation. However, there are several reasons why using a
model checker is problematic in this context. One is that
model checkers, due to the sheer size of the state space of
many programs, cannot be directly applied to many pro-
grams; in many cases, they will simply run out of memory
without producing any useful results. In our preliminary
attempts to use JPF to check students’ programs (in the
hope of being able to exhaustively check all interleavings,
given a certain test input), we failed to get any meaningful
results; JPF invariably ran out of memory even when test
sizes were cut down to a minimum. For this reason, the
model checking approach was abandoned at an early stage.
For model checking to be effective in this context, students
would have to design their programs with model checking
in mind; regardless of the merits of this approach, we did
not want to make such extensive changes in how we teach
concurrent programming.
As we are interested in understanding and explaining con-

current programs that behave in unexpected ways, unexpec-
ted interactions between threads are of great importance. In
particular, we want to be able to trace and visualise data
races in order to see whether they are benign (i.e. they do
not affect the correctness of the program) or not. We also
want to be able to examine and explain the consequences
of data races. JPF does not appear to support data race
simulation; it merely detects situations in which they have
occurred.
The replay and runtime analysis-based programs proved

problematic due to their modifications to the JVM, instru-
mentation or their assumptions on the programs they collect
information on. JaRec [10] cannot handle data races. De-
jaVu [4] only runs on one processor and does not seem to
handle data races, either. jreplay [28] is based on thread
schedules and assumes that it is running on a single pro-
cessor; again, data races are assumed not to occur. Both
of these issues limit the possible executions in such a way
that many educationally relevant types of failure can not
be examined. The instrumentation used by ODB [15] effect-
ively prevents data races through the synchronisation it uses.
RetroVue was ruled out because its source code cannot be
accessed. JPaX does not appear to collect all the data val-
ues needed for visualisation, nor does the source code seem
to be available.
Another problem with most of the existing replay software

is that it is geared toward reproducing execution to allow it
to be examined in a traditional, state-oriented, debugger.
For example, the Java Platform Debugger Architecture is
oriented toward examining the current state of a program



and detecting events such as method calls or reaching a spe-
cific line for breakpoint purposes, which is inadequate for
more complex visualisation of, e.g. data flow or inter-thread
interaction.

Although ODB would be appropriate as the basis for im-
plementing the tool we need, we chose to extend our previ-
ous tool MVT. In addition to the advantage of familiarity,
it has two additional advantages: (a) its instrumenter had
already been adapted to generate additional interleavings in
concurrent programs for use in the test packages provided
to students in our course; (b) it was developed with the
intention of extending it to generate DDGs.

3.1.2 Collecting Execution Information
MVT uses BCEL [5] to instrument Java programs for ex-

ecution history collection; its instrumentation was modified
to produce an execution trace of a Java program, consist-
ing of a partially ordered sequence of executed JVM opera-
tions and any data manipulated by these other than operand
stack values and local variables (i.e. any data that cannot
be easily reconstructed by executing simple and determin-
istic operations). This distinction between deterministic and
nondeterministic operations is similar to that of DejaVu, but
reading the value of a variable that could have been written
to by another thread is treated as a nondeterministic oper-
ation, allowing the execution of the program to be correctly
reconstructed even in the case of data races.

The test cases are executed using the instrumented code.
Execution information is collected in thread-local lists of op-
erations, each identifying which operation was executed in
terms of which method it belongs to and its address in the
method’s bytecode as well as any non-local values read or
written, objects referenced and operations known to have
happened-before this operation. Operations that only in-
volve a thread’s stack are not instrumented, since the lim-
ited set of data accessed by these operations allows them to
be easily and reliabily reconstructed by the visualiser.

When a thread’s list of operations exceeds the size limit
or the thread or JVM terminates, the thread’s list of opera-
tions is dumped to disk. At this point, object references are
resolved to unique id numbers using a global table of weak
references, allowing objects that are no longer in use to be
garbage collected. This table is protected by a synchron-

ized lock; hence, for reasons described in Subsection 3.1.4,
it is desirable to minimise accesses to it while a thread is still
running. After the JVM terminates, the lists of operations
are compressed in a ZIP file.

The instrumentation is implemented as an additional fea-
ture of the MVT-derived instrumenter for the test packages
for the programming assignments in our Concurrent Pro-
gramming course. This allows the assignment-specific test
packages to be easily used together with Atropos and also
makes it easier to ensure this instrumentation does not con-
flict with the other instrumentation performed by the system
to change how threads interleave.

