
Publication VI

Jan Lönnberg, Lauri Malmi and Mordechai Ben-Ari. Evaluating a Visualisa-
tion of the Execution of a Concurrent Program. Proceedings of the Eleventh

Koli Calling International Conference on Computing Education Research,
pp 39–48, Koli, Finland, November 2011.

c© 2011 ACM.
Reprinted with permission.

169

Evaluating a Visualisation of the
Execution of a Concurrent Program

Jan Lönnberg
Aalto University

School of Science
P.O. Box 15400

FI-00076 Aalto, Finland
jlonnber@cs.hut.fi

Lauri Malmi
Aalto University

School of Science
P.O. Box 15400

FI-00076 Aalto, Finland
lma@cs.hut.fi

Mordechai Ben-Ari
Weizmann Institute of Science

Department of Science
Teaching

76100 Rehovot, Israel
moti.ben-

ari@weizmann.ac.il

ABSTRACT
In this paper we present a study of how students make use
of Atropos, a new visualisation system that is based upon
dependence graphs, while debugging concurrent programs.
We examine how students work by identifying their opera-
tion foci, and use these as a basis for identifying the stu-
dents’ approaches to debugging concurrent programs. We
also identify the types of understanding of a concurrent
program Atropos helped them to gain, and the situations
in which they did not manage to get the information they
wanted from Atropos. We use the latter as a starting point
for discussing improvements to make Atropos more useful
for students.

Keywords
Concurrent programming, Program visualisation, Operation
foci, Atropos

1. INTRODUCTION
Many modern software systems are concurrent ; they in-

volve simultaneously executing or unpredictably interleaved
processes. Finding and correcting defects (bugs) is particu-
larly difficult when the program is concurrent. This suggests
a need for methods and software that would make it easier
to find (and then eliminate) these defects. Our long-term
goal is to improve the correctness of concurrent software by
developing better tools and teaching methods.

Debugging is usually done by executing the program with
different inputs and examining its intermediate and/or final
results, either using additional debugging code or through a
program intended to aid debugging (a debugger). Some de-
buggers employ visualisation to make the data shown easier
to understand. Most of the previous work on debugging has
concentrated on studying the current state of the program
and examining the execution of individual processes. Con-
current programs, however, are likely to have defects that in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’11, November 17–20, 2011, Koli, Finland.
Copyright 2011 ACM 978-1-4503-1052-9/11/11 ...$10.00.

volve unexpected interactions between concurrent processes
that are hard to debug using these methods. A promising
solution to this, which complements existing verification and
debugging techniques, involves visualisations designed to aid
the programmer in understanding the interactions between
the operations performed in a program.

Before taking steps to correct a bug, it must be found.
There are a variety of approaches to this, including testing,
model checking, correctness proofs and various formal and
informal approaches based on reading the code and looking
for mistakes.

1.1 Goal of This Study
The goal of this study is to gain an understanding of the

behaviour of students writing and debugging concurrent pro-
grams. In particular, we want to understand their processes
for writing a program and for ensuring its correctness. We
want to investigate how their way of working changes when
they use Atropos1, a program visualisation tool that we de-
signed to help them with this task. This way, we can identify
problem areas in their approaches to developing software
in order to devise ways to help them either through soft-
ware or different teaching. We can also evaluate Atropos
and identify the ways in which it can help students. Fur-
thermore, this evaluation also helps us identify aspects of
Atropos we can improve on.

Based on these goals, the research questions are:

1. How does the visualisation of program executions help
students understand and debug defective concurrent
programs?

2. How could the visualisation be improved to further
help students in these tasks?

To answer these research questions, we look at how stu-
dents actually use Atropos. These additional questions are:

3. What information and understandings do students get
when using Atropos?

4. What information are they looking for? In particular,
what information do they try to get, but fail?

5. How are they using Atropos? What operations are
they using? What is their strategy for finding the in-
formation they want?

1Web site at: http://www.cse.hut.fi/en/research/
LeTech/Atropos/

39

1.2 Related Work
Since the work described in this paper can be seen both as

an evaluation of a software tool and a study of how students
program and debug, work on these two subjects is presented
here.

1.2.1 How Students Debug
As in many subfields of computer science education, most

of the work on how students debug focuses on novice pro-
grammers. Fitzgerald et al. [6] used interviews including
both a programming exercise and a debugging exercise to in-
vestigate the debugging skills and approaches of novice pro-
grammers. Strategies used by the students included mental
tracing (with and without print statements), hand tracing
and tracing using the debugger. The students exhibited both
forward (tracing) and backward (causal) reasoning. The lat-
ter was less prevalent than the former, possibly because the
students were not familiar with the code they were debug-
ging.

Ahmadzadeh et al. [1] examined programs compiled by
students working on a similar debugging task. They found
that weak debuggers had difficulties applying their know-
ledge of programming and debugging unless they were work-
ing with programs with a familiar structure. While most
good programmers were better at debugging than weak pro-
grammers, the good programmers who were weak debuggers
did not appear to understand the program to debug well
enough to find or fix the bugs.

Murphy et al. [18] took a different approach by focus-
ing on the interaction between students doing pair debug-
ging. They hypothesised that pairs of students who engage
in transactive discussion—“a conversational mode in which
participants respond to their partner’s statements to clarify
their own understanding or reasoning”—are more successful
in debugging. They found that pairs that talked more and
used critique transactions tended to eliminate more bugs.

1.2.2 Evaluating Software Visualisation in an Edu-
cational Context

Many empirical evaluations have been made of software
visualisation, and it is clearly beyond the scope of this article
to present them all. Hundhausen et al. [8] describe in their
meta-study many different evaluations of algorithm visual-
isations based on empirical techniques. Many of these are
controlled experiments that attempt to determine whether
changing e.g. the learning or debugging medium affects a
measure of success such as post-test accuracy or debugging
time by comparing different groups of students. Of the 24
experiments in their corpus, eleven showed a significant pos-
itive effect on students from the use of software visualisation.

