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Charge transport in a high-transmission single-mode long SINIS junction �S stands for superconductor, I is
an insulator, and N is a normal metal� is considered in the limit of low bias voltages and low temperatures. The
kinetic equation for the quasiparticle distribution on the Andreev levels is derived, taking into account both
inelastic relaxation and voltage-driven Landau-Zener transitions between the levels. We show that, for a long
junction when the number of levels is large, the Landau-Zener transitions enhance the action of each other and
lead to a drastic increase of the dc current far above the critical Josephson current of the junction.
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I. INTRODUCTION

Weak links consisting of superconducting �S� and normal
metal �N� parts separated by insulators �I� are the subject of
intensive experimental and theoretical studies. Transport
through these systems is determined by several factors, such
as transparency of the contacts, specifics of the weak link
area, and inelastic relaxation, leading to a series of nonlinear
characteristics in the current-voltage �I-V� curve. In station-
ary regime, numerous configurations have been analyzed
�see Ref. 1 for review�, revealing the importance of both
Andreev2 and normal reflection processes taking place in the
contact.

When the injection rate of new particles into the junction
is greater than the corresponding rate of inelastic relaxation,
the nonequilibrium effects are to be taken into account. In
realistic junctions with high current density and especially at
low temperatures, the inelastic relaxation may become less
effective, resulting in a strong nonequilibrium which cru-
cially affects the current transported through the contact. For
even a small bias voltage below the energy gap, the oscillat-
ing Josephson supercurrent may be accompanied with a non-
zero dc component corresponding to the dissipative pro-
cesses. Nonequilibrium situations in various SINIS-type
junctions ranging from a point contact to a ballistic junction
with finite length have been studied by many authors; the
discussion to some extent has also concerned3–5 the inelastic
relaxation effects. As is well known, the dc component ex-
hibits a subgap structure at bias voltages eV= 
� 
 /n which is
associated with multiple Andreev reflections �MAR�.3,6–8

The quasiparticles trapped in the junction are accelerated by
the applied voltage, while, for each cycle of repeated
electron-hole reflections at the two NS interfaces, the energy
of the particle increases by 2eV until the accumulated energy
enables it to escape the pair-potential well. This works in a
broad voltage range, but becomes more and more compli-
cated when relaxation effects are included or the transpar-
ency at the interfaces differs from unity. The low-voltage
MAR process for eV
� in a ballistic contact is equivalent to
the spectral flow along the Andreev energy levels9 where the
phase difference # adiabatically depends on time #
=2eVt /�+#0. However, for a nonideal transparency, the en-
ergy levels are separated from each other by minigaps �see

Sec. II� which suppress the transitions from one level to the
next thus cutting the spectral flow off. As a result, for very
low voltages, the dc current is small for contacts with any
realistic transparency T�1.

The interlevel transitions can take place by means of
Landau-Zener �LZ� tunneling near the avoided crossings of
the Andreev levels; they restore the spectral flow and give
rise to a finite dissipative current. The LZ processes are more
simple in short junctions �point contacts� where only two
Andreev states corresponding to particles traveling in oppo-
site directions exist; these levels have only one minigap at
the phase difference #=�. Effects of LZ tunneling on the
transport properties of quantum point contacts have been
studied in Refs. 4, 5, and 10; the dc current was found to
have an exponential dependence on voltage in the low-
voltage limit.

For junctions where the center island has a length d longer
than the superconducting coherence length �, the number of
levels is proportional to the ratio d /� and can, thus, become
large. If the transparency is not exactly unity, these levels are
separated by minigaps at #=�k, where k is an integer. In
practice, such SINIS structures can be made of a carbon
nanotube or semiconductor nanowire placed between two su-
perconductors as in Refs. 11 and 12. In Ref. 13 this type of
junctions was suggested as a realization of a quantum charge
pump where the minigaps were manipulated by the gate volt-
age being sequentially closed in resonance with the Joseph-
son frequency. In the present paper, we consider the low-
temperature charge transport in these junctions and calculate
the I-V curve for constant bias and gate voltages. We derive
the effective kinetic equation for the quasiparticle distribu-
tion on the Andreev levels, taking into account both the in-
elastic relaxation on each level and the LZ transitions be-
tween the neighboring levels, and demonstrate that the
voltage-driven LZ transitions from one level to the next en-
hance the action of each other and lead to a drastic increase
of the dc as the transition probability grows with the applied
voltage.

