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1. Introduction

1.1 Mineral froth flotation

Mineral froth flotation may be defined as a physico-chemical process in
which mineral particles, suspended in an aqueous solution, selectively ad-
here to dispersed air bubbles (Rehbinder, 1940). Mineralised bubbles rise
to the top of the flotation cell where minerals are recovered as a froth con-
centrate (Rehbinder, 1940; Gaudin, 1957; Glembotskii et al., 1963). The
flotation process can be divided into groups based on how air is delivered
into the pulp and how the fine solid suspension is mixed. The most com-
mon type of flotation machine is the mechanically agitated flotation cell,
where air is blown into the pulp through or nearby a rotor-stator mecha-

nism.

1.2 Scope

The area of flotation modelling is of great interest since it is of major im-
portance to both fundamental research and industrial application. Accu-
rate flotation models can help engineers and scientists to design and con-
trol flotation equipment in an optimised way. Until date the fundamental
mechanisms that govern bubble-particle interaction in flotation are still
not understood well enough to develop a mathematical model from first
principles. For this reason, most flotation models lean heavily on em-
pirical knowledge (Tuteja et al., 1994) and are often (semi-)statistical in
nature. It has been widely accepted that the rate of flotation is deter-
mined by the temporal efficiency at which bubbles and particles inter-
act (Gaudin, 1932, p. 88). Gaudin (1932) took a deterministic approach
and considered bubble-particle interaction as a multi-step process that
can be analysed in discrete steps. Some of the authors (e.g. Gaudin (1932)
and Sutherland (1948)) of seminal flotation papers openly criticised this
approach and its shortcomings, but pointed out that these concessions
were needed to produce workable results. The central point in these sim-
plifications is the underlying exclusion of momentum coupling from the
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Introduction

models. It is important to note that momentum coupling, here, concerns
the physical moments of inertia as well as interactions between momen-
tum and chemical potential. A notable example of the latter coupling is
the Marangoni effect.

In the context of this thesis it is instructive to consider three different
scales, as schematically depicted in Fig. 1.1. These scales are the micro-
scale, the meso-scale, and the macro-scale, respectively, and it must be
noted that the length scales are indicative only and by no means discrete.
The characteristic length scale of the nano/micro-scale is in the order
of 101% to 10° m. At this scale, many important (molecular) physico-
chemical phenomena take place and processes are often discrete in na-
ture. The other end of the spectrum is the macro-scale, at the level of
industrial processes and length scales larger than about 102 m, where
hydrodynamic processes are dominant. Clearly, a critical part of mod-
elling of mineral froth flotation is how information is transferred between
the micro- and macro-scales. The coupling between the different spa-
tial and temporal scales determines how hydrodynamics and (surface)
physico-chemistry interact and how momentum is transferred between
these scales. The scale that provides coupling between the micro- and
macro-scales is referred to as the meso-scale. Meso-scale modelling can
provide a valuable transfer function for the dynamic interaction between
the very small and very large scales. The focus of this thesis is therefore
on modelling of the dynamics at the meso-scale.

nano/micro meso macro
discrete continuous
1 1 1 1 1
-10 9 -8 7 6 -5 -4 -3 -2 -1 0
log L

Figure 1.1. Schematic diagram of the different scales in modelling of mineral froth flota-
tion. The log of the characteristic length scale L is indicated below the bar.
The meso-scale forms the bridge between the (discrete) nano/micro-scale and
the (continuous) macro-scale.

1.3 Objectives

The main objective of this thesis is to create a framework where differ-
ent models of mineral froth flotation sub-processes can be developed and
tested in a computational context. The model discussed in this thesis is
not a flotation model in itself, but rather a test harness to investigate the
appropriate physical and chemical fundamentals for the process at hand.
Hydrodynamics at the scale of swarms of bubbles and particles can inter-

18



Introduction

act with the physico-chemistry of surfactant dynamics at the gas-liquid

interface and phenomena such as film rupture. This coupling of scales

give the model a bridging property in flotation modelling. In summary,

the general aims of this study are:

ii.

iii.

iv.

to develop a computational framework at the meso-scale to bridge
the gap between the micro- and macro-scales (see Fig. 1.1) with fea-
tures allowing full momentum coupling;

to provide a testing ground for physico-chemical and kinetic models
of flotation (sub-)processes;

to couple physico-chemical and hydrodynamic phenomena, e.g. in-
clude the Marangoni effect to couple surface chemistry and interfa-

cial momentum;

to create a tool that can provide input for macro-scale (semi-)statistical
models that can be validated at smaller scales.

This thesis includes the key elements that are necessary to implement full

momentum coupling between phases with the Marangoni effect. However,

to keep focus on the development of the modelling framework, some ele-

ments of interest are not included at this stage. The modelling framework

discussed in this thesis does not include the following topics:
e Population Balance Modelling (PBM),

e molecular processes, and

e quantum dynamic effects.

19



Introduction

1.4 Method

Historically, modelling of mineral froth flotation can be divided into two
schools of thought; hydrodynamics (or mixing) and (surface) chemistry.
It is important to understand that these two groups of phenomena occur
simultaneously and in the same space. For example, the distribution of
surfactants in the bulk is governed by hydrodynamics, changing surface
tension and bubble drag locally. The latter is strongly coupled to hydrody-
namics, in particular in more dense multiphase systems. At the level of in-
dividual particles and bubbles, surface chemistry determines the strength
and direction of forces between particles and the gas-liquid interface and
thus an important part of bubble-particle interaction in flotation. It is
clear that an integrated modelling framework is needed for detailed and
more holistic modelling of the flotation process.

The work presented in this thesis is a modelling framework using both
Computational Fluid Dynamics (CFD) and the Discrete Element Method
(DEM). Selection of a suitable development environment is of great im-
portance to model transparency, code efficiency and portability, as well as
knowledge retention. The CFD package used in this work is OpenFOAM®1
(OpenCFD Ltd., 2011a), a mature open source CFD package produced by
OpenCFD Ltd. The open and modular structure of OpenFOAM® allows
for efficient model development and the use of readily parallelised solvers.

The motion of particles in the gas-liquid system is solved for using a DEM
code coupled to the CFD solver. The CFD-DEM coupled framework is
the open source CFD-DEM project CFDEM? (Goniva et al., 2011; Kloss
et al., 2011). Within CFDEM, OpenFOAM® is coupled to the open source
DEM code LIGGGHTS?3. LIGGGHTS stands for "LAMMPS Improved for
General Granular and Granular Heat Transfer Simulations" and is a fork
of the molecular dynamics code LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator)* (Plimpton, 1995).

1OpenFOAM - The open source CFD toolbox: http://www.openfoam. com
2CFDEM - Open Source CFD, DEM, and CFD-DEM: http://www.cfdem.com

3LIGGGHTS Open Source Discrete Element Method Particle Simulation Code:
http://www.liggghts.com

4LAMMPS: http://lammps.sandia.gov/
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Introduction

1.5 Structure

To clarify the motivation of this thesis and the background of many flota-
tion models in the literature, Chapter 2 covers a review of flotation mod-
elling found in literature. First, kinetic modelling and dominant physico-
chemical phenomena are treated in Sections 2.1 and 2.2, respectively.
The interaction between bubbles and particles is commonly divided into
three sub-processes, namely bubble-particle collision, attachment of par-
ticles to bubbles, and bubble-particle aggregate stability. These three pro-
cesses are discussed in Section 2.3. The key parameter in kinetic mod-
elling of froth flotation is the flotation rate constant. The probabilistic
sub-processes discussed in Section 2.3 and the collision frequency in Sec-
tion 2.4 are the two building blocks to formulate the flotation rate con-
stant. The assumptions made in the derivations in Chapter 2 result in
limited applicability and predictive power of models. To apply the knowl-
edge available in literature in an integral and coupled way, a new mod-
elling approach is proposed in Chapter 3. The modelling approach (Sec-
tion 3.5), the surfactant transport model (Section 3.6), particle motion and
particle-particle collision (Section 3.7), and forces that occur between par-
ticles and the gas-liquid interface (Section 3.8) are discussed. In Chapter 4
the results of the coupled bubble-particle model are discussed. Finally,
concluding remarks and an outlook on further work is given in Chapter 5.
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2. Modelling of mineral froth flotation

2.1 Kinetics and the rate of flotation

Due to the large range of spatial scales involved in the flotation process
(see Fig. 1.1 on p. 18), commonly a kinetic approach is chosen to model
flotation. That is, a characteristic kinetic parameter is formulated to de-
scribe the rate at which material is recovered from the flotation cell over
time. The flotation rate equation is a direct application of the "law of mass
action" (see Asimov (1982, p. 474)) and the temporal change of equilibrium
conditions. The flotation rate equation can be a useful engineering tool,
although one must be aware that the method is integral and that much
information is lost due to averaging and integration. During the 1930s
(Gaudin, 1932; Garcia Zuniga, 1935) the flotation rate equation took the
form of the solution of:

ac

o= —kC, 2.1)
where k is the flotation rate constant and C' the concentration of the min-
eral species targeted for recovery. Gaudin (1932) also observed that dif-
ferent particle size distributions characterised different flotation rate con-
stants. Sutherland (1948) formulated this observation more explicitly as!:

% = —kC;. (2.2)
Eq.(2.2) can also be employed to model the exchange between different
populations of species in the flotation cell, i.e. free bubbles, free particles,
and bubble-particle aggregates. This discrete method is commonly called
the Population Balance Model (PBM), the basis of which was probably laid
by Bascur (1982) (Herbst et al., 2002, p. 397). The modelling framework
discussed in Chapters 3 and 4 can be integrated with PBM. However, this
is beyond the scope of this thesis.

From Eqgs.(2.1) and (2.2) it can readily be seen that in the kinetic approach

In Eq.(2.2), Einstein notation is used.
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Modelling of mineral froth flotation

the key parameter is the flotation rate constant k. Typically, &k is modelled
as a constant and is of deterministic and probabilistic nature. Modelling
of k and its constituents forms the core of flotation modelling in litera-
ture. Many researchers have developed expressions for k. For example,
Jameson et al. (1977) derived an expression that links local and global
parameters as:
390 hEcoll

k= 29db7V , 2.3)
where ¢, is the gas flow rate, & is the pulp height, £ .y, is the collection
efficiency, d, bubble diameter, and V a reference volume. Eq.(2.3) relates
kinetics of small scales, e.g. bubble diameter, to parameters of industrial
scales, e.g. tank cell volume. It should be noted that Eq.(2.3) is not appli-
cable to turbulent systems (Pyke, 2004). More attempts have been made
in literature to formulate an equation for the flotation rate constant. In
literature, the rate constant is usually related to the respective proba-
bilities of bubble-particle collision, attachment, and aggregate stability.
The temporal scale of the rate constant is commonly provided by includ-
ing an expression for the collision frequency. The interaction probabilities
are discussed in Section 2.3 and relations for the collision frequency are
treated in Section 2.4.

Yet another method to model k£ has been to relate the rate constant to
probabilistic bubble-particle kinetics and a time average interface flux
(Gorain et al., 1995a,b, 1996, 1998). The latter parameter has been named
the bubble surface area flux. Gorain et al. (1995a) realised that an impor-
tant factor in flotation recovery is the bubble surface area available for
particle collision and attachment. In the work by Gorain and co-workers,
summarised in Gorain et al. (1999), the bubble surface area flux S, is de-
fined as:

_ 6J

Sb = 7b7 (24)

where J, is the superficial gas velocity of the flotation cell. That is, J,
represents the ratio of the volumetric gas flow rate through the cell to the
cell’s cross sectional surface area. Note that 5, scales with the surface-to-
volume ratio of a spherical bubble, i.e. with d%. The flotation rate constant
is then calculated as a function of S, (Gorain et al., 1998):

k = PpS), (2.5)

where Py is the probability of flotation, including collision and attachment
efficiencies. Gorain et al. (1999) later included also the froth recovery of
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Modelling of mineral froth flotation

Dobby and Finch (1987) in Eq.(2.5). Before going into the constituents
of Py in Section 2.3, it is instructive to consider the hydrodynamic and
physico-chemical phenomena that act in different zones around the rising
bubble. This is the topic of the following section.

2.2 Physico-chemical phenomena

One of the complexities that modelling of mineral froth flotation presents,
is that the process is governed by hydrodynamics as well as physico-
chemical forces. An extensive treatment of the chemistry involved is be-
yond the scope of this thesis. However, it is helpful to highlight some of
the most important physico-chemical aspects of flotation to understand
bubble-particle attachment and aggregate stability. The observation of
the hydrodynamic-chemical complexity may seem obvious, but leads to
significant challenges in the formulation of accurate models. In addition
to the hydrodynamic aspects of flotation, such as drag, mixing, and colli-
sion frequency, the main physico-chemical parameters are:

e Eh-pH condition,
e concentration of:
- electrolytes,
- depressants,
- activators, and
- frothers

e mineral surface structure.

The main effect of the parameters listed above is their control of the multi-
component adsorption dynamics at gas-liquid and liquid-solid interfaces.
The Eh-pH condition of the pulp controls the chemical species in solution
and on the mineral surface. Electrolyte concentration is an important fac-
tor for the zeta-potential of mineral surface exposed to aqueous solution,
which in turn determines how and what species deposit and are formed
on the mineral surface. Depressants and activators are chemicals that are
used to push the equilibrium concentration of certain species in solution
in a desired direction. For example, in the combined flotation of galena
(PbS) and sphalerite ((Zn,Fe)S) zinc sulfate can be added to increase the
amount of zinc species in solution and so actually depress sphalerite flota-
tion by preventing the sphalerite surface to oxidise and become more hy-
drophobic. Finally, frothers are chemicals that change the surface tension
of the system and so control bubble size and rheological properties. It is
clear that the above mentioned physico-chemical properties are in close
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Modelling of mineral froth flotation

relation to the hydrodynamic behaviour of the cell. For example, bubble
size distribution has a strong coupling with the cell hydrodynamics.

Derjaguin and Dukhin (1961) recognised that at different distances from
a bubble rising in liquid, different groups of forces are dominant. They
introduced a division into three zones, schematically depicted in Fig. 2.1.

zone 1

Figure 2.1. Three zones of interaction around a bubble, characterised by the dominant
forces in each zone (after Derjaguin and Dukhin (1961)).

In zone 1, many particle diameters away from the bubble surface, hy-
drodynamic forces are dominant and collision theory applies. This is the
reason that the probabilities of collision and attachment may be treated
separately (Ralston et al., 1999). A discussion on hydrodynamic collision
models follows in Section 2.3.1. In zone 2, the particle has approached the
bubble surface so close that surface forces become relevant. This distance
is typically in the order of 108-107 m (Israelachvili, 1992, p. 152). The
forces in zone 2 are mostly of electrophoretic nature, as heterogeneous
surface charge distribution can generate a field strength in the order of
3000 V/ecm (Ralston et al., 1999). Also, the gradient of surface surfac-
tant concentration, the so-called Marangoni effect (Scriven and Sternling,
1960), plays an important role in interfacial charge and rheology. In zone
2, hydrodynamics still play a role as it is a transition zone between hydro-
dynamics and surface chemistry. As such, it is important to note that the
transition between these zones is gradual (Nguyen et al., 1997a).

The transitional zone 2 is characterised by diffusiophoretic interactions,
where the local equilibrium of surfactant adsorption and desorption equi-
librium is disturbed (Schulze, 1983, p. 75). The thickness ¢ of zone 2 for

1
flotation size bubbles is O rbpefé) = /%2 (Derjaguin and Dukhin,
1961). For a bubble diameter of 1 mm with a rise velocity of 0.2 m/s, and
diffusion coefficient of 101% m/s, thickness ¢ is in the order of 500 nm.
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Modelling of mineral froth flotation

The main aim of accurate modelling results in zone 2 is the prediction
of surfactant concentration and bubble surface mobility (Derjaguin and
Dukhin, 1961). The surface normal flux of surfactant is described by (Der-
jaguin and Dukhin, 1961):

oc(r,0)

e -V, (IU,), (2.6)

=T

Desy

where D,y is the effective ion diffusivity coefficient, r is the bubble ra-
dial coordinate, I' the equilibrium bubble surface surfactant concentra-
tion, and U, is the bubble surface velocity. Derjaguin and Dukhin (1961)
recognised that Eq.(2.6) is not trivial to solve in general. To simplify the
solution procedure for Eq.(2.6), they assumed that surfactant mass trans-
fer in the boundary layer of the bubble, i.e. in zone 2, is diffusion domi-
nated. This constraint thus becomes:

CLb )
Cb(%_cb «1 2.7
r(0)-T

T <1

Now, under the set of conditions in Eqs.(2.7), they considered I" constant
and moved it out of the gradient term in Eq.(2.6). To compute Us in
Eq.(2.6), Derjaguin and Dukhin (1961) used a simplified version of the
Hadamard-Rybczynski (Hadamard, 1911; Rybczynski, 1911) solution, af-
ter Fuks (1955, p. 211):

Us ~ 23Uy sin b, (2.8)

where Uy is the far-field fluid velocity, and 6 the polar angle of the bubble.
It is important to note that Eq.(2.8) is a solution for potential flow around
a hard sphere. Fuks (1955, p. 221) extended the hard-sphere analysis of
Levich (1952, Ch. 6) by assuming the gas sphere to rise in ideal liquid,
with a no-slip boundary condition at the gas-liquid interface. It must also
be assumed that the interface is perfectly clean.
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Using the conditions in Eqs.(2.7) and substituting Eq.(2.8) into Eq.(2.6),
Derjaguin and Dukhin (1961) obtained the concentration gradient normal
to the bubble surface as:

oc(r,0)

or

Dess

=V, (I'U) = 3TLUQO cosf (2.9)
r=ry it

Note that in Eq.(2.9) the term % appears because all elements of the unit
vector of position are taken into account in the gradient operator in a
cylindrical coordinate system. Since Eq.(2.9) is evaluated at the bubble
surface, % becomes % in Eq.(2.9). After applying the divergence in polar
coordinates, a factor 2 appears in addition to % so that factor % in Eq.(2.8)
becomes 3 on the RHS of Eq.(2.9). The condition for this operation is that
the Cauchy-Riemann equations hold at the origin of the coordinate sys-
tem. In fact, when the Cauchy-Riemann equations hold, the divergence
term represents the flux density (Shurman, 2010, p. 468-469). A conse-
quence of the validity of the Cauchy-Riemann condition is that the veloc-
ity field is irrotational, i.e. the potential flow assumption applies (Chan-
son, 2007). Fuks (1955, p. 221) also mentions his assumption of potential
flow around a hard sphere, or rather cylinder, explicitly.

