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Design and Evaluation of Human-Computer Rhythmic Interaction in

a Tutoring System. Computer Music Journal, vol. 35, no. 2, pp. 36–48,

May 2011.

VII Antti Jylhä, Cumhur Erkut, Matti Pesonen, and Inger Ekman.

Simulation of Rhythmic Learning - A Case Study. In Proceedings of

the 5th Audio Mostly Conference, Glasgow, UK, pp. 146–149, September

2010.

VIII Cumhur Erkut, Antti Jylhä, and Reha Disçioğlu. A Structured
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1. Introduction

Humans are experts at using sound as a key modality in communica-

tion. In addition to speech, we are able to produce sounds conveying

meaningful information in a multitude of contexts, including, for ex-

ample, applause to indicate our appreciation on a performance, non-

speech utterances to indicate confirmation, negation, or surprise, and

tapping or clapping a beat to accompany a musical piece, just to name

a few. Furthermore, humans can successfully interpret the information

contained in the sound produced by others. For example, musicians

can listen to the starting count of a drummer to be able to start their

performance synchronously with a shared tempo, and in general people

can recognize the identity of familiar people based on the sound of their

footsteps.

The use of sound in interactive computational systems is studied in the

field of sonic interaction design (SID)1 (Rocchesso and Serafin, 2009). SID

as a discipline considers sound as the conveyor of information, emotions,

and aesthetics. SID is by nature multi-disciplinary, as it combines the

fields of interaction design, audio signal processing, arts, and to some

degree also humanities. The multi-faceted questions regarding sound and

interaction indeed require examination from many angles.

In general, interaction comes in two flavors: discrete and continuous.

As noted by Rocchesso, Polotti, and Delle Monache (2009), most pre-

industrial human actions in the world were continuous, but technology

has brought us more and more interfaces that operate in a discrete

manner. As an example of differentiating the two, consider getting water

from a well. Modern pumps are often operated by pushing a button to

switch the pump on or off, whereas older pumps were operated often

by a lever, which had to be constantly pushed up and down manually.

1http://sid.soundobject.org/
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The main feedback in both systems is water running from the outlet;

however, the lever-operated pump gives the operating person much more

control over the water flow and also gives immediate haptic and auditory

feedback on every stroke of the lever. A more modern example of discrete

and continuous interaction is operating a visual computer interface with

a mouse. A click on the mouse button to invoke an application is discrete,

while moving the mouse to move the cursor is continuous.

Until the late eighties, it seemed that the research on informational

sounds in computer interfaces concentrated on speech output (Brewster,

2003). Non-speech sounds were mainly utilized as warning signals.

However, since the first attempts of designing human-computer interfaces

around non-speech sound output (Buxton, Gaver, and Bly, 1994), their

advantages over speech have become apparent. This development was

catalyzed by the work of Gaver on auditory icons (Gaver, 1986) and ev-

eryday sounds (Gaver, 1993a,b), and the emergence of earcons (Blattner,

Sumikawa, and Greenberg, 1989) as synthetic informational interface

sounds. As discussed by Brewster (2003), non-speech sounds as output

do not require visual display, although there are also many benefits in

fusing the two modalities in multimodal interaction. Non-speech sounds

reduce the visual load and need for visual attention, are typically faster

in information representation than speech, and offer better temporal

resolution than the visual sense.

Considering computational systems other than speech interfaces to

date, the use of sound as an information conveyor has largely concen-

trated on one-directional use of sound: from the computer to the human.

Also in the field of SID, although multisensoriality and sonic output have

been an important point of study, for example, in the design of continuous

sonic interaction (Rocchesso and Polotti, 2008; Rocchesso et al., 2009) and

interface design (Dix, Finlay, and Abowd, 2004), the use of sonic input has

not received similar attention. One of the main claims in this dissertation

is that if sound output can be informational in auditory interfaces, sound

can be informational to the other direction as well, that is from the

human to the computer. Sound as input in computational applications

has been studied most extensively in the context of speech recognition,

often neglecting the other informational sounds we are able to produce.

As a notable exception of a large-scale project considering other kinds of

sound input, the Tai-Chi 2 (Tangible Acoustic Interfaces for Computer-

2http://www.mec.cf.ac.uk/research/pubs/taichi.html
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Human Interaction) project has utilized acoustic localization of tangible

objects by a microphone array on user interface surfaces. Also, as will

be discussed in the next section, several individual studies have proposed

implementations utilizing sonic input; however, a systematic approach to

this aspect of study has been lacking.

A key requirement for using sound input in interactive applications is

an algorithm, which is capable of reliably tracking information from the

sounds of the user. The task of information retrieval may concentrate

on detecting events, such as a certain temporal pattern of hand claps,

or continuous information, such as the evolving tempo of a rhythmic

sounding action. In interactive systems, these algorithms need to fulfill

the requirements of real-time interaction. In addition to an information

retrieval algorithm, an essential component in the interface design is the

mapping of retrieved information to system functionalities. These issues,

both the algorithms and the mappings, are often largely application-

dependent. A general overview of the data flow in interactive systems

utilizing sonic gestural input is presented in Figure 1.1.

The computational devices of today, most prominently the computer

and the mobile phone, are already equipped with a microphone and

sufficient computational power to enable the use of sound as an input

modality. Therefore, in general, the use of sound as input requires

no specialized hardware. In addition, sonic input can be utilized in

eyes-busy situations and requires no physical contact with the device.

Sonic input is also appealing as it can suit people with visual and

motor impairments, enabling them to interact with applications otherwise

unaccessible. Therefore, sonic input shares most of the advantages of non-

speech sound output.

This dissertation examines the use of non-speech sound input, namely

the use of sonic gestures (defined in Section 2), in interactive applications.

Specific focus is on percussive gestures, utilizing hand clapping sounds as

the main case example. In addition, as a specific application group, the

study focuses on rhythmic interactive systems, which are also used as a

tool to understand at a deeper level the phenomena related to rhythmic

interaction.
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Sonic Gesture Information Retrieval

Interactive SystemHuman

audio

parameters

feedback

Figure 1.1. Information flow illustration of interactive systems utilizing sonic gestures
as input.

1.1 Aims of the Thesis

This thesis discusses the use of sound as input in interactive applications.

The problem is approached from two perspectives: identifying the infor-

mation potential conveyed by non-speech sounds and providing tools for

their use in real-time systems and as a specific focus area utilizing these

informational sounds to design interfaces and applications that realize

rhythmic interaction between the human and the computer. The sounding

actions conveying information are called sonic gestures in this thesis. As

the study concentrates on interactive applications, a key requirement to

process the sounds is that the algorithms and techniques must function

in real-time.

The research questions of the thesis can be outlined as follows:

• What information can sonic gestures provide in human-computer inter-

action?

• What kind of real-time techniques are applicable to capture the infor-

mation from the sounds?

• How can continuous interaction be facilitated by sonic gestures, for

example, in rhythmic applications?

• How do humans respond to multimodal rhythmic interaction systems

and can this behavior be modeled?

• How can rhythmic interaction systems be used as a tool for understand-

ing our capabilities of rhythmic perception and production? What kind
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of design guidelines can be drawn for these systems from the sound

perspective?

1.2 Organization of the Thesis

This thesis comprises an introductory part and nine articles published

or accepted for publication in peer-reviewed journals and conference

proceedings. The introductory part begins with an overview of sonic

gestures in the field of human-computer interaction (HCI), summarizing

the past studies related to the matter and the new theoretical outlines

of Publication I in Section 2. In Section 3, the focus is on computational

techniques and algorithms for identifying percussive sonic gestures based

on both the state-of-the-art techniques in the field and Publication II and

Publication III. In Section 4, rhythmic interaction with computational

systems is discussed, based on previous studies from the fields of HCI,

SID, and sound and music computing (SMC), including results and

findings from Publications V-IX. Section 5 summarizes the novel results

presented in the publications, and, finally, conclusions are drawn in

Section 6.

1.3 Main Contributions of the Thesis

The scientific merits of the thesis can be summarized as follows (corre-

sponding publications in parentheses):

• A novel definition for sonic gestures and a taxonomy portraying the

retrievable information from different gesture categories (PI).

• Sound recognition techniques specifically adapted for identifying differ-

ent percussive sonic gestures in real-time (PII, PIII).

• An experimentally verified novel finding that hand clap sounds contain

personal information and have potential in person identification (PIV).
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• A novel audio user interface, which enables rich use of percussive sonic

gestures as input in human-computer interaction applications for both

discrete and continuous interaction (PV).

• An interactive Flamenco hand clapping tutor capable of producing

synthetic Flamenco hand clap patterns, listening to the clapping of

the user, and giving feedback on the performance, including novel

techniques for multimodal feedback (PVI, PVIII, PIX).

• Novel findings on rhythmic interaction between the human and the

computer (PVI) and, based on these, a system simulating the rhythmic

behavior of a human learning new rhythms (PVII).

• New evaluation methodology of rhythmic interaction with computa-

tional systems (PVI, PVIII).
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2. Sonic Gestures and
Human-Computer Interaction

To define sonic gestures and their properties, a look into past studies on

gestures as well as sound morphologies is in order. The term gesture

itself has been defined in numerous ways in different contexts and,

therefore, the vocabulary and understanding of its meaning is somewhat

ambiguous (Jensenius, 2008). This section starts with an overview of

gesture definitions and focuses on its use in the fields of HCI, SID, and

SMC. The relationship of gesture and sound is briefly discussed, followed

by the novel definition of sonic gestures based on Publication I.

According to Cadoz (1988), a gesture is non-vocal physical behavior that

humans use to inform or transform their environment. He approaches

the relationship between gesture and sound from a musical perspective,

stating that there can be no music without gesture, and further introduces

the concept of instrumental gesture, which can be defined as physical

interaction with a concrete object (Cadoz and Wanderley, 2000). Thus,

in instrumental gestures there is always an energy transfer between

the human actor and an external object that is being excited or ma-

nipulated. This is in relation to the notion of manipulative gesture

(Quek, McNeill, Bryll, Duncan, Ma, Kirbas, McCullough, and Ansari,

2002) and can be contrasted with empty-handed gestures (Miranda and

Wanderley, 2006), which the human performs without contact with an

external object. Empty-handed gestures are sometimes also referred to as

semaphoric or non-contact gestures and have been studied, for example,

as accompaniment to speech communication (Kendon, 2004) or musical

performance (Godøy and Leman, 2009), although their communicative

value as a stand-alone source of information has also been underlined

(McNeill, 2005).