We begin with a brief description of the spectral proper-
ties of double-barrier SINIS structures in Sec. II. In Sec. III
we derive the kinetic equation that determines the distribu-
tion function on the Andreev levels in the presence of LZ
transitions and inelastic relaxation. In Secs. IV and V we
calculate the current and discuss the results.
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II. MODEL

We consider a quantum SINIS contact consisting of two
superconducting leads connected by a normal conductor that
has a single conducting mode. The insulating barriers have a
high transparency such that the contact is nearly ballistic. In
this section, we briefly summarize the spectral properties of
SINIS contacts which are important for the transport charac-
teristics. It is well known that the supercurrent flowing
through such contact is determined by the Andreev states
formed in the normal conductor and extended into the super-
conducting leads. The states can be described by the
Bogoliubov-deGennes equations,

�−
�2

2m

d2

dx2 − EF + U�x��
̂z$̂ + Ĥ$̂ = �$̂ , �1�

where 
̂z is the Pauli matrix in Nambu space, and

$̂ = �u

v
�, Ĥ = � 0 �

�* 0
� .

The superconducting gap is �= 
� 
e±i#/2 for x d /2 and
x�−d /2, respectively, while �=0 for −d /2�x�d /2. For
simplicity, we model the normal reflections at the interfaces
as being produced by �-function barriers U�x�= I��x−d /2�
+ I��x+d /2� assuming that the quasiparticle velocity in the
superconducting leads is the same as in the normal conduc-
tor.

In the normal region, the particle, e±iq+x, and hole, e%iq−x,
waves have amplitudes u± and v%, respectively. The upper or

lower signs refer to the waves propagating to the right $̂ 

= �u+ ,v−� or to the left $̂�= �u− ,v+�. The particle �hole� mo-
mentum is q±=kx±� /�vx, where vx is the quasiparticle ve-
locity of the mode and kx=mvx /�. Scattering at the right and
left barriers couples the amplitudes of incident and reflected
waves,14

$̂R
� = ŜR$̂R

 , $̂L
 = ŜL$̂L

�, Ŝ = � SNei� SAei�

SAe−i� SNe−i� � . �2�

The scattering matrices for the right and left barriers are ŜR

= Ŝ��R� and ŜL= Ŝ��L�, respectively, where �L=−# /2 while

�R=# /2. The scattering matrices are unitary Ŝ†Ŝ=1 because
of conservation of the quasiparticle flux. Components of the

Ŝ matrix for �-like barriers and energies 
� 
� 
�
 are6

SN = −
�U2 − V2�
Z
�Z2 + 1

U2 + �U2 − V2�Z2 , SA =
UV

U2 + �U2 − V2�Z2 .

Here, Z=mI /�2kx is the barrier strength and U
=2−1/2�1+ i�
�
2−�2 /��1/2, V=U*. The scattering phase � is
introduced through cot �=Z. Applying the scattering condi-
tions at both ends of the normal region, one can derive a
compact equation for the spectrum of a SINIS contact,13


SN
2sin2&� + 
SA
2cos2�#/2� = sin2�' + �� . �3�

Here, &=kxd, &�=&+�, and '=�d /�vx. The phase � is de-
fined as SN=ei� 
SN
. For short contacts d
�vx / 
�
, the spec-
trum has two branches varying from �= ± 
�
 at #=0 and

separated from each other by minigaps at #=�+2�k. The
energy spectra of SINIS contacts in various limits have been
extensively studied by many authors.15

