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1. Introduction

1.1 Motivation

Two important developments are currently taking place in systems neu-

roscience. First, the discovery of resting-state functional networks (Fox

and Raichle, 2007) has engendered considerable interest in studying brain

function in the absence of active tasks or passive perception of stimuli.

Second, the study of brain function during real-world stimulation or tasks,

such as watching movies (Bartels and Zeki, 2004; Hasson et al., 2004)

rather than during perception of well-controlled but laboratory-created

stimuli, has been increasingly emphasized.

What are the implications of this research? Studies of the resting

brain can give insight to complex phenomena in cognitive science such as

self-referential thinking, and in neurophysiology such as functional orga-

nization of the brain, brain metabolism or its energy budget. From stud-

ies of natural stimulation new knowledge about brain function in the real

world can be obtained. An understanding of brain function in real-world

like environments can help to improve the design for brain-computer in-

terfaces.

Why are methodological advances required? Firstly, it is often un-

clear what the conditions of interest are in experiments with naturalistic

stimulation. Hence, exploratory (as opposed to model-driven) methods are

required to discover the brain regions or networks involved. Secondly, for

study of complex brain functions, methods for querying distributed neu-

ral representations (as opposed to focal activation maps) of the external

world are needed.

A vast majority of the resting-state and naturalistc stimulation stud-

ies have been made with functional magnetic resonance imaging (fMRI).
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Introduction

While fMRI provides high spatial resolution and coverage of the entire

brain including subcortical areas, its temporal resolution is limited and

it measures neuronal activity indirectly. For this reason, complement-

ing such studies with magneto- and electroencephalography (MEG/ EEG)

would provide tremendous value. Further, putting the two findings to-

gether may provide more insights into the basic mechanisms of neurovas-

cular coupling. However, methodological advances for MEG/ EEG are

challenging in a different manner than for fMRI. In particular, we need

richer signal models to capture the time structure in addition to the spa-

tial distribution of activation.

The studies included in this thesis address some of the above chal-

lenges in signal analysis and modeling.

1.2 Organization of the thesis

Chapter 2 of this thesis introduces electrophysiological brain rhythms,

discusses their functional signifiance, emphasizes their role in oscillatory

communication, and surveys some biophysical models of their dynam-

ics. Chapter 3 reviews the concept of resting-state networks, describes

some important resting-state correlations identified using fMRI, and dis-

cusses studies that have attempted to describe the electrophysiological

equivalent. Furthermore, the rationale behind a move towards applica-

tion of naturalistic stimuli is discussed. Chapter 4 provides a background

of magnetoencephalography which is the electrophysiological technique

used in this thesis. This includes a brief history of MEG, the signal gen-

eration process, the basic measurement technique, some artifact suppres-

sion methods, and a review of the inverse modeling approaches used in

this thesis. Chapter 5 considers nonlinear systems identification, which is

the framework used in this thesis work for modeling the stimulus-induced

dynamics of brain rhythms. Chapter 6 reviews the theory of independent

component analysis (ICA) and discusses its applications in neuroimaging.

Particular attention is given to the use of ICA in the analysis of fMRI

resting-state networks and spontaneous MEG/ EEG rhythms. Chapter 7

summarizes the objectives of the thesis. Chapter 8 summarizes the indi-

vidual studies carried out in this thesis. The final Chapter 9 discusses the

contributions and limitations of this thesis and offers considerations for

future work.

14



2. Electrophysiological brain rhythms

Neural oscillations are observed throughout the central nervous system

at various spatial scales ranging from single neurons, local neuronal en-

sembles, and concerted activity of distant ensembles, such as those in

the thalamus and the cortex. Single-neuron oscillations originate from

sub-threshould fluctuations in the membrane potential, or from repetitive

patterns of action potentials, which in-turn produce oscillations in post-

synaptic neurons. At the level of the ensemble, the conduction delays,

and the balance between excitation and inhibition determine the natural

frequency of these oscillations. The frequencies of neural oscillations can

vary widely from < 0.1 Hz, called infra-slow fluctuations (Vanhatalo et al.,

2004) to > 500 Hz, reflecting spiking activity (Baker et al., 2003).

Studies of neural oscillations attempt to describe the morphology

and spatial characteristics of brain rhythms, investigate their functional

significance, and discover the basic neurophysiological mechanisms of gen-

eration. The approaches include modeling techniques to understand the

computational role of oscillatory ensembles, experimental manipulations

to understand generative mechanisms, and statistical techniques to mea-

sure oscillatory coupling from noisy measurements. The following sec-

tions contain a brief overview of each of these areas.

2.1 Morphological and spatial characteristics

Population-level oscillatory activity is manifest in local field potentials

which can be recorded with extracellular intracortical electrodes, with

electrocorticography (ECoG) from the surface of the cortex, with non-

invasive scalp electroencephalography (EEG), or with magentoencephalog-

raphy (MEG). Given the vast variation in the spatial and spectral char-

acteristics of oscillations, work in the early 20th century focused on the
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morphological description of brain rhythms and the various conditions

under which they were generated and abolished.

Rhythmic activity was observed in EEG recordings by Hans Berger

in 1929 much before the first MEG signals were recorded. Brain rhythms

have been classified both on the basis of their frequency content and spa-

tial distribution. Gastaut (1952) first reported the Rolandic or sensori-

motor mu rhythm. As of today, the theta (4–8 Hz), the approximately

sinusoidal and parieto-occipital alpha (7–13 Hz), the beta (13–30 Hz), the

arch-shaped mu with 10- and 20-Hz components, and various high and

low gamma-frequency bands (> 40 Hz) are routinely reported from ex-

tracranial recordings; for a review, see Niedermeyer and Da Silva (2005).

With the advent of MEG, it became possible to more easily and accu-

rately locate the cortical generators of brain rhythms. The first report of

the MEG alpha rhythm was that of Cohen (1968). The cortical sources of

this rhythm cluster around the calcarine sulcus and the parieto-occipital

sulcus; see Hari (2004) for a review. The first report of the MEG mu

rhythm was by Tiihonen et al. (1989). The two frequency components of

the mu rhythm have different topographic distributions; specifically, the

20-Hz component follows the moved body part in a somatotopic manner in

the primary motor cortex, whereas the 10-Hz component does not: it orig-

inates in the hand area of the somatosensory cortex (Salmelin and Hari,

1994; Salmelin et al., 1995). Owing to its origin at the motor cortex, the

coherence between the cortical 20-Hz component and electromygraphic

signals from the body has been used as a reliable tool to map the motor

cortex for presurgical planning (Mäkelä et al., 2001). MEG theta (3–7 Hz)

oscillations have been reported in frontal areas (Sasaki et al., 1994) and

gamma oscillations (30–70 Hz) in the visual cortex (Hoogenboom et al.,

2006). Occasionally, the tau rhythm (8–10 Hz) can be observed in the au-

ditory cortex (Tiihonen et al., 1991).

2.2 Functional significance

While many rhythms occur spontaneously in the brain (i.e. in the absence

of task or stimulus), their amplitudes are modulated by external events.

Different features of the rhythm may serve as markers for understanding

their functional involvement in stimulus processing and tasks. In partic-

ular, the amplitude (also, baseline power or baseline level) of the rhythm

may be suppressed or enhanced depending on the cortical region where

16
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the oscillations are generated. The mechanism behind macroscopic sup-

pression or enhancement is not known conclusively, since a larger signal

amplitude can either be explained by an increase in synchronization or

the recruitment of a larger number of neurons. The change in amplitude

of a rhythm may be directly evoked by external stimulation, and therefore

be strictly phase-locked, or induced in an indirect manner and therefore

be time-locked but not phase-locked. The frequency of the rhythm may

also be modulated by external events.

2.2.1 Sensory and cognitive function

The parieto-occipital alpha rhythm is suppressed during visual input, vi-

sual memory and imagery tasks and enhanced when the subject is relaxed

with eyes closed, or during mental arithmetic. The amplitude of the al-

pha rhythm has thus been suggested to represent the level of cortical in-

hibition; see Klimesch (1996) for a review. However, more recent studies

have suggested that 10-Hz oscillations do not merely reflect cortical inhi-

bition but rather have very specific functional roles. For instance, 10-Hz

ampitude enhancement in the parietal and central regions correlates with

working memory load (Jensen et al., 2002).

The rolandic mu rhythm is suppressed during motor action, as well

as during electrical and tactile stimulation. As reviewed by Hari and

Salmelin (1997), both the 10-Hz and the 20-Hz components are suppressed

below the baseline level during stimulation, exceed the baseline level (or,

rebound) when the stimulation ends, and subsequently return to base-

line. The 20-Hz component rebounds earlier and faster than the 10-Hz

component. The mu rhythm has been used to probe the state of the senso-

rimotor system under various perceptual states; for instance, mu activity

is clearly suppressed during motor imagery (Schnitzler et al., 1997) and

observation of motor action (Hari et al., 1998; Caetano et al., 2007). This

reactivity of the rhythm resembles the reactivity during real motor ac-

tions.

Palva and Palva (2007) note that unlike the ambiguity inherent in

the mechanistic interpretation of amplitude, phase synchronization be-

tween distant cortical areas, although difficult to estimate robustly, is at

least roughly indicative of synchronized spike-timing. Phase-locking has

been reported in MEG data between the contralateral primary and ipsi-

lateral secondary somatosensory cortices after medial nerve stimulation

(Simões et al., 2003). Studies of phase synchrony during cognitive tasks
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are relatively recent. For example, Palva et al. (2005b) discovered that

10-Hz activity in the frontal and parietal cortices selectively phase-locked

to consciously perceived somatosensory stimuli.

Spontaneous cortical rhythms provide important spatial and tempo-

ral constraints on mechanisms of speech perception and production. For

example, Giraud et al. (2007) showed the hemispheric lateralization of

spontaneous gamma and theta rhythms. In particular, they reported from

simultaneous EEG–fMRI measurements during rest, that gamma power

correlated better with the left auditory cortex BOLD signals whereas theta

fluctuations correlated better with the right auditory cortex.

2.2.2 Functional connectivity

It has been proposed that complex cognitive function arises from a bal-

ance between functional specialization of relatively independent corti-

cal areas and coordination among several specalized areas (Bressler and

Kelso, 2001). Oscillations have been thought to mediate inter-regional

communication in the cortex or between the cortex and subcortical ar-

eas. Fries (2005) postulated that coherently oscillating neuronal groups

are temporally aligned for communication because their inputs and out-

puts are open simultaneously, and that dynamically-deployed coherent

networks consitute the fundamental mechanism of cortical computation

(Fries, 2009). Although the mechanistic details of interaction between

brain areas are not known, multiple candidates have been postulated

and observed empirically, including amplitude–amplitude coupling, spec-

tral coherence (Gross et al., 2001), within-frequency phase synchroniza-

tion (Simões et al., 2003), phase-amplitude coupling (Canolty et al., 2006;

van der Meij et al., 2012), and cross-frequency phase synchronization

(Palva et al., 2005a). Decreased amplitude is also accompanied by in-

creased coherence or phase synchrony; see for instance Kujala et al. (2012).

Modeling studies have suggested that such a mechanism enables enhanced

information transfer between brain regions (Buehlmann and Deco, 2010).