Godøy and Leman (2009) have collected studies on the concept of

musical gesture and the way people tend to physically react to the music
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they perceive. A tight relationship between bodily movements in both

creation and imitation of musically meaningful actions is portrayed.

Jensenius (2008) has discussed gestures from different perspectives in

the context of music-related body movement. His tripartite approach to

gesture research presents gesture as means for communication, control,

or as mental imagery. In communication, gestures are considered related

to objects of language, always conveying a meaning or intention of the

person making them and often accompanying speech to emphasize the

message. Gestures for control, on the other hand, are more or less

the traditional HCI viewpoint on gesture, considering them as actions

of intentionally inciting or modifying system behavior by meaningful

actions. Mental imagery refers to higher-level, metaphorical meanings

the gestures can be associated with.

Gestures can be considered as objects characterized by their morphology.

Gesture phrases have been characterized as consisting of preparation,

nucleus, and retraction (Kendon, 1972). Following Cadoz and Wanderley

(2000) and Van Nort (2009), gestures can be divided into different types

based on their macro-level morphology. Impulsive gestures are short in

time, defined by a near discrete identifiable point in time when they

occur. A single tap on a table is an impulsive gesture, for example.

What is essential is that the excitation energy is impulse-like. Sustained

gestures, on the other hand, have an arbitrary duration and are charac-

terized by continuous excitation energy. Whistling a note for a period

of time can be considered a sustained gesture. In addition, there are

iterative gestures that are formed by sequentially producing impulsive

or sustained gestures. Clapping to a beat is an example of an iterative

gesture. Following Schaefferian principles of the morphologies of sound

objects (Schaeffer, 1966, 1998) and relating these to gestures, dwelling

deeper in morphological levels is possible, considering, for example, the

mass, timbre, motion, and dynamic profile of the sound or gesture object

(Van Nort, 2009).

Despite the extensive studies on action-sound relationship and musical

gesture, to date the mainstream of research in the field seems to have

focused on utilizing a physical gesture as input to sounding (musical)

systems to generate and/or modify the output sound. Accelerometers,

haptic controllers, cameras, and touch sensors have become the tools of

the trade of new control input mechanisms. While this body of research

is solid and has been utilized in the development of many HCI interfaces
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seen in the recent past, the research does not directly consider the use

of sounding actions, captured with a microphone, as their own group of

gestures on a larger scale.

2.1 Sonic Gestures as Input in HCI

In this thesis and Publication I, sonic gestures are defined as human-

generated sound-producing actions that convey information. In the con-

text of this thesis, the information is conveyed to a computational system,

imposing interactions between the human and the computer. While the

mainstream of gesture-sound and action-sound related research mainly

utilizes physical gestures, tracked by motion sensors or video cameras, to

inform the sound generated by the system, in this work the sound always

occurs prior to the computation. In other words, the primary interest is

not necessarily in tracking the gesture creating the sound, but the sound

parameters that are used to inform and elicit the interaction.

In contrast to the abovementioned gesture definition of Cadoz (1988),

sonic gestures can be vocally produced, as long as they are not speech.

Non-speech utterances and other vocal sounds are a powerful conveyor

of information, as has been demonstrated, for example, by Ekman and

Rinott (2010) in the context of using vocal sounds as a sketching tool

for sonic interactions and Tuuri (2011) in studies on the communicative

potential of vocal gestures.

While gestures have been stated to be always dynamic (Mulder, 2000),

one can argue that a gesture can also have static properties. For sonic

gestures, consider humming as an example. Humming with a constant

pitch and loudness, apart from having an identifiable start and end, has

a static body in terms of spectral properties and energy. Humming with a

varying pitch, by contrast, has a dynamic body.

Everything stated above on gesture morphologies applies also to sonic

gestures, which may be impulsive, iterative, or sustained. One can

argue that impulsive gestures are better suited for discrete interactions

and sustained gestures for continuous interactions, but as has been

demonstrated, for example, by Sporka (2008, 2009), sustained pitched

sonic gestures are also applicable for conveying discrete or event-based

information, for example, by mapping certain pitch patterns of humming

or whistling to keyboard commands.
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In the design of sonic interactions, sonic gestures serve as an interesting

way of providing dual sonic feedback. In addition to the sonic feedback

displayed by the interactive system, the sonic gesture itself is typically

audible to the person performing it, which yields immediate feedback on

the action. This implies also that the person interacting with the system

can monitor and learn from the sounds he or she is making.

As discussed in Publication I, sonic gestures can be a very rich conveyor

of information. For example, the type of gesture, the volume and

timbre, and the direction of occurrence can be inferred from isolated sonic

gestures. Also continuous information, such as pitch and tempo and their

temporal variations, and rhythmic patterns or sequences of gestures can

be extracted from iterative and sustained gestures.

While the variety and potential information that sonic gestures can

convey is unquestionably rich, one main challenge for the interaction

designer or interface implementer is to find suitable computational means

of tracking the information. However, as will be discussed later in this

thesis, several tools for reliable real-time information acquisition from

these sounds actually already exist, and the task at hand is more a matter

of choosing the proper tool.

2.2 Applications of Sonic Gestures in HCI

While the use of sonic gestures as input is still marginal compared to

the use of traditional physical gestures, several interesting examples of

their utility have emerged during the past decade. These examples serve

to exhibit the rich interaction affordances of sonic gestures as well as

concretize the taxonomical dimensions discussed above. These examples

show that both discrete and continuous interactions are feasible using

sonic gestures.

Probably the best-known application of sonic gestures, turning elec-

tronic devices on and off with sound, dates all the way back to the 1960s

and has since been popularized as a concept mainly by movies. This is a

textbook example of discrete interaction with sonic gestures. The earliest

devices have not only utilized hand claps and short hand-clap patterns,

but also dog whistles as a means for sonic input1.

Another example of discrete interactions by sonic gestures has been pre-

sented by Vesa and Lokki (2005), who developed a finger-snap interface

1http://www.time.com/time/magazine/article/0,9171,941481,00.html
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for controlling a music player application. They use two microphones

attached to the headset of the user to track the position of the finger snap

around the head (left/right/center) and map this position to music player

functions (previous track/next track/play or pause).

Apart from utilizing a single discrete impulsive gesture as input, in-

terfaces can be developed to distinguish between different gesture types.

This has been demonstrated in Publication V with a hand-clap interface

that can be taught to recognize different types of hand claps of the

user. This information can then be mapped to desired system functions.

Furthermore, the hand-clap interface supports tempo tracking, making

tracking continuous information from iterative hand clapping gestures

possible. While the interface has been labeled as “hand clap interface”, it

is fully capable of functioning with other sharp impulsive sonic gestures

as well. As example applications of the utility of the interface, the

authors first presented a sampler driven by sonic gestures, a music tempo

control application controlled by continuous hand clapping, and a virtual

audience application, in which the user can entrain a simulated crowd of

clappers to synchronize with the tempo of the user. These applications are

presented in more detail in Publication V. The same interface was used

as the backbone of the virtual Flamenco tutor application of Publication

VI.

Hanahara, Tada, and Muroi (2007) presented the idea of a hand

clapping language for human-robot communication. The aim of the

research was to provide a shared language among humans and robots

instead of having a separate human-to-robot language and a robot-

to-robot messaging system, thus increasing the social dimensions of

interaction.

The use of impulsive vocal sounds as input has been utilized, for ex-

ample, by Hazan (2004), who has developed an application of controlling

a drum sampler with beatboxing sounds, that is vocally imitated drum

sounds. This research later resulted in the launch of the BoomClap

application for the iOS devices. Kapur, Benning, and Tzanetakis (2004)

also studied beat-boxing as input, but for music query application.

Considering sustained sonic gestures, many of the presented appli-

cations and interfaces are based on tracking the pitch of humming or

whistling. Sporka (2008) has studied a number of ways of using pitched

non-speech sounds in different applications, including cursor control,
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a humming alphabet for keyboard emulation, and control of computer

games. The latter aspect was also studied by Hämäläinen (2007).

Vocally produced sounds are also applied to control the Vocal Joystick

(Bilmes, Malkin, Li, Harada, Kilanski, Kirchhoffi, Wright, Subramanya,

Landay, Dowden, et al., 2006), in which different vowels are mapped to

different cursor movement directions in a continuous two-dimensional

mapping. The amplitude of the sound is mapped to the movement speed

and selection can be indicated by a short hissing sound.

Scratch Input (Harrison and Hudson, 2008) is an interface utilizing

instrumental sonic gestures, namely scratching surfaces. With a piezo-

electric contact microphone placed on a wall or tabletop, for example, the

sounds resulting from human actions on these surfaces can be captured

from a relatively large distance without the danger of environmental

airborne sounds interfering in the process. Scratch Input can be taught

a large number of sonic gestures by means of machine learning and is

capable of both discrete (for example, a gesture dictionary) and continuous

(for example, a circular scratching motion to control ramping up or down

the volume) interactions.

Another instrumental and unpitched sonic gesture has been innova-

tively utilized by Wang (2009), who has developed the iPhone Ocarina

application. The user blows on the microphone of the iPhone to excite

a physical model of an ocarina (based on the flute model of Välimäki,

Karjalainen, Janosy, and Laine (1992)), while fingers on the touch screen

are used to control the pitch output. The interaction closely relates to that

of playing a real ocarina.
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3. Acquisition of Information from
Percussive Sonic Gestures

There is lots of potential information that sonic gestures can convey. For

humans, the task of decoding this information relies mainly on tacit

knowledge developed from past experience and exposure to the sounds

in context, but for the computer the intelligence of tracking the essential

parameters must be developed by the engineer or the interaction designer.

This often involves the development of specialized algorithms capable

of listening to the sounds, a problem for which the literature is vast in

the fields of speech recognition and music information retrieval (MIR).

The MIR Toolbox (Lartillot, Toiviainen, and Eerola, 2008), for example,

contains a set of MIR analysis techniques developed for Matlab. This kind

of algorithms can also be seen as a pre-requisite for developing interactive

systems utilizing sound as input, in which case they also are required to

function in real-time.

In this thesis, the main focus in sound parameter recognition is on

percussive sounds, such as the sound of hand clapping or knocking on

a table. While these are impulsive gestures, they are also the building

blocks of several iterative gestures. Therefore, of special interest are both

sound event recognition techniques and algorithms for tracking continu-

ous information, such as tempo and beat, or their higher-level derivatives.

The overall procedure of information retrieval from percussive sounds as

presented in the context of this thesis is depicted in Figure 3.1.

