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Abstract 

This thesis concerns low-temperature nanoelectronics and, in particular, nonequi-
librium phenomena which come about when the concept of temperature loses its
significance in nanoscale electric circuits. Under more conventional circumstances,
these nonequilibrium phenomena are smothered by thermal motion or die away at
large scale but they become essential for a field that is looking for applications in
structures smaller than one micron, at temperatures lower than one degree above the
absolute zero. The appearance of superconductivity — the technologically-interesting
phenomenon of dissipationless transport of electric current — precisely at low tem-
peratures further boosts the chance of finding these applications.

With my collaborators, I consider five different types of setups where nanoconduc-
tors are coupled to superconducting electrodes in typical low-temperature operating
conditions which lead to the formation of a nonequilibrium state. Using the estab-
lished theoretical methods of the field, I estimate how the nonequilibrium state af-
fects the properties of the conductor, for example, in metallic conductors which have
acquired superconducting properties due to superconducting proximity effect and in
graphene, a one-atom thick film of carbon.

As a result of our work, it is possible to predict in detail when nonequilibrium phe-
nomena should become observable. These phenomena include rectification of electric
current and the enhancement of supercurrent due to incoherent noise in the elec-
tromagnetic environment of the conductor. In particular, our studies imply that the
effect of the nonequilibrium state in actively-researched radiation detectors based on
electron heating has been so far underestimated, whereas in graphene the equilib-
rium state is preserved under more extreme conditions than would be expected from
the behavior of metallic conductors of the same size. Nevertheless, we observe that
the the nonequilibrium phenomena bring about signifant effects in all the studied se-
tups which means that these phenomena must be taken into account when designing
any applications in the field of low-temperature nanoelectronics.
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Tiivistelmä 

Tämä väitöskirja käsittelee matalien lämpötilojen nanoelektroniikkaa ja erityises-
ti epätasapainoilmiöitä, jotka tulevat esiin kun lämpötilan käsite menettää nano-
mittakaavan virtapiireissä merkityksensä. Nämä epätasapainoilmiöt peittyvät ta-
vanomaisemmissa olosuhteissa lämpöliikkeen alle tai vaimenevat suuressa mitta-
kaavassa merkityksettömiksi, mutta ne muodostuvat keskeisiksi alalla, joka etsii
sovellusmahdollisuuksia alle mikrometrin kokoluokkaa olevista rakenteista ja ma-
talimmillaan asteen murto-osan absoluuttisen nollapisteen yläpuolella olevista läm-
pötiloista. Sähkövastuksen katoamiseen johtavan ja siten myös teknologisesti kiin-
nostavan ilmiön, suprajohtavuuden, esiintyminen juuri matalissa lämpötiloissa lisää
entisestään näitä mahdollisuuksia.

Tarkastelen yhteistyökumppaneitteni kanssa viittä erilaista suprajohteisiin kyt-
kettyä nanojohdinta tyypillisissä matalan lämpötilan toimintaolosuhteissa, jotka joh-
tavat epätasapainotilan muodostumiseen. Alalla vakiintuneita teoreettisia menetel-
miä käyttämällä arvioin, miten epätasapainotila muuttaa johtimen ominaisuuksia
muun muassa suprajohtavan läheisilmiön vaikutuksesta osin suprajohtavia piirtei-
tä sisältävissä metallijohteissa sekä yhden atomin paksuisesta hiilikalvosta muodos-
tuvassa grafeenissa.

Työn tuloksena on mahdollisuus ennustaa yksityiskohtaisesti, milloin eri nano-
johtimissa tulisi näkyä epätasapainoilmiöitä kuten sähkövirran tasasuuntausta tai
sähkömagneettisen ympäristön satunnaiskohinasta aiheutuvaa supravirran voimis-
tumista. Erityisesti aktiivisena tutkimuskohteena olevien, elektronien lämmittämi-
seen perustuvien säteilyilmaisimien osalta epätasapainon vaikutus on tutkimukseni
mukaan aliarvioitu, kun taas grafeenissa tasapainotilan rikkominen on vaikeampaa
kuin samankokoisten metallijohtimien käyttäytymisestä voisi odottaa. Yleisesti ot-
taen havaitsemme epätasapainoilmiöillä olevan merkittävä vaikutus kaikissa tutki-
missamme kohteissa, mikä tarkoittaa, että ne on myös otettava huomioon mahdolli-
sia matalan lämpötilan nanoelektroniikan sovelluksia suunniteltaessa.
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Preface

I would like to begin by saying that this thesis is a work of love. However,

it is not. This thesis is a work of perseverance and resilience on a long

road of confusion, doubts, occasional moments of despair, and, to outweigh

it all, thrill of accomplishment and learning.

It all started when I stumbled into the Low Temperature Laboratory

of then Helsinki University of Technology as a young undergraduate stu-

dent with little knowledge, high expectations, and the goal, all the way

from the start, of one day obtaining a PhD. I was assigned to do theory

under the guidance of Nikolai Kopnin and Tero Heikkilä both of whom

have greatly impressed me with their dedication to what they do and who

I have to thank for their invaluable impact on this particular work. I was

not the easiest student as in the realm of theoretical quantum physics

with elevated level of abstraction, my most acute ambitions resided on

tangible results, concrete real-life applications, and understanding projects

in the simplest possible terms. This led me to work with the experimen-

talists headed by the current director of the laboratory, Pertti Hakonen,

and to teach on graduate-level courses given by the university. I have

gained a lot from both experiences and their fruits can be traced all the

way to the work you hold in your hands.

During my studies, I have had the pleasure to learn from various dis-

tinguished individuals. When I started, my supervisor Risto Nieminen

advised me to seize the responsibility of funding my own work by apply-

ing for scholarships and grants. This advise has been well heeded and I

am thankful to Magnus Ehrnrooth Foundation, Foundation of Technology

Promotion in Finland, and Finnish Academy of Science and Letters for

their ample support which has allowed me to both work independently

and broaden my horizon by participating in scientific gatherings around

the world. In the open-minded society of scientists I have not only spent
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countless occasions on discussing about the latest applications of nan-

otechnology but also enjoyed numerous enlightening conversations on life

in itself — and learned downhill skiing in the process.

Even with all the excitement provided by the international scientific

community, this long road would have been a bore if not for a joyful and

dependable home base. A few names deserve an extra mention, starting

from Pirjo Muukkonen, whose professional can-do attitude was the cure

for my miscellaneous problems in the early part of my stay in the labora-

tory, and Teija Halme, whose ever-available support allowed me to enjoy,

without care, the adventure of returning across Europe from Capri island

after the volcanic ash incident of 2010.

The long list of people whose professional and social collaboration I

highly appreciate includes Khattiya Chalapat, Timothé Faivre, Aurelién

Fay, Simone Gasparinetti, Petri Heikkinen, Jaakko Hosio, Pasi Häkkinen,

Risto Hänninen, Raphaël Khan, Matti Laakso, Jian Li, Matti Manninen,

Teemu Ojanen, Antti Paila, Joonas Peltonen, Antti Puska, Juho Rysti,

Anssi Salmela, Karthikeyan Sampath Kumar, Jayanta Sarkar, Xuefeng

Song, Jaakko Sulkko, Matti Tomi, Janne Viljas, Pauli Virtanen, and many

others with whom my encounters have been briefer. As the departing cap-

tain of the laboratory’s floorball team, I also wish well for the Pyromaniac

Penguins and look forward to hearing them top last year’s success.

It is impossible to acknowledge the support I have received during this

work without bringing forth my family and friends, including the culture

club Ota1. By never asking anything about my work, they have provided

a perfect counterbalance to the occasionally engulfing world of research.

While you cannot choose your relatives, Tarja, Pentti, Arto, and Aino are

about the best people you can hope to get stuck with for life. And when it

comes to people you can choose, I thank my spouse Maija who I met just

after starting my PhD studies, and married just before finishing them.

Her support has increased continuously during this process and it culmi-

nates in a concrete way on the cover of this work.

I briefly return to reflect the time I have spent in the Low Temperature

Laboratory. Even if our research unit has changed its name and location

with numerous wonderful people coming and going during the years, for

me the fundamental elements have stayed the same as they were on the

day I arrived here. To think that now, almost 8 years later, I have finished

exactly what I set out to do is perplexing — a sensation underscored by

the fact that the future, even for the next 8 weeks, is in large parts open
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to me. It has been a period of stability and endeavor toward a set goal,

combined. Now it is time to see what the foundation built during this time

is good for. And to continue learning.

Espoo, April 24, 2012,

Juha Voutilainen
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1. Introduction

This thesis concerns nonequilibrium transport in nanoscale electronic cir-

cuits with superconducting components. In the big picture, nanotechnol-

ogy and the discovery of superconductivity are two major breakthroughs

of 20th century physics. The first makes it possible to manipulate objects

down to the atomic scale (and further. . . ) whereas the latter is a fasci-

nating phenomenon with the hallmark of zero electrical resistance below

a material-dependent critical temperature. They both promise a plethora

of applications to improve the efficiency of our work and the quality of

our lives, some of which have already turned to reality. However, despite

the heavy research effort invested in both fields during the latter part

of the 20th century, we can safely say that in terms of technological ad-

vancement both fields are still at most in their adolescence — and this

is even more evident when we consider the opportunities in merging the

two fields. This means that what is known is not enough: From the per-

spective of fundamental research there is still a lot of work to be done to

understand the possibilities emerging from our newly-acquired ability to

shape matter at the sub-microscopic level. According to nobelist Herbert

Kroemer in his account on the prospects of the emerging field: [1]

“Nanotechnology should be expected to have a rich future with new applications,

but the details of that future are resistant to prediction.”