3.1.3 Partial Ordering and the Happens-before Re-
lation

There are several reasons why the trace is partially or-
dered. On a multiprocessor system, it is obvious that oper-
ations may be performed simultaneously. Hence, it may be
impossible to define a total order for a trace. Many opera-
tions cannot interact with other threads (for example, any

code that touches only local variables); the order of such
operations is irrelevant. It also seems useful to get students
used to the idea of program execution not being totally or-
dered.
The execution trace will be generated using bytecode in-

strumentation of the user’s code and, optionally, some unit
test code that calls the user’s code. The execution trace
is primarily intended to explain the user’s code, so it must
contain the operations performed by the user’s code. To
help the user see how the calls made to the user’s code fit
together, the test case code used by the test framework must
also be included in the execution trace.
The memory model of Java 1.5 [11, §17.4] describes the

circumstances under which inter-thread actions performed
by operations (such as reading or writing non-local vari-
ables, or acquiring and releasing locks) are guaranteed to
be visible to each other. All synchronisation actions (ac-
quiring and releasing locks, starting and joining threads,
reading/writing volatile variables) are totally ordered in
each execution. However, many actions that can be affected
by other threads (such as reading non-volatile variables)
do not have a total order. The happens-before relationship
is a partial order between inter-thread actions. If an action
happens-before another, the effects of the first are visible to
the second. Naturally, operations in a thread happen-before
each other in the execution order of the thread. Synchronisa-
tion between threads induces happens-before relationships
between threads; most importantly, releasing a lock in one
thread happens-before it is next acquired. Similarly, start-
ing a thread happens-before its first operation.
Even if only one thread is running at some time, it is

not practical to determine a total order for all operations,
especially when using bytecode instrumentation.

3.1.4 Avoiding Precision Loss from Instrumentation
It is desirable for the instrumentation to not induce addi-

tional happens-before relationships between existing actions,
as this could eliminate data races that we wish to examine.
To do this, the instrumentation must use thread-local data
structures to collect information on thread-local operations.
Obviously, shared data structures are necessary to collect in-
formation on inter-thread interaction. If a happens-before b,
the instrumentation can record this by storing an identifier
for a in a variable associated with the mechanism used to
induce the happens-before relationship with b. The instru-
mentation can then, after b is executed, safely read this iden-
tifier, thanks to the happens-before relationship, at which
point the instrumentation for b has identified the happens-
before relationship.
For example, for each lock, the identity of its last release

operation is maintained. Before the lock is released, this is
updated. The updated value can then be read safely after
the lock has been acquired to determine the happens-before
relationship induced by the lock. In practice, this identi-
fier takes the form of additional fields to track which thread
held an object’s lock last and when (in terms of its number
of operations executed) it released the lock. Before a lock
is released, the fields are updated, and after the lock is ac-
quired, they are read to determine the previous owner of the
lock and which unlock operation happened-before the lock
operation.
While it would seem to be a good idea to add these fields

to java.lang.Object, this does not work in practice, since



most JVMs (including Sun’s HotSpot VM) do not allow ad-
ditional fields to be added to java.lang.Object and our at-
tempts to do so led to crashes, similarly to those described
by Georges et al. [10]. Generally speaking, attempting to
instrument classes in java.lang is problematic, as these
classes are often built in to the JVM or the JVM itself makes
assumptions about their contents. Hence, these additional
fields are added to the classes that are instrumented, as in
JaRec. Similarly, each volatile field is replaced with a
volatile field referencing an object containing the value
of the original field and additional fields to identify which
operation wrote the value; this allows the happens-before
relationships to remain the same between the thread while
ensuring that both the value and the information collected
by the instrumentation is retained.