Derjaguin and Dukhin (1961) then write the electric field strength as a
function of electrolyte concentration gradient. Assuming a constant field
strength within zone 2 and substituting the concentration gradient with
the right-hand term in Eq.(2.9), the surface normal electric field strength
becomes:

_ 2RT (Dy —D-) Uyl ‘
E, = F DyD(2s + 2) Gy cosf, (2.10)

where D, and D_ are the ion diffusivity coefficients, 2, and z_ the re-
spective valences, and F' the Faraday constant. From Eq.(2.10) the sur-
face normal electromotoric force for very small particles can be derived.
It must be noted, however, that Eq.(2.10) applies only to dilute electrolyte
solutions. For more dense solutions Derjaguin and Dukhin (1961) suggest
to approximate the radial concentration field by a definite Gaussian inte-
gral. Integration leads to an error function on the domain (ry, r, + 4].

When the separation between particle surface and gas-liquid interface is
further reduced to about 108 m (Israelachvili, 1992, p. 246-248), forces
due to steric effects and interaction of the electric double-layers occur.
These forces are commonly modelled by the (extended) DLVO theory, after
the colloidal stability theory of Derjaguin and Landau (1941) and Verwey
and Overbeek (1948). The DLVO theory as applied to bubble-particle in-
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Modelling of mineral froth flotation

teraction is discussed in Section 3.8.

2.3 Probabilistic modelling of sequential events

The "total probability of flotation", cf. Py in Eq.(2.5), is commonly simpli-
fied by considering the interaction between a single bubble and a single
particle. Such single bubble models are typically further reduced in com-
plexity by dividing the process into three sub-processes (Gaudin, 1932,
p. 86). Schuhmann (1942) used the analysis of Gaudin (1932, p. 88-92) to
write the probability of flotation P as it is currently found in the litera-
ture, as the product of the probabilities of sub-processes:

Py = P.P,P,, (2.11)

where P, is the probability of particle-bubble collision, P, the probability
of attachment, and P, the probability of particle-bubble aggregate stabil-
ity. Eq.(2.11) only considers bubble-particle interaction in the flotation
pulp, probability of froth recovery is not considered here. The flotation
rate constant k is then modelled as the product of the probability of flota-
tion and the frequency at which bubbles and particles interact (Schulze,
1983, p. 259):

ZPy = ZP.P,P; =k, (2.12)

where Z is the bubble-particle collision frequency. As a background to
this thesis, the following sections cover the fundamental derivation of and
assumptions behind models of the sub-processes in Eq.(2.12).

2.3.1 Deterministic modelling of collision probability

2.3.1.1 Geometric collision probability

The process of first contact between bubble and particle is accepted to
be the key element in Eq.(2.12). This process of "first encounter" was a
widely debated subject (Pyke, 2004) and it was not until cinematographic
evidence of Bogdanov and Filanovski (1940) and the seminal paper of
Sutherland (1948), that the "encounter" theory of Gaudin (1932) became
widely accepted. Schuhmann (1942) was probably the first to consider
bubble-particle collision efficiency as a fundamental parameter in the cal-
culation of the flotation rate constant (Yoon and Luttrell, 1989).

Gaudin (1932, p. 88-92) made a geometric analysis of the probability of
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flow line

Figure 2.2. Flow line around a spherical obstacle (after Gaudin (1957, p. 344)).

collision between a bubble and a particle, reasoning that if bubble and
particle do not collide, subsequent adhesion cannot occur. Gaudin (1932)
followed the analysis of stream lines around a cylinder by Houstoun (1925,
p- 55) and assumed:

1. that water is incompressible, non-viscous, and infinitely divisible,
2. that bubble and particle can be modelled as hard spheres,
3. that the bubble is the only disturbing factor in the quiescent liquid, and

4. fluid flow is irrotational, i.e. a potential flow solution applies.

Gaudin (1932) noted that the combination of in particular assumptions 2
and 4 is erroneous, but due to the complexity of the problem, these as-
sumptions were needed at the time. Nevertheless, Gaudin’s model can
give a first indication of collision probability. The analysis of Gaudin
(1932, p. 88-92) was later extended (Gaudin, 1957, p. 340-347) to both lam-
inar and turbulent flow, using a Stokesian stream line function of Lamb
(1932, art. 94, p. 125). Gaudin (1957) considered analytically the "path of
[viscous fluid] elements" along a spherical obstacle. The equation for flow
pathlines past a spherical obstacle is of the form (Gaudin, 1957, p. 344):

2
2= [2 (i> 304 ”’} sin20), (2.13)
T

where the angle # and distance r from the bubble centre are shown in
Fig. 2.2. The pathline function z is derived from the Stokesian stream
function ¥. Gaudin (1957, p. 344) relate = to ¥ as:

—4v

= —— 2.14
N UOOTZ’ ( )

where Uy, is the far-field flow speed.

Gaudin (1957) noted that there is a relation between the stream line far
from the obstacle and the position close to the obstacle surface, i.e. follow-
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ing the stream line downstream until the obstacle’s equator. At the equa-
tor, the maximum normalised distance s,,,, from the obstacle’s centre (O
in Fig. 2.2)is 1 + :—: Far away from the obstacle, the minimum distance
Smin from the centre axis, for the same stream line, is le sin 6. By substi-
tuting these distances, s,,;, and s;,q., into Eq.(2.13) Gaudin obtained for

r — 00!

5 2
2y — (2 _3n (@)5> [(T> sin? 9] (2.15)
T ' Ty

~ 28

min>

with the rather crude approximation of 2 — 3’% + (%)3 ~ 2. Substitut-
ing Smae into Eq.(2.13), with 6 = 7 and thus sin?# = 1 at the obstacle’s
equator, we obtain:

N\ 2 . .
20 = [2 (i> —3l ”’} sin 0 (2.16)
Ty Ty T

2
: : 1
- 2+4r—”+2<7i’> —<3+37—p>+ .
Ty Th Ty 1+ﬁ

Then, Gaudin (1957, p. 347) used a Taylor expansion of the last term in

Eq.(2.16), neglecting third order terms and accepting the approximation
VRN . .

@ - 1=+ (i) . Note that this approximation means that r, ~ 0.1,

for the numerical error to be less than about 10%. With this approxima-

tion, Eq.(2.16) reduces to:

20~ 3% (2.17)

Equating the RHS of Eq.(2.15) with the RHS of Eq.(2.17), we obtain for
viscous flow:

2
3 <’"P> =252 (2.18)

Ty

For turbulent flow Gaudin (1957, p. 247) used the pathline equation of
Lamb (1932, art. 94, p. 125) for potential flow:

)2 27y,
2=12 <7) — 22| sin?6. (2.19)
Ty T
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At the equator % =1+ :—’;, and using again the approximation ﬁ —
2

. N\ 2
17 (7) , Eq.(2.19) can be writen as (Gaudin, 1957, p. 347):

2
20 = [2 (1> - 2”’] sin2 6 (2.20)
T r
T T 2 T T 2
= [2+4”+2<”> ] - {2—2’%2(?) ]
Ty Tp ) Ty
62,
T

Now, equating the RHS of Eq.(2.15) with the RHS of Eq.(2.20), we obtain
for turbulent flow:

62 =252, . 2.21)
Tp

Here it is assumed that high Reynolds number flow can be modelled as in-
viscid so that the Navier-Stokes equation reduces to the Euler equation.
When Kelvin’s theorem is accepted, i.e. the total derivative of circulation
vanishes, the fluid is considered irrotational and its motion can be de-
scribed by the gradient of a scalar potential. Consequently, Eq.(2.21) is
only valid for an incompessible, inviscid, ideal fluid.

The probability F. of a particle colliding with the cylindrical obstacle when
following a random stream line is s2,;, (Gaudin, 1957). The collision prob-

ability, or efficiency E. thus becomes:

2
E.= 3 <T—p> , for viscous flow (2.22)
2 Tb
E,. = BT—p, for turbulent flow (2.23)
Th

Eq.(2.22) has been derived for Stokes flow and is valid for very small bub-
bles, while Eq.(2.23) has been derived for potential flow and is valid for
bubbles much larger than typical for flotation size bubbles (Yoon, 1993).
Yoon (1991) found experimental evidence that the Gaudin model is appli-
cable for bubbles of around 100 ym. The for and aft flow fields are con-
sidered to be symmetric and the bubble must rise with constant velocity.
Under typical flotation conditions, however, these simplifications should
not be accepted.

Sutherland (1948) accepted the assumptions of Gaudin (see p. 29) and

recognised that it is implicitly assumed that the motion of bubble, particle,
and fluid is independent. That is, momentum coupling between phases is
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not considered. The neglect of momentum coupling is in fact one of the
assumptions in the derivation of Houstoun (1925, p. 55), used by Gaudin
(1932). To overcome this restriction, Sutherland (1948) used a streamline
equation for potential flow of Ramsey (1935, p. 160), which would be valid
for three-dimensional flow:

Cr
37

- (2.24)
o=y

sin? g =
where the notation relates to that in Fig. 2.2 on page 30, and where C is an
integration constant. Note that Eq.(2.24) is of the same form as Eq.(2.21)
when one replaces s,,,;, by Tib sin? 6, albeit for three-dimensional geometry.
At the bubble’s equator, that is at § = 7, » = 1}, + 1, so that the constant
of integration can be determined:

(ry + rp)3 - rf

C= (2.25)
T+ Tp
Substitution of Eq.(2.25) into Eq.(2.24) and rearranging we obtain:
3_ .3 .3
rsinf = (o + 1p) " . ! T (2.26)
I e

where the same nomenclature is used as in Fig. 2.2. The separation dis-
tance of the streamline from the centre line throught the bubble is r sin 6.
For large distance from the bubble, » — «0, Eq.(2.26) reduces to:

(ry + 7'p)3 - 7‘3

2.27
Ty +Tp ( )

rsinf =
Now, assuming that r, « r, and replacing the LHS of Eq.(2.27) with the
critical collision radius 7., Sutherland (1948) obtained:

Te = A/31pTp (2.28)

The probability of particle-bubble collision is the ratio of the cross-sectional
area of the stream tube with radius r. to the cross-sectional area of the
bubble (Dai et al., 2000), i.e.:

m;% _ 3d,

ﬂrg dp

(2.29)

Eq.(2.29) is the same result as Eq.(2.23) and has become known as the
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stream line

Figure 2.3. The critical streamline for particle-bubble collision (after Anfruns and Kitch-
ener (1977)).

Sutherland equation. Eq.(2.29), has been derived for potential flow and
is strictly not valid for "flotation size bubbles" (~1 mm diameter), but
only for larger ones (Yoon, 1993). Also, Sutherland (1948) deemed the ne-
glect of inertia acceptable (Evans, 1954). Even though the applicability of
Eq.(2.29) to real systems is very restricted, this geometric collision kernel
forms the basis for most flotation models.

Yoon and Luttrell (1989) recognised that the key to an accurate geometric
collision model is the derivation of the appropriate stream function. The
correct stream function produces the correct critical stream tube radius r.,
as schematically depicted in Fig. 2.3. In the geometric family of collision
models, Yoon and Luttrell (1989) defined the probability of collision as the
ratio of particle cross-sectional area to bubble cross sectional area:

~
Il
|
I

Ty

2
Ac <Q> , (2.30)

For Stokes flow the stream function is (Lamb, 1932, art. 94, p. 125):

oo

1
U = Uyrg sin® 6 (%ﬁ — 35+ ) , (2.31)

47

where 7 is ;—b For r — o0, sinf ~ ¢ can be substituted into Eq.(2.31) and
Eq.(2.30) to yield (Gaudin, 1957, p. 345):

_2v
B U(ﬂ'g

1
2 (52 3%
= sin 0(7’ —y‘—l—%)

For the grazing limit, i.e. r = 7, + 7, and § = 7 (see Fig. 2.3), one obtains:

(2.32)

(&

2
p-3 (Cp) , (2.33)

2\ rp

which is identical to Eq.(2.22), the model of Gaudin (1932). For potential

flow, with stream function
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U = Uyri sin® @ (%ﬁ — %) , (2.34)
T

Yoon and Luttrell (1989) obtained the same result as Sutherland (1948),

Eq.(2.29):

P.=3 (Lp) . (2.35)
Tp

Under typical flotation conditions, however, the bubble Reynolds num-

ber lies between 0.2 and 100 (Yoon and Luttrell, 1989). Therefore, Yoon

and Luttrell (1989) developed a new stream function, combining those for

Stokes and potential flow:

1 3a
22152 3 - 4 0Q
¥ = Uyprj sin“ 6 <2r ar o7 + 4f> , (2.36)
where « is a parameter to blend Eqgs.(2.31) (a=1) and (2.34) (« =0). By
fitting « as a function of Re versus 1 — %, for apparent experimental data?,
Yoon and Luttrell (1989) found the relationship:

AR, 0.72 1
a=1- Z5 <1 - 7) (2.37)

According to Eq.(2.36), the collision efficiency increases with the square
of particle-to-bubble size and also as a function of bubble Reynolds num-
ber (Dai et al., 2000). Dai et al. (2000) point out that although the Yoon-
Luttrell model is more general than the Gaudin and Sutherland models,
particle inertia is still ignored and the collisions are assumed to be uni-
form over the entire upstream half of the bubble, cf. Eq.(2.30). These
assumptions have been shown to be unrealistic (Schulze, 1989; Dai et al.,
1998). At this point, it is useful to summarise some of the above models,
using a general form of the collision efficiency of Reay and Ratcliff (1975),
as:

B — A (@> , (2.38)
dy

where constants A and n are summarised in Table 2.1 for different flow
conditions.

21t was not clearly stated in Yoon and Luttrell (1989) how the data was obtained.
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Flow regime Reference A n
Stokes flow Gaudin (1932) 3 2
Stokes flow Reay and Ratcliff (1975) 3.6* 2.05%
Intermediate flow Yoon and Luttrell (1989) [% + 4ng'72] 2
i €
Intermediate flow Weber and Paddock (1983) [% + 2+0+&ZW] 2
Potential flow Gaudin (1932) and 3 1
Sutherland (1948)

* Measured for silica particles in water (Reay and Ratcliff, 1975).

Table 2.1. Values for parameters A and n in Eq.(2.38) (after Yoon and Luttrell (1989) and
Reay and Ratcliff (1975)).

2.8.1.2 The effect of inertia

The first model that included inertial effects was reportedly (Viswanathan,
1999; Dai et al., 2000) that of Langmuir and Blodgett (1946) and Lang-
muir (1948). On the assumption that Stokes’ law holds for all particle
velocities, Langmuir (1948) defined a "particle range" )\, which a particle
can cross for a given initial velocity U, . This idea is in essence similar
to the "sphere of attraction" used by Smoluchowski (1917). The particle
range )\, is:

2ppr§U 0

2.39
o (2.39)

Ap = TpUpo =
where 7, is the particle relaxation time. In his two-dimensional analy-
sis, Langmuir (1948) defined a "collection cylinder" of radius r. and the
geometric ratio K as:

K:%, (2.40)
It was found that a particle can reach the surface of the cylinder when
K > {5 and can hit the surface for K > {. In case of bubble-particle
collision, the cylinder represents the bubble and K is a factor of the ratio
of particle relaxation time and bubble relaxation time (see e.g. p. 24 of
Crowe et al. (1997) and p. 630 of Roco (1993)). Langmuir (1948), then,

formulated the collection efficiency of droplets by the collector cylinder as:

K 2
E._rp= <m> . (2.41)

Langmuir and Blodgett (1946) and Langmuir (1948) derived Eq.(2.43) to
predict the collection of rime on larger objects, e.g. outdoor electricity ca-
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bles and aircraft wings. For large values of U, Langmuir and Blodgett
(1946) found strong deviation from the Stokes regime and found that the
collection efficiency E. ;g on a spherical object could be expressed as a
function of the Reynolds number of the collision object and another di-

mensionless parameter ¢:

D

Reé? 18p§U7‘b
= =,
K IPp

(2.42)

After more experimental data was collected Langmuir (1948) fitted an
equation for collision efficiency to the data to cover both the Stokes and
potential flow regimes:

Smok |7
(2.43)

Bopp=|14-4"""
LB [+K1.214

The model above has been developed for capture of fog droplets by larger
solid objects such as cables. Fog droplets range in diameter between 1 and
15 pm (Podzimek, 1997) and the collision object size used of Langmuir
(1948) is 2 to 50 mm. For particles smaller than approximately 50 pym,
E._1p varies only with dzz, (Dai et al., 2000) and Cp , is assumed a func-
tion of particle radius alone. The Langmuir-Blodgett collision model is
only valid for cases characterised by a high Stokes number (Dai et al.,
2000).