Aberrant inter-regional oscillatory coupling can serve a marker of

neuropsychiatric or neurodegenerative disorders. For instance, enhanced

beta oscillations in the subthalamic nucleus and the cortex have been

reported in Parkinson’s disease (Mallet et al., 2008). Likewise, abnor-

mal synchrony between brain regions has been reported in schizophrenia

(Uhlhaas et al., 2008). More recently, abnormal entrainment of auditory-

cortex oscillations in the 25–35 Hz range has been found to correlate with

18



Electrophysiological brain rhythms

phonological deficits in dyslexia (Lehongre et al., 2011).

Precentral 20-Hz and postcentral 10-Hz EEG rhythms have been re-

ported to inversely correlate with the blood oxygen level dependent (BOLD)

fMRI signal (Moosmann et al., 2003). Some correlations between different

EEG rhythms and resting state networks of BOLD activity have also been

reported (Mantini et al., 2007). Thus, amplitude-amplitude oscillatory

coupling is also a prime candidate for the neural mechanisms underlying

fMRI resting-state networks (see Chapter 3).

2.3 Modeling of brain rhythms

2.3.1 Biophysical models of rhythm generation

A popular model of spontaneous alpha rhythms is the neural mass model

(Jansen and Rit, 1995) based on earlier work by Lopes da Silva et al.

(1974). This model comprises a system of three interacting neural pop-

ulations: pyramidal neurons, excitatory interneurons, and inhibitory in-

terneurons. The pyramidal neuron population receives direct external

input (representing the sum total of thalamic and long distance cortico-

cortical input) as well excitatory and inhibitory inputs from the respec-

tive interneuron populations. Each interneuron population in turn re-

ceives excitatory input from the pyramidal neurons. The synaptic inputs

to all the populations are modeled by scaling the average presynaptic fir-

ing rate by a constant, which represents synaptic gain. The transforma-

tion of this synaptic input into postsynaptic potentials is modeled by a

linear convolution, with different impulse response functions for excita-

tory and inhibitory synapses. For each population, the net postsynaptic

potential is transformed to an average firing rate by a sigmoid function.

With this model, Jansen and Rit (1995) showed that by feeding uniformly

distributed white noise as external input to the pyramidal neurons, the

average postsynaptic potential of the pyramidal neuron population re-

sembled the temporal dynamics of the alpha rhythm observed in EEG

recordings.

A variant of the neural mass model has been proposed by David

and Friston (2003) as a building block for dynamic causal modeling, a

framework for discovering causal relationships between different neu-

ronal sources of activity. More recently, Jones et al. (2009) proposed a bio-
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physically realistic laminar network model of the primary somatosensory

cortex (SI) which predicts evoked MEG response to tactile stimulation as

a function of the pre-stimulus mu rhythm level. Based on simulations,

they suggested that the 10- and 20-Hz components of the mu rhythm may

be produced by feed-forward and feedback drive, respectively, to SI at 10

Hz. In a later study by Ziegler et al. (2010), this model was used to ac-

count for differences in pre-stimulus 10-Hz power by simulating stronger

feed-forward and feedback inputs.

2.3.2 Models of oscillatory communication

Purely mathematical models of brain rhythms which simulate ensembles

of oscillators intend to account for the different forms of oscillatory cou-

pling with the intention of understanding what factors give rise to ob-

served oscillatory dynamics in an ensemble (Pikovsky and Rosenblum,

2007). These models typically do not account for any biophysical con-

straints in which neurons live. In contrast, biophysical models attempt to

model real neural networks by taking conduction delays, neuronal geome-

tries, as well as excitatory and inhibitory connections into account.

The mathematical models have been able to propose and clarify the

potential computations that can be carried out by an ensemble of oscil-

lators exhibiting a particular regime of synchrony (Bressler and Kelso,

2001; Ermentrout and Chow, 2002). These proposals in turn constrain

speculations about functional significance and inform new experiments.

By including realistic constraints, biophysical models of long-range func-

tional connectivity help to understand the role of coupling, delay and noise

in resting-state fluctuations. By simulating noise-driven oscillators to in-

teract with realistic delays based on the lengths of primate cortico-cortical

pathways, Deco et al. (2009) showed the emergence of two sets of 40-Hz

oscillators which were anticorrelated at < 0.1 Hz.

Besides modeling work, it is also important to recognize that ex-

perimental work together with robust statistical measures of coupling,

such as dynamics imaging of coherent sources (Gross et al., 2001), phase-

locking value, and phase-locking statistics, as well as statistical causal

measures of directional influence such as Granger causality (Granger,

1969), can inform and constrain mathematical models of coupling phe-

nomena.

While it is important to acknowledge the contributions of modeling

work and statistical methods, the focus of this thesis was more straight-
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forward: we aspired simply to provide accurate descriptions of spatiotem-

poral and spectral and distributions of cortical rhythmic activity.
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3. Resting-state networks and
naturalistic stimulation

3.1 Resting-state networks

It has been known for the past 50 years that the metabolic rate of the

brain during active sensorimotor or cognitive tasks is only less than 5%

higher than the metabolic rate during quiet rest. Further, 60–80% of

the brain’s energy budget during rest is involved in neuronal signaling

(Raichle and Mintun, 2006). Until recently, however, the characteristics

of intrinsic brain activity were largely unknown.

Resting-state networks (RSNs) refer to the recently discovered phe-

nomenon of spatial correlations in brain activity during rest, i.e. when

the subject is not engaged in executing any specific task or perceiving any

specific external stimuli; for a review see Fox and Raichle (2007). Biswal

et al. (1995) first observed correlations between the left and right sensori-

motor cortices in resting fMRI fluctuations. Subsequently, Shulman et al.

(1997) conducted a comprehensive meta-analysis of positron emission to-

mography (PET) studies, which revealed a task-related increase in blood

flow in some brain regions, and a corresponding task-related decrease in

others, across a wide variety of visual and language tasks. The regions

showing task-related decreases were thought to mediate a default mode

of brain function and this hypothesis was explicitly confirmed using seed-

based resting-state correlations of fMRI data (Greicius, 2003). Fox et al.

(2005) reported task-positive and task-negative brain regions which were

enhanced and suppressed respectively during task performance, with re-

spect to a baseline level of BOLD activity. Task-positive regions over-

lapped with regions reported to be involved in attention and executive

control, whereas the task-negative regions were together named the de-

fault mode network (DMN). Since then, using seed-based correlations as
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well as independent component analysis (see Section 6.2), a number of

other resting-state networks have been identified including the dorsal at-

tention networks, the auditory network, the cerebellar network, the exec-

utive control network, and the visual network. (Damoiseaux et al., 2006;

Fox and Raichle, 2007; Smith et al., 2009).

How do the functional RSNs relate to the anatomical connections of

the brain? Honey et al. (2009) showed that anatomical connectivity es-

timated using diffusion tensor imaging could only partially explain the

variance of functional connectivity; interregional distance and indirect

connections could explain only part of the remaining variance.

What, if any, is the functional significance of RSNs? One possibility

is that since RSNs were primarily observed in PET and fMRI, they could

be related to vascular phenomena with no neural correlates. However,

this proposal has come to be contested by direct electrophysiological ob-

servations of resting-state correlations (de Pasquale et al., 2010; Brookes

et al., 2011). The DMN has been suggested to be involved in stimulus-

independent thought or self-referential processing (Mason et al., 2007).

However, mediation of conscious mental tasks cannot be its only role since

DMN activity has been shown to persist under light sedation and early

stages of sleep (Larson-Prior et al., 2009; Greicius et al., 2008). Although

its functional role is not clearly established, the DMN has served as an

excellent marker for human brain development (Fair et al., 2008), aging

(Andrews-Hanna et al., 2007), and Alzheimer’s disease (Buckner et al.,

2005), and other neuropsychiatric disorders (Greicius, 2008).

Electrophysiological methods, owing to their direct measure of neu-

ronal activity, offer a complementary view of RSNs. The electrophysio-

logical correlates of the RSNs characterized using fMRI are an area of

active research. The best electrophysiological correlates of the BOLD

signal seem to be local field potentials (LFPs) (Logothetis et al., 2001).

Different frequency bands of the LFP predict the BOLD signal latency

and amplitude to different extents (Magri et al., 2012). Electrocorticogra-

phy (ECoG), scalp EEG, and MEG essentially reflect summations of large

populations of LFPs. Although a rich literature has described the charac-

teristics of spontaneous electrical oscillations in the brain (see Chapter 2),

neural evidence for long-range resting-state correlations is only beginning

to surface.

Given the slow nature of intrinsic hemodynamic fluctuations, one

candidate neural mechanism is sought in the correlations between band-
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limited power fluctuations or amplitude envelopes of spontaneous oscil-

lations. The evidence for this candidate mechanism comes from invasive

and non-invasive studies in animals and humans. I briefly summarize

these findings below.

Lu et al. (2007) demonstrated electrophysiological correlations in

delta band power between bilateral primary sensorimotor cortices in anes-

thetized mice. Leopold et al. (2003) found gamma band power correlations

at < 0.1 Hz in the monkey visual cortex. Nir et al. (2008) studied firing-

rate modulations and gamma power modulations of intracranial signals

from auditory cortices of humans. They found robust inter-hemispheric

correlations of both firing-rate modulations and gamma power at frequen-

cies < 0.1 Hz during wakeful rest, rapid-eye-movement (REM) sleep, and

stage 2 sleep. He et al. (2008) reported a similar correlation structure

between slow cortical LFPs (0.01–0.1 Hz) and BOLD fMRI during wake-

fulness, slow-wave sleep and REM sleep. Studies examining the relation-

ship between spontaneous MEG/ EEG oscillations and BOLD RSNs us-

ing simultaneous EEG and fMRI or simultaneous EEG and near infrared

spectroscopy (NIRS) have found that the power of the alpha rhythm is

inversely correlated with the fMRI signal in the occipital areas but pos-

itively correlated with the thalamus and insula (Goldman et al., 2002;

Moosmann et al., 2003). Laufs et al. (2003) reported mainly negative

correlations between the occipital alpha power and fMRI signals in a

fronto-parietal network, but mainly positive correlations between occip-

ital beta power and in the temporo-parietal junction and the cingulate

cortex. However, Mantini et al. (2007) found mainly positive correla-

tions between BOLD signals and average EEG power in different fre-

quency bands. Although the details about the contribution of individual

frequency bands towards the BOLD signal do not entirely agree, and new

data continue to emerge (Magri et al., 2012), the above studies taken to-

gether support band-limited power correlations as the electrophysiologi-

cal mechanism underlying RSNs.

More recently, de Pasquale et al. (2010) reported non-invasive seed-

based correlations in the default mode network using MEG. Brookes et al.

(2011) reported robust MEG RSNs at the group level using temporal in-

dependent component analysis on MEG data in source space.
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3.2 Advantages and challenges of naturalistic stimulation

One of the goals of systems neuroscience is to understand how various

brain systems encode, represent, and generalize information about the

natural environment. Beginning with the discoveries of Hubel and Wiesel

(1963), we have gained a tremendous amount of knowledge about the de-

tailed neuronal representations of very specific enviromental features us-

ing elementary stimuli, such as oriented edges, gratings, or pure tones,

which can be readily parametrized. White-noise stimuli, whose proper-

ties are well known for learning transfer functions of nonlinear systems,

have also been effective tools to characeterize single neurons (Marmarelis

and McCann, 1973). Therefore, the role of these elementary stimuli in

investigations of neural systems has been firmly established.