This approach assumes that volatile fields in the instru-
mented code are only accessed from instrumented code; as
long as all the users’ code is instrumented this should be true
in all relevant scenarios (the standard library code has no
business changing fields in user code it has no knowledge of).
Similarly, it assumes that non-instrumented code does not
lock instances of instrumented classes. In practice, as long
as the Reflection API is not used to modify variable values,
this should not be a problem. However, it is not unreason-
able for a user to create Objects to use as locks. Luckily, in
most cases (again, the Reflection API is the most obvious
exception), Java code cannot tell that an object of a class X
has been replaced by another object that is an instanceof

X with the same state except for some additional fields.
This means that all object construction done by the users’
code that is of non-final non-instrumented classes can be
replaced with an instance of a subclass of the original in-
tended class with the fields required for lock use tracking
mentioned above added.
wait, notify and notifyAll are handled much like in

JaRec: wait involves releasing the lock, waiting and reac-
quiring it, and is instrumented accordingly. As Georges et al.
[10] note, notify and notifyAll do nothing that needs to
be recorded to replay the program execution.

3.2 Replay and Dependence Analysis
Rather than performing straightforward replay of a con-

current execution, Atropos replays the program in its own
interpreter, which constructs a dynamic dependence graph
of the execution. Any thread is allowed to execute for which
everything that should have happened-before the current op-
eration has already been executed; in other words, every-
thing is executed in an order consistent with the happens-
before order. In the absence of data races, this ensures that
whenever a variable is read, it has an unambiguous value
and the last write that was performed is the value that was
read.
The replay in happens-before order allows a vector time-

stamp for each operation to be created as described by Mat-
tern [22], with happens-before relationships forming the mes-
sages of Mattern’s vector clock algorithm.
However, since we allow data races to occur, many differ-

ent values for a variable may be available for reading at a
time. When a read is performed, the corresponding write
operation must be found from the set of writes that it is al-
lowed to observe [11, §17.4]. A write w can not be observed
by a read r if r happened-before w (in which case w would
not have been re-executed yet) or if there is an intervening

write w′ to the same variable such that w happens-before
w′ and w′ happens-before r. In other words, the last write
that happened-before the read and any later write may be
observed. This set of observable writes can easily be determ-
ined by using the vector timestamps described above to find
the last operations in each thread that happened-before the
read.
Re-ordering of operations may cause writes that are later

than reads [11, §17.4.5]; the data dependency must then
be determined at a later time. This does not affect the
replay itself; it merely means a placeholder must be left for
replacement with the correct data dependency after the right
write operation has been performed. In this case, it becomes
necessary to make sure the write does not happen-after the
read, but otherwise the process is the same as above.
Control dependencies are traditionally calculated static-

ally, and in any case, as explained in the following subsec-
tion, they are not relevant to our visualisation.

3.3 Visualisation
The primary visualisation around which this tool is based

is a dynamic dependence graph that explicitly shows how the
results of executed operations depend on other, previously
executed, operations.
The DDG representation consists of executed operations,

represented by vertices, interconnected by their dependen-
cies, shown as edges. The DDG is intended to support back-
ward debugging strategies; in other words, this visualisation
is supposed to help the user find the point where a program
failed by backtracking from a failure to the point where the
program diverged from its expected behaviour.
As the full DDG of a program execution is likely to be

very large, only a small portion that the user has explicitly
requested is shown. Essentially, the visualisation explains
what happened in an operation in terms of previous opera-
tions. Once the user has found an operation that does the
wrong thing despite being executed at the right time and
operating on the right data, he has found code involved in
a defect.
As an example in this section, a modified version of an

example of an incorrect mutual exclusion algorithm for two
threads will be used. The steps to produce Figure 2 from
an execution of the following code will be explained.

1 /∗ http://www.pearsoned.co.uk/HigherEducation/
2 Booksby/Ben−Ari/ ∗/
3 /∗ Second attempt; Modified to exit if critical section
4 counter shows something other than 0 or 1. ∗/
5 class Second {
6 /∗ Number of processes currently in critical section ∗/
7 static volatile int inCS = 0;
8 /∗ Process p wants to enter critical section ∗/
9 static volatile boolean wantp = false;

10 /∗ Process q wants to enter critical section ∗/
11 static volatile boolean wantq = false;
12

13 class P extends Thread {
14 public void run() {
15 while (true) {
16 /∗ Non−critical section ∗/
17 while (wantq)
18 Thread.yield();
19 wantp = true;
20 inCS++;
21 Thread.yield();
22 /∗ Critical section ∗/
23 System.out.println(”Processes in critical section: ”



24 + inCS);
25 if ((inCS > 1) || (inCS < 0)) System.exit(1);
26 inCS−−;
27 wantp = false;
28 }
29 }
30 }
31