Event Detection Tempo/Beat-Trackingaudio stream

event labels and times tempo, beat

Figure 3.1. Information retrieval from a percussive sound stream.
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3.1 Percussive Event Recognition

Percussive sound event recognition has been most intensively studied

in the field of MIR, which has produced several techniques and studies

on drum hit classification, for example. Often the aim is to apply

these techniques in automatic transcription systems, database queries,

or musical editing software. Due to the nature of these application

areas, offline methods are typically considered sufficient. However, also

real-time techniques have started to emerge to be used in, for example,

automatic accompaniment systems, for which the real-time requirements

are rather strict.

The recognition of percussive sounds typically consists of three steps,

onset detection, feature extraction, and classification, although in some

techniques the steps are combined (FitzGerald and Paulus, 2006). The

steps are visualized in Figure 3.2. In the onset detection step, the

potential occurrences of the target sounds are tracked from the audio

signal (Bello, Daudet, Abdallah, Duxbury, Davies, and Sandler, 2005;

Dixon, 2006) followed by computing desired features around these onsets

from the audio signal. Classification is then performed based on these

features, typically by a chosen machine learning technique. There are

both supervised and unsupervised classification techniques; in the former,

the classifier is first taught by a labeled corpus of relevant sounds to

identify their differences and in the latter the classifier learns the labels

autonomously.

Onset Detection Feature Extraction Classification
audio

event

labels

Figure 3.2. Steps of percussive event recognition (typical approach). In an alternative
scheme, a hybrid method can combine the three steps into a single algorithm.

The requirements for event recognition algorithms depend not only

on the target sound events to be tracked, but also on other signal

properties. A very important distinction is that of monophonic and

polyphonic signals. In monophonic signals, the only sound events that

appear can be basically assumed to be target events, in which case

the detection is relatively simple. However, in practice the signals are

often polyphonic at least to some degree, as is definitely the case, for

example, with musical signals, which complicates the event recognition

tremendously as there can be numerous simultaneously sounding events
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present at the signal at any time. Percussive sounds, however, are usually

quite distinctive in the mix, as they are typically unpitched and have a

pronounced transient around the onset.

In the remainder of this section, a summary of applicable onset de-

tection, feature extraction, and classification techniques for percussive

sounds is presented based on previous studies.

3.1.1 Onset detection

Bello et al. (2005) describe onset detection in general as a three-stage

process of pre-processing, reduction, and peak-picking. After a possible

initial step of pre-processing the audio, e.g, by digital filtering to suppress

uninteresting frequency bands, the audio signal is reduced, that is,

subsampled, yielding a so-called detection function (Bello et al., 2005;

Dixon, 2006). The detection function is then processed by a peak-picking

algorithm, looking for the onset occurrences.

The reduction step often aims at approximating the amplitude envelope

of the signal. There are several ways of achieving this, the most

straightforward ones being half-wave rectification of the signal followed

by low-pass filtering and the computation of signal energy. These two

approaches are illustrated in Figure 3.3. Squaring the signal has the

advantage of suppressing the low-amplitude portions of the signal with

respect to the high-amplitude ones, making the detection function more

robust against disturbances and background noise.

Often the energy function is not applied directly as the detection

function; differentiating the energy function provides a function with

pronounced peaks at points of rapidly increasing energy. This is especially

useful in the context of percussive sounds, which typically have a very

pronounced initial transient. Alternatively, the envelope can be followed

non-linearly as suggested by Cook (2002), by making the envelope follower

react faster to increasing than decreasing signal energy. This can be

especially useful with percussive sounds due to their fast attack. If

the signal has been pre-processed by a filter bank, the envelope can be

estimated for all the individual bands or the ones that are considered

relevant for the target events. A filterbank may also be used to account

for the psychoacoustics in onset detection (Klapuri, 1999).

Envelope followers are not the only means for percussive event detec-

tion, though. An alternative is to compute cross-correlation between

the signal and a reference sample representing the interesting events
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Figure 3.3. Two examples of detection functions by signal reduction for a musical signal
waveform (top figure, sampling frequency 44100 Hz). The sharp peaks
correspond to percussive onsets. The lowpass filter in the first technique
(middle figure) is an averaging finite impulse response (FIR) filter with 882
taps and the energy (bottom figure) is computed in the second technique in
20 ms frames.

(Zils, Pachet, Delerue, and Gouyon, 2002) or utilizing temporal changes

in the audio signal features, such as spectral flux or phase deviation

(Dixon, 2006). Also, it is possible to separate the steady-state signal from

the transient components by a sinusoids+noise decomposition (Duxbury,

Davies, and Sandler, 2001) or other signal modeling techniques. The

separated transient signal often effectively marks the percussive onsets,

which stand out from the steady-state signal. This separation can be

effective as such, but mostly relates to pre-processing the signal prior to

the reduction step and is essential in the case of polyphonic signals.

Yet another group of techniques is probabilistic reduction, which infers

onset occurrences based on a statistical model of some signal properties

(Bello et al., 2005). The aim can be to detect change-points or surprises in

the signal, which are emphasized around sharp onsets. It is also possible

to directly model the interesting event instances and detect them from the

audio stream, as will be discussed in the next section.
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After the detection function has been computed, the detected signal is

processed by a peak-picking algorithm, that is decision criteria are applied

to find the onset occurrences (Bello et al., 2005; Dixon, 2006). The most

basic form of peak-picking is to use a fixed threshold value, marking as

onsets all the time instances where the detection function gets a higher

value than the threshold. This approach can be sufficient for signals

that have low background noise and consist mostly of desired sound

events. In practical circumstances, however, signals tend to have both

noise and other interfering sound events, and as a remedy an adaptive

threshold value can provide better results. The adaptive threshold is often

computed as a smoothed and scaled version of the detection function, for

example by low-pass filtering or median filtering the detection function

and multiplying with a constant (Bello et al., 2005).

A problem related to peak-picking and onset detection in general is

that in the case of some drum hits, for example, the onset itself may

be noisy due to double hits (drum stick bouncing several times on the

membrane) or the detection function might provide more than one sharp

peak per event. A means to overcome these issues is to utilize a temporal

mask after the initial detection function peak to eliminate the accidental

detection of peaks immediately following the first one.

3.1.2 Feature extraction and classification

In a typical scenario of percussive event recognition, after initial onset

detection the audio around an onset is processed to infer the class of that

event. First, a set of features is extracted from the audio data, followed by

a classification of the event based on those features. Numerous techniques

of varying complexity for both feature computation and classification have

been proposed in the past. In general, features are computed in short time

frames, especially for percussive sounds for which the event type-specific

information often is found immediately after the onset within a relatively

short time frame.

Audio signal features can be roughly grouped into temporal, spectral,

and cepstral features (Xu, Zhu, and Tian, 2002). Temporal features are

derived from the time-domain representation of the signal. Examples

of such temporal features are signal energy, signal power, attack time,

decay time, and zero-crossing rate (Gouyon, Pachet, and Delerue, 2000),

temporal centroid and crest factor (Tanghe, Degroeve, and Baets, 2005)
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and temporal variations of subsequent frame-level features (Herrera,

Dehamel, and Gouyon, 2003).

Spectral features, on the other hand, are derived in the frequency

domain, typically after computing the fast Fourier transform (FFT) for

the signal (Herrera, Yeterian, and Gouyon, 2002; Herrera et al., 2003).

While the spectral bins themselves can be utilized as features, it is more

common to compute more parametric representations for the sounds, such

as the spectral centroid, spectral tilt, spectral kurtosis, spectral strong

peak, and spectral flatness (Herrera et al., 2002, 2003); dissonance (Uhle,

Dittmar, and Sporer, 2003); and band-energy ratios (Tanghe et al., 2005).

Gillet and Richard (2003) modeled the spectral peaks of different tabla

strokes by fitting a Gaussian distribution to the computed spectra.

Cepstral features are basically the cepstral coefficients of the signal

computed as the Fourier transform of the logarithmic spectrum of the

signal. The most commonly used variant of cepstral coefficients are the

Mel-frequency cepstral coefficients (MFCCs), in which the frequencies are

mapped to the Mel scale prior to computing the logarithm and making a

discrete cosine transform on the resulting Mel spectrum (Tanghe et al.,

2005). The main advantage of MFCCs is that the Mel scale provides a

better match to the frequency resolution of human hearing than a linear

scale.

It is also possible to compute higher-level features not strictly fitting the

categorization above. Features such as percussiveness and noise likeness

(Uhle et al., 2003) have been shown to be relevant to detect drum sounds

in polyphonic signals.

The set of possible features to be extracted is potentially very large,

which naturally affects the computing time of the subsequent classifi-

cation step. There are, roughly speaking, two families of techniques to

reduce the number of features, namely automatic feature selection and

feature space dimensionality reduction. The aim in feature selection is to

remove redundant or irrelevant features and find an optimal number and

set of features (Herrera et al., 2002). There are different approaches and

algorithms for feature selection, which can be categorized as filter models,

wrapper models, and hybrid models (Liu and Yu, 2005). For feature space

dimensionality reduction, one popular technique is principal component

analysis (PCA) (Bishop, 2006), which aims at transforming the possibly

correlated features to uncorrelated ones by an orthogonal transformation.
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After the features have been computed, they can be used as input to

a classification algorithm. There are a multitude of possible approaches

to the classification problem; here, the main focus is on real-time tech-

niques1 that have been utilized in percussive sound classification.

Decision trees are possibly conceptually the simplest classificationmethod.

A decision tree is a heuristic set of logical rules that operate on the

features, often setting boundary conditions such as “if signal energy is

less than X and the spectral centroid is larger than Y, then the event is

of class Z”. Decision trees have the advantage of being able to utilize any

information available on the event properties beforehand, but they can

also be taught automatically from data by supervised learning methods

(Quinlan, 1986; Gelfand, Ravishankar, and Delp, 1991; Safavian and

Landgrebe, 1991). A key challenge is to avoid overfitting the data, as

automatic tree induction techniques may be prone to setting the boundary

conditions too case-specific (Safavian and Landgrebe, 1991). Decision

trees have been applied in sound classification, for example, by Jensen

and Arnspang (1999).

Support vector machines (SVM) are a classification technique that maps

the feature space into another space, where the features characteristic to

different classes are clearly separated (Bishop, 2006). The advantage is

that while classifier boundaries may be sometimes impossible to define in

the original space, they can be easier to compute in a suitable mapping

space. SVMs have been used for percussive sound classification, for

example, by Steelant, Tanghe, Degroeve, Baets, Leman, Martens, and

Mulder (2004), Tanghe et al. (2005), and Gillet and Richard (2008).