Kiesmüller [11] and Yehezkel et al. [20] have examined how
the use of visualisation tools in an educational context affects
students’ activities when defining and testing a program. In
both cases, the activities of the students were recorded and
the focus of the students’ operations (what activities the
students performed) and—in the latter study—the students’
conversation (what the students talked about) was determ-
ined. Yehezkel et al. found that students working without
the EasyCPU visualisation primarily used the data input
and instant run operations with a strategy of trial and er-
ror, while the students using EasyCPU tended to run the
program step by step and investigated the program’s exe-
cution more. Kiesmüller identified different problem-solving

strategies, such as bottom-up, trial and error and hill climb-
ing.

Isohanni and Knobelsdorf [9] examined how students make
use of the program visualisation tool VIP by interviewing
them and observing and video recording them completing a
short programming assignment. They found that when in-
structed to use VIP, the students ran their program in VIP.
However, not all students used VIP to examine the program
execution. Only one used VIP as intended (single stepping).

2. SETTING
This work is centred around the Concurrent Programming

course at Aalto University2. The goal of this course is to
teach students the principles of concurrent programming:
synchronisation and communication mechanisms, concurrent
and distributed algorithms and concurrent and distributed
systems.

Most students have completed a bachelor’s degree or a
roughly equivalent part of a master’s degree. About 50–80
students participate each year.

The course includes a set of exercises based on exercises
from the course’s textbook by Ben-Ari [2] as well as two pro-
gramming assignments and an exam. Together, the exercises
form 10 % of the course grade, the programming assigments
15 % each and the exam 60 %.

The first programming assignment (Reactor) concentrates
on the Reactor design pattern [19].

In the second assignment (Tuple space), the students im-
plement a simple tuple space [7] containing only blocking
get and put operations on tuples implemented as String

arrays. They are to do this using Java synchronisation prim-
itives and use this tuple space implementation to construct
the message passing section of a distributed chat server.

2.1 Atropos
Atropos is a visualisation tool intended to display inform-

ation relevant to understanding the behaviour of concurrent
Java programs, especially when they do not behave as ex-
pected. Atropos is entirely a post-mortem analysis tool; you
cannot control program execution in any way through At-
ropos. The input to Atropos is an execution trace of a Java
program, containing all the information Atropos needs to
reconstruct the execution.

We have designed Atropos, based on our previous research
on students’ bugs in concurrent programs [13] and on how
students develop and understand concurrent programs [17,
16], to assist in the learning and teaching of concurrent
programming in Java with a focus on using basic concur-
rency constructs to construct simple concurrent programs
and classes (on the order of a few hundred lines).

The target audience of Atropos consists of two groups:
students of concurrent programming and their teachers. The
primary use case is that the program to be visualised was
written by students and misbehaves in some way, such as
locking up or printing the wrong results. Students can use
Atropos to find out why their programs do not work, helping
them to correct their programs and possibly learn something
about how concurrency works in Java. Similarly, teachers
can use Atropos to help identify errors students have made
in writing a program, which is useful when assisting and

2Course web site at: https://noppa.aalto.fi/noppa/
kurssi/t-106.5600/

40

assessing students.
As noted in Subsection 1.2.1, students cannot effectively

debug a program which they do not understand properly.
In particular, the results of Fitzgerald et al. [6] suggest that
their debugging strategies are limited when they do not un-
derstand the program properly. Atropos is intended to help
students apply a backward debugging strategy even when
they do not understand the program fully.

When Atropos is used for debugging, the debugging pro-
cess starts when a test fails, i.e. an execution of the program
resulted in incorrect behaviour. Atropos is based on the idea
of debugging backwards; starting from the symptom and
working backwards to the fault. Hence, the starting points
shown by Atropos are at the end of a thread’s execution,
whether it ended normally, threw an uncaught exception or
never terminated.

The visualisation Atropos uses to show the user what
happened in the program is based on a dynamic dependence
graph (DDG). A DDG is a directed graph. The vertices
of a DDG are executions of lines of code or blocks of code
formed by grouping executions of lines together. The edges
of a DDG are the data and control dependencies between
these operations. The control dependencies of an operation
are why the operation was executed in the first place and
the data dependencies are the information the operation ac-
ted on. Essentially, the DDG contains every way in which
an operation is affected by an earlier one. This enables the
user to trace the causal chain, backwards and step-by-step,
from a symptom to a cause.

Previous studies of the use of DDG-based visualisations
to support debugging in an educational context (albeit at
an introductory level) have shown a dramatic reduction in
debugging time [12], and we expect that the DDG-based
visualisation can be particularly useful in finding and under-
standing incorrect program behaviour involving unexpected
interactions between concurrent threads.

The design of Atropos is described in more detail in [15]
and its implementation in [14].

2.2 Exercises
The exercises in the Concurrent Programming course fo-

cus primarily on examining the possible behaviour of con-
current programs and on writing programs to solve specific
tasks. To allow for more concrete work on the exercises,
Java is used in addition to the more abstract concurrency
model used by Ben-Ari.

In the Autumn 2010 instance of the course, there were five
rounds of exercises, one each week. Two or three sessions
with at least one teaching assistant present were arranged for
each round. Students were allowed to choose which sessions
to participate in. The topics of the rounds were: Concur-
rency models and critical sections, Semaphores, Monitors,
Channels and Tuple spaces.

Each exercise session consisted of four tasks, most of which
were exercises from (or adapted from) the textbook [2].

In each session, the assistants presented the exercises and
any applicable tools, and then left the students to work on
the exercises in pairs; when called on by the students, they
assisted the students and evaluated their work. The students
presented their solutions to the assistants who then provided
feedback on the students’ solutions which the students could
use to improve their solutions.

3. METHODOLOGY
The study uses a mixed-method research design [10] that

is primarily qualitative, with some quantitative analysis to
support the conclusions of the qualitative analysis.