The goal of our research then is to shed light on these details.

Nanotechnology itself is a broad concept so here we apply nanotechnol-

ogy specifically to electronic components operated at temperatures of the

order of at most 1 Kelvin. However, the resulting field of low-temperature

nanoelectronics is still incredibly diverse. This is because of the appear-

ance of quantum-mechanical effects which markedly alter the properties
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Introduction

of nanoelectronic components at small length scales, typically below 1μm,

and sub-Kelvin temperatures which, due to advances in experimental

techniques, are nowadays realized in research laboratories in a workman-

like manner. As such, nanoelectronics prepares the way for a completely

new kind of engineering. While some research groups exploit these new-

found skills for conventional purposes, such as producing different types

of detectors with vastly improved sensitivity, there are also others who

have embarked on visionary quests such as searching new exotic par-

ticles [2] or building a quantum computer [3]. Whichever the goal, the

possibilities of nanoelectronics engineering are only beginning to emerge.

And to make matters even more interesting, superconductivity is based

on quantum phenomena as well, making it an ideal addition to the reper-

toire of building blocks for tomorrow’s nano circuits. There is a long way

to go to understand not only the intrinsic properties of these blocks but,

most importantly, their interplay with one another in practicable nano-

electronics realizations.

The choice of building blocks, while important, is only the first part of de-

vising a nanoelectronic circuit. Equally important is the question of how

the blocks are manipulated by external stimuli such as electric voltages,

radiation fields or thermal fluctuations in the environment. These stimuli

drive the system out of thermodynamic equilibrium, so that temperature

is no longer well defined, and this can lead to exceptional outcomes for

three reasons:

1. In nanoscopic conductors even a slight input of external energy may

change the dynamics of the system

2. In sub-Kelvin temperatures thermal noise and the usual energy re-

laxation processes are no longer dominant

3. We can include superconductors as nonlinear circuit elements

The result is observable in transport of both energy and electric charge.

In this thesis, I present our studies on a choice of nanoelectronics sys-

tems, where we can use external driving to erect a nonequilibrium state

which substantially alters the properties of the system so that peculiar

outcomes unfold. The systems are composed of superconductors connected

to each other by different types of nanoconductors and they can be manip-

ulated to show a range of nonequilibrium effects from current rectification

to enhancement of the dissipationless supercurrent. This is theoretical

work but the experimental realizations are not far away as I show below.
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Introduction

Organization of this thesis

This thesis is an article dissertation composed of an overview, where I as-

pire to give the reader a broad understanding of what we have done and

why, and a bundle of our articles published in peer-reviewed scientific

journals which provide the actual details of the work. The main matter

of the overview is divided into three parts: Chapters 2, 3, and 4, which

can also be summarized as “Phenomena”, “Methods”, and “Results”. In

the first part I explain what is meant by nonequilibrium in context of na-

noelectronics, how the nonequilibrium state is formed in a nanoconductor

and how superconductivity affects it. In the second part, I present the

theoretical techniques we have used to describe practical nanosystems. In

the third part I apply this knowledge to a group of select systems and show

how the state of the system affects observables such as the (super)current

in various up-and-coming nanodevices and how this can sometimes be ex-

ploited. In addition, in Chap. 5 I reflect on the prospects of this field of

research.

I have also included a selection of references in Bibliography to works

I a) have found personally beneficial when putting this thesis together

and b) consider topical to its content at the time of its publishing. The

field of nanotechnology is ever-changing and new results keep pouring in

with commendable speed. I consciously aim to refer to any usable reviews

where this progress has been analyzed and, when none exist, to the latest

advances on a particular well-defined topic. For an interested reader, the

latter generally include a useful review-like summary of prior works (usu-

ally as early as in the introductory part) and I warmly recommend reading

up on them for better understanding of the background of each particular

topic. Finally, I include the heart of the thesis, my five publications, in

unamended form.
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2. The concepts:
Nanoconductors +
Nonequilibrium + Superconductivity

���� ����

��������	�
��

���
���������

����
��� ���
��

���
���
�

���
�����

Figure 2.1. Basic outline of a nanoelectronics system

Thermodynamical equilibrium is defined as a state where there are no

gradients in the essential state variables [4]. This means that systems

composed of discrete blocks where an electric or thermal current flows

from one block to another due to a difference in chemical potential, tem-

perature, etc., such as the one in the center of Fig. 2.1, should as a whole

be considered to be in a nonequilibrium state. However, such systems

can typically attain a time-invariant steady-state, where the properties

of the system stay constant when averaged over a time scale longer than

the short intrinsic relaxation time of the system (in practice, significantly

smaller than for example 1 ms). While the behavior of the system is thus

constant in time, its properties can still be greatly affected by the balance

between the driving force(s) and the relaxation processes which work to

equilibrate the system.
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The concepts: Nanoconductors + Nonequilibrium + Superconductivity

2.1 Driven nanosystems out of equilibrium

0

1

E = μ

4kBTe

4kBTe

Figure 2.2. (Quasi)equilibrium energy distribution at temperature Te

When we study how the properties of nanoelectronics systems change

under external driving, we use the word equilibrium not for the whole

system but for the equilibrium established between the electron system in

the nanoconductor1 (in the center of Fig. 2.1) and its own local heat bath,

i.e., the phonon system at temperature Tbath. As such, the electron system

is in equilibrium when it can be described by the Fermi–Dirac distribution

f0(ε, x) =
1

exp [(E − μ(x))/kBTe(x)] + 1
, (2.1)

defined by only two parameters: the local chemical potential μ(x)2 and

the local electron temperature Te(x) = Tbath(x) at position x. The former

determines the zero point of the distribution with excitations of energy

ε = E − μ(x), whereas the latter defines its slope around this point, as

visualized in Fig. 2.2. The nanoconductor can be driven out of this equilib-

rium state by feeding energy into the system, for example, from a voltage

or current source, high-temperature environment or an external radia-

tion source. The state of the system is then determined by what happens

to this excess energy after it is first deposited in the system, either as

a new high-energy electron or as an excitation of one of the pre-existing

electrons of the nanoconductor.
1In superconductors the independent quasiparticles are not strictly speaking
electrons but rather combinations of electrons and holes. In this overview, we
however talk simply about electrons.
2Generally, μ(x) is determined by the driving processes but it can also be con-
trolled by applying an additional gate voltage to the nanoconductor through a
capacitive connection. This gating is usually performed evenly across the length
of the nanoconductor so that only the overall level of μ changes: μ(x) → μ(x)+δμ.

6



The concepts: Nanoconductors + Nonequilibrium + Superconductivity

The energy of the first excitation can be transferred forward in the sys-

tem in the following ways:

1. to the leads by the escape of the electron,

2. to the heat bath, i.e., the lattice phonons,

3. to “the sky”, through electromagnetic radiation,

4. to other electrons in the nanoconductor.

The first three alternatives result in the energy escaping the electron sys-

tem altogether whereas the inelastic electron-electron scattering only re-

distributes the energy inside the system. The significance of each mecha-

nism is, however, strongly dependent on the operating conditions.

Typically, inelastic electron-phonon scattering is the strongest relaxation

mechanism and in the practical situations of this thesis work, it always

dominates the radiative electron-photon relaxation, which I briefly jus-

tify in Sec. 3.2.1. It becomes weak only at very low temperatures and

the equilibrium state of Eq. (2.1) is thus established whenever electron-

phonon scattering dominates, i.e., the corresponding relaxation time is

smaller than the time scale with which energy is deposited in the sys-

tem, τe−ph � τdrive. For electrical driving with current I this driving time

scale is simply the inverse rate with which individual electrons enter the

conductor: τdrive = (I/e)−1.

When the operating temperature is lowered so that τe−ph > τdrive, the

electron system is driven out of equilibrium and other relevant time scales

come about. Assuming the electron-electron relaxation is strong enough,

τe−e � τdrive, the electron system can still be described by Eq. (2.1) but

with a distinct electron temperature Te �= Tbath. In this case, Te is deter-

mined by the balance of heat currents flowing to and from between the

leads and the nanoconductor and we call such a state quasiequilibrium.

When the electron system is cut off from its direct link to the heat bath

in this way, it becomes possible to heat the electrons independent of the

lattice (see Ref. [5] from 1985) or even cool them as demonstrated first in

1994 in Ref. [6].

In the previous case, we still assume that the electron-electron interac-

tion is strong compared to the driving forces. However, in structures of

the order of microns and smaller this is not necessarily true anymore (I

give a quantitative measure also for this in Sec. 3.2.1). When the electron-

electron relaxation time τe−e > τdrive, the system is in full nonequilibrium.

7



The concepts: Nanoconductors + Nonequilibrium + Superconductivity

In this case, the noninteracting electrons have no means to thermalize

even amongst themselves and the distribution function f(ε, x) may as-

sume a form drastically different from that of Eq. (2.1), demonstrated

experimentally in 1997 [7]. This can, in turn, result in strongly nonlinear

features in the electric or heat current through the system.

Figure 2.3. Diffusive and ballistic conductivity for a nanoconductor with length L and
elastic relaxation length l which is roughly of the same order as the distance
between individual elastic scattering events.