In an attempt to come to a more generic collision model that includes
particle inertia, Flint and Howarth (1971) derived expressions for collision
efficiency in both the potential and Stokes flow limits. Flint and Howarth
(1971) found that for small particle Stokes number the collision efficiency
for potential and Stokes flow converges to:

G

E.=—— 2.44
1+ (244)
where G represents the non-dimensional particle settling velocity:
2 _ 2
G = 2o —pr)rya (2.45)

IuU

Flint and Howarth (1971) investigated the applicability of Eq.(2.44) by
studying the trajectory of 6 um galena particles near 50-100 ym air bub-
bles. The comparison gave fairly good results, but despite the fact that
inertia is included in the model, the system studied is characterised by a
Stokes number well below unity. Flint and Howarth (1971) mention this
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and recognise that the model is likely to under-predict collision efficiency.
The lack of momentum coupling was identified by Flint and Howarth
(1971) as one of the key shortcomings of the model.

2.3.1.3 Non-ideal collisions

For particle trajectories "strongly deviating from the velocity streamline",
Dukhin (1982) found an approximate solution for particle trajectory in
potential flow:

dv dit
v=u—- K — +K'— 2.46
ve a T (2.46)
where v is the particle velocity normalised to bubble velocity, v = g—:, U

the liquid velocity normalised to bubble velocity, @ = g—i K’ and K" are

2

functions of the Stokes number K (%’ = 25;:25) to non-dimensionalise
the equation:

K =K <1 + ﬂ) (2.47)

pr
3K
K" =22 (2.48)
2py

In Eq.(2.46), the particle trajectory is solved in a frame of reference rel-
ative to the bubble centre. Close to the bubble surface it is assumed
that particle inertial only contributes in surface normal direction, i.e.
0y = 1y (Dukhin, 1983).

Dukhin (1983) then proceeded with the numerical integration of Eq.(2.46),

accepting a numerical error of up to 25% at the equator. The boundary

conditions at g are:

EC,O

r—1= 2.4

T 3 (2.49)
dr
o7 o, =0 (2.50)

In Eq.(2.49), E. refers to the Sutherland collision efficiency %" and 7 =

rLb. In other words, Eqs.(2.49-2.50) make sure that at the equator the crit-
ical condition is that a particle exactly grazes the bubble and that, there,
its tangential velocity vanishes. The latter relates to the condition of a
completely immobile bubble surface. Assuming an immobile surface and
potential flow directly at the surface, Dukhin (1983) made the approxima-

tion that E§’° «1 and thus 7 — 1 «1, so that:
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Figure 2.4. Values of Egs.(2.51) and (2.52) as function of polar angle 6, with d,= 50 ym
and d, = 1 mm.

Sz
Il

1
>~ — [1 - 73] cosf =~ =3 (7 —1)cosf (2.51)
7
~ L |sing =~ 3sin0 2.52
Uy ~ 1_ﬁ sinf = 3 sin (2.52)

A key characteristic of this theory is that Dukhin (1982, 1983) decomposes
the relative velocity between bubble surface and particle into a radial and
a tangential component. The radial component is held responsible for the
"pressing force" that can overcome the energy barrier of the balance be-
tween repulsive electric double layer forces and attractive Van der Waals
forces. The tangential component is associated with centrifugal effects
in the particle-bubble system. When the polar angle 6 exceeds a certain
critical value, called the angle of tangency 0;, centrifugal forces on the par-
ticle exceed radial forces. The variation of U, and U, with 6 is shown in
Fig. 2.4. Using a parametrisation after results of Fuchs (Smirnov, 1949,
p. 365) and Taylor expansion, Dukhin (1983) derived approximate expres-
sions for the angle of tangency 6; for K’ —0, i.e. for very small particles
with negligible inertia. Dai et al. (1998) wrote an extended version of the
original balance equation between radial "pressing" forces and centrifugal
outward forces of Dukhin (1982, 1983) as:

43 Up,0
3 — — = 2.53
6mprpf + 377, (pp — pf) ———— 0, ( )
where f is a numerical factor of 2.034 to include short-range hydrody-
namic interaction (Dukhin and Rulev, 1977). Now, substituting Eqgs.(2.51)
and (2.52) into Eq.(2.53) and solving for 6 yields an expression for the an-
gle of tangency 6; as (Dai et al., 1998):
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Figure 2.5. Angle of tangency 6, versus parameter K" for two values of E. . The upper
horizontal axis displays corresponding values for d,, with p,=3000 kg/m?,
pr=1000 kg/m?, dy=1 mm, 11;=0.001 Pa-s, and U;=0.22 m/s.

N

; = sin™* ([ZBW — B]

) , (2.54)

3d,
where, for E.o = (pr’

_2E.of  2Ef

B= Y - 9(K’ 7K//)' (2.55)

Provided that K « K, and considering only the centrifugal component
of the inertial force (Dai et al., 2000), the collision efficiency is (usually

expression normalised to E. ):

2&;0@ (1 — cos 6;)* (2 + cos Gt)] (2.56)

sin +

5“0 = sin® 6, [1 -
In honour of the contribution of Sutherland to the field of flotation mod-
elling, Dai et al. (2000) named Eq.(2.56) the Generalised Sutherland Equa-
tion (GSE). Fig. 2.5 shows the variation of 6; with K”. K" can also be
expressed as (p%fpf)f( and can thus be seen as an "inertia-normalised"
Stokes number and is a measure for particle inertia in terms of the cen-
trifugal component of Eq.(2.46) (see Eq.(2.52) and Fig. 2.4) of particle mo-
tion along the surface of the bubble. One can see in Fig. 2.5 that larger
particles are associated with a smaller angle of tangency. However, this
effect may be an artifact of the approximations made, because Nguyen
et al. (2006) report that 0, first decreases, but later increases again with
increasing d,. Nguyen et al. (2006) conclude in their computational vali-
dation that Eq.(2.56), in fact, only seems to be valid for d,, < 10 ym.
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Dai et al. (2000) investigated the GSE further and note that the evalu-
ation of particle velocity at the point of tangency is strictly speaking not
valid in general. Inertial forces are generally neglected in flotation models
because it is assumed that the bubble surface is completely immobile (Dai
et al., 1998). Dai et al. (1998) modified the Sutherland equation, Eq.(2.29),
to include weak inertial forces. Dai et al. (1998) note that the GSE is valid
for K ~ K., i.e. for the intermediate range in terms of particle inertia.

2.3.2 Probability of particle-bubble adhesion

Modelling of particle-bubble attachment has not received as much atten-
tion as the collision sub-process (Finch and Dobby, 1990, p. 43). This
may be due to the fact that particle-bubble collision is governed by hy-
drodynamic processes, while particle-bubble attachment is more complex,
entailing interfacial boundary layer flow as well as surface chemistry.

The first detailed cinematographic evidence of particle-bubble attachment
was probably made by Bogdanov and Filanovski (1940) during the late
1930s. The work of Bogdanov and Filanovski (1940) showed that parti-
cles that collide with a bubble do not necessarily attach. First, the lig-
uid film between particle and bubble must drain until a critical thick-
ness. When this critical thickness has been reached, the film ruptures
and three-phase contact is established. The time this attachment process
takes is commonly referred to as the induction time ¢;. When the slid-
ing time?® t,; of the particle over the bubble surface exceeds the induction
time, attachment can occur. In effect, the attachment of a particle to an
interface can be viewed as the interplay between two important concepts:
the forces involved in the formation of three-phase contact and the time
ts

7t. In the following two section the

physico-chemical aspects of attachment and modelling of sliding time are

available for these forces to act, i.e.

discussed.

2.8.2.1 Attachment and sliding time

Bubble-particle attachment time can be divided into three distinct phases
(Nguyen et al., 1998; Albijanic et al., 2010): the time of liquid film thin-
ning ty, the film rupture time ¢,, and the time of three-phase contact for-
mation t,,., respectively. The literature is inconsistent in notation and
constitution of the induction. Schulze (1989), Nguyen et al. (1997a), Phan
et al. (2003), and Albijanic et al. (2010) present similar ideas, but with
different notations. Based on these publications, the induction time is
defined as:

31n older literature sliding time is sometimes called contact time and attachment
may be referred to as adhesion.
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ta <ti=t5 +tr + tipe, (2.57)

where induction time becomes attachment time ¢, once the induction pe-
riod is exceeded during contact. First, the intervening liquid film between
bubble and particle thins to a critical thickness h., after which rupture
can occur. There are generally two limiting cases for the calculation of
film thinning time ¢ ;: Reynolds’ equation for plane-parallel films and Tay-
lor’s equation? for a solid sphere approaching a rigid wall (Schulze, 1989,
1983, p. 124). These film thinning times are (Schulze, 1989):

3uf7“2
tf,Reynolds = 4h2FJ;C (2.58)
c
67T/1,fr§ In (Z—P)
tf,Taylo’r‘ = #7 (259)

where F' is the approaching force, r; the film radius (i.e. the radius of
the thinning area), k a factor of 4 for a completely unretarded bubble and
1 for a completely retarded one. In Eqs.(2.58-2.59), h. is the critical film
thickness that can be modelled as (Schulze and Birzer, 1987):

he = 23.3 [y (1 — cos Oype.4)]*'°, (2.60)

where v is the surface tension, 6y, 4 is the advancing contact angle, and

h. is expressed in nm.

Nguyen et al. (1997a) discuss different proposed mechanisms of film rup-
ture. However, the film rupture time is in the order of 1 ms, much shorter
than ¢; and ¢4,., and commonly not taken into consideration in attachment
time modelling (Albijanic et al., 2010).

Scheludko et al. (1976) was the first to consider three-phase contact line
expansion in attachment kinetics (Nguyen et al., 1997a). Following the
analysis of Schulze (1983, p. 169-177) and Scheludko et al. (1970), Nguyen
et al. (1997c¢) wrote the balance of forces in non-dimensional form as:

4Eq.(2.59) is commonly attributed to G.I. Taylor (1925), although it was never
published as such (Neto et al., 2005).
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—In

1 dfoz N do
A dt*

2
> + 1| + cosOp. — cos By — K cot a

dt*
rhoy
—Bo|l- fla)| =0 (2.61)
Pp
Rsinf — Bo [1 - rl;of f (a)] cota =0, (2.62)
»

where % is the dimensionless line tension ﬁ,
»

A is the mobility of three-phase contact expan-

sion a made dimensionless as —25:’ , where Uy, |
pc i
particle |

is the molecular three-phase contact line ve-
locity at equilibrium. The dimensionless time

t* is 2;’; and Bo is a modified Bond number
G ) .

Trro The Young contact angle ¢y is defined as gure 2.6. Wetting
cos ™! (224). In Eqs.(2.61-2.62),  is the wet- P the
ting perimeter angle, as shown in Fig. 2.6, and the wetting

i 1 2 i gzgfgi;e{after
function f (o) = 1 (2 + 3cosa — cos? ) 1.s a mea- Nemyen ot ol
sure for the particle volume submerged in water. (1997¢)).

A more detailed treatment of gas-liquid-solid con-
tact line expansion is given by Stechemesser and Nguyen (1999), Yoon
and Mao (1996), Bostrom et al. (2006), and Krasowska and Malysa (2007).

The sliding time of a particle along the bubble surface can be modelled
as (Dobby and Finch, 1986):

Om

g:f T4 (2.63)
. Upo

where the maximum angle of contact 0,,, is 5 in potential flow. The particle

tangential velocity can be estimated from the stream function ¥ as (Flint

and Howarth, 1971):

1 d¥

Up,g = m@, (264)

where it is assumed that the particle velocity is that of the streamline
at particle centre when the particle would not be present. Substituting
Eq.(2.64) into Eq.(2.63), using Eq.(2.36) as the stream function for in-
termediate Reynolds number flow, Dobby and Finch (1986) derived the
sliding time for potential flow as:
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ts = LU In (cot &> , (2.65)
2(Uy + Upy) + 2 2
where r* is 1+;—;’ and U, is the terminal settling velocity of the particle.
Eq.(2.65) is very similar to the expression originally derived by Suther-
land (1948); the difference is that the expression of Sutherland (1948) has
a factor of 4 instead of 2 in the numerator, over-estimating sliding time by
a factor of 2 (Schulze, 1989).

Scheludko et al. (1976) argued that the model for sliding or contact time
should include deformation of the bubble surface. This idea was devel-
oped further by Schulze et al. (1989a), who accounted for a meniscus in
two parts, separated by a transition point. Directly between the particle
and bubble the meniscus is circular for a spherical particle (Nguyen et al.,
1997b). This is where the intervening liquid film thins. The indentation in
the bubble surface outside the thinning area is a non-spherical meniscus.
The transition point divides these two areas and is defined by the tran-
sition angle «, as shown in Fig. 2.6. Based on experimental observation
of coated glass spheres at a gas-liquid interface, Schulze et al. (1989a)
deduced a semi-analytic expression for contact time (in the notation of
Nguyen et al. (1997b)):

z dg (pp + 1‘5pf)
/ 24y

\/(m (k) +025- )

/= (ln (ﬁ) + 0.5 — %) \/§7 .67)

ts = , (2.66)

where «a,,, is the maximum transition angle, 4. the Euler number 0.5772,
~ surface surface tension, and L is the capillary length, defined as:

L—,— 1 (2.68)
(pr—pg)g

For 0.036< df” <0.4, Nguyen et al. (1997b) fitted an expression® to experi-
mental data:

TWe L
ts = — 2.69
*T w—elhw+elnWel,,’ ( )

5Tn the original paper of Nguyen et al. (1997b) for ¢, t is called contact time ..
Here, for consistent notation, it is written as ¢,.
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2 1/2
where We is the Weber number (%@Uz’”) , Up,r is the particle velocity

relative to the interface, and fitting constants w and ¢ are:

w—¢clnw =0.478 + 0.041n (%) , (2.70)
dp
€ =0.020 4+ 0.03In 7 ) (2.71)

The above models for induction time require selection of the appropriate
streamfunction and local flow conditions. In addition to this difficulty, the
models are for a single bubble rising in quiescent liquid and an extrapola-
tion to other flow regimes is questionable. Another method is to estimate
the induction time from experimental data. Dai et al. (1999) correlated in-
duction time with experimental data and proposed a relation of the form:

t = Adf, (2.72)

where constants A and B are fitting parameters. Koh and Schwarz (2006)
assumed A and B to be functions of particle contact angle 6,,. and not of
d,. Based on experimental data of Dai et al. (1999), Koh and Schwarz
(2006) derived the following empirical expression for induction time:

5
ti = d%. 2.73
= G P ( )

Nguyen and Evans (2004) report a fair agreement between measured and
predicted sliding time, with a slight under-prediction by the model.

2.3.2.2 Attachment models

Dobby-Finch

Dobby and Finch (1987) assumed that a particle collides with the bubble
at a polar angle where the fluid stream line comes closest to the bubble.
For 20 < Re;, < 400, the angle 6. is (Finch and Dobby, 1990, p. 41):

0. = 78.1 — 7.37log Rey, (2.74)

The particle slides along the bubble surface between the angle 6. and a

maximum angle 0,,:
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O = 9+ 8.1pp + 0. (0.9 — 0.09p,) . (2.75)

The sliding time of the particle along the surface of the bubble is modelled
as:

dp + dp
Upo ’

ts = (6 —0) (2.76)

where ¢’ is the "sliding arc". Rearranging Eq.(2.76) and substituting ¢; for
ts, gives the sliding arc ¢’:

Usoti
dp + dy '

0 =0, — (2.77)

The attachment efficiency, thus, becomes (Finch and Dobby, 1990, p. 47):

sin? ¢’
E,= ——. 2.78
sin? 6, ( )
For other bubble Reynolds number ranges, Ralston et al. (1999) suggest
to use the expressions of Jowett (1980) for 6,.:

0. ="781—"7.37logRep, for 20 < Rep, < 400 (2.79)
0. = 85.5 —12.49logRep, for 1 < Rep, < 20 (2.80)
0. = 85.0 —2.50log Rep, for 0.1 < Rep < 1 (2.81)

Nguyen

For bubbles with an intermediate Reynolds number, the flow is not fore
and aft-symmetric (Nguyen, 1999). For this situation, Dobby and Finch
(1987) and Finch and Dobby (1990) proposed Eq.(2.78). Dobby and Finch
(1987) used the average sliding velocity in the derivation of their model.
Nguyen (1999) took the same approach, but used an approximate numer-
ical integration of the sliding trajectory. The resulting attachment effi-
ciency for an immobile bubble surface is (Nguyen, 1999):

P, (2.82)

X+ C+Ycost, <sin9a>2

" X +C +Ycosh, \sinb,

and for a mobile surface:
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Figure 2.7. Probability of attachment for Stokes, Eq.(2.86), and intermediate flow,
Eq.(2.87), for different induction times using the Yoon and Luttrell (1989)
model.Here, d, = 1 mm, p; = 1000 kg/m?®, and s =0.001Pas, and U, = 0.105
m/s to fit the graph of Yoon and Luttrell (1989).

P (X +C)sin%6, — %ClX2 (cos 0, — 3cos b, + 2) (2.83)
“r (X +C)sin%6, — %C’lX2 (cos3 6. —3cosb. +2) ’

where the coefficients X, Y, C, and C; are listed in Table 2.2.

