A mobile recording
system and an
acquisition control
method for average
event-related
potential
measurements

Antti Paukkunen

Ao Aalto University
||

DOCTORAL
DISSERTATIONS






Aalto University publication series
DOCTORAL DISSERTATIONS 35/2012

A mobile recording system and an
acquisition control method for average
event-related potential measurements

Antti Paukkunen

Doctoral dissertation for the degree of Doctor of Science in
Technology to be presented with due permission of the School of
Electrical Engineering for public examination and debate in
Auditorium S1 at the Aalto University School of Electrical Engineering
(Espoo, Finland) on the 25th of May 2012 at 12 noon.

Aalto University

School of Electrical Engineering
Department of Electronics

Applied Electronics Research Group



Supervisor
Prof. Raimo Sepponen

Instructor
Prof. Raimo Sepponen

Preliminary examiners
Prof. Mikko Sams, Aalto University, Finland
Prof. Jari Hyttinen, Tampere University of Technology, Finland

Opponents
Prof. Mikko Sams, Aalto University, Finland
Prof. Juha Voipio, University of Helsinki, Finland

Aalto University publication series
DOCTORAL DISSERTATIONS 35/2012

© Antti Paukkunen

ISBN 978-952-60-4562-7 (printed)
ISBN 978-952-60-4563-4 (pdf)
ISSN-L 1799-4934

ISSN 1799-4934 (printed)

ISSN 1799-4942 (pdf)

Unigrafia Oy
Helsinki 2012

eoio\cEEO%Q
Finland /////

K4

The dissertation can be read at http://lib.tkk.fi/Diss/ Printed matter

697



A' Aalto University Abstract

] Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Antti Paukkunen
Name of the doctoral dissertation

A mobile recording system and an acquisition control method for average event-related
potential measurements

Publisher School of Electrical Engineering

Unit Department of Electronics
Series Aalto University publication series DOCTORAL DISSERTATIONS 35/2012
Field of research Applied Electronics

Manuscript submitted 1June 2011 Manuscript revised 8 December 2011
Date of the defence 25 May 2012 Language English

['1 Monograph DX Article dissertation (summary + original articles)
Abstract

Event-related potentials (ERPs) are a result of the activity elicited in the brain during the
performance of a cognitive task. They can be studied by using an EEG, and are used to
investigate the brain functions related to the processing of sensory data, and memory. The
technique is flexible, and affordable, and has various potential diagnostic applications. The
clinical feasibility, however, is limited due to the low measurement reliability. In addition,
performance of the tests could be enhanced if the recording devices were more robust.

The current study presents two ways of improving the performance of ERP measurements.
The first deals with the improvement of the efficiency of the recording procedure and the
second, with the optimization of the recording system design for clinical use. In addition, the
discussion on improving the measurement reliability is contributed to by conducting a study
with mismatch negativity (MMN) to determine the relationship between the measurement
error and the test-retest reliability.

To improve the recording procedure, an acquisition control method is suggested which helps
optimize the amount of data recorded in terms of its concurrent quality. It allows optimization
of the recording time and control of the measurement error, which reduces subject discomfort
and improves measurement repeatability. In the MMN study conducted, the effect varied,
depending on the parameterization, and whether the deviant responses were studied separately
or as a profile. It was, however, generally significant, and repeatability was estimated to keep
improving until the error level went below 10% of the peak amplitude.

Second, a mobile ERP recording system design with an integrated audio stimulation unit is
presented. It is easy to apply, and capable of performing online data analysis. It is also tolerant
of external interference because of its compact size, close proximity to the measured target, and
the average grounding arrangement it uses. This kind of design allows fluent performance of
the measurements in applications where the target activity is well-defined, which is important
in an attempt to allow clinical use to be made of them. Together with the application of the
algorithm developed, it provides easy access to ERPs and makes the investigations efficient,
and less inconvenient.
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EEG-heritevasteilla (ERP:1la) tarkoitetaan sdhkoisia signaaleja, joita syntyy kognitiivisen
aivotoiminnan seurauksena. Niitd voidaan tarkastella aivosdhkokayréin avulla ja hyodyntéda
tutkittaessa aistiheritteiden synnyttdméé aivotoimintaa sekd muistia. Menetelmaé on joustava,
edullinen ja kliinisten sovellusten kannalta monikéyttdinen. Kaytettavyys on kuitenkin
rajallista mittausten heikon luotettavuuden takia. Lisdksi tehokkuutta voitaisiin parantaa
kehittdmaélla robustimpia mittalaiteratkaisuja.