The final important and typically the shortest relaxation time scale for

nanoconductors is the elastic relaxation time τ which describes relaxation

from collisions between electrons and lattice defects. While these colli-

sions no longer affect the relaxation of energy, they have a strong influ-

ence on how fast the electrons escape the nanoconductor and consequently

on the dynamics of the system. Apart from Publication II, we assume that

τ � τe−ph, τe−e, τdrive and that the corresponding elastic relaxation length

l is much smaller than the system dimensions relevant to transport. As

the result, the electron loses memory of its initial direction and the state

of the system as described by Eq. (2.1) is independent of the direction of

electron momentum. Such nanoconductor is diffusive and this is typical

for metallic conductors which have l � 10 nm. However, there exists exotic

nanoconductors such as semiconductor nanowires and carbon nanotubes

where l > 1 μm is viable and, with the other relaxation processes also

suppressed, they can function as ballistic conductors in which there is no

scattering except at the boundaries of the conductor (see Ref. [8]). We

consider nonequilibrium effects in such a conductor in Publication II.

8



The concepts: Nanoconductors + Nonequilibrium + Superconductivity

2.2 Inclusion of superconductors

We have studied systems where superconductors are used as contacts

(or electrodes) sandwiched around a nanoconductor so that they together

form a superconductor-nanoconductor-superconductor junction, abbrevi-

ated as SNS junction where N refers to normal conductivity.3 For the con-

figuration of Fig. 2.1 in the beginning of this chapter, this simply means

that the leads are made of superconducting material and the nanocon-

ductor acts as a weak link bridging them. Generally, such weak links

are governed by the Josephson relations discovered already in 1962 [9].

They state that superconducting junctions can transport tunneling super-

current IS when there exists a finite difference ϕ = φ1 − φ2 between the

phases φ1,2 of the macroscopic order parameters of the superconductors

that form the junction. In the simplest case where the current-biased su-

perconductors are not separated by an actual nanoconductor but only by a

thin layer of high-resistivity material, implying strong elastic scattering,

this phase difference is set by the dc Josephson relation

IS(ϕ) = Ic sin (ϕ). (2.2)

The tunneling current has a maximal value, critical current Ic, above

which the junction switches to dissipative conduction and a finite voltage

V starts building up between the superconductors.

The dissipationless supercurrent in superconductors is carried by corre-

lated pairs of electrons known as the Cooper pairs [10]. While the origi-

nal work of Josephson predicts tunneling of Cooper pairs, it has long been

known that in weak links the pairs may break and reform so that super-

current transport is actually governed by diverse rules which are set by

the properties of the weak link and whether the system is in equilibrium

or not [11]. As such, IS(ϕ) can differ markedly from its sinusoidal form

depending on the type and state of the junction [12]. However, the dissi-

pative dynamics of ϕ, determined by the ac Josephson relation

V =
�

2e

dϕ

dt
, (2.3)

remain independent of these details and are consequently universal —

even so that Eq. (2.3) is valid also when the nanoconductor forming the

link is out of equilibrium. The total current is composed of both the super-

current and dissipative-current components and in typical voltage-biased
3In this text, I use S to denote a superconducting element and N to stand for a
normal (nano)conductor, as is the usual convention within the field.
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SNS junctions it changes from the zero-voltage value of Eq. (2.2) to follow

the linear Ohm’s law I = V/RN for V � RNIc, where RN is the resistance

of the nanoconductor in the normal-conducting state. In the intermediate

regime, the current can be strongly affected by the nonequilibrium effects.

From the circuit perspective, using superconductors makes it possible to

run supercurrent through the nanoconductor. However, we are interested

in the process from the perspective of the nanoconductor and how the

transport process through the conductor is modified when it is contacted

to superconductors. There follows four major effects:

1. superconducting proximity effect,

2. modified density of states,

3. Andreev reflection,

4. suppression of heat transport,

which are partly derived from each other. I introduce these below.

2.2.1 Superconducting proximity effect

When superconductors are contacted to normal metals with a good con-

tact, i.e., that of high transparency, the correlations between Cooper pairs

do not immediately disappear at the interface but instead decay within a

distance of the superconducting coherence length ξ. This superconducting

proximity effect means that in the presence of superconductors a nanocon-

ductor can also become partly superconducting regardless of its intrinsic

type. In intrinsic superconductors, the coherence length is simply of the

size of a Cooper pair, ξ ∼ �vF /Δ, where vF is the material-dependent

Fermi velocity and Δ the pairing energy per one electron, whereas in nor-

mal conductors, it depends on ε of Sect. 2.1, i.e., the single-particle energy

of an electron broken away from the pair. In ballistic conductors, we thus

have ξ ∼ �vF /ε. In diffusive conductors, the collision-hampered electron

motion away from the interface is characterized by the sample-dependent

diffusion constant D so that ξ ∼
√

�D/ε. Generally, it is useful to define

these quantities not for single electrons but for the electron system as a

whole in which case ε is replaced by the value relevant for the dominant

physical processes. For example, in equilibrium the energy content of an

electron system is described by temperature and we may use a thermal

coherence length by setting ε → kBTbath to characterize the system on

average.

10
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In addition to the coherent motion of the electron pairs over the dis-

tance ξ, i.e., two-particle coherence, there exists another type of coherence,

namely the quantum mechanical single-particle phase coherence of the in-

dividual electrons. As a quantum phenomenon, superconductivity also

requires single-particle coherence and the induced superconductivity in

a nanoconductor does not survive over distances longer than the single-

electron phase-coherence length lφ which is of the order of the inelastic

relaxation length. Consequently, in SNS structures the proximity effect

penetrates the whole nanoconductor only if its length L < min(ξ, lφ).

The proximity effect itself has been known for a long time but it returned

to the focus of scientific interest in the late 1990’s [13]. It leads naturally

to intrinsic modifications to the properties of nanoconductors.

2.2.2 Modified density of states

0

1

g
(
ε
)

0

1

g
(
ε
)

0

1

g
(
ε
)
−Eg +Eg

−Δ +Δε = 0 ε = 0−Δ +Δ ε = 0−Δ +Δ

(c) Diffusive proximity conductor(b) Superconductor(a) Normal conductor

Figure 2.4. Density of states in a normal conductor, in a superconductor and in a specific
realization of a diffusive proximity conductor (at the midpoint), all normal-
ized to the density of states of the same system in the normal state so that
g(ε) = N(ε)/NF .

While in normal conductors the electron density of states (DOS) is con-

stant NF around the Fermi level, in superconductors it becomes energy-

dependent NS(ε) and a gap of width 2Δ opens near the Fermi level as

visualized in Figs. 2.4(a) and 2.4(b). We can write this superconducting

DOS in a simple form [10]

gS(ε) ≡
NS(ε)

NF
=

⎧⎨
⎩

|ε|√
ε2−Δ2

, |ε| > Δ

0, |ε| ≤ Δ
(2.4)

as given by the microscopic theory of superconductivity. Since the proxim-

ity effect induces superconductor-like properties into an adjacent nanocon-

ductor, it also modifies the density of states of the conductor.
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In a diffusive nanoconductor, the DOS profile of the system depends on

the position x inside the conductor and, when placed between supercon-

ductors, also on the phase difference ϕ as measured in Ref. [14]. Near the

superconductors, the profile is close to that of Fig. 2.4(b) but at the mid-

point of a SNS system, it has a minigap like the one shown in Fig. 2.4(c)

with the total absence of states restricted to energies |ε| < Eg < Δ. While

the DOS profile remains quantitatively position dependent, this feature

of a shrunk energy gap is uniform throughout the whole nanoconductor

and it even extends a small way into the superconductors, so that their

DOS at ε < Δ becomes finite as well (although very small). The minigap

disappears for ϕ = π, and for ϕ = 0 it has a maximum Eg ≈ 3.1ETh, where

ETh is the Thouless energy of the junction corresponding to the inverse of

the time τD it takes for an electron to diffuse through the nanoconductor.

This is the characterizing energy scale for diffusive nanoconductors and

for a junction of length L and diffusion constant D it reads

ETh =
�

τD
=

�D

L2
. (2.5)

Since ETh determines the width of the superconducting-like energy gap

in a diffusive proximity conductor described here, it also sets the energy

scale above which superconducting features begin to disappear in such

systems.

In ballistic conductors there is no scattering so the DOS profile is uni-

form in space. It also follows that when superconductors with transpar-

ent contacts are introduced to form a ballistic proximity conductor, the

resulting DOS profile is in many ways reminiscent to that of a supercon-

ductor as in Fig. 2.4(b). However, due to Andreev two-particle scattering

processes (which we discuss in the next section) at the N-S interfaces, a

set of discrete energy states appears at energies |ε| < Δ. The number of

these states depends on the flight time τL = L/vx of the electron travers-

ing the conductor of length L with constant speed vx so that it is roughly

N ≈ 2ΔτL/π� with a minimum of two for very short junctions, i.e., point

contacts. Because of these levels, the DOS profile for a ballistic proximity

conductor at subgap energies |ε| < Δ is composed of sharp peaks at the

exact locations of the levels and it is more informative to show the energy

spectrum of the junction than to plot the actual DOS profile. This is done

in Fig. 2.5 for the subgap energy spectrum, as a function of the phase

difference between the contacting superconductors and for both a short

(ΔτL/� � 1) and a long (ΔτL/� � 1) ballistic junction. In both cases,

we can see how the spectrum is affected by elastic interface scattering,

12
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assumed negligible in ideal SNS junctions. One may also ask what hap-

pens above the gap at energies |ε| > Δ. While the continuum DOS there

resembles in part that of Fig. 2.4(b), it may either diverge or disappear al-

together at ε = ±Δ, depending on ϕ and τL [15]. We have however focused

specifically on the subgap transport in Publication II.

