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Abstract 
This thesis formulates and evaluates a pedagogical technique whose goal is to help beginners 
learn the basics of computer programming. The technique, visual program simulation (VPS), 
involves the learner in interactive simulations in which the learner takes on the role of the 
computer as the executor of a program. The student uses a given visualization of a so-called 
notional machine, an abstract computer, to illustrate what happens in memory as the computer 
processes the program. The purpose of these simulations is to help the beginner learn to reason 
about program execution, a skill whose development has been identified as a major challenge 
in introductory programming education. VPS promotes effective learning by seeking to 
cognitively engage the learner with a visualization. It can be made practical through 
visualization software. VPS software may also automatically assess students' simulations and 
provide personal feedback, which is a valuable asset especially in the large classes that are 
typical of introductory courses. 

The thesis contributes to VPS in four ways. First, it formulates the concept of visual program 
simulation and outlines its underpinnings in terms of learning theory. Second, it presents a new 
software prototype that facilitates the use of VPS in practice. Third, it reports on a preliminary 
empirical evaluation of VPS and the software in the context of an introductory programming 
course. Fourth, it makes recommendations on the use of VPS in teaching and the further 
development of VPS tools, which arise from the empirical work. 

The findings from a mixed-methods evaluation of VPS suggest that it is a promising 
pedagogical approach that helps many students learn programming. At the same time, the 
evaluation highlights certain important weaknesses. The purpose of VPS is not obvious to 
many students. Care must be taken to ensure that students develop a rich understanding of 
what VPS is and what they stand to gain from it. For best results, it is recommended that VPS 
be tightly integrated into the teaching and learning environment. The results from a controlled 
experiment further indicate that the short-term learning benefits of a VPS assignment are 
heavily dependent on which interactions the assignment demands from students. This implies 
that extreme care must be taken in the design of VPS systems and specific assignments so that 
required user interactions are aligned with intended learning goals. 

On a more general level, the thesis serves as an example of educational tool development that 
is grounded in learning theory and informed by empirical evaluations. A fairly broad review of 
the literature on learning and teaching introductory programming is also contributed. 
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Tiivistelmä 
Visuaalinen ohjelmasimulaatio (engl. visual program simulation, VPS) on tekniikka, jolla 
pyritään tukemaan aloittelijoita tietokoneohjelmoinnin oppimisessa. Siinä ohjelmoinnin 
oppija ottaa tietokoneen roolin ohjelman suorittajana. Hän käyttää vuorovaikutteista 
visualisaatiota abstraktista tietokoneesta kuvatakseen, mitä tietokone tekee, kun se käsittelee 
ohjelman askel askelelta. Tällaiset simulaatiot voivat opettaa aloittelijaa järkeilemään 
ohjelmien suoritusvaiheista ja näin selviytymään eräästä ohjelmoinnin opintojen 
varhaisvaiheen keskeisestä haasteesta. VPS pyrkii tehostamaan oppimista edellyttämällä 
opiskelijalta aktiivista visualisaation käyttöä sen sijaan, että tämä vain katselisi annettua 
kuvamateriaalia. Toimiakseen käytännössä VPS tarvitsee tuekseen tarkoitukseen laaditun 
apuohjelman. VPS-järjestelmän avulla voidaan myös automaattisesti arvioida opiskelijoiden 
suoriutumista ja tarjota henkilökohtaista palautetta. Tämä on arvokas etu erityisesti suurilla 
massakursseilla, jollaisia ohjelmoinnin johdantokurssit usein ovat. 

Väitöskirja edistää VPS:ää neljällä tavalla. 1) Väitöskirjassa muotoillaan visuaalisen 
ohjelmasimulaation käsite ja sen oppimisteoreettinen pohja. 2) Väitöskirja esittelee uuden 
järjestelmäprototyypin, joka mahdollistaa VPS:n käytännön opetuksessa. 3) Väitöskirjassa 
raportoidaan tuloksia alustavista empiirisistä tutkimuksista, joissa arvioidaan VPS:ää ja 
mainittua järjestelmää erään ohjelmoinnin peruskurssin yhteydessä. 4) Näihin tuloksiin 
nojaten väitöskirjassa esitetään suosituksia siitä, miten VPS:ää kannattaa käyttää opetuksessa 
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Chapter 1

Here is How to Make Sense of This
Thesis

1.1 This work is about a pedagogical technique for improving
programming education

In this thesis, I formulate and evaluate a pedagogical technique whose goal is to help beginners learn the
basics of computer programming. This technique, visual program simulation (VPS for short), involves the
learner in interactive simulations in which the learner assumes the role of the computer as executor of a
program. Such simulations can help the beginner learn to reason about program execution, a skill whose
development has been identified as a major challenge in introductory program education.

Visual program simulation promotes effective learning by seeking to cognitively engage the learner
with a visualization of computer memory. It can be made practical through visualization software. Such
software may also automatically assess students’ simulations and provide feedback, which is a valuable
asset especially in the large classes that are typical of introductory courses.

1.2 This is computing education research on software visualization

Denning et al. (1989) defined computing as “the systematic study of algorithmic processes that describe
and transform information: their theory, analysis, design, efficiency, implementation, and application.” In
other words, computing deals with the theory and practice of computers, including computer software and
hardware. The work presented in this thesis relates to computing in the dual sense that it involves the
design and use of a computing application – a software system that supports visual program simulation –
for the purpose of learning about computing. Within computing research, the field of software visualization
(SV) studies the creation and use of visual representations of computer software for various purposes; the
present work is an example of educationally motivated research on software visualization.

This work also has significant elements of social science: I study the relationships between people and
VPS, and the effects that VPS has on people as they learn. As dissertations for the degree of “Doctor
of Science in Technology” go, mine is a relatively ‘soft’ one – although perhaps instead of hard and
soft sciences we should speak of hard and difficult sciences, respectively, as rigorous research on human
thought and behavior is anything but easy (cf., e.g., Diamond, 1987). My work falls in the domain of
computing education research (CER), the multidisciplinary field that investigates the learning and teaching
of computing. In addition to being a subfield of computing and education, CER draws on the theories
and methods of psychology. Figure 1.1 illustrates these relationships.

The main application of computing education research is to help computing educators develop what
Shulman (1986) called pedagogical content knowledge – knowledge of particular content from the point
of view of teaching it – and curricular knowledge – knowledge of the various alternative approaches and
techniques for teaching about a subject. Indirectly, the beneficiaries of computing education research
include students learning about computing – an increasingly varied group – and, by extension, everyone
whose life is or could be affected by the products of computing, that is, nearly everybody.
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Figure 1.1: This thesis – the red dot – in the context of three disciplines of research: computing,
education, and psychology. CER stands for computing education research, SV for software
visualization. The size of each area is unimportant.
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On research traditions

Each research tradition tends to think particularly highly of its own way of seeing and doing things. In the
words of one of association football’s erudite minds,

Everyone thinks they have the prettiest wife at home. (Arsène Wenger, quoted by BBC Sport,
2004)

My relationship with research traditions, with theories and methods, is polyamorous. This thesis builds
on multiple traditions – primarily schema theory and mental model theory in cognitive psychology, the
phenomenographic tradition within educational research, and the software visualization tradition. Further
influences come from the constructivist paradigm of education and educational research on threshold
concepts. The influence of different traditions is reflected in the theoretical groundwork of visual
program simulation, as well as in my empirical work, which I undertake from a pragmatic mixed-methods
perspective.

1.3 This thesis consists of six main parts
The first three parts of this dissertation constitute a literature survey on the learning and teaching of
programming. I review what has been written, and comment on it, in an attempt to synthesize a
coherent picture of pertinent aspects of introductory programming education. Part I, The Challenge
of Introductory Programming Education, establishes that there is a problem: introductory programming
courses are not working nearly as well as educators – and students – would like. Part II, Learning
Introductory Programming, considers learning to program from the perspective of several general theories
of learning as well as prior research within CER. Part III, Teaching Introductory Programming, reviews
approaches to teaching introductory programming courses and software visualization tools designed to
help with this task.

Part IV, Introducing Visual Program Simulation, presents visual program simulation as a pedagogical
technique, and our particular implementation of it in a software system. Part V, Empirical Investigations
of Visual Program Simulation, moves us from constructive research to evaluative empirical research as I
report the results from a set of interrelated studies in which my colleagues and I explored the use of VPS
in the context of an introductory programming course. Part VI, Conclusions, looks back at what has been
achieved, and forward to future work.

Each of these parts is prefaced with an introduction that provides an overview of the upcoming
chapters.

Part VII is just for the end bits: appendices and bibliography.

1.3.1 The thesis is driven by a sequence of questions and answers
The present work can be expressed as a sequence of questions and answers. The first chapters chart
the terrain by putting questions to the existing literature. The answers provoke more questions, which
produce more answers. Eventually, the answers motivate the formulation of visual program simulation in
Part IV, and lead to the research questions posed to empirical data in Part V. Figure 1.2 summarizes
some of the main contents of this book from a question-setting perspective.

For a more traditional exposition of my research questions for empirical research, see Chapter 16.

1.3.2 There are different ways of reading the thesis
I expect that most readers of this thesis will have some expertise in computing. Throughout this
work, I refer to fundamental programming concepts, common programming languages, and programming
paradigms under the assumption that they will be familiar to the reader. However, I do cover in some detail
even the well-known theories from education and psychology that I build on. This is to help readers that
do not have a background in these other fields. The lengthier treatment of educational and psychological
theory also reflects my own learning process. Writing about these topics has been a device for learning
as I have approached these other disciplines during my postgraduate studies in computing.
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Figure 1.2: This thesis as dialogue.
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The thesis should ideally be read from beginning to end. There are threads of thought that are
gradually developed throughout the book. However, readers with different backgrounds and goals may
wish to do something different.

Readers with a strong background in computing education research may wish to skip what is familiar
in Parts I to III, and focus on Parts IV to VI, which deal directly with visual program simulation.

The reader in a hurry to find out something about VPS may wish to look at just the first two chapters
(12 and 13) of Part IV, and the conclusions in Chapter 21.

The table of contents is designed to read like an extended abstract of sorts; some readers may find
this useful for obtaining a quick overview.

Or, if you are one of my relatives with a limited interest in computing education, or otherwise stuck at
my doctoral defense with a copy of this book in front of you, you may prefer to try the surface approach
provided by the crossword in Figure 1.3. (This one might take a while to complete.)

Figure 1.3: 1. The most common word of five or more letters in this thesis.
2. The first name of the supervisor of the thesis.
3. The key to the success of educational visualization?
4. A type of cognitive load.
5. Describing the machine that students control in visual program simulation.
6. The most common surname within the list of references.
7. An abstraction of validity and credibility.
8. “Assignment moves a value from a variable to another”, for one.
9. Describing the kind of mental model suitable for fixing problems.
10. What threshold concepts tend to be for learners.
11. The more abstract of UUhistle’s parents.
12. Any word with A as its third letter might be considered to be, as an answer to this
question?
13. The longest unhyphenated English word in this thesis.
Down: The kind of understanding of this thesis that this crossword is likely to engender.

15





Part I

The Challenge of Introductory
Programming Education
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Introduction to Part I

Introductory programming courses around the world are failing to teach students how to program. While
many students certainly do succeed, too many others fall far short of the goals set by curriculum planners
and teachers. Evidence from computing education research shows that the problem is significant and not
just local to a few institutions.

Programming is an activity that is central to the field of computing. This is evidenced in computing
education by the dominance of programming-first approaches to teaching introductory computing
courses (ACM and IEEE Computer Society, 2001). The primary goal of a typical introductory computing
course – commonly called a CS1 course or simply CS1 – is that students learn to create programs in some
programming language. Unfortunately, it turns out that this is a demanding goal for an introductory
course, and one that is often not met. In Part I, I try to substantiate these claims.

Part I consists of two chapters. Chapter 2 examines the goals of programming education from the
viewpoint of two influential educational taxonomies, Bloom’s taxonomy and SOLO. Chapter 3 is about
the unwelcome evidence: many students do not acquire even rudimentary programming skills in CS1, and
the problem is widespread. These chapters set the scene for a more detailed look at what it takes to learn
to program, which will follow in Part II.
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Chapter 2

Introductory Programming Courses are
Demanding

This chapter takes a look at the goals of introductory programming education in the light of two
educational taxonomies: Bloom’s taxonomy and the SOLO taxonomy. These taxonomies enable us
to characterize programming tasks in terms of their cognitive and structural complexity, which gives us
an idea of what is commonly expected of beginner programmers.

In Section 2.1 below, I introduce Bloom’s taxonomy and its applications to programming. Section 2.2
deals with SOLO.

2.1 Bloom’s taxonomy sorts learning objectives by cognitive complexity
Some learning objectives are harder to achieve than others. It is much harder to learn to evaluate
the quality of computer programs than to list programming keywords, for instance. In the 1950s, a
group of educators led by Benjamin Bloom defined a taxonomy that divides learning into three domains:
the cognitive, affective, and psychomotor (Bloom, 1956). In the same work, they further detailed the
cognitive branch of the taxonomy by presenting a hierarchy of learning objectives ranked according to
their expected cognitive complexity (see Figure 2.1). Bloom’s work has received wide acclaim and remains
highly influential.

The name “Bloom’s taxonomy” is used in two different ways. It sometimes refers to the overall
taxonomy, with cognitive, affective, and psychomotor branches. It is also commonly used to refer to
the taxonomy of learning objectives within the cognitive domain. In this thesis, “Bloom’s taxonomy” is
shorthand for “Bloom’s taxonomy of learning objectives for the cognitive domain”.

2.1.1 The taxonomy distinguishes between six types of cognitive process

The six levels of the original 1956 taxonomy, from lowest to highest, are:

1. Knowledge: the student can recall specific facts or methods. This level is characterized by verbs
such as enumerate, name, and define;

2. Comprehension: the student understands the meaning of facts or concepts. This level is characterized
by verbs such as explain, discuss, and paraphrase;

3. Application: the student can solve problems by applying knowledge to new concrete situations. This
level is characterized by verbs such as produce, implement, and solve;

4. Analysis: the student can break down information into its parts to determine motives or causes, or
to make inferences. This level is characterized by verbs such as analyze, discriminate, and infer;

5. Synthesis: the student can combine elements in new ways to produce novel wholes. This level is
characterized by verbs such as create, compose, and invent;
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Figure 2.1: Bloom’s taxonomy of learning objectives for the cognitive domain (the level names shown
are from the revised taxonomy by Anderson et al., 2001).

6. Evaluation: the student can make judgments about material in light of selected criteria. This level
is characterized by verbs such as appraise, critique, and compare.