In recent years, functional brain imaging studies as well as single-

unit studies in humans have revealed that the brain contains dedicated

systems, circuits and even single neurons tuned to a narrow range of nat-

ural stimuli such as faces (Haxby et al., 1996; Kanwisher et al., 1997),

scenes (Epstein and Kanwisher, 1998), or even a particular face (Quiroga

et al., 2005). These systems, circuits, and neurons are very difficult to

drive using elementary stimuli alone (Felsen and Dan, 2005). Although

this shortcoming has been circumvented to some extent by using a sparse

basis set for generating pseudo-random stimuli, the properties of the sys-

tems characterized are biased by the choice of the basis. This is a limi-

tation that can be overcome with naturalistic stimuli, defined roughly as

stimuli representative of the natural environment.

However, naturalistic stimuli present at least three methodological

challenges. First, we do not have a well-defined response model for com-

plex stimuli such as videos or continuous speech. As a result, it is difficult

to build predictive models of brain responses. This constraint requires ex-

ploratory, data-driven methods to effectively separate the various systems

involved. Second, these stimuli are difficult to present multiple times

and therefore novel methods which enhance the signal-to-noise ratio or

contrast-to-noise ratio from single responses need to be developed. Third,

we need computational methods to design and parametrically manipulate

the naturalistic stimuli.

The first steps towards using naturalistic stimuli in fMRI have al-

ready been taken, with suprising results. Bartels and Zeki (2004) first

showed that naturalistic stimuli can activate a large number of neural
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systems at the same time. Hasson et al. (2004) demonstrated the consis-

tency of responses to natural stimuli by reporting high degree of inter-

subject correlations during movie viewing, and later on attributing this

high correlation to encoding of episodic memory (Hasson et al., 2008a).

Golland et al. (2007) characterized extrinsic networks, reliably driven by

naturalistic audiovisual stimuli, as well as intrinsic networks whose ac-

tivity was dissociated from the external stimulation. Malinen et al. (2007)

showed using independent component analysis that systems related to

processing of naturalistic auditory, visual, and tactile stimulation can be

separated reliably. Hasson et al. (2008b) used silent films played forward,

in reverse or piecewise-scrambled to elucidate a temporal hierarchy of vi-

sual information processing in the cortex. These studies illustrate the

unique possiblities afforded by naturalistic stimuli to characterize neural

systems and the potential for data-driven methods to enable such charac-

terization.
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4. Magnetoencephalography

This chapter presents a brief introduction to MEG, the main experimental

technique used in this thesis, followed by a short background of the prin-

ciples of signal generation, data acquisition, and analysis. This chapter

refers very often to the classic reviews by Hämäläinen et al. (1993) and

Hari (2004), and a recent historical account by Hari and Salmelin (2012).

4.1 History

Magnetoencephalography (MEG) is a technique to measure magnetic fields

associated with neural electrical currents. As a non-invasive brain imag-

ing technique, MEG offers an excellent temporal resolution (less than a

millisecond) and a good spatial resolution (in the range of 5–30 millime-

ters, depending on source configuration, orientation and location).

The first MEG measurements were conducted in the late 1960s

with an induction-coil magnetometer (Cohen, 1968). However, a high

enough signal-to-noise ratio for real-time recordings was achieved with

a magnetometer utilizing the superconducting quantum interference de-

vice (SQUID) as a sensor (Cohen, 1972).

Early EEG studies mostly focused on characterizing the morpholog-

ical properties of spontaneous activity and correlating these with mental

and disease states, as outlined in Chapter 2. It was only in the 1960s with

the advent of laboratory computers that signal averaging became feasible

(Hari and Salmelin, 2012). By quantifying response latencies and am-

plitudes, averaged evoked responses allowed investigators to assess the

integrity of various functional pathways.

Owing to advances in inverse modeling (Section 4.5), it became pos-

sible from the late 1970s to non-invasively locate cortical generators of

various responses evoked by visual, auditory and somatosensory stimua-
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tion. Averaging was also applied to the envelopes of ongoing oscillations

and it became possible to quantify their modulations as a function of stim-

ulation, as well as to pinpoint their cortical sources. Thanks to parallel

advances in multichannel MEG instrumentation, these strengths of MEG

led to clinical applications in locating the foci of epileptic seizures as well

as in presurgical mapping of eloquent brain areas by the 1990s (Stefan

et al., 2003; Papanicolaou et al., 2004). MEG applications in cognitive

neuroscience include primary sensory cortical function, attention, action-

observation, and language production and perception.

In the past decade, MEG studies have begun to move beyond the

quantification of evoked-responses and the emphasis on accurate location

of brain activation towards studying cortico-cortical functional connectiv-

ity. Owing to the recent interest in spontaneous brain activity emerging

from other imaging domains such as PET and fMRI (see Chapter 3), it has

once again become popular to study oscillatory activity and spontaneous

fluctuations using electrophysiological techniques, and MEG is often seen

as the primary imaging method in such investigations. In this sense, the

historical progress of MEG has taken place in a direction opposite to that

of EEG, with early investigations dominated by evoked reponse studies,

and current and future investigations likely to be dominated by studies

of spontaneous activity. However, the hope is that with advanced inverse

modeling techniques and nuanced statistical measures of functional con-

nectivity, we can move beyond morphological descriptions and associa-

tions between activation and cognitive states, towards quantitative de-

scriptions and predictive models of brain function.

4.2 Signal generation

Synchronous postsynaptic currents in the apical dendrites of tens of thou-

sands of neurons give rise to a weak magnetic field which is detectable

outside the head. It is believed that the bulk of the extracranial fields

is due to postsynaptic currents for two reasons. Firstly, the pyramidal

neurons are oriented parallel to each other, and the postsynaptic poten-

tials are long-lasting enough (compared with action potentials) to allow

for temporal summation (Hari, 1990; Okada et al., 1997). Secondly, the

magnetic field pattern due to a postsynaptic current is dipolar in nature,

i.e. the field strength falls off as 1/r2. In comparison, the quadrupolar

field due to an action potential falls off as 1/r3 (Hämäläinen et al., 1993).
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Ampere’s law with Maxwell’s correction states that electric currents

and changing electric fields generate magnetic fields:

∇×B = μJ+ με
∂E

∂t
, (4.1)

where B is the magnetic field, J is the total current density, E is the

electric field, and μ and ε are the magnetic permeability and the electric

permittivity of the medium, respectively.

The current density J in Eq. 4.1 represents the sum of primary cur-

rents Jp and volume currents Jv. Primary currents for MEG flow mainly

inside the neuron as a direct consequence of the electric potential set up

at the synapse. Volume currents flowing in the conducting medium out-

side the neurons close the current loop. The term με∂E∂t may be neglected

because time derivatives are insignificant at the maximum frequency of

interest (about 100 Hz) for the spatial scale of the human head (Hämäläi-

nen et al., 1993). This is known as the quasistatic approximation.

If the head is approximated as a homogeneous spherical conduc-

tor, then the net effect due to volume currents can be taken into account

analytically. However, for more realistic geometries and conductor mod-

els, volume currents must be taken into account numerically (see for e.g.

Tanzer (2006)). In addition, in a spherically symmetric conductor, radially

oriented primary currents do not produce any magnetic field outside the

conductor, see Fig. 4.1.

The decrease of field strength with source depth limits the depth

resolution offered by MEG. This phenomenon is both due to increasing

measurement distance and the spherical head shape, implying that the

MEG signal is predisposed to superficial currents. However, since pyrami-

dal neurons are oriented perpendicular to the cortical sheet, MEG detects

sources from the cortical sulci better than EEG, whereas EEG is better at

detecting sources from the convexial cortex, as well as from the depth of

the brain. For these reasons, MEG and EEG complement each other.

4.3 Measurement

The magnetic field of the brain is of the order of 10−14–10−13 T for evoked

fields, and of the order of 10−12 T for prominent alpha oscillations, about

8–10 orders of magnitude below the earth’s magnetic field and 7 orders

of magnitude below the field generated by typical laboratory appliances.

Hence, the instrumentation required to detect these fields must be highly
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Figure 4.1. MEG is maximally sensitive to primary currents which are tangential to the
surface of the head. This figure shows a coronal section of the brain with
a current source in the lateral fissure. The primary current that produces
an extracranially measurable magnetic field, shown schematically as a red
arrow, is the result of temporal and spatial summation of currents over a cor-
tical area of approximately 40–200 mm2 (Hari, 2004). The spatial summation
is possible due to parallely-oriented pyramidal neurons. Image courtesy of
Lauri Parkkonen.

sensitive.

Although the first MEG signal was detected by an induction coil

magnetometer (Cohen, 1968), with the invention of the Josephson junc-

tion it became possible to measure biomagnetic fields using a supercon-

ducting quantum interference device (SQUID) magnetometer (Zimmer-

man et al., 1970; Cohen, 1972). Modern MEG sensors are based on SQUIDs

whose white-noise levels can be as low as 1fT/
√

Hz. Liquid helium is used

to keep the SQUIDs superconducting at a temperature of about 4 K. Such

a temperature difference requires good isolation of the sensor element

from the head surface, limiting the measurement distance. With the de-

ployment of whole-scalp MEG systems (Ahonen et al., 1993) it became

possible to record magnetic fields from all over the brain surface. Modern

MEG systems consist of more than 300 sensors whose orientations are

optimized to maximize the information provided by the acquired signals

(Nenonen et al., 2004).

The data presented in this thesis were acquired using a Vectorview

system (Elekta Neuromag Oy, Helsinki, Finland) which comprises 102

sensor elements, each containing a magnetometer and two orthogonal pla-

nar gradiometers. Magnetometers measure the magnetic field component

normal to the head, while the planar gradiometers measure the spatial

gradient of the field component in a plane tangential to the head surface
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at the site of each sensor element. To minimize external interference, the

MEG system is operated in a magnetically shielded room. The shield-

ing is provided by layers of mu-metal and aluminum. In our three-layer

shielded room (Cohen et al., 2002), the low frequencies (< 10 Hz) are at-

tenuated by a factor of 103 to 104, while at higher frequencies the shielding

factor is at least 105.

4.4 Artifact suppression

MEG recordings may be corrupted by a number of artifacts originating

from physiological sources such as eye-blinks, saccades, head movements,

muscle artifacts, respiration and the electrical signal from the heartbeat,

as well as non-physiological sources such as line noise, slow drifts in the

external magnetic field, etc.

The most rudimentary approaches towards artifact removal involve

discarding channels or measurement epochs with clearly artifactual pat-

terns, and linear filtering to limit slow drifts, line noise, or high frequency

artifacts. However, this approach is not feasible if the brain signals and

artifacts are in the same frequency range.

Signal-space projection (SSP) is a method to separate MEG signals

from various non-physiological sources of noise (Uusitalo and Ilmoniemi,

1997). The approach relies on linearly projecting the measured signal into

a signal subspace (the signal-space). To estimate the signal subspace, a

typical approach is to subtract the artifactual subspace from identity. The

artifactual subspace in turn is identified by performing a singular value

decomposition on measurements obtained in the presence of external in-

terference.

Data-driven methods such as independent component analysis are

also useful to separate temporally uncorrelated or independent artifactual

sources from sources of interest, see e.g., Vigário (1997).