Long ballistic proximity conductor

ϕ

Short ballistic proximity conductor

ϕ

+Δ+Δ

−Δ

ε = 0 ε = 0

−Δ
2π0π π2π0

Figure 2.5. Subgap energy spectrum in short and long ballistic proximity conductors as
a function of phase difference ϕ. The dotted line shows the spectrum in the
ideal case when the N-S interface is completely transparent and the solid line
corresponds to a case where there is some normal scattering at the interface.

Measurable physics: Supercurrent

The density of states changes drastically in superconductors and diffu-

sive/ballistic proximity conductors, as demonstrated above. The question

that follows is: What is its significance? This we can answer by taking

a look on how supercurrent is transported through the nanoconductor.

When the spectrum is expressed as discrete levels as in Fig. 2.5, the su-

percurrent in an SNS junction is a sum across these levels [12]

IS =
2e

�

∑
i

∂εi
∂ϕ︸ ︷︷ ︸

spectrum

[1− 2f(εi)]︸ ︷︷ ︸
distribution

(2.6)

and when the spectrum is a continuum expressed with a DOS function as

in Fig. 2.4, the supercurrent is an integral over the states

IS =
1

eRN

∫
dεjS(ε, ϕ)︸ ︷︷ ︸
spectrum

[1− 2f(ε)]︸ ︷︷ ︸
distribution

. (2.7)

These two expressions are essentially the same with the small difference

that in the latter one the quantum of resistance h/e2 ≈ 26 kΩ for a single

transport channel is replaced by the total normal-state resistance RN of

the nanoconductor and the spectral part is expressed by a spectral super-

current function jS . Most importantly, in both cases the expression for
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the current can be easily divided into two parts: the spectral component

which depends on the configuration of energy levels in the nanoconductor

and the state component which depends on the occupation of these en-

ergy levels as determined by the distribution function f(ε). While driving

the system into a nonequilibrium state can strongly modify the latter as

discussed in Sec. 2.1, the total supercurrent is equally dependent on any

changes in the spectral part. As seen from Figs. 2.4, such changes can

lead to sharp features at energies ε = ±Eg,±Δ or blocking of processes

altogether at small energies ε < Eg.

2.2.3 Andreev reflection and suppression of heat transport

Instead of describing the contact between a superconductor and a nanocon-

ductor in terms of the proximity effect, we can alternatively use the pic-

ture of Andreev reflection proposed as early as in 1964 [16]. It is an inter-

face phenomenon but it turns out that what happens at the N-S interface

ultimately results in changes inside the nanoconductor. In this sense, An-

dreev reflection at the interface generates the proximity effect and is the

fundamental cause behind all the modifications to nanoconductor proper-

ties in SNS systems [17].

Although Andreev reflection takes place at all energies ε, the process

is best visualized at subgap energies |ε| < Δ where the DOS in the su-

perconductor at an N-S interface vanishes but electron- (and hole-) type

excitations may still appear on the normal-conducting side. Since there

are no states in the superconductor, it is impossible for such an excitation

to enter the superconducting side. Instead, it reflects as a hole (electron)

with the same spin, same energy, roughly the same momentum but, due

to the change in particle type, opposite velocity direction. To conserve

the number of particles, a Cooper pair appears on the superconducting

side so that the net effect is a single electron incident on the interface

transforming into a Cooper pair on the S side and a hole on the N side as

visualized in Fig. 2.6. Importantly, the excitation energy on the normal

side is conserved as well so that while the electronic charge transported

across the interface is 2e, transported energy is zero. The superconductors

therefore block heat transport out of the SNS junction at subgap energies

and by reducing the efficiency of one of the relaxation channels listed in

Sec. 2.1, this phenomenon markedly affects the energy relaxation in the

nanosystems presented in this thesis.
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Andreev reflection can be conveniently used to explain the nonequilib-

rium behavior of ballistic SNS junctions. There, in the absence of energy

relaxation in the nanoconductor, electrons fed into the system from one

end travel across the nanoconductor picking up energy equal to the ap-

plied bias voltage eV on the way, experience Andreev reflection at the

N-S interfaces and then travel back as holes, again picking up energy

(−e)× (−V ) = eV . When the voltage is small, it can take several of these

trips for the electrons to accumulate energy larger than 2Δ, required to

climb over the energy gap and escape into the superconductor on the other

side of the junction. This is called the process of multiple Andreev reflec-

tions (MAR) [18] and it is a convenient way of describing ballistic nanocon-

ductors by simply tracing their paths in energy space.4
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Figure 2.6. Electron arriving at the interface of a normal nanoconductor and a super-
conductor with velocity v and momentum k either passes through to the su-
perconducting side or, if it does not have enough energy, Andreev reflects as
a hole with momentum and energy of the excitation conserved. No energy
is transmitted to the superconducting side. When the nanoconductor is en-
closed between two superconductors, succession of reflections where energy
remains conserved creates Andreev bound states. This enables supercurrent
transport across the junction.

The MAR method is not straightforwardly applicable to diffusive SNS

systems where random scattering distorts the particle trajectories and

the question of phase coherence becomes important when moving away

from the interface.5 In such a case, it is generally simpler to separate

the processes taking place at the interface and inside the nanoconductor

with techniques I show in the next chapter. By doing this, we neglect

the interplay between one- and two-particle coherent phenomena studied

quite recently in Ref. [19].

4The idea of electrons and holes scattering back and forth in the junction also
works for phase-coherent transport in the absence of driving voltage so that the
energy states in Fig. 2.5 can be interpreted as Andreev bound states: see Fig. 2.6.
5It is precisely the decay of the coherence that defines the extent of the proximity
effect after it has originated from the Andreev reflections at the interface.
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2.2.4 Scattering at the interface

Above, we have considered ideal SNS junctions where the contact between

the superconductor and the nanoconductor is transparent. In practice,

such ideal contacts are impossible to fabricate and there is always some

scattering at the interface. When transparency decreases from its ideal

value T = 1, there exists both Andreev reflection which conserves momen-

tum and normal scattering where only the momentum component normal

to the interface is reversed. This affects the Andreev bound states of

Fig. 2.5 in such a way that small gaps open between the levels. When

device concepts are thought up, the increased normal scattering can gen-

erally be seen as an unwanted consequence since it weakens the proxim-

ity effect and superconducting properties in the nanoconductor.6 We have

studied how much these imperfections affect supercurrent transport in

ballistic SNS nanowires in Publication II.

Nanodevices are also intentionally prepared so that the interface be-

tween the superconductor and the nanoconductor becomes opaque, i.e.,

T � 1. This is done by building up an electrically insulating layer at

the S-N interface, typically by oxidization of the contact metal on one

side. The resulting S-I(nsulator)-N tunnel junction, studied in Publica-

tion I, has found applications for example as an electron cooler and as a

thermometer at temperatures of the order a few hundred mK and below.7

These and some other interesting applications of the nanostructures that

we discuss in this thesis are reviewed in Ref. [20].

6Very recently, however, systems have been found which can be shielded from
analogous interaction-induced effects, making them attractive proposals to be
used in quantum computing [2].
7In this tunnel limit, the interface resistance RI is much larger than the resis-
tance of the nanoconductor, RI � RN . Because of this, any changes in the state
of the system are spatially located at the interface and f(ε), μ and T become
independent of position inside the nanoconductor(s).
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3. Theoretical approaches

In the publications included in this thesis, we have used various theoret-

ical techniques which I now review in this more technical chapter. It is

possible to describe the nanosystems starting from a microscopic theory

for excitations in a quantum many-body system and solve any particular

problem so that full spatial and time dependence is included. However,

this is usually not practical since it either conceals the physical phenom-

ena we are particularly interested in or simply requires too much compu-

tational power and time. We therefore use different simplifications: con-

sider only weak-driving behavior, include relaxation or superconductivity

in the problem using phenomenological models, and more. I describe the

methods used by starting from ballistic systems in Sec. 3.1 and then move

on to the more complex case of diffusive nanoconductors in Sec. 3.2.

3.1 Ballistic nanoconductors:
Bogoliubov-de Gennes equations with BTK method

Perhaps the simplest way to treat superconductivity in a quantum sys-

tem, in our case a nanoconductor, is to use the Bogoliubov-de Gennes

equations which are like a two-part Schrödinger wave equation for su-

perconductors, including both electron and hole excitations [10]. It is a

mean-field theory for the electron-electron interactions with a complex

field Δ̃ (of magnitude |Δ̃| = Δ) describing only those interaction processes

which produce superconductivity. While other types of interactions can be

later introduced into the formalism by hand, the equation is best suited

for describing equilibrium systems and nonequilibrium in ballistic con-

ductors where interactions are absent (or weak).