Many variants of the taxonomy have been proposed in the literature. An influential variant – which I will
refer to as the revised Bloom’s taxonomy – was defined by an interdisciplinary group of experts led by
Anderson and Krathwohl (Anderson et al., 2001). The revised Bloom’s taxonomy has two dimensions
– a cognitive process dimension similar to that of the original taxonomy, and a knowledge dimension
that specifies the type of content being processed – factual, conceptual, procedural, or metacognitive.
Anderson et al. also exchanged the places of the two last levels of the cognitive process dimension to
produce a revised hierarchy: recall, understand, apply, analyze, evaluate, and create, as shown in Figure 2.1.

2.1.2 Applying Bloom to programming is tricky but increasingly popular

In comparison to its esteemed status in other subfields of education, Bloom’s taxonomy had received
relatively little attention in programming education until recent years. However, in the past decade or so,
a growing body of work has emerged that relates the taxonomy – either the original or the revised version
– to introductory programming. Many programming educators have reported on how they have used
Bloom’s taxonomy to motivate improvements to the instruction or assessment of programming courses
(e.g., Buck and Stucki, 2000; Lister and Leaney, 2003; Scott, 2003; Thompson et al., 2008; Starr et al.,
2008; Khairuddin and Hashim, 2008; Alaoutinen and Smolander, 2010). The recent CER literature also
features a thread that applies Bloom’s taxonomy to study the learning of programming and discuss the
appropriateness of forms of assessment in CS1 (e.g., Johnson and Fuller, 2006; Fuller et al., 2007; Whalley
et al., 2006, 2007; Meerbaum-Salant et al., 2010). The revised Bloom’s taxonomy is being used as a
guideline by ACM and IEEE’s work on developing their computer science curriculum (ACM and IEEE
Computer Society, 2008). Several variants of Bloom’s taxonomy have been proposed to be particularly
suitable for programming education (Shneider and Gladkikh, 2006; Fuller et al., 2007; Bower, 2008).

No general consensus has emerged on precisely how to map the goals of programming education onto
Bloom’s taxonomy. Code-tracing skills, for instance, have been variously classified within the literature as
understand or analyze, and many interpretations have been presented as to how to ‘Bloom rate’ program-
writing assignments of different kinds. Gluga et al. (2011) found that academics untrained in use of
Bloom’s taxonomy for the classification of programming assignments in a particular way produced a
variety of different classifications.
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There is some convergence of opinion, too. The ability to create a program to solve an unfamiliar
problem, the literature widely agrees, belongs at the synthesis level in the original taxonomy, or create in
the revised version. Scholars within CER, as well as Bloom’s original group, have stressed the relevance of
students’ prior knowledge in determining the cognitive demands of an activity (e.g., Johnson and Fuller,
2006; Thompson et al., 2008; Gluga et al., 2011). For instance, Thompson et al. (2008) consider that
applying programming knowledge involves solving familiar problems with new data or solving unfamiliar
problems that match a familiar pattern or require an algorithm that is known to the student. To come
up with a previously unknown kind of solution is to create.

Despite these challenges of interpretation, Bloom’s taxonomy can tell us something about CS1 courses:

2.1.3 The goals of introductory programming courses are cognitively challenging

Bloom’s taxonomy is intended to be used by teachers as a tool for analyzing and designing courses and
curricula. In particular, the taxonomy was created to emphasize that learning objectives should not be
set only at the lowest levels, as was being done in many traditional educational settings, but at all levels
of the taxonomy. David Krathwohl, a member of both Bloom’s original group and the one that revised it
decades later, looks back on how Bloom’s taxonomy has been applied across disciplines:

One of the most frequent uses of the original Taxonomy has been to classify curricular
objectives and test items in order to show the breadth, or lack of breadth, of the objectives and
items across the spectrum of categories. Almost always, these analyses have shown a heavy
emphasis on objectives requiring only recognition or recall of information, objectives that fall
in the Knowledge category. But it is objectives [. . . ] in the categories from Comprehension to
Synthesis that are usually considered the most important goals of education. Such analyses,
therefore, have repeatedly provided a basis for moving curricula and tests toward objectives
that would be classified in the more complex categories. (Krathwohl, 2002)

It is interesting to observe that in the field of computer programming, applying Bloom’s taxonomy to
course evaluation has not precipitated the kind of shift that Krathwohl describes, from knowledge towards
more complex educational goals. In fact, what effect there has been, has been largely in the opposite
direction. Applying Bloom’s taxonomy to introductory programming education has highlighted the fact
that even introductory courses set the ‘cognitive bar’ very high for would-be programmers.

Lister and Leaney (2003) note that the traditional problem-solving goal of a CS1 course – to be
capable of developing a (small) program which solves a given problem that has been expressed vaguely
in non-programming terms – corresponds to synthesis (or create) high up in the taxonomy. Typical
introductory programming exams emphasize writing code, that is, application and/or synthesis, depending
on the question and the interpretation of Bloom (Scott, 2003; Petersen et al., 2011; Simon et al., 2012).

Oliver et al. (2004) examined computing courses in terms of their ‘Bloom rating’ (a weighted average
of the numbered Bloom levels of each type of assessment). They discovered that programming courses,
including introductory ones, have high Bloom ratings, whereas courses on other computer science topics
had much lower ratings.1

The findings of Whalley et al. (2006) suggest that the higher up in the revised Bloom’s taxonomy a
programming task is, the more difficult it is for students succeed in it – as Bloom’s group hypothesized
more generally.

These Bloom-driven analyses show the goals of a typical introductory programming course to be quite
demanding. Another influential taxonomy, SOLO, lends weight to this conclusion.

1Although Oliver et al. (2004) analyzed only computing courses, one suspects that typical introductory courses in many
non-computing subjects also tend to have significantly lower ‘Bloom ratings’ than introductory programming courses.
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2.2 The SOLO taxonomy sorts learning outcomes by structural
complexity

Some educators have questioned the appropriateness of Bloom’s taxonomy for the design of learning
activities and assessments.

When using Bloom’s taxonomy, the supposition is that the question leads to the particular
type of Bloom response. There is no necessary relationship, however, as a student may
respond with a very deep response to the supposedly lower order question: “Describe the
subject matter of Guernica?” Similarly, a student may provide a very surface response to
“What is your opinion of Picasso’s Guernica?” (Hattie and Purdie, 1998, p. 161)

One solution to such mismatches between activity and outcome is to categorize outcomes. This is the
focus of the Structure of the Observed Learning Outcome, or SOLO, a taxonomy formulated by Biggs
and Collis (1982) from empirical analyses of students’ responses to learning tasks.

2.2.1 SOLO charts a learning path from disjointed to increasingly integrated knowledge
SOLO’s five levels can be used to categorize learner responses in terms of their structural complexity.
Paraphrased from Biggs and Tang (2007, pp. 77-78), the levels of SOLO are:

1. Prestructural: a response at this level misses the point or consists of empty phrases, which may be
elaborate but show little evidence of actual learning;

2. Unistructural: this kind of response meets only a single part of a given task or answers only one
aspect of question. It misses other important attributes entirely;

3. Multistructural: the response is ‘a bunch of facts’. It expresses knowledge of various important
aspects, but does not connect them except possibly on a surface level. The learner sees ‘the trees’
but not ‘the forest’;

4. Relational: the response relates and integrates facts into a larger whole that has a meaning of its
own. It is no longer a list of details; rather, facts are used by the learner to make a point;

5. Extended abstract: a response at this level goes beyond what is given and applies it to a broader
domain.

SOLO describes a systematic progression in performance as an individual learns. First, from the
prestructural through to the multistructural level, the learner makes quantitative progress, increasing the
amount of knowledge they have. Progressing to the relational and extended abstract levels involves a
qualitative change as meaning emerges from the increasingly well perceived connections between elements
of knowledge (Figure 2.2).

SOLO is intended to be used by teachers both for analyzing responses to learning activities (e.g.,
answers to questions) and for setting learning objectives. SOLO and Bloom’s taxonomy have somewhat
different perspectives – Bloom classifies learning objectives (skills), while SOLO classifies learning
outcomes (responses to activities) – and they are, to a certain extent, complementary. Both can be
used to characterize the objectives set for learners.

2.2.2 SOLO has been used to analyze programming assignments
A research project called BRACElet has recently applied SOLO to code-reading and code-writing tasks
in the context of introductory programming (Lister et al., 2006b; Sheard et al., 2008; Clear et al., 2009;
Lister et al., 2009a; Whalley et al., 2011). They present an interpretation of how SOLO applies to simple
code comprehension problems of the form “in plain English, explain what the following segment of Java
code does”, and characterize the four main levels as follows (Lister et al., 2009a):
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Figure 2.2: Atherton’s (n.d.) metaphorical illustration of SOLO’s five levels. At the unistructural and
multistructural levels, links between previously unconnected pieces are increasingly perceived.
A qualitative change happens at the relational level, at which point the whole becomes
genuinely meaningful.

1. Prestructural: substantially lacks knowledge of programming constructs or is unrelated to the
question;

2. Unistructural: a description of one part of the code;

3. Multistructural: a line-by-line description of all the code (the ‘trees’);

4. Relational: a summary of what the code does in terms of its purpose (the ‘forest’).

The results of Sheard et al. (2008) suggest that the degree of structuredness of students’ responses to a
code-reading task measured on such a SOLO-based scale correlates significantly and positively with their
ability to write program code.

As for writing code, one suggestion for categorizing responses was sketched out by Clear et al. (2009);
I paraphrase:

1. Prestructural: inability to write correct code;

2. Unistructural: ability to write a single small piece of code, e.g., to increment the value of a variable.

3. Multistructural: ability to write combine a few statements to write a multi-line solution based on a
detailed specification or pseudocode. E.g., completing a method so that it returns false if a given
book is on loan but true otherwise;

4. Relational: ability to write code to solve a problem which has not been specified to the extent that
the problem represents pseudocode for the solution. E.g., writing a class to represent library books.

Like Bloom’s taxonomy, SOLO provides us with a lens through which to examine the goals of introductory
programming education.
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2.2.3 The expected outcomes of programming courses are structurally complex
In terms of the SOLO taxonomy, successfully writing programs requires an understanding of programs
that reaches the relational level. Program design tasks may even require students to transfer programming
concepts beyond what they have encountered or learned about and to the extended abstract level. In a
vein of work similar to the ‘Bloom rating’ measurements of Oliver et al. (Section 2.1.3 above), Brabrand
and Dahl (2009) analyzed the stated requirements of the computer science, mathematics, and natural
science courses of a Danish university where all teachers are required to use the SOLO taxonomy as
they specify course goals. They found that computer science courses in general had significantly higher
SOLO levels than natural science courses and (even more clearly) than mathematics courses. Typical
programming-related competencies desired were relational – at a high level.

Both Bloom’s taxonomy and SOLO illuminate the challenge of introductory programming education:
the learning objectives are cognitively challenging, the expected learning outcomes structurally complex.
The emphasis on synthesis skills and relational knowledge in introductory programming education is
not surprising in light of the history of programming education. Early programming courses introduced
programming as a tool for practitioners of other sciences rather than as a facet of computer science (ACM
and IEEE Computer Society, 2001, p. 22). The goal was that these practitioners – a different demographic
group than today’s CS1 students – would take perhaps only a single course in programming and would
then be able to apply what they learned to difficult problems within their main field.

There is no question that programming continues to be a key skill within computing, and is an ever
more important tool for non-computer-scientists. Developing learners’ ability to create novel programs
will continue to be the central goal of programming education. Nevertheless, analyses of the cognitive
demands of introductory programming courses have led researchers to ring a warning bell (Whalley et al.,
2006):

It appears likely that programming educators may be systemically underestimating the
cognitive difficulty in their instruments for assessing programming skills of novice programmers.
For non-elite institutions it is likely that some proportion of the high failure rate in introductory
programming may be attributed to this difficulty in setting fair and appropriate assessment
instruments. [. . . ] The level of difficulty of programming assessments at introductory levels,
whether or not inherent in the subject itself, presents a significant and possibly unfair barrier
to student success.
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Chapter 3

Students Worldwide Do Not Learn to
Program

The previous chapter made the theoretical observation that programming courses have demanding goals.
This is borne out by concrete evidence: poor results in introductory programming education have been
widely reported. Section 3.1 below reviews research on learning outcomes, which indicates that many
students are not learning to write programs in CS1. Section 3.2 considers the relationships between code-
reading skill and code-writing skill, but sadly, it turns out in Section 3.3 that many students do not even
learn to read program code reliably in CS1. Finally in Section 3.4, I review research on the various specific
problems that novice programmers have with understanding fundamental programming concepts.

3.1 Many students do not learn to write working programs
Few teachers of programming in higher education would claim that all their students reach
a reasonable standard of competence by graduation. Indeed, most would confess that
an alarmingly large proportion of graduates are unable to ‘program’ in any meaningful
sense. (Carter and Jenkins, 1999)

This is not recent news. According to the review of CER literature from the 1980s by Robins et al.
(2003), “an observation that recurs with depressing regularity, both anecdotally and in the literature, is
that the average student does not make much progress in an introductory programming course”. Linn
and Dalbey (1985) report that most students struggled to get past learning language features and never
got to learning about higher-order skills of program planning and general problem-solving strategies for
programming. Kurland et al. (1986) concluded that after two years of programming instruction, many
high-school students had only a rudimentary understanding of programming. Guzdial reviews the work of
Soloway and others:

One of the first efforts to measure performance in CS1 was in a series of studies by Elliot
Soloway and his colleagues at Yale University. They regularly used the same problem, called
“The Rainfall Problem”: Write a program that repeatedly reads in positive integers, until it
reads the integer 99999. After seeing 99999, it should print out the average. In one study,
only 14% of students in Yale’s CS1 could solve this problem correctly. The Rainfall Problem
has been used under test conditions and as a take-home programming assignment, and is
typically graded so that syntax errors don’t count, though adding a negative value or 99999
into the total is an automatic zero. Every study that I’ve seen (the latest in 2009) that has
used the Rainfall Problem has found similar dismal performance, on a problem that seems
amazingly simple. (Guzdial, 2011, see also Soloway et al., 1982; Venables et al., 2009)

A common topic of conversation among computing education researchers is the ‘Bactrian’ grade
distribution of many introductory programming courses: students either fail miserably or pass with flying
colors, with few ‘just doing okay’ (Dehnadi and Bornat, 2006). Many explanations have been offered and
many studies have been conducted, but the phenomenon remains unexplained (see, e.g., Bornat et al.,
2008; Robins, 2010).
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Multi-institutional studies

In the past decade, several international working groups have looked into the skill levels of students at
the end of CS1 courses, or, in some cases, at the end of a degree program (McCracken et al., 2001;
Lister et al., 2004; Eckerdal et al., 2006b). These oft-cited studies have been influential as they produced
concrete evidence of the mismatch between the goals of programming education and the actual skills
gained.

