Publication V

Jan Lénnberg, Mordechai Ben-Ari and Lauri Malmi. Visualising Concur-
rent Programs with Dynamic Dependence Graphs. In Proceedings of 6th
IEEE International Workshop on Visualizing Software for Understanding
and Analysis (VISSOFT 2011), 4 pp, Williamsburg, Virginia, USA, Septem-
ber 2011.

© 2011 IEEE.
Reprinted with permission.

In reference to IEEE copyrighted material which is used with permission in

this thesis, the IEEE does not endorse any of Aalto University's products or
services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional
purposes or for creating new collective works for resale or redistribution,
please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
to learn how to obtain a License from RightsLink.

163

Visualising Concurrent Programs with
Dynamic Dependence Graphs

Jan Lonnberg
School of Science
Aalto University
Espoo, Finland
Email: jlonnber@cs.hut.fi

Abstract—Atropos is a software tool for visualising concurrent
program executions intended to help students debug concurrent
programs and learn how concurrency works. Atropos supports a
slicing debugging strategy by providing a visualisation of dynamic
dependence graphs that can be explored to trace the chain of
events backwards from a symptom to its cause. In this paper,
we present the reasoning behind the design of Atropos and
summarise how we evaluated it with students.

Keywords-Visual debugging; Program visualization; Dynamic
dependence graph; Atropos; Slicing;

I. INTRODUCTION

Debugging concurrent programs is difficult for several reas-
ons. Many bugs are hard to replicate due to nondetermin-
ism. They also often involve unexpected interactions between
threads that are hard to trace.

These same issues also make it hard to understand and
learn how concurrency works in practice. We would like to
help our students understand what is going on in concurrent
programs so they can fix their programs and form more
complete understandings of concurrent programming.

In this paper, we describe our design for a visualisation tool
for debugging concurrent programs, Atropos.! Atropos visual-
ises a trace of a concurrent Java program as a graph that shows
how the operations performed during the execution interrelate.
Essentially, for every line of code that was executed, Atropos
can show why it was executed and where it got the data it
used from. The details of how Atropos collects and replays
concurrent execution and issues related to performance are
discussed in another paper [1]. We also briefly describe how
we evaluated Atropos; this will be described in more detail in
a forthcoming paper [2].

In Section II we present the work on debugging strategies
that underlies our design. We then use this as a basis for
describing the design of Atropos in Section III. The results
of our evaluation of Atropos and their implications for the
design of Atropos are presented in Section IV.

II. RELATED WORK
A. Debugging Strategies

Eisenstadt [3] analysed difficult bugs encountered by pro-
fessional programmers. The most common reasons he found

Thttp://www.cse.hut.fi/fen/research/LeTech/Atropos/

978-1-4577-0823-7/11/$26.00@2011 IEEE

Mordechai Ben-Ari
Department of Science Teaching
Weizmann Institute of Science
Rehovot, Israel
Email: moti.ben-ari @weizmann.ac.il

Lauri Malmi
School of Science
Aalto University

Espoo, Finland
Email: Ima@cs.hut.fi

for bugs being hard to find are:

« Cause and symptom are separated in space or time;

o The incorrect behaviour does not consistently manifest

itself;

o The programmer gets stuck by misinterpreting what he

sees.

By far the most common approach to tracking down these
bugs is to gather information on the execution of the program
through a variety of means, including single-stepping, adding
print statements to selected points in the program, adding
conditional breakpoints to the program and inspecting the data
when the breakpoint is triggered and comparing dumps of the
program’s state [3].

Metzger [4] describes a wide range of debugging strategies.
Most of the strategies focus on dividing a program into parts
and ruling them out as the site of the bug. The deductive-
analysis and inductive-analysis strategies are based on gen-
erating hypotheses and checking them. The success of these
strategies relies almost entirely on how good hypotheses one
generates.

When looking for reasons for a program’s misbehaviour,
many programmers look at the incorrect value of a variable
and try to find a reason for this value by tracing the execution
of the program backwards. In essence, they try to concentrate
on the part of the program that could have affected the variable
value. Parts of programs that could have affected the value of
a specified variable at a specified point in the execution of a
program are called slices [5].