For particle and hole excitations of energy ε described by the two-part

wave function ψ̂(x) =
[
u(x) v(x)

]T
, the Bogoliubov-de Gennes equa-
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tions read ⎡
⎣ He + U(x) Δ̃

Δ̃∗ − (He + U(x))∗

⎤
⎦ ψ̂(x) = εψ̂(x) (3.1)

with single particle kinetic and potential energy expressed by the Hamil-

tonian He + U(x). In constant potential, U(x) = U and solving Eq. (3.1)

is equivalent to solving a free-particle equation. The whole SNS system

can be described using the method of Blonder, Tinkham and Klapwijk

(BTK) [21] where they insightfully model scattering at the S-N interface

by a delta function potential U(x) = Iδ(x). For a barrier of arbitrary trans-

parency I, this handles both normal and Andreev scattering and yields all

transmission and reflection coefficients.

The above is enough to solve the energy spectrum in ballistic SINIS con-

ductors where, due to the absence of scattering, electrons move coherently

and conserve their single-particle phase information. This is done by fol-

lowing an excitation travel across the nanoconductor as its path completes

a full cycle with consecutive reflections (normal or Andreev type) at both

N-S interfaces as in the bound state of Fig. 2.6. The method, together

with a compact solution, is sketched in Ref. [22] and its complex general

solution can be simplified for a short nanoconductor (L � ξ),

ε = ±Δ

√
1− T sin2 (ϕ/2), (3.2)

and for the low-lying levels (|ε| � Δ) of a long nanoconductor (L � ξ) with

symmetric barriers at N-S interfaces,

ε = nπΔ
ξ

L
± arcsin

√
T 2 cos2 ϕ/2 + (1− T 2) sin2 μ̃. (3.3)

Here n is an integer, |n| � L/πξ, and the number of energy levels in-

creases with the length of the nanoconductor, as seen in Chap. 2, Fig. 2.6.

The spectrum can be modified by changing either the transparency T of

the N-S interfaces or the parameter μ̃ which is roughly proportional to

the product μ × L and can therefore be manipulated by gating the sys-

tem as explained is Sec. 2.1. An important feature of the spectrum is the

appearance of spectral minigaps at φ = π, 3π, 5π . . .,

δεπ = 2Δ
ξ

L
arcsin

(
| sin μ̃ |

√
1− T 2

)
. (3.4)

These disappear for perfect transparency T = 1 but they can also be made

to vanish by controlling μ̃ to alter the speed of the electrons moving back

and forth in the nanoconductor.

The subgap energy spectrum that we obtain from solving Bogoliubov-

de Gennes equations can be directly used to calculate the supercurrent

18



Theoretical approaches

from Eq. (2.6) both in and out-of equilibrium. In the latter case, we also

need to obtain the distribution function f(ε) but this is straightforward

for ballistic systems where f(ε) does not change inside the nanoconduc-

tor. The continuum states with |ε| > Δ also contribute to the current

but only negligibly for the weak driving eV � Δ that we have studied

in Publication II. As such, Bogoliubov-de Gennes theory based on wave

functions provides a convenient method of describing subgap transport in

ballistic nanoconductors with superconductivity when the problem can be

formulated as a single-particle problem. The method can be extended by

including some (inelastic) scattering into the system phenomenologically.

3.2 Diffusive nanoconductors:
from semiclassical models to quantum formalism

For diffusive systems where elastic interactions dominate, the scattering

has to be included in the theory right from the beginning and this in-

creases the complexity of the situation markedly — even if the description

is probabilistic. In standard transport theory of metals, the elastic scat-

tering from lattice imperfections is treated using the Boltzmann transport

equation, assuming that the state of the system is isotropic, and averag-

ing over the momentum directions of the transported electron [23]. The

resulting diffusion equation does not, as such, deal with superconductiv-

ity but it can be separately included by allowing Andreev reflection at the

N-S interfaces and accounting for modifications due to the proximity ef-

fect inside the nanoconductor. The Boltzmann theory can then be used

as an adaptable tool for studying nonequilibrium nanosystems without

single-particle coherence, and two-particle coherence included by hand.

The Boltzmann equation is a semiclassical equation which neglects any

effects arising from the phase coherence of electrons. An alternative to us-

ing it (and adding effects such as superconductivity one by one) is to start

from a full quantum field theory for many-body systems (including super-

conductivity) and to simplify it to account only for the most relevant phys-

ical phenomena. This results in a largely analogous quantum diffusion

equation, the Usadel equation, where nonequilibrium effects are included

through the Keldysh formalism (for a detailed account, see Ref. [24]). The

derivation embodies a quasiclassical approximation which integrates out

the dependence on the single-electron phase-coherence, making it look
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like we have just arrived at the Boltzmann theory from a different di-

rection. However, two-particle phase coherence is still preserved so that

superconductivity is intrinsic in the Usadel equation and it can therefore

be used to actually determine how the proximity effect modifies the equi-

librium properties of a nanoconductor. The results can, in turn, be used

with the Boltzmann theory so that we:

1. solve the modified material parameters from the two-particle coher-

ent equilibrium Usadel equation (N(ε), jS(ε) etc.),

2. determine the nonequilibrium distribution function f(ε) from the in-

coherent Boltzmann equation,

3. obtain all the physical observables as a combination of these, in the

spirit of Eqs. (2.6) and (2.7),

and avoid having to deal with the more complicated problem in the fully

formulated Keldysh–Usadel theory which includes both two-particle co-

herence and nonequilibrium processes. In the remainder of this chapter,

I present this method in more depth.

3.2.1 Boltzmann equation with superconductors

The Boltzmann equation essentially tells how a distribution of classical

particles obeying Newton’s laws changes under external forces and ran-

dom scattering. For a distribution f(x, p, t) which depends on position x,

momentum p and time t, the state at a later time t+ dt can be straightfor-

wardly predicted,

f(x+ v · dt, p+ F · dt, t+ dt) = f(r, p, t) + Icoll[f ]dt. (3.5)

This is because the state continuously depends on the velocity v with

which the particles move, (electromagnetic) forces F affecting the par-

ticles and potential scattering Icoll[f ] = Iel[f ] + Iinel[f ] which contains both

elastic and inelastic processes and mixes the occupation probabilities. In

the absence of collisions, i.e., when Icoll = 0, this equation can be used to

study ballistic nanoconductors, albeit without phase-coherence or super-

conductivity. The collisions are modeled by terms of the form

I [f(p)] =
∑
states

K
[
I in[f(p)]− Iout[f(p)]

]
, (3.6)

where we include all the in-scattering states from which the particle can

scatter into state p and the out-scattering states where the particle can
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scatter from state p, increasing and decreasing the expected occupation of

the state, respectively. Terms I in/out contain all the corresponding distri-

bution functions while kernel K depends on the states involved and the

specifics of the interaction. The actual Boltzmann equation is obtained

from Eq. (3.5) at the limit dt → 0 but we go a step further and take the

diffusive limit, where f is expanded over the lowest order in dependence

on the momentum directions and then integrated over them. This largely

simplifies the elastic scattering term and gives the diffusion equation [25]

(∂t −D∂2
x)f(x, ε, t) = Iinel[f ], (3.7)

where f is now isotropic in momentum and consequently dependent only

on the magnitude |p|, directly related to energy. Elastic scattering is now

included in the diffusion constant D = v2τ/dim which contains the elastic

scattering time τ and the dimensionality dim of the system. Since we are

interested in phenomena close to Fermi level, εF /kB ∼ 10000 K, we always

have v ≈ vF , the Fermi velocity.

Inelastic scattering: electrons, phonons and photons

The inelastic part of Eq. (3.7) needs to be determined on a case-by-case

basis depending on the physical processes that produce the scattering.

For this thesis, we consider non-magnetic systems and the most important

processes are the electron-electron scattering mediated by direct Coulomb

interaction, the material-dependent electron-phonon scattering and the

electron-photon scattering which can be either due to specific radiation

sources or electromagnetic environment of the nanoconductor.

Electron-electron interaction in disordered (dirty) normal conductors can

be described with a collision integral [20], i.e., an isotropic version of

Eq. (3.6) in the continuum limit:

Ie−e(ε) = κe−e

∫ ∞

−∞
dω dε′ ωα

[
I ine−e(ε, ε

′, ω)− Ioute−e(ε, ε
′, ω)

]
(3.8)

with in- and out-scattering terms

I ine−e = [1− f(ε)]
[
1− f(ε′)

]
f(ε− �ω)f(ε′ + �ω), (3.9a)

Ioute−e = f(ε)f(ε′) [1− f(ε− �ω)]
[
1− f(ε′ + �ω)

]
. (3.9b)

Both the exponent α = dim
2 − 2 of the integration kernel and the prefac-

tor κe−e describing the interaction strength depend on the dimensional-

ity dim of the system. For nanoconductors, this is an ambiguous quan-

tity, and we obtain it effectively by comparing the dimensions of the sys-
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tem to the energy-dependent coherence length ξ =
√

�D/ε of Sec. 2.2.1.1

The electron-electron scattering acts as a force to thermalize the elec-

tron system towards the quasiequilibrium distribution of Eq. (2.1) so that

Ie−e(ε) = 0 whenever f = f0.