In what follows, we focus on long contacts, d��vx / 
�
,
which have a large number of levels N�d 
� 
 /�vx. These
levels split off from the states with �= ± 
�
 and fill the en-
ergy interval −
� 
��� 
�
 with spacings of the order of
�vx /d. Examples of the spectra are shown in Fig. 1. Each
level is a function of the phase difference #; its range of
variation is of the order of the interlevel spacing. The levels
approach each other more closely at #=�k where they are
separated by minigaps. All minigaps at #=��1+2k� disap-
pear for the resonance condition, sin &�=0. Similarly, all
minigaps at #=2�k disappear for antiresonance, 
sin &� 
 =1.
This follows from Eq. �3� due to unitarity 
SN
2+ 
SA
2=1. The
low-energy levels, �l
 
�
, �
1, have the form

�l = ± �0 + ��vxl/d , �4�

where

�0 =
�vx

d
arcsin�T2 cos2#

2
+ �1 − T2�sin2 &�, �5�

l is an integer, and T= �1+2Z2�−1 is the transmission coeffi-
cient of the contact. The energy gaps at #=��1+2k� are all
equal,

��� = �2�vx/d�arcsin�
sin &�
�1 − T2� .

The gaps ��2� at #=2�k are given by the same expression
where 
sin &�
 is replaced with 
cos &�
. For a transparent
contact, T=1, all minigaps disappear.

III. KINETIC EQUATION

If a bias voltage V is applied across the superconducting
leads, the current through the contact has both ac and dc
components. For low voltages, eV much smaller than �, the
dc component is small for contacts with any transparency
T�1. This is due to the presence of minigaps discussed in
the previous section. In long contacts, the minigaps exist at
#=�k and suppress the transitions between the levels, thus

FIG. 1. �Color online� Examples of the spectra 
Eq. �3�� for a
long SINIS contact with Z=0.5 and 
� 
d /�v=10. Dark �black on-
line� lines: resonance sin &�=0, the gaps disappear for #=�+2�k;
light �red online� lines: antiresonance cos &�=0, the gaps disappear
for #=2�k.
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preserving the equilibrium distribution of excitations. As a
result, the current through the contact is simply the equilib-
rium supercurrent with the phase difference # adiabatically
depending on time, #=�Jt+#0, where �J=2eV /� is the Jo-
sephson frequency. The dc component should thus vanish.
However, the time dependence of the phase induces the LZ
transitions between the levels near the avoided crossing
points at #=�k which produce deviation from equilibrium.
Since the transparency of the contact is of the order of unity,
T�1, particles with 
�
 
�
 have enough time to escape
from the double-barrier region and to relax in the continuum.
Particles at the continuum edges with energies �= ± 
�
,
which are in equilibrium with the heat bath, are captured on
the outermost Andreev levels when the latter split off from
the continuum as the phase varies in time. Next, these par-
ticles are excited to the neighboring levels due to the inter-
level transitions. Relaxation of thus created nonequilibrium
distribution gives rise to a finite dc current.

In this section we derive the effective kinetic equation that
describes the distribution function on the Andreev levels,
taking into account both the inelastic relaxation on each level
and the LZ transitions between the neighboring levels. We
assume that the LZ transitions take place only near the
avoided crossings at #=�k. This can be realized if two con-
ditions are fulfilled. First, the minigaps ��� and ��2� should
be much smaller than the typical distance �vx /d between the
levels, implying that the contact is almost ballistic with a
transparency close to unity, 1−T
1. Second, the applied
voltage should be small ��J
�vx /d such that it cannot ex-
cite transitions between levels far from the avoided cross-
ings.

The scheme of the levels as functions of #=�Jt is shown
in Fig. 2. Particles captured on the outermost levels at differ-
ent instants of time tk=2�k /�J were initially in equilibrium
with the heat bath and thus are not correlated with each
other. Nevertheless, each individual particle performs a se-
ries of LZ transitions which might be correlated in principle.
However, the phase coherence between the consecutive LZ

events of each particle is lost due to the low-voltage condi-
tion, �J
vx /d. Indeed, let us consider the trajectories of
levels n and n−1 between the two crossing points at #=0
and #=2�. The phases accumulated by the wave function
during the time evolutions along the upper- and lower-level
trajectories differ from each other by a large amount,

1

�
� ��n − �n−1�dt =

1

��J
�

0

2�

��n − �n−1�d#�
vx

�Jd
� 1.