In 2001, a multi-institutional, multi-national working group chaired by Michael McCracken gave a set
of program-writing problems of varying difficulty to students completing CS1 or CS2 in several countries.
The students only got an average score of approximately 23 out of 110 points. The authors state that
their “first and most significant result was that the students did much more poorly than we expected” and
that “the disappointing results suggest that many students do not know how to program at the conclusion
of their introductory courses” (McCracken et al., 2001).

Another international working group study explored program design skills. When Eckerdal et al.
(2006b) analyzed the designs produced by students, they found “poor performance from students who are
near graduation: over 20% produced nothing, and over 60% communicated no significant progress toward
a design”. They conclude that “the majority of graduating students cannot design a software system”. A
recent follow-up study by Loftus et al. (2011) produced similar results.

It is clear by now that learning to write programs is a challenging goal. Teachers aware of this have
tried to find ways of easing the burden of students as they gradually develop code-writing ability. The
question then becomes: what are the relationships between the various goals of programming education?
Or more specifically: what other skills does the skill of writing code build on? There is some limited
evidence of dependencies between programming skills, so that learning certain skills builds on learning
others first.

3.2 Code-writing skill is (loosely?) related to code-reading skill
The ability to write program code is what we aim to teach, so anything else that we can
discover about students’ acquisition of skills must ultimately be considered in the light of
their ability to write code. (Lister et al., 2009a)

Many programming teachers find it intuitive, even self-evident, that one must learn to read code before
one can write code, just as one learns to read their first natural language before learning to write in
it. Similarly, the ability to trace a program’s execution steps would seem to be a prerequisite both for
explaining what given code accomplishes and for writing code. However, students of programming tend to
give examples and reading tasks little attention compared to writing; some also say right out that writing
code is easier than reading (Simon et al., 2009).

Does learning to explain what a piece of code does precede learning to write code? Can people learn
to write code successfully without being able to trace its execution (and code of what kind)? What
comes before the ability to explain code? More generally, is there evidence of a general learning path of
programming skills?

From taxonomy to learning path?

Bloom’s taxonomy (Section 2.1) is not of much assistance in the search for a general learning path. Even
if we assume that the cognitive categories form a hierarchy of increasingly complex learning objectives
and assessments, there is no evidence in the general case that learning a higher-ranking skill requires the
lower-ranking skills to be learned first. It has been argued that Bloom’s taxonomy does not match the
path(s) of skill progression that learners take, either in general or for programming in particular (e.g.,
Fuller et al., 2007; Anderson et al., 2001; Eckerdal et al., 2007; Biggs and Tang, 2007).

Other frameworks may match the learning process better. A substantial body of empirical research
that seeks to discover how programmers’ skills develop has recently been produced by the BRACElet
project (for an overview, see Clear et al., 2011). This empirical work builds on SOLO (Section 2.2), a
taxonomy that was designed to reflect stages of learning.
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BRACElet: some evidence of skill dependencies

In terms of one interpretation of SOLO (Section 2.2), code-tracing skills (that is, the ability to step
through a program’s execution) rank below code-explaining skills (that is, the ability to determine and
state the overall purpose of a piece of code), as the former requires multistructural learning outcomes while
the latter requires relational ones. If SOLO levels represent a learning path, students would need to learn
to trace code of a particular kind and complexity before they learn to explain code of a similar kind and
complexity. The BRACElet members hypothesized that learners generally first learn to trace programs,
then to explain them, and finally to write them.

A number of BRACElet publications have produced empirical evidence that links the skills of tracing,
explaining, and writing code. Students who write programs successfully tend to be able to produce
correct overall explanations of what a given piece of code does (Whalley et al., 2006). Students’ abilities
to explain and write correlate positively (Sheard et al., 2008). Students who cannot trace code are usually
also unable to explain what a given piece of code does (Philpott et al., 2007). Summarizing what given
code does appears to be an intermediate-level skill, which programming experts use naturally in lieu of
line-by-line traces of programs, but which many novices struggle with (Lister et al., 2006b).

Lopez et al. (2008) report that performance level in a code-tracing task accounts for some of the
variation in code-explaining performance. Further, they found that code-explaining ability alone, or code-
tracing ability alone, appears to account for only a little of the variation in code-writing skills. However,
explaining and tracing abilities together account for a substantial amount of the variation in writing ability.
They conclude that if one posits that a causal model exists between the skills, then their findings support
a hierarchy where tracing is lower than explaining, which is again lower than writing. The later results of
Lister et al. (2009b) and Venables et al. (2009) are consistent with the analysis of Lopez et al. In sum, the
BRACElet research points “to the possibility of a hierarchy of programming related tasks where knowledge
of programming constructs forms the bottom of the hierarchy, with ‘explain in English’, Parson’s problems,
and the tracing of iterative code forming one or more intermediate levels in the hierarchy” (Clear et al.,
2011).

Simon et al. (2009) followed up on these studies. They found that – contrary to expectations –
no meaningful relationships could be established when comparing the marks of a writing task and a
comparable reading task (a ‘Parson’s problem’, which requires the sorting of lines of code, and has been
shown to assess similar skills to traditional code-writing questions; see Denny et al., 2008). This result
may be explained by: 1) the lack of established criteria for comparing the complexity of two comparable
programs from a learning point of view; 2) the differences between marking code-reading problems on
the one hand and code-writing problems on the other (Simon et al., 2009), and 3) the ambiguities of
code-explaining questions in general (Simon, 2009).

Other researchers have found some evidence to support the claim that novices can produce code based
on familiar templates even without being good at tracing it (Anderson et al., 1989; Thomas et al., 2004).
It can be questioned, however, whether such novices can reliably produce bug-free code and whether they
can fix all the bugs in the code they produce without successfully tracing the programs.

As the BRACElet authors themselves have noted, the results from their line of research are not
straightforward to interpret, and the matter of a learning hierarchy of programming skills remains unsolved.
Furthermore, research has so far has focused on simple tracing, code-explaining, and writing tasks, and
little has been shown about the relationship of these skills to other programming skills such as debugging,
program design, or dealing with larger amounts of code. Nevertheless, it is easy to agree at least with the
cautious conclusion of Venables et al.:

In arguing for a hierarchy of programming skills, we merely argue that some minimal
competence at tracing and explaining precedes some minimal competence at systematically
writing code. Any novice who cannot trace and/or explain code can only thrash around,
making desperate and ill-considered changes to their code – a student behavior many
computing educators have reported observing. (2009, p. 128)
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3.3 But many students do not learn to read code, either
In the light of the previous chapter, it is not very surprising that learners fail to learn to write and
design programs. After all, these are cognitively complex skills that require relational understandings of
structurally complex content. What about presumably less complex programming skills, such as tracing
and explaining? Even though a strict learning hierarchy may not exist, the skill of program writing is
partially dependent on these less complex skills. Are introductory programming courses succeeding in
teaching students to read code?

Following up on the McCracken investigation described in Section 3.1, Lister et al. (2004) measured
students’ ability to trace through a given program’s execution. They gave a multiple-choice questionnaire
to students in a number of educational institutions around the world. The questions required the students,
who were near the end of CS1, to predict the values of variables at given points of execution and to
complete short programs by inserting a line of code chosen from several given alternatives. A quantitative
analysis of the multiple-choice questions was complemented by student interviews and an analysis of the
‘doodles’ students made while tracing. Lister et al. found that many students were unable to trace. While
there was obviously some variation in students’ ability between institutions, the results were disappointing
across the board.

Other studies have produced similar results. For instance, an earlier multi-institutional study by
Sleeman et al. (1986) analyzed code-driven interviews to conclude that “at least half of the students could
not trace through programs systematically” upon request and instead “often decided what the program
would do on the basis of a few key statements”. Adelson and Soloway (1985) found that novices were
unable to mentally trace interactions within the system they were themselves designing. Kaczmarczyk
et al. (2010) report an inability to “trace code linearly” as a major theme of novice difficulties. The
analyses of quiz questions by Corney et al. (2011), Simon (2011), Teague et al. (2012), and Murphy
et al. (2012) indicate that many students fail to understand statement sequencing to the extent that they
cannot grasp a simple three-line swap of variable values. In one study, the problem existed even among
students taking a third programming course (Simon, 2011).

It is clear from these results that students’ foundational programming skills commonly do not develop
as well as teachers expect. These results are discouraging, but cannot be ignored; of particular significance
is the fact that many of the findings have been produced by international, multi-institutional studies which
demonstrate that the problem is not local to a particular university, country, or type of institution.

3.4 What is more, many students understand fundamental programming
concepts poorly

So far in this chapter, we have focused on skills. What about conceptual understanding? We gain another
perspective on the challenge of introductory programming education by looking at what is known about
novices’ conceptions of programming concepts.

In some disciplines, concepts and phenomena are largely negotiable and up for interpretation. Students
may be encouraged to interpret things in a personal way and to develop alternative conceptual frameworks.
Certainly, many computing concepts are like this, too. However, computing also features many concepts
that are precisely defined and implemented within technical systems. Students are expected to reach
particular ways of understanding what the assignment statement in Java does, of what an object is,
and of how a given C program executes. Sometimes a novice programmer ‘doesn’t get’ a concept,
or ‘gets it wrong’ in a way that is not a harmless (or desirable) alternative interpretation. Incorrect
and incomplete understandings of programming concepts result in unproductive programming behavior
and dysfunctional programs. Unfortunately, misconceptions of even the most fundamental programming
concepts, which are trivial to experts, are commonplace among novices and challenging to overcome.
Recent studies measuring students’ conceptual knowledge suggest that introductory programming courses
are not particularly successful in teaching students about fundamental concepts, and that the problems
are not limited to a single institution nor caused by the use of a particular programming language (Elliott
Tew, 2010; Kunkle, 2010).

Over the past few decades, many researchers have catalogued ways in which programming students
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struggle with fundamental concepts, and the kinds of incomplete and incorrect understandings that
students have exhibited. Variables, assignment, references and pointers, classes, objects, constructors
and recursion are among the CS1 concepts most commonly reported as problematic. Many students
appear to have problematic understandings about the capabilities of computers and programs in general.

What follows is a review of research on the misconceptions and limited understandings that novice
programmers have been found to have about fundamental programming concepts. Some examples of
misconceptions appear below; there is a more comprehensive list in Appendix A. The reader can find a
longer review of the earlier work on misconceptions within CER in a book chapter by Clancy (2004).

Research on programming misconceptions

Bayman and Mayer (1983) studied beginners’ interpretations of statements in the BASIC language by
asking students to write plain English explanations of programs. They list a number of misconceptions
about BASIC semantics, e.g., ��� statements are understood as storing equations instead of assigning to a
variable. Around the same time, Soloway, Bonar, and their colleagues also explored novice misconceptions
and bugs, and discussed how they may be caused by knowledge from outside of programming, particularly
by analogies with the everyday semantics of natural language (e.g., Soloway et al., 1982; Bonar and
Soloway, 1985; Soloway et al., 1983).

Samurçay (1989) studied the answers that programming beginners gave to three program completion
tasks, and reported that variable initialization in particular was difficult for students to grasp. Putnam
et al. (1986) and Sleeman et al. (1986) analyzed students’ answers to code comprehension tests and
subsequent interviews. They listed numerous errors – surface and deep – that students make with
variables, assignment, print statements, and control flow. Du Boulay (1986) likewise listed a number
of novice misconceptions with variables, assignment, and other fundamental programming concepts.

Pea (1986) listed a number of common novice bugs and suggested that they are rooted in a ‘superbug’,
the assumption that there is a hidden, intelligent mind within the computer that helps the programmer
to achieve their goals.

Fleury (1991) and Madison and Gifford (1997) interviewed and observed students to discover various
conceptions of parameter passing. Their results suggest that even students who are sometimes capable
of producing working code with parameters may misunderstand the concepts involved in different ways.

Recursion has been the focus of several studies. Kahney (1983) discovered that students have various
flawed models of recursion, such as the “looping model”, in which recursion is understood to be much
like iteration. Kahney’s work has since been elaborated on by Bhuiyan et al. (1990), George (2000a,c),
and Götschi et al. (2003). Recursion is also one of the phenomena investigated by Booth (1992) in her
phenomenographic work on learning to program. Booth identified three different ways of experiencing
recursion: as a programming construct, as a means for repetition, and as a self-reference; students are
not always able to grasp all of these aspects.

Recent themes: OOP and Java

Since the ’90s, interest in CER has shifted from procedural programming towards object-oriented
programming. Several studies have reported ways in which students misunderstand object-oriented
concepts and features of OO languages. Holland et al. (1997) noted several misconceptions students
have about objects. For instance, students sometimes conflate the concepts of object and class, and may
confuse an instance variable called ���� with object identity. More novice misconceptions about OOP
were reported by Détienne (1997) as part of her review of the cognitive consequences of the object-oriented
approach to teaching programming.

Fleury (2000) reported that students form their own, unnecessarily strict rules of what happens in
programs and what works in Java programming. For instance, some of the students she studied thought
that the dot operator could only be applied to methods and that the only purpose of a constructor was
to initialize instance variables.

Hristova et al. (2003) listed a number of common errors students make when programming in Java.
Many of these are on a superficial syntactic level (e.g., confusing one operator with another) but some
suggest deeper-lying misconceptions. Ragonis and Ben-Ari (2005a) reported the results of a wide-scope,
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long-term, action research study of high-school students learning object-oriented programming. Their
study uncovered an impressive array of misconceptions and other difficulties students have with object-
oriented concepts, the Java language, and the BlueJ programming environment.

Teif and Hazzan (2006) observed students of introductory programming in two high-school courses
and discuss students’ conceptual confusion regarding classes and objects. For instance, students may
incorrectly think that the relationship between a class and its instances is partonomic, i.e., that objects
are parts of a class. Eckerdal and Thuné (2005) also studied the conceptions that students have of
these fundamental object-oriented concepts. Their results highlight the fact that not all students learn
to appreciate objects and classes as dynamic execution-time entities or as modeling tools that represent
aspects of a problem domain.

Vainio (2006) used interviews to elicit students’ mental models of programming concepts. Among
his results are a number of misconceptions about fundamental concepts, e.g., the idea that the type of a
value can change on the fly (in Java).