3.1 Setup
The study was performed during the two sessions for the

last round of exercises in the Autumn 2010 instance of the
course, in which students were to perform the following
tasks:

1. Implement a general semaphore using just one tuple
(P and V operations are sufficient) (Exercise 9.1 [2]).

2. The students were given an incorrect concurrent sort-
ing program that deadlocks; they were asked to pro-
duce a failure, explain what caused the failure and to
fix the problem.

3. Implement a bounded buffer using a tuple space (Ex-
ercise 9.4 [2]).

4. The students were given a concurrent matrix multi-
plication program that may generate incorrect results;
they were asked to produce a failure, explain what
caused the failure and fix the problem.

In order to compare students using Atropos and not using
Atropos, the students were divided into two groups: A and
B. However, since only 21 students participated in the ses-
sions (in part, due to students dropping out of the course;
79 students registered for the course, but only 37 students
took the exam at the end of the course), the quantitative
comparison was left out of the study.

The first and third tasks were intended to evaluate what
the students know. The second and fourth tasks were in-
tended to compare how the students work with and without
visualisation. In task 2, group A used Atropos and group B
did not; this was reversed in task 4.

Also, even though the sessions were extended from the
original two hours to allow students to complete their work
(in one case almost up to four hours), none of the pairs com-
pleted task 4. Hence, we focus in this study on a qualitative
analysis of task 2, which is the task most relevant to our
research questions.

3.2 Data Collection
All the students were recorded throughout the entire ses-

sion. Their conversations and the contents of the screen of
the computer they used were recorded using a microphone
and video screen capture software. Two selected pairs in
each session were recorded using a video camera to provide
additional information on what they are doing and to help
determine how the use of screen capture instead of a video
camera affects the accuracy of the analysis. These pairs
were essentially self-selected as several pairs of students did
not agree to the additional recording. The students were
required to work in pairs which the students formed them-
selves. This was done in order to encourage them to verbalise
their thoughts and to discuss their plans and approaches to
the tasks.

Ten pairs of students and one lone student participated
in the sessions. The lone student and two of the pairs have
been left out due to lack of usable recordings of conversations

41

to analyse. Four of the remaining pairs of students were in
group A and four in group B. The following analysis focuses
on the qualitative aspects and on evaluating the visualisa-
tion. Hence, we have analysed the second task as performed
by the three pairs in group A who worked on task 2 during
the sessions: Charles and Ada (46 minutes), Peter and John
(45 minutes) and Brian and Dennis (51–53 minutes; these
students worked independently on different tasks at some
points). They all spoke Finnish. The students’ names have
been changed.

3.3 Analysis
The operation foci are what the students are doing in

terms of concrete activities that are part of constructing a
solution to their problem. Operation foci are determined by
the subgoal students are trying to achieve at a given time.

The first version of the operation foci was created be-
fore the data were collected, based on the operation foci
described by Yehezkel et al. [20] and the activities of Kies-
müller [11]. During the analysis, the categories were refined
(by adding categories to cover activities not in any other
category and by removing empty categories) to form the
categories shown in Table 1. The foci are identified by num-
bers; in the case of subfoci, a letter is appended.

The descriptions of operation foci form a large part of the
answer to RQs 3, 4 and 5. The operation foci related to
Atropos highlight issues that answer RQs 1 and 2.

Based on the work of Yehezkel et al. [20], we also examined
the students’ conversation foci ; the subjects of the students’
conversation at a specific time. Since conversation foci and
operation foci overlap extensively and since the operation
foci are more relevant to answering the research questions,
we have left the conversation foci out of this paper. We ini-
tially also analysed the transcripts for transactive discourse,
as in the study by Murphy et al. [18]. We found too few
instances of transactive discourse for a meaningful analysis.

3.3.1 Performing the Analysis
In preparation for analysis, the usable parts of the record-

ings were transcribed and translated into English. Actions
performed on the computers by the students and their res-
ults were added to the transcript to aid in the analysis.

Initially, the analysis was done by attempting to place
each statement in one category for each of the above classi-
fications, using a spreadsheet with the transcript split into
rows corresponding to statements. This approach proved to
be cumbersome and error-prone by emphasising individual
statements outside their context and by providing little sup-
port for effectively expressing structure within categories.
Hence, a switch was made to expressing the transcript in a
form similar to a script with quotations being formed from
contiguous stretches of text and linked to codes that were
then organised into the categories presented below. This
analysis was done by the first author using ATLAS.ti.

Based on the data, the categories changed somewhat dur-
ing the analysis. In particular, foci that do not fit into the
above categories were used to refine the definitions of the
categories and to add additional ones. Hence, the operation
foci and the coding of one group of students were checked
by the second author and adjusted until a consensus was
reached.

4. RESULTS

Table 1: Operation foci

1 Understand Program Code Any activity with the
intent of understanding program code in static terms,
such as reading the source code and looking at how parts
interrelate
1A Understand the Program to Debug Under-
standing the program that the students should debug (in
static terms)
1B Understand Other Available Code Understand-
ing other code involved in the task (e.g. library code,
concurrency constructs available to them) and how to
make use of it
2 Add Debug Code
3 Modify Code
3A Fix Bugs
4 Formulate Hypotheses Formulate and discuss hy-
potheses about what a buggy program does and how it
differs from the intended behaviour
5 Run the Program
6 Observe Program Behaviour Observe the program
behaviour e.g. by reading console output or log files or by
looking at the visualisation
6A Explore a Trace Decide what to look at next in
an execution trace (when using Atropos), including ask-
ing questions about what to look at next and trying out
different commands in Atropos to find something useful
6B Interpret Observations Discussion of representa-
tions of program behaviour and what they mean in terms
of the program’s execution
6C Unexpected Atropos Behaviour Discussion of
how Atropos does not behave as expected by the students
and working to get it to act as expected
7 Determine Correctness Check or prove that a pro-
gram works correctly
7A Compare Desired and Observed Behaviour
7B Create Test Cases Plan and set up test cases and
executions
7C Analyse a Class of Scenarios Statically Discuss
and examine how the code reacts to a type of situation
8 Determine Goals Any activity related to understand-
ing the desired behaviour of the program
9 Understand Atropos All activities with the goal
of understanding Atropos, not directly trying to achieve
anything task-related (e.g. reading Atropos’s manual)
10 Present Solution to Assistant Convincing the as-
sistant that the task has been successfully completed
11 Prepare Prepare for other operation focus
11A Create a Trace Work on and discuss how to create
a trace, assuming the test case has already been decided
11B Prepare Code Prepare code or software for an-
other operation focus
11C Set Up and Start Atropos Get Atropos running,
up to and including loading a trace