This allows us to consider the LZ transitions of each particle
as independent and to describe the population of levels in
terms of LZ probabilities. We assume that the interlevel tran-
sitions at #=2�k and #=�+2�k have tunneling probabili-
ties p0 and p�, respectively, which are independent of energy.
We will see later that the assumption of constant probabili-
ties is well justified.

We denote the points #=2�k before and after the transi-
tion events as 0%, respectively, while the points #=�
+2�k before and after the transitions are denoted as �%. All
the respective points 0+ or 0− on a level n are equivalent due
to the 2� periodicity, so are all the points �+ or �−. The
transitions illustrated in Fig. 2 impose the relations

fn
+�0 + � = p0fn−1

+ �0 − � + �1 − p0�fn
−�0 − � , �6�

fn
−�� + � = p�fn+1

− �� − � + �1 − p��fn
+�� − � , �7�

fn+1
− �0 + � = p0fn+2

− �0 − � + �1 − p0�fn+1
+ �0 − � , �8�

fn+1
+ �� + � = p�fn

+�� − � + �1 − p��fn+1
− �� − � , �9�

on the values of the distribution function fn before and after
the transitions. Here, we introduce the upper � �or �� indi-
ces to indicate explicitly the distributions at the spectrum
branches increasing �or decreasing� as functions of #. Index
n labels the levels consecutively from the lowermost level at
�=−
�
 up to the uppermost level at �= + 
�
.

Within the model of incoherent LZ transitions, it is appro-
priate to assume that, between the LZ transition events, the
distribution function relaxes according to

�fn

�t
= −

fn − fn
�0�

�
.

Here, � is a �constant� inelastic relaxation time, which we
assume long such that vx��d. We denote fn=1−2n�n, where
n� is the occupation number of a level with an energy �n, and
fn

�0�=1−2n�n
�0�=tanh��n /2T� is the equilibrium distribution at

a given temperature. We will consider low temperatures
T
�vx /d such that

fn
�0� = sign��n� . �10�

Since the superconducting phase difference depends linearly
on time the distribution function can be written as fn�#�
= fn

�0�+ f̃ n�#�, where

FIG. 2. Scheme of the energy levels as functions of #. The
arrows show the direction of the spectral flow. Shown enlarged are
avoided crossings of levels at #=�k.
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f̃ n
±�#� = � $n

± exp�− �#/2eV�� , 0�#� � ,

�n
± exp
− ��# − ��/2eV�� , �� #� 2� .

�
�11�

Using the evolution equation 
Eq. �11��, we couple the dis-
tribution functions at the consecutive instants of the tunnel-
ing events,

fn
±�� + � = fn

�0� + �n
±, fn

±�0 − � = fn
�0� + �n

±e−�,

fn
±�0 + � = fn

�0� + $n
±, fn

±�� − � = fn
�0� + $n

±e−�,

where �=�� /2eV�. Equations �6�–�9� become

$n
+ = p0
fn−1

�0� − fn
�0�� + 
p0�n−1

+ + �1 − p0��n
−�e−�, �12�

$n+1
− = p0
fn+2

�0� − fn+1
�0� � + 
p0�n+2

− + �1 − p0��n+1
+ �e−�,

�13�

and

�n
− = p�
fn+1

�0� − fn
�0�� + 
p�$n+1

− + �1 − p��$n
+�e−�, �14�

�n+1
+ = p�
fn

�0� − fn+1
�0� � + 
p�$n

+ + �1 − p��$n+1
− �e−�. �15�

According to our picture of the spectral flow through the
Andreev levels, the boundary conditions are imposed at the
continuum edges in such a way that, for the levels increasing
as functions of #, the distribution fn

+ coincides with the equi-
librium at �=−
�
, while, for decreasing levels, the distribu-
tion fn

− coincides with the equilibrium at �= + 
�
. Since the
bias voltage is low, eV
�vx /d, the equilibrium function in
both superconducting electrodes can be taken as fn

�0�

=tanh��n /2T�. Let us assume that trapping of particles from
the continuum occurs at #=0; the boundary conditions are
then formulated for the function $n

+ at �=−
�
 and for $n
− at

�= + 
�
,

$�=−
�

+ = 0, $�=+
�


− = 0. �16�

In this case, it is convenient to exclude the functions � using
Eqs. �14� and �15� and solve Eqs. �12� and �13� for the func-
tions $.