Tassa tyossd esitetddn kaksi tapaa mittausten kehittdmiseksi. Toinen néisté liittyy
mittausprosessin ja toinen mittausjirjestelmien parantamiseen. Liséksi tutkimuksessa otetaan
kantaa keskusteluun mittausten luotettavuudesta tutkimalla mittausvirheen vaikutusta
poikkeavuusnegatiivisuusvasteen (MMN) toistettavuuteen.

Mittausprosessin tehostamiseksi esitelldan laadunhallintamenetelma4, joka auttaa
optimoimaan mitatun aineiston mééraé, sen laadun perusteella. Menetelmén avulla voidaan
optimoida mittauksen kestoa ja hallita mittausvirheen suuruutta, miki vihentdi mittausten
epamukavuutta sekd parantaa tulosten toistettavuutta. MMN-kokeissa vaikutus riippui
vasteen parametrisoinnista seka siité, etta tulkittiinko vasteita erillisiné vai toisiinsa
suhteutettuina. Se oli kuitenkin yleisesti merkitsevé ja toistettavuuden arvioitiin parantuvan
ainakin kunnes virhe laskisi alle 10%:iin vasteen huippuamplitudista.

Mittausjarjestelyji ajatellen esitellddn mobiili mittalaitetoteutus, jossa herdteldhde on
rakennettu osaksi mittausyksikkoa. Toteutus on helppokiyttdinen ja kykenee suorittamaan
aineistoanalyysid mittauksen aikana. Lisdksi se sietdd hyvin ulkoisia hairioiti pienen kokonsa,
mitatun kohteen ldheisyyden, seka kdytetyn keskiarvomaajirjestelyn ansiosta. Kliinista
kayttod ajatellen on tarkeéd, ettd mittaukset kyetddn suorittamaan mahdollisimman sujuvasti.
Esitetynkaltainen laitteisto soveltuu erityisesti tunnettujen vasteiden mittaamiseen. Yhdessa
laadunhallintamenetelmén kanssa, sellaisen arvioidaan helpottavan heratevasteiden
tutkimista sekd vihentdvian mittausten epamukavuutta.
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1 Introduction

1.1 Event-related potentials

Event-related potentials (ERPs) are electrical responses elicited in the
brain by stimuli while the subject is performing a cognitive task [1]. They
can be recorded from an electroencephalogram (EEG) and used to
investigate the activity in the brain related to the processing of sensory
information.

The first ERP recordings were published in the late 1930s by Davis [2, 3],
who demonstrated a change in the EEG signal when subjects were
presented with a sound. The data were obtained by using a six-channel EEG
amplifier and recorded by using an ink recorder. The next big step was
taken in the 1960s, when the first computerized measurements were
reported [4]. Automated data processing allowed the handling of large
datasets and more detailed analyses to be made of them. Today, the high
level of performance of the measurement instrumentation, analysis tools,
and investigative methods has made the measurements generally available.
The applications have gained more and more professional interest, and
ERPs have become a popular tool in the investigation of the psychological
and neurological functions of the brain. [5, 6]

1.2 Measurement technique

1.2.1 General arrangements

The origin of ERPs lay in the sensory system, where a stimulus (auditory,
visual, or somatosensory) triggers a series of events leading to the activation
of the brain. A sound, for example, causes the auditory nervous system to
activate (Fig. 1, phases 1—2). The receptor cells (in the cochlear nerve)
produce an electrical impulse which propagates to the sensory cortex
(auditory cortex) (Fig. 1, phase 3). This initiates neuronal activation (Fig. 1,
phases 4—5), and the synchronous activation/inhibition of different neuron
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populations generates positive/negative signals in the EEG (Fig. 1, phase 6).
[5,7,8,9]