In this section, we present the results of our analysis in the
form of a justification of the categories of the operation foci,
using quotes and observations and in the form of diagrams of
operation foci over time for groups of students (see Figure 1).
In the diagrams, the Y axis shows time from the start of the
recording (in hours and minutes). The X axis is labelled with
the number of the operation focus (as shown in Table 1).

42

Sections of student activity for which an operation focus
has been found are marked as vertical lines with start and
end markers. To aid in understanding the diagrams, the
students’ activities have been divided into parts marked with
red boxes labelled with a description of the activities.

4.1 Understand Program Code
Charles, Ada, Peter and John tried to Understand the

Program to Debug (1A) before trying to Observe Pro-
gram Behaviour (6) (see Figures 1a and 1b). Many cases
of this involved one of the students talking at length about
how he understood the program. In others, one student
asked the other, for example (Figure 1b, 00:36):

John: Do they all have that? Do those threads
have a different id that they get, or?
Peter: Yeah. The threads get an id number
there when they’re created.
Peter points to ConcurrentSelectionSort con-
structor.
John: Where’s it given here?
Peter: It’s here on the second screen when you
create those Workers: new Worker(i).start();

Students may in some cases first Observe Program Be-
haviour (6) and then return to trying to Understand the
Program to Debug (1A) when they realise that there
is part of the program they do not understand. For ex-
ample, Brian and Dennis switched between exploring the
execution of the program and the source code, initially with
Brian exploring the code and analysing it statically and
Dennis examining an execution in Atropos. An observa-
tion about what happened in the program led Brian several
times to look for an explanation in the source code. This also
involved trying to Understand Other Available Code
(1B), as in e.g. (Figure 1c, 01:12):

Dennis shows the last operation in one of the
deadlocked threads.
Dennis: Yep, readRemove.
Brian: Yep, it’s here.
Dennis: This is the space, apparently.
Brian: This is the space. Here it waits; where’s
the notify?
Brian scrolls through Space.java. Dennis shows
the last operation in the main thread.
Brian: When it posts, it notifies.

This strategy was somewhat problematic, as evidenced by
Brian’s comment (Figure 1c, 01:31): “This algorithm is sort
of too hard. If only I could figure out what it’s supposed to
do, I’d understand where the problem is.”

In one case, an off-hand remark from a teaching assistant
encouraged Peter and John to discuss the Thread class from
the Java standard library, clarifying the difference between
creating a thread and creating a Thread for John (Figure 1b,
01:04):

John: What does start [in class Thread] do?
Peter: It really creates a new thread and runs
its run function in the new thread.
John: OK, and this just. . . I mean it creates a
thread, but not until the previous one was run. . .
right?

Peter: No, it doesn’t. Actually, the startmethod
creates the thread.
John: But it says new Worker [a subclass of
Thread] here.
Peter: Yeah.
John: It does create an object, though?
Peter: It creates an object, but it’s still not its
own thread. start finally creates it.
John: OK.

4.2 Add Debug Code
While one would expect students to Add Debug Code

(2) to generate failing executions for debugging, we found
no evidence of this, probably because the example data in-
cluded in the incorrect program was enough to get it to fail.

However, Brian decided to examine the program using
Eclipse while Dennis used Atropos. Rather than use the de-
bugger to examine intermediate states, he added (and later
removed) print statements to determine whether certain
lines of code had been executed and what values they used.
When doing this, it is natural to Run the Program (5)
afterwards, which he did.

4.3 Modify Code
The task in this study was simple enough that the only

times students had to Modify Code (3) were to Fix Bugs
(3A). The students had to do this (at least) once to com-
plete the exercise, but they also discussed and, in one case,
tried out other possible fixes (Figure 1c, 01:31).

It is interesting but hardly surprising that students are
adept at finding ways to quickly get a program to produce
the right result without regard for whether their fix has un-
desirable side-effects. Consider the following exchange il-
lustrating how two students Fix Bugs (3A) (Figure 1b,
00:32):

John: Could that be fixed just by writing syn-

chronized here?
John points to Worker.run declaration.
Peter: Sort of, but this can be fixed with just
the tuple space and without us adding any new
synchronisation, so just one thread at a time can
be here, so we add a tuple that says “now we’re
counting something”. Then, when we get here,
the thread tries to take the tuple away. Then
when it’s done calculating, it puts the tuple back.

First, John suggests only running one worker at a time by
making them mutually exclusive using Java’s built-in locking
mechanisms. Then, Peter counters John’s suggestion with
an alternative: use a tuple to implement a lock, avoiding the
need to use any other inter-thread communication than the
tuple space. This effectively converts the concurrent sorting
algorithm into a sequential one, albeit one that processes
elements in a random order.