Parameter Immobile surface Mobile surface
X 3 %Re 1 0.0637Re
2 T 150300Re0097 T 150.0438Re0970
3
% gRe 0.0537Re
1+0.217Re0-518 1+0.0318Re! 307
2 3 . 2 3
C rb+0(7b) 7b—7b+(9(7b)
1 Py 1 Py 1
o 1K (“E) (1+0(m) LK (1—%) (E*O(l))

Table 2.2. Parameters in Eq.(2.82) and Eq.(2.83).

Yoon-Luttrell

Yoon and Luttrell (1989) considered the probability of attachment for
small particles as the ratio of the cross-sectional areas of particle and
critical stream tube, as discussed in Section 2.3.1 (see Fig. 2.3). For the
critical angle of collision 6., Yoon and Luttrell (1989) write:

2
P, = —¢  =sin?f, (2.84)
(rp + 1)

Using formulations of ¥ for Stokes, intermediate, and potential flow, Yoon
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and Luttrell (1989) used Eq.(2.63) to derive probabilities of attachment for
the three flow conditions by substituting sliding time by induction time ¢;
to yield:

P, = sin? [2 tan~! eC"'] , (2.85)

where C; is an induction time coefficient:

o = — 30t _ for Stokes flow (2.86)

o (2 +1)

Tp

— (45 + 8Re” ™) Uyt

C; = , for intermediate flow (2.87)
307, (:—Z + 1)
C; = %, for potential flow (2.88)

Fig. 2.7 shows values of P, versus particle size for a given bubble size
and two induction times. The graphs in Fig. 2.7 suggest that P, increases
for decreasing d,, (Yoon and Luttrell, 1989). Yoon and Luttrell (1989) at-
tribute this effect to the lower tangential velocity of smaller particles com-
pared to larger particles after collision has occurred. Luttrell and Yoon
(1992) found good agreement between simplified theory and experimental
data for coal particles between 11 and 40 ym in diameter.

2.3.3 Probability of aggregate stability

The third sub-process is that of the probability P, of particle-bubble ag-
gregate stability. This sub-process is probably the least understood and
is often modelled as 1-P;, where P, is the probability of detachment. A
metric commonly used in flotation engineering is the so-called "maximum
flotability" (Schulze, 1983, p. 196), i.e. the largest particle that can be
floated for a given bubble size and particle density. The aggregate sta-
bility is modelled after the balance of forces on a particle attached to the
gas-liquid interface. An analysis of most of the forces involved can be
found in (Schulze, 1983, p. 182-193) and in Schulze (1993). Fig. 2.8 shows
a schematic view of a spherical particle at a planar gas-liquid interface.

The force balance for a particle, as shown in Fig. 2.8, can be described
by (Schulze, 1993):

Fca-i-thd-f-Fb—Fg—Fd—Fg =0, (2.89)
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fo

particle

Figure 2.8. A spherical particle at a gas-liquid interface (after Schulze (1977)).

where the capillary force is:

Feo = —2mrpyysinwsin (w + 6) , (2.90)

the hydrostatic pressure force is:
Fiya = mrippgzo = mrysin® () prgzo, (2.91)

where angles w and 6 are shown in Fig. 2.8. The buoyancy force is:

F, = %rgpfg [(1 —cosw)? (2 + cosw)} , (2.92)

the gravity force is:

F, = %ﬂ'rgppg, (2.93)

the drag force is:
Fy = %wrgppa, (2.94)

where a is acceleration. Finally, the capillary pressure force is:

2
F, = Wrgpa ~ 777“12) (sin2 w) (1 - 2rbpfg) . (2.95)
Th

Under real flotation conditions, i.e. d, < 300 um and a contact angle
0 smaller than about 90°, the hydrostatic term can typically be ignored
and the angle w is approximated by w ~ 7 — g (Schulze, 1983, p. 182).
The ratio of attachment and detachment forces can be modelled using a
modified Bond number (Schulze, 1982):
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_Fua _ Fy-F+Fy-F,

Bo = , (2.96)
Fatt Fca + thd
or (Schulze, 1982, 1993):
By~ B leo =) g+ ppal + (§ = 3dips) sin®w. 2.97)

|67 sin w sin (w + 0) |

The acceleration a is commonly associated with the centrifugal acceler-
ation of turbulent eddies. It is assumed that the dominant eddies that
interact with the bubble-particle aggregate and the aggregate itself are
of the same size (Liepe, 1977). This acceleration is called "machine ac-
celeration" b,, and can be obtained from the radius r, and RMS velocity
Aw? of the turbulent eddies (Schulze et al., 1989b). Assuming isotropic
turbulence, one obtains (Schulze, 1983, p. 39):

2
1/3 .
Aw? 1.38 (ery) 2/3
by ~ 2 z( : ) ~ 195, (2.98)
T T 7.1]/

where ¢ is the turbulent kinetic energy dissipation rate. The eddy radius
T, can be replaced by the aggregate radius 7, + ;. The probability, or
efficiency, of bubble-particle aggregate stability P is (Bloom and Heindel,
1997) (after Plate and Schulze (1991)):

P, =1—ell=57) (2.99)

The approach above can also be used for a slightly different formulation,
called the tenacity of attachment (Nguyen, 2003; Phan et al., 2003). Writ-
ing out the balance of forces for an attached particle, Nguyen (2003) found
for the tenacity T

T = g Y (1 —cos ) [1 + 0.016;—2] . (2.100)

Now, assuming that the detachment forces are mainly gravitational and
centrifugal, in nature, one can write the detachment force as (Phan et al.,
2003):

Faer = 3715 (pp — py) (9 + bm) (2.101)

The stability of the aggregate is defined by T' < Fj.;. Substituting the LHS
of Eq.(2.100) with the RHS of Eq.(2.101) and writing particle radius as the
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maximum floatable particle radius 7}, ;4. one obtains (Nguyen, 2003):

3y (1 —cosh) L2
Tpmaxr = (2102)
" \/4 (pp — py) (g + bm)

Crawford and Ralston (1988) and Nishkov and Pugh (1991) have pre-
sented experimental work on maximum floatable particle size.

2.4 Particle-bubble interaction frequency

The approaches discussed in Section 2.3.1 are mechanistic and deter-
ministic in nature. That is, most models are derived for the interaction
between a single bubble and a single particle in an unbound medium.
Mechanistic-deterministic modelling can yield valuable insight in the mech-
anisms that govern flotation. However, for modelling of the entire flota-
tion process it is often useful to take a kinetic approach. One common
approach is to choose a method based on kinetics and population balance
modelling. Much of this work is rooted in the coagulation theory proposed
by Smoluchowski (1917). Although there are hybrid approaches, such as
by Seppaili et al. (2008) and Wierink et al. (2009), most kinetic population
balance approaches rely on the work of Smoluchowski (1917), Saffman
and Turner (1956), and Abrahamson (1975).

The basic idea behind the coagulation theory of Smoluchowski (1917) is
that there exist two particles, 1 and 2, within an interaction volume V;,,,
that interact according to an interaction function f;,;. The interaction
volume, upon collision, is assumed to be of the order of the new aggregate
size. That is, r;,; = O (r1 + r2) and thus:

Vine = O (13,) = (r1 +12)*, (2.103)

where 1 and 7, are the radii of particle 1 and particle 2, respectively.
Scaling up the interaction volume, so that e.g. a rain drop can grow by
colliding with smaller drops, leads to the form containing the number
concentrations Ny and N, of particle type 1 and type 2, respectively. The
general form of the collision rate equation is:

Z = 47 (r1 +12)° NiNafins, (2.104)

where the interaction function f;,; is typically called the collision kernel.
In the work of Smoluchowski (1917) the interaction function is a function
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of absolute temperature, viscosity, and the velocity gradient normal to the
direction of travel of the colloidal particle.

Smoluchowski (1917) assumed uniform shear and particles that follow
streamlines exactly, which was a reasonable assumption for colloidal par-
ticle motion in laminar fluid. Smoluchowski (1917) also assumed that
all collisions between particles lead to coalescence. Saffman and Turner
(1956) extended Smoluchowski (1917)’s theory to turbulent flow condi-
tions (Mei and Hu, 1999). Assuming Gaussian, isotropic turbulence Saffman
and Turner (1956) formulated the collision frequency as:

Z ~ INiN, L —|Jw,|>dA, (2.105)

where the integral index A refers to the surface of the sphere of interac-
tion and U, is the relative velocity between particles. Note that the ensem-
ble average should be taken over the entire integral. However, because
Saffman and Turner (1956) assumed isotropic turbulence the ensemble
average may be moved inside the integral as an approximation (Mei and
Hu, 1999). For particles smaller than the Kolmogorov length scale one
can make the approximation of:

Junl) ~ R<\0(7]j”|>. (2.106)

0

Saffman and Turner (1956) then used a relation of Taylor (1935) to relate
the average velocity gradient to the turbulent dissipation rate ¢ as:

oU, €
<0r = 5 (2.107)

Assuming a normal distribution, Saffman and Turner (1956) obtained:

oU, 26 \ /2
<|W|>=(157> . (2.108)

Finally, Saffman and Turner (1956) substituted Eqs.(2.106) and(2.108)
into Eq.(2.105) and used §, dA = 47 R? to obtain:

8m\ V2 a [E\1/2
Z=<%) NlNgd‘f2<;) . (2.109)

where d;, is the aggregate diameter.
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Abrahamson (1975) noted that Eq.(2.109) is only valid for dy» smaller
than the Kolmogorov length scale and only for particles that follow fluid
streamlines exactly. Assuming independent and normal distributions of
particle velocities and that the particle-fluid relative motion is in the
Stokes range, Abrahamson (1975) obtained:

Z = (8m)Y2 Ny Nod?, (Uf + Ui) (2.110)

X 5.0N1N2d%2 (U? +ﬁ§)

Using the collision frequency Z, the total flotation rate constant for the
pulp phase can calculated using Eq.(2.12). In turn, the rate constant can
be used to describe global flotation kinetics by e.g. Eq.(2.1). Eq.(2.110) has
been applied successfully to mineral froth flotation by Koh et al. (2000);
Koh and Schwarz (2003, 2006, 2007); Liu and Schwarz (2009a,b) and to
deinking flotation by Bloom and Heindel (1997, 2002, 2003). It must be
noted here that the use of orthokinetic and independent collision mod-
els, such as those based on Smoluchowski (1917), Camp and Stein (1943),
and Abrahamson (1975), for flotation systems is questions in the litera-
ture (Pedocchi and Piedra-Cueva, 2005; Meyer and Deglon, 2011). How-
ever, the focus of this thesis is a modelling framework for coupled bubble-
particle interaction, including surfactant dynamics. Detailed simulation
of the behaviour of bubbles and particle can give valuable insight in the
critical mechanisms of the system and provide input for semi-statistical
methods to model the entire flotation cell.
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3. Model structure

3.1 Introduction

The discussion in Chapter 2 brings forward two main points to be ad-
dressed in further development of models for bubble-particle interaction.
The first point of attention is kinematic coupling, in terms of physical mo-
mentum coupling as well as coupling between hydrodynamics and physico-
chemistry. Clearly, methods that use higher order momentum coupling
are a better representation of experimental observations than methods
where inertia and momentum are neglected. The second major point to
address is the bridging of temporal and spatial scales. Empirical observa-
tions from industry tell a great deal about the macroscopic behaviour of
three-phase systems. Equally important are the advancements of knowl-
edge about processes at (sub-)molecular scale. The union of knowledge on
the micro- and macro-scales is one of the main reasons simplification and
probabilistic interpretation of processes are necessary. However, with ref-
erence to Fig. 1.1 on p. 18, it is the intermediate meso-scale where macro-
scopic hydrodynamics and microscopic physico-chemistry meet. Integral
modelling at the meso-scale can provide a valuable test harness for theory
and validation bridging the gap between the micro- and macro-scales.

In this chapter a modelling framework for integral meso-scale modelling
of bubble-particle interaction is discussed. In Section 3.2 momentum cou-
pling between dispersed and carrier phases is examined in the light of
mineral froth flotation. Section 3.3 treats the main architectural aspects
of the modelling framework. The coupling between solid particles and the
fluid phases is made possible by a coupled CFD-DEM code, which is out-
lined in Section 3.4. The choice of modelling approach for the liquid and
gas phases is discussed in Section 3.5, followed by three sections on forces
and transport phenomena that are specific to bubble-particle interaction
with soluble surfactants. These sections are Section 3.6 on the convective-
diffusive transport of soluble surfactant within the finite volume method,
Section 3.7 on particle motion in liquid and particle-particle forces, and fi-
nally Section 3.8 on the forces that occur when a solid particle approaches
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the gas-liquid interface closely.

3.2 Momentum coupling

From the discussion in the previous chapter it has come clear that cur-
rent flotation models can predict flotation process behaviour only in cer-
tain cases and that the governing principles are not yet understood deeply
enough. Most successful models lean heavily on empirical knowledge and
may fit, but have limited predictive power. Two major assumptions be-
hind classic models are that the motion of the mixture and the momentum
of the individual phases can be decoupled and that physical momentum
and chemical potential can be decoupled as well. Under certain condi-
tions these are valid assumptions, for example for dilute body force driven
flows. However, in the case where the small scale interaction between dis-
persed phases is the very reason the process is used, detailed three-phase

interaction requires attention in modelling and experimental research.

Elghobashi (1991) mapped the interaction between dispersed phases in
terms of level of momentum coupling. One-way momentum coupling refers
to the situation where momentum is only transferred from the carrier
phase to the dispersed phase. With two-way momentum coupling the
momentum of the dispersed phase interacts with the momentum of the
carrier phase. When bubbles and particles find themselves closer to each
other than about 10 times their own diameter, the system is characterised
by so-called four-way coupling. Under such conditions the equations of
motion of the different phases need strong coupling to describe the sys-
tem accurately. In industrial processes such as mineral froth flotation,
the distance between dispersed bubbles is typically in the order of one
bubble diameter or less. Suspended solid particles are in many cases sep-
arated by less than the particle diameter. Mineral froth flotation therefore
lies in the very right hand side of Fig. 3.1. (Wierink and Heiskanen, 2008)
In addition, at the scales that are important in mineral froth flotation,
physico-chemical forces play a key role in the momentum exchange within
the system. For these reasons the further development of mineral froth
flotation models benefits from a modelling approach with natural imple-
mentation of higher order momentum coupling. The two central themes
around which further development of flotation models evolves are:

1. physical momentum coupling between phases, and

2. coupling between chemical potential and physical momentum.

The next section describes the architecture of the implementation of these

two aspects of momentum coupling.
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Figure 3.1. Momentum coupling regimes for the log of the ratio of particle response time
7, and fluid response time 7; (log Stokes number)versus particle-particle dis-
tance s, normalised by particle diameter d, (after Elghobashi (1991)). Ap-
proximate volumetric concentration C of the dispersed phase is indicated in
brackets..

3.3 A coupled modelling framework

After the discussion in Chapter 2 and Section 3.2 it is clear that by includ-
ing momentum coupling and coupling with physico-chemical phenomena
bubble-particle models can achieve more accurate results. The method of
implementation of these couplings is however of the same magnitude of
importance as the phenomena themselves. From the perspective of model
architecture, the reason is that the various aspects of physics and chem-
istry involved are understood at different levels. For example, the motion
of a spherical particle through a fluid is better understood than film rup-
ture in the presence of surface active components. Nevertheless, both of
these aspects are important and need to be included in the model. Key ar-
chitectural features of the modelling framework are therefore modularity
and flexibility.

In classical flotation models bubbles are assumed spherical particles that
are separate from the fluid domain. Consequently, bubble break-up and
coalescence can only be handled by PBM or a similar approach, where
bubble size and number density is computed according to a population
kernel. In some cases this approach has proven effective, but important
phenomena such as dynamic adsorption of surfactants and Marangoni
stresses are difficult to include in a consistent way. One of the central
challenges is how rapid adsorption dynamics interact with topological
change of the adsorption surface, i.e. during bubble break-up and coales-
cence. Topological change of the gas-liquid interface has been identified
as an important phenomenon by several authors (Omelka et al. (2009),
Ata (2009), Clift et al. (1978, p. 339-347)) in bubble-particle interaction
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and bubble dynamics. Integral and consistent simulation of multi-phase
multi-species systems requires the ability to handle topological changes
of the interfaces.

In the model presented in this thesis the discrete phases are treated dif-
ferently than in typical flotation modelling. Air bubbles are not treated
as discrete entities as such, but rather as an interface between liquid and
gas that can form distinct topological sets according to local stresses. The
motion of particles is computed by the DEM in its own frame of reference,
while coupled to forces interacting with the fluid domain. These solid par-
ticles are modelled as Lagrangian points that are in fact dynamic lists
of properties, such as diameter, location, and contact angle. Depending
on the characteristics of the system the list of particle properties can be
changed and extended. This feature allows ready implementation of par-
ticle surface mineralogy and the effects of activators, depressants, and
other surfactants at the particle surface. For example, interfacial proper-
ties such as zeta potential can be made dependent on surfactant concen-
tration on a near gas-liquid surface.

The two main values of this modelling framework are:
1. that complex, coupled modelling of bubble-particle interaction is made
computationally feasible in a modular and extensible way and

2. further research needs are identified.