We choose the level index n in such a way that �n 0 for
n(1 and �n�0 for n!0. Equations �12� and �13� then
couple the levels n and n±2. Since the temperature is low
and the distribution is given by Eq. �10�, the right-hand side
of these equations vanish for all n�0,2, and the coefficients
for n(2 and n!0 satisfy the homogeneous equations. We
assume that there are N+1 levels with positive energies and
N+1 levels with negative energies such that the outermost
levels touch the continuum. Therefore, for the uppermost
level n=N+1, the solution of Eqs. �12� and �13� satisfies the
condition $N+1

− =0. Similarly, for the lowermost level n=−N
the solution satisfies $−N

+ =0. We find for n(2

$n
+ = c 
e−r�N−n+1�w− − er�N−n+1�w+� ,

$n
− = c 
e−r�N−n+1� − er�N−n+1�� , �17�

where

w± =
p0e±r + p�e%r − 2p0p� cosh�r�

" + p0p��1 − e±2r� + p0 + p� − 2p0p�
.

The solutions for n!0 have the form

$n
+ = c�
er�N+n� − e−r�N+n�� ,

$n
− = c�
er�N+n�w+ − e−r�N+n�w−� . �18�

The effective relaxation rate r 0 is found from the de-
terminant condition w+w−=1 which gives

4p0p��" + 1�sinh2�r� = �" + p0 + p� − 2p0p��2

− �p0 + p� − 2p0p��2, �19�

where "=e2�−1.
For an ideally transparent contact p0= p�=1, we find

r=�. For strong relaxation, ��1, we also have r��, and the
distribution relaxes quickly. The most interesting limit for a
general case p0 , p��1 is when inelastic relaxation is weak,
�
1. We find in this limit

sinh2�r� = ��� + p0 + p� − 2p0p��/p0p�. �20�

The relaxation rate r can be either large or small depending
on the probabilities. The inverse rate r−1 describes the broad-
ening of distribution over the energy states and plays the role
of an effective temperature Teff=r−1�d� /dn�=��vx /2rd. The
effective temperature can be much higher than the interlevel
spacing if r
1.

The coefficients c and c� are coupled through the solu-
tions of four nonhomogeneous equations resulting from two
equations 
Eqs. �12� and �13�� taken for two values n=2 and
n=0. Inspecting equations for other n, we see that only the
two coefficients $0

+ and $1
− cannot be described by Eqs. �17�

and �18� of the homogeneous equations. We write

$1
− = $1

− + �1
 , $1

− = $1
−� + �1

�, �21�

$0
+ = $0

+ + �0
 , $0

+ = $0
+� + �0

�. �22�

Here, �0,1
 and �0,1

� are four new unknown coefficients. The
coefficients $1

− and $0
+ are defined to satisfy the homoge-

neous equations for �n 0 and are given by Eq. �17�; the
coefficients $1

−� and $0
+� satisfy the homogeneous equations

for �n�0 and are given by Eq. �18�. Inserting Eqs. �21� and
�22� into the four equations obtained for n=2 and n=0 from
Eqs. �12� and �13�, we find all the four coefficients �. The
result is $1

−=$1
− and $0

+=$0
+�, while

$1
−� − $1

− = e��f1
�0� − f0

�0�� , �23�

$0
+� − $0

+ = e��f1
�0� − f0

�0�� . �24�

These two equations yield c =c�=C, where

C
erN�1 + erw+� − e−rN�1 + e−rw−�� = 2e�. �25�

We set f1
�0�− f0

�0�=2 for low temperatures. Therefore, the dis-
tribution possesses the symmetry $−n

+ =−$n+1
− , which is

equivalent to the absence of an even-in-� component of the
distribution function, 1−n�−n−�=0. This implies, in particu-
lar, that the shift of the chemical potential of excitations is
negligible for low voltages.
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IV. CURRENT

The contribution to the current due to the deviation from
equilibrium is

Ineq = −
2e

�
�
�n 0

��n

�#
f̃ n, �26�

where f̃ n= fn− fn
�0�. The sum runs only over the localized An-

dreev states because the continuum states relax quickly so
that their distribution is almost in equilibrium. The equilib-
rium supercurrent has been calculated in Ref. 16 �see also
Ref. 1 for a review�; it is an oscillating function of the phase
difference and thus has no contribution to the dc component.