32 class Q extends Thread {
33 public void run() {
34 while (true) {
35 /∗ Non−critical section ∗/
36 while (wantp)
37 Thread.yield();
38 wantq = true;
39 inCS++;
40 Thread.yield();
41 /∗ Critical section ∗/
42 System.out.println(”Processes in critical section: ”
43 + inCS);
44 if ((inCS > 1) || (inCS < 0)) System.exit(1);
45 inCS−−;
46 wantq = false;
47 }
48 }
49 }
50

51 Second() {
52 Thread p = new P();
53 Thread q = new Q();
54 p.start();
55 q.start();
56 }
57

58 public static void main(String[] args) {
59 new Second();
60 }
61 }

3.3.1 Starting Points
The visualisation uses the termination of the threads in

the program as starting points. It is assumed that at least
one of these corresponds to a failure. This could be:

• A thread terminating abnormally due to an uncaught
exception;

• A thread detecting incorrect behaviour and aborting
itself or the whole program; unit tests and other asser-
tions usually behave like this;

• A thread being stuck in a deadlock.

By choosing the right thread to examine, the user can work
backwards from the thread’s termination to the fault that
caused it.

Once the user has opened a trace, the list at the top of
the window shows the starting points for the DDG. In the
example, the final lines of code executed in each of the three
threads in the example program, labelled with the thread
they occurred in and the description of the operation (see
Subsection 3.3.3): the main thread constructed a Second

object and terminated, while the other two threads fail to
exclude each other. At least one of these will have termin-
ated on the check of the number of threads in the critical
section:

Last operation in Thread 5:

25: if ((inCS > 1) || (inCS < 0)) System.exit(1);

Since we are expecting the program never to end at this line
and it did, this is clearly a failure and hence a good starting
point for exploring what went wrong.

3.3.2 Names
While local variables and classes have names that are

unique in context, other entities do not have an obvious
name by which they are identified. Objects are referred to
as 〈class〉-〈id〉, where 〈id〉 is a positive integer that makes
the name unique for each object. Fields and methods of
objects and classes are referred to as 〈object/class〉.〈field〉.
3.3.3 Operations
The operations shown are limited to the operations in the

instrumented code (i.e. the user’s program and, if applicable,
the test from the test package). These operations are all
performed by Java bytecode (i.e. there is no native code).
The unit of code usually shown in Atropos as a vertex in

the graph is the execution of a line of code. Each vertex is
shown as a box. The box contains a textual description of
the operation. The information shown in a vertex consists of
the number of the executed line and the line of source code,
if the vertex corresponds to a line of source code. This is
followed by the number of operations executed in the thread
at the time the operation was executed. For example, the
line that ends the execution of our example in the example
trace is:

25: if ((inCS > 1) || (inCS < 0)) System.exit(1);

The user can choose a vertex and request that the pre-
vious line be shown. This enables the user to display the
whole program execution one step at a time, although this
is seldom a convenient way to do so.
Vertices are arranged in chronological order from top to

bottom as a layered graph [6]. Specifically, if one operation
happened before another, it will be above it. Two vertices
being next to each other does not imply they were executed
simultaneously except in the sense that neither is known
to have preceded the other. Vertices are horizontally posi-
tioned by thread (i.e. operations executed by a thread form
a column). Threads are ordered by creation time from left
to right. Above the vertices that belong to the execution of
a method call, the name of the method and the object or
class on which it was called is shown, together with the ar-
guments to the call. Indentation is used to indicate nesting
of method calls; the further to the right within a thread a
vertex is, the deeper nested the call is.

3.3.4 Dependencies
Dependencies between operations are shown as arrows

between vertices:

• Data/communication dependencies: data produced by
one operation and used by another are labelled with
the variable name (where applicable) and the value.

• Control dependencies: The last branching operation,
such as if or while is shown. This is easier to under-
stand and calculate than the traditional definition.

By default, to keep the visible graph manageable, all de-
pendencies of vertices are hidden. To show a dependency,
the user must explicitly request that it be shown. This may
add a vertex to the graph.



Figure 2: A screenshot of Atropos at the end of the exploration of the example trace

To show where a value read by an operation came from,
one can choose the relevant value from the list of data sources
of the vertex. Similarly, to show where a value written by
the operation was used, one can select the value from the
list of data uses of the vertex. There are also corresponding
commands to show all data sources and uses at once. All
of these commands show data dependencies of the specified
operation.