The author is aware that the various constituents of an integral bubble-
particle interaction model are characterised by different levels of under-
standing of the key phenomena. In many cases the reason is the great dif-
ficulty in deriving conclusive results from complex and dynamic systems
such as those with multiple phases and species. The modelling elements
described in the following sections reflect this variation in understanding.
Inclusion of even the simplest sub-model in the framework brings with
it two important features. Firstly, the value of the sub-model itself can
be assessed in the context of a dynamic system and, secondly, the inter-
action with other sub-models can be investigated. The dynamic nature
of the coupled system of sub-models creates an additional degree of free-
dom, which the modelling framework presented can help to understand.
Rather than omitting sub-models, the current modelling structure serves
as a test harness for integral model development. The most urgent areas
of further development readily crystallise and the relative influence of
various physical and physico-chemical phenomena are brought forward.
For example, one area of interest may be adsorption and desorption of sol-
uble surfactants near a moving gas-liquid interface in the presence of fine
solids. The following sections detail the modelling elements currently im-
plemented in the framework and the work is intended as a stepping stone
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to more integral modelling of multi-phase multi-species systems.

3.4 CFD-DEM coupling

The modelling of particulate and dispersed flows can be approached by
two main strategies, the continuum and discrete approaches (Goniva et al.,
2010). In the continuum approach the dispersed phase is thought of as
an artificial continuum to which conservation equations are applied (Gi-
daspow et al., 1992). In discrete modelling of particulate flow, however,
the dynamics of individual particles and particle-particle collisions are
treated with a specific collision kernel (Goniva et al., 2010; Wierink et al.,
2011). One of the most important discrete models is the so-called Discrete
Element Method (DEM) (Cundall and Strack, 1979). The DEM accurately
captures all granular physical phenomena, provided that models for these
phenomena are included.

The aims and necessary model features considered in Sections 3.1 and
3.2 require an integral and modular framework to simulate three-phase
interaction. The combination of CFD and DEM appears a natural choice
and the CFDEM project! (Goniva et al., 2011; Kloss et al., 2011) fulfils
this requirement. The CFDEM package consists of the coupling of the
open source CFD code OpenFOAM® and the open source DEM solver
LIGGGHTS. The dynamics of fluids and particles are computed on their
own respective meshes and momentum and void fraction are transferred
between the two codes through an MPI message passing library. The cou-
pling between OpenFOAM and LIGGGHTS can be summarised as fol-
lows (Goniva et al., 2010):

1. particle positions and velocities are calculated by the DEM solver;

2. these particle positions and velocities are transferred to the CFD solver;

3. for each corresponding computational cell, the particle volume fraction
as well as a mean particle velocity is determined;

4. based on the particle volume fraction, the momentum exchange be-
tween particles and carrier phases is calculated within the CFD solver;

5. the forces acting on each particle are sent to the DEM code and used
for the next time step;

6. the local fluid velocity is calculated by CFD solver, taking into account
the local volume fraction and momentum exchange;

7. the routine is repeated from (1).

1CFDEM - Open Source CFD, DEM, and CFD-DEM: http://www.cfdem. com, ac-
cessed October 2011.
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3.5 Modelling approach

The detailed simulation of gas-liquid flows can be divided into two main
categories; interface tracking methods (cf. Mclaughlin (1996); Cuenot et al.
(1997); Palaparthi et al. (2006); Tukovi¢ (2005); Tukovi¢ and Jasak (2008,
2012)) and interface capturing methods (cf. James and Lowengrub (2004);
Drumright-Clarke and Renardy (2004); Xu et al. (2006); Lakshmanan and
Ehrhard (2008, 2010)). In interface tracking the gas-liquid interface is
formed by the boundary between two separate computational domains.
Interface tracking is more accurate than interface capturing, but inter-
face break-up and coalescence is challenging. Break-up and coalescence
can be modelled using interface tracking (cf. Menon et al. (2008)), but the
topological changes are complex and computationally intensive. In the in-
terface capturing method, the interface is formed of the gradual change
of a phase fraction function and the interface is smeared to some extent.
The interface sharpness can be improved by combining a level-set based
method with the Volume Of Fluid (VOF) method (Hirt and Nichols, 1981)
(cf. Lakshmanan and Ehrhard (2008, 2010)), for example as developed by
Olsson and Kreiss (2005). In practise, however, this type of hybrid model
can be unstable and lead to unphysical results (Weller, 2010). The VOF
method is mass conservative and topological changes of the interface are
readily captured. Since mass conservation and bubble-bubble interaction
are important aspects in the motivation of this work, the VOF method is
a natural choice and forms a good basis for the consistent implementation
of the physico-chemical models needed to simulate bubble-particle inter-
action with variable surface tension.

In the VOF model, motion of the gas-liquid interface is captured by com-
puting the motion of a phase fraction, or colour function, a through the
computational domain. The governing equations are the continuity equa-

tion:

V-U=0, (3.1)
the phase transport equation:
oa

o . -0, 2

o + V- (aU) =0, (3.2)
and the momentum equation:

7]
¢ (gtU) +V(UU) = -V- 7 +g, (3.3)

where ‘5 is the total stress tensor and g gravitational acceleration. The
total stress tensor is composed of contributions by pressure, shear, and
interfacial tension forces as:
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T =Gyt Tr + T (3.4)

The standard VOF method is rather dispersive due to numerical diffu-
sion (Weller, 2008), but the diffuse interface is also a characteristic of
the VOF method itself. Weller (2008) recognised this property and im-
plemented a counter-gradient transport equation (Weller, 1993) in the
VOF solver in the OpenFOAM (OpenCFD Ltd., 2011a) CFD package. This
equation takes the form of:

Ja
ot

where the interface compression velocity U. is defined as:

+ V- (aU)+ V- [Ua(l—a)] =0, (3.5)

. Va
U, = min (¢ |U], max (|U])) Nl (3.6)
In Eq.(3.6), ¢, is a parameter to set the magnitude of the interface com-
pression. In the work presented here, ¢, is set to 1. From Eq.(3.5) it can
readily be seen that through the term « (1 — «) an interface-normal flux,
proportional to U, is generated at the interface only. This additional flux

results in compression and sharpening of the gas-liquid interface.

3.6 Transport and sorption of soluble of surfactant

The transport of surfactant on the surface of the bubble follows essentially
Fick’s law, however, some care is needed with regard to the formulation.
During adsorption of surfactant from the bulk onto the bubble surface a
scalar field, surfactant concentration, is mapped from a volumetric space
onto a surface. That is:

Sc:C—T, (3.7)

where S¢ is a source-sink term, C' surfactant concentration in the liquid,
and I' surfactant concentration on the bubble surface.

During desorption the opposite of Eq.(3.7) takes place. Hence, S¢ couples
the bulk and surface transport equations for surfactant. In the pure VOF
method, however, the gas-liquid interface is not clearly defined. Rather,
the interface is a diffuse region across which the integral of the colour
function is unity. In this approach we assign a region in space that is
characterised by a non-zero gradient of the colour function. This region
is depicted in Fig. 3.2, moving across the gas-liquid interface located at
z=0.

The approach of an interfacial region that is diffuse, rather than a sharp
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Figure 3.2. Value of the colour function ¢ and its normalised gradientV¢ across the gas-
liquid interface. The distance is shownon the horizontal axis, with the centre
of the interface located at « = 0.

interface, calls for a volumetric surface transport equation for surfac-
tant concentration. Special care need be taken in the formulation of this
equation, in particular the definitions of the surface gradient and surface
Laplacian operators in a volumetric context. The formulation of the volu-
metric surface transport equation is elaborated below.

The general transport equation for any field ¢ is of the form:
9¢
ot

where S, is the source-sink term for ¢ and the total flux J is defined as:

+ V- J¢ = S¢)7 3.8)

J; =Up—DV¢ (3.9)

Substitution of Eq.(3.9) into Eq.(3.8) and replacing field ¢ with surfactant
concentration C' yields:

oC

ar +V-(UC)=V-(DVC) + S¢ (3.10)
The diffusion coefficient D in the diffusive term on the right-hand side of
Eq.(3.10) is, in fact, a tensor and should remain within the divergence op-
erator. Only under very dilute conditions can we treat the diffusion tensor
as a scalar coefficient and take it out of the divergence operator. Dilute
surfactant transport may be an appropriate assumption in the bulk liquid
in most process applications, but is unlikely to be valid on the surface of
a bubble contaminated by surfactants. For now, however, we accept this
shortcoming in the light of mathematical convenience and treat the diffu-

sion tensor as a scalar coefficient.

In Eq.(3.10), S¢ is governed by the adsorption-desorption dynamics of
bulk liquid and gas-liquid interface and is modelled as (Levich, 1952):
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Sc = k.Cr (1 — L) — kql', (3.11)
Lo

where k, and k,; are the adsorption and desorption coefficients, respec-
tively, Iy, is the maximum concentration of surfactant at the interface,
and Cr is the surfactant concentration in the boundary layer of the bub-
ble. It is important to note that Cr follows the bulk surfactant transport
equation for C' and represents C' in the interfacial region of the gas-liquid
transition, i.e. the bubble boundary layer. Surface concentration I" can
only exchange mass with C and not with C directly. This exchange mech-
anism is schematically shown in Fig. 3.3 and is needed because I' is mod-
elled as a volumetric concentration stored in the interface region of the
bubble.

The vector fields in Eq.(3.10), i.e. velocity and surfactant gradient, can be

decomposed in interface-normal and interface-tangential components as:

% +V - (U,C+U,C) (3.12)
0

=DV2C +DV - ([VC -n]n) + Sc

Now, splitting the term V - (U,,C + U,C) and expressing U,, as (U-n)n,
Eq.(3.12) becomes:

oC
i V-[C(U-n)n]+ V- (U,0) (3.13)

=DV2C + DV - ([VC -n]n) + S¢,

or

a—C—&—C(U-n)V-n+n~V[C(U~n)]—i—VS~(UC) (3.14)

ot

=DV2C +DV - (|[VCn) + S¢

Diffusion in the interface normal direction is accounted for by the sorption
isotherm in the sink-source term S.. Therefore, we we can eliminate
interface normal diffusion by setting term DV - (|[VC|n) in Eq.(3.14) to
zero. Also, the surfactant concentration C' in Eq.(3.14) is now the surface
concentration, although in volumetric form, since transport takes place
within the interfacial region rather than on a surface. Eq.(3.14) thus takes
the form:
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Figure 3.3. Schematic representation of the exchange of surfactant betweenconcentra-
tions C' in the bulk liquid, Cr in the bubble’s boundary, and subsequently,
betweenCr and the volumetric surface concentration T'.

%+F(U«n)v-n+n‘V[F(U»n)]+V5-(UF) (3.15)

=DV + k,Cr (1 - FL> — kgl

0

The surface gradient operator V; is defined as (I - n®mn) V. The Lapla-
cian operator of field ¢ can be decomposed as:

V26 =V - ([Vé-n]n) + V- ([Vo-t]t)) (3.16)
+V - ([Vo-ta]ta),

where t; and t, are the two tangential surface vectors. The first term
on the right-hand side of Eq.(3.16) represents the surface normal contri-
bution to the Laplacian while the second and third terms represent the
surface contribution. Therefore, the surface Laplacian can be obtained by
rewriting Eq.(3.16) as:

Vi =V-([Vo-t1]t1) + V- ([Vo - ta] ta) (3.17)
=V?¢—~V-([Vé-n|n)

3.7 Particle motion

The motion of particles is modelled in a Lagrangian frame of reference.
The governing equation is:

mpdd%” =) F. (3.18)

where F contains the relevant forces acting on the particle. Commonly
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these are the drag force, the buoyancy force, and a driving force due to
pressure gradient. Interfacial, electrostatic, and other forces can be added
in Eq.(3.18) to accommodate the physics specific to the system at hand.
The particle forces described in the current and next section are models
found in literature and are surely incomplete. However, the structure of
the current modelling framework allows to continuously update the par-
ticle model according to experimental and theoretical findings.

To account for particle-particle collisions in more dense dispersed flows a
soft-sphere collision model Bertrand et al. (2005) and Cundall and Strack
(1979) was implemented. Particles are represented by spheres with a cen-
tre point and a radius. During particle-particle collision the particles are
allowed a small overlap §,, as shown in Fig. 3.4. The normal force F, ; ;
between particles i and j is the calculated as (Bertrand et al., 2005):

O0ni i
Fenij = knd)s  + Co—32 (3.19)
and the tangential force as:
00t.; 7
Fioij = ko2 + C—=22, (3.20)
i, or

where k,, and k; are the stiffness coefficients and C,, and C; are the damp-
ing coefficients, in the normal direction n and tangential direction ¢, re-
spectively. In this work a linear collision model is used so that the coeffi-
cients 3 and f3; are both set to 1. The forces in Eqs.(3.19) and (3.20) are
then added to the right hand side of Eq.(3.18). In the results presented
here, kis 0.9 kg/s? and C is 800 kg/s. The values for k and C are not based
on physical particle properties, but rather to ensure that particles do not
overlap and collide with reasonable restitution and to provide a proof of
concept. At a later stage physical parameters are to be tested, such as
those reported by Malone and Xu (2008).

~1

8

Figure 3.4. Particles colliding using the soft-sphere collision model. The particles overlap
by distance ¢,,, F, is the normal force and F,, the tangential force.
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3.8 Forces between bubbles and particles

Particles that find themselves at short distance from the gas-liquid in-
terface experience not only hydrodynamic forces, but also forces due to
chemical interactions. The range at which these chemical forces become
important is thought to be around 10 nm (Israelachvili, 1992, p. 247),
slightly varying for different systems. This range corresponds to zone 3
in Fig. 2.1 on p. 26. The forces acting on particles at such close range
have been investigated in the context of Brownian motion since the late
eighteenth century. The introduction of the concept of the (-potential
to describe the electrostatic state of a surface by von Helmholtz (1879)
and the extension of this theory to charge mobility and electrophoresis by
Smoluchowski (1903), made it possible for colloidal interaction to be mea-
sured (Russel et al., 2001, p. 9). Von Helmholtz treated the solid surface as
planar, with linear decay of the electrostatic field away from the surface.
In order to accommodate more general conditions with a diffuse surface
charge distribution, Gouy (1910) and Chapman (1913) proposed a model
where some ions can diffuse into the bulk and the field strength decays
exponentially (Rosen, 2004, p. 36). Surface charge and its heterogeneous
distribution manifests as a region close to the surface, called the electric
double-layer. The force resulting from this surface charge is referred to as
the electric double-layer repulsion force.

During the late 1930s, Verwey and de Boer (1938) investigated character-
istics of colloid suspensions, in particular the relation between (surface)
electro-chemical and mechanical properties. They recognised that the ef-
fect of interactions between the electric double layers of small quartz par-
ticles (d, ~ 1 um) caused dilatancy of the suspension. However impor-
tant, electric double-layer interaction cannot be the only significant force
with regard to the stability of colloidal suspensions. Several phenomena
suggest the presence of a long-range attractive force as well (Verwey and
Overbeek, 1948, p. 19). This long-range attractive force was attributed to
non-ideal Van der Waals forces, where fluctuations in the charge distri-
bution of one atom can polarise another. This theory was postulated by
London (1930, 1937) and is therefore referred to as the Van der Waals-
London attraction force. Verwey and Overbeek (1948, p. 104-105) point
out that for distances larger than about 108 m, the seventh power law
breaks down and a relativistic correction is needed, leading to the London-
Van der Waals attraction force.

In simultaneous but separate work, Derjaguin and Landau (1941) and
Verwey and Overbeek (1948) assumed additivity of the electric double-
layer and Van der Waals forces and proposed that the total interaction
between charged surfaces is the sum of these two forces. The classical
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theory by Derjaguin and Landau (1941) and Verwey and Overbeek (1948)
has become known as the DLVO theory and is the subject of the next
section.

3.8.1 DLVO forces

The classical DLVO theory, in the context of bubble-particle interaction,
predicts that the total energy of interaction can be described by the sum-
mation of the London-Van der Waals and electric double-layer forces. The
total potential energy of interaction V;,; is:

Viot = Ve + Viaw, (3.21)

where V, is the electrostatic interaction energy and V4, is the London-
Van der Waals energy. Fig. 3.5 shows schematically the change of inter-
action energy as a function of distance from surface. As two surfaces ap-
proach one another, the sum between attractive and repulsive forces first
reaches a minimum; point ¢ in Fig. 3.5. Commonly this point is referred to
as the secondary minimum. At even shorter separation distance the total
interaction energy shows a peak at point b in Fig. 3.5, closer than which
the total energy of interaction is strongly attractive, towards the primary
minimum at point ¢c. When applied to bubble-particle interaction, it is a
commonly accepted view that the energy peak at point b in Fig. 3.5 forms
an energy barrier for the particle-bubble pair to overcome before adhesion
can occur. (Israelachvili, 1992, p. 247) Fig. 3.5 schematically depicts the
current view of classical DLVO and has been redrawn after Israelachvili
(1992, Fig. 12.12, p. 248)), although Derjaguin and Kusakov (1936) al-
ready published practically the same diagram. Derjaguin and Kusakov
(1936) drew the interaction forces versus distance.

For two hard spheres with different charge densities or different poten-
tials, Hogg et al. (1966) derived the following expression for the electro-
static interaction energy:

_Errg (\P% + \If%) 20Uy 1+erH _oxH
Vo= Tt (@) 1 Fin{l=e)

(3.22)

where ¢ is the dielectric constant ,£¢, r1 and ro are the radii of the two
spheres, ¥, and VU, their respective potentials, and H is the separation
distance between the spheres. « is the inverse Debye screening length.
The screening length occurs in an electrolyte solution containing free charges.