Slices can be calculated from a specific execution history of
a program, in which case the slice (a dynamic slice) contains
all the operations (executions of statements) in the execution
history that (could have) affected the value of the variable at
the end of the execution history [6]. A dynamic slice is based
on a dynamic dependence graph (DDG). A DDG is a directed
graph whose vertices are executions of statements and whose
edges are the data and control dependencies between these
operations. A DDG is essentially a series of explanations for
why each operation in a program was performed and where the
data it used came from. A control dependency shows which
earlier decision ensured an operation was executed, while the
data dependencies of a statement show which operations wrote
the variables that the statement read.

A slicing strategy is very hard to apply without tool support,
since calculating slices by hand can quickly become very
tedious. Complex cause-effect relations that can be computed
(e.g. data flow links) should be computed by the debugger
rather than by hand [3], [4].

B. Visual Debugging

Most visual debuggers, e.g. DDD [7], concentrate on in-
dividual threads and can only show the current state of
the program (which is especially problematic in concurrent
programs, as replicating a failure may be difficult).

RetroVue [8], with its tree view of all executed operations,
ability to examine all previous states of the program and thread
display showing lock interactions between and execution times
of threads, is a clear exception to this. However, it does not
aid the programmer much in finding interrelated operations.

The Whyline [9], which uses DDGs to explain to novices the
reason why a program did something (wrong), addresses the
problem of explaining relationships, but is limited to low-level
explanations of simple causal chains in a limited beginners’
environment.

A few debuggers and program visualisation systems have
been designed for concurrency. Several use sequence diagrams
to display method calls. JaVis [10] adds collaboration diagrams
to show interactions between objects. These diagrams have a
level of detail suitable for debugging, but become cumbersome
for complex executions.

C. Bugs in Students’ Concurrent Programs

Most of the literature on students’ errors in programming
assignments focuses on novice programmers working with
sequential programs. We analysed the defects in the programs
our students wrote for the programming assignments in our
concurrent programming course. We found that most bugs
involved nondeterministic behaviour and that many difficult
bugs involved unexpected interactions between two different
parts of the student’s program or unexpected interleavings of
threads [11].

D. How Students Debug

Fitzgerald et al. [12] found that students use mental tracing
(with and without print statements), hand tracing and tracing
using the debugger and that students exhibit both forward
(tracing) and backward (causal) reasoning.

Kiesmiiller [13] and Yehezkel et al. [14] examined how
the use of visualisation tools in an educational context affects
students’ activities when defining and testing a program. Ye-
hezkel et al. found that students working without the EasyCPU
visualisation primarily used the data input and instant run
operations with trial and error, while the students using Easy-
CPU tended to run the program step by step and investigated
the program’s execution more. Kiesmiiller identified different
problem-solving strategies, such as bottom-up, trial and error
and hill climbing.

Program to visualise Instrumented class files

Visualisation

Figure 1.

Instrumenter JVM

Replay and
dependence analysis

Information flow between components of Atropos

III. THE DESIGN OF ATROPOS

Atropos is primarily intended for a scenario in which a
student’s code has been observed to fail by a student who
is developing or testing her code or by a teaching assistant
who is assisting her or assessing her code. In either case,
the student’s code (including test code) has been run with
instrumentation that collects an execution trace in a file that
can be used immediately or saved for later use by another
person.

The expected goal of the user of the visualisation tool
is assumed to be to find the defect in the student’s code
that caused the program failure. The user can be a teaching
assistant who needs to find the defects in a student’s program
to decide how the student erred in order to give the student
a meaningful grade and useful feedback (which may include
the trace file). Alternatively, the user is a student trying to find
a defect in her own program in order to fix it and learn from
her mistakes.

In any case, the visualisation is intended to support its user
in finding a failure in a trace of an execution of the student’s
code using a known symptom as a starting point and hence
identify the defect in the code that caused the failure.

How the different parts of Atropos fit together and what
information they exchange is summarised in Figure 1.

How Atropos can be used in teaching is discussed in more
detail in [15].

A. Why DDG?

As noted in Section II-A, the slicing strategy provides a
clearly-defined systematic way to trace backwards through a
program from a symptom to the failure that caused it and hence
identify the underlying defect. It also requires tool support to
be effective.

DDGs are of particular interest for concurrent programs,
as interactions between threads are clearly shown as edges.
This means that a DDG can help students identify unexpected
interactions between threads. By showing how different parts
of a program interact, they can also help bridge cause-effect
chasms and isolate relevant information from a large trace.
Execution traces also remove the need to re-execute the
program.