Figure 2 shows how one can go from an operation that
uses inCS to the operation that wrote that value; repeatedly
doing this allows one to find the points where the critical
section was entered and exited, and shows how the value

of inCS changes throughtout the execution. In particular,
this shows that inCS was (somewhat surprisingly) −1 when
the program decided to terminate and shows how this was
caused by inCS being incremented in two threads. This also
shows that P has toggled it between −1 and 0 instead of 0
and 1; furthermore, on the sixth step back, we see that Q has
left its critical section at line 45 and correctly given inCS the
value of 0. The very fact that we have both threads leaving
their critical section without one of them entering in between
show that they both were in the critical section at the same
time; therefore, mutual exclusion is not being maintained.
This also means that inCS still has an unexpected value.



Continuing back two more times shows us where inCS got
its original value of 0. The initial value of inCS was obviously
correct, but there is no sign of the expected increment by P
when it first entered the critical section.

To examine why an operation was executed, one can back-
track to the previous conditional. This can be used to find,
for example, when the decision was made to allow a process
into its critical section. In particular, we want to know how
P and Q got into their critical sections at the same time.
Requesting the previous branch will show where they exited
their busy-wait loops.

Naturally, the reason for both threads unexpectedly en-
tering their respective critical sections can be found by ex-
amining the source of the data used as a loop condition.
Examining where the values of wantp and wantq involved
in these branches came from will show that both variables
were false at the time they were read. In other words, what
is wrong in the program is that both threads may see that
the other thread does not want to proceed; the defect is
in the condition that allows the threads to enter the critical
section (or in the setting of the flags). Hence they both enter
the critical section simultaneously, allowing two concurrent
changes to inCS, resulting in this variable having an unin-
tended value. One can indeed find the missing increment
of inCS by working forwards from the value of inCS it read
(the initialisation) by checking where this value was used.
This confirms that two increments of inCS (one in P and
one in Q) read the same value of inCS (i.e. they executed
simultaneously) and the increment in Q overwrote the value
written by P, causing inCS to have a value one lower than
expected.

4. EVALUATION
Although a thorough evaluation of the effectiveness of At-

ropos is beyond the scope of this article, a few observations
that are relevant for its future development can be made.
We also want to evaluate whether the system described in
Section 3 actually succeeds in creating the intended visual-
isation, i.e. whether it satisfactorily answers research ques-
tion 4. In order to do this, we must determine whether the
system can feasibly be used to trace the failures of the stu-
dents’ programs. This involves both issues of performance
(trace size and processing overhead) and whether the fail-
ures still manifest when a trace is produced. We also touch
on research question 3; whether the visualisation enables
students to find and understand defects.

The tests described in this section were all done on a 64-
bit Ubuntu 10.04 workstation with an Intel Core 2 Quad
Q9400 CPU and 4 GB of RAM.

4.1 Size of Traces
The execution traces are, unsurprisingly, very large in the

case of stress tests. In the first programming assignment of
our concurrent programming course in 2010, the stress test
traces from the programs submitted by our students had an
uncompressed mean size of 1.7 GB, a maximum size of 13 GB
and a median size of 0.93 GB. When compressed, the mean
was 110 MB, the maximum 460 MB and the median 85 MB.
Although this means some temporary disk space is necessary
(roughly speaking, the amount of disk space that can be
filled within the time limit for the test execution; in this
case 1000 seconds), the final file size is manageable. Also,
most of the executions that were aborted due to incorrect

output had traces of only 2–3 MB (uncompressed), since
the stress test caused a failure early in the execution. This
suggests that trace size is unlikely to be a problem if stress
tests are divided into smaller parts to avoid having to store
and replay several minutes of correct behaviour that is of
little relevance when debugging.
Performing the dependence analysis is often problematic

since Atropos constructs the entire DDG in memory. In
practice, this means that traces may not be larger than a
few megabytes. Again, this can be mitigated by finding test
cases in which failures occur and are detected as quickly as
possible.