Other “classical” machine learning techniques applied in percussive

sound classification are neural networks (Tindale, Kapur, Tzanetakis,

and Fujinaga, 2004), K-Nearest Neighbors algorithm (Herrera et al.,

2003), and naïve Bayes classifier, which was applied in Publication

II to classify different hand clap types, using either spectral bins of

a low-order FFT or the filter coefficients of a second-order resonator

fitted to the spectrum of each clap type as features. Classification

by independent subspace analysis (Uhle et al., 2003), fuzzy logic and

self-organizing maps (Eigenfeldt and Pasquier, 2010), and agent-based

techniques (Aucouturier and Pachet, 2005) have also been deployed.

1Note that the real-time requirements apply to the classification procedure, not
necessarily to the learning stage, as it can usually be undertaken beforehand.
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3.1.3 Hybrid methods

Hybrid methods for sound event recognition are techniques that do not

require a separate step for onset detection, but instead combine this with

the feature extraction and classification. Often these techniques treat the

audio signal as an unknown sequence of potential events, examine the

signal in short segments, and classify these segments into events based

on sophisticated machine-learning algorithms.

Hybrid event recognition methods tend to be either template-based,

probabilistic, or both. In template-based methods, the sounds to be

detected from the signal are modeled by a template of some characteristic

properties of those sound events. Zils et al. (2002) approached the drum

track extraction problem by an analysis-synthesis technique that uses an

initial sound prototype (temporal model) for the bass and snare drum,

computes the correlation of these prototypes over the signal, and modifies

the prototypes iteratively to closer match the detected, highly correlative

instances, thus synthesizing new sounds that should match those in the

signal. Yoshii, Goto, and Okuno (2004) have presented another two-step

technique based on spectral templates, consisting of template-matching

and template-adaptation. In the first step, a seed template is compared to

the audio signal frame-by-frame with a distance metric. In the adaptation

step, the seed template is refined based on the closest occurrences in the

signal, tuning it towards the specific instances present in that particular

signal. This is relevant in musical signals, as the drum sounds typically

vary between pieces. The technique has been utilized in a drum sound

equalizer for volume and timbre control (Yoshii, Goto, and Okuno, 2005).

Puckette, Apel, and Zicarelli (1998) have developed a template-based

percussive sound recognition object, bonk˜, for real-time applications

in two popular audio programming languages, Pure Data (PD) and

Max/MSP. The algorithm processes the audio signal in frames with a

filterbank of second-order band-pass filters derived from the constant-Q

transform, and computes the signal power at each frequency band. These

power estimates are utilized both for onset detection and for learning

templates of different sounds. These templates essentially capture in

a compact form the spectral power distribution of sound events. Once

learned, the templates are used by bonk˜ to detect and classify sound

events in an audio stream.
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Non-negative matrix factorization is a template-based technique for

non-negative data, aiming to decompose a non-negative matrix of obser-

vations into two matrices, a template and an excitation matrix (Cemgil,

2009). The original utility of the technique was in data compression, but it

has recently been found useful also in audio classification and drum track

extraction problems (Dessein and Lemaitre, 2010; Helén and Virtanen,

2005).

Probabilistic techniques often utilize Hidden Markov Models (HMM)

(Bishop, 2006) as part of the inference engine. HMMs are a well-known

technique in speech processing, for example, and have been shown to be

applicable in real-time techniques (Cappé, Moulines, and Ryden, 2005).

In a HMM, the underlying assumption is that the stream of events can be

modeled as a Markov chain, where the current state only depends on the

previous one. HMMs have been applied in percussive sound recognition

with a hybrid approach, for example, by Paulus and Klapuri (2007, 2009),

and also after onset detection (and feature extraction) by Paulus and

Klapuri (2003) and Gillet and Richard (2003).

An increasingly popular group of probabilistic techniques in MIR prob-

lems are those based on Bayesian modeling and inference. Bayesian

techniques have been used, for example, in pitch-tracking and tempo

estimation, as will be discussed below, but also in percussive sound

recognition. The foundation of Bayesian techniques lies in the Bayes’

rule of conditional probability. For observed data y and unobservable

quantities θ, the joint probability distribution can be written as

p(θ, y) = p(θ)p(y|θ), (3.1)

where p(θ) is the prior distribution for θ and p(y|θ) the sampling distribu-

tion (Andrew, Carlin, Stern, and Rubin, 2004). The Bayes’ rule states that

the conditional probability of θ given observations y is

p(y|θ) =
p(θ, y)
p(y)

=
p(θ)p(y|θ)

p(y)
. (3.2)

The objective in Bayesian modeling, when applied as a classification

tool, is to construct a probabilistic model for sound generation. A key

advantage in Bayesian techniques is that unlike in some other techniques

discussed above, it is possible to include any prior information on the

problem in the model (Bishop, 2006) in the form of prior distributions. The

model can contain one or more hidden variables, that is variables that are

not directly observable from the data. One or more of these parameters is

then the objective of probabilistic inference.
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Bayesian models are conveniently expressed in graphical form (Cemgil,

2004; Barber and Cemgil, 2010). The conditional dependencies of the

probability distributions can be drawn as a directed acyclic graph where

the nodes correspond to probabilistic variables and edges connecting

the nodes to the conditional dependencies. HMM can also be defined

by Bayesian principles of conditional independency and is essentially a

special case of Bayesian modeling (Bishop, 2006).

3.2 Tracking the Tempo and Beat

Iterative production of percussive sounds can yield a continuous event

stream. Most music, for example, inherently consists at least to some

degree of sequential events reproduced under certain rules. These repet-

itive structures lay the foundation for regular rhythms, as experienced

in the majority of mainstream music we are exposed to. These repetitive

rhythms are not only specific to music, though, but our natural actions

such as heartbeat, walking, and breathing, to name a few, are also

rhythmic. Such rhythmic streams contain contain higher-level continuous

information, such as tempo and beat, as opposed to isolated events. This

information can also be computationally retrieved from audio signals, but

first a discussion on the key definitions from rhythmic perception studies

is in order.

In a stream of events with equal temporal distance, a sense of pulse

patterns emerges. Pulses can be defined as equidistant, isochronous time

markings (Thaut, 2005), and they can be thought to lay the foundation

for rhythm formation. By contrast, beats are perceived and audible pulse

markings, which demarcate the pulse locations, but in practical contexts,

such as live music, do not always lie strictly on the exact pulse location.

Tempo can be defined as the repetition rate of pulses or beats, that

is, with respect to the interval of pulses in a pulse train, consisting

of temporally equally spaced pulses. While in music, especially in live

situations, beats do not always lie on the exact pulse and the tempo

may change during a performance, the tempo can still be at least locally

estimated as discussed above. Tempo is most often measured as beats per

minute (bpm), and for a pulse train this can be mathematically expressed

as

θbpm =
60
Tooi

, (3.3)
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where θbpm is the tempo and Tooi is the pulse interval in seconds. In music,

tempo defines the occurrence “speed” of rhythmic events. In contrast, beat

can be defined as the locations of audible events in the pulse train, that is

the “foot-tapping rate” (Thaut, 2005).

The musical meter can be defined with respect to the beat structure

(Lerdahl, Jackendoff, and Jackendoff, 1996; Thaut, 2005). It essentially

defines how beats are grouped in patterns, in music referred to as

measures or bars. In Western music theory, the meter is often utilized

synonymously with the time signature of music, such as 3/4, 4/4, or 12/8.

Considering the time signature of 3/4, containing three quarter-note beats

within a bar, the rhythmic structure is typically defined by placing a

metrical accent on the first beat of the bar. This can be achieved by timbral

or dynamic modulations of the beat, for example by simply playing the

beat louder or with a different kind of drum stroke. However, the relation

between grouping and accent is not fixed (Krumhansl, 2000).

Metrical levels are defined by beat divisions (Lerdahl et al., 1996;

Gouyon and Dixon, 2005). They can be seen as a layered hierarchy of

grids consisting of small time divisions between beats on low levels and

longer divisions on higher levels. The metric subdivisions, regardless of

the time signature, are often thought of as lying on a temporal grid, the

spacing of which is defined by the underlying pulse train. The smallest

time division between two musical events is referred to as tatum. A beat

on a higher level must always align with those on lower levels. The

grid-based approach is the foundation of many beat-tracking systems,

which rely on rhythmic quantization, that is aligning the observed onsets

on the metrical grid. Metrical levels also relate to the definition and

measurement of tempo: the tempo depends on the metrical level, as the

metrical level dictates the number of beats per measure and, thus, per

time unit (Gouyon and Dixon, 2005).

In order to track tempo from audio streams, a trivial solution would

be to detect the events of a rhythmic event stream, compute their time

difference, and utilize this or its running average to yield an estimate

for the tempo. However, in practical contexts this estimate is usually

flawed, because the rhythmic patterns do not always have a beat strictly

at every pulse location, and even if they do, a missed event detection

would immediately lead in the elongation of the computed pulse interval.

Offbeat events and irregular metric divisions complicate the task even

further. Therefore, more intelligent approaches for tempo-tracking are
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required. Several approaches have been proposed in the past for various

contexts. In this study, the discussion is restricted mainly to real-time

techniques.

Goto and Muraoka (1996) applied a multiple-agent architecture in beat-

tracking. The agents, informed by musical knowledge, maintain their own

beat-position hypothesis, can evaluate it and adapt their strategy based

on the input, and can interact with other agents to co-operatively track

the beat. The input to the agents consists of onset times.

The technique of Scheirer (1998) for tracking the tempo and beat

directly from an audio signal is based on a network of resonant filters

and envelope extraction. The signal is passed through a bank of band-

pass filters and banks of parallel comb filters. The resonators are used

in order to phase-lock with the beat of the signal and to determine

the pulse frequency. Analytically, the technique bears resemblance to

autocorrelation methods for tempo-tracking. Klapuri, Eronen, and Astola

(2006) later applied a similar use of comb filters to the analysis of the

musical meter on multiple hierarchical levels.

Seppänen presented a tempo-tracking technique based on OOI histo-

grams (Seppänen, 2001a,b). The histogram is updated for each detected

onset in a weighted manner that gradually de-emphasizes the past

observations. By smoothing and using a tatum grid to align the histogram

peak on the metric grid, the algorithm is relatively robust for small

deviations in tempo. The tatum interval and metric quantization are also

the backbones of B-Keeper (Robertson and Plumbley, 2007).