Previous studies of the use of DDGs to support debugging
in an educational context (albeit at an introductory level) have
had encouraging results [9].

B. Visualising the DDG

Since a DDG is a graph, one can make use of well-
known visual representations for graphs in visualising a DDG.
Operations and dependencies must be labelled so that the

user can identify them. Directed labelled graphs are often
represented as labels (often surrounded by a rectangle or
similar container) representing vertices connected by arrows
representing edges.

Operations are by default grouped together by lines, as is
traditional in debuggers. Each operation is labelled with the
number of the line of code and the line itself. The shape of the
line of code makes a rectangle a natural choice of container.

In order to show execution order in an intuitive fashion,
vertices are arranged chronologically from top to bottom as a
layered graph [16]. If one operation happened before another,
it will be above it. Two vertices being next to each other means
that neither is known to have preceded the other. The vertical
layout uses space more efficiently than a horizontal one when
there are many vertices in a thread and labels are long.

Vertices are horizontally positioned by thread. Above the
vertices that belong to the execution of a method call, the name
of the method and the object or class on which it was called is
shown, together with the arguments to the call. Indentation is
used to indicate nesting of method calls. An earlier design used
nested boxes to represent stack frames, but this was deemed to
be too cluttered. Dependencies between operations are shown
as arrows between vertices. Data produced by one operation
and used by another are labelled with the variable name (where
applicable) and the value.

Since students work with concurrent data structures such as
tuple spaces at multiple levels of abstraction [17], we provide
a way for users to raise the level of abstraction and remove
implementation details from the visualisation by grouping
together lines executed as part of a method call to a single
vertex.

C. Navigating the DDG

As the full DDG of a program execution is likely to be
very large, only a small portion that the user has explicitly
requested is shown. The visualisation uses the termination of
the threads in the program as starting points. It is assumed
that at least one of these is a symptom, such as a deadlock,
an uncaught exception or failed assertion. By choosing the
right thread to examine, the user can work backwards from
the thread termination to the failure that caused it.

The list at the top of the Atropos window shows the starting
points for the DDG. To keep the visible graph manageable, all
dependencies of vertices are hidden unless the user requests
that they be shown, which may cause more vertices to be
shown. To show where a value read by an operation came
from, one can choose the relevant value from the list of data
sources of the vertex. Similarly, to show where a value written
by the operation was used, one can select the value from the
list of data uses of the vertex. There are also commands to
show all data sources and uses. The last branching operation,
such as if or while can be shown. This is easier to
understand and calculate than a control dependency. Figure 2
shows an example trace.

IV. EVALUATION

We summarise the results of our evaluation of Atropos [2]
that are most relevant to the future development of Atropos
here. We analysed the activities of students in our Concur-
rent Programming course performing a debugging task using
Atropos.

The students succeeded in extracting some useful informa-
tion from Atropos that helped clear up some misunderstand-
ings of e.g. what threads exist in a running program, but
they failed to effectively navigate the DDG due to difficulties
caused by the visualisation displaying implementation details,
and, in one case, the sheer number of data dependencies of a
method execution. Grouping operations by method execution
is specifically intended to address the former case, but is ap-
parently not something students can easily discover, especially
since the examples of using Atropos did not require this. In
both cases, one can argue that the problem is that the students
are being shown what happened in a data structure instead of
how it was used.

We have three proposed approaches to helping students
navigate execution traces. One is to complement the DDG
with an overview of the program’s execution trace such as the
tree view of RetroVue [8]. Another is to provide the ability
to examine all operations done on a particular variable. Both
approaches would provide an overview of program execution
that some students tried to achieve by repeatedly requesting
the previous line or branch. A third option would be the ability
to examine the data structures in the program at a certain time
as in most debuggers. This would enable the user to check,
for example, whether several values form a consistent state,
which is hard to do in Atropos.

REFERENCES

[1

J. Lonnberg, M. Ben-Ari, and L. Malmi, “Java replay for dependence-
based debugging,” in Proceedings of PADTAD IX — Workshop on
Parallel and Distributed Systems: Testing, Analysis, and Debugging.
Toronto, Canada: ACM, Jul. 2011, pp. 15-25.

J. Lonnberg, L. Malmi, and M. Ben-Ari, “Evaluating a visualisation of
the execution of a concurrent program,” in Proceedings of the 11th Koli
Calling International Conference on Computing Education Research
(Koli Calling 2011). Koli, Finland: ACM, Nov. 2011, in press.