In such an environment, all electrostatic fields are "screened" due to charge
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Figure 3.5. Schematic interaction energy as function of separation distance H according
to DLVO theory (after Israelachvili (1992, Fig. 12.12, p. 248)).

polarisation and the field decays exponentially, roughly according to e "%
(Israelachvili, 1992, p. 199). The Debye, or Thomas-Fermi, screening
length characterises the thickness of the diffuse charge atmosphere close
to a charged surface and is expressed as (Israelachvili, 1992, p. 238):

e 2
5= «/%7 (3.23)

where p; is the charge density, z; the electrovalence, k the Boltzmann
constant, and T absolute temperature. Israelachvili (1992, p. 245) also
points out that the potential interaction energy between surfaces usually
has a maximum at roughly % In Eq.(3.22) the characteristic length scale

T2
(r1+72)
between cylinders or spheres (Israelachvili and Pashley, 1982). In the ex-

of interaction has been replaced by to represent the interaction

pressions to follow the same substitution is made.

For different types of electrovalences Israelachvili (1992, p. 238) further
states that the magnitude of  solely depends on properties of the liquid
and not on surface properties, and that x scales with 1/C;. For a mono-
valent electrolyte Israelachvili (1992, p. 238) writes the following approx-

imate expression:

VCy
0.304

K =

(3.24)

When we note that p¢; in Eq.(3.23) is in fact the ion number density in
the bulk, we can express p¢,; as NoC}p, where N4 is the Avogadro number.
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Comparison Eq.(3.23) and Eq.(3.24) shows that both expressions do not
yield the same result. Fig. 3.6 shows results for V,, Eq.(3.22), for different
particle diameters 2r;, a bubble diameter 2r; of 1 mm, a temperature of
298 K, and a bulk surfactant concentration Cj of 4.0-10* mol/m3. The
results on the left in Fig. 3.6 have been calculated using Eq.(3.23) for «
and the results on the right using Eq.(3.24) in Eq.(3.22). The shape of
the curves in Fig. 3.6 are nearly the same, but the effective range of the
field differs by about an order of magnitude between using Eq.(3.23) or
Eq.(3.24) in Eq.(3.22).

3 3
25 . 25 .
s 2F 1 s 2} .
~ =
S 15} 4 2 15 E
>a> 1 I \\\ i >°’ 1k B
05 | . 05| h .
0 [ e 0 (T
0 200 400 600 800 1000 0 20 40 60 80 100
h (nm) d =10 um h (nm)
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Figure 3.6. DLVO electric interaction potential V. for different particle diameters. V.
is computed using Eq.(3.22) using Eq.(3.23) for « (left) and using Eq.(3.24)
(right). The bubble diameter is 1 mm, the temperature 298 K, and the bulk

coilcentration Cy is 4.0-10* mol/m?®. Note the different scales on the horizon-
tal axes.

The second contribution in Eq.(3.21) is the dispersion energy that arises
due to Van der Waals forces between non-polar molecules (Mao, 1998).
The London-Van der Waals (dispersion) energy V4 can be written as (Ra-
binovich and Churaev, 1979):

(3.25)

Voaw — — A1327‘1T2 |:1 B 1+ le} 7

6H (r1 +12) 1+ b

where b =3-1017 s, [ = 3.3-10%® s'1, and ¢ = 3-108 m/s. The term between
square brackets is a correction factor for the retardation effect (Mao, 1998).
In Eq.(3.25), A139 is the complex Hamaker constant for solid-gas-liquid in-
teraction and is defined as (Hamaker, 1937):

Aygy = (\/TH - \/I‘TB) (\/Tm - \/Ai?)s) ) (3.26)

where Ay, Ass, and A33 are the Hamaker constants of air in vacuum,
of solid in vacuum, and of water in vacuum, respectively. For a bubble
with low surface surfactant concentration, A;; is about zero, while Ay >
Asz in most flotation systems. Therefore, A3, becomes negative and V4
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becomes positive. This means that in a typical flotation system the attrac-
tive Van der Waals force is in fact a repulsive dispersion force (Yoon, 1991;
Yoon and Mao, 1996). It has been recognised that, under typical flota-
tion conditions, the only significant driving force behind particle-bubble
attachment is the (non-DLVO) hydrophobic force (Yoon, 1991; Yoon and
Mao, 1996; Mao, 1998).

3.8.2 Non-DLVO forces

Experimental evidence of Laskowski and Kitchener (1969) showed that
for a repulsive electrostatic energy and repulsive Van der Waals energy,
the net interaction energy was still negative and thus attractive for methy-
lated quartz particles. This finding suggested the presence of a third force,
the so-called hydrophobic force (Yoon, 1991). The attractive hydrophobic
force is larger than the Van der Waals force and probably cannot be deter-
mined using continuum calculations alone (Rabinovich and Yoon, 1994).
About a decade after Laskowski and Kitchener (1969), Pashley and Is-
raelachvili (1981) measured the effect of the hydrophobic force directly.
Israelachvili and Pashley (1982) measured the interaction force between
two crossed quartz cylinders rendered hydrophobic by a CTAB solution?.
By subtracting the measured force from the sum of theoretical electro-
static and Van der Waals forces, they measured directly an additional
force with exponential decay:

g — CePo, (3.27)
where r is the cylinder radius, C' a constant (~0.14), and D; the de-
cay length (~1 nm). It is important to note that Israelachvili and Pash-
ley (1982) arrive at Eq.(3.27) by subtracting DLVO forces from the force
measured experimentally. The rest term is then associated with the hy-
drophobic force, although it is not guaranteed at all that this excess term
is general, nor that its origin is a single physico-chemical phenomenon.
Nevertheless, the existence of the hydrophobic force has been widely ac-
cepted, although its origin is still not understood and formulations depend
strongly on empirical fitting parameters (Mao, 1998; Butt et al., 2003,
p. 107).

Xu and Yoon (1989, 1990) used Eq.(3.27) to extend the DLVO theory with
an additional hydrophobic term. To fit data presented by Pashley et al.
(1985), Eq.(3.27) was adjusted and fitted to experimental evidence (Pash-
ley et al., 1985; Claesson et al., 1986; Tsao et al., 1991) of stronger hy-

2CetlerimethylAmmonium Bromide (CTAB) is a cationic surfactant that is
used to control the (-potential.
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drophobic forces (Rabinovich and Yoon, 1994; Yoon and Ravishankar, 1996):

F —H —H

o= CiePr + Che P2, (3.28)
where decay lengths D; and Dy are ~1 nm and ~3-24 nm, respectively,
and C; (~10-40 mN/m) and C5 (~0.1-1.2 mN/m) are fitting parameters.
Yoon and Ravishankar (1996) showed that Eq.(3.27) is valid for an ad-
vancing contact angle smaller than 90°, while Eq.(3.28) is suitable for
advancing contact angles that exceed 90°. Yet another expression for the
hydrophobic force is the so-called power law expression (Rabinovich and
Yoon, 1994):

F K
- = ToH2 (3.29)

where K is a fitting parameter. Experimental data rarely fits well with
a quadratic decay, but Eq.(3.29) is mathematically much more convenient
since it is simple and has only one parameter (Rabinovich and Yoon, 1994).

To write the total interaction potential, Eq.(3.21) in the form (Yotsumoto
and Yoon, 1993):
Viot = Ve + Voaw + Vi, (3.30)

where V}, is the hydrophobic interaction potential, one must integrate one
of the Eqgs.(3.27-3.29) as (Yoon and Mao, 1996):

H
Vi, = féf FydH, (3.31)
0
to yield (using Eq.(3.29):
Tpry  Kizo
V= -t 182 3.32
h 6 (T‘p + rb) o’ ( )

where K3, represents the kinetic interaction constant. Yoon and Mao
(1996) compare K32 to Ay3o since Eq.(3.29) is of the same form as the
non-retarded Van der Waals equation. It is furthermore instructive to
point out that for the valid use of the integration in Eq.(3.31), one has to
make at least the following assumptions:

1. the Derjaguin approximation holds,
2. the charge and field strength distribution with the boundary layer of
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the bubble is uniform and constant,
3. the electrolyte concentration near the interface must be so low that the
Poisson-Boltzmann equation can be linearised around the interface.

Assumption 1 was postulated by Derjaguin and Kusakov (1936), who as-
sumed that the characteristic length of interaction is much smaller than
the radius of the particles interacting. In essence, this is a flat plate ap-
proximation for the interacting surfaces. The Derjaguin approximation
has of course its limitations, but it does allow for a first order approxi-
mation of the interaction (White, 1983) and to use the integration limit
of infinity (White, 1983; Russel et al., 2001, p. 150), so that only the term
in Eq.(3.31) remains after integration. In the interaction between flat
plates, each point on one plate interacts with the entire other plate (Bhat-
tacharjee and Elimelech, 1997; Bhattacharjee et al., 1998). The Derjaguin
approximation, however, assumes that a unit surface area element only
interacts with the corresponding unit surface area element on the op-
posite plate in surface perpendicular direction (Glendinning and Russel,
1983; White, 1983; Israelachvili, 1992, p. 161-164). The advantage of Der-
jaguin’s approximation is that it allows us to split the interaction energy
into a geometric parameter, R or (T’;fﬁﬂ , and a set of parameters that re-
flect the material properties and distance (Butt et al., 2003, p. 95). The
latter is derived from the thermodynamic properties of the intervening
liquid film (Schulze, 1983, p. 78). The topic of the next section is there-
fore the thermodynamics of liquid films, in particular in relation to the

so-called disjoining pressure.

3.8.3 Thermodynamic aspects of particle-interface forces

In an investigation of the adhesion of colloidal particles to interfaces, Der-
jaguin (1934) proposed that between particles and between particles and
gas in liquid a thin layer of liquid existed. Due to the curvature of the
interface, the pressure inside the liquid is higher than outside the lig-
uid. Derjaguin (1934) referred to this effect as the "pressure defect". This
result follows from Laplace’s equation for pressure and is schematically
depicted in Fig. 3.7a. Two years later, Derjaguin and Kusakov (1936) ex-
trapolated this idea from capillarity between particles to a an excess pres-
sure that exists within a thin liquid film between two interacting surface,
schematically depicted in Fig. 3.7b.

Paulsen et al. (1996) derived an expression for the disjoining pressure as
a function of separation distance h, surface surfactant concentration T,
surface tension v, Hamaker constant A, and hydrophobic force constant
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Figure 3.7. Schematic diagram of "pressure defect” between particle in a three-phase
system (a) (after Derjaguin (1934)) and the disjoining pressure between solids
in liquid (b) (Derjaguin and Kusakov, 1936) (after Butt et al. (2003, p. 96)).
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In Eqgs.(3.35) and (3.42) X is a characteristic length related to the wave-
length of the perturbation. Derjaguin and Kusakov (1936) write the force
to overcome the energy barrier and make attachment occur as the integral
of disjoining pressure from infinity to the separation distance h:

F(h) F P(h)dh (3.44)

Now, using a more complete formulation of the disjoining pressure, such
as Eq.(3.33), we can integrate pressure to force. This force may be an
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estimate for the attachment force between bubble and particle. To use
Eq.(3.33) in Eq.(3.44), the disjoining pressure needs to be rewritten in
a form that suits Eq.(3.44). Now, using the expression of Paulsen et al.
(1996) for h*:

h* = ;—L =1+ eccosz™, (3.45)
0

and working term by term in Eq.(3.33), (Sjm—h:z can be written as:

0%h* 02 .
prpe R W(1+ecosx ) (3.46)
= —ecosz™
h
T he
(3.47)

Using Eqs.(3.34-3.43) and (3.46), we can rewrite Eq.(3.33) as:

h RIT, T AN? K2 _»
PhN=(1-—)(1—-—2 ") — 2 e 4
(7o) ( h)( (Fw_%) T g (349

where Langmuir’s equation of state:

00

v =10+ RITyIn (1 — FL> (3.49)

was used to determine M in Eq.(3.39). Eq.(3.48) can be integrated in
accordance with Eq.(3.44) as:

oe]

F(h,\) = f P (h, \) dh (3.50)

h
o
:|h

[(h BN (, BTDo DY AN KN
B 2hg (T = T) v 8m2vhoh?  4mw2yd? ¢

The difficulty with Eq.(3.50) lies in the fact that the upper limit for in-
tegration is divergent in this formulation. The reason is the term 1 — h%

als

from Eq.(3.45), where film rupture is artificially triggered by perturbing
the thinning film. The use of Eq.(3.45) and the physical consequences
for Eq.(3.50) need further study. In this work, let us use a modified ver-
sion of Eq.(3.30), outlined in Nguyen and Schulze (2004, Ch. 16). The
interaction between spheres is often modelled using a linearisation of the
Poisson-Boltzmann equation, the analytical solution of which is cumber-
some to use (Adamczyk and Weronski, 1999). An approximate solution to
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the problem by McCartney and Levine (1969) was extended by Bell et al.
(1970) and Sader et al. (1995) for dissimilar spheres. Following the non-
linear superposition approximation of Sader et al. (1995) one can write
the electrostatic interaction force as (Nguyen and Schulze, 2004, p. 340):

F. (h) —64n Rezor (%) 3.51)

where

R (3.52)
Tp+ Ty

Now, by dividing Eqgs.(3.25) and (3.32) by R, Eq.(3.52), the Van der Waals
and hydrophobic forces are recovered from the respective potentials:

Veaw Aq3s 1+ 2bl
Foaw (h) = %= = — 1- .
aw (h) 7 GH T % (3.53)
and
Vi Kz
Fy (h) = == " on (3.54)

The total force between a particle and a bubble surface is the sum of
Eqs.(3.51-3.54).

The forces in Eqs.(3.51-3.54) are dependent on the distance between par-
ticle and bubble surface. To implement Eqs.(3.51-3.54) as particle forces
within the VOF framework, the particle-interface force can be modelled
as (Wierink et al., 2011):

F,oc —nf (o) Fy, (3.55)
where
. Va
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and

Fy =Fe + Foqw + Iy (3.57)

Function f (o) determines the correct sign of F,, on each side of the gas-
liquid interface. For f («) it is convenient to use a hyperbolic tangent,
since this function is smooth and switches signs on each side of a cen-
tred value. In addition, many electrostatic problem are also hyperbolic
in nature. When a quadratic hyperbolic tangent is used Eq.(3.57) can be
distributed smoothly around the gas-liquid interface and the particle ex-
periences a weak equilibrium when captured in the centre of the interface.
Therefore, f (a) is chosen to be of the form:

f (@) = (tanh? [Aq (@ — @)] — tanh?® [\, (o — &)]) (3.58)

where & is the centre value of the interface, chosen to be o = 0.5, and )\,
is a parameter to control the decay of the force away from the interface.

Eq.(3.57) only applies when a particle approaches a gas-liquid interface
closely. Upon film rupture wetting forces come into play. For a silica
particle approaching an air bubble in water, Englert et al. (2009) found
a force maximum of around 1 mN/m just before film rupture. Choosing
Ao = 25 mimics this behaviour, albeit artificially. At film rupture, how-
ever, Eq.(3.57) breaks down. The critical distance at which rupture likely
occurs is the critical film thickness. In this work a formulation of Sche-
ludko (1962) is used for the critical film thickness h..;:

A}\2 1/4
hcrit = <1287T’}/> (359)

An important assumption behind Eq.(3.59) is that the bubble surface is
not strongly retarded (Manev and Nguyen, 2005). However, even under
condition with high surfactant concentrations, Eq.(3.59) is considered a
fairly good approximation (Schulze, 1983, p. 113). Scaling the valid inter-
val of Eq.(3.57) by Eq.(3.59) is physically artificial, but it does allow for
coupling of Eq.(3.57) with the equation of state, e.g. Eq.(3.49), and a non-

uniform distribution of surfactant concentration in time and space.

Before F,, can be computed by Eq.(3.57), physico-chemical properties that
describe the state of the system must be provided. Fielden et al. (1996)
and Englert et al. (2009) investigated particle-bubble forces experimen-
tally and found the quantities presented in Table 3.1 in good agreement
with their observations. Englert et al. (2009) also provide a value for
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the bubble surface potential ¥;,, but using this static value would defeat
the purpose of including non-uniform surfactant distribution and dynamic
surface tension. Dukhin et al. (2002, p. 248) provide an approximation for
the bubble surface potential as:

kT 2 zkl
U, (T) ~ szjln (22*0{) , (3.60)

where e is the unit electron charge, » and ™ are the valence of the dissoci-
ated species, and C{f is the surfactant concentration in the bulk directly at
the bubble surface, equivalent to Ct in Eq.(3.15). With Eq.(3.60) it is as-
sumed that there is an equilibrium between surface adsorption and bulk
concentration immediately next to the surface and that the surface surfac-
tant layer is an infinitely thin mono-layer (kdp « 1, with §p the diffusion
layer thickness) (Dukhin et al., 2002, p. 243). A more serious limitation to
the use of Eq.(3.60) is that it must be assumed that surface charge obeys
a Boltzmann distribution (see e.g. Masliyah and Bhattacharjee (2006,
Ch. 6)) and is smeared out over the entire bubble surface (Dukhin et al.,
2002, p. 243). Despite these severe limitations, Eq.(3.60) seems a better
option than a static value for ¥, so that also F, of Eq.(3.51) varies with
I'. Fig. 3.8 shows the magnitude of the force according to Eq.(3.57) when
using Eq.(3.58) as scaling factor.