To study these signals in a controlled way, the test subject is presented
with different stimuli while the responses are recorded with a synchronized
EEG measurement system. The stimuli may be auditory (e.g., tones,
sounds, phonemes, or changing rhythms), visual (e.g., changing figures or
moving, flickering, and rotating forms), somatosensory (e.g., puffs of air),
or combinations of them. Each type of stimulus is presented multiple times,
and the responses are averaged to highlight the stimulus-related activity. In
addition, the subject may be provided with a passive task (e.g., watching a
silent movie with subtitles) to keep him focused and to distract him from
attending to the stimuli, or an active one (e.g. the calculation of certain
types of stimuli) in order to study the attention effect [10].

Stimulus or event

Sensory nerves

Anterior stream

@
@
() sensory cortex
®
®

Posterior stream

@ EEG measurement

Fig. 1. A schematic example of the generation of ERPs (in auditory modality). The stimulus
(i.e., event) triggers an electrical signal that activates the brain (1-5) and initiates neuronal
activity which is reflected in the EEG waveform (6). Being recorded from the surface of the
scalp, the responses are weak and temporally flattened, but they still provide specific
information on the processes going on in the brain.

1.2.2 Data acquisition

Being obtained from the surface of the scalp, the responses are greatly
attenuated by the resistive skull [9, 11, 12, 13, 14] and the remaining
amplitude is typically on a microvolt scale [15]. Thus, to bring the
amplitude up to a convenient scale, the signals have to be amplified by 60—
80 dB prior to sampling [16, 17, 18]. The frequency band reaches up to
about 100 Hz (0 Hz excluded), and the signals are typically sampled at a
rate of at least 200 Hz/channel, or four times the cutoff frequency of the
low-pass filter [10, 19].



Prior to digitalization the signals are filtered to block the DC offset, to
reduce the noise level [18, 20], and to prevent aliasing [19]. Furthermore, to
reduce the 50/60-Hz power line interference [21, 22], active feedback
circuits (i.e., a driven right-leg circuit, DRL) and notch filters may be used
[16, 18, 23, 24, 25, 26, 27]. However, they are often unnecessary as a result
of the high common-mode rejection ratio (CMRR) of the measurement
amplifier circuits (>100 dB at 50/60 Hz) [10, 18, 28]. Notch filters may
even be harmful, as they might distort the signal [10, 18, 29].

1.2.3 Digital signal processing

After digitizing, the data are further processed by using digital signal
processing methods. Typically, they are first filtered and cleaned of
artifacts. Then they are averaged to further improve the signal-to-noise
ratio (SNR) [10, 30, 31].

Filtering

The filtering of noise is typically performed with a continuous zero-phase
low-pass filter, and the DC offset decoupled by subtracting the baseline
individually from each epoch [32]. The baseline may be computed by
calculating the mean signal amplitude at an interval of 50-100 ms before
the onset of the stimulus. Alternatively, the baseline may be removed by
using a high-pass filter, but it may cause data loss as a result of the long
settlement time of the filter [33].

Furthermore, after the epochs have been extracted, a tailored wavelet
filter can also be used to bring up the morphology of the underlying
response [34, 35, 36, 37]. Unlike conventional filters, wavelet filtering
allows the consideration of the temporal signal features, and can be used to
make the key signal features stand out better [38, 39, 40, 41]. At best, it

may even allow the investigation of the responses from single trials [42, 43,
44].

Artifact rejection

Artifact rejection is performed to reduce the contribution of activity of
non-cerebral origin (physiological or extraphysiological activity) to the data
[45]. Common sources of such interference are eye and mouth movement,
and muscle activity. The amplitude of the artifacts typically exceeds the
ERPs, and they need to be eliminated in order for it to be possible to
analyze the data.
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The simplest way to reduce artifacts is to detect them by analyzing the
signal amplitude at certain scalp locations, or the electro-oculogram (EOG)
channels, and to reject them by discarding the data relating to the
respective time interval [46]. This mainly works for the rejection of ocular
defects, but it may be adequate in many cases, since they are the most
common source of artifacts in ERP studies. On the other hand, a coarse
rejection criterion may cause severe loss of data [47, 48, 49], and the
remaining part may not be sufficient.