Tracking the tempo and beat can also be approached by statistical

techniques. Cemgil, Kappen, Desain, and Honing (2001) have proposed

using a tempogram representation and Kalman filtering and Cemgil and

Kappen (2003) have utilized a probabilistic switching state-space model

and Monte Carlo methods.

For more detailed reviews on tempo tracking and rhythm description

systems, see the work of Dixon (2001) and Gouyon and Dixon (2005).
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4. Rhythmic Interaction and
Computational Systems

In this section, the phenomena related to rhythmic interaction with

computational systems are discussed. To ground the discussion, relevant

fundamentals of human rhythm perception and production are presented,

including definitions for key concepts such as anticipation and prediction,

entrainment, and sensorimotor synchronization. This is followed by a

discussion on the application domains in HCI, with examples of related

systems. Finally, evaluation of rhythmic interaction systems based

on the HCI methodology and approaches to evaluating the existing

implementations is discussed.

4.1 Human Factors in Rhythm Perception, Production, and
Synchronization

The human perception of rhythm as well as the ability for rhythmic

production has received relatively widespread attention in the fields of

psychology, music cognition, neuroscience, HCI, and SID. Both rhythmic

perception and production are suggested to be hard-wired in our brain

as biological oscillatory circuits (Thaut, 2005). Also, humans are better

at perceiving the pulse from acoustic events than from visual events

(Parncutt, 1994), which suggests that sound is the key modality in

rhythmic perception and comprehension.

Rhythmic interaction, however, is typically multimodal. While sound

often plays a key role in rhythmic perception, it is often accompanied

by visual and/or tactile cues. Consider tapping the table to the beat

of music, for example, where the rhythmic perception is augmented

by the tactile feel of hitting the table. A more complex example is a

symphony orchestra, where the movements of the conductor are perceived

visually by the instrumentalists, informing them about timing, tempo,
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and musical accentuation of the performance. Also, while we are able to

perceive a rhythm by hearing it, in order to replicate or synchronize to

it we need our motor system. Rhythmic interaction with sound as one of

the modalities is one example of continuous sonic interaction (Rocchesso

et al., 2009), especially when considered as a cyclic and periodic process.

Several studies have suggested the auditory perception of musical move-

ment and rhythm to be interconnected to physical movement. Perception

of a constant beat can lead to tapping the same beat with the foot, for

example, portraying embodied cognition related to rhythm perception.

Although our natural reactions and movements in synchronizing, for

example, dance movements to the beat of the music differ, there are

also similarities in the movement trajectories (Toiviainen, Luck, and

Thompson, 2009). Periodic movements can also be observed in 2–4 year

old children when exposed to familiar music, but synchronization to the

tempo is vague at that young age (Eerola, Luck, and Toiviainen, 2006).

The perception of musical rhythm has been presented as a dynamic

process (Large and Kolen, 1994), in which the listener gets entrained by

the musical events. This has been theorized as a sense of an isochronous

pulse being activated in the listener when exposed to (regular) rhythms.

If the listener starts to produce rhythms along with the entraining

stimulus, the stimulus is often observed to drive the actions of the listener,

entraining them to the underlying pulse. Outside of the musical domain,

similar entrainment can also be witnessed in walking, when two (or more)

people spontaneously and subconsciously synchronize their pace. This

is related to the social dimension of synchronization and entrainment

(Nagaoka, Komori, and Yoshikawa, 2005).

Synchronization does not necessarily require a fixed external pulse. In

fact, emergent synchronization is a phenomenon often found in nature

(Strogatz, 2003) and can be witnessed, for example, in concert situations

when a crowd of people spontaneously synchronize their applause to call

for an encore.

While rhythmicity seems to be hard-wired into humans, it can be argued

without question that some people are better at rhythmic production

(and perception) than others. Rhythmic expertise can be improved by

training, but recent findings suggest that some people may be biologically

incapable of some forms of rhythmic perception, which verifies that there

can indeed be people who are “rhythm-deaf” when it comes to musical
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synchronization (Phillips-Silver, Toiviainen, Gosselin, Piché, Nozaradan,

Palmer, and Peretz, 2011).

When discussing periodic rhythms such as most musical rhythms,

rhythmic perception and action are guided by two interrelated concepts,

anticipation and prediction (Thaut, 2005). We make predictions of the

future and anticipate something to happen. According to Gordon (2000),

anticipation in musical patterns relates to being able to foretell the

upcoming musical events in familiar music, whereas prediction relates

to unfamiliar music involving educated guesses based on the previous

exposure to similar music. In other words, prediction is a more conscious

process than anticipation.

The phenomenon of being able to produce an action in synchrony with

an external event based on predicting or anticipating the occurrence of

this event is called sensorimotor synchronization (Repp, 2005). This

mechanism is the key to synchronizing movement to music. We can adapt

to its rhythm and anticipate the upcoming beat locations, performing

coordinated actions “in beat”. Also, as most of the popular music we are

exposed to tends to be strictly periodic and to have repetitive rhythmic

patterns, by experience we have the almost subconscious skill to predict

the upcoming rhythm events in a piece of popular music very shortly after

the piece has started playing.

Sensorimotor synchronization has been mostly studied in relatively

restricted settings with reductionist methods, such as finger tapping

to the pulse of a constant tempo (Repp, 2005). This approach can be

grounded on the fact that musical rhythms in general can be presented

as reduced forms of the actual rhythm, that is as rhythmic prototypes

(Lerdahl et al., 1996). Also, as stated by Repp (2005), rhythmic finger

movement is relevant to the playing of many instruments. However,

although this kind of studies definitely have taught us a lot about our

rhythmic capabilities, the process in practical situations of performative

music and live ensembles is more complex than replicating a pulse train.

It has been shown that when tempo gets fast, humans (be they trained

musicians or not) tend to simplify rhythms in tapping experiments

(Snyder, Hannon, Large, and Christiansen, 2006) and that faster tempo

leads to rhythmic assimilation (Repp, Luke Windsor, and Desain, 2002).

Also, uneven rhythms, which incorporate irregular metric divisions, can

be maintained at fast tempi, which do not allow mental subdivision to

elementary metrical pulses. However, the intervals corresponding to the
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metric divisions tend to be exaggerated (London, Keller, and Repp, 2004).

Rhythmic grouping has strong effects on timing, variability, tap force,

synchronization, but metrical structure or accents have been found to

have little effect (London et al., 2004; Repp et al., 2002).

Ensemble synchronization has been shown to be affected a lot by time

delays (Chafe and Gurevich, 2004; Chafe, Cáceres, and Gurevich, 2010).

This is the main reason why network-based ensemble performances, in

which the players are only connected via a network connection, have

been problematic. The same issue can cause problems also in rhythmic

interactive systems due to buffering and processing latencies; however, if

the rhythms are periodic, the human actor can compensate for a small

delay without letting it affect the performance, as long as the delay is

constant enough to be anticipated. Furthermore, delaying the decision

making in the system regarding the analysis of the user input is possible

in some cases, by starting a generic response immediately after detecting

an event and modifying the response as soon as the decision (for example,

classification of event type) has been made (Stowell and Plumbley, 2010).

Modeling the rhythmic behavior of the human computationally is pos-

sible. Thaut (2005) proposed a mathematical model of synchronization

and entrainment, while Darabi, Svensson, and Forbord (2010) modeled

parametrically the human responses to sudden tempo changes in a

tapping experiment with physical oscillatory systems. In Publication VII,

the performance of a human clapper learning Flamenco rhythms has been

realized as a virtual agent.

Auditory feedback and multisensory fusion have been found to support

human performance in tasks involving rhythmic effort, such as walking

(Visell, Fontana, Giordano, Nordahl, Serafin, and Bresin, 2009) and row-

ing (Schaffert, Mattes, and Effenberg, 2009, 2011). The study of Schaffert

et al. (2011) involved the use of sonification of boat acceleration in the

training of competitive rowing, which involves the synchronization of the

movement of many rowers. Comparatively simple sonification, which

aligned with the boat motion, was found to improve the performance. In

a completely different setting in a basic sonic interaction experiment for

giving auditory feedback on cutting vegetables in the kitchen, Rocchesso

et al. (2009) found that giving feedback with “upbeat” sonic markers and a

tempo adaptive to that of the cutting helped the cutter to maintain a more

regular cutting phase and relaxed action than a fixed tempo or downbeat

rhythm. On a more general level, Spillers (2008) has identified six design
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criteria for entrainment in interactive systems: they should be adjustable,

discreet, seamless, receptive to time and timing, responsive (that is, set

expectation and give feedback), and incorporate time and tempo to pace

the user.

4.2 Applications in HCI

Rhythmic HCI can be seen as an extension and integration of the

rhythmicity studies of neurophysiology and psychology on one hand

and human-computer interaction and music information retrieval on

the other. Rhythmic HCI can be witnessed, for example, in video

games, musical accompaniment systems, musical control simulations, and

musical education software. Here, a short review of these systems is

presented, with a special emphasis on systems utilizing sound as the

input modality.

4.2.1 Video games

Even relatively early computer games have incorporated some forms of

rhythmic elements. For example, the sports games in the 1980’s often

required rhythmic manipulation of the game controller in order to make

the runner run or the rower row. In the 1990’s, more music oriented

applications started to emerge, such as the dance games utilizing a special

dance mat controller on which the players needed to place their feet at

the correct times. While essentially rhythmical, these controllers and

interactions actually rely on an illusion of continuous interaction as each

control event is typically assessed as a discrete event not utilizing the

continuous information, such as tempo in the analysis. Nevertheless,

entrainment and synchronization play a key part in these games.

Musical games, such as Guitar Hero and Rock Band, are similar by

nature. The player needs to perform actions at the right time to score

well. It is noteworthy, however, that while the controller information

is utilized discretely, successful performance of these seemingly discrete

actions requires the above-discussed sensorimotor synchronization, that

is anticipation and prediction of the upcoming events.

Recently, we have witnessed several new interaction paradigms in video

games thanks to advances in controller technology. First, Nintendo Wii

brought the motion sensing capabilities into mainstream game controllers
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and, more recently, Microsoft’s Kinect, relying on camera-based move-

ment tracking, stripped the player of external controllers altogether.

Kinect also supports audio input by a microphone array, but, to date,

applications have made limited use of it.