Table 3.1. Physical properties needed in Eqs.(3.51) and (3.53), as found by Fielden et al.
(1996) and Englert et al. (2009) for the air-water-silica system in 5.8-10° M

KCl solution.
Property Value Description
v, -100-103 V  Particle surface potential
Uy, -34.108V  Particle surface potential
A -1.102°J  Hamaker constant
K 40-10°m  Inverse Debye length
€ 78.4 Dielectric constant of liquid

3.9 Numerical solution method

3.9.1 Pressure-velocity coupling

Solution of the momentum equation, Eq.(3.3), is challenging because of
two reasons. The first difficulty lies in the fact that the convective term
in Eq.(3.3) is non-linear and needs to be solved by iteration. The second
and greater difficulty is that the pressure field, which is one of the source
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Figure 3.8. Magnitude of the particle-interface force, Eq.(3.55). The gas-liquid interface
is assumed to be at « = 0.5 for two values of . In this study ). is chosen to
be 25.

terms in the Navier-Stokes equation, is not known a priori. The pres-
sure field is indirectly included when the continuity equation, Eq.(3.1) is
satisfied. This, however, is only useful when using an simultaneous so-
lution method. (Patankar (1980, p. 113-114); Ferziger and Peric (2002,
p. 167)) Simultaneous solution of the inter-linked pressure-velocity sys-
tem of equations is possible, but expensive in terms of computer mem-
ory (Ubbink, 1997). As CFD is a memory intensive type of simulation
already, it is in many cases more efficient to choose an iterative solution
procedure. There are several iterative techniques available, of which the
Pressure Implicit with Splitting of Operators (PISO) (Issa, 1986) and the
Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) (Patankar
and Spalding, 1972) are typically used in OpenFOAM® solvers (OpenCFD
Ltd., 2011c, p. U-125). The SIMPLE algorithm is commonly used for
steady-state problems, while the PISO algorithm is more appropriate for
transient cases. In the VOF solver used in this work, the PISO algorithm
was already implemented. The following is a short outline of the PISO
algorithm as implemented in OpenFOAM®.

Discretisation of the momentum equation, Eq.(3.3), results in the follow-
ing linear system (Weller, 2007):

[M[U]] = —Vp, (3.61)

where [M [U]] contains diagonal and off-diagonal coefficients, implicit
source terms, and time derivatives. The momentum matrix, the LHS of
Eq.(3.61), can be decomposed into diagonal and off-diagonal components.
Eq.(3.61) is the momentum predictor equation and is solved for U. The

decomposed matrix equation is of the form:
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[M[U]] —» AU - H (U), (3.62)

where A is a matrix of diagonal components and H the so-called H-operator,
containing the off-diagonal components. Combining Eqs.(3.61) and (3.62)
and rearranging gives:

AU = H(U) - Vp, (3.63)
or,
H 1

By interpolating Eq.(3.64) onto cell faces the face flux ¢ is obtained as:

H 1
o= (5), 8 (3), 7 oo

where S; is the face area vector. Mass continuity can now be enforced by
setting the divergence of the face flux to zero, i.e. a face based continuity
equation. After rearranging we obtain (Weller, 2007):

v <jl>fvfp]] =V. [(I:)f : Slf} 7 (3.66)

which is called the pressure correction equation (Versteeg and Malalasekra,
2007, p. 188). The corrected pressure is fed back to the flux corrector equa-
tion, Eq.(3.65), and the momentum corrector equation, Eq.(3.64), until
convergence is reached (Weller, 2007).

3.9.2 Discretisation

The OpenFOAM (OpenCFD Ltd., 2011a) code uses finite volume discreti-
sation (OpenCFD Ltd., 2011c) on a co-located grid. Fig. 3.9 shows an ex-
ample of two polyhedral cells with cell centres P and N. Fluxes between
cell centres are calculated across the cell faces, where two cell centres only
share a single face. In Fig. 3.9, S; is the face area vector and its magni-
tude is proportional to the area of the face.

In the finite volume (FV) method, the discretised differential equations

are integrated over each control volume (Patankar, 1980, p. 30). For val-
ues of quantity ¢ in a computational cell with centre P the volume integral
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-\\
Figure 3.9. Spatial discretisation showing two control volumes with cell centres N and
P. Sy is the face area vector (drawn after (OpenCFD Ltd., 2011b, p. 30)).

can be written as (Versteeg and Malalasekra, 2007, p. 244):

J bdV = ¢pVp (3.67)
%4

The volume integrals of spatial derivatives can be approximated by a sur-
face integral over the cell faces, according to Gauss’ theorem (OpenCFD
Ltd., 2011b, p. 36):

f V * ¢pdV = f s = ¢, (3.68)
1% S

where * represents the inner, outer, or cross product of tensor field ¢,
and S is the surface area vector. The surface integral on the RHS of
Eq.(3.68) is integrated and linearised by the sum of face integral fluxes
as (OpenCFD Ltd., 2011b, p. 38):

J V*gj)d\/:f dS ¢ (3.69)
\4 S
I

= ISyl my* gy,
7

where f refers to cell face values. All spatial derivatives are discretised
according to Eq.(3.69).

For FV discretisation of transient flow problem the PDEs need not only
be integrated over volume, but also over time (Versteeg and Malalasekra,
2007, p. 244). That is, the discretised equations in the form of Eq.(3.69)
are also integrated over discrete time. In the work presented here the
standard Euler time discretisation scheme available in OpenFOAM® was
used. The first time derivative is discretised as (OpenCFD Ltd., 2011b,
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p. 42):

0

ot

(ppopV)" — (ppoPV)°

Al ; (3.70)

fv popdV =

where index P denotes the cell centre value, as depicted in Fig. 3.9, and
superscripts n and o denote new and old values, respectively. A transient
PDE in discretised form can be written as:

t+ At K
f [—J pddV + J v« p¢dV] dt =0 (3.71)
t ot Jy v

The temporal derivative in Eq.(3.71) can be discretised using the explicit
Eulerian, implicit Eulerian, or a blended method, such as Crank-Nicholson.
In the work presented here the implicit Euler scheme is used and the tem-
poral and spatial discretised derivatives are respectively:

AT S ([T (ppopV)" — (ppopV)°
L [E JV p¢dV] dt = ) Al dt (3.72)
_ (prepV)" = (ppopV)’
At
and
t+AL t+AL
J. [J V * p¢dV] dt = J (V x ppdV)* dt (3.73)
' v ¢
= (V » pg"dV)* At,

where superscript * denotes the spatially discretised form. The Eulerian
discretisation scheme presented above is implicit, first order accurate in
time, and guarantees boundedness. (OpenCFD Ltd., 2011b, p. 39-42)
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4. Simulation of bubble-particle
interaction

This chapter is an overview of a test case for coupled CFD-DEM simula-
tion of bubble-particle interaction. The aim of this case is to demonstrate
the capabilities of the method presented in this work and to show that
fully coupled simulation is feasible and can generate useful data for model
development and validation.

4.1 Case setup

The test case featured in this Section consists of a cubical domain where
an air bubble is initialised in the lower half and a cloud of particles in the
upper half of the domain. Fig. 4.1 shows a frontal view of the computa-
tional domain. As a rule of thumb the bubble-wall distance is commonly
set as 6 or more bubble diameters, i.e. the domain is minimum 13 bubble
diameters wide. Lakshmanan and Ehrhard (2010) and Lakshmanan et al.
(2011), however, showed in a comparable study of bubble rise velocity that
for a domain width larger than 5 bubble diameters the bubble dynamics
are similar. Wall effects were only observed for a domain smaller than
5 bubble diameters. Therefore, in the work presented here, a domain of
5x5x5 bubble diameters was chosen. It is however not clear whether the
presence of solid particles can enhance wall effects. The effects of bubble-
particle dynamics and particle volume displacement needs further study.

This test case consists of a cubical of 5x5x5 mm filled with water and a
1 mm air bubble, as shown in Fig. 4.1. The bubble centre is 1 mm above
the bottom of the domain. A cloud of 1000 randomly placed particles is
initialised within a cylinder between 1.5 and 3 mm above the bottom of
the domain. The cylindrical particle injection area is aligned with the z-
axis and has a diameter of 2 mm. The liquid density is 1000 kg/m?, gas
density is 1 kg/m?, and the solid particles have a density of 3000 kg/m3.
The gravitational field points in the negative z-direction.
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Figure 4.1. View of the case setup. The computational domain is 5x5x5 bubble diame-
ters with a static orthogonal mesh of 100x100x 100 cells. A single bubble of
1 mm in diameter interacts with 1000 particles of 50 ym in diameter. The ma-

terial densities for water, gas, and solid are 1000, 1, and 3000 kg/m?, respec-
tively. The direction of the gravitational field is in the negative z-direction.

The boundary conditions for the case are summarised in Table 4.1. At
the bottom patch, a Dirichlet boundary condition is imposed on pressure
and a boundary condition of Neumann type on the velocity. For the sides
and top of the domain a Dirichlet boundary condition is imposed on ve-
locity, while for pressure the so-called "buoyantPressure" boundary con-
dition is used. The buoyantPressure boundary condition is a condition
of Neumann type, where the face normal gradient is fixed at hydrostatic
pressure. The boundary conditions for the phase fraction a are mixed
Dirichlet-Neumann conditions, named "inletOutlet" in OpenFOAM®, at
the bottom and "outletInlet" at the other patches. These boundary condi-
tions switch between Dirichlet and Neumann type depending on the sign
of the flux ¢. In the summary in Table 4.1, a positive flux refers to a flux
into the domain.

The fixed time step in the simulation is 1-10 s and the maximum Courant
number around 0.4. The CFD-DEM coupled simulation was performed on
a 1 million cell orthogonal mesh. The simulation time was approximately
1332 hrs of wall clock time per second of simulated time on an Intel Quad-
Core Q9550 2.83 GHz CPU with 8 Gb of DIMM on a 64 bit system. The
software versions used are OpenFOAM-2.0.x and CFDEM 2.1.0.
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Table 4.1. Summary of boundary conditions. "Bottom patch" refers to the bottom of the
domain in Fig. 4.1, while "Other patches" refers to the sides and top of the
domain. Here, flux ¢ is positive when pointing into the domain.

Field Bottom patch Other patches

U v,U=0 U=(000)
P p=0 Vup =p(n-g)
o p=20—-a=1 p=0—->V,a=0

p<0—->V,a=0 ¢o<0—->a=1

Table 4.2. Physical properties and their values used in the bubble-particle interaction
simulation.

Property Value Unit Description

Dy 2.7-101°  m?/s Bulk surfactant diffusivity
D, 1.10°° m?/s Surface surfactant diffusivity
kq 5.10° m/s Surfactant adsorption coefficient
kq 5.10° s! Surfactant desorption coefficient
| 5.10° mol m?2 Maximum surface surfactant
concentration
Choman 5.10°3 mol m® Maximum surfactant bulk
' concentration
Op 3000 kgm?  Particle density
d, 50-10° m Particle diameter
T 293.15 K Temperature
oo 0.072 kg s2 Clean water-air surface tension

4.2 Discussion of results

4.2.1 Estimate of model accuracy

The accuracy of the method used to capture the gas-liquid interface can
be assessed by comparing the pressure jump across the interface with an
analytical solution. Brackbill et al. (1992) compared the pressure jump
across the interface of a droplet with the result of the Young-Laplace
equation for an incompressible system in zero gravity. In their numeri-
cal experiment surface tension is kept constant. Under these conditions
the surface stress boundary condition reduces to the Young-Laplace equa-
tion (Landau and Lifshitz, 1987, p. 106-108) for "surface pressure" p; as:

Ds =DP2 — P1 = VK, (4.1

where & is the interface curvature and p; and p, are the pressure outside
and inside the drop, respectively. The comparison of the numerical cal-
culation of surface pressure to the analytical value of Eq.(4.1), is propor-
tional to the accuracy of the interfacial curvature calculation (Brackbill
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et al., 1992). As a test case Brackbill et al. (1992) used a two-dimensional
drop of 4 cm in diameter, centred in a square numerical domain of 6 by
6 cm. The mesh resolution is 60 by 60 cells, drop density is 1000 kg/m3,
background density is 500 kg/m?, and surface tension is constant at 0.02361
N/m.

Under these conditions the pressure jump condition can be estimated by:

ps=r=1, 4.2)
rd
where r; is the drop radius in 2D. In 3D the RHS of Eq.(4.2) is PoPEEEop

with 74, and r42 the primary and secondary radii of curvature. Using
the above material properties, the pressure jump across the droplet is
1.1805 Pa for the 2D case and 2.3610 Pa for the 3D case. Brackbill et al.
(1992) computed the mean drop pressure by:

1
{p) = N, 2 Pijs (4.3)

ij=1
for computational cells (¢,5). The number of "drop cells" N, is defined as
the number of cells for which p > 990 kg/m3. Fig 4.2 shows (p)/p for the
2D Brackbill et al. (1992) test case, a 3D version, and results of the same
test for a 1 mm air bubble in water. For all three cases the accuracy is
between 0.75 and 0.8. This accuracy is not particularly high, however,
Brackbill et al. (1992) and Ubbink (1997) reported similar results for cur-
vature. The inaccuracy is likely related to the principle drawback of the
VOF method for surface tension dominated flows. High local curvature
can result in so-called parasitic currents (Lafaurie et al., 1994), which are
shown in Fig. 4.3 for the 2D Brackbill test case. Parasitic currents are
caused by an error in the continuous surface force model, giving rise to
unphysical fluctuations in the pressure and velocity fields (Vincent and
Caltagirone, 2003; Harvie et al., 2008). Parasitic currents increase in
magnitude with increasing surface tension and with decreasing viscos-
ity (Ubbink, 1997). For a Morton number lower than about 107 para-
sitic currents become significant and thus great care must be taken in
the modelling of small bubbles (Tomiyama et al., 1993). For such small
Morton number the interfacial force balance becomes independent of vis-
cous effects (White and Beardmore, 1962) and surface tension dominates.
Therefore, reduction of the discretisation error of the gradient operator
associated with grid anisotropy is key in an accurate surface tension and
curvature calculation. Preliminary tests of a numerical scheme that re-
duces the effect of grid anisotropy have shown promising results, but this
is beyond the scope of this thesis. However, accurate calculation of cur-
vature can reduce the influence of parasitic currents in the VOF method
and improve accuracy for the type of modelling presented here.
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Figure 4.2. Result of the droplet surface pressure test Brackbill et al. (1992) for com-

puted mean drop pressure (p) in Eq.(4.3) and analytical surface pressure p,
according to the Young-Laplace equation.

Figure 4.3. Parasitic currents in and around the drop of the 2D test case of Brackbill
et al. (1992) using the VOF method. The drop density is 1000 kg/m?, the

background density is 500 kg/m?®, the surface tension is 0.02361 N/m, the
drop diameter is 4 cm, the domain diameter is 6 cm squared, and computa-
tional mesh consists of 60x60 cells.
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4.2.2 Surfactant adsorption-desorption dynamics

Recent experimental results (Javor et al., 2010; Omelka et al., 2010) show
the importance of including adsorption-desorption dynamics in the mod-
elling of bubble-particle interaction. As mentioned in Section 4.2.1, the
dynamics of small bubbles with low Morton number are surface tension
dominated. In systems characterised by a heterogeneous distribution of
surfactants it is therefore important to include adsorption and desorp-
tion of surfactant and the resulting Marangoni stress terms in the mo-
mentum equation. Alke and Bothe (2009), Lakshmanan and Ehrhard
(2008), Lakshmanan and Ehrhard (2010), and Lakshmanan et al. (2011)
studied the adsorption and desorption of surfactants on a gas-liquid in-
terface, using the VOF method. Lakshmanan and Ehrhard (2010) val-
idated their adsorption-desorption model against an analytical solution
of the surfactant transport equation. For vanishing surface diffusivity,
Lakshmanan and Ehrhard (2010) write their equivalent of Eq.(3.15) in a

non-dimensional form as:

k/ 7(( L/ AW
_ a _ Kty k)
= v [1 e i ] (4.4)
where
b, = 2l (4.5)
L ooV 0
Ky = deU : (4.6)
o0
, Ik
= — 4.
3 Uy’ (4.7

Uy — \/% (4.8)

In Eqgs.(4.5-4.8) the bubble diameter used by Lakshmanan and Ehrhard
(2010) is replaced by % to include bubble shape deformation due to Marangoni
stress. Fig. 4.4 shows the non-dimensional surface surfactant concentra-
tion I'V over non-dimensional time for the analytical solution and simula-
tion results. The numerical solution fluctuates strongly around the ana-
lytical solution. The reason may be that the analytical solution does not
take the motion of the interface into account. In addition, parasitic cur-
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Figure 4.4. Dimensionless surface surfactant concentration versus dimensionless time.
Comparison of simulation results and analytical solution of Lakshmanan and
Ehrhard (2010).

rents likely cause an unphysical convective transport of surfactant near
and at the interface.