Several recent, complementary studies affirmed the existence of a number of incorrect understandings
of assignment, variables, and the relationships between objects and variables. Ma (2007) gave a large
number of volunteer CS1 students a test with open-ended and multiple-choice questions about assignment
in Java. He analyzed the results both qualitatively and quantitatively to understand students’ mental
models of assignment and reference semantics. I myself explored students’ understandings of storing
objects and of Java variables through phenomenographic analyses of interviews (Sorva, 2007, 2008).
Doukakis et al. (2007) combined findings from the literature and anecdotal evidence to list introductory
programming misconceptions, which, the authors argue, arise as a result of students’ prior knowledge of
mathematics.

Sajaniemi et al. (2008) elicited the mental models that novice programmers have of program state by
having CS1 students draw and write about how they perceived given Java programs’ state at a specific
stage of execution. They discovered numerous misconceptions relating to parameter passing and object-
oriented concepts.

As part of a project to develop a concept inventory for CS1, Kaczmarczyk et al. (2010) used interviews
to identify student misconceptions about concepts and grouped the misconceptions thematically. Four
themes were identified: the relationship between language elements and memory, while loops, the object
concept, and code-tracing ability.

Viability

An understanding – even a misconception – is usually not universally useless. It may be viable for
a particular purpose but non-viable in the general case. People may be entirely satisfied with their
misconceived notions, even for a considerable amount of time. Nevertheless, the kinds of understandings
of fundamentals reviewed here and in Appendix A are worrisome because they will cause problems for the
novice programmer usually sooner rather than later. Those non-viable understandings need addressing;
failure to do so is a failure of programming education.

The literature is effectively unanimous. Introductory programming education is struggling to cope with
the challenging task of teaching beginners to create programs. Even teaching students to read programs
is a challenge, as is helping students form viable understandings of fundamental programming concepts.
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Part II

Learning Introductory Programming

31



Introduction to Part II

What is involved in learning to program? Under what circumstances do students succeed? What are the
major obstacles to learning programming?

The following chapters delve more deeply into what learners go through as they study programming. I
review what several learning theories have to say about learning in general, and what computing education
research has to say about learning to program in particular. I also consider, in fairly generic terms, the
pedagogical recommendations that arise from the theories. This review lays the foundations for the
discussion of approaches to teaching CS1 in Part III.

Part II consists of seven chapters.
Chapter 4 focuses around schema theory, which explains how people learn to solve complex problems

despite the limitations of the human cognitive architecture. I stay with cognitive psychology in Chapter 5,
which deals with the mental models that people form of the systems they interact with; this leads to a
discussion of how programming requires a viable mental model of how the computer executes programs. In
Chapter 6, I turn to the family of educational theories known as constructivism, whose emphasis on learner-
driven pedagogy has grown to be influential in many fields of education, including computing education.
Chapter 7 is concerned with the phenomenographic tradition of empirical research on education. In
the phenomenographic view, the most important form of learning involves becoming able to experience
particular content – such as computer programs – in new ways.

There is, of course, a vast number of other traditions and theories within psychology, education,
and CER; I cannot possibly discuss more than a few. The theories and research traditions that I have
selected for Part II are particularly relevant because they each help us understand learning from a different
perspective. Each of them is also relatively influential in programming education research: the cognitive
perspective is well established, constructivism has recently greatly grown in influence, and a body of
phenomenographic work is also emerging in the CER literature.

Although there is common ground, the different theories and theorists are not in full agreement with
each other. Especially since I draw on multiple perspectives in a single thesis, it is important to consider
the merits and weaknesses and compatibilities and incompatibilities of each point of view. Chapters 5, 6,
and 7 each conclude with a section in which I review some of the main criticisms that have been leveled
at cognitivism, constructivism, and phenomenography, respectively. The short interlude that is Chapter 8
compares and contrasts what these perspectives have to say about learning and programming.

Chapter 9 rounds off Part II with a brief discussion of the theory of threshold concepts, an emerging
framework which seeks to explain why learners sometimes get ‘stuck’ at particular points of a curriculum,
and which has eclectically drawn from many sources, including the ones discussed in the preceding chapters.
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Chapter 4

Psychologists Say: We Form Schemas to
Process Complex Information

Contrary to popular belief, the brain is not designed for thinking. It’s designed to save you
from having to think, because the brain is not actually very good at thinking. (Willingham,
2009, p. 3)

A massive, multi-threaded literature on learning has emerged from cognitive psychology. Theories of
working memory, schemas, cognitive load, and mental models – among others – have contributed to our
understanding of what it means and what it takes to learn. There is also a body of research on the
psychology of programming that has applied general psychology to computer programming and come up
with theoretical models that explain how people program and how they learn to program.

This chapter is the first of two chapters on cognitive psychology. Section 4.1 provides a short
introduction to the idea of mental representation and the multi-store model of human memory, two
cornerstones of modern psychology. Section 4.2 is an introduction to schema theory, followed by a
discussion in Section 4.3 of the role of mental schemas in problem solving and in the growth of expertise.
In Section 4.4 I turn from general schema theory to the psychology of programming: I review what is
known about how people apply and construct schemas as they write programs. Section 4.5 introduces
cognitive load theory, an influential ‘spin-off’ of schema theory with important and concrete implications
for instructional design. Finally, in Section 4.6, I discuss existing research on program comprehension
models, that is, theoretical models of how people make sense of computer programs. We will get to the
theory of mental models in the next chapter.

4.1 Cognitive psychology investigates mental structures
A large body of psychological research deals with the ways in which knowledge is represented in the
human cognitive system and the way people process these mental representations. Our use of mental
representations is constrained by how human memory works – another topic fundamental to much of
cognitive psychology. A sound theory of mental representation helps explain why we can function effectively
despite the significant limitations of the architecture of our memory.

4.1.1 Inside minds, there are mental representations

Markman (1999, pp. 5-11) defines a representation as something that: 1) is about and captures aspects
of a represented world ; 2) exists in a representing world that is an abstraction of the represented world; 3)
relies on rules that map elements in the represented world to elements in the representing world, and 4)
is accompanied by processes that allow people or intelligent systems to make sense of the representation.
The height of mercury in a thermometer, for instance, is a (non-mental) representation of a certain aspect
of our physical world in the more abstract representing world of the thermometer. Representing rules map
the possible heights of the mercury to different temperatures, and humans use an interpretative process
associated with the representation to read the temperature. In Markman’s definition, the difference
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Figure 4.1: A commonly used basic architecture of human memory.

between a cognitive (mental) representation and other representations is a disciplinary one: a mental
representation needs to be explained primarily by psychology rather than, say, the physical sciences.

There is a vast number of theories of mental representation. Some of the theories complement
each other, some are in competition. The mental representations postulated by the various theories
vary in terms of the duration of their existence, their discreteness, and their degrees of genericity and
abstraction (Markman, 1999, pp. 14-16). The theories also vary in terms of which aspects of human
behavior they seek to explain. For instance, schema theory (this chapter) is primarily concerned with how
people gradually become able to deal with increasingly complex situations, while mental model theory
(Chapter 5) primarily characterizes the human ability to deal with novel situations and causal systems.
The program comprehension models of Section 4.6 are examples of programming-specific theories of
mental representation.

4.1.2 Working memory can only hold a handful of items at a time
Since the 1960s, educational psychology has been greatly influenced by the distinction between short-
term and long-term memory, two parts of the so-called multi-store model that was seminally formulated
by Atkinson and Shiffrin (1968) and later extended in various ways by others. Figure 4.1 shows a typical
diagram of the multi-store model, which consists of three parts.

Sensory memory is transient and stores sensory input extremely briefly, for less than a second. Its
contents serve as input to the other memory systems.

Long-term memory is a memory system that is capable of storing large amounts of information for
very long times. Its capacity is vast. However, we are oblivious to most of what is in our long-term
memory most of the time. In order to use it, we must retrieve it for processing.

Such processing happens in working memory, an intermediate storage that is very limited in duration
and capacity. People use working memory as they actively manipulate information that has just come
in through the senses or that has been retrieved from long-term memory.1 The most well known theory
of working memory is Baddeley’s. In his model, working memory consists of a central executive system
which controls three other subsystems: a visuospatial sketch-pad, where we ‘see’ what we are currently
thinking about visually, a phonological loop, where we ‘hear’ what we are currently articulating or hearing,
and an episodic buffer that is capable of short-term integration of information from multiple sources (see,
e.g., Baddeley and Hitch, 1974; Baddeley, 2000). Without rehearsal, information in working memory is
lost in a matter of seconds (Peterson and Peterson, 1959).

George Miller’s famous paper estimated the number of items that working memory can simultaneously
hold to be “the magical number seven plus or minus two” (Miller, 1956). Later estimates have generally
been even lower. Some theories do not count items; for instance, the concept of working memory in
the influential ACT-R model of cognition is based on the “degrees of activation” of items in long-term
memory – it is the total degree of simultaneous activation that is strictly limited (Anderson et al., 1996).
It has also been suggested that the auditory part of working memory is temporally constrained not by a
magic number but a “magic spell” (Schweickert and Boruff, 1986). Although the theories differ in their

1Working memory is often equated with short-term memory. Some theories distinguish between the two concepts, however.
Ericsson and Kintsch (1995), for instance, argue for the existence of long-term working memory, a domain-specific extension
of short-term memory within long-term memory that is created through extensive practice. This distinction between short-
term memory and working memory is unimportant for my present purposes. Where I write “working memory”, one may read
“short-term working memory” instead.
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details, there is a general agreement that working memory capacity is very limited, and that this limitation
is a key feature of the human cognitive system.

4.1.3 Chunking and automation help overcome the limitations of working memory
How can we accomplish anything at all sophisticated with such a limited working memory? The answer,
according to cognitive psychology, lies in the mechanisms of chunking information (Miller, 1956) and
automation of processing (Schneider and Shiffrin, 1977).

To remember a phone number or date, we do not memorize a sequence of individual integers such
as 0-4-0-0-5-1-5-3-8-8 or 0-6-0-3-2-0-1-0, but group the integers so that they form bigger chunks: 0400-
515-388 or 06-03-2010. Chunks often, but not always, carry meaning on their own (e.g., month, operator
code). A chunk, although composite, can be treated as a single item by working memory, allowing
us to process larger amounts of information simultaneously. As we become increasingly familiar with
information, we process it increasingly automatically, without paying attention to its components and
without having to use our working memory. Tuovinen (2000) uses fluent readers as an example: “they
do not try to read out individual letters, but process larger groups, words or groups of words, without
attending to individual letters or even words separately.”

What does this mean for learning? We learn something when we store it in long-term memory.
Working memory is a bottleneck that limits our access to long-term memory. Cognitive science suggests
that increasing one’s ability to deal with information in large chunks and ever more automatically is key
to learning and the growth of expertise. The following sections elaborate on this claim.

4.2 We store our generic knowledge as schemas
Schemas represent knowledge as stable patterns of relationships between elements describing
some classes of structures that are abstracted from specific instances and used to categorize
such instances. (Kalyuga, 2010, p. 48)

A schema is a mental structure that contains generic conceptual knowledge (see, e.g., Rumelhart and
Ortony, 1977; Rumelhart and Norman, 1978; Rumelhart, 1980; Anderson, 1977; Kalyuga, 2010). People
make use of schemas constantly, both as they reason about everyday objects and situations, and as they
solve problems. A person can have a schema of what a house is, of what going to a restaurant typically
involves, or of how to write a program that computes an average of given numbers. A schema of houses,
for example, may include the knowledge that a house is a type of building, that it consists of rooms, has
walls and windows, is typically made of wood, brick, or stone, probably has a rectilinear shape, normally
functions as a human dwelling, and is likely to be between 100 and 10,000 square feet in size (example
from Anderson, 2009, pp. 134–135).

A schema contains knowledge of the stereotypical properties and parts of the concept, process, or
situation it represents. The properties of a schema may involve other schemas, creating hierarchical
structures or networks of schemas; the concept of house is linked to the concepts of walls and windows,
for instance. Schemas may link to themselves as well, forming recursive structures (see, e.g., Rumelhart
and Ortony, 1977). Schemas reside in long-term memory; the human mind is capable of storing countless
complex schemas.

A generic schema allows us to make inferences about specific instances. For example, if someone
speaks of their own house, we can – and do – fairly safely assume certain things about it, such as its shape
(but we may be wrong, too). A schema “determines expectancies, organizes encoding, and systematically
distorts retrieval [of knowledge from memory] in the direction of internal consistency.” (Hintzman, 1986,
p. 424). Schemas do allow for unusual properties in specific instances. If we see a house made of glass,
we can still easily consider it a house, albeit untypical. Just how untypical an instance is allowed to be
to still be considered a member of a schema-based category depends on the schema and the individual,
and possibly even the time of day, as people do not always categorize instances consistently (see, e.g.,
Anderson, 2009, p. 136–138).

Schemas are created, extended, and modified through experience. Schema theorists vary on the
details, but they all make the same central claim: previously existing schemas in long-term memory
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play a decisive role in how and where new experiences are integrated into people’s mental representations.
Rumelhart and Norman (1978) identify three modes of learning. Accretion is the common, straightforward
accumulation of new information into existing schemas as more and more instances of a familiar concept
are encountered. Tuning means the continual minor adjustment of one’s existing schemas by constraining
and generalizing the generic conceptual categories that they represent and adjusting the typicality of the
values of schema properties. Finally, restructuring is a more dramatic change in mental representation
that results in novel conceptualizations. It is triggered by unfamiliar experiences and involves the creation
of new schemas, the reorganization, modification, or deletion of old schemas, and possibly abstraction
from known concepts. People tend to resist such radical restructuring, and dramatic changes in schemas
may take great time and effort. In all three forms of learning, the schemas that we already have determine
how we deal with new experiences.

Having a schema does not mean you ‘got it right’. New information is encoded – via accretion, tuning
and restructuring – in terms of existing domain-specific schemas, but not necessarily the ones the teacher
intended. Misconceptions (such as those discussed in Section 3.4; see also Appendix A) form when the
learner integrates new information into the wrong existing schema or uses a non-viable analogy to motivate
the creation of a new schema.

Broad vs. narrow definitions of schemas

The development of schema theory and the differing definitions given for schemas in the literature have
been discussed by Brewer (2002), among others; my short review below draws primarily on Brewer.