4.2.2 Musical and rhythmic simulations and control

Simulating rhythmic behavior has been a point of study of Erkut (2006)

and Peltola, Erkut, Cook, and Välimäki (2007), who have simulated the

behavior of a crowd of clappers falling in and out of sync. The backbone

of the simulation is a virtual clapper agent based on a coupled oscillator

model, stating the preferred tempo and nonlinear alterations in clap OOI

as reactions to the difference with a lead oscillator. The model also affords

changing the level of synchronization. This body of work was utilized

in Publication V to simulate a virtual audience, synchronizing to the

clapping of a human.

Personal Orchestra is an audiovisual system simulating the conducting

of an orchestra (Borchers, Lee, Samminger, and Mühlhäuser, 2004). The

user can control the tempo and volume of the orchestra with an infrared

baton and direct the commands to specific sections. The orchestra is

actually a video recording that is synchronized to the motions of the user.

The beats on the video have been pre-marked and are synced with the

detected events of the user. A sophisticated time-stretching technique is

used to avoid audible artifacts.

Another virtual conducting system has been presented by Ilmonen and

Takala (1999). Here, the human conductor can conduct a band of virtual

musicians instead of a recording. The gestures of the conductor are

captured by motion tracking in order to derive the intended musical

parameters, such as tempo and beat, which are mapped to the actions

of the virtual agents.

Virtual Conductor (Reidsma, Nijholt, and Bos, 2008) approaches the

conducting of an orchestra from the opposite perspective, by simulating

the actions of a conductor. Virtual Conductor is a virtual agent that can

listen to an orchestra playing and react in a corrective way to deviations

from the desired tempo. The system follows the principles of mutually

coordinated anticipatory multimodal interaction (Nijholt, Reidsma, van

Welbergen, op den Akker, and Ruttkay, 2008), which have also been

deployed in other applications, namely a virtual dancer and a virtual
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sports trainer, all relying on a virtual agent making predictions on the

rhythmic actions of the user.

In Publication V, the hand clapping audience synthesis engine ClaPD of

Peltola et al. (2007) was utilized in conjunction with a hand clap analysis

interface capable of detecting the hand claps of the user and tracking the

tempo of continuous clapping. As a result, the user could become a part of

the clapping crowd, a lead clapper who could entrain and synchronize the

virtual clappers.

A simulation of interaction between a virtual Flamenco tutor and

a beginner learning Flamenco hand-clapping patterns was realized in

Publication VII. The implementation is based on a subjective experiment

where novices interacted with the virtual tutor. The statistical findings

from the evaluation were applied to inform a virtual model of a Flamenco

learner, which listens to the clapping of the tutor and adjusts the output

based on comparison between its own output and that of the tutor.

4.2.3 Musical accompaniment systems

Musical accompaniment systems are in general more sophisticated in

their analysis of the players’ performance than, for example, video games.

In order to produce meaningful accompaniment, musicological knowledge

must be incorporated in both the analysis engine and the accompaniment

synthesis or production.

B-Keeper by Robertson and Plumbley (2007) is a beat-tracking system

designed for live performances in order to synchronize an electronic

sequencer with a live drummer, without the need of a click-track. B-

Keeper analyzes the tempo of the drummer based on detecting the OOIs of

kick drum events and comparing this new estimate to the previous tempo

estimate, which is updated if a threshold condition is met. An additional

synchronization step, a small tempo adjustment by a simple probabilistic

method, is performed in order to synchronize the onsets in the sequencer

track and the live music more accurately.

A sophisticated example of a musical accompaniment system is the

percussionist robot Haile (Weinberg, Driscoll, and Parry, 2005; Weinberg

and Driscoll, 2006, 2007). Haile is capable of listening to the playing

of a human percussionist and reacting to this in different ways. The

backbone of the analysis engine is the onset detection by bonk˜ (Puckette

et al., 1998) and pitch and timbre recognition for assessing stroke types.

The rhythmic stability model of Desain and Honing (2002) is applied
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for higher-level rhythmic analysis (Weinberg et al., 2005). Collaborative

interaction is realized based on a model of interconnected musical net-

works (Weinberg, 2005) and six different interaction modes have been

deployed, ranging from call-and-response modes, such as imitation of

the playing of the user, and different transformations of the input to

perceptual accompaniment, where Haile plays simultaneously with the

user, initiating local call-and-response parts.

Ringomatic by Aucouturier and Pachet (2005) is another interactive

drummer application, a musical agent, which forms concatenative drum

tracks from drum samples based on a constraint-satisfaction mechanism.

The system can be controlled by MIDI messages in real-time. The agent

analyzes the drum samples based on various descriptors and, based on

the analysis of the MIDI messages, adapts the local constraint set.

ZooZBeat (Weinberg, Beck, and Godfrey, 2009) is a gesture-based mobile

music studio application and interaction paradigm, which maps physical

gestures such as shaking, tilting, tapping, and tossing into the musical

output. Using gestural control, the user can produce notes on a backing

track loop and expressively modulate the output. ZooZBeat is capable of

multi-player musical interaction via wireless data transfer between the

devices.

Antescofo (Cont, 2008) is a score following system, which enables the

synchronization of music from an electronic score to live music. The

system requires both the electronic and instrumental score, and it utilizes

audio and tempo agents for anticipatory synchronization of the musical

streams. Audio stream observations are based on a probabilistic model

that informs the anticipatory agents.

4.2.4 Rhythm education

Interactive systems are an attractive tool for rhythm education, as they

ideally can take the responsibility of music tutors at least in some

respect. They can also be cheaper and more accessible to people not

willing to invest large amounts of time and money in learning new

skills. Interactive systems, such as Haile (Weinberg et al., 2005), the

Personal Orchestra (Borchers et al., 2004) and the Virtual Conductor

(Reidsma et al., 2008), have been outlined as potential tools for rhythm

education. However, there are also dedicated educational systems, such

as T-RHYTHM, a rhythm education system for school children (Miura

and Sugimoto, 2006). T-RHYTHMmakes use of tactile actuators that give
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rhythmic stimuli to the students in sync with the music. This is especially

beneficial in ensemble playing situations, where the tactile stimuli can

effectively convey dedicated information to each student on their own

rhythmic performance, thus eliminating the potential auditory masking

effect from the surrounding musicians.

The iPalmas system of Publication VI, although primarily developed

as a testbed for rhythmic HCI, is also a rhythm education system. The

virtual Flamenco tutor can present new rhythmic patterns to the user

and give audiovisual feedback on the learning and rhythmic performance.

4.3 Evaluation of Rhythmic Interactive Systems

Traditional HCI interfaces and interaction paradigms have a strong

foundation in evaluation. Point-and-click interfaces have been around for

decades and the evaluation methodology is solid, typically deploying or

extending on Fitts’s law (Fitts, 1954), which predicts the time needed

to point to a target of certain width at a certain distance from the

initial hand position. This kind of evaluation methodology, based on

simple tasks, has also been proposed for gestural controllers (Wanderley

and Orio, 2002); however, it does not apply well, if at all, to rhythmic

interactive systems, because the definitions of “target”, “distance”, and

even “time” are not applicable in continuous, cyclic interaction. Stowell,

Robertson, Bryan-Kinns, and Plumbley (2009) have also pinpointed the

shortcomings of traditional evaluation methodology in musical interac-

tive systems, presenting both qualitative and quantitative alternative

approaches to their evaluation.

Three complete constructs can be seen in the task of HCI evaluation:

the human, the system, and their meeting point, that is the interaction.

Therefore, in order to get a comprehensive evaluation of an interactive

system and the interaction, all three should be acknowledged. Related

to rhythmic interaction, the sensorimotor synchronization studies (Repp,

2005), albeit carried out in reductionist settings, provide a baseline for

human rhythmic capabilities. Systemic factors such as input-output

latency and computational complexity, on the other hand, are objectively

measurable. The interaction part is the most difficult of the three to

tackle.

The evaluation of rhythmic interactive systems has often been studied

case-by-case, system-by-system, without a common framework. Qualita-
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tive methods, such as making observations on an interactive accompani-

ment system in a performative context (Robertson and Plumbley, 2007),

seem to dominate interaction assessment. ZooZBeat has been evaluated

qualitatively based on user feedback on using the application (Weinberg

et al., 2009). Haile, the robotic percussionist, has been evaluated by a user

study consisting of a perceptual experiment and a written questionnaire

with 14 subjects (Weinberg and Driscoll, 2007). The aim was to assess

the design, mechanics, interaction, and perception of Haile, resulting in

both qualitative and quantitative findings. Virtual Conductor (Reidsma

et al., 2008) has been evaluated in several sessions with groups of

musicians, resulting in qualitative findings and systemic development,

such as refinement of the tempo correction algorithm.

The evaluation of the iPalmas system, reported in Publication VI, fused

information from several angles. A subjective, task-based experiment

was carried out and applied to gather objective metrics measured by the

system and verbal and qualitative data from the comments of the subjects.

Publication VIII reports an attempt to formalize a design and evaluation

model for rhythmic interactive systems based on earlier work on multi-

modal interfaces, implementing the model as real-time Unified Modeling

Language (UML) constructs. This framework can be seen as a very

promising step towards a common evaluation methodology for interactive

systems not falling under the requirements of traditional HCI evaluation.
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This section summarizes the main results presented in the publications.

5.1 Publication I: Sonic Gestures as Input in Human-Computer
Interaction: Towards a Systematic Approach

Publication I defines sonic gestures as sound-producing actions that

convey information, in this case to a computational system. The definition

implies that in contrast to most previous studies on sound and gesture

(see Section 2), the information used as input in computational applica-

tions lies within the sound itself, that is in its extractable parameters.

Sonic gestures are considered as either impulsive, sustained, or iterative

based on their macro-level morphology stemming from previous studies

on musical gesture (Cadoz and Wanderley, 2000; Miranda and Wanderley,

2006; Godøy and Leman, 2009; Van Nort, 2009). Other taxonomical

dimensions are also discussed, namely if the sonic gesture is instru-

mental or empty-handed, pitched or unpitched, or static or dynamic.

The extractable parameters for a set of sonic gestures are presented

with respect to the gesture morphology. A novel hierarchical grouping

of these parameters for different gesture types is portrayed based on

the complexity of the gesture and the required parameter extraction

algorithm.

The major outcome of the discussion in the article is that there is a

rich variety of information that sonic gestures can convey. This outcome

is important in the design of interfaces utilizing sonic gestures as an

input, since a common framework of these gestures and their parameter

affordances has not been previously presented. In order to provide a

concrete toolbox of gestures and related information retrieval techniques,
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the use of design patterns (Borchers and Mühlhäuser, 1998; Borchers,

2001) is proposed as future work.