Another robust method to separate artifacts from brain signals that

has been applied in this thesis, is based on separating the signal contri-

butions from inside and outside the head (Taulu and Kajola, 2005; Taulu

and Simola, 2006). This method is known as signal-space separation. The

net magnetic field at each sensor contains both the signal of interest aris-

ing from inside the head and the interference arising from contaminating

sources outside the helmet-shaped sensory array. Because the sensors

are located in a source-free volume outside the volume of interest, the
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magnetic field can be expressed in the sensor domain as a gradient of a

magnetic scalar potential. Since the divergence of the magnetic field van-

ishes, this scalar potential is a harmonic function. The signal space can

be expanded as the summation of two subspaces, known as the multipole

expansion.

In the former subspace, the field is generated by sources within the

volume of interest (the head). By contrast, in the latter subspace, the con-

tribution to the field comes from the volume of no interest (outside the

sensor-array). After the coefficients corresponding to the two subspaces

have been estimated, the latter subspace, which represents only the un-

wanted external interference, is discarded.

It can be shown that the contributions to the signal from within and

outside the sensor array are temporally uncorrelated for a suitable trun-

cation length of the multipole expansion. However, if the artifacts arise

from inside the sensor volume, such as due to head movements, they leak

into both subspaces. By removing the temporal statistical correlations be-

tween these subspaces, interference arising from within the sensor array

can be further suppressed; this approach is called the temporal signal-

space separation method (tSSS); (Taulu and Simola, 2006).

4.5 Inverse modeling

The problem of inferring the neuronal primary current distribution that

gives rise to the measured extracranial fields is known as the neuromag-

netic inverse problem. It was already shown by Helmholtz in the 19th cen-

tury that a current distribution inside a conductor cannot be uniquely re-

constructed from the electromagnetic fields outside it (Hämäläinen et al.,

1993) without making certain assumptions about the distribution.

The equivalent current dipole (ECD) model is the most commonly

applied source modeling technique for MEG. In this approach, one as-

sumes that the actual source distribution can be faithfully represented by

a small number of current dipoles. The dipole parameters (position, orien-

tation and strength) are then estimated by minimizing the least-squares

error between the measured data and those predicted by the model. Each

current dipole is described by three parameters for position and three pa-

rameters for the strengths of the orthogonal components of the dipole vec-

tor. Since radial currents do not produce any magnetic field in the sphere

model, one of the dipole components is constrained to be zero if spherical
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symmetry is assumed and only the two tangential components remain.

In a typical whole-scalp system, measurements from more than 100

channels are available, and the inverse problem is thus overdetermined,

i.e., we have more observations than unknowns. Although ECD modeling

has been highly effective to locate neural generators of evoked responses

when a reasonable guess of the active sources is available a priori, it is

not straightforward to select a model structure when a large number of

temporally overlapping sources and noise are present simultaneously. An

even more significant problem is that a fully automated reliable optimiza-

tion procedure does not exist in the case of multiple dipoles.

By contrast, in distributed source models, a grid of source points is

defined on the brain surface or volume, known as the source space. Each

source point typically contains three orthogonal current dipoles whose

strengths are estimated from the measured data. Due to the large number

of source points, the inverse problem is underdetermined and additional

constraints are required to render the problem unique. The minimum-

norm models (Hämäläinen and Ilmoniemi, 1994; Uutela et al., 1999) seek

a current distribution that explains the observed field, subject to the con-

straint that the norm of the entire primary source current is as low as

possible. The most popular norm is the L2-norm, and this solution is com-

monly called the minimum norm estimate (MNE). The observed field

B = LJ+ n (4.2)

where J is the vector of current source strengths at each location and ori-

entation, L is the linear, discretized forward operator, or lead field matrix,

which analytically gives the value of the field at each sensor due to a unit

dipole at each source location, and n is the noise vector. The minimum-

norm estimate is obtained as the solution of the minimization problem

Ĵ = minJ‖B− LJ‖2 + λ2‖J‖2 (4.3)

where λ is the regularization parameter which weights the relative

importance of obtaining a good fit to the data and minimizing the total

source current. If λ is large, the estimated current distribution will have

a small amplitude and will be spatially smooth. With decreasing λ, the

current distribution becomes stronger and shows more spatial variations.

Placing more emphasis on the first term in Eq. 4.3 thus introduces these

variations to explain the measurements accurately. The implicit assump-

tions in this model are that (1) the noise level is the same in all channels,
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(2) noise is uncorrelated across sensors, (3) sources are equally likely to be

of the same strength, and (4) each source is uncorrelated from all others.

We can relax assumptions (1) and (2) if an estimate of the noise-

covariance matrix is available. Such an estimate can be obtained from

data with no brain signal of interest, e.g., from a recording without a sub-

ject present. With this information, it is possible to capture noise levels in

the sensors and account for noise being correlated across channels. Sim-

ilarly, with a realistic source covariance matrix, assumptions (3) and (4)

can be relaxed. Through this matrix, insights from fMRI activations into

possibly active source areas, anatomical constraints (Dale and Sereno,

1993), sensitivity constraints such as such as the depth bias of MEG (Ioan-

nides et al., 1990; Lin et al., 2006), or spatial correlation of neighboring

sources (Pascual-Marqui et al., 1994) can be incorporated. If C is the noise

covariance matrix and R is the source covariance matrix, the weighted

cost function for the computation of the MNE can be re-written as

Ĵ = minJ(B− LJ)TC−1(B− LJ) + λ2JTR−1JT. (4.4)

The solution of this problem is J = MB, where M is the closed-form linear

inverse operator is given by

M = RLT(LRLT + λ2C)−1. (4.5)

The inverse solution is then visualized by plotting the estimated

dipole strengths at each source point, e.g., as a color map, and overlaying

the map on a slice of an anatomical volume of the brain, or its surface

reconstruction.

In distributed source models, it is useful to constrain the locations

of the source points to the cortical gray matter and the orientations nor-

mal to the cortical mantle to improve the accuracy of the estimation (Dale

et al., 2000). Application of the former constraint requires a triangulated

gray matter surface and for the latter constraint, the normal vector of

the cortex needs to be estimated at each vertex of the triangulation. Such

detailed information about the cortex is not directly available from 3D vol-

umetric magnetic resonance images (MRIs) of the brain. To extract this

geometrical information, the cortical surface can be reconstructed from

a high-resolution MR-image using a highly-automated sequential proce-

dure (Dale et al., 1999) involving stripping of the skull, segmentation of

gray and white matter volumes, separation of cortical from subcortical

structures, separation of left and right hemispheres, and tessellation of
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white matter and pial surfaces in each hemisphere.

Surface reconstruction is also essential for surface-based visual-

ization, which is advantageous for several reasons. First, due to the

highly folded nature of the cortical sheet, sources that are very close in

a volume image may actually be far away along the surface (such as

on different banks of the same sulcus). Second, visualization of activ-

ity buried in the sulci is easier if the cortex is inflated to a 2D struc-

ture. Third, if the cortex is inflated into a parametric shape (such as

a sphere), then it is possible to align and average surfaces of individ-

ual subjects in order to obtain a template for group analysis. Inflation

and co-registration to a sphere are performed by a sequence of steps that

minimizes metric and topological distortions (Fischl et al., 1999). For

surface-based analysis in this thesis work, the Free Surfer software pack-

age (http://surfer.nmr.mgh.harvard.edu, Martinos Center for Biomedical

Imaging, Massachusetts General Hospital) was used.
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5. Nonlinear systems identification

Systems identification is a framework originating from control theory and

is concerned with the description of dynamical systems in terms of mea-

sured inputs and outputs. Since the nonlinear systems identification frame-

work was applied in Publication I to build predictive models of induced os-

cillatory dynamics, this chapter describes the framework briefly. Further,

the model in Publication I was inspired by the hemodynamic response

function (HRF) in the analysis of fMRI signals. The main application of

the HRF is to compare predicted and actual fMRI signals at each voxel

and produce statistical maps of activation. Therefore, this chapter also

provides a brief primer of the concepts involved in statistical parametric

mapping.

5.1 Dynamical systems

The mathematical description of a dynamical system entails a set of rules

(the model structure) that describes the time-behavior of the dependent

variables (outputs) of a system as a function of its independent variables

(inputs). For some purposes, it is convenient to express the mapping

between inputs and outputs through a state space. Such models are

called state-space models, or input-state-output models. The state space

is spanned by state variables, which are the descriptors of the state of

the dynamical system. State variables enhance the understanding of the

system dynamics if they represent some physical constituents of the sys-

tem. For example, in the context of cognitive neuroscience, the observable

behavioral consequences of cognition (outputs) are described by mental/

neural states (state variables), which in turn capture the relationship be-

tween external stimuli (inputs) and observed behavior (outputs). Hence,

it is useful to think of the brain as a dynamical system.
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It is useful to understand what we expect from a quantitative model

of a dynamical system in general. Wu et al. (2006) offer some desirable

characteristics: a good model must provide a good fit to the available data.

To be practical, it must be as sparse as possible, i.e. it must explain the

data based on a few key parameters. It must be computationally feasible

to estimate the model parameters. To be informative, it must be biophysi-

cally meaningful, i.e. the model parameters should reflect the underlying

processes. A useful model should guide experimental design by helping

to test novel hypotheses about the system. Finally, a robust model should

generalize well to novel patterns of input.

The approach to modeling dynamical systems may be divided into

several steps. The first step is to define the set of dependent and inde-

pendent variables that constitute the system. The model complexity, and

consequently, the data required to estimate the model increase with the

number of variables.

In the second step, prior knowledge about the system must be used

to specify a suitable model structure. If the causal relationships between

inputs and outputs are well known, the model structure can be specified

completely from first principles. Such models are called white-box models.

On the other hand, if nothing is known apriori, the model structure is

minimally specified or totally unspecified, and the input–output mapping

can be derived mainly from the data. These are called gray-box and black-

box models, respectively.

The third step is to design and acquire a training dataset which

consists of a set of input–output pairs. The design question attempts to

answer what input excitations to the system maximize the amount and re-

liability of information extracted, from as small a number of input–output

measurements as possible.

For a linear system, the design is straightforward; the system re-

sponse to an excitation of arbitrary strength and infinitesimal duration

is sufficient to predict the system response to an excitation of arbitrary

strength and duration. However, the answer is not as straightforward

for nonlinear systems. For these systems, Gaussian white-noise inputs

as well as specialized sequences such as the pseudo-random m-sequence

and the sum of sinusoids have been used as system inputs; these input

sequences are briefly discussed by Marmarelis (1993) and authors cited

therein.

The fourth step is to estimate the mapping between the inputs and
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outputs, so that the output predicted by the mapping best fits the mea-

sured output. If the model is parametric, the problem reduces to the esti-

mation of a few parameters.

The final step is to validate the model for its robustness. At the very

least, it must be able to fit the training data well. It is also important to

test the model on an independent test set and quantify its performance.

5.1.1 Linear time-invariant modeling

The assumptions of linearity and time invariance impose certain con-

straints on the relationship between the input and output of a model. In

a linear system, scaling the input by a constant results in a scaling of the

output by the same constant (scaling principle). In addition, the output

to two or more inputs is exactly equal to the sum of outputs to individual

inputs (superposition principle). Under time invariance, a time-shifted

input results in exactly the same time shift in the output. Taken together,

it can be shown that under the linear time-invariant assumption, the out-

put y(t) can be modeled as a convolution of an input u(t) with an impulse

response function (IRF) k(t), defined as the system output to a vanishingly

brief input δ(t) (Stremler, 1990), viz.

y(t) = k0 +

∫ ∞

−∞
k(τ)u(t− τ)dτ (5.1)

For a causal system, k(t) = 0 when t < 0.