The origin of schema theory is typically attributed to Bartlett’s 1932 book Remembering, which
predates modern cognitive psychology by a couple of decades. Bartlett found that people filled in stories
with imaginary details they assumed to be true on the basis of the mental frameworks they used for
understanding and remembering information. Later, Ausubel’s (1968) subsumption theory of learning,
which involves hierarchical memory structures and emphasizes the role of prior knowledge, foreshadowed
the development of schema theory, as did the work of Jean Piaget. In the 1970s, Bartlett’s ideas were
revitalized by Minsky (1974), who sought to model humans’ cognitive structures in computer memory as
a part of the artificial intelligence movement. Schema theory was then established as a bona fide theory
of learning within the research communities of psychology and education in seminal papers by Rumelhart
(e.g., 1980) and Anderson (e.g., 1977). Around this time, it was noticed that schema theory explained
the results of many previous experiments, and it led to a proliferation of empirical studies. Since the turn
of the ’80s, schema theory has made a substantial impact on educational psychology and CER. Over the
past two decades, cognitive load theory (Section 4.5 below) has emerged as an influential offshoot of
schema theory.

Perhaps because varied groups of people have been interested in the concept over a number of decades
of early development, the word “schema” is not consistently used in the literature. There is a myriad
of ways in which schemas are described, but uses of the term appear to fall roughly in one of two
categories. The first corresponds to the way I have used the word above. In this usage, a schema is a
mental representation for ‘old’, generic conceptual knowledge. The knowledge is old in the sense that it
is based on previous experience and stored in long-term memory (rather than new in the sense of being
currently experienced and constructed in working memory), and generic in the sense that it deals with
conceptual categories rather than specific instances or contexts. The other, broader way to use “schema”
is to umbrella all kinds of knowledge structures with it. For instance, Derry (1996) describes schemas
as “virtually any memory structures”, examples including generic schemas (as per the narrower definition
above), situation-specific mental models, and phenomenological primitives (see Section 6.5).

Some authors have addressed this confusing terminological issue explicitly (e.g., Brewer, 1987, 2002;
Choi and Sato, 2006). Brewer notes that even the original authors of seminal schema theory papers were
inconsistent in their use of the term. He suggests that the narrow meaning is preferable, since the broad
interpretation of “schema” is redundant and problematic with respect to the explanatory power of schema
theory. I tend to agree with Brewer, and will continue throughout this thesis to use the word “schema”
in the narrower sense to mean structures for old generic knowledge.
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4.3 Schemas keep the complexity of problem solving in check
The discovery that the major difference between people who differed in ability was in terms
of what they held in long-term memory changed our view of cognition. [. . . ] Long-term
memory was not just used by humans to reminisce about the past but, rather, was a central
component of problem solving and thought. (Sweller, 2010a, p. 32)

4.3.1 Scripts and problem-solving schemas tell us what to do

The literature discusses various more specific types of schemas. An often-cited construct is the script or
event schema formulated by Schank and Abelson (1977). Scripts are schemas that encode knowledge of
recurring events and their stereotypical stages and other properties, and allow us to act comfortably and
efficiently in familiar situations. The event of a visit to a restaurant, which consists of typical stages like
ordering, eating, and paying, is a classic example. Similarly, a problem-solving schema tells us what to do
to accomplish a goal in a particular kind of situation. Sweller and Chandler provide a good example:

Someone who is competent at algebra will have a schema for multiplying out a denominator.
The schema will tell that person which of the infinite variety of algebraic equations is amenable
to multiplying out a denominator and the procedure for doing so. When faced with a problem
such as a/b = c, solve for a, we can immediately solve such a problem, despite the many
forms in which it could be presented, because our schema for this type of algebra problem
informs us, for example, that the solution requires multiplying out the denominator on the
left-hand side, irrespective of the complexity of the term on the right-hand side. Schemas,
stored in long-term memory, permit us to ignore the variety that would otherwise overwhelm
our working memory. (Sweller and Chandler, 1994, p. 187)

Schemas allow us to draw on our prior experience and general knowledge so as not to be overwhelmed by
the details of what we are currently experiencing. When we see an unfamiliar person – a specific instance of
a familiar, automated schema – we can easily tell that the person is a human and act accordingly, without
having to store or process every tiny detail of the person that our senses barrage us with. Schemas are
crucial to our success in whatever we do as they “allow us to carry out everyday activities with minimum
effort and to capitalize on the regularities of events and situations” (Preece et al., 1994, p. 128).

When faced with a complex problem to solve, we need to process various aspects of the problem and
its solution in working memory simultaneously. A problem-solving schema such as the algebra schema
described above allows us to ignore the specific details of the problem and recognize a more general
pattern for which we have a schema. When a schema is available, it allows the entire problem or a part
of the problem to be dealt with as a single chunk (see Section 4.1 above). In relation to one of their
experimental studies, Sweller and Chandler (1994) discuss the solving of a simple problem: marking a
point with given coordinates in a two-dimensional graphical coordinate system. They argue that for a
complete novice, solving this problem requires an understanding of roughly seven distinct items, e.g.,
the fact that x in P(x, y) refers to a location x on the x -axis. Where the complete beginner may be
overwhelmed, someone who has experience with such problems can incorporate the entire problem into a
single chunk that does not burden working memory greatly – or at all, if automated through practice.

4.3.2 Schemas are a key ingredient of expertise

Educational psychologists have long sought to understand the nature and development of expertise. On
the one hand, the goal has been to characterize the mental representations that experts have and the
ways in which experts put their knowledge to use when solving problems. On the other hand, researchers
have investigated the mental representations and associated processes of novices, and contrasted them
with those of experts. Through such comparisons, it is argued, we may better understand the changes
that take place as we learn, and thereby improve teaching and learning.

An easy explanation for the superior performance of experts in problem solving would be in their
superior ‘cognitive hardware’ such as a larger short-term working memory or superior intelligence. Early
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cognitive psychology also sought to explain expertise through general, domain-independent problem-
solving skills and thinking strategies. Undoubtedly, talent does play a part in the development of expertise,
and there is some transfer of expertise between related domains. However, many present-day cognitive
scientists argue that the main factor that sets experts apart from non-experts is not their ‘hardware’ or
any generic strategy that they possess, or their innate aptitude for a domain, but a readily accessible and
usable domain-specific knowledge base in the form of schemas, acquired through lengthy practice.

The results of Chi et al. (1982; Glaser and Chi, 1988), who studied experts and novices solving physics
problems, provide evidence of the key role that schemas play in the development of expertise. Chi et al.
found that both experts and novices use schemas of relevant types of physical objects (inclined planes, for
instance), but only experts use schemas which deal with more general principles such as the conservation
of energy, and which subsume object schemas. Correspondingly, novices classified problems (that is,
chose which schemas to activate) on the basis of the surface features of problems while experts were more
concerned with the underlying patterns and principles. As schemas form organized hierarchies, experts
could search for the required knowledge efficiently and quickly.

According to the psychological literature reviewed by Glaser and Chi (1988) and Winslow (1996), the
growth of expertise is a process that involves the formation of many mental representations, deep and
interlinked knowledge hierarchies, sophisticated strategies, and a rich arsenal of problem-solving patterns.
Experts perceive – within their own domain of expertise – large, meaningful patterns that permit fast and
error-free problem solving. They analyze problems in terms of principles rather than surface structures
and tend to spend a lot of time analyzing problems qualitatively. In contrast, novices’ untransferable
‘fragile knowledge’ (Perkins and Martin, 1986), lack of adequate mental representations, and tendency to
use generic and inefficient problem-solving strategies have been widely observed. These characteristics of
novices and experts have been documented in many disciplines, from chess to sports to programming.

The capacity of experts’ working memory is as limited as that of novices, but experts compensate for
this through efficient schema-based chunking. As experience grows, one forms schemas at ever higher
levels of abstraction, which allows representing ever larger parts of a problem or its solution as individual
chunks. Experts’ high degree of automation further alleviates the load on working memory.

A corollary of the schema theory view of expertise is that since expertise is tied to the extent and
quality of one’s knowledge base, expertise in one domain is not readily transferable to another. A number
of studies corroborate this claim (see, e.g., Glaser and Chi, 1988; Anderson, 2009, pp. 263–265).

4.3.3 An introductory course starts the novice on a long road of schema-building

Degree programs do not generally create fully-fledged experts. Dreyfus and Dreyfus (2000) identify
five stages in the development of expertise: 1) a novice learns context-independent facts and rules;
2) an advanced beginner starts to recognize more abstract patterns in situations; 3) a competent problem-
solver is capable of considering wholes and consciously choosing plans for achieving goals; 4) the level of
proficiency is characterized by the automation of planning, which is no longer completely conscious, and
5) an expert has a mature and practiced understanding that allows them to ‘see’ what to do. Reaching
expertise is a long process; cognitive psychologists speak of the “ten-year rule” in reference to the roughly
ten years, or 10,000 hours, of deliberate practice that it takes to become an expert in a domain (see
Willingham, 2009; Ericsson and Kintsch, 1995; Palumbo, 1990, and references therein). The goal of an
undergraduate program, then, is not (or should not be) to create experts but to help students take some
steps towards expertise and to prepare them to complete the journey on their own. As Winslow (1996)
says, “most of us would probably settle for a graduate who ranks between competent and proficient”.

Does it even make sense to speak of expertise in the context of introductory courses, the focus of
my present work? I believe it does. ‘Full expert status’ may not be a reasonable goal for entire degree
programs, and certainly is not one for introductory programming courses. Nevertheless, studies of expertise
do give us a sense of the direction in which novice learners should progress. Schema theory suggests that
the path to expertise is a path of knowledge-building. Novices should be helped to form fundamental
schemas that can serve as the building blocks of more complex ones, and gain practice in their use so
that they do not need to worry about the smallest details while solving increasingly complex problems.

Now let us turn to programming.
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Figure 4.2: This program, which determines the average of given numbers, features several programming
plans (adapted from Soloway, 1986).

4.4 People form and retrieve schemas when writing programs
Plenty of past research on how novices and experts program is based on cognitive psychology. Schema
theory has been particularly influential in this work.

4.4.1 Plan schemas store general solution patterns
Expertise in programming, as in other fields, is marked by an improved knowledge base of generic solutions.
Familiar problems for which a schema is available can be dealt with using more efficient strategies than
unfamiliar problems, enabling experts to program effectively. Compared to expert programmers, novice
programmers lack general schemas of ‘canned solutions’ to recurring problems and subproblems, which
hinders problem solving.

Plans and plan schemas

Research on problem-solving schemas in programming was particularly active in the 1980s, when it revolved
to a great extent around the pivotal and prolific figure of Elliot Soloway. Soloway and his colleagues used
the term “plan” for the stereotypical action structures that programmers use as they design, write, and
read programs. Consider the short program in Figure 4.2. Soloway (1986) presents an analysis of this
program in terms of the plans that have contributed to its construction. Plans at various levels meet the
subgoals of the programmer and combine to meet the overall goal of determining the average of given
numbers. A running-total-loop plan has been used to compute the sum of input values. A counter-loop
plan has been used to count the inputs. A division plan is used to compute a division. These three plans
combine to meet the goal of computing the average. A print plan is used to print out the result. The
running-total-loop plan and the counter-loop plans involve a stopping condition; a sentinel-controlled-loop
plan caters for this subgoal. A skip-guard plan is associated with the division plan to prevent division by
zero.

The example illustrates how, in order to produce a program, the programmer has applied schematic
knowledge at many different levels of abstraction, from an overall program plan to lower-level plans to
ever lower levels that are realized as just a single statement or expression. Plans are combined through
abutment (one after the other, e.g., print after calculating), nesting (e.g., printing within the guard plan)
and merging (e.g., the running-total-loop plan interleaves with the counter-loop plan) (Soloway, 1986).

The term “plan” requires a bit of clarification. Soloway and his colleagues used the word both as a term
for generic problem-solving schemas within programming and to refer to specific instantiations of those
generic patterns within solutions to particular problems. Rist (1989) makes note of this terminological
issue – which recalls the ‘broad vs. narrow schema’ debate from Section 4.2 – and proceeds to use separate
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terms for the two meanings. Following Rist’s lead, I will use the term plan schema to mean an abstract
problem-solving schema that mentally represents a generic solution to a generic problem, and plan to refer
to specific solutions in specific contexts (which may be instances of a generic plan schema known to the
programmer).

Plan schemas and programming expertise

There is considerable empirical evidence that plans and plan schemas are the basic cognitive chunks used
in designing and understanding programs.

Many publications have demonstrated how researchers can analyze programs in terms of their
constituent plans (e.g., Soloway et al., 1982, 1983; Spohrer et al., 1985; Soloway, 1986; Rist, 2004).
A number of empirical studies support the idea that programmers make use of plan schemas when
working on programming tasks (see, e.g., McKeithen et al., 1981; Soloway and Ehrlich, 1986; Soloway
et al., 1988a; Rist, 1989; Détienne, 1990). These studies have not only shown that novices are limited by
their relative lack of schemas but that experts, too, have difficulty with ‘unplanlike’ programs that do not
follow the schematic patterns the expert is accustomed to. It has been argued that plan schemas are the
single most important feature of the programming expert. On the basis of their empirical results, Spohrer
and Soloway (1986a,b) contended that novices’ lack of problem-solving schemas is a greater challenge for
educators than misconceptions about particular language features.

A prominent thread of research investigating the relationships between plan schemas, strategies, and
expertise runs through the CER literature. Immediately below, I will focus on the roles of schemas in
program writing. Program comprehension will be dealt with in Section 4.6.

4.4.2 Programming strategy depends on problem familiarity (read: schemas)
From the literature, three related dichotomous pairs of program implementation strategies rise to the fore:
top-down vs. bottom-up, forward vs. backward, and breadth-first vs. depth-first (Rist, 1989).

Top vs. bottom, forward vs. backward, breadth vs. depth

A top-down design strategy starts with an overall problem at a high level of abstraction and decomposes
it into subproblems. The subproblems are further decomposed until at the lowest level of the hierarchy,
solutions to subproblems are written as program code. Conversely, bottom-up design starts at a lower
level of abstraction to produce pieces of the solution, which are then used as a basis for reasoning about
and solving a higher-level problem, and joined together hierarchically until they fulfill the overall purpose
of the program.

Forward development means producing a program in the order in which it appears in the program
code. This is made possible by what Rist (1989) calls schema expansion: a previously known plan schema
is activated that specifies the solution steps that are needed. It is instantiated as a specific plan, and
applied to the particular situation so that the coding process reflects the order in which the solution is
mentally represented in the plan schema. In backward development, on the other hand, the programmer
goes back to earlier sections of code to make additions or modifications according to a plan that is created
on the fly during coding.

A breadth-first strategy is one in which all the subgoals and solutions at one level of abstraction are
dealt with uniformly before moving on to another level. For instance, a programmer using a top-down,
breadth-first strategy would solve all the subproblems at one level of abstraction, decomposing them
into smaller subsubproblems, before considering the solutions of the subsubproblems at an even lower
level of abstraction. Contrast this with a programmer using a top-down, depth-first strategy, who first
exhaustively solves a single subproblem by successively decomposing it into ever smaller problems until a
concrete solution is found, and only then considers how to solve the other subproblems.