For electron-phonon scattering, the collision integral is closely reminis-

cent of Eq. (3.8) and it can be found in Ref. [20]. Whereas electron-electron

collisions conserve the total energy within the electron system and only

mix the relative population of different energy levels, the electron-phonon

collisions actually act as a heat sink (or source) for the electron system. It

is therefore often enough to know how much energy flows from phonons

to electrons altogether without separating this flow to specific electron en-

ergy states. This total heat flow, in units of power, is obtained from the

collision integral by integration,

Q̇ = NFΩ

∫ ∞

−∞
dε ε I(ε), (3.10)

for a conductor of volume Ω. For all-electron interactions, it always holds

that Q̇e−e = 0 whereas the power escaping to phonons, Q̇e−ph, can in prin-

ciple vary depending mainly on the type of phonons and the ratio of the

phonon wavelength λph to the (elastic) mean free path l. In practice, it

has however been observed that at sub-Kelvin temperatures where acous-

tic phonons dominate, the experimental results follow well the theoreti-

cal prediction for the clean-system limit λph � l, derived for example in

Ref. [26]. While this has so far been confirmed only for three-dimensional

conductors, we can expect that in metallic nanoconductors, in quasiequi-

librium with electron temperature Te, the electron-phonon channel trans-

fers power

Q̇e−ph = ΣΩ(Tα
e − Tα

bath). (3.11)

While the exponent α may depend on the dimensionality of both electrons

and phonons [27], we typically use the value for clean three-dimensional

conductors: α = 5. The material-dependent prefactor Σ has been mea-

sured on many occasions for three-dimensional conductors with some of

the results tabulated in Ref. [20].

Finally, the electron system in the nanoconductor is also sensitive to any

external electromagnetic fields. The fields can either be caused by direct

irradiation or by fluctuations in the electromagnetic environment which

1Because of the energy dependence, it is not always a priori evident which value
for dim best describes the system as a whole and it may even occasionally become
necessary to leave dim as a free parameter to be determined by comparing theory
to experiments.
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couples to the nanoconductor through the photons transmitted through

the leads (see Fig. 2.1). Either way, the coupling is rarely perfect due to

differing source and load impedances, ZS and ZL, whose matching can be

described by the parameter

r0 =
Re(ZS)Re(ZL)

|ZS + ZL|2
(3.12)

which ranges from 0 (large difference in impedances) to 1 (perfect match-

ing). Typically, the photonic channel into the leads does not contribute

to the thermal relaxation of the system since its thermal conductance

GQ
e−γ = r0π

2k2BTe/3h [31, 32]2 is very weak compared to its phononic coun-

terpart

GQ
e−ph =

∂Q̇e−ph

∂Te
= 5ΣΩT 4

e . (3.13)

These become comparable when the electron temperature is lowered be-

low the transition temperature Ttr =
[
r0πk

2
B/(30�ΣΩ)

]
)1/3, which for typ-

ical metallic nanoconductors of size Ω ≈ 10−20 m3 corresponds to 100-

200 mK. Because of the cubic root dependence, this value is relatively

rigid with respect to any changes in the parameters and photonic relax-

ation is therefore significant only at the lowest end of temperatures for

the present-day nanoelectronics research. While typically negligible in

terms of relaxation, electron-photon coupling becomes important when

photons act to inject energy into the system. In this case, the excess

energy modifies the electron distribution function and can therefore ei-

ther decrease or, perhaps more surprisingly, increase the supercurrent of

Eqs. (2.6) and (2.7). The latter effect was first predicted by Eliashberg in

1970 for superconductors [28] and the corresponding theory for SNS sys-

tems has been proposed only recently in Ref. [29]. To account for electron-

photon processes, we can use a collision integral similar to Eq. (3.8) with

a kernel that depends on the matching circuit and the frequency band of

the radiation. We give examples of this in Publications III and V.

How to use the Boltzmann method in practice

Random scattering makes the diffusion equation irreversible and thus

applicable for transport problems with energy dissipation. In addition,

the theory has to have a way to accommodate a bias, a favored direction of

transport for the flow of both charge and energy. This can be done with the

standard method of introducing reservoirs that are large enough not to be

2. . . which remarkably equals the quantum limiting value for a single channel
(when r0 = 1) [33]. . .
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affected by the exchange of energy with the nanoconductor so that they

are always in equilibrium with a well-defined temperature. In Fig. 2.1,

these reservoirs correspond to the leads where the electrons assume dis-

tribution f0(ε) of Eq. (2.1) and the (phononic) heat bath at temperature

Tbath. The phononic reservoir is defined through the electron-phonon col-

lision integral whereas the inclusion of leads for a clean (T = 1) interface

is carried out mathematically by imposing boundary conditions [30]

f(ε) = f0(ε) , |ε| > Δ, (3.14a)

f(ε) = 1− f(−ε)

∂xf(ε) = ∂xf(−ε)

⎫⎬
⎭ |ε| < Δ, (3.14b)

at each nanoconductor-lead interface in the system (μ = μS). For normal-

conducting reservoirs Δ = 0 and the set of equations reduces to Eq. (3.14a).

For superconducting reservoirs, Eqs. (3.14b) state that there is a balance

between positive and negative energy excitations inside the superconduc-

tors (this always holds for equilibrium superconductors) and that there is

no subgap energy flux into/out of the superconductors. These conditions

describe Andreev reflection as discussed in Sec. 2.2.3 so that by solving

the diffusion equation Eq. (3.7) with boundary conditions of Eqs. (3.14),

we obtain:

spatial and temporal dependence of the nonequilibrium distribution function

f(ε) with specified inelastic scattering inside an incoherent, diffusive nanocon-

ductor with Andreev reflection at the interfaces.

The two-particle quantum coherence that manifests as the proximity ef-

fect can be included in the theory by solving the collision integrals and

material parameters such as the density of states within the equilibrium

quantum theory.

In this thesis work, we focus predominantly on steady-state phenomena

for which ∂tf(x, ε, t) = 0 in Eq. (3.7). For the spatial dependence, we fol-

low two routes: In Publication IV, we determine the full spatial profile of

f(x, ε) in a nanosystem, whereas in Publication III we simplify and con-

sider the behavior of the nanoconductor on average so that ∂xf(x, ε) = 0.

We then use a simple model to account for the spatially-independent diffu-

sion of electrons and energy out of the nanoconductor: a collision integral

Idiff = 8/τD[f(ε) − f0(ε, Tbath)] for energies |ε| > Δ. Below the supercon-

ducting gap, where outdiffusion is blocked, Idiff = 0. With concessions
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such as these to attain computational speedup, the Boltzmann method

can be versatilely applied to model nanosystems with superconductors.

3.2.2 Nonequilibrium quantum dynamics in dirty nanoconductors:
Keldysh–Usadel technique

From the Boltzmann equation we can only deduce the nonequilibrium

electron distribution function. The full quantum dynamics of a nanosys-

tem out of equilibrium and the spectral properties independent of the

state of the system can be obtained using the Green function techniques

for many-body quantum systems.3 The starting point is the Gor’kov equa-

tion of motion which includes superconductivity in a 2×2 matrix structure

and thus resembles the Bogoliubov-de Gennes equation, Eq. (3.1). As the

field theoretical version of the latter, the advantage of the Gor’kov equa-

tion over the wave function methods is that it is a genuine many-particle

equation. It is thus readily applicable to problems with various types of

scattering, and to account for nonequilibrium effects, it can be supple-

mented with an additional 2 × 2 matrix structure that creates a Keldysh

space. The complicated Gor’kov equation can be simplified by the so-called

quasiclassical approximation to give the transport-like Eilenberger equa-

tion which can in turn be likened to the Boltzmann equation. Also here,

we can average over momentum directions to obtain the Usadel equation

D∂x · (Ǧ∂xǦ) =
[
−iετ̌3 + Δ̌ + Σ̌, Ǧ

]
, (3.15)

a field-theoretical counterpart of the diffusion equation Eq. (3.7) (written

here for the static case). The Green functions Ǧ = Ǧ(x, ε) are 4 × 4 ma-

trices which contain both the spectral structure4 and the population of

energy levels, i.e., the electron distribution function f(x, ε). It is enough

to know that matrix Δ̌ = Δ̌(x) describes the pair potential and that the re-

maining inelastic scattering can be included in the self-energy Σ̌ = Σ̌(x),

apart from which the details of the compact notation of Eq. (3.15) are ir-

relevant here. The equation can in principle be solved in the full nonequi-

librium setting but in this thesis work, we mostly adhere to solving only

the spectral properties of the proximity-affected nanoconductors following

the method outlined in Sec. 3.2.1.
3The tools of this section and their relation to the typical problems of nanoscale
superconductivity are elaborated in Refs. [24] and [20]. For a complete book on
theory of nonequilibrium superconductivity, see Ref. [34].
4For example, the density of states can be effectively obtained as a real part of
one of the matrix elements.
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To solve the equilibrium equation where the Keldysh structure is omit-

ted, I have exploited ready-made solvers such as the one available at

Ref. [35]. This is done in Publications III, IV, and V. In Publication

I, we have solved the finite-voltage Keldysh–Usadel equation in tunnel

approximation which simplifies the problem considerably since the high-

resistance N-S interfaces make the problem spatially independent inside

the nanoconductor(s) as discussed in Sec. 2.2.4

To close the theoretical discussion of this chapter, I briefly summarize

the usefulness of the Keldysh approach in separating the spectral part

and the distribution part of a problem. The Keldysh matrix structure is

Ǧ =

⎡
⎣ ĜR ĜK

0 ĜA

⎤
⎦ (3.16)

with normalization Ǧ2 = 1. The Keldysh part can be parametrized as

ĜK = ĜRĥ − ĥĜA, where ĥ is a 2 × 2 matrix (when superconductivity

is included). Moreover, ĥ corresponds essentially to the (nonequilibrium)

energy distribution function f(ε) which can then be obtained by solving

ĜK . On the other hand, the retarded and advanced parts ĜR,A define the

energy spectrum of the system, including all the spectral quantities like

jS of Eq. (2.7). When the matrices are in the upper-triangular form of

Eq. (3.16), it follows that any product of two matrices in Keldysh space

satisfies

Ǧ1Ǧ2 =

⎡
⎣ ĜR

1 ĜK
1

0 ĜA
1

⎤
⎦
⎡
⎣ ĜR

2 ĜK
2

0 ĜA
2

⎤
⎦ =

⎡
⎣ ĜR

1 Ĝ
R
2 ĜR

1 Ĝ
K
2 + ĜK

1 ĜA
2

0 ĜA
1 Ĝ

A
2

⎤
⎦ .