To improve the process advanced test criteria can be used, or
mathematical models that allow more detailed investigation of the
underlying sources [50, 51, 52, 53]. For example, if the electrode density is
high enough, blind source separation (BSS) algorithms can be applied to
detect artifacts on the basis of their presumed location and polarity, and a
model of the anatomy of the brain [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64].
In this way, the artifacts can be extracted from the data, and at least a part
of the data can be made available for analysis [65]. On the downside, the
modeling typically requires intensive computing and a large computation
capacity to process the data. The performance of the method depends on
the selection of the algorithm [61, 66], and versions that are feasible online

have been suggested [67].

Averaging

Based on the assumption that the underlying signal remains essentially
stable throughout the experiment, averaging is commonly performed
simply by direct summing [68]. However, variations in the signal quality
and the subject’s mental state (e.g., vigilance, attention, and learning) may
cause variation in the data and affect the direct averages [69, 70]. Thus,
modified averaging methods which allow compensation for the latency
jitter [71, 72, 73] and variation in the signal quality [74, 75, 76, 77, 78, 79]
have been suggested. Single-trial investigations are also becoming available,
and may be used to study the variations in the signals to be averaged [80,
81, 82].

1.3 Applications

The practical usage of ERPs covers a large variety of applications, which
are typically based on the analysis of the average waveform parameters, the
magnitude of which is compared to normative data from healthy subjects
[10, 32]. Typical parameters studied are the magnitude, latency, and

morphology of the waveform. The orientation and location of the
11



underlying sources may also be modeled on the basis of the measured scalp
surface potential distributions [32].

ERPs are particularly useful in the investigation of cognitive processes,
and typical responses measured with such investigations are, e.g., P50,
N100, P300, N400, P600, and MMN. Physiologically, Px/Nx are
positive/negative ERP components peaking at a latency of x ms from the
stimulus onset, and MMN a negative one peaking at approximately +100s
to +250ms [83]. P50 is thought to be the first cortical ERP component
which indicates a reaction to a stimulus. It may be used e.g., to study the
reduced gating effect related to schizophrenia [84]. N10o, MMN, and P300
reflect the cognitive processes related to, e.g. sensory memory and
attention. They may be used to study, e.g., cognitive dysfunctions [83, 85,
86, 87, 88]. N400 and P600 reflect the integration of semantic and
syntactic information and structures, particularly in the language context.
They may be used to investigate e.g., semantic memory and the processing

of syntactic anomalies [89, 90, 91, 92].

Table 1. Examples of clinical applications for event-related potential measurements and their
prevalence within the Finnish population according to statistics collected in 2008 [93, 94,
95, 96, 97, 98, 99, 100, 101, 102, 103, 104].

10% of children have .
. . Reduced amplitude of MMN for
. some difficulties o
Dyslexia . deviating syllables and frequency
2% of children have

. . changes
severe difficulties

Alzheimer’s 36% risk (age > 65)  Increased latency of auditory P300

disease 25% risk (age > 85)  Reduced amplitude of visual P300
% (ages: 65—

Mild cognitive 4% (ag 5-74) Reduced auditory P600 in word

. 10% (ages:75—-84) ..

1mpairment repetition test

33% (age > 85)

. . 1% of population Unchanged auditory P50 in a
Schizophrenia .
500 new cases yearly double-click test
Cognitive 6% of babies are .
. Absence of auditory MMN
dysfunction born prematurely
Longer auditory/visual P300
Epilepsy 1% of the population & v/ 3
latency
Coma 15,000-20,000 head Appearance of the auditory MMN
outcome injuries yearly for large-frequency deviant tone
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Currently, the use of ERPs is focused on general brain research
applications, but they are a tempting option for clinical use, too (for
examples, see Table 1). The instrumentation is rather inexpensive, their
temporal resolution good, and their application flexible, as they do not
require any specific infrastructure [9, 32, 105].