Early studies: mixed findings

The early literature on empirical studies of experts’ and novices’ programming strategies has been reviewed
by Rist (1989; see also Visser and Hoc, 1990). I will summarize briefly.
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Jeffries et al. (1981) concluded that both novice and expert programmers used a decompositional top-
down strategy and forward development to create programs. The difference they found is that novices
used a depth-first strategy that concretized a subsolution as program code as soon as possible, whereas
experts used a breadth-first strategy that kept all the parts of the design equally abstract at any given
time. Anderson et al. (1984) also concluded that novices used template-based strategies that can be
characterized as top-down, forward-developing, and depth-first.

The difference between expert and novice programming strategies is not quite as straightforward as
these early studies might suggest, however. Guindon et al. (1987) report a study of expert designers in
which top-down design was rarely seen and expert strategies were instead characterized by exploratory
and serendipitous behavior suggestive of a bottom-up strategy. Visser (1987) found that an expert may
combine bottom-up and top-down strategies and shift between the two during the program authoring
process. Rist (1989) pointed out that when writing a program, novices tend to flounder and search
for a solution with little overall plan or organization. He observes on theoretical grounds that novice
programmers cannot possibly always use top-down strategies since they simply do not have the abstract
plan schemas that would allow a problem to be matched with a solution and decomposed into a set
of connected pieces. This observation is supported by the prior finding that novices have only low-level
representations of programming knowledge, whereas experts have representations at both the abstract
and concrete levels.

The gist of Rist: mixed strategies

The work of Adelson and Soloway (1985) hints at a solution to these mixed findings. They found that
when working with a familiar problem domain, expert programmers mentally simulated a solution at each
successively lower level of abstraction according to a top-down, forward-developing, breadth-first strategy.
However, in an unfamiliar domain where they lacked complete solutions, the experts reverted to a bottom-
up strategy involving simpler local models which they tested before combining such pieces to form a full
solutions.

Building on Adelson and Soloway’s work, Rist set out to explain the partially conflicting results on
programmer strategies. He presented a sophisticated, empirically supported theory of how people use
and create plan schemas during programming. I will describe the theory in brief; for more detail, see the
original publications (Rist, 1986, 1989, 1995, 2004).

According to Rist, people use top-down, forward-developing, breadth-first strategies to solve
programming problems whenever they can, that is, whenever a problem is familiar and they have a
suitable plan schema available. When confronted with unfamiliar or particularly difficult problems, people
revert to bottom-up, backward-developing, depth-first strategies in order to develop new solutions. Since
a problem and its solution may have parts that are familiar and others that are not, programmers alternate
between the two kinds of strategies. When a plan schema can be retrieved for an overall problem on a
high level of abstraction, it is used to produce a high-level solution in the order suggested by the schema.
Then each of the subproblems is addressed at a lower level of abstraction, retrieving and using a plan
schema for each, if possible. When a problem does not have a retrievable solution in memory, one needs to
be created. This is where the programmer reverts to a bottom-up, depth-first strategy, forming solutions
first at a very low, concrete level and combining them until the unfamiliar subproblem gets solved. This
process is characterized by backward development. When the previously unfamiliar problem is solved, a
new plan schema is formed and stored for later retrieval. With further practice, plan schemas become
increasingly abstract and their use increasingly automatic.

An implication of Rist’s theory is that none of the strategies are exclusive to novices or experts. The
key difference is that experts have more plan schemas, which are furthermore more abstract and apply to
a wider range of cases. It is precisely because experts have knowledge of more kinds of problems that they
can rely more on top-down, forward-developing, breadth-first strategies. For a complete beginner, any
programming problem will be unfamiliar and involve relatively slow, difficult and error-prone bottom-up,
backward, depth-first development.

By means of a longitudinal study of novices’ programming behavior, Rist (1989) found that as students
gained experience with programs of a particular kind, they shifted from bottom-up backward development
to top-down forward development. From an educational point of view, Rist’s finding is very interesting.
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It suggests that the growth of expertise is marked not by adding top-down strategies to one’s arsenal,
as has sometimes been assumed, but by being able to use top-down strategies as a result of growing
familiarity with problem types and their solutions. Furthermore, Rist’s theory explains other researchers’
findings that suggest that expert programmers spend significant amounts of time on analyzing problem
descriptions and planning what to do while novices tend to rush to concrete code and make local changes
rather than work on the big picture (Adelson and Soloway, 1985; Linn and Dalbey, 1985; Robins et al.,
2003, and references therein). It is worthwhile for experts to spend time on figuring out which schemas
to apply, but novices’ lack of schemas forces them to work bottom-up from a low abstraction level.

Variable-related schemas and roles of variables

Many plan schemas in programming are related to the use of variables. For instance, a simple programming
schema serves to explain the use of variables as counters whose values start at zero and are then repeatedly
incremented by one. Commonly, the ways in which a variable is used in a program are not defined by
a single line of code or even by consecutive lines; references to each variable are spread throughout
the program code. In the terminology of Letovsky and Soloway (1986), the plan for such a variable is
delocalized. Delocalization of a plan increases the cognitive load of a programmer trying to comprehend
it, since multiple separate units have to be kept in working memory simultaneously in order to figure out
the plan (more on cognitive load in Section 4.5 below). Novice programmers may find this cognitive load
very difficult to cope with.

Attempts to clarify delocalized plans have included documentation (Soloway et al., 1988b), software
tools (Sajaniemi and Niemeläinen, 1989), and techniques that make plans explicit. An example of the
latter line of work is that of Sajaniemi (2002) who studied the nature of variable-related plan schemas.
He proposed a set of roles of variables, which capture stereotypical patterns of variable use; an example
is the ‘most-wanted holder’, which stores a value that best matches a particular criterion amongst a
number of candidates (e.g., the largest integer encountered so far in a loop). Sajaniemi concluded
that 99% of the variables used in novice-level programs can be described using a small set of roles.
He further showed that his role set can be identified in expert programmers’ thinking and therefore
can be said to be an explication of experts’ tacit schematic knowledge (Sajaniemi and Navarro Prieto,
2005). Byckling and Sajaniemi (2006a,b) found that role-based teaching makes a difference to novice
programmers’ programming strategy: students taught using the roles of variables tended to use forward-
development more than students taught in a more traditional way, suggesting an improvement in schema
formation.

What about pedagogy?

The literature on programming strategies suggests that the formation of problem-solving schemas is a
key challenge of programming education. Novice programmers need to form schemas at multiple levels
of abstraction, from the basic building blocks to increasingly complex abstractions that ‘put the pieces
together’. It is through an improving knowledge base of schemas that the novice gradually becomes able
to employ more sophisticated strategies and work on programs in an increasingly top-down, forward-
developing way.

It has been suggested that novices’ programming strategy can depend on the tools used; Meerbaum-
Salant et al. (2011) report that Scratch – a visual programming environment for beginners (MIT Media
Lab, n.d.) – fosters an extremely bottom-up approach to program writing in which novices put visual
code components together with barely a thought for the big picture. On the other hand, Hu et al. (2012)
report positive results from a pedagogical reform in which students were taught to explicitly analyze goals
and form and merge plans in Scratch programs.

Many schema-theory-based recommendations for CS1 pedagogy call for plan schemas to be made
explicit in instruction. The roles of variables, mentioned above, are one concrete initiative; for more,
see Chapter 10 on CS1 teaching strategies. The importance of lower-level schemas of particular kinds of
statements and expressions should not be underestimated either; I will return to this point in Section 5.6
below.

The implications of schema theory have been expounded on by cognitive load theory, discussed next.
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4.5 Cognitive load strains the human working memory during learning
Cognitive load theory is a framework for investigating the relationships between the human cognitive
architecture (from Section 4.1), schema formation (Section 4.2), and the structure of the information
that one learns about.

The central theses of cognitive load theory are that people learn best when their working memory
is not strained too much or too little, and when as much as possible of the working memory load is
directed towards the formation of schemas. The requirements imposed on working memory – that is,
one’s cognitive load – depend on the structure of the information that needs to be processed, which may
in turn be manipulated through instructional design.

What is now known as cognitive load theory originates in Sweller’s (e.g., 1988) investigations of
problem solving. It builds on earlier theories of working memory and schema acquisition, and on the
concept of subjectively experienced ‘mental load’ from human factors science. The volumes edited by
Paas et al. (2003) and Plass et al. (2010) give excellent introductions to cognitive load theory; my
summary below draws especially on these sources.

4.5.1 Some cognitive load is unavoidable, some desirable, some undesirable
Traditional “triarchic” cognitive load theory divides working memory load into three components: intrinsic,
germane, and extraneous.

Intrinsic cognitive load is imposed upon the learner’s working memory by the material that is to
be learned and other aspects of the learning task. Intrinsic load hinges on element interactivity,
that is, the degree to which learning task involves interacting elements that must be held in working
memory simultaneously in order to succeed. Paas et al. (2003) use an example from photo editing:
learning to understand the interactions between changing color tones, darkness, and contrast requires the
consideration of each element simultaneously. Different materials and learning goals differ in element
interactivity. Element interactivity also crucially depends on the learner’s existing schemas, which
determine what constitutes an element. Intrinsic cognitive load is reduced by the learner’s prior knowledge
of the subject matter: as described in Section 4.1, a complex existing schema may be treated as a single
chunk, reducing the demand on working memory. A schema automated through practice may not impose
any cognitive load at all. Intrinsic cognitive load cannot be reduced without compromising the learning
outcomes of the present learning activity.

Germane cognitive load refers to working memory usage that is non-essential in the sense that it is
possible to carry out the task at hand without it, but that is nevertheless needed for learning. Germane
load contributes to the creation and enhancement of schemas in long-term memory, and the automation of
those schemas. For instance, the cognitive effort involved in noticing underlying similarities and principles
in superficially dissimilar examples constitutes germane cognitive load. In other words, germane cognitive
load is the cognitive load that is devoted to effortful learning.

Unnecessary content in learning materials, content that is not easy to access while solving a problem
but needs to be kept in mind, disturbing background noise, redundant instructions that need to be scanned
for new content, instruction that introduces unnecessarily many new topics at once, and verbose lists of
examples of factors causing extraneous cognitive load which appear at the beginnings of sentences that
fail to start by explaining what it is that they list, are examples of factors causing extraneous cognitive
load. Extraneous cognitive load is non-essential load that is unhelpful for learning about what is intended
to be learned about – and consequently often harmful. It is brought about by materials, instructional
setups, and other environmental factors.

Within cognitive load research, the types of load have generally been considered to be distinct and
additive, with the total cognitive load being the sum of the three components (Figure 4.3). Instruction
should be designed so that germane cognitive load is high. This implies that the sum of intrinsic and
extrinsic loads should not exceed working memory capacity. The theory warns that when intrinsic cognitive
load is high (as a result of insufficient prior knowledge and – consequently – high element interactivity),
the learner is likely to be overwhelmed by any extraneous load, and hard pressed to find capacity for
germane load. On the other hand, when intrinsic load is low, extraneous load is less of an issue; however,
the lack of germane cognitive load may still present a problem if the learner fails to put their mind to
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work (because of lack of motivation, for instance). Both scenarios, which are illustrated in Figure 4.3,
present challenges for learners and teachers.

While the threeway additive formulation of cognitive load theory may be overly simplistic – and has
been questioned in the recent literature2 – it serves to explain many of the interesting interactions between
types of cognitive load that have been documented and is sufficient for my present purposes in this thesis.

4.5.2 Cognitive load theory has many recommendations for instructional design
Cognitive load theory has also contributed more specific points concerning the conditions under which
meaningful learning is likely to take place. Researchers have found empirical evidence for a number of
conclusions – often termed ‘effects’ or ‘principles’ – regarding the impact of cognitive load on learning.
I summarize some of the main ones here; for more, see Plass et al. (2010) and references therein.3

Reducing extraneous load: the worked-out example effect and the completion effect

Some of the main findings of cognitive load theory concern learning by problem solving.
Problem-solving assignments are popular in education. However, cognitive load theory suggests that

just solving problems is not the best way to learn to solve problems. Learning through problem solving
is taxing for working memory, as resources have to be devoted to searching the problem for information
relevant to solving it. Novices lack powerful schemas that suggest solution strategies, so they resort
to weak generic strategies such as means-ends analysis, which require numerous elements to be kept in
working memory at a time (see, e.g., Sweller, 1988; Paas et al., 2003). Little to no capacity is left for
forming schemas in long-term memory to inform later problem solving. Some of this load is extraneous
as it can be reduced by using different modes of instruction.

According to the worked-out example effect, extraneous cognitive load is reduced by studying worked-
out examples of problems rather than solving the same problems oneself (see, e.g., Renkl, 2005). Worked-
out examples are expert-produced solutions to a problem, often including explanations of the steps that
were used to produce the solution. They are a staple of the cognitive-load-informed educational setting.
Studying worked-out examples enables learners with limited schemas to allocate more of their cognitive
capacity to germane load.4

A weakness of worked-out examples is that they may not engage the learner enough to induce germane
load. The effectiveness of the examples is negated if the learner does not study them attentively and
explain the given solution to themselves. The literature suggests that many learners are not naturally
inclined towards effective spontaneous self-explanation of worked-out examples (see Renkl, 1997; Renkl
et al., 1998; Renkl and Atkinson, 2003; Mayer and Alexander, 2011, and references therein).

Van Merriënboer et al. (e.g., 2003, and see Section 4.5.3 below) have noted a related completion
effect according to which learning is enhanced by doing not full-blown problem solving but completion
problems that provide the learner with a partial solution to be completed.

2Leading cognitive load theorists have recently come to emphasize the difficulty of telling apart intrinsic and germane
cognitive load and to question the existence of germane load as a distinct source of cognitive load (Schnotz and Kürschner,
2007; Sweller, 2010b; Kalyuga, 2011). Along these lines, Sweller (2010b) and Kalyuga (2011) have advanced a reformulation
of cognitive load theory which differentiates between two different aspects. The first aspect, element interactivity, corresponds
to the working memory demands imposed by a learning task on a fully motivated learner (with a particular extent of prior
knowledge) who utilizes their entire cognitive capacity. Overall element interactivity is the sum of intrinsic and extraneous
element interactivity. The second aspect is the actual working memory usage of a (possibly unmotivated) learner when
engaged in the learning task. This latter aspect depends on the former and also on factors such as motivation, which
determine how or whether the learner actually processes the material at hand and what elements of the material they focus
on. Working memory usage that is directed at processing intrinsic element interactivity is germane; other working memory
usage is extraneous. I feel that this is a very useful clarification of the fundamental concepts of cognitive load theory for the
future. However, in the present work, I remain with the better-established concepts of the traditional theory.