5.2 Publication II: Inferring the Hand Configuration from Hand
Clapping Sounds

In Publication II, the automatic recognition of a clapper’s hand configu-

ration was studied. As discussed by Repp (1987), humans are capable of

recognizing their own hand clapping sound from that of others. He also

presented an eight-class taxonomy of hand configurations based on the

angle and alignment of the hands relative to each other, showing that each

of these hand configurations would result in audibly different sounds.

This result was later utilized by Peltola et al. (2007), who built the hand

clapping synthesis engine ClaPD that modeled the sound of these eight

different hand configurations.

The aim of this study was to show that the hand configurations can also

be distinguished from each other by audio signal processing. Experiments

were performed with both synthetic hand clapping sounds, generated by

the hand clap synthesis engine ClaPD (Peltola et al., 2007), and real

hand clapping sounds of two subjects. Recordings of the eight hand

configurations were performed and the resulting data was used to train

and test a naïve Bayes classifier on two different feature sets: the

coefficients of a 128 bin FFT and those of a second-order all-pole filter

fitted to the clap spectrum under the assumption of a single prominent

resonance. The results show that indeed some hand configurations can

be easily differentiated from others based on their sound. For synthetic

claps, a controlled benchmark data set, the overall classification rate for

the filter coefficient features (69.9 %) was only marginally lower than for

the full FFT spectrum (71.7 %). Thus, for real hand clapping, the filter

coefficients were chosen as the representative features. For one subject,

the overall classification rate was 48 % and for the other, 64 %.

Certain hand configurations caused systematic classification errors,

suggesting that Repp’s taxonomy (Repp, 1987) is not completely unam-

biguous from the acoustic point of view. The results also are different for

the clapping sounds of different subjects, and an interesting finding was

that the classifier trained with one person’s clapping did not produce good

results for the other person, suggesting that there is personal information

in the clapping sounds.
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5.3 Publication III: Real-Time Recognition of Percussive Sounds by
a Model-Based Method

Publication III builds on Publication II and proposes a more sophisticated

Bayesian algorithm for percussive sound recognition. While the use

of Bayesian techniques has become popular in the field of MIR, the

techniques have typically only been suitable for offline processing due to

computational issues. The algorithm presented in this paper is capable

of real-time processing with a low latency due to buffering observation

samples. The probabilistic model of percussive sounds is based on spectral

template observations and a HMM. Inference in the model is realized

by fixed-lag smoothing instead of accumulating all the data, bringing

the algorithm to real-time performance. The well-known Expectation-

Maximization algorithm Bishop (2006) is applied as the technique for

learning spectral templates.

The technique was evaluated by a hand clapping sound set similar

to that of Publication II and by percussion instrument sounds, namely

different strokes on two Turkish instruments, the Darbuka (goblet drum)

and the Bendir (frame drum). The recordings were performed both in

anechoic conditions and in a standard listening room.

For the eight hand clapping modes of three subjects recorded in anechoic

conditions, the offline version (accumulating all the data) of the algorithm

yields an overall correct classification rate of 66 %, and 61 % for the real-

time version. In normal room conditions, the classification rate was 41 %

for one subject and 65 % for the other. These results are in line with those

of Publication II. Also, the finding that the classifier trained with the

clapping of one subject did not perform well with the clapping of another

subject was replicated, yielding a classification rate of 30 %.

For the percussion instruments, two types of strokes on each drum were

recorded: “düm” strokes (fingers hitting the membrane near the rim) and

“tek” strokes (hitting the rim with one finger). The metrics chosen in this

experiment, the precision, recall, and latency, are defined as

precision =
no. of correctly recognized events

no. of events recognized by the method
,

recall =
no. of correctly recognized events

no. of true events
,

latency = estimated onset time − true onset time.
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The objective was not only to find the classification precision and recall

rates, but also an optimal lag value for the fixed-lag smoothing.

In the overall results, the lag value of 20-30 ms is noticed to be a good

optimum with respect to the accuracy. Combined with the computational

latency this yields a total latency of around 50 ms. The overall precision

is over 85 % and recall over 80 %. However, there were differences in

the results depending on the room conditions, the results being better for

anechoic conditions (approximately 85 % precision and recall at 20 ms

lag for both cases as opposed to 80 % in normal room conditions). Also,

interestingly the results were better for the bendir, although its sound has

a significantly more resonant body than that of the darbuka.

The algorithm is implemented by the authors as a real-time deployable

module that can first be taught a number of percussive events and can

then, in real-time, detect and classify the events from an audio stream.

5.4 Publication IV: Sonic Handprints: Person Identification with
Hand Clapping Sounds by a Model-Based Method

Publication IV is based on the finding in Publication II and Publication

III that a hand clap recognition technique trained on the clapping of

one person does not perform well with that of another. Therefore, it is

reasonable to assume that the hand clapping sounds contain personal

information. The hypothesis in this study is that hand clap sounds could

be used as one form of person identification in, for example, multi-user

interactive systems, such as multiplayer console games.

The hand clapping of 16 people was recorded in normal room conditions

in order to find out how well the recognition algorithm of Publication

III is able to distinguish between different people. The subjects were

instructed to clap freely to any constant tempo they liked for a minimum

of 30 seconds, yielding a data set of 78 claps per subject on average. The

sound files of each individual subject were divided into four equally long

segments, then two of these segments were randomly assigned as training

data and two as test data. The algorithm of Publication III was trained

with the data, learning the spectral templates of all 16 subjects, and then

evaluated.

The overall correct classification rate of recognizing the subject based

on hand clapping was 64 %, which is a convincing result. There were,

however, large differences in individual classification rates. Some system-
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atic misclassification is observable for people whose spectral templates

are similar. Also, as the subjects were not instructed to maintain a fixed

hand configuration, the evolution of the clapping sound throughout the

recording session made the results worse for few subjects.

Since the algorithm is real-time and the classification rates encouraging,

it can be concluded that hand claps indeed have potential in real-time

interactive systems as a means for person identification.

5.5 Publication V: A Hand Clap Interface for Sonic Interaction with
the Computer

In Publication V, an interface that can track various parameters from

hand clapping sounds is presented. The interface makes use of sound

event recognition and tempo-tracking algorithms to provide means for

extracting rich information from basic sonic gestures. Three prototypes of

interactive applications are presented: controlling a sampler, controlling

the tempo of music, and entraining a virtual crowd of clappers to the

tempo of the user.

The interface was implemented in Pure Data (PD) (Puckette, 1996), a

graphical patching language originally developed for audio signal process-

ing. The bonk˜ object was used for event detection and the rhythm_estimator

(Seppänen, 2001a,b) for tempo tracking. The modules were combined to

form an analysis object capable of tracking both event-based (type) and

continuous (tempo) information from the audio stream.

The informal evaluation of the prototype applications found that a

process of negotiation over the tempo exists between the human and the

computer. In practice this means that when the human aims at gradually

changing the tempo of, for example, a piece of music, he or she is affected

by the perceived tempo of the computer playing back the music, which

makes the changing of the tempo challenging. This can be explained by

the use getting entrained by the rhythm of the music.

5.6 Publication VI: Design and Evaluation of Rhythmic Interaction
with an Interactive Tutoring System

Publication VI introduces iPalmas, an interactive flamenco rhythm tutor

application. Flamenco music is rhythmically very rich and differs in

many ways from the standard metric structures of traditional Western
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type tempofeedback

Figure 5.1. Data flow at the hand clap interface.

music; for example, most flamenco rhythms are characterized by a 12-beat

rhythmic pattern of accentuated and non-accentuated beats (Maduell and

Wing, 2007). This pattern is often performed by hand clapping to provide

a rhythmic backbone for the performance. The iPalmas system is capable

of reproducing synthetic flamenco hand clap patterns of different flamenco

genres, it can simulate an ensemble of multiple clappers, and can listen

to the user learning the patterns, giving feedback on the performance.

The ClaPD hand clapping engine (Peltola et al., 2007) was utilized as the

backbone for hand clap synthesis. The hand clap interface of Publication

V was used for analysis, extended with new functionalities of computing

the running standard deviation of the tempo of the user, the correctness

of accentuation, and an adaptive thresholding mechanism for accent

detection.

The iPalmas system measures the performance of the user based on

three main metrics: the difference between the tempo of the user and that

of the tutor, the internal tempo deviation of the user, and the accentuation

correctness. These metrics are displayed to the user both numerically and

with sliders and with an abstract representation of two dancing circles

reacting to the rhythmicity and measured performance. A screenshot of

the visual feedback is presented in Figure 5.2.

In an optional interaction mode, the virtual tutor can also give new

challenges to the user once the performance gets better based on the

metrics. The tutor gradually speeds up in tempo when the user meets

set objectives in the performance.

The system was evaluated in a subjective experiment in which 16

subjects were instructed to learn four different hand clapping patterns

using the system. Four different modes of tutoring were applied, that

is audio-only tutoring with a fixed tempo, audio-only tutoring with an
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Figure 5.2. Main visual feedback of the iPalmas system. Top: the two circles react
rhythmically to the clapping of the user (left) and the tutor (right). Bottom:
a transcription of the pattern is presented to the user with a moving red
marker indicating the current position. The name of the user is portrayed in
the top left corner.

adaptive tempo, audiovisual tutoring with a fixed tempo, and audiovisual

tutoring with an adaptive tempo. The initial tempo in all the cases

was 175 bpm. The order of clapping patterns and tutoring styles was

randomized and balanced throughout the experiment. The subjects were

first introduced to the interface and interaction via simple 4-beat patterns

and then instructed to learn and perform the patterns one by one in a

two-phase manner. The subjects first practiced a pattern with a given

tutoring style for as long as they felt necessary, but for the minimum of 10

full pattern cycles. Then the subject was instructed to perform the same

pattern for one minute. In this test phase, the hand clapping sounds of

the tutor faded away after two full pattern cycles after the subject started

clapping along. At the end of the experiment, the subjects were instructed

to reproduce as many of the patterns as they remembered.

Throughout the experiment, all the performance metrics were stored in

a log file. The subjects’ verbal comments were collected by the experiment

supervisor both during the experiment and in a post-test interview.

Careful statistical and qualitative analysis of the gathered data lead

to several interesting findings regarding the learning and the rhythmic

performance of the subjects, but also regarding the system design. While

there were subjective differences, the easiest pattern to learn and remem-

ber was soleas. Two subjects remembered all the patterns at the end of

the test and on average two patterns were remembered. Interestingly,

two subjects had difficulties in producing consistent accentuated claps,
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that is they experienced difficulties in the control of clap loudness. As

an explanation, the subjects noted that they usually clap in a crowd of

clappers and therefore are not used to listening to their own clapping.