4.4 Formulate Hypotheses
In a debugging task, students will hopefully Formulate

Hypotheses (4) about what the program does and how
it differs from the intended behaviour. For example, Ada
observes that several threads are waiting for a tuple and then
hypothesises (correctly, as it turns out) that the deadlocked
threads are waiting for a tuple to be put in for them to

43

� � ! " # $ � � �� ��

�����

�����

�����

�����

���	�

���	�

���
�

���
�

�����

�����

�����

�����

�������
���
����
��������
��
������

������

��
������

���������
�
�
��
��������
������������
���

�
��������
������

��������
���

�
���
���

(a) Charles and Ada

� � 	
 � � � � � �� ��

�����

�����

�����

�����

���	�

���	�

���
�

���
�

�����

�����

�����

�����

��������	

�����	
���
�����������	
����������

����������	

�����	

��������	
�����
������

��������	
���	���
���������

�����	
��������	

��������	
�������

(b) Peter and John

� � 	
 � � � � � �� ��

�����

�����

�����

�����

�����

�����

�����

�����

���	�

���	�

���
�

���
�

�����

�����

��������	

��������	

�����	

���������	
���	����

(c) Brian and Dennis

Figure 1: Operation foci over time for each group

remove (Figure 1a, 00:36): “They’re never put in the space,
those. . . values. Because now it’s just waiting for it, or it’s
removed the note, and now it’s waiting for a message that it
would remove.”

Brian constructs several hypotheses about what is going
on in the program based on what he sees in the program code
and execution, e.g. (Figure 1c, 01:20): “So it waits for there
to be a. . . So the last tuple is not removed, so the sorting
goes in the other direction, so that is apparently not called.”

4.5 Run the Program
One would think that it is commonly accepted that, hav-

ing written or modified a program, one should Run the
Program (5) to make sure it works. In the debugging task,
the students executed their modified programs before deem-
ing them complete and going on to Present Solution to

Assistant (10) (see Figure 1). For example, Charles and
Ada run their fixed program once (Figure 1a, 00:46–00:47):

Recompiles ConcurrentSelectionSort, runs, gets
correct result immediately.
Ada: Well, the sequence is there. Pretty good.
How many times do we need to see if it still
works?
Restarts Atropos, reloads trace, fails cryptically
due to mismatch between trace and the modified
class file.
Charles: Right, just. . . [inaudible] Ugh.
Dismisses error message.
Ada: Put us in the queue.
Adds self to assistant waiting queue.

44

At the other extreme, Brian repeatedly runs both the ori-
ginal program and his modified versions to examine their
behaviour and verify that the bug has been fixed.

4.6 Observe Program Behaviour
Since one goal of Atropos is to help students Observe

Program Behaviour (6), this category is of particular
interest in evaluating and developing Atropos.

After running the buggy concurrent sort program and not-
ing it failed to produce any output, John noted (Figure 1b,
00:37): “All right, it blew up at once. It deadlocked.”

Similarly, Peter determines from Atropos’s list of threads
and their final operations that the threads are blocked, and
then they use static analysis to determine why they are
blocked (Figure 1b, 00:56):

Peter: They’re all blocked here in wait. Except
this one.
Peter points at one of the threads in the list.
John: When does it enter wait?
Peter switches to source code in Eclipse.
Peter: So if you take removenote and it can’t
be found there.
John: OK, right.
Peter: Yeah, this is totally clear.

After exploring the branches that lead to the wait calls
in which the program deadlocked using Atropos, Charles
and Ada find that wait was called by Space.readRemove

because Space.searchNote found no matching note in the
space. Ada then asks (Figure 1a, 00:39):

Ada: But where, where, isn’t searchNote used
when we try. . . or like, what’s the method of the
previous one? Is that one? If you click those?
Charles: No, but p is used to try. . . yeah, a
parameter.

Charles responds to the question by looking at the source
code for Space; his response seems confused since p in this
context is a field of the Note (i.e. the tuple) that is being
checked for a match, not a parameter.

Dennis, after having tried out grouping operations to-
gether in Atropos in an effort to avoid getting bogged down
in the for loops in searchNote that repeatedly scan through
the tuple spaces, finds himself viewing a list of data sources
for the searchNote method execution that fills much of the
screen (Figure 1c, 01:40). He notes: “This is what it looks
like. I have no way of figuring out what to do now. A hor-
rible amount of data is what I get.” Shortly after (Figure 1c,
01:41), he opines that “Someone should tell us how to really
use Atropos to figure this out. I’ve been clicking around and I
feel kind of silly.” The other pairs run into similar problems:
their attempts at exploring the dependence graph merely
lead them in circles around the searchNote method.

4.7 Determine Correctness
In order to get meaningful program executions to Com-

pare Desired and Observed Behaviour (7A), the stu-
dents must Create Test Cases (7B). In practice, this
manifested mostly as running the program using the ex-
ample data provided to the students. For example, Peter,
working on the hypothesis that the concurrent selection sort
program can deadlock, suggests after a successful execution

of the program (Figure 1b, 00:36): “Try running once more.
I mean, it worked now. It didn’t hang.”

One important part of determining correctness is toCom-
pare Desired and Observed Behaviour (7A). This has
two important roles in this task: determining how the in-
correct program misbehaves and ensuring that the bug has
been fixed. Peter and John first used this approach to test
the broken concurrent sort (Figure 1b, 00:37):

John: Should that output have a certain form
or order; is there a right or wrong order?
Peter: This should always be in alphabetical
order, but. . .
John: Yeah, it is.

After examining the thread list as described in Subsec-
tion 4.6, Peter starts to Analyse a Class of Scenarios
Statically (7C) and confirms his earlier hypothesis by reas-
oning from the source code about what must have happened
for the execution to have reached the situation shown in At-
ropos (Figure 1b, 00:56): “So if you take removenote and it
can’t be found there.” He then proceeds to convert the sort
into a sequential sort to eliminate the deadlock, based on
the suggestion described in Subsection 4.3.

In contrast, Charles and Ada only use the example pro-
gram provided to them to test their solution to a concur-
rency bug; their only question regarding how to test this,
raised by Ada, is how many times to run the example pro-
gram on the corrected code (Figure 1a, 00:46): “Well, the
sequence is there. Pretty good. How many times do we need
to see if it still works?”