The validity of linearity and time-invariance can be tested using

the time-shifted summation approach that evaluates whether responses

to longer-duration inputs are predicted by summing shifted copies of a

template response to a shorter-duration input. Typically this template is

derived based on the response waveform.

5.1.2 Generalized convolution models

Linear convolution can be extended to a generalized convolution frame-

work in which any nonlinear, time-invariant system can be expressed as

an infinite series of functionals (the Volterra series) constructed by multi-

ple convolutions of the input. For the input u(t), the output y(t) is given

by the Volterra series as
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y(t) = k0

+

∫ ∞

0+
k1(τ1)u(t− τ1)dτ1

+

∫ ∫ ∞

0+
k2(τ1, τ2)u(t− τ1)u(t− τ2)dτ1dτ2

+

∫ ∫
. . .

∫ ∞

0+
km(τ1, τ2, . . . , τm)u(t− τ1)u(t− τ2)

. . . u(t− τm)dτ1dτ2 . . . dτm (5.2)

where km is called the mth-order Volterra kernel. k0 is a constant which

captures the time-invariant offset. The first-order kernel k1 represents

the linear unit impulse response of the system, similar to the IRF in the

linear convolution framework. Similarly, the second-order kernel k2 is

a function of two time variables and represents the system response to

two unit impulses applied at different points in time. In practice, the

Volterra series is often truncated to second-order because the amount of

data required to estimate each higher-order kernel scales exponentially

with the model order (Victor, 2005).

5.2 Model estimation

The method to estimate the linear convolution kernel from the input and

output is called linear deconvolution. Deconvolution in the time domain is

done by assuming that the output and input are polynomial coefficients,

and then computing the quotient of the polynomials. The basis for this

comes from the Z-transform (or any integral transform). If in addition to

the input and output, the spectral properties of the measurement noise

are known, deconvolution can also be done in the frequency domain using

the Wiener filter. More general approaches to deconvolution are derived

from statistical estimation theory (Kay, 1993).

If we express the linear convolution operation as a product of two

matrices as Y = UK, where U is the input, K is the convolution kernel

and Y is the output, then the kernel may be estimated by multiplying the

equation by the pseudo-inverse of U from the left. It is well known that

this minimizes the sum of squares of the residual Y − UK. However, to

obtain a good estimate of K, U must be non-singular in theory, and close

to full-rank in practice.

The model may also be estimated in the Fourier domain. Specifi-
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cally, the Fourier transform of the kernel may be estimated as the quotient

of the Fourier transforms of the output and the input as

K(ω) =
Y (ω)

U(ω)
(5.3)

However, to ensure that K(ω) is non-zero at all frequencies, the input

u(t) needs to be approximately white. Regularization may be applied

in the time domain (Tiknonov regularization) or the frequency domain

(Wiener filter) to avoid singularities; see Kay (1993). These methods are

non-parametric i.e. they do not make any assumptions about the shape

of the kernel, and each time point of the kernel is estimated to best ex-

plain the input–output relationship. Linear, closed-form, non-parametric

inversions are not as straightforwardly obtained for the generalized con-

volution model as for the linear time-invariant model.

Kernels may also be estimated by employing parametric models.

In this approach, the putative shape of the kernel is approximated by a

function which depends on a few parameters. Once these assumptions are

made, the parameters are estimated. Such an approach significantly re-

duces model order compared with the non-parametric case. A sufficiently

general parametric model may be developed using temporal orthogonal

basis functions. The choice of the basis set depends on prior knowledge

about the shape of the kernel, and the number of hyperparameters re-

quired to describe the basis set. Once this choice is made, the parameters

to be estimated are simply the coefficients of the basis functions. With

this approach, it is possible to relax Wiener’s requirement of whiteness of

input and estimate the coefficients using least-squares regression (Mar-

marelis, 1993).

5.3 Statistical parametric mapping

In neuroimaging studies using fMRI or PET, it is often of interest to com-

pare brain activity in different regions across different stimuli or tasks.

On the basis of imaging data, researchers seek answers to questions such

as “which brain areas are statistically significantly more active during

task A than during task B?”. These questions can be formulated into

hypotheses which can be subjected to statistical tests. Statistical para-

metric mapping (SPM) is a technique to perform hypothesis testing using

the general linear model (GLM) (Friston, 2006). The hypothesis can be en-

coded in the GLM and subsequently tested. The GLM models the observed
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fMRI data Y in terms of a linear combination of explanatory variables X.

The data can be expressed as Y = Xβ + ε, where X consists of the ex-

planatory variables, β are the parameters to be estimated, and ε is a well-

behaved residual. The matrix X that contains the explanatory variables

is called the design matrix. Each column of the design matrix corresponds

to a hypothesis question or a known effect that may confound the results.

These columns are referred to as explanatory variables, predictors or re-

gressors. The parameters (weights) for each regressor, β, that best ex-

plain the data Y, are then computed for each voxel using a least squares

fit. Usually, the interesting hypotheses concern contrasts between the

parameter estimates from different datasets, such as different conditions

or subject groups. These parameter estimates are subjected to statistical

testing to obtain measures of statistical significance in the form of a test

statistic such as z scores, which can be converted to appropriate p values.

Test statistics are then visualized as color maps on an anatomical brain

slice or a surface rendering. These maps express the statistical certainty

of observing activation in a given area. The process of visualizing maps of

parametric statistics gives the technique its name.

The mathematical transformation that predicts the BOLD signal,

given the pattern of stimulation or measures of neural activity, is called

the HRF. The HRF is so called because it suggests that the hemodynamic

activity that comes after neural activation is typically some sort of re-

sponse to local energy demands. Formally, the HRF is defined as the

hemodynamic response elicited by an infinitesimally short stimulus. In

practice, the explanatory variables in the design matrix X are constructed

by convolving the HRF to the signal which represents stimulus strength

and duration. The HRF is known to vary across brain regions and sub-

jects (Aguirre et al., 1998). Although a linear time-invariant model for

the HRF is most commonly used, nonlinear models based on generalized

convolution have also been used.
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6. Independent component analysis

Independent component analysis (ICA) is one among a class of methods

to achieve blind source separation. Blind source separation (BSS) is the

process of recovering a set of unobserved signals from their mixtures with

very little information about the underlying signals or the mixing process.

It must be noted that the set of unobserved signals are referred to as

sources in the BSS literature, although they have nothing to do with the

current sources obtained by inverse modeling of MEG signals (see Section

4.5).

6.1 Theory

6.1.1 Statistical constraints and mixing models

All BSS methods make two types of general assumptions. First, it is nec-

essary to assume something about the statistical properties of the sources.

Second, it is necessary to adopt a generative model of the observations,

i.e. a mixing model. In general, both these assumptions depend on the

dataset in question.

The classical ICA method assumes (1) that the sources are non-

Gaussian and mutually statistically independent, and (2) that they are

mixed by a linear noiseless model. For a set of independent signals (in-

dependent components) arranged row-wise in a matrix S, and a linear

mixing matrix A, the mixed signals X are given by

X = AS (6.1)

A complex-valued equivalent of the linear mixing model has been

proposed and estimated (Bingham and Hyvärinen, 2000). In addition to
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classical linear mixing, noisy linear mixing, e.g. (Hyvärinen, 1999)

X = AS+ n (6.2)

and post-nonlinear mixing (Hyvärinen et al., 2001, Ch. 17)

X = f(AS) (6.3)

are suitable alternatives for real-world data. All the above mixing models

are instantaneous, i.e. they assume no delay between the observed and

unobserved signals. Convolutive mixing (Hyvärinen et al., 2001, Ch. 19)

is suitable to model delays in the data generative process

X = A ∗ S+ n . (6.4)

Fourier mixing

F (X) = AF (S) (6.5)

where F (.) represents a pre-transformation to the observed data, such as

a short-time Fourier transform or wavelet transform, is another alterna-

tive mixing model. The advantage of applying a pre-transformation be-

fore ICA is that under a certain class of F (.) for certain types of data, the

statistical properties of desirable sources are more likely to satisfy the

constraints imposed by ICA. Indeed, this advantage has been exploited

throughout this thesis.

6.1.2 Principles of estimation

To estimate the ICA model in Eq. 6.1, a wide range of methods have been

developed. A number of these methods attempt to estimate a demixing

matrix W by maximizing the statistical independence of the sources, so

that an estimate of the sources can be subsequently obtained as Y = WX.

Two popular approaches have been presented to maximize statistical in-

dependence of the sources.

The first approach involves maximizing some measure of non-Gaus-

sianity of the sources. This approach is motivated by the central limit

theorem which suggests that a maximally non-Gaussian Y corresponds to

a maximally independent estimate of S (Hyvärinen et al., 2001). Typical

measures of non-Gaussianity are kurtosis and negentropy.

Kurtosis is a statistical measure that captures the peakedness of

the probability density, and is defined for zero-mean signals as the fourth

order cumulant normalized by the square of the second order cumulant
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and corrected to be zero for a Gaussian density: kurt(s) = E(s4)/(E(s2))2−
3. While kurtosis is an intuitive measure of non-Gaussianity, it is often

not robust to outliers because it increases quickly with the number and

amplitude of outliers. In particular, a few large outliers can dominate the

kurtosis measure and this leads to a lack of robustness in the estimate.

Kurtosis is thus more suitable for rejection of large-amplitude artifacts.

Negentropy is a measure motivated by the well-known observation

that Gaussian random variables have the highest information entropy.

Information entropy is defined as H(s) = −∑
p(s)log(p(s)). Negentropy

of a random variable s is then defined as the difference between the en-

tropy of the signal and the entropy of a Gaussian random variable with

the same variance, given by J(s) = H(sgauss) − H(s). In practice, negen-

tropy is hard to estimate without knowing the probability density of the

source s. However, as noted by Hyvärinen et al. (2001), various polyno-

mial approximations of negentropy exist (Comon, 1994) and are used in

practice. For instance, negentropy can be approximated as

J(s) ≈ k1(E(s3))2 + k2(kurt(s))2

≈ k1(E(s3))2 + k2(E(s4)− E(s4gauss))
2 (6.6)

where k1 and k2 are constants whose optimal values can be derived. If s

is not skewed, the negentropy reduces to the square of the kurtosis and

therefore suffers from the same lack of robustness as kurtosis. To keep

the negentropy measure robust in practice, the functions s3 and s4 are re-

placed by gradually increasing nonlinear functions G1(s) and G2(s). Var-

ious choices of nonlinear functions for robust avoidance of outliers have

been proposed. Of these, G1(s) = log(cosh(s)) and G2(s) = −exp(−s2/2)

have proven to be useful choices (Hyvärinen et al., 2001).

The second approach adopts maximum likelihood estimation by as-

suming a family of sparse densities for the sources S. Maximum likelihood

(ML) is a classical framework in statistical estimation, in which the like-

lihood of observing the data under a parametric model is maximized with

respect to the parameters. In practice, the log likelihood is mathemati-

cally more tractable and therefore the negative log likelihood is minimized

instead (Hyvärinen et al., 2001). In the ML framework, it is possible to

write down arbitrary generative models including nonlinear ones such as

in Eq. 6.5 with arbitrary source probability densities p(s), and estimate

them with generic optimization methods. The negative log likelihood is

expressed as a function of the model parameters, which in the case of ICA
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are the entries of the demixing matrix. A typical approach here is to spec-

ify a parametric form of the log likelihood with a family of non-Gaussian

densities p(s). A Bayesian extension of the ML framework, the maximum

aposteriori (MAP) framework, allows one to impose arbitrary prior infor-

mation on the sources or the mixing matrix, which might be useful in

situations where something is known about the statistical properties of

mixing.