In rhythmic performance in the training phase, the average time to

listen to the pattern before starting to clap along was nearly 10 full

pattern cycles (roughly 40 seconds), but varied significantly among the

subjects. The tempo-adaptation of the tutor helped the subjects to perform

the accents more consistently (74.2 % correct with tempo adaptation

versus 67.6 % without), as did the visual feedback (73.7 % versus 68.1 %).

With the adaptive tutor, the OOI before an accentuated beat was slightly

longer (344.7 ms on average) than before non-accentuated beats (343.0

ms). This finding was not true for the fixed-tempo tutor. The pattern

itself affected the rhythmic performance significantly.

In the test phase, once the clapping of the tutor faded away, the subjects

tended to increase the tempo. If the visual feedback was not present,

the tempo increased gradually towards the end of the one-minute test.

With visual feedback, however, the subjects were able to see that they got

ahead of the target tempo, which led them to slow down. This resulted in

a “pumping” tempo for some of the subjects.

The sound of the tutor’s clapping was the key element in learning the

patterns. The most useful visual element was the transcription of the

pattern, which the subjects considered helped them understanding the

accent locations. The circles, on the other hand, were considered attrac-

tive but uninformative and the numeric feedback was mostly beneficial in

the initial stages of learning how to perform accents in general.

This evaluation is revisited in Publication VIII.

5.7 Publication VII: Simulation of Rhythmic Learning - A Case
Study

Based on the results obtained from Publication VI, this study addresses

the modeling of the learning Flamenco beginner using the iPalmas sys-

tem. The aim of the study is to provide a means to assess rhythmic

interaction by simulation. The learning clapper is implemented as a

virtual agent, listening to the clapping sounds of the virtual tutor. The

behavior of the learning clapper utilizes the results from Publication

VI to inform the model and the rhythmic stability model of Desain and

Honing (2002) is used to assess pattern difficulty. The initial listening
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time is based on the statistics from the experiment by modeling it with

a Gaussian distribution. A slight variation is added to the tempo of the

virtual clapper with another Gaussian distribution based on the statistics

from the experiment. The virtual clapper learns accentuation gradually,

constantly assessing the similarity of the produced pattern with that of

the tutor. The initial probability of mistakes is informed by the rhythmic

stability mode. As the virtual clapper becomes more successful, the

probability of accentuation mistakes decreases during the interaction.

Since both the virtual learner and the tutor listen to audio streams,

either component can be replaced by a human clapper. This enables a

person to become a tutor in the system, too, potentially giving further

insight into rhythmic interaction design.

5.8 Publication VIII: A Structured Design and Evaluation Model
with Application to Rhythmic Interaction Displays

Studies on interactive systems that incorporate non-visual modalities

lack a common methodology for design and evaluation. This study

presents a structured model for sonic and rhythmic interactions, bas-

ing the model on a structured approach to multimodal interfaces and

formalizing it similarly to real-time Unified Modeling Language (UML)

constructs (Larman, 2004). The design model is concerned with modal-

ities, framing them as simple or complex and event-based or streaming.

The guiding principle in model construction is to focus on the effect to

be produced on the user. The evaluation model is based on defining user

constraints and external constraints.

The study uses the iPalmas system, a rhythmic interface, to illustrate

both the design and the evaluation model. The primary input modality is

an audio stream, that is the hand claps of the user, which is converted to

an event-based modality by event detection. The primary output modality

is complex and audiovisual, presenting multiple streams of information to

the user. The visual feedback of the circles can be considered a dynamic

output modality.

This study reinterprets the experiment reported in Publication VI and

Section 5.6 and associates its outcomes to system and display components

in the next design iteration according to the proposed model. In other

words, no new experiments were conducted, and the setup, procedure,

and tasks are the same as in Publication VI.
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In the experiment, the users reported on the system properties. In

general, out of the visual feedback components consisting of a transcribed

rhythmic pattern, dancing circles, and numeric metrics, only the tran-

scription was perceived as useful. A couple of subjects also perceived the

reverberation as excessive or unnatural (perceiving two sounds instead

of one) and two subjects reported that they were not able to consistently

produce accentuated claps. An auditory marker indicating the start of

each pattern cycle was also disturbing to some subjects.

Based on the evaluation, the feedback modules, both visual and audi-

tory, have been re-iterated. Essentially, the circles and numeric feedback

elements were removed from the interface and a new visual look was

designed. The pattern is now represented by a circular display of discs,

whose size and color represent accentuated and non-accentuated beats.

The re-development of the auditory feedback is discussed in detail in

Publication IX.

5.9 Publication IX: Auditory Feedback in an Interactive Rhythmic
Tutoring System

This study discusses the re-design of feedback elements in the iPalmas

system based on the previous work in Publication VI and Publication

VIII. After evaluating the system with both the subjective experiment

and the structured model, the system has been enriched with new

auditory feedback functionalities. To pinpoint the key targets for auditory

feedback, this study further made a task analysis (Benyon, 2010) on the

interaction with the system.

As a result of the evaluation, several attributes were pinpointed as

design guidelines for the audio feedback. The sounds should be subtle,

natural and non-irritating, yet informational and, if fast reaction from

the user is desired, urgent. Archetypal sounds were considered favorable

to contextualize the system further in the domain of Flamenco.

The correctness of individual accents, the tempo difference (lead/lag)

from the tempo of the tutor, and the overall performance based on the

metrics in the system were chosen as feedback targets (see Publication

VI). The individual accent correctness is indicated by adding a rever-

beration tail to the hand clap sounds of the user for correct accents to

indicate a “hit”. The tempo differences are sonified by a synthetic guitar

scale that rises in pitch and shortens in OOI as the tempo increases, and
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lowers in pitch and lengthens in OOI if the tempo slows down. The

overall performance is indicated by the overall reverberation level in

the clapping of the tutor, with the reverberation level gradually rising

when the performance improves and diminishing while increasing the

dry signal level if the performance deteriorates. This is to convey the

feeling of the hall getting larger and the tutor moving further away or,

alternatively, that the tutor comes closer to the student to give focused

training. Also, with improving performance, additional virtual clappers

appear in the mix. In addition, an upcoming tempo speed-up by the tutor

is indicated by an archetypal shout (“Olé!”).

This iteration, while yet unevaluated by subjective experiment, closes

the loop of the iPalmas system development.
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6. Conclusions and Future Directions

This thesis has demonstrated that sonic gestures — sound-producing

actions performed by a human to convey information — can successfully

be utilized in HCI in numerous ways and can convey a rich amount

of information for both continuous and discrete interactions. This was

demonstrated by a taxonomy of sonic gestures and their extractable

parameters. Even a seemingly simple gesture such as a hand clap can

be utilized as a building block for a variety of applications, ranging from

rhythmic systems to person identification.

The specific focus in this study was on percussive sonic gestures,

for which recognition algorithms were proposed. As has been noted

throughout the publications and in Section 3, numerous applicable real-

time techniques exist in other fields such as speech recognition and MIR,

and these can be harnessed for sonic gesture tracking as well. In addi-

tion to the existing techniques, new real-time techniques for analyzing

percussive sonic gestures were proposed. Based on the use of these

techniques, a hand clap interface was developed and further deployed in

the development of a virtual Flamenco tutor application. These examples

tangibly exemplify the use of sonic gestures for continuous interactions.

Evaluation of rhythmic interactive systems is far from trivial, and this

thesis includes novel insights into the problem. The evaluation of the

iPalmas application led to several important findings related to the design

and evaluation of rhythmic interaction. The evaluation showed that the

initial system design may have shortcomings and, therefore, iterative

development by prototype evaluation is required. The evaluation needs to

take into account not only the system but also the related human factors

in order to get a holistic view of the interaction and system attributes.

Both qualitative and quantitative measures need to be acknowledged in

the evaluation, as in the subjective evaluation of the iPalmas system.
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The iPalmas system turned out to be a fruitful tool and testbed both

for constructing new evaluation methodology for rhythmic interactive

systems and for assessing the human rhythmic capabilities. The subjects

in the experiment were, in general, able to learn new and complex

rhythms using the audio-visual interface, and considered the audio rep-

resentation of the rhythm as the key to learning. Realistic, informative,

and non-irritating sound design was found to be favorable. Related to

the assessment of rhythmic capabilities, a model of a person learning

and performing new Flamenco rhythms was constructed. This kind of

modeling can be valuable for the design of realistically behaving rhythmic

agents, for example, and for deepening our understanding of rhythmic

perception and production.

As sound, rhythm, and bodily motions are known to be closely related,

the rhythmic interactions between the human and the computer utilizing

sonic gesture interfaces can be considered to be a promising direction.

The use of sound input is already available in consumer electronics,

and the recent interactive systems realizing rhythmic interaction can be

considered as advanced and important, not only from a systemic point

of view, but also as tools for understanding the human capabilities and

attributes related to rhythmicity.

The studies in this thesis mainly concentrate on considering sonic

gestures from a control viewpoint. However, the mental imagery and

metaphorical dimensions (Jensenius, 2008) of sonic gestures should not

be neglected when designing interfaces and interactions around them.

This can be seen as the key aspect to consider in the design of intuitive

interfaces.

Sonic gestures as input in HCI is still in its infancy and the studies

on the topic are limited. To further facilitate the use of sonic gestures,

one potential approach could be to develop design patterns (Borchers and

Mühlhäuser, 1998; Borchers, 2001) for their utility.

Care must be taken in the design of interfaces making use of sonic

gestures in order to keep the interactions fluent and usable. First of

all, if the application will use sound as both the input and output, it

is important to ensure that the two do not interfere with each other in

a negative way. The danger is that the perception of the user of the

interface gets blurred if the input and output sounds do not fit together.

Furthermore, if the system is designed to be used with loudspeakers

while capturing the sounds with microphones, the feedback of the output
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sound to the input can cause problems, unless the output sound is

computationally cancelled from the input signal or the sonic gestures

differ substantially from the sound output.

A final remark and a definitely valuable point of future research is the

social acceptability of sonic gesture interfaces. While using sonic input

in a private apartment might not be an issue, clapping your hands to

your mobile phone in a public space might be. It is also an interesting

challenge for interaction designers to come up with sonic gestures and

interfaces that have the potential of becoming socially acceptable.
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