As a result, the retarded and advanced parts can be solved independently

from the Keldysh part (with some exceptions). The former then provide

the spectral solution and the latter yields the distribution function or it

can be replaced with the Boltzmann equation for the same purpose. This

justifies the use of Boltzmann equation (f(ε)) together with the equilib-

rium Usadel equation (GR,A) as an approximation to the full nonequilib-

rium transport problem (GR,A,K).
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4. Application to nanoelectronic
circuits

Previous chapters present the fundamental phenomena affecting electric

and thermal transport in SNS systems and show the methods we can use

to model these systems. In this chapter, I go through specific examples

we have studied and we can see the variety of nanosystems where the

nonequilibrium state may build up with important consequences. The

focus here is on the characterizing property of each piece of research.

In most of the papers, we have studied the system at hand from more

than one perspective and to get insight on the specifics of each system one

should read up on the Publications.

4.1 Relaxation in up-and-coming nanodevices

We start with two systems with potential for future real-life applications

of nanotechnology. The first is devised around graphene, a two-dimensional

form of carbon which rose to scientific spotlight in 2004 when it was first

successfully produced in a research laboratory [36]. A graphene flake cor-

responds to a single sheet of graphite and as a genuine one-atom thick

material, it has garnered significant multi-disciplinary interest due to its

(potentially) groundbreaking mechanical, optical and electronic proper-

ties with well over 10000 scientific articles published between 2005 and

2011 [37].1 From the electronic transport perspective that we take in this

thesis, the most important aspect of graphene is that it is a semi-metal:

while it has no gap in its energy spectrum, it does have a charge neu-

trality point where the density of states vanishes. Mathematically, the

spectrum is a linear function of momentum k, ε = �vFk − μ, as opposed

to the parabolic spectrum of ideal metals and semiconductors. The com-
1. . . with over 5000 of these published in 2011 alone, amounting to an average of
15 graphene (or graphene-related) articles published each day.

27



Application to nanoelectronic circuits

plete theory of the electronic properties of graphene, as known so far, has

been already outlined in several review articles such as Ref. [38] which

focuses on graphene fundamentals and Ref. [39] with an eye on the latest

discoveries.

Figure 4.1. Graphene lattice is shaped like a honeycomb with bonds of length 0.14 nm
connecting individual carbon atoms
(By AlexanderAlUS, released under CC BY-SA 3.0 license)

An attractive feature of graphene in terms of applications is its high

carrier mobility and large part of early graphene research has therefore

focused on the electrical conductivity of the material. This quantity is

mostly unaffected by inelastic scattering, and since the many-body prob-

lems of inelastic interaction are theoretically very challenging, many ques-

tions regarding the topic are still unclear. This is particularly true for the

electron-electron problem [40] whereas for electron-phonon interaction,

the heat transfer between electrons and phonons in graphene has been

solved when the system is in quasiequilibrium [41]. It has been recently

shown that while graphene is not intrinsically superconductive, it can be

contacted to superconducting leads to form a proximity SNS nanoconduc-

tor (in most cases a diffusive one) and drive supercurrent through it [42].

This allows to probe the inelastic interaction in graphene, since while the

direct conductivity does not depend on the strength of inelastic interac-

tions, the induced superconducting features do - through the direct de-

pendence of the supercurrent on the distribution function as in Eqs. (2.6)

and (2.7). Of course, to observe supercurrent, temperatures and driving

voltages need to be sufficiently low and for this reason the method is appli-

cable specifically to studying the low-energy end of the energy-dependent

interactions. In Publication IV we have done exactly this and estimated
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the strength of inelastic interactions in graphene at sub-Kelvin tempera-

tures. In particular, we have measured the strength of electron-electron

interaction since at such low temperatures, electron-phonon relaxation is

expected to be negligible, which we also noted. To do this, we have de-

vised a graphene thermometer, pictured in Fig. 4.2, where energy from a
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Figure 4.2. Graphene thermometer is composed of a heater and a thermometer junction.
Superconducting leads (S) deposited on top of graphene (G) allow both heat-
ing normal current and probing supercurrent to be run through the device.

heated SGS junction (the nanoconductor here is graphene, in short: G) is

allowed to leak partly into a SGS thermometer junction and the increase

in energy content of the electron system (or temperature) in this junc-

tion is seen as a drop in the measured supercurrent. How much energy

leaks into the thermometer junction depends strongly on the electron-

electron relaxation inside the heater junction and we have modeled this

relaxation with the dirty-limit collision integral of Eq. (3.8). This inte-

gral, while not graphene-specific, is expected to describe the properties

of graphene in practical situations where the system does not rest at its

charge neutrality point. By doing this, we obtained prefactors κe−e over

100 times larger than our initial estimate based on the material param-

eters, especially the normal-state resistance of graphene. This suggests

that electron-electron interaction in graphene is much stronger than in

comparable two-dimensional metallic conductors and despite the extreme

thinness of the material, it can be described using thermal quasiequilib-

rium models with satisfactory accuracy.

The second nanosystem with direct potential for future applications is

an actual device concept for infrared radiation detection. This Proximity

Josephson sensor (PJS) portrayed in Fig. 4.3 was proposed in 2008 [43]

and it demonstrates how proximity effect in nanoconductors can be ex-

ploited in practice. It is based on the idea of bolometric detection where
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Figure 4.3. In the Proximity Josephson sensor external antennas couple incident radi-
ation to the detector, composed of a proximity nanoconductor. The critical
supercurrent Ic is a sensitive function of the nanoconductor electron temper-
ature Te.

the temperature increase caused by incident radiation can be measured

with high accuracy. Bolometers have found use especially in the infrared

and millimeter-wave regime of the electromagnetic spectrum2 in astron-

omy [45] and recently, in the quest for high sensitivity, nanofabricated su-

perconducting detectors in particular have become the most popular [44].

Since the field of such “nanoastronomy” is still very young, several dif-

ferent approaches to detector fabrication exist and currently the most

promising directions are kinetic-inductance detectors (KIDs), which are

based on radiation breaking Cooper pairs in a superconducting detector

so that the inductance of the device changes [46], and resistive hot-electron

bolometers (HEBs), which are diffusive SNS devices where radiation heats

up the nanoconductor and outflow of energy is blocked with superconduc-

tors [47].3 The proposed Proximity Josephson sensor resembles the latter

HEB concept but instead of a resistive temperature readout, it is pro-

jected to operate in a dissipationless state of proximity-induced supercon-

ductivity where increase in temperature results in a change of proximity-

induced inductance making them akin to KIDs in terms of readout. The

advantage that results is that the PJS can be made much smaller than

KIDs, increasing sensitivity while at the same time removing the resis-

tive Johnson noise present in HEBs.

In the original work of Ref. [43], the authors provided a bare concept of

the PJS where the device physics have been greatly simplified. In Publica-

tion III, we have analyzed the PJS in detail and used recent results on the

properties of proximity SNS systems such as the heat capacity [49] and

2. . . at wavelengths ∼ 100 μm-1 mm corresponding to frequencies of the order
100 GHz - 1 THz.
3In addition, there are superconducting transition edge sensors (TESs) where de-
tection is based on the sharp rise in superconductor resistance when they absorb
energy at the superconducting transition temperature. They may also exploit the
hot-electron mechanism of HEBs and are therefore not distinguished above [48].
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the thermal conductance of the heat link [50] to see how the device perfor-

mance is affected by the superconductivity induced in the nanoconductor.

While we observed that the performance-defining noise characteristics re-

main essentially the same, we also noticed that paying special attention

to the energy relaxation process is essential to understanding the oper-

ation of the device. For sensitivity, the nanoconductor in PJS should be

made as small as possible, but we also note that there is a lower limit

to this, after which shrinking the device only results in increased noise.4

By composing a spatially independent steady-state Boltzmann equation

to balance the energy flow in and out of the nanoconductor, we study both

monochromatic driving with electromagnetic field of fixed frequency (Pub-

lication III) and thermal driving with a continuous spectrum of frequen-

cies determined by the radiator temperature (Publication V). We esti-

mate that electron-electron interaction in the small sensor is typically too

weak to equilibrate the system into a thermal distribution and a large

part of the radiation energy escapes to phonons or the leads. We expect

this phenomenon to be ubiquitous in nanoscopic thermal detectors (includ-

ing HEBs) which are by definition assumed to operate in a quasiequilib-

rium state and consequently suggest that when device size is reduced,

one should be increasingly aware of the nonequilibrium processes taking

place in the system.