4.8 Determine Goals
Students obviously Determine Goals (8) when they

read the description of the task they are to perform and
try to understand what it entails. Students also seem to de-
cide to use Atropos when they Determine Goals (8). For
example, John realises: “Wait, we were supposed to use At-
ropos now.” after they have essentially completed the task
(Figure 1b, 00:33). After verifying their solution without
Atropos, they again bring Atropos up (Figure 1b, 00:37):

Peter: Should we use Atropos?
John: Well, for the sake of appearances. . .

4.9 Understand Atropos
Trying to Understand Atropos (9) most clearly mani-

fests itself as reading its manual. Sometimes students read
relevant parts of the manual out loud, such as when Peter
reads “Generating an execution trace: You need to compile
with full debugging information. . . ” (Figure 1b, 00:42).

4.10 Present Solution to Assistant
When students Present Solution to Assistant (10),

they typically explain the code they have written or mod-
ified. Some students also provided feedback on Atropos,
e.g. Dennis who described Atropos as “not cooperative at
all”, but added that he “did get something out of Atropos in
the previous exercise [round], but apparently, there should be
some sort of mini-lecture about it” (Figure 1c, 01:45).

4.11 Prepare
We want to minimise the time students need to Prepare

(11), since it does not contribute to learning. This includes

45

downloading or finding code and importing it into develop-
ment tools (including Atropos) as well as setting up these
development tools. Peter and John spend some time (Fig-
ure 1b, 00:19–00:20) trying to Prepare Code (11B) by
importing it into their Eclipse project for the second pro-
gramming assignment and modifying the package structure.

Atropos should be designed to minimise the time needed
to Create a Trace (11A) and Set Up and Start Atro-
pos (11C). Peter and John experienced problems running
Atropos as a side effect of putting the concurrent selection
sort program in a pre-existing project containing class files
that reference external libraries, which Atropos cannot find.
Charles and Ada caused Atropos’s replay to fail by changing
the class files it is using to replay the execution.

5. DISCUSSION

5.1 What Students Try to Do with Atropos
One approach to answering RQ 4 is to look at why stu-

dents use Atropos; how it fits into their process of solving a
debugging task.

Like Isohanni and Knobelsdorf [9], we found that some
students do not use the provided visualisation tool even
when instructed to do so or only use it in a limited fash-
ion. As shown in Subsection 4.8, students seem to use At-
ropos because they are told to do so, not because they see
a need for it. We found that some of our students did not
even start Atropos until after they felt they had identified
the bug. When one takes into account that they are clearly
trying to Understand Atropos (9) for much of the be-
ginning of the task, this suggests that most of the students
had never used Atropos before, which would rule out prob-
lems with Atropos itself. This is strange, since Atropos was
used in one of the tasks in the previous round of exercises.
This suggests that Atropos would need to be better integ-
rated with the rest of the course to convince students to
use it. Indeed, one of the students explicitly suggested that
the course should include at least a mini-lecture on how to
apply Atropos effectively. The experiences of Isohanni and
Knobelsdorf [9] suggest that this may not be enough, but
their experiences may be due to the fact that VIP was not
directly connected to debugging strategies. Giving students
a visualisation tool that supports a new way of working (for
example, a debugging strategy) is probably not sufficient to
teach them this way of working unless they are given guid-
ance on how to use it or the visualisation tool itself provides
guidance on how it can be used. We return to the question of
how the visualisation can guide students in Subsection 5.4.

5.2 Identifying Incorrect Behaviour
Once the students believe they have fixed a bug, they will

hopefully Determine Correctness (7) of the program. As
noted by Ben-David Kolikant and Ben-Ari [3, 4], students
may not agree with the professional definition of correctness,
which (rephrased in the terminology used here) is that the
program is efficient, legible, documented, modular and, most
importantly, always produces the right output no matter
what input it is given and what interleavings occur. Some
students’ behaviour seems to be more consistent with see-
ing a correct program as one a teaching assistant will accept
as correct or simply not, as suggested by Ben-David Kolik-
ant and Ben-Ari [4], considering the possibility that they
may have made an error. For example, at the end of the

task, Charles and Ada make a change to the program, run
it and then decide to present their change to the assistant
without discussing whether it is correct at all. In terms of
the purposes of programming assignments described by Lön-
nberg et al. [17], this is seeing the programming task in the
framework of the university’s requirements (“Assignment”).
This is reflected in their testing style and in terms of the
testing approaches described in the same paper, this means
an additional category must be added below “Unplanned”:
“Testing not required”. It is likely that lack of experience
with concurrent programming accounts for this behaviour.

Even the students who did test their solution did not
verify that their corrected program correctly handled the
type of interleaving that caused the buggy program to fail.
They could have done this either by running the program
and examining the interleavings to determine whether they
would have triggered the bug (which could easily be done
with Atropos) or controlling the execution order of the pro-
gram (which, in this case, could be done using breakpoints
in a debugger). However, Brian did run the fixed program
several times to confirm it did not deadlock where the in-
correct program did.

Another possible contributing factor is that the students
are used to relying on external support such as automated
assessment systems for their testing. If there is no con-
sequence to not testing, students do not bother to test. Stu-
dents can be encouraged to test their programs by making
the thoroughness of their testing an evaluation criterion. [5]

In a debugging task, they will, as demonstrated in Sub-
section 4.3, attempt to work around or fix a bug without
confirming their hypothesis of what the bug is through ex-
amination of program execution. This also renders Atro-
pos (and, indeed, most debugging and visualisation tools)
somewhat irrelevant to their needs. Working around a bug
can be prevented by specifically requiring that the correc-
ted program has similar time and space requirements, which
would preclude adding additional copies of data or making
the concurrent execution sequential. It would also be useful
to avoid confusion as to how the defective program is sup-
posed to work by clearly specifying the expected behaviour.