An alternative approach to estimate the demixing matrix W is by

joint diagonalization of the covariance matrix and the higher-order cu-

mulant tensor. One such method, joint approximate diagonalization of

eigenmatrices (JADE) is based on the approximate diagonalization of the

eigenmatrices of higher-order cumulant tensor of the independent compo-

nents (Cardoso and Souloumiac, 1993).

In addition to methods imposing statistical independence or non-

Gaussianity, temporal embedding methods such as temporal decorrela-

tion source separation (TDSEP) (Ziehe and Müller, 1998) and second or-

der blind identification (SOBI) (Belouchrani et al., 1997) that jointly diag-

onalize covariances, are also used in blind source separation. These meth-

ods are based on the constraint that for the estimated independent compo-

nents, the lagged covariance matrices Cτ,i,j , defined as Cov(si(t), sj(t− τ))

across multiple time lags τ , must be as diagonal as possible. The rationale

behind temporal embedding methods is that since instantaneous decorre-

lation between estimated ICs is not a sufficient condition for uniquely

estimating the ICs, lagged decorrelation is imposed as an additional re-

quirement. Lagged decorrelation is then traded for the requirement of

non-Gaussianity. Thus, temporal embedding methods are capable of sep-

arating Gaussian sources.

6.1.3 Estimation techniques

A number of ICA estimation methods apply classical optimization tech-

niques such as the natural gradient method. Gradient descent is a classi-

cal iterative method to minimize an arbitrary function. At each iteration,

the parameters are perturbed in the direction of the steepest descent (neg-

ative gradient) of the function to be minimized. It has been shown that in

the context of ICA, the negative natural gradient is a better estimate of

the direction of steepest descent than the negative gradient itself. Hence,

the natural gradient is typically used in ICA estimation. For gradient-

based methods, a learning-rate parameter which specifies the amount of
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perturbation at each iteration must usually be set. The main disadvan-

tage of gradient descent based algorithms is that they converge slowly.

Fast fixed-point algorithms developed by Hyvarinen (1999) offer highly

successful alternatives to gradient descent. The basic insight of these fast

methods is that if w, the vector of parameters being estimated, is con-

strained to have unit norm (as in the case of ICA), then the gradient must

point in the direction of w at each iteration. Due to the unit norm con-

straint, it is possible to set w equal to the gradient, and subsequently

divide by its norm. This method, called FastICA, has been shown to con-

verge an order of magnitude faster than gradient descent (Hyvarinen,

1999). FastICA has been widely used, including in publications consti-

tuting this thesis work.

6.1.4 Statistical significance

Since the majority of ICA estimation techniques are sensitive to initial

conditions and susceptible to local minima, the question of how statisti-

cally repeatable the estimated components are, is an important one.

A typical strategy for achieving repeatability such as the one pro-

posed in the ICASSO method (Himberg et al., 2004) proceeds as follows.

First, the ICA estimation is repeated several times with different initial

conditions or bootstrapping. Next, the resulting components are clustered

using a heuristic method, and finally, only repeatable clusters (according

to a heuristic measure) are retained.

In a neuroimaging (or equivalent) setting with multiple and com-

parable datasets, an alternative approach for establishing statistical sig-

nificance selects only those components which are repeatable across sub-

jects (or equivalent datasets) using some heuristic measure. One such

realization called self-organizing ICA (sogICA), was proposed by Esposito

et al. (2005), where a novel measure was used to match corresponding

ICs across datasets. Recently, Hyvärinen (2011) proposed a method for

testing the statistical significance of estimated independent components

by assigning p values to individual components based on their similarity

across subjects (datasets). By assuming that under the null hypothesis,

the linear mixing matrix is a random orthogonal matrix, it was possible to

derive the probability of observing an arbitrary IC, and therefore assign p

values based on how unlikely the ICs were, under the null.
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6.2 Applications of ICA to neuroimaging

6.2.1 Analysis of fMRI data

ICA has been widely applied to fMRI data to identify spatially indepen-

dent networks. In spatial ICA (SICA) applications, the activation pattern

observed at each time instant is assumed to be a mixture of spatially inde-

pendent sources or networks. By contrast, in temporal ICA (TICA) appli-

cations, it is assumed that the signal at each spatial location is a mixture

of temporally independent processes. Owing to their much larger spatial

than temporal dimension, fMRI data have primarily been analyzed using

SICA.

McKeown et al. (1998) and McKeown (2000) made some of the first

attempts to analyze fMRI data with ICA. Spatial maps and IC timecourses

obtained by spatial ICA were comparable to statistical parametric maps

obtained by a GLM approach and the task regressors used in the design

matrix of the GLM. Their results suggested that ICA is a powerful ap-

proach to analyze data in uncontrolled experiments where the stimulus

or task regressors are unknown a priori.

In general, the benefit of SICA is that imposing spatial indepen-

dence on the data results in spatially distinct networks that are allowed

to covary temporally. Calhoun et al. (2001b) compared the application of

SICA and TICA on four different experimental designs in which visual

cortical networks were constrained to be either temporally dependent,

spatially dependent, spatiotemporally dependent, or spatiotemporally in-

dependent. SICA was able to extract networks that were spatially inde-

pendent but not necessarily networks that were temporally independent;

similarly TICA was successful in extracting temporally independent net-

works but not spatially independent ones. The study implied that while

the data-driven nature of ICA is powerful for experiments without an ex-

plicit design, the particular ICA method must be adapted to the statistical

structure of the data.

To address the limitations discussed by Calhoun et al. (2001b), Stone

et al. (2002) proposed skew-spatiotemporal ICA to select sources with

skewed distributions. This method achieves a trade-off between exact in-

dependence in the spatial or temporal dimension alone for joint partial

independence in both spatial and temporal dimensions.
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6.2.2 Analysis of fMRI resting-state networks

An early application of ICA to resting-state fMRI data (Kiviniemi et al.,

2003) showed that bilateral sensorimotor, visual and auditory networks

could be distinctly separated from fMRI data acquired from anesthetized

children. Greicius et al. (2004) showed that the default mode network

could be identified with ICA in young adults, healthy elderly adults as

well as Alzheimer’s disease patients. Beckmann et al. (2005) and van de

Ven et al. (2004) applied spatial ICA to healthy adults and reported dis-

tinctly repeatable networks viz. the medial visual network, the lateral

visual network, the auditory network, the sensorimotor network, the de-

fault mode network, the dorsal visual pathways, and the executive control

network, noting the hemispheric decoupling of the attention networks.

The networks identified with spatial ICA were also found to have distinct

spectral characteristics (van de Ven et al., 2004).

Once functionally distinct networks could be reliably identified with

ICA, later investigations began to systematically explore correlations be-

tween timecourses of independent components. Functional network con-

nectivity (FNC) by Jafri et al. (2008) is one such method to study func-

tional connectivity between distinct networks. Using this method, sig-

nificant differences in correlation between independent component time-

courses were found between schizophrenia patients and healthy control

subjects. ICA has also been applied to identify aberrant functional con-

nectivity within the pain network in chronic pain patients (Malinen et al.,

2010).

A primarily methodological investigation which studied the func-

tional decomposition of resting-state data at different dimensionalities,

revealed interesting insights into the potentially hierearchical organiza-

tion of functional networks (Smith et al., 2009). While a smaller dimen-

sionality (of 20) revealed the primary RSNs which have been well char-

acterized (Beckmann et al., 2005; Damoiseaux et al., 2006), a larger di-

mensionality of 70 revealed a decomposition of the primary networks into

highly correlated subnetworks. These studies exemplify the recent suc-

cess of ICA in characterizing RSNs during health and disease.

6.2.3 Analysis of EEG/ MEG signals

Temporal ICA has successfully separated various types of artifacts from

EEG/ MEG signals (Vigário, 1997). ICA has also been applied to evoked

51



Independent component analysis

responses to characterize their dynamic spatiotemporal generators (Makeig

et al., 1999, 2002). However, applications of ICA to MEG/ EEG oscillatory

activity have been more recent. Makeig et al. (2004) advocated the appli-

cation of ICA to event-related oscillatory activity, assuming event-related

potentials to represent time-frequency perturbations. Anemüller et al.

(2003) showed that complex-valued ICA applied to spectral representa-

tion of EEG signals led to sources with a limited spectral extent and a

higher degree of independence than the sources obtained by traditional

ICA.

At the time of starting this thesis work, no blind source separation

methods were available to characterize physiologically meaningful spon-

taneous oscillatory activity on the time-scale of minutes.
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7. Objectives of the thesis

The goals of this thesis were to develop methods to quantify and charac-

terize the dynamics of oscillatory activity as measured by MEG during

conditions where several repeats of a short external stimulus is not avail-

able. The specific goals of the studies were:

• For Publication I, our goal was to build predictive models of the dy-

namics of stimulus-induced changes in oscillatory activity, so that the

single-trial response to an arbitrary stimulus may be predicted from a

parametric description of the stimulus design.

• For Publication II, we aimed to develop a data-driven method based on

ICA to separate signals of physiological interest from sensor-level MEG

recordings.

• For Publication III, we modified the method developed in Publication II

to emphasize spatial and spectral sparseness and to extend the method

to source–space.

• For Publication IV, (i) we sought to modify the method developed in

Publication III to focus on cortico-cortical networks rather than isolated

sources, (ii) we intended to extend the method to multiple subjects, and

(iii) using the method developed, we aimed to study how networks iden-

tified during rest are modulated by naturalistic stimulation.
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8. Summary of studies

8.1 Overview of materials and methods

8.1.1 Subjects

All data presented in this dissertation were acquired from healthy adults

after written informed consent. Fourteen healthy adults (six females,

eight males; mean age, 28 years; range, 22–41) took part in PI while eleven

adults (six females, five males; mean age 30 years; range 23–41) took part

in PII, PIII, and PIV. All recordings were approved by the Ethics Commit-

tee of the Helsinki and Uusimaa Hospital District (protocols No. 9-49/2000

and No. 95/13/03/00/2008), granted to Drs. Nina Forss and Riitta Hari.

8.1.2 Stimuli

In Publication I, tactile stimuli were delivered to the tips of the fingers

of each hand, excluding the thumbs. Homologous fingers of the hands

were stimulated simultaneously to engage both somatosensory cortices.

For details, see Section 8.2.2. In Publication II, we employed resting-state

MEG data without any stimuli delivered to the quietly resting subject.

In Publication III and Publication IV, we employed naturalistic visual

and auditory stimuli as well as simple tactile stimuli. The visual stimuli

comprised silent movie clips showing faces, hands, or buildings, whereas

the auditory stimuli comprised pure tone beeps as well as speech. For

details, see Section 8.4.2.

The tactile stimuli were delivered using pneumatic diaphragms at-

tached to the fingertips of each hand. The visual stimuli used in Publica-

tion III and Publication IV were delivered using a Vista projector (Christie
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Digital Systems, Inc.) via a mirror to a back-projection screen. Auditory

stimuli were generated with a piezoelectric transducer and delivered us-

ing a plastic tube. The timing of stimulus delivery was controlled using

Presentation Software (version 0.81, Neurobehavioral Systems Inc., Al-

bany, CA, USA).