4.2 Superconductors out of equilibrium

In Sec. 2.2.4, I introduce the possibility of cooling the electron system

below the bath temperature in a diffusive nanoconductor by contacting

it to the leads with high-resistance tunnel barriers. In this SINIS sys-

tem, the superconductors selectively remove energetic excitations from

the nanoconductor and this is presently exploited predominantly by cool-

ing electrons in the temperature range 300 . . . 100 mK which is otherwise

unattainable without expensive-to-operate dilution refrigerators or adi-

abatic demagnetization refrigerators [51]. The performance is limited

by processes that affect both the spectrum and the energy distribution

4The limit results directly from Eq. (3.11) when the incident radiation power P

is balanced with the power flowing to the phonons: P = Q̇e−ph and threshold
volume Ωtr ≈ P

ΣT 5
bath

. In large absorbers, the noise is dominated by the phonon
base temperature Tbath whereas for absorbers smaller than Ωtr, it is the heated
electron temperature Te ∼ Ω−1/5 that determines the noise level.
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of excitations in the superconductors [52]: Spectrum-wise, the cooling is

hampered by the appearance of states inside the superconducting gap of

Fig. 2.4(b)5 while the electron energy distribution is modified because of

the inability of the superconductors to effectively conduct the extracted

heat away from the NIS interface. This makes them imperfect reservoirs

(in contrast to the ideal ones defined in Sec. 3.2.1), which do not remain

in the bath temperature but heat up, resulting in back flow of energy into

the nanoconductor. We focus on the latter limitation as it is not only that

the superconductors tend to heat up but they do it in a way that produces

nonequilibrium distributions.
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Figure 4.4. SINIS electron cooler can be complemented by an additional layer of N elec-
trodes which act as quasiparticle traps, i.e., as perfect reservoirs which aim
to remove energy from the superconductors.

There have been attempts to prevent the superconductors from warming

up and in Publication I, we study an approach where additional normal-

conducting electrodes are attached to the superconductors to function as

quasiparticle traps [54]. The purpose of these traps, illustrated in Fig. 4.4,

is to provide a channel for the excitation energy in the superconductors to

relax in. In our quantitative analysis, valid within the tunnel approxima-

tion of dominating barrier-resistance, we observe that if such traps are in-

troduced, maximal cooling is achieved when the contact between the traps

and the superconductors is made as transparent as possible. This implies

that there is no added benefit from the more complicated system geome-

5This Dynes density of states is actually a phenomenological model that can de-
scribe the effect of various physical processes such as increased tunneling into
the superconductor due to a high-temperature environment. With current tech-
niques, this effective DOS can be suppressed below 10−7NF for |ε| < Δ (in alu-
minum) [53].
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try, and the sole purpose of the traps is to provide the superconductors an

environment where effective energy relaxation is possible. This effect has

lately been produced in an alternative way using magnetic fields to partly

suppress superconductivity in order to improve relaxation of extracted

energy [55]. We also determine the quantitative nonequilibrium distribu-

tions that form in the superconductors in the absence of relaxation and

observe that they differ markedly from the Fermi–Dirac distribution of

Eq. (2.1) having the same sharp features as the superconducting density

of states in Fig. 2.4. This raises the question if such peculiarities can be

exploited in any way. While we cannot answer this yet, electron cooling

remains as a topic of active study and provides a convenient testbed for

research in nonequilibrium superconductivity [56].

4.3 Exploiting nonequilibrium: current pump

The final nanosystem I present is an SNS structure where a ballistic wire

constitutes the nanoconductor. In total absence of scattering both in-
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Figure 4.5. In an ideal ballistic SNS nanoconductor scattering is absent both inside the
nanoconductor and at the N-S interfaces. We study, how departure from this
ideal affects transport at the low-voltage limit.

side the nanoconductor and at the N-S interfaces, the dissipative current

response of the junction differs dramatically from SNS systems where

such scattering does occur, as noted above in Sec. 2.2. For example, the

(zero-temperature) current-voltage relation of an NIS junction in a tunnel

limit reads (eRN )−1
√

(eV )2 −Δ2 when |eV | > Δ, and at subgap voltages

the current is absent altogether. This demonstrates the impossibility of

single-particle tunneling into superconductors with no low-energy states.

In fully ballistic SNS junctions, however, the subgap current emerges

solely from multiparticle tunneling processes made possible by Andreev

33



Application to nanoelectronic circuits

reflection and, as a result, there is a roughly linear dissipative current at

all voltages V > 0 [57]. Between these two extreme limits, the subgap

current can vary considerably depending on how effectively the many-

particle current is suppressed by interaction phenomena. The region is

also rich in physics, governed by junction parameters including temper-

ature, nanoconductor length L, interface transparency T , and degree of

inelastic scattering [58]. In Publication II, we study what happens in the

low-voltage end of the subgap regime.

Typically, transport in ballistic SNS systems is discussed within the

framework of multiple Andreev reflections mentioned in Sec. 2.2.3 but

since the number of possible reflections n = 2Δ/eV grows without a limit

when voltage V is lowered, this becomes increasingly complicated at eV �
Δ. In Ref. [59], the authors have shown that transport in such a case

can alternatively be viewed using the concept of spectral flow in energy

space. In this process, depicted in Fig. 4.6, electrons are taken from en-
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Figure 4.6. (On the left) Spectral flow in energy space is realized when discrete energy
levels in a nanoconductor driven by a small voltage V change in time (here
ϕ = 2eV t/h) and an electron follows these levels from −Δ to +Δ. The pro-
cess is adiabatic apart from points (here when ϕ is a multiple of π) where
the electron tunnels onto another level. In the process, electric current flows
through the junction and when the electron reaches the continuum of states
at ε = ±Δ, the accumulated energy is dissipated.
(On the right) Current resulting from the spectral flow is the dominating cur-
rent component in a long ballistic SNS wire. It has three distinct regimes, de-
pending on the relative magnitude of the driving voltage and the energy scale
ω0 = πvF (1−T 2)/LT which determines the inter-level tunneling probability.
The current can be controlled with a gate voltage which affects the tunneling
probabilities and is particularly effective at small voltages eV < �ω0.

ergy ε = −Δ across the discrete energy levels formed in the nanoconduc-

tor (numbering roughly N = L × 2Δ/hvF )6 all the way to ε = Δ, after

which the electron can escape into the leads. In the process of generat-

6The exact spectrum can be obtained using the methods of Sec. 3.1 and it re-
sembles those in Fig. 2.5, depending on the nanoconductor length. The phase
difference ϕ of the superconductors changes linearly in time as in Eq. (2.3).
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ing the electric current, energy of 2Δ is dissipated. Larger probability

for inter-level tunneling results in a larger current which can be maxi-

mized by changing the chemical potential of the nanoconductor periodi-

cally using a gate voltage, in effect realizing a current pump as suggested

in Ref. [22]. However, the spectral-flow concept only works for essen-

tially one-dimensional wires7 where the longitudinal velocity component

of the electrons moving along the conductor is unambiguously defined for

a given energy [59].

In Ref. [22], the authors show that the nonequilibrium state formed in-

side the superconducting gap of a long (N � 1) ballistic SNS wire can

be exploited by pumping to give a low-voltage (eV � Δ/N ) dc current

Idc =� Ic. In Publication II, we extend this discussion by considering

spectral flow in the system without the pumping action. This means that

the chemical potential is fixed and, in case of imperfect boundary trans-

parency (1−T � 1), gaps open in the spectrum reducing the probability of

inter-level tunneling necessary for the spectral flow. Assuming Tbath � Δ,

our results are then comparable to previous studies for low-voltage be-

havior of ballistic SNS wires, also when we include variable amount of

inelastic scattering in the nanoconductor [57, 58]. We find out that, in

the low-voltage end, the build-up of current can be separated into three

regimes as in Fig. 4.6 with a maximum of Idc = N × Ic � Ic. These con-

clusions support and supplement the earlier results but while theoretical

understanding on the properties of ballistic SNS nanoconductors can be

considered good, the long junctions studied here are yet to be realized

in experiments. One possible candidate for realization is a carbon nan-

otube, where the Andreev bound states have already been observed [60]

but the current experiments are still solidly in the short junction regime.

If (or when) realized, these “large” ballistic conductors will stand out as

an extreme example of nonequilibrium nanosystems with neither elastic

or inelastic relaxation in conductors of 1 micron or longer.

7The conductor is here considered one-dimensional when it only supports a sin-
gle quantum-mechanical conduction channel in the transverse direction.

35





5. Summary: what next?

Previous chapters outline the background of our research on nonequilib-

rium nanoconductors with superconducting contacts. The nanosystems I

have presented in Chap. 4 show the variation of situations where nonequi-

librium state may be formed and they demonstrate that when we oper-

ate in conditions where temperature is low and the system size is micro-

scopic, we generally have to consider the effects which incomplete relax-

ation and the accompanying nonequilibrium state may entail. In modern

sub-Kelvin, sub-micron nanoelectronics, this should be considered above

all a blessing. Despite the increased complexity of nanoscale physics, the

diversity of new phenomena encourages us to expect that there are ways

to exploit these findings in not-so-distant future. In this thesis work, I

consider transport of charge and energy in systems with superconductors,

variable degree of relaxation and variable dimensionality (1, 2, and 3) but

this still leaves systems with zero-dimensionality, magnetism, strong elec-

tromagnetic interactions and one-electron quantum coherence untouched.

Like in all fundamental research, the question that remains is still not

“why?”, but rather “how?”. The following publications aim to help answer-

ing this in a representative sample of driven SNS nanoconductors with

limited relaxation.
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