4.2 Performance Loss Caused by Instrument-
ation

Using the same programs as in the previous subsection and
considering only the executions that completed successfully
(since the failures were not necessarily in the same place),
instrumenting the programs to trace the execution caused
the time used by the stress test to increase on average to
10.2 times the original execution time; the median slowdown
factor was 5.27. One test was only 25% slower; the Reactor
implementation in question is otherwise efficient but creates
a new thread for each event, causing an overhead that dwarfs
that of the instrumentation. The two worst slowdowns were
by factors of 69.5 and 35.4, both with Reactor implement-
ations that allow each thread to feed unlimited amounts of
data into the buffer without ever waiting for it to be pro-
cessed. While there is very little overhead from switching
between threads in this type of solution, they run the risk
of running out of memory.
We conclude that, while the instrumentation introduces

noticeable overhead, much of this is masked by overhead
from e.g. creating or switching between threads.
The mean time for the instrumented stress tests was 127

seconds, the median 75.5 seconds, the minimum 44.9 seconds
and the maximum 739 seconds. Without instrumentation,
the mean was 17.9 seconds, the median 15.0 seconds, the
minimum 3.8 seconds and the maximum 59.9 seconds. This
means that for most students, the stress test will be com-
pleted within a reasonable time despite the instrumentation;
we doubt that students will have new versions of their code
to test every few minutes.

4.3 Effect on Failure Occurrence
Evaluating the precision of concurrent program replay, i.e.

how much the execution changes when the program execu-
tion is traced, is a very complex issue. However, in our set-
ting, the clearly most important facet of precision in our case
is whether the execution tracing prevents failures from mani-
festing in incorrect programs. To evaluate this, we reran the
stress test 10 times with and without instrumentation on
the Reactor implementations in which a failure caused by a
race condition was detected by the test package (without the
instrumentation). All three programs exhibited race condi-
tions that consistently caused the stress test to fail both
with and without the tracing. One of the programs, a very
inefficient implementation, was slow enough that the over-
head from the instrumentation consistently caused the test
to time out before a failure occurred. This can be remedied
by adjusting the timeouts to compensate for the instrument-
ation overhead.



4.4 The Use of Atropos by Students
Preliminary results from the evaluation of the use of At-

ropos by students in our course suggest that they were able
to use Atropos to extract information to support their own
debugging process and help clear up some misunderstand-
ings of, for example, what threads exist in a running pro-
gram. This happened even though the students often used
a debugging style that relied heavily on examining source
code, trying to reason about it statically and rewriting sus-
picious parts of the program (cf. [9]). This suggests that
while Atropos was designed for backward debugging, it can
also support other debugging strategies.

The students also turned up several minor usability issues
that left them frustrated even before they actually got to see
the visualisation. While splitting the testing and visualisa-
tion into two separate steps makes it easier to do testing as
an unattended batch job in order to examine the interest-
ing traces later, students sometimes change the code they
have written after executing it and generating a trace, caus-
ing problems in the replay. While it is possible to detect
this situation using e.g. checksums, the problem can also be
avoided by including the source and class files in the execu-
tion trace file, ensuring that the replay is done with the same
code as the execution trace was produced from. This has the
additional advantage of making the trace file self-contained.

5. CONCLUSION
We have presented Atropos, a system intended to help

students understand and debug concurrent Java programs
by allowing them to examine execution traces through a
dynamic dependence graph-based visualisation. While care
must be taken to keep the size of these execution traces man-
ageable, this can easily be done by splitting large test runs
into smaller parts. The overhead from the instrumentation
causes some minor problems, but they can be worked around
by allowing more time for tests to execute. Students are
able to use Atropos effectively, even when their debugging
approaches do not seem to fit the intended approach. This
can probably be improved by teaching students debugging
approaches for concurrent programs more explicitly and by
integrating Atropos further into our teaching of concurrent
programming.

5.1 Future Work
Problems with applying Atropos in an educational con-

text stem from the size of the execution traces. Splitting
long-running tests will help mitigate this, but an alternative
approach would be to collect the corresponding information
from a model checker such as JPF. The traces produced
by a model checker would almost certainly be shorter than
those produced by stress testing. Another alternative is to
allow users to manually specify in which order operations
are executed and what happens in data races; this would be
especially useful for teachers to demonstrate ways in which
a simple program can go wrong.

To assist students unfamiliar with backward debugging,
it would be helpful if Atropos itself provided more explicit
guidance on how it can be effectively applied. Similarly, it
would be worthwhile to investigate how to support forward
debugging strategies more effectively, perhaps by supporting
forward navigation along dependencies to complement the
backwards navigation already available.
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