The effect of surfactant dynamics on a system with buoyancy can be eval-
uated by comparing the rise velocity of a bubble. The computational do-
main is not large enough for the bubble to reach a steady-state terminal
velocity, but a difference in rise velocity between a system with and with-
out surfactants can be observed. There are many models to compute the
terminal rise velocity of bubbles in pure systems and systems with various
surfactants. These models however usually assume homogeneous distri-
bution of surfactant and a static surface tension. The model presented
in this work captures more dynamics and it is inevitable that values for
rise velocity differ from steady-state models. However, the current models
should arrive at the same order of magnitude and also display lower rise
velocity for a system containing surfactants. One model including surface
tension and liquid viscosity, fitted to experimental data, is that of Grace
et al. (1976) (see also (Clift et al., 1978, p. 175-176)). Valid for Morton
number M < 103, E6tvés number Eo < 40, and Re > 0.1, Grace et al.
(1976) write for the terminal rise velocity of bubbles coated by surfactant:

Up = PLAr-0199 (7 _0.587) “9
pidy

where fitting parameter .J is defined as':

INote that the original factor of (%)0'757 is included in the prefactor 0.94 of Grace

et al. (1976) and (Clift et al., 1978, p. 176), resulting in a prefactor of 1.17.
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Figure 4.5. Bubble rise velocity versus time for a pure system and a system with sur-
factant, as computed using the model presented in this work. The results
correlate well with the result of Eq.(4.9) of Grace et al. (1976). For reference
the rise velocity of a 1 mm air bubble in water for a pure and contaminated
system are also drawn, after Clift et al. (1978, Fig. 7.3, p. 172).

0.757

—0.14
EoM 0149 (ﬁ) } . (4.10)
22

J =117

In Eq.(4.10), Fo and M are defined as (Clift et al., 1978, p. 360-362):

_ d?
Fo— g (p1— pg) b (4.11)
o

and

M— QN? (gl g Pg) . (4.12)
Pro

Fig. 4.5 shows the bubble rise velocity as simulated using the model in
this work, as well as values computed by Eq.(4.9) and the lower and up-
per limits of the experimental values summarised in Clift et al. (1978,
Fig. 7.3, p. 172). The current model shows a bubble rise velocity in the
same order of magnitude as experimental observations and also a lower
rise velocity for a system with surfactants, compared to a pure system.
The domain however is not large enough for the bubble to reach steady-
state velocity. A thorough comparison with experimental work is needed

for more conclusive validation.
The surface surfactant concentration I' and the normalised surface sur-

factant concentration X = I'/T',, are shown in Fig. 4.6. The maximum
surface surfactant concentration, after 15 ms, was 8.4-10°% mol'-m2, or a
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normalised surface concentration X of 0.16. The results shown in Fig. 4.6
are similar to those of Alke and Bothe (2009). The high adsorption rate
cause a relatively high surface concentration of surfactant at the begin-
ning of the simulation. When the bubble starts to rise up, convective
transport of surfactant becomes more important and surfactant is swept
to the downstream section of the bubble. These dynamics cause a slight
change in rise velocity and bubble shape compared to the pure system.
Between the left-most and right-most images in Fig. 4.6 a shift from a
wider lower half of the bubble to a more spherical and stiffer bubble can
be observed. Experimental data detailed enough for thorough quantita-
tive comparison between model and experiment is to the knowledge of the
author not yet available. The experimental work of Omelka et al. (2010)
and Javoér et al. (2010) focus on this area and may produce the data needed
for a validation study.

Gomma
ie-b
1e-6
Te-7
le-8
-9
o
X
E.DSO
-0.040
0.020
.000

Figure 4.6. Surface surfactant concentration I' in mol-m? (upper row) and normalised
surface surfactant concentration X = I'/T',, (lower row) after 0, 5, 10, and 15
ms, respectively.
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Figure 4.7. A 1 mm air bubble rising through a cloud of settling solid particles. The
bubble is depicted by the 0.5 phase fraction contour («=0.5). The colour on the
surface of the bubble represents normalised surface surfactant concentration
X =T'/T'x. The snapshots are taken after 0 (a), 5 (b), 10 (c), 15 (d) ms.

4.2.3 Bubble-particle interaction

The result of a coupled CFD-DEM simulation of bubble-particle interac-
tion is shown in Fig. 4.7. The material properties are discussed in Sec-
tion 4.1 and Eq.(3.55) is used to compute the particle-interface force. The
gas-liquid interface is shown as the o« = 0.5 volume fraction contour and
the contour is coloured by normalised surface surfactant concentration
X =T/T'y. From top left to bottom right the 1 mm bubble adsorbs surfac-
tant and rises through a cloud of settling particles.

Upon contact with the bubble surface, particles slide along the bubble sur-
face, or rather through the interfacial layer. Some particles attach and de-
tach from the surface, others just slide. Several particles remain attached
to the bubble and rise to the free surface at the top of the domain. One
would expect the bubble to capture more particles. However, the influence
of particles within the interfacial layer likely changes the local surface
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surfactant concentration and therefore the bubble surface potential and
surface tension. Bubble capture behaviour in such a dynamic system is
hard to predict. The effect of particle momentum on convective transport
of surfactant on the surface of the particle is a phenomena of particular
interest that is highlighted by this example simulation. In the current
model rheological and non-Newtonian effects in the boundary layer of the
surfactant-laden bubble are not included. However, it is evident that fur-
ther development of the model in terms of interface rheology would be an
interesting next step. Furthermore, it must be noted that the parameters
listed in Table 4.2 are taken from literature and are somewhat arbitrary.
A thorough validation study is needed to verify the results. Neverthe-
less, these results do show that modelling of bubble-particle interaction
with full momentum coupling and physico-chemical coupling is feasible
and can yield at least qualitatively promising results.

93






5. Summary and conclusions

This chapter concludes this thesis and consists of four sections. A concise
summary of the chapters is followed by a statement on the significance of
the work and an outlook on further development. Finally, conclusions are
discussed.

5.1 Summary

Following an introduction to the topic in Chapter 1, current models of
mineral froth flotation are reviewed in Chapter 2. There are reviews
available in the literature, in particular on modelling of bubble-particle
collision. However, rarely the assumptions behind the model and the orig-
inal derivations are discussed. This has lead to a gradual stretching and
extrapolation of flotation models to areas where many important mod-
elling elements break down. Two key assumptions relate to the level of
momentum coupling between phases and to the coupling of chemical po-
tential and physical momentum.

Mineral froth flotation is a complex multiphase process where a wide
range of spatial and temporal scales are important. The need to model
the entire process has lead to a modelling strategy of an ideally mixed
tank reactor where a reaction rate equation determines the outcome of
the process. Commonly a first order rate constant is used and fit to exper-
imental data. This is an effective way to model the wide range of scales
involved, but important information is lost and flotation models typically
apply to only one specific unit process. The development of the rate equa-
tion, applied to flotation modelling, flotation kinetics, and basic physico-
chemical aspects are discussed in Sections 2.1 and 2.2. If one accepts the
approximation of an ideally mixed vessel that obeys a reaction rate equa-
tion of some kind, the challenge then is to formulate the flotation rate
constant. In literature the flotation rate constant is typically constructed
from a probability of flotation, which itself consists of the product of the
probabilities of bubble-particle collision, attachment, and aggregate sta-
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bility. Due to the complex interactions between dispersed bubble, parti-
cles, surfactants, and a typically turbulent flow field, simplified models for
collision, attachment, and aggregate stability have been developed. The
origin of these equations can be found in the modelling of a single hard
sphere in laminar flow and modelling of other complex phenomena, such
as rain droplet aggregation in clouds. Assumptions such as potential flow,
fore and aft symmetry, and one-way momentum coupling may have been
valid choices for the modelling of icing on cables, droplets in clouds, or a
sphere in creeping flow. Extrapolation of these modelling elements to the
field of three-phase, multi-component flow with high void fraction, how-
ever, requires great care. The assumptions and choices in original model
development and their consequences for application to modelling of flota-
tion are discussed in Chapter 2. A summary of the key assumptions, with
regard to flotation modelling, is as follows:

e An air bubble is stiff and the flow around it is fore and aft symmetric,
i.e. creeping flow around a hard sphere in an infinite domain.

e The exchange of momentum between phases is characterised by so-
called one-way coupling. That is, the motion of the carrier phase in-
fluences the motion of the dispersed phases, but not vice versa.

e Particles are small enough to be described by massless points without
volume displacement.

e The system is so dilute that the interaction between a single bubble and
a single particle captures the key system dynamics. Particle-particle
and bubble-bubble interaction are excluded.

e The stability of a bubble-particle aggregate can be described by the bal-
ance of forces in a mechanistic centrifugal system with the bubble at the
centre of rotation. Turbulent eddies of the same size as the aggregate
provide the centrifugal force field.

e The kinetic time scale of motion is so much shorter than the character-
istic time scale of surfactant dynamics, that surface tension and contact
angle can be assumed static in the model.

e There is no coupling between physical momentum and chemical poten-
tial. For example, coupling between transport of surfactants and surface
potential is neglected.

e The chemical potential at the bubble surface is such that the Stern layer
is thin, static, and symmetric, and surface charge distribution obeys a
Boltzmann or Gouy-Chapman type distribution.

e Mineral froth flotation is an ideally mixed process that is described by
a rate equation with a single, lumped rate constant.

The vast range of spatial and temporal scales involved in the flotation
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process typically makes the above assumptions necessary for modelling of
the process. For re-design of flotation equipment and significant changes
in operating parameters, however, many of the assumptions listed remove
important information from the model. For this reason it is instructive to
develop a model that allows higher order coupling between the momenta
of the different phases as well as the physico-chemical potential. The de-
velopment of such a coupled model is the topic of Chapter 3.

The modelling method discussed in Chapter 3 allows for coupled simula-
tion of three-phase systems in the presence of a soluble surfactant. The
Volume Of Fluid (VOF) method is used to compute the motion of a bub-
ble in a liquid domain using the finite volume (FV) approach. The motion
of suspended solid particles is solved for in a separate model, using the
Discrete Element Method (DEM). Particle and fluid motion are coupled
through the exchange of a void fraction parameter and momentum be-
tween the FV and DEM codes. The CFD-DEM coupled code is part of
an open source project named CFDEM, where the open source CFD code
OpenFOAM and the DEM code LIGGGHTS are coupled through an MPI
library. Particle-interface force is solved for as a function of gas-liquid
phase fraction, chemical potential of the bubble surface, and the effect of
adsorption-desorption dynamics of a soluble surfactant. Surface tension
is computed from the surface surfactant concentration using Langmuir’s
equation of state.

Chapter 4 features an example of bubble-particle interaction as simulated
by the model presented in this thesis. A 1 mm air bubble rises through
a cloud of settling mineral particles. A basic adsorption-desorption model
solves for the concentration of soluble surfactant at the bubble surface.
The surface surfactant concentration changes local surface tension and
contributes to the gas-liquid momentum equation via a Marangoni stress
term. The VOF based modelling method also allows for topological changes,
such as bubble break-up and coalescence and can be applied to a larger
domain containing multiple bubbles and in the order of 10* particles.

5.2 Contribution and significance

The body of literature on modelling of bubble-particle interaction in min-
eral froth flotation is extensive. Significant progress has been made since
the early insights gained around the middle of the previous century, but
the fundamental background has not changed very much since then. To
fully exploit current understanding of molecular dynamics, adsorption,
hydrodynamics, as well as macroscopic process behaviour and computa-
tional power, a paradigm shift is needed in flotation modelling. The mod-
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elling method presented in this thesis is the first of a new generation of
models to study bubble-particle interaction with soluble surfactants. In
this thesis three important features are addressed that are not found in
flotation modelling in current literature. These features are full kinetic
momentum coupling between phases, physico-chemical momentum cou-
pling, and the ability to study dynamics of many sub-models combined. It
is the first time that these three features are combined and can be used
for a reasonable computational effort.

Modelling bubble-particle interaction with full momentum coupling means
that results are valid over the entire range of surface-to-surface distance
and Stokes numbers depicted in Fig. 3.1 on p. 55. Simulation results can
therefore be generated reliably for many different flow regimes and void
fractions. This capability is of key importance for consistent modelling of
mineral froth flotation, in particular when applied to mechanically agi-
tated flotation cells. The model in this thesis provides the possibility to
study bubble-particle interaction in different zones of a flotation cell, both
in the strongly turbulent rotor-stator area as well as in more laminar
zones near to the froth.

The second feature of momentum coupling relates to the coupling between
hydrodynamics and physico-chemistry. Hydrodynamics at the scale of a
bubble swarm drives global convective transport of surfactant, while dif-
fusion and the effects of sorption occur at macro-molecular scale. Nev-
ertheless, hydrodynamics and physico-chemistry occupy the same space
and time and are strongly coupled. Dynamic adsorption-desorption at
a moving gas-liquid interface and the Marangoni effect are marked ex-
amples of such coupling. In addition to kinetic momentum coupling the
model in this thesis also includes coupling between physico-chemistry and
the momentum equation. This coupling is achieved by a simple but com-
plete adsorption-desorption model, use of the equation of state to couple
surfactant concentration and surface tension, and finally the addition of
the Marangoni stress term to the two-phase momentum equations for the
gas-liquid system. In this way adsorption-desorption of surfactant, bubble
surface motion, liquid motion, and the motion of solid particles interact.
For example, a solid particle can change the flow field near a bubble, in
turn changing transport of soluble surfactant near and on the bubble sur-
face. Change in surfactant concentration can lead to a Marangoni stress,
which directly influences the local flow field and the motion of the particle.
This example also illustrates the next key feature that make the model in
this thesis unique in the field of flotation modelling.

The third important feature of the current model is the ability to com-
bine several sub-models into a coupled simulation. The division of bubble-
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particle interaction into sub-models has lead to separate development ef-
forts and validation. From an experimental as well as theoretical point of
view it is helpful to reduce and control the amount of variable studied and
validated. However, the division into sub-models brings about an new de-
gree of freedom in modelling. This additional degree of freedom is caused
by the dynamic interaction between sub-models. The model in this thesis
can be used to study the behaviour of sub-models, such as bubble-particle
collision and attachment, in the context of the entire framework. Combi-
nations of sub-models and sub-model reaction rates may have character-
istic modes that may significantly change the dynamics of the system.

Finally, from a perspective of continued development the modelling frame-
work possesses several useful features for modular and concurrent re-
search. The framework uses the CFDEM modelling tool, where the CFD
code OpenFOAM and the DEM code LIGGGHTS are coupled (see Sec-
tion 3.4). OpenFOAM, LIGGGHTS, and CFDEM are open source codes
using object orientated programming and MPI. The current modelling
framework is modular and highly flexible. Advanced computational tech-
niques and large scale parallel simulation make CFDEM a unique plat-
form for concurrent and integral model development. The combination
of kinetic momentum coupling, physico-chemical coupling, and a dynamic
modelling platform can aid fast and efficient development in a feasible
computational effort.

5.3 Outlook and recommendations

The model presented in this thesis can benefit from further development
in several areas. The current model does not include a consistent imple-
mentation of a model for film rupture and induction time of three-phase
contact line expansion. The consistent implementation of wetting forces
and film rupture within the VOF framework needs to be considered for
further development.

A major assumption is made with regard to rheology. Inherently it is as-
sumed that the surfactant is inert, the solution is dilute, and diffusion
is governed by a diffusion constant rather than an anisotropic tensor. In
many practical cases there is more than one surfactant present, an effect
that requires attention as well. In particular in flotation the interaction
between surfactants, frothers, and fine solids is an interesting effect to
incorporate. For higher concentration of surfactants and fine solids the
diffusion tensor is likely to be anisotropic and surface viscosity may be

non-Newtonian.
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In the current model momentum between phases is coupled. However, at
high void fraction also volume displacement of solids should be taken into
account. Simulation on a more dense computational mesh allows for flow
around particles to be resolved to some extent as well. This type of sim-
ulations can help to understand the thinning of the liquid film between
bubble and particle. Finally, the DEM code used here can also be used to
compute molecular dynamics (MD). Molecular dynamics simulation of a
domain of the size presented in this thesis is not practical. However, the
MD capabilities of the DEM code may be put to use by resolving MD lo-
cally during film rupture or other important processes at molecular scale.

The results presented in this thesis have been generated for a laminar
system. Turbulence is an important factor in probabilistic collision ker-
nels and aggregate stability models. Therefore, it would be useful to study
bubble-particle dynamics under influence of an induced turbulence field.
The computational domain is likely too large and the physics too com-
plex to perform Direct Numerical Simulation (DNS). Reynolds-Averaged
Navier-Stokes (RANS) simulation of the system would smear out some
of the key dynamics and therefore Large Eddy Simulation (LES), possi-
bly with partially resolved DEM, would be the most promising method to
include the effect of turbulence.

5.4 Conclusions

This study should be regarded as a step towards coupled modelling of
bubble-particle interaction. Physical and chemical momentum coupling
are key elements of an integral model that can be used to further under-
stand the fundamentals of bubble-particle interaction. The background
for this work is the modelling of mineral froth flotation. However, it is
not the main aim to develop a flotation model. Rather, it is the modelling
framework in which the physical and physico-chemical aspects of bubble-
particle interaction can be explored. The models discussed in Chapter 2
can often produce a good fit to experimental data. However, the range of
validity of these models is typically narrow and extrapolation is not with-
out risk. The modular and generic structure of the modelling framework
presented in this thesis removes this rigidity and makes generalisation to
some extent possible. For example, the Lagrangian particles are in fact
dynamic lists that contain properties such as position, current time, and
radius as attributes. Particle attributes can change over time and space,
as well as interact with other fields. This flexible and modular property
makes the framework a unique and powerful development platform. For
example, the effects of activation, depression, and oxidation of mineral
surfaces can be implemented in a fully coupled and consistent way. The
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modelling framework shows promising first results. It is the hope of the
author that the current modelling framework provides a test harness for
theory and validation of both micro- and macro-scale processes. Bridging
scales by meso-scale model development and validation can increase the

value of fundamental knowledge for industrial practise and vice versa.
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