Denote ��n
± /�# increasing �decreasing� parts of the spec-

trum �n�#� as a function of #. We have for the current aver-
aged in time

Ī = −
e

��
�
l=0

N/2 ��
0

� � ��n+1
+

�#
f̃ n+1

+ +
��n

−

�#
f̃ n

−�d# + �
�

2� � ��n+1
−

�#
f̃ n+1

−

+
��n

+

�#
f̃ n

+�d#�
n=2l+1

. �27�

The sum over l runs from 0 to L=N /2, where

N = 2d�/��vx

is the total number of levels with �n 0, including both signs
in Eq. �4�.

In Eq. �27� we can use the ballistic spectrum with T→1.
In this limit 
SN
=0, 
SA
=1, thus the spectrum in Eq. �3�
takes the form

cos�#/2� = ± sin�' + �� .

Calculating the energy derivative of this equation for long
junctions d
�
��vx, we find

��n
±

�#
= ±

�vx

2d
.

We neglected �� /�� compared to �' /�� which holds for all
energy levels excluding those in a narrow region near the gap
edge, 1− 
�
 / 
�

 ��vx /d
�
�2. This means, in fact, that ne-
glecting this narrow region, we can use Eqs. �4� and �5� with
T=1 for all n. Using Eq. �11�, we obtain for �
1

Ī =
evx

2d
��p0,p�� =

��vx

2eR0d
��p0,p�� , �28�

where R0
−1=e2 /�� is the quantum of conductance, and

��p0,p�� = − �
l=0

N/2


�$n+1
+ − $n

−� + ��n
+ − �n+1

− ��n=2l+1.

Consider the limit of low relaxation r
1 provided Nr
�1. The limit r
1 is realized when �
p0 , p�. In this case,
Eqs. �15�, �17�, and �25�, give

�$n+1
+ − $n

−� + ��n
+ − �n+1

− � = −
4�

r
e−rn. �29�

We have from Eq. �29�

��p0,p�� =
4�

r
�
k=0

N/2

e−r�2k+1� =
2p0p�

p0 + p� − 2p0p� + �
. �30�

We keep � in the denominator since the combination
p0+ p�−2p0p� vanishes when p0 , p�→1.

When the inelastic relaxation rate is so small that
N�
1 the effective relaxation r can decrease such that
Nr
1. Since the product N�p0+ p�−2p0p�� is generally not
small, we find from Eqs. �14�, �15�, �17�, and �25�

�$n+1
+ − $n

−� + ��n
+ − �n+1

− � = −
4p0p�

N�p0 + p� − 2p0p�� + 1
,

and

��p0,p�� =
2p0p�

�p0 + p� − 2p0p�� + 1/N
. �31�

Equations �30� and �31� go one into another for N�1/�. The
exact expression for � is found from Eqs. �14�, �15�, �17�,
and �25�. However, to see the overall behavior of the func-
tion ��p0 , p��, one can approximate it by an interpolation
between Eqs. �30� and �31� in the form

��p0,p�� =
2p0p�

�p0 + p� − 2p0p�� + 2'
, �32�

where 2'�max�� ,N−1���+N−1.
The probability of LZ tunneling can be easily calculated

for the spectrum in the form of Eqs. �4� and �5�
if �1−T�
1. The phase difference is #=�Jt+#0. As a func-
tion of time, the distance between two neighboring levels for
# close to � is

�� =
�vxT�J

d
�t2 + �0

2,

where t is small and

�0
2 = 4 sin2 &��1 − T2�/T2�J

2.

Probability of LZ tunneling is

p� = exp�−
2

�
Im��

0

i�0

��dt�� = exp�−
�0

�J
sin2 &�� ,

where

�0 = �vx�1 − T2�/Td .