3I will discuss two more cognitive load effects, which are related to how information is presented – the modality effect
and the split-attention effect – in the context of a visualization system in Chapter 15.

4The worked-out example effect, like most of the cognitive load effects, has been documented in the context of individual
learning. Recent research on groupwork undertaken from a cognitive load perspective suggests that groups of novice learners
can deal with more complex tasks than individuals, as their joint information-processing capacity exceeds that of the individual,
despite the communication overheads (Kirschner, 2009). Some of the instructional recommendations from cognitive load
theory may only hold for individual learning.
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Figure 4.3: The different types of cognitive load in human working memory (as envisioned by traditional
cognitive load theory). Two different scenarios are illustrated which have resulted in too little
germane cognitive load.
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The effect of prior knowledge: the guidance-fading, expertise reversal, and redundancy effects

Cognitive load theorists often recommend using multiple worked-out examples or completion problems
as practice before a problem-solving task on the same topic. This emphasis on worked-out examples,
completion problems, and the like does not mean that students should not solve problems. On the
contrary, lower-load tasks serve to make problem-solving tasks better: they help in initial schema formation
so that subsequent problem-solving tasks can be tackled effectively. “Guidance can be relaxed only with
increased expertise as knowledge in long-term memory can take over from external guidance” (Kirschner
et al., 2006, p. 80). According to the guidance-fading effect, decreasing support which takes into account
learners’ increasing experience is superior to worked-out examples alone (see, e.g., Renkl, 2005). With
reference to the four-stage model of skill development of Anderson et al. (1997), Atkinson et al. (2000)
have argued that worked-out examples are likely to work best in the early phases of the development
of a cognitive skill, during which learners rely on analogies, have little practice, and are only starting to
construct abstract problem-solving rules.

The guidance-fading effect is a manifestation of the more general phenomenon of the expertise reversal
effect, which states that learning activities that are suitable for novices may become ineffective, or even
harmful, as experience grows. Conversely, activities that are unsuitable for novices are often suitable for
more advanced students. Several of the other cognitive load effects have been shown to be dependent on
expertise (Kalyuga et al., 2003; Kalyuga, 2005, and references therein).5

Part of the reason why the expertise reversal effect occurs is that guidance given to experts may in fact
hinder them, as they have to relate and compare the (to them unnecessary) guiding framework to their
existing knowledge to find out what is relevant. This is an example of the yet more general redundancy
effect, which states that presenting unnecessary information interferes with learning (see, e.g., Sweller,
2005).

Portioning intrinsic load: the isolated/interacting elements effect

The isolated/interacting elements effect states that “learning is enhanced if very high element interactivity
material is first presented as isolated elements followed by interacting elements versions rather than as
interacting elements form initially” (Plass et al., 2010, p. 30). This is essentially an endorsement of a
part-whole approach to learning in which learners initially deal with small parts of a topic, and are not
subjected to the complexity of the big picture until they have formed rudimentary schemas, however
incomplete, of the parts.

Part-whole approaches run the risk of resulting in poorly integrated piecemeal knowledge, but may be
worth the risk in the case of very highly interactive material, assuming that care is taken to foster the
integration of the parts initially learned.

Increasing germane load: the variability effect and the imagination effect

Two cognitive load effects deal in particular with how certain kinds of activities can increase germane
cognitive load.

The variable examples effect states that examples whose surface features are dissimilar to each other
are more effective than examples that look similar on the surface (Paas and van Merriënboer, 1994). The
variation encourages learners to identify the similarities between situations and thereby helps with the
creation of generic schemas that are suitable for transfer.

The imagination effect states that having learners imagine themselves carrying out procedures related
to worked-out examples enhances learning compared to having them simply carefully study the examples
for the same length of time. The imagination task encourages learners to make use of their available
cognitive capacity to mentally practice relevant skills (Cooper et al., 2001). However, to be effective,
imagination appears to require significant working memory resources available for germane load (that is,
the mental manipulation of and learning from the intrinsic content). Consequently, the imagination effect

5The expertise reversal effect is not a novelty discovered by cognitive load theorists. As discussed by Plass et al. (2010),
the studies on expertise reversal are effectively an extension of the aptitude–treatment interaction studies carried out since
the 1970s to examine the relationships between instructional methods and students’ personal characteristics.
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depends on prior knowledge in accordance with the expertise reversal effect: the literature suggests that
imagination tasks work best for learners with some experience and existing schemas, and poorly if at all
for beginners (Cooper et al., 2001; Kalyuga et al., 2003). On a related note, Renkl (1997) found that
anticipating solution steps while studying a worked-out example was an effective way of learning, but only
when the learner already had some prior knowledge.

Taking the effects into account

Van Merriënboer et al. (2003; van Merriënboer and Kirschner, 2007) present a general model for the
design of learning environments that is mindful of the various cognitive load effects. In their model (dubbed
4C/ID) students are given learning activities that are divided into “task classes” of increasing complexity.
Within each task class, the nature of the material covered is the same (that is, each activity has the
same element interactivity and relies on the same set of generic knowledge in the form of schemas). To
combat extraneous cognitive load while also catering for the expertise reversal effect, guidance fades within
each task class: learning within each task class begins with a strongly guided activity such as studying
a worked-out example, and ends with a considerably more challenging task such as solving a problem.
Intermediate activities may include completion tasks, for instance. As a result of the simple-to-complex
sequencing of task classes, the formation of schemas within a task class serves to reduce intrinsic load as
the learner tackles the next task class on the same topic. To increase germane cognitive load, the tasks
within each task class are designed to be variable in their surface features. To avoid overload during task
performance, information about the general principles that pertain to the task class is presented to students
before they tackle the activities of the task class (and is kept accessible throughout). However, procedural
information that helps with specific learning activities is integrated into the learning environment and
presented in a just-in-time fashion during the activities. Finally, part-task practice (‘etudes’ or ‘drills’ on a
decontextualized aspect) may be used for selected parts of complex tasks for which the learners urgently
need automated schemas.

The 4C/ID model is in many ways representative of cognitive load theorists’ advice on instructional
design. It underlines the need for deliberate practice and carefully designed guidance. It calls attention to
the efficacy of activities other than problem solving on the way towards building problem-solving ability. It
attends, via a managed learning environment, to the interplay between the element interactivity inherent
in the content of learning and the learner’s prior knowledge.

The design of learning environments is traditionally in the hands of the teacher. The impact of
learners’ personal goals on cognitive load is an open question that has not been much discussed in
connection with cognitive load theory (Gerjets and Scheiter, 2003). Cognitive load theory does, however,
highlight challenges in the use of highly learner-controlled learning environments. For instance, can a
learner make reliable judgments on the element interactivity of content they are yet to learn about?

4.5.3 Some effects of cognitive load on introductory programming have been
documented

There is a small body of cognitive-load-related research on the learning of introductory programming.
Shaffer et al. (2003) discuss the potential of cognitive load theory in computing education, review earlier
work, and observe that “the connection between cognitive load theory and the challenges faced by novice
computer science students has not been fully addressed”.

Van Merriënboer (1990; van Merriënboer and de Croock, 1992) found empirical support for the
completion effect in the context of introductory programming education. In two separate experiments,
students who modified and extended existing programs learned to write programs better than did others in
a control group that wrote programs from scratch. In a similar study with third-year students as subjects,
Nicholson and Fraser (1996) found no similar effect; Shaffer et al. (2003) speculate that the level of prior
knowledge of programming may be the reason behind these mixed findings.

A study of the impact of reading assignments was conducted by Linn and Clancy (1992), who compared
the performance of novices who designed and wrote their own programs to that of other novices who
instead studied expert commentaries on how to solve the same problem (worked-out examples, in other
words). Linn and Clancy conclude that such expert commentaries are eminently useful, and that in fact
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“writing a computer program is less helpful than having expert commentary for developing design skills,
even when test questions require application of templates that were used for writing the program”.

The results from these studies are in line with cognitive load theorists’ recommendations to use worked-
out examples and completion problems in addition to problem-solving tasks. These activities emphasize
the pedagogical value of reading code, as opposed to merely designing and writing it. In this respect,
cognitive load theory is compatible with the analyses of programming courses reviewed in Chapter 2,
according to which the goals of introductory programming courses are cognitively demanding, and with
the BRACElet project’s hypotheses as to how reading and writing skills are interdependent in terms of
their development (Chapter 3).

Robins (2010) discusses a related issue as he presents his hypothesis of why learners fail to cope
with introductory programming courses. One of the underlying reasons, Robins argues, is that basic
programming concepts are particularly densely connected to each other. In other words, introductory
programming has an unusually high intrinsic cognitive load. A related point was made earlier by du Boulay
(1986), who observed that programming is difficult to learn because the novice needs to deal with multiple
interwoven challenges at once: programming notation, runtime dynamics, the need to mentally represent
programs and their domain, tool use and the programming process, problem-solving schemas, and the
notion of programming in general.

The theory of threshold concepts (more on which in Chapter 9) suggests that certain perspectives
are particularly challenging to develop, in part because of the way they require multiple concepts to
be integrated. Such learning thresholds may involve particularly high intrinsic cognitive load. Program
dynamics, information hiding, and object interaction have been proposed as thresholds in introductory
computer programming.

As noted, advice on pedagogy that draws on cognitive load theory tends to emphasize the need for
teachers to carefully design direct, explicit guidance for learners (as opposed to student-directed, free
exploration of complexity). The advice concerning introductory programming pedagogy is no different.
I will return to cognitive-load-inspired pedagogies for CS1 in Chapter 10.

Cognitive load theory highlights how useful it is for novices to read plenty of program code. This brings
us to the topic of the last section in this chapter, program comprehension studies.

4.6 Both program and domain knowledge are essential for program
comprehension

A program comprehension model is a theoretical model of the mental representations that a programmer
forms as they familiarize themselves with a program. A program comprehension model may describe
the formation, use, structure, and/or content of those mental representations. Many different program
comprehension models have been proposed in the psychology of programming literature since the 1970s,
usually drawing on empirical investigations of novice and/or expert programmers. My review in this section
draws on the original studies cited below and on previous reviews of program comprehension models, in
particular those by von Mayrhauser and Vans (1995), Corritore and Wiedenbeck (2001), and Robins et al.
(2003); see also Schulte et al. (2010). I comment primarily on three prominent themes within the program
comprehension literature: the distinction between program and domain models, the distinction between
top-down vs. bottom-up comprehension strategies, and the effects of programming paradigm on program
comprehension.

4.6.1 Experts form multiple, layered models of programs

Program models and domain models

At least since the early program comprehension model presented by Brooks (1983), most program
comprehension models have posited two components within people’s mental representations of programs:
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a program model and a domain model (in addition to various other structures posited by different theorists).
These constructs are sometimes called by different names, and the definitions differ in their details, but
the basic concepts are widely shared. A program model is a mental representation of the program itself
such as the program text, the elementary operations the code performs (e.g., assignments, function calls),
and the control flow of the program. A domain model is a mental representation of the problem that the
programmer is trying to solve and its solution. It contains knowledge about the ‘world of the problem’,
e.g., its components, their relationships, the data flow between components, and the purpose of the
program overall, as well as the goals of its subprograms. Both program and domain models can contain
knowledge of both static and dynamic aspects of a program.

The division between program and domain models in CER was influenced by the text comprehension
studies of van Dijk and Kintsch (1983), who distinguished between a textbase (a representation of the
semantics of a text that has been read) and a situation model (a representation of the world that the
text is about). Program and domain models are not schemas in the sense of general knowledge, but their
formation is guided by schemas and they incorporate elements of instantiated schemas.

Top-down or bottom-up? (The answer is in schemas.)

In Section 4.4, we saw a mix of early research results suggesting top-down program authoring strategies on
the one hand and bottom-up strategies on the other. A similarly mixed set of findings characterized early
program comprehension studies. Consequently, some early models emphasized the role of hypotheses of
program behavior at a high level, recognizing common patterns in code and applying the corresponding
plan schemas in a top-down way to make sense of a program (Brooks, 1983; Soloway and Ehrlich, 1986).
Others found evidence for a bottom-up view of program comprehension, where a detailed program model
is formed before a more abstract domain model (Pennington, 1987a,b; Corritore and Wiedenbeck, 1991;
Bergantz and Hassell, 1991).

In program authoring studies, Rist’s theory of schema formation (Section 4.4.2 above) explains
how programmers mix top-down and bottom-up strategies depending on the availability of retrievable
plan schemas. Similarly, researchers have presented program comprehension models according to which
comprehenders use a mix of top-down and bottom-up strategies in opportunistic ways (von Mayrhauser
and Vans, 1995; Corritore and Wiedenbeck, 2001, and references therein). When programmers seek to
understand a program in an unfamiliar domain, they tend towards bottom-up comprehension strategies
in which they first construct a program model. The program model allows the programmer to reason
about the program’s control flow, and is used to develop a domain model that deals with data flow and
the purpose of program components. A top-down approach is used when constructing hypotheses about
program behavior is possible, that is, when the domain is familiar enough. The direction of comprehension
may change frequently during a comprehension process if parts of the program differ from each other in
terms of familiarity or difficulty.

Wiedenbeck et al. (1993) studied the characteristics of experts’ and novices’ mental representations
of programs and concluded that experts’ mental representations are hierarchical and multilayered, contain
explicit mappings between the different layers, are founded on the recognition of basic patterns (schemas),
and are well connected internally and well grounded in the program text. Novices’ mental representations
exhibited these characteristics only to a much lesser extent. As in the case of program writing, experts
can rely more on top-down comprehension strategies since they are familiar with more domains, problems,
and solutions.

Paradigm matters for comprehension strategy

Research suggests that the programming paradigm used can make a difference in program comprehension.
In particular, the paradigm influences the order in which program and domain knowledge is formed during
the comprehension process.

Within the paradigms of procedural programming (Pennington, 1987a,b; Corritore and Wiedenbeck,
1991) and logic programming (Bergantz and Hassell, 1991), the literature suggests that when studying a
program, programmers tend to construct first a program model, then a domain model. Results from object-
oriented programming have been different, however. Burkhardt et al. (1997, 2002) extended Pennington’s

49



model of program comprehension to object-oriented programming. They found that people studying
object-oriented programs formed a domain model early on during the comprehension process. This, the
authors argue, is due to the nature of object-orientation, which emphasizes modeling the domain as objects
and classes at the expense of program model aspects such as control flow. The results of Corritore and
Wiedenbeck (2001) point in the same direction, and also suggest that object-oriented experts tend to use
top-down strategies more than procedural experts do. Khazaei and Jackson (2002) found that, from the
program comprehension perspective, event-driven programming resembles OOP rather than procedural
programming in its emphasis on domain knowledge.