8.1.3 Measurements

MEG data were acquired with a 306-channel whole-scalp MEG system

(Elekta Neuromag Oy, Helsinki, Finland). Measurements for the testing

dataset in PI were conducted in a two-layer shielded room equipped with

active compensation. For the training dataset in PI and all data in PII–

PIV, measurements were conducted in a three-layer shielded room with-

out active compensation. The shielded rooms were located at the Brain

Research Unit, O.V. Lounasmaa Laboratory, School of Science, Aalto Uni-

versity.

Measurements for PI were bandpass filtered to 0.03–200 Hz and dig-

itized at 600 Hz, whereas those for PII–PIV were filtered within 0–200

Hz and digitized at 600 Hz. In addition to these measurements, a 2-min

recording without a subject was conducted after each experiment to esti-

mate the noise statistics for inverse modeling.

During the MEG recordings, four small coils, whose locations had

been digitized with respect to anatomical landmarks, were briefly ener-

gized to determine the subject’s head position with respect to the MEG

sensors.

Anatomical MRIs were obtained using a 3-T General Electric Signa

MRI scanner (Milwaukee, WI) at the Advanced Magnetic Imaging (AMI)

Centre of the School of Science, Aalto University.

8.2 Modeling the amplitude dynamics of task-induced changes in
MEG oscillations (PI)

8.2.1 Motivation

Induced changes in neural oscillations are time-locked but not necessarily

phase-locked to the onset of a stimulus or a task. Amplitude envelopes of

spontaneous oscillations are suppressed during stimulation or task per-

formance. Most literature on the dynamics of spontaneous oscillations is
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descriptive rather than predictive. To predict the suppression and sub-

sequent rebound dynamics of task-induced oscillatory changes as a func-

tion of the task sequence, we introduced the oscillatory response function

(ORF): an electrophysiological analog to the hemodynamic response func-

tion (HRF). In this study, we developed the ORF and applied it to predict

the dynamics of the 20-Hz component of the rolandic mu rhythm.

8.2.2 Approach

The dynamical system which produces the suppression-rebound dynamics

of the 20-Hz amplitude envelope is inherently nonlinear, since the dura-

tion and the amplitude of the rebound do not scale linearly with respect

to the stimulus duration or strength. To capture such a nonlinearity,

we used the generalized convolution framework. Since generalized con-

volution kernels capture the non-linear transformation inherent in the

suppression-rebound dynamics, we preferred this framework to the linear

convolution framework used to model HRFs. A Volterra series truncated

to second order was used to specify the model structure for the ORF. The

input of the model was a step function representing the stimulus time-

course and the output was the envelope of the 20-Hz mu rhythm from a

representative rolandic sensor.

To estimate the model, we expanded the kernels as a linear com-

bination of three Laguerre basis functions and then estimated the coeffi-

cients using the Wiener method (Wiener 1958; Marmarelis 1993). Figure

8.1 shows the approach used in the model estimation. We learned the

parameters of the model (i.e. the coefficients of the basis expansion) on

an independent training dataset and then applied the model to predict

oscillatory responses on an independent testing dataset.

For both training and testing experiments, tactile stimuli were de-

livered using pneumatic diaphragms at the fingertips of both hands. The

stimuli for the test dataset were designed to be informative about the gen-

eralizability of the estimated model as a function of stimulus parameters.

We employed a design with alternating stimulus and rest blocks and bilat-

eral stimulation to engage the somatosensory cortex of both hemispheres.

Within a stimulus block, the tactile stimuli were presented in a random

order under the constraint that homologous fingers were stimulated si-

multaneously. The training session consisted of two 13-min sequences of

pneumotactile stimulus trains. In a single train, the stimuli were given at

either 4 Hz or 10 Hz. All fingers except the thumb were stimulated. Each
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Figure 8.1. The experimental design determines the training and the testing paradigm.
A suitable model structure with a hyperparameter specifies the properties of
the Laguerre basis functions with a 2-s support. The training dataset is used
to learn the model parameters, i.e. the coefficients of the basis functions us-
ing a weighted least squares fit. Once the parameters are estimated, they are
validated on the testing dataset by computing statistical parametric maps of
neuronal current estimates.

sequence consisted of 25 stimulus blocks of four different durations (0.5,

1, 2, and 4 s) occurring in a random order and the rest blocks were of five

different durations (5.0, 5.5, 6.0, 6.5, and 7.0 s). The test session comprised

one 11-min sequence with tactile stimuli at 4 Hz. Each stimulus sequence

comprised 40 trials, each of them with a short stimulus block (1 s), a rest

block (5 s), a long stimulus block (6 s), and another rest block (5 s). Only

the index and middle fingers were stimulated.

8.2.3 Results and discussion

For the training dataset, the envelopes of the 20-Hz rhythms from rolandic

sensors were 25–43% better predicted by the models than by the inverted

stimulus timecourse (boxcar). A linear model with separate convolution

kernels for onset and offset responses gave the best prediction. We studied

the generalizability of this model with data from 5 different subjects dur-
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Figure 8.2. The modulation depth maps and the corresponding timecourses of the enve-
lope for short- and long-duration trials from the maximally-modulated source
point, averaged across 5 subjects, are shown. The maps are thresholded to
display source points with the top 1% modulation. The timecourses are av-
eraged across trials and subjects. Error bars show standard errors of mean.
The data are shown in black and the model predictions are shown in red.

ing a separate bilateral tactile sequence by first projecting the sensor-level

activity in the ~20-Hz frequency range into source space using cortically

constrained minimum norm estimates. Both the model and the boxcar

predicted strongest modulation in the primary motor cortex. Figure 8.2

shows maps of modulation depth estimated by the boxcar and the ORF

model as predictors of the amplitude envelope. For short-duration stimu-

lus blocks, the model predicted the envelope of the cortical currents 20%

better than the boxcar did. These results suggest that ORFs could con-

cisely describe brain rhythms during different stimuli, tasks, and patholo-

gies. Thus, we advocate the framework as a broad, quantitative approach

to characterize oscillatory dynamics of brain rhythms with specific tem-

poral, spectral, and spatial characteristics.

8.3 Sparse time-frequency objects in sensor space: A superior
method to conventional temporal ICA (PII)

8.3.1 Motivation

ICA has successfully identified resting-state networks from fMRI data.

Owing to the large number of independent spatial observations in fMRI

data, spatial ICA is more common. However, temporal ICA is more com-

monly applied to EEG/ MEG data. Prior to this publication, temporal

ICA had mostly been successful in separating and removing artifacts from
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recordings over time-scales of minutes, see e.g., Vigário (1997). Thus,

one desirable property of a new method is that it must be successful

at separating physiologically meaningful sources. Secondly, among the

large number of independent components obtained, an objective method

of ranking them would be useful. Finally, to describe functional connectiv-

ity within spatially-extended neural sources with possible phase delays,

it would be useful to obtain the extended source in one single component.

In this study, we proposed a new method called temporal Fourier-ICA

with the above desirable properties and compared it against existing blind

source separation methods using simulated as well as real resting-state

MEG data.

8.3.2 Approach

It is well known in the theory of blind source separation that ICA max-

imizes sparseness along whichever data dimension it is applied. Given

that artifacts in MEG data tend to be temporally sparse, it follows that

temporal ICA succeeds in isolating these artifacts well. By comparison,

neurophysiological sources tend to be amplitude-modulated (AM) narrow-

band oscillations and not necessarily sparse in the time domain. An im-

proved data representation in which the neurophysiological sources are

sparse would lead to better separation performance. As opposed to the

time domain, AM narrowband oscillations are sparser in the frequency

domain than artifacts.

We first explicitly demonstrated this phenomenon using simula-

tions. Next, we proposed a linear complex-valued mixing model of complex-

valued time-frequency atoms represented as short time Fourier transform

coefficients. To estimate this model, we adopted an objective function

that is a robust measure of non-Gaussianity and subsequently applied

complex-valued FastICA (Bingham and Hyvärinen, 2000). We called the

method temporal Fourier-ICA (TFICA). Using simulated as well as real

MEG resting-state data, we compared Fourier-ICA against real-valued

FastICA with a tanh objective function, real-valued FastICA with a kur-

totic measure of non-Gaussianity, JADE (Cardoso and Souloumiac, 1993)

on the time-frequency representation, SOBI (Belouchrani et al., 1997)

with real-valued mixing. For FastICA, we included a reliability analysis

using ICASSO framework (Himberg et al., 2004), and a threshold relia-

bility index of 0.75 was used.
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Figure 8.3. Simulated data: The first three out of four reliable sources estimated using
Fourier-ICA correspond to the underlying sources in the simulation. First
column: temporal envelope, second column: Fourier amplitudes, third col-
umn: power distribution over channels of 4 reliable independent components
obtained using Fourier-ICA. Taken from PII with permission.

8.3.3 Results and discussion

From a simulated dataset comprising three artifactual sources and three

AM sources, multiple repeats of Fourier-ICA extracted AM sources 77% of

the time compared with temporal ICA which found these sources 17% of

the time. Figure 8.3 shows the four reliable sources estimated from a sim-

ulation with three AM current dipoles placed in the right occipital, right

Rolandic and the left Rolandic regions, mixed with real measurements

from MEG sensors in the absence of a subject. The simulated sources

were ranked from 1–3. By comparison, temporal ICA with tanh nonlinear-

ity found only one simulated source, while temporal ICA with the kurtotic

objective function did not find any reliable source. SOBI found 2 out of

3 sources, while JADE found all 3 sources. Figure 8.4 shows the reliable

components obtained using Fourier-ICA from a real 5-min resting-state

dataset from a single subject.

To conclude, our new method was able to successfully identify sev-

eral narrow-band oscillatory neural sources, automatically identify the

spatial, temporal and spectral structure, and provide an automatic way

of ranking them in order of interestingness. These results suggest that a

sparse representation of the data and a rich signal model which captures

the oscillatory time structure is likely to be better at separating sources

of neurophysiological interest.
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Figure 8.4. Real MEG recording: reliable sources obtained by Fourier-ICA with a com-
plex mixing matrix. Each row is one source; the sources are ordered by the
objective function, i.e. the most “interesting” ones at the top. First column:
the timecourse of the source (envelope). Second column: the Fourier ampli-
tude spectrum. Third column: the magnitudes of the sources at the topo-
graphic sensor helmet. Fourth column: the phase differences of the sources.
Cyan indicates zero phase difference. Taken from PII with permission.

8.4 Maximizing spatial and spectral sparseness of Fourier
coefficients in cortical space (PIII)

8.4.1 Motivation

In this study, we pursued several logical extensions of the method de-

veloped in PII. First, we extended Fourier-ICA to the cortical level by

combining a distributed source localization method with a blind source

separation method. Second, we exploited the observation that the three-

way data (i.e. observations along spatial, temporal and spectral dimen-

sions) are spatially sparse by imposing sparseness in the spatial and spec-

tral dimension rather than the temporal and spectral dimensions (PII).

We named this method spatial Fourier-ICA (SFICA). Third, we compared

SFICA using simulations and real MEG data acquired during naturalistic

stimulation to conventional spatial ICA. Finally, we applied the resulting

method, spatial Fourier-ICA, to resting-state and naturalistic stimulation

to the individual MEG data acquired from 9 subjects.

8.4.2 Approach

The stimuli used in the experiment were modified from Malinen et al.