The greatest potential probably lies in the diagnosis of different cognitive
dysfunctions and memory disorders such as Alzheimer’s syndrome,
involving the occupation of the auditory MMN [106, 107], P300 [108, 109,
110], and N400 [111] components [112]. Dyslexia, for example, may be
treated by therapy if diagnosed early enough. ERP investigations could
allow the detection of the related symptoms at an early age, and early
rehabilitation might prevent displacement in schools and reduce the costs
of remedial education [113, 114].

On the other hand, the number of patients with mild cognitive
impairments or Alzheimer’s disease is constantly rising [93]. Thus, more
and more efficient diagnostic tools are needed to maintain a sufficient
investigation volume and to prevent the issues related to delayed treatment.
ERP investigations might be well suited to use here [115]. Furthermore,

ERPs might be useful in the evaluation of patients’ progress during therapy.

1.4 Current state of technology

1.4.1 Performance of the measurements

To be feasible in practical applications, the performance of the ERP
measurements should be robust, and the results they produce reliable and
reproducible. At the moment, this condition is not always met. Differences
can be identified between diagnostic groups, but the results show too much
variation for single-subject diagnosis (for examples, see Table 2). This
makes the determination of the intermediate phenotype complex and the
interpretation of the results hard [113, 114, 116]. A part of this variation is
caused by the changes in the subjects’ mental state, but the variation in the
data quality between sessions also accounts for a large part of these changes
[33, 70, 82, 117, 118, 119, 120, 121, 122, 123].
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Table 2. Some test-retest reliabilities reported for the amplitude and latency of auditory
ERPs, between repeated measurements, in single-subject recordings with healthy test
subjects. [113, 117, 118, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138,
139, 140]

N100 ~0.75 0.40-0.53 0.09-0.40 0.27-0.75
P200 0.75—0.8 0.15—-0.45 0.23-0.47 0.50-0.73
P300 0.31-0.81 0.07-0.48 0.48-0.93 0.32-0.8
MMN 0.37-0.87 0.32-0.78 - -

Physiological and psychological constraints

The way the brain reacts to the stimuli, depends on the subjects’ sensory
and cognitive abilities, which is reflected in the amplitude and latency of the
ERPs. Musicians, for example, can generally detect, and react to, smaller
details in auditory stimuli than a normal subject. With them, the amplitude
of the ERPs is typically higher and the latency shorter [141, 142]. Elderly
subjects, on the other hand, tend to produce weaker and slower responses,
as their sensory abilities have declined with age [117, 134, 143]. In addition,
the anatomy of the brain, handiness, gender, health, and external factors,
such as medication, may cause individual differences in the responses [10,
112, 117, 119, 144, 145].

The subject’s mental state and its variations also modulate the responses.
Fatigue, habituation, and changes in attention may affect the amplitude and
latency of the signals, and elicit brain activity unrelated to the phenomenon
being studied [117, 118, 120, 135, 138, 146]. While the personal
characteristics can be taken into account in the experimental design (test
group selection, testing and compensation of sensory abilities, etc.), the
fluctuations in the mental state are more difficult to control. They are
considered to be one of the major reasons for the low measurement
reliability [e.g. 117].

Body artifacts and other sources of interference

Furthermore, as ERPs are weak signals, they are easily distorted by
different artifacts and other sources of interference [33, 70, 82, 117, 118,
119, 120, 121, 122, 123]. This will reduce the data quality, make the
responses more difficult to detect, affect the validity of the results, and
reduce the reliability of the measurements [33, 113, 117, 118, 138]. Typical
forms of interference are power-line interference, amplifier noise, stimulus

jitter, body artifacts, and background EEG activity. Amplifier noise and
14



power-line interference couple with the signals and reduce the SNR, while
jitter will affect the timing of the ERPs causing the averaged responses to
flatten. Jitter may also elicit changes in the ERPs themselves, if the
asynchrony is high [10, 131]. Body artifacts typically exceed the ERP
amplitude and hide the signal of interest. Background EEG activity may

also do the same (e.g., the alpha waves in an eyes closed condition) [10].

Current best practices

Currently, the best way to secure reliable recordings is to optimize the
signal quality, to use proper stimuli, and to apply an efficient investigation
paradigm [19, 33, 112, 147]. Proper stimulus design can optimize the quality
of the responses, and high signal quality will reduce the distortion in the
measu