The distance between two levels for # close to #=0 and the
corresponding probability of LZ tunneling p0 are given by
the same expressions where sin &� is replaced with cos &�.

In Eq. �32� the term with ' is only important when p0 and
p� are close to unity. Therefore, one can write

��p0,p�� = �exp��0

�J
�cosh��0

�J
cos�2&��� − 1 + '�−1

.

�33�

When the bias voltage is low �J /�0�1, such that
�
p0 , p�
1, we have
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��p0,p�� = 2 exp�−
�0

�J

1 + 
cos�2&��
�� . �34�

The low-voltage part is exponential due to small LZ prob-
abilities. The exponent exhibits strong oscillations as a func-
tion of &� which can be manipulated by varying the gate
voltage.

For higher bias voltages, �J /�0�1, we have p0 , p�→1
and

��p0,p�� =
�J

�0 + �J'
�

�J

�0 + �/2� + �J/2N
. �35�

For these voltages we have two regimes. The I-V curve is
linear I=V /R as long as eV
N���0+�� /��. The effective
conductance is

1

R
=

1

R0

�vx/d

�0 + �/2�
.

Inelastic relaxation can be neglected if �0�� /2�. In this
case, the conductance is much larger than the conductance
quantum R0 /R= �1−T2�−1. It is interesting to note that the
effective conductance is independent of the gate voltage: it
contains the sum of two functions in the exponents for p0 and
p�, i.e., ��0 /�J�cos2 &� and ��0 /�J�sin2 &�, which obviously
is independent of &�.

With increasing voltage up to eV�N���0+�� /�� but still
eV
�vx /d, the I-V curve saturates at the value

I = Nevx/d = 2e
�
/�� ,

which is by a factor N�1 larger than the critical Josephson
current of the junction,16 Ic�evx /d. Such enhancement of
the dc component is characteristic only for long junctions
due to a large number of Andreev levels involved into the
charge transport. This regime can be realized if the number
of levels satisfies N�0
vx /d or N�1−T�
1.

For a fully ballistic contact with p0= p�=1, i.e., �0=0,
Eq. �35� agrees qualitatively with Refs. 3 and 17. In such an
ideal case, a linear part of the I-V curve has an effective
conductance proportional to the inelastic mean free time; it
disappears when �→� while the plateau region starts from
zero voltage. Our results show, however, that in any realistic
junction, the linear part in the I-V curve can exist even for

�→�. In this limit, both the effective conductance and the
onset of the saturated-current regime are controlled by the
contact transparency.

V. CONCLUSIONS

To summarize, we have considered the charge transport in
a nearly ballistic single-mode SINIS junction with a length d
longer than the superconducting coherence length � and a
contact transparency close to unity. In this junction, the en-
ergy spectrum of Andreev states has a large number of levels
separated from each other by small minigaps which do not
vanish in a realistic case when the transmission is not exactly
unity. We focus on temperatures much lower than the typical
distance between the Andreev levels assuming a slow rate of
inelastic relaxation. In the limit of low bias voltages such
that the Josephson frequency is smaller than the typical in-
terlevel distance, we have derived and solved the kinetic
equation for the quasiparticle distribution on the Andreev
levels that takes into account both inelastic relaxation and
voltage-driven LZ transitions between the levels. We have
shown that the LZ transitions enhance the action of each
other and lead to a drastic increase of the dc current. Its
voltage dependence is first exponential due to small prob-
abilities of LZ tunneling. Next, it goes over into a linear
relation with a slope determined by the minigaps in the spec-
trum. At yet higher voltages �which are still much lower than
the interlevel distance� when the LZ probabilities approach
unity, the dc saturates at a value far exceeding the critical
Josephson current of the junction. Single-mode SINIS junc-
tions made of carbon nanotubes or semiconductor nanowires
with d�500 nm and aluminum-based superconductor leads
described so far in the literature11,12 have �vx /d�3.5 meV
and ��0.25 meV and do not satisfy the condition of long
junctions. One expects, however, that the long-junction re-
quirements could be fulfilled using lead materials with
higher Tc and employing nanowires with lower �vx /d. The
temperatures of interest would then be in a 100 mK range.
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