It is hardly surprising that students have simplistic ways
to Determine Correctness (7) in these tasks compared
to, for example, those described in [17], which involved pro-
gramming assignments in which students were told to ex-
plain how they had ensured the correctness of their solution,
e.g. by testing. Another notable difference in the setting is
that the tasks our students were working on were intended
to be roughly two hours of work in total for them, while
each programming assignment in [17] was supposed to be
20 hours. Also, the availability of almost instant feedback
from teaching assistants and lack of consequences of sub-
mitting an incorrect solution are likely to have contributed
to the general lack of interest in testing. One response to
RQ 2 is thus: in order to encourage students to make use of
testing and debugging tools, the effort needed to get started
must (seem to) be less than other options, such as asking an
assistant to look at the program.

5.3 Debugging Process
The students’ debugging processes, which are relevant to

answering RQ 5, are shown in Figure 1. The large-scale
structure of their processes appears to be sound. We would
expect, that after initially having to Understand Atro-

46

pos (9), Determine Goals (8) and Prepare (11), that
the students would make sure they Understand Program
Code (1) and then Run the Program (5) in order to
Determine Correctness (7). Once the program has been
found to fail, the resulting execution would then be used
to track down the bug; a process in which the students
would Formulate Hypotheses (4) based on what they
learn when they Observe Program Behaviour (6) and
Determine Correctness (7). Once they are satisfied they
have confirmed their hypothesis of what the defect is, they
would Fix Bugs (3A) and Run the Program (5) and
Observe Program Behaviour (6) in order to Determ-
ine Correctness (7) of their corrected program. What
the students have done mostly fits this pattern, which would
suggest that Atropos (or any debugging or visualisation tool
that could be used in a similar fashion) would fit well into
their large-scale approach to debugging. In line with the
results of Ahmadzadeh et al. [1], Brian and Dennis did not
take the time to Understand Program Code (1) first
(see Figure 1) and hence had difficulties debugging.

5.4 Successful and Unsuccessful Atropos Use
As a basis for comparison, we will first present how we ex-

pected students to apply Atropos in the debugging task. The
first step is to determine that the program has deadlocked
by having all threads waiting for another thread to insert a
tuple in the space. This can easily be deduced by checking
where the threads’ execution blocked. The second step is to
identify which tuples are being waited for and in which place
in the main program. This can be done by determining from
where the blocked operations were called. It should be noted
that examining the call stack at the time the program dead-
locked is also sufficient to collect the information required so
far; this can be done using e.g. Eclipse’s debugger like Brian
did. The third step is to identify that the reason why these
tuples cannot be found is that they were removed from the
space earlier and where this happens. Finally, the problem
can be fixed by returning the missing tuples to the space be-
fore getting others. This fix can then be verified by running
the program and confirming that it still runs correctly even
when threads are interleaved in ways that caused the bug to
manifest in the original version of the program.

In order to answer RQs 3, 4 and 5, and hence RQs 1 and 2,
we must look at how students used and failed to use Atropos.
Students were able to use Atropos to extract information to
help clear up some misunderstandings of, for example, what
threads exist in a running program, as shown in Subsec-
tion 4.6. However, this information is derived from the list
of how threads ended, not from the dependence graph itself.
This happened even though the students used a debugging
style that relied heavily on examining source code, trying
to reason about it statically and rewriting suspicious parts
of the program (cf. [6]). Peter and John spent 11 minutes
(Charles and Ada 5 minutes) trying to Understand Pro-
gram Code (1), but both pairs only spent 3 minutes trying
to Observe Program Behaviour (6).

In Subsection 4.6, we see that several students were effect-
ively prevented from finding the relevant data in Atropos
by difficulties caused by the visualisation displaying imple-
mentation details of the tuple space as a consequence of
following data and control dependencies of the wait oper-
ations in which the program deadlocked. Dennis managed
to group the operations in the tuple space method execu-

tions together, but the sheer amount of data dependencies
of a method execution put a stop to his progress. Group-
ing operations by method execution is specifically intended
to address the former case, but is apparently not something
students can easily discover, especially since the examples of
using Atropos did not require this. Ada’s suggestion in Sub-
section 4.6 suggests that a more intuitive operation would
be to show the operation that invoked the method execution
to which a selected operation belongs; this has since been
added to Atropos. In the latter case, grouping together mul-
tiple reads of the same values in the context menu could have
made it far easier to navigate. In both cases, one can ar-
gue that the problem is that the students are being shown
what is happening in the tuple space even though they are
interested in how it is used.

To assist students unfamiliar with backward debugging,
it would be helpful if Atropos itself provided more expli-
cit guidance on how it can be effectively applied. To help
users get started, Atropos could explicitly identify symp-
toms, such as deadlocks or incorrect behaviour, and recom-
mend these as starting points for backward debugging. The
backward debugging process could be supported by provid-
ing the option to mark operations as correct or incorrect
behaviour, making it easier to see what possible causes of
an incorrect operation’s behaviour have been explored.

Similarly, to help users examine executions at an appro-
priate level of abstraction, it would be useful if users could
select, before starting to explore a trace, which classes’ exe-
cution the user wants to examine. A third option would be
to start exploring a thread from not just the last operation,
but all the operations that would be shown in a stack trace.

Another possible approach is to complement the DDG
with overviews of the operations performed by each thread
(for details, see [15]). This would enable users to skip to
interesting parts of the program execution rather than find
a route back along the DDG from a failure. This would also
provide an overview of program execution that some stu-
dents tried to achieve by repeatedly requesting the previous
line until they had a list of what a thread had done.

5.5 Summary
It is unclear to students how Atropos fits in the debugging

process and how to effectively apply it when debugging. In
part, this is due to unfamiliarity with a new tool, which
can be mitigated by giving students explicit guidance on
debugging strategies using this tool as part of the lectures.

Some students also avoided checking their hypotheses or
code and instead chose to ask the assistant to evaluate it.
This is probably because assistants were available to the
students during the sessions. This makes software to help in
evaluating these hypotheses, such as Atropos, irrelevant.