M. Eisenstadt, “My hairiest bug war stories,” Communications of the
ACM, vol. 40, no. 4, pp. 30-37, 1997.

[4] R. C. Metzger, Debugging by Thinking. Elsevier, 2004.

[5] M. Weiser, “Programmers use slices when debugging,” Communications
of the ACM, vol. 25, no. 7, pp. 446-452, Jul. 1982.

H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Dynamic slicing in
the presence of unconstrained pointers,” in TAV4: Proceedings of the
symposium on Testing, analysis, and verification. New York, NY, USA:
ACM, 1991, pp. 60-73.

A. Zeller, “Animating data structures in DDD,” in The proceedings of the
First Program Visualization Workshop — PVW 2000. Porvoo, Finland:
University of Joensuu, 2001, pp. 69-78.

J. Callaway, “Visualization of threads in a running Java program,”
Master’s thesis, University of California, Jun. 2002.

[9] A. J. Ko and B. A. Myers, “Designing the Whyline: a debugging
interface for asking questions about program behavior,” in CHI ’04:
Proceedings of the 2004 conference on Human factors in computing
systems. ACM Press, 2004, pp. 151-158.

K. Mehner, “JaVis: A UML-based visualization and debugging environ-
ment for concurrent Java programs,” in Software Visualization, S. Diehl,
Ed. Dagstuhl Castle, Germany: Springer-Verlag, 2002, pp. 163-175.

[2

[3

[6

[7

[8

[10]

[11]

[12]

[13]

[14]

Fila Options

Atropos

Last operation in Thread 52: 85: try { wait(); } catch (InterruptedException e) { } - %

Last operation in Thread 12: 41: s.postnote(new Note("Output*, new Objectl] {new Integer(before), ~

ntSelectionSortWorker-14.1d=1

26 forinti=0;1 = lenath; i++) {

=4

Note 106

61 return readRemovedn, true);

Space 18

CancurrentSelectionSort$Worker-74.

30: Mote tuple = s remaovenotednew Note'Input’,

148: Mote myTuple = s removenote{new Note("Input’,

85 try { waitd); ¥ catch (InterruptedException ey { }

18: Note myTuple = s removenote(new Mote('Input’,

26 for{inti=0;i = length; i++) {

i=1

30: Note tuple = s removenote(new Naote " lnput’,

Note118

61 return readRemovedn, true);

85 try { wait]; } catch (InterruptedException e) { }

Figure 2. A screenshot of Atropos

J. Lonnberg, “Defects in concurrent programming assignments,” in
Proceedings of the Ninth Koli Calling International Conference on
Computing Education Research (Koli Calling 2009), A. Pears and
C. Schulte, Eds. Koli, Finland: Uppsala University, 2009, pp. 11-20.
S. Fitzgerald, G. Lewandowski, R. McCauley, L. Murphy, B. Simon,
L. Thomas, and C. Zander, “Debugging: Finding, fixing and flailing,
a multi-institutional study of novice debuggers,” Computer Science
Education, vol. 18, no. 2, pp. 93-116, Jun. 2008.

U. Kiesmiiller, “Diagnosing learners’ problem-solving strategies using
learning environments with algorithmic problems in secondary educa-
tion,” Trans. Comput. Educ., vol. 9, no. 3, pp. 1-26, 2009.

C. Yehezkel, M. Ben-Ari, and T. Dreyfus, “The contribution of visualiz-
ation to learning computer architecture,” Computer Science Education,
vol. 17, no. 2, pp. 117 — 127, Jun. 2007.

[15]

[16]

[17]

J. Lonnberg, L. Malmi, and A. Berglund, “Helping students debug
concurrent programs,” in Proceedings of the Eighth Koli Calling Inter-
national Conference on Computing Education Research (Koli Calling
2008), A. Pears and L. Malmi, Eds. Koli, Finland: Uppsala University,
2009, pp. 76-79.

G. Di Battista, P. Eades, R. Tamassia, and 1. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle
River, NJ, 1999.

J. Lonnberg and A. Berglund, “Students’ understandings of concurrent

programming,” in Proceedings of the Seventh Baltic Sea Conference on
Computing Education Research (Koli Calling 2007), ser. Conferences in
Research and Practice in Information Technology, R. Lister and Simon,
Eds., vol. 88. Koli, Finland: Australian Computer Society, 2008, pp.
77-86.