(2007) and comprised auditory (tone beeps, speech), visual (videos of faces,
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hands or buildings), and tactile stimuli (pneumatic pulses to homologous

fingers) in blocks of 6–33 s. The auditory stimuli comprised blocks of 0.1-s

pure tone beeps at discrete frequencies between 250–4000 Hz presented at

5 Hz within a block, as well as blocks of a male voice narrating the history

of the university or guitar instructions. The experiment consisted of three

parts: (i) natstim (2 × 8-min; auditory, visual and tactile blocks without

any rest periods in between) (ii) nat&rest (2 × 12 min; similar to natstim

but the stimulus blocks were interspersed with 15-s rest blocks), and (iii)

restfix (2× 10 min; quiet rest, eyes open, fixating on a crosshair).

Figure 8.5 shows the analysis streams for the two methods. For

SFICA, we projected the short time Fourier transforms of the MEG data

to the cortical surface using minimum-norm estimation, , i.e., by multipli-

cation with the linear inverse operator matrix G. We then rearranged the

three-way data by concatenating the Fourier coefficients source point by

source point such that each row constitutes the Fourier coefficients over

space, and each column is a time window.

8.4.3 Results and discussion

Figure 8.6 shows an independent component from a single subject ob-

tained with SFICA, representing the consistently found ~10-Hz occipi-

tal alpha rhythm. SFICA was applied by temporal concatenation of the

spatio-spectral data representation across the two natstim, restfix and

nat&rest runs. The ~10- and ~20-Hz Rolandic mu rhythms were also con-

sistently found across subjects. Figure 8.7 shows the manually selected

alpha and the mu rhythm components averaged across 8 subjects. A clear

suppression to visual and tactile stimuli, respectively, were seen.

Thus, SFICA enables inference about oscillatory activity under dif-

ferent conditions at the cortical level, and across different subject groups,

such as patients and healthy volunteers over time scales of minutes. By

interrogating the component timecourses (Fourier power) one can study

e.g., functional connectivity between different components of the same

subject, modulation of oscillatory activity by naturalistic stimuli, and re-

peatability of activity timecourses, within and across subjects.
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Figure 8.5. Illustration of the steps involved in the spatial ICA (left) and spatial Fourier-
ICA (right) methods. Taken with permission from PIII.
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Figure 8.6. One independent component estimated using SFICA, representing the ~10-
Hz occipital alpha rhythm from a single subject. The spatial power maps,
thresholded to show the surface points with top 5% strength, are overlaid on
the inflated brain surfaces of that subject. The timecourses show the z-scores
of the envelopes overlaid for the two runs of each condition. The background
represents the stimulus sequence: green bands represent visual stimuli, red
bands represent auditory stimuli, and gray bands represent tactile stimuli.
The natstim and nat&rest conditions show a clear suppression to all three
categories of visual stimuli. Taken with permission from PIII.
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Figure 8.7. Envelopes of ~10-Hz occipital components (above) and ~20-Hz Rolandic com-
ponents (below) averaged across eight subjects; the components (one per sub-
ject) were selected manually by visual inspection for each subject. Clear sup-
pression is observed during visual (above) and tactile (below) stimulation.
Taken with permission from PIII.
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8.5 Group-level spatial ICA of Fourier power: How are resting-state
networks modulated during naturalistic stimulation? (PIV)

8.5.1 Motivation

The Fourier-based methods developed in PII and PIII automatically ex-

tract narrowband oscillations from broadband data without having to man-

ually specify a frequency band of interest. Whereas the methods success-

fully found physiologically meaningful components such as alpha and mu

rhythms, they were typically located to a single cortical region. In PIV,

we investigated how to robustly characterize electrophysiological resting-

state networks using Fourier-based methods. In addition, we studied how

MEG resting-state oscillatory networks are modulated by stimulation.

8.5.2 Approach

We hypothesized that the resting-state connectivity across brain regions

is manifest in the correlations between envelopes of oscillations. Accord-

ingly, we applied real-valued TFICA or SFICA on the broadband Fourier

spectra (magnitudes of the Fourier coefficients) rather than complex-valued

ICA on the complex-valued Fourier coefficients. We call these methods en-

velope SFICA (eSFICA) or envelope TFICA (eTFICA). After benchmark-

ing these envelope methods against the other ICA-based variants using

a realistic simulated dataset, we applied group-level eSFICA to 10-min

resting-state data concatenated across 9 healthy subjects (see Section

8.4.1), separately for two runs. We then selected 30 consistent compo-

nents that were most similar across the two runs using a statistical test-

ing method (Hyvärinen, 2011). Each independent component estimated

with eSFICA can be considered as a linear “spatiospectral” filter, which

describes the cortical distribution of an oscillatory network. We applied

these filters to 12-min short-time Fourier transforms of naturalistic stim-

ulation data from the same 9 subjects and extracted the envelope time-

courses of each resting-state network. We then examined these envelopes

for modulation to external stimulation.

8.5.3 Results and discussion

We manually grouped the obtained resting-state components into approx-

imate categories such as sensorimotor, medial visual, lateral visual, audi-
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tory, higher-order sensorimotor, intrinsic, and orbitofrontal components.

The method identified several networks which resemble previously re-

ported resting-state networks, such as the bilateral sensorimotor network

at ~20 Hz, the lateral and medial parieto-occipital sources at ~10 Hz, a

subset of the default-mode network at ~8 and ~15 Hz, and lateralized

temporal lobe sources at ~8 Hz. We observed occipital alpha modulation

to visual stimuli, bilateral rolandic mu modulation to tactile stimuli and

video clips of hands, and the temporal lobe network modulation to speech

stimuli, but no modulation of the sources in the default-mode network.

Figure 8.8 shows the spatial and spectral profiles of the sensorimotor and

visual independent components obtained from resting-state data, and the

modulation of the envelope dynamics of these components during natu-

ralistic stimulation.

Our method characterized resting-state oscillatory brain networks

at the cortical level across subjects. The identified RSNs were in agree-

ment with those previously reported in the fMRI and MEG literature.

Further, we showed that a majority of these RSNs were consistently mod-

ulated by external stimulation, while the intrinsic networks remained

seemingly unaffected by stimulation. Since eSFICA operates on the Fourier

amplitudes rather than complex-valued spectra, the captured interactions

are envelope correlations and they disregard phase interactions. Fur-

ther, since the ICs are zero-mean, it is possible to find envelope anti-

correlations using this method. Compared with the method applied by

Brookes et al. (2011), our method is automatically able to select relevant

narrow frequency bands in a data-driven manner. As a result, the method

can potentially find cross-frequency interactions within a single network.

However, unlike Brookes et al. (2011), we did not find the classical default

mode network or dorsal attention network with eSFICA.
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Figure 8.8. eSFICA spatiospectral filters obtained from resting-state data (left and mid-
dle panels) used to interrogate brain dynamics during natural stimulation
(right panel). We manually ordered the components according to the domi-
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The inset shows consistency of the spatiospectral filter across two resting-
state sessions as measured by Pearson’s correlation coefficient. The temporal
profile is described by the modulation depths for each stimulus category av-
eraged across subjects. Adapted from PIV.
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9. General discussion

9.1 Contributions of the thesis

This thesis presents important methodological contributions to enable

predictive modeling of event-related induced oscillatory dynamics. In par-

ticular, a generalized convolution framework for learning the shape of the

amplitude modulation of an oscillatory response is proposed. The learned

response shape can then be used to predict the response to novel stimuli

or tasks. The parametric description of the learned response also enables

parsimonious comparison of event-related amplitude modulations across

conditions and subjects. The framework is very general in the sense that

it does not depend on the specific physiological oscillation being studied.

The thesis also develops methods for data-driven characterization

of spatial, spectral and temporal aspects of spontaneous oscillatory ac-

tivity over timescales of minutes. Using time-frequency representation,

distributed inverse modeling, and a blind source separation method as in-

gredients, several variants of the method including spatial vs. temporal,

sensor-level vs. cortical-level, and complex-valued short-time Fourier rep-

resentation vs. real-valued short-time Fourier envelope representation,

were developed and tested on simulated and real resting-state and natu-

ralistic stimulation MEG data.
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9.2 Limitations of the thesis

9.2.1 Methodological considerations

Although we proposed a ranking scheme for the estimated independent

components in Publication II in terms of the objective function, it does

not provide a complete answer to a practioner of the method for a prin-

cipled choice of the number of independent components to estimate. In

particular, the number of degrees of freedom in the data is determined by

several technical factors including the degree of independence between

the sensors, the number of basis functions used to represent the signal by

the SSS method, the conductor model in the forward solution, the density

of cortical sampling used in the distributed inverse model, as well as the

underlying hierarchical organization of functional oscillatory networks.

More rigorous empirical work and simulation-based research is needed to

understand the relationships between these factors.

To perform inter-subject analysis, we followed the most popular ap-

proach in Publication IV based on temporal concatenation (Calhoun et al.,

2001a). Temporal concatenation is an elegant solution to the inter-subject

consistency problem, but it assumes that the components are present in a

majority of the subjects analyzed. Further, the extent to which a compo-

nent is consistently present across subjects is hard to quantify.

9.2.2 Theoretical limitations

Although we developed a predictive model of the dynamics of mu rhythm

using a very general framework, the lack of a biophysically realistic ORF

model does not give us any insight in the functional role of oscillations

or the mechanisms that may subserve their event-related dynamics. In

future work, biophysically realistic models such as those by Jones et al.

(2009) or Jansen and Rit (1995) could be integrated into the predictive

framework.

9.3 Suggestions for future work

To avoid the assumptions and caveats of temporal concatenation, a few

alternative methods for group analysis have been proposed in the litera-

ture. Esposito et al. (2005) proposed to apply ICA on single subjects fol-
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lowed by clustering of components using a heuristic measure of correspon-

dence. Hyvärinen (2011) proposed a statistical test for the significance of

an independent component based on the null hypothesis of a random or-

thogonal mixing matrix. Such principled methods to assess inter-subject

or inter-session consistency would be an important step for the future.

Independent component analysis assumes a linear mixture of un-

derlying sources of networks. Although this may be a valid assumption for

slow temporal fluctuations observed with fMRI, more sophisticated non-

linear mixing models or dependent component models which take into ac-

count the empirically-observed cross-frequency phase synchrony or phase-

amplitude coupling (van der Meij et al., 2012) could be more effective.

For instance, evidence from intracranial recordings and MEG signals sug-

gests that oscillations at different frequencies are related in a hierarchical

nested manner, where the phase of low frequencies are correlated with the

ampltude of high frequencies (Canolty et al., 2006). BSS methods with a

hierarchical observation model could be useful to express the hierarchical

nature of nested oscillations.

In the future, to understand the neural basis of BOLD resting-state

networks, it would be extremely crucial to seek evidence from complemen-

tary functional imaging methods, such as intracranial recordings. New

data showing phase-amplitude coupling (van der Meij et al., 2012) as well

as the emergence of persistent networks (Kramer et al., 2011) in intracra-

nial recordings are promising in this context.

Finally, although we have deployed naturalistic stimuli in our stud-

ies, we have not made any computational characterization of the partic-

ular stimuli. To bring the knowledge gained from classical experiments

with artificial stimuli to bear upon exploratory analysis of brain responses

to naturalistic stimuli, computational generative models which explain

how naturalistic stimuli, such as scenes or faces, are built from elemen-

tary constituents such as oriented edges and textures would be extremely

valuable. Multimodal studies combining behavioral measurements such

as eye-tracking with neural activity measurements would be particularly

valuable in this regard.
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