Navigating a DDG using Atropos turned out to be the
most problematic aspect of using it. The students failed to
reach a useful level of abstraction; instead, they spent much
of their time examining the tuple space implementation’s
behaviour. It is clear that the mechanisms currently avail-
able to students to deal with complexity of the DDG do not
fit their expectations of how it should be done. In order
for students to be able to deal with programs of this level
of complexity in Atropos (or any other tool) effectively, it
must provide an obvious and easy way to elide details of the
execution of methods that are assumed to be correct or a
way for students to get an overview of an execution.

47

6. CONCLUSIONS
Our results support our theory [17] that students primar-

ily see programming assignments as a task to be completed
to get a grade and that they will avoid any tasks they see
as extraneous such as testing it or examining its behaviour
in detail. Hence, if a teacher wants students to test their
programs or examine the behaviour of a program in detail,
this must be made an explicit part of the task with clearly
defined requirements. It is worrisome that students even at
this advanced level do not take testing seriously, but this
may be a consequence of having feedback from teaching as-
sistants immediately available.

As Isohanni and Knobelsdorf [9] noted, students seem to
avoid using visualisation even when instructed to do so, pre-
ferring to try to reason about the program statically. We
believe one can encourage students to use visualisation by
integrating examples of the effective use of the visualisation
into the teaching.

While it seems that the visual representation used by At-
ropos can be interpreted by students without undue effort,
navigating through a program is still difficult. While the
dependence graph visualisation would seem to be useful for
understanding short causal chains at the level of proficiency
with the visualisation our students showed, it is necessary
to develop ways to support students in navigating the graph
before they can make full use of Atropos.

7. REFERENCES
[1] M. Ahmadzadeh, D. Elliman, and C. Higgins. An

analysis of patterns of debugging among novice
computer science students. In ITiCSE ’05: Proceedings
of the 10th annual SIGCSE conference on Innovation
and technology in computer science education, pages
84–88, New York, NY, USA, 2005. ACM Press.

[2] M. Ben-Ari. Principles of Concurrent and Distributed
Programming. Pearson Education, second edition,
2006.

[3] Y. Ben-David Kolikant. Students’ alternative
standards for correctness. In The Proceedings of the
First International Computing Education Research
Workshop, pages 37–46, 2005.

[4] Y. Ben-David Kolikant and M. Ben-Ari. Fertile zones
of cultural encounter in computer science education.
Journal of the Learning Sciences, 17(1):1–32, Jan.
2008.

[5] S. H. Edwards. Improving student performance by
evaluating how well students test their own programs.
Journal on Educational Resources in Computing,
3(3):1–24, 2003.

[6] S. Fitzgerald, G. Lewandowski, R. McCauley,
L. Murphy, B. Simon, L. Thomas, and C. Zander.
Debugging: Finding, fixing and flailing, a
multi-institutional study of novice debuggers.
Computer Science Education, 18(2):93–116, June 2008.

[7] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, Jan. 1985.

[8] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing,
13(3):259–290, June 2002.

[9] E. Isohanni and M. Knobelsdorf. Behind the curtain:

Students’ use of VIP after class. In ICER ’10:
Proceedings of the Sixth International Workshop on
Computing Education Research, pages 87–95, Aarhus,
Denmark, Aug. 2010. ACM.

[10] R. Johnson and A. J. Onwuegbuzie. Mixed methods
research: A research paradigm whose time has come.
Educational Researcher, 33(7):14–26, 2004.

[11] U. Kiesmüller. Diagnosing learners’ problem-solving
strategies using learning environments with
algorithmic problems in secondary education. Trans.
Comput. Educ., 9(3):1–26, 2009.

[12] A. J. Ko and B. A. Myers. Designing the Whyline: a
debugging interface for asking questions about
program behavior. In CHI ’04: Proceedings of the
2004 conference on Human factors in computing
systems, pages 151–158. ACM Press, 2004.

[13] J. Lönnberg. Defects in concurrent programming
assignments. In A. Pears and C. Schulte, editors,
Proceedings of the Ninth Koli Calling International
Conference on Computing Education Research (Koli
Calling 2009), pages 11–20, Koli, Finland, 2009.
Uppsala University.

[14] J. Lönnberg, M. Ben-Ari, and L. Malmi. Java replay
for dependence-based debugging. In Proceedings of
PADTAD IX — Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging, pages
15–25, Toronto, Canada, July 2011. ACM.

[15] J. Lönnberg, M. Ben-Ari, and L. Malmi. Visualising
concurrent programs with dynamic dependence
graphs. In 6th IEEE International Workshop on
Visualizing Software for Understanding and Analysis
(VISSOFT 2011), To appear.

[16] J. Lönnberg and A. Berglund. Students’
understandings of concurrent programming. In
R. Lister and Simon, editors, Proceedings of the
Seventh Baltic Sea Conference on Computing
Education Research (Koli Calling 2007), volume 88 of
Conferences in Research and Practice in Information
Technology, pages 77–86, Koli, Finland, 2008.
Australian Computer Society.

[17] J. Lönnberg, A. Berglund, and L. Malmi. How
students develop concurrent programs. In
M. Hamilton and T. Clear, editors, Proceedings of the
Eleventh Australasian Computing Education
Conference (ACE2009), volume 95 of Conferences in
Research and Practice in Information Technology,
pages 129–138, Wellington, New Zealand, 2009.
Australian Computer Society.

[18] L. Murphy, S. Fitzgerald, B. Hanks, and R. McCauley.
Pair debugging: A transactive discourse analysis. In
ICER’10: Proceedings of the International Computing
Education Research Workshop, pages 51–58, Aarhus,
Denmark, Aug. 2010. ACM.

[19] D. C. Schmidt. Reactor: An object behavioral pattern
for concurrent event demultiplexing and dispatching.
In J. O. Coplien and D. C. Schmidt, editors, Pattern
Languages of Program Design. Addison-Wesley, 1995.

[20] C. Yehezkel, M. Ben-Ari, and T. Dreyfus. The
contribution of visualization to learning computer
architecture. Computer Science Education, 17(2):117 –
127, June 2007.

48