4.6.2 Novices need to learn to form program and domain models

Let us now consider program comprehension from the perspective of introductory programming education.
Some research results point at a learning hierarchy of program comprehension skills, which, interestingly,
may be different in different programming paradigms.

Paradigm matters for learning to comprehend

Corritore and Wiedenbeck (1991) studied novices’ comprehension of procedural programs. Their study
suggests that novices first learn to analyze programs in terms of program models, and later learn to
develop domain models as they gain expertise. That is, the order in which people learn to form each
model is the same as the order in which they form these models while studying a particular program,
which was discussed above. Follow-up work on procedural programming tends to support Corritore and
Wiedenbeck’s findings: Wiedenbeck and her colleagues found that when studying procedural programs,
novices formed mental representations that were stronger in terms of detailed program knowledge than in
terms of knowledge of program function (Wiedenbeck and Ramalingam, 1999; Wiedenbeck et al., 1999).

Some work has been done to investigate the relationship between the program and domain models
of novice programmers taught in an object-oriented way. Wiedenbeck and Ramalingam (1999) studied
students taking their second course in programming. They found that when reading short object-oriented
programs, the students developed mental representations that were strong in terms of knowledge of
program function (the domain model) but weaker in terms of detailed program knowledge (the program
model). This is in contrast to the models that the same students constructed when studying procedural
programs, where the relative strengths and weaknesses of the mental representations were the opposite.
More specifically, Wiedenbeck and Ramalingam report that the novices who performed better overall did
equally well with both programs of both paradigms, with a similar pattern of errors in both program and
domain knowledge. However, the novices who performed worse were different: the lower-performing half
developed a better program model than domain model of the procedural programs they read, but a better
domain model than program model of the object-oriented programs. In another paper, Wiedenbeck et al.
(1999) compare novices taught using the object-oriented paradigm to novices taught procedurally. Both
groups performed more or less equally well when reading short programs, but with different patterns of
errors.

One plausible interpretation of the results of Wiedenbeck and her colleagues is that object-orientation
changes the learning path of novice programmers: learning proceeds from being able to construct a domain
model towards being able to construct a program model. This contrasts with the results from procedural
program comprehension studies.

Pedagogical implications

Recent work by Schulte (2008; Schulte et al., 2010) has sought to translate the psychology of program
comprehension into educational practice. This initiative is timely, as despite there being a sizable body
of theoretical work on program comprehension, few educators have drawn substantially on this work (as
reviewed by Schulte et al., 2010).

Schulte et al. (2010) suggest that CS1 teachers should make it their business to foster students’
ability to glean multiple kinds of information from reading a program, to form connections between pieces
of program-related information, and thereby to develop a holistic understanding of the program. They
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further point out that the direction of the teaching and learning sequence is a pedagogical choice: should
one start with learning about programs’ structure in terms of code and its runtime dynamics (to build a
program model) or does one initially rely on domain knowledge? This question can be considered from
the point of view of what is known about learning to comprehend programs in different programming
paradigms. Where novices initially (naturally?) focus on building a program model – as seems to be
the case in procedural programming – does this mean that they have less trouble with that aspect and
teaching should focus on helping them form a domain model? Conversely, do object-oriented novices need
additional help with the program model, as their paradigm primarily stresses the domain model?

Existing research does not provide unambiguous answers to these questions. Perhaps the most
important message that we can take from program comprehension studies at the present time is that
any introductory programming course should – in one way or another – teach students to build both
program models and domain models when reading programs, and to relate the two.
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Chapter 5

Psychologists Also Say: We Form Causal
Mental Models of the Systems Around Us

In interacting with the environment, with others, and with the artefacts of technology, people
form internal, mental models of themselves and of the things with which they are interacting.
These models provide predictive and explanatory power for understanding the interaction.
(Norman, 1983)

In this chapter, I stay with cognitive psychology as I turn to theories of mental models and their implications
for learning to program.

Section 5.1 below outlines the general properties of what are known as mental models. Section 5.2
elaborates on what the literature has to say about mental model formation and quality. Section 5.3
introduces the notion of a ‘conceptual model’ that may be employed as a pedagogical device for learning
about a system. Section 5.4 brings us to programming, and one of the pivotal concepts of this thesis:
the ‘notional machine’, that is, the runtime mechanism which novice programmers must learn to control
via programming, and which they need effective mental models of. Section 5.5 discusses the challenges
of the step-by-step tracing of programs, a key skill that novices struggle with, in part because of poor
mental models of the notional machine.

In Section 5.6, I ask whether we should be more concerned about the lack of problem-solving skills
and schemas, about misconceptions concerning fundamental concepts, or about the lack of tracing ability.
To foreshadow my conclusion, each issue is important, and there is an argument to be made that
understanding the role in program execution of the computer – the notional machine – is fundamental to
each of them.

The final section, 5.7, is more generic. I wrap up the review of theories of cognition from the previous
chapter and this one by pointing out and briefly discussing some criticisms of cognitivist approaches to
educational research.

5.1 Mental models help us deal with our complex environment
Schema theory deals with the growth of expertise and the forming of generic knowledge through experience.
Various scholars (e.g., Preece et al., 1994; Brewer, 2002) have argued that the generic concepts embodied
in schemas are not sufficient in themselves to explain how humans deal with objects and systems –
including ones that are unfamiliar to them. This is where mental model theory steps in.

A mental model is a mental structure that represents some aspect of one’s environment. A mental
model is often about a specific thing or system rather than a generic concept. For instance, I have mental
models of myself, of my wife, and of the TeXlipse software system that I am using to write this text. These
mental models, which I have formed in part consciously and in part unconsciously, allow me to reason
about how these specific aspects of my environment function in different circumstances. The concept
of mental model has been applied to various disciplines, such as human–computer interaction, physics,
the design of everyday objects, computer programming, ecology, and astronomy (see, e.g., references in
Rouse and Morris, 1986; Schumacher and Czerwinski, 1992; Markman and Gentner, 2001). In particular,
mental model theorists have been interested in the interactions between humans and causal systems.
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5.1.1 We use mental models to interact with causal systems

Causal vs. logical mental models

It is necessary at this point to differentiate between two influential threads of research on constructs called
mental models.

The term “mental model” received wide recognition after its introduction to cognitive psychology
in the early 1980s. The two main threads of research on mental models are often attributed to the
near-simultaneous publication of two books titled Mental Models, which elaborated in two different ways
on Craik’s (1943) earlier notion of “models of reality”. The articles in the volume edited by Gentner
and Stevens (1983) greatly influenced research into the kinds of mental representations people store
about physical and software systems. The book by Johnson-Laird (1983) is seminal to a body of work
that investigates a certain kind of situation-specific mental representation that people create in working
memory to help them reason about logical problems. Markman and Gentner (2001) term mental models as
described in the Gentner and Stevens book causal mental models and those in Johnson-Laird’s research
tradition logical mental models. Logical mental models are not of interest for my present purposes;
whenever I write about “mental models” in this thesis, I refer to causal mental models.1

Mental models of systems

People form causal mental models of all manner of things. Schumacher and Czerwinski (1992) note that
while one can have a mental model of a marriage or a social environment, not all topics are equally well
represented on the research agenda. Much of the research on mental models has focused on the way people
interact with and think about complex physical and software systems that involve causal mechanisms (e.g.,
an electrical circuit, a word processor). The mental model is a theoretical construct posited to explain
how people describe the purpose and underlying mechanisms of such systems to themselves and how they
predict future system states. This emphasis stems partially from arbitrary historical reasons that arise
from research tradition2 and partially from practical reasons: “We would argue that experts in computer
systems are easier to define than experts in marriage.” (Schumacher and Czerwinski, 1992)

Research does exist on causal mental models that is not concerned with humans’ relationships with
technical systems. However, I will limit my discussion to causal mental models of technical systems.

Researchers have further sought to identify the features that mental models of systems have in general,
the characteristics that distinguish between useful and not-so-useful mental models, the transferability
of the knowledge stored in mental models, and the relationships between learning and mental model
construction. I will comment on each of these topics below.

5.1.2 Research has explored the characteristics of mental models
According to Norman’s (1983) seminal description, mental models:

• reflect people’s beliefs about the systems they use and about their own limitations, and include
statements about the degree of uncertainty people feel about different aspects of their knowledge;

• provide parsimonious, simplified explanations of complex phenomena;

• often contain only incomplete, partial descriptions of operations, and may contain huge areas of
uncertainty;

• are ‘unscientific’ and imprecise, and often based on guesswork and naïve assumptions and beliefs,
as well as “superstitious” rules that “seem to work” even if they make no sense;

1The body – or rather, bodies – of research on mental models make up a complex terminological and conceptual tangle.
As with the word “schema” (Section 4.2), some authors use “mental model” as an umbrella term for all knowledge, a practice
that has been criticized by authors such as Rouse and Morris (1986). There are numerous other more or less idiosyncratic
ways of using the term in the literature, which I will not cover here.

2The focus on causal systems and devices can be traced back to human–machine interaction studies in the 1960s and
a body of research that investigates process control: the manual control of complex machines and, later, the supervisory
control of increasingly automatic machines (Rouse and Morris, 1986; Wickens, 1996, and references therein).
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• are commonly deficient in a number of ways, perhaps including contradictory, erroneous, and
unnecessary concepts;

• lack firm boundaries, so that it may be unclear to the person exactly what aspects or parts of a
system their model covers – even in cases where the model is complete and correct;

• evolve over time as people interact with systems and modify their models to get workable results;

• are liable to change at any time; and

• can be ‘run’ to mentally simulate and predict system behavior, although people’s ability to run
models is limited.

People commonly confuse or combine mental models of similar systems with each other. One may also
have multiple mental models of a single system. Multiple models may cover different parts of the system
in a non-overlapping and complementary way, or they may be parallel – perhaps contradictory – models
of the same parts. Parallel models may also operate on different levels of abstraction with each other
(e.g., one model describes the physical aspects of a system and another its functional purpose).

Mental models evolve in long-term memory. When we reason about an object or a situation, we use
a mental model of it; when necessary, we construct new mental models. Schumacher and Czerwinski
distinguish between studying stable mental models that predate the need to use them and derived mental
models, which are created when a situation calls for them. A derived mental model can be stored or
forgotten right after it has been processed. If we have related schemas, activating them contributes to
the kind of mental model we construct as our prior generic knowledge affects the way in which we see
new instances. Conversely, aspects of the mental models of similar instances may be abstracted into a
more general schema. Metaphors and analogies can also play a part in constructing and evolving a mental
model (see, e.g., Gentner and Gentner, 1983; Schumacher and Czerwinski, 1992). Mental models are
often not the product of deliberate reasoning; they can be formed intuitively and quite unconsciously.

Like schemas, mental models have been argued to be part of what sets the expert apart from the
novice. Experts rely on analogies based on existing mental models as they encounter new situations that
require them to form new models – as novices do. However, experts’ mental models are robust, based
on a principled understanding of system components, and allow for unanticipated situations to be dealt
with (de Kleer and Brown, 1981). Because uncertainty about system capabilities can lead to trying out
multiple approaches, novices tend to rely more on multiple inconsistent causal mental models of systems,
while experts are less likely to do so (see Schumacher and Czerwinski, 1992, and references therein).
Compared to the ad hoc naïve models often employed by novices, experts’ mental representations are
relatively stable as the result of lengthy experience.

What does a mental model consist of? Researchers vary in how they describe the internal structure of
mental models, with some emphasizing their role as collections of knowledge, others the role of metaphors
and analogies, and yet others the role of procedural knowledge. Ways of describing the structure of
mental models include “topologies of device models” (de Kleer and Brown, 1983) and “homomorphs of
physical systems” (Moray, 1990). On the other hand, many authors do not concern themselves with
the internal structure of mental models. Jonassen and Henning (1996) argue that mental models are
inherently epistemic – that is, the mental models themselves affect how we understand and express
them – and that therefore their actual contents are not readily knowable by others. Still, Jonassen and
Henning continue, researchers can gain information about these models by eliciting people’s structural
and procedural knowledge of systems, as well as the metaphors and visualizations people use. For the
purposes of the present thesis, the internal structure of mental models is not important.

5.1.3 Mental models are useful but fallible

One of the reasons that mental models are so important is that for the individuals who hold
them, those models have a value and reality all their own. Individuals believe in them, often
without direct reference to their accuracy or to their level of completeness, and are reluctant
to give them up. (Westbrook, 2006)
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Mental models allow users to be comfortable with complex systems. Norman (1983) suggested that
people rely on their mental models to develop behavior patterns that make them feel more secure about
how they interact with systems, even when they know what they are doing is not necessary. Markman
(1999, p. 266) further points out that people do not assess their mental models for completeness, but are
content with partial knowledge and may not notice the limits of what they know. Mental models need
to be only minimally viable to be maintained, and they do not even need to be accurate for some system
users to feel they are fully satisfactory – an “ignorance is bliss” approach, as Westbrook (2006) puts it.

While mental models are clearly useful, they are also potentially dangerous. An inaccurate mental
model will lead to mistakes. Kempton’s (1986) research contributes the example of the thermostat:
mental models based on ill-fitting analogies to, say, car accelerators, lead people to think that turning the
thermostat up to ‘full throttle’ will heat the home faster. A poor mental model of a computer programming
environment will result in bugs. Even though people themselves do not require their mental models to
be complete and accurate in order to be used, they “certainly function with varying levels of efficiency
and effectiveness as they employ mental models that are inaccurate and/or incomplete” (Westbrook,
2006). A further complication is that although models can be developed or corrected through practice
and instruction, people often cling to emotionally comfortable and familiar existing models.

‘Running’ a model

According to Norman’s description above, mental models are ‘runnable’. This means that people can use
mental models to reason about systems in particular situations, to envision with the mind’s eye how a
system works, and to predict the future (or past) behavior and states of a system given a set of initial
conditions (see, e.g., de Kleer and Brown, 1981, 1983; Markman and Gentner, 2001). For instance, people
can run their mental models to predict the trajectories of colliding balls in a physical system, the behavior
of an existing software system under given parameters, or the behavior of a computer program which they
are presently designing.

Running a mental model of a system is often called mental simulation of the system. I will use this
term below.

Mental simulation is performed in working memory. It often involves visual imagery and may have a
motor component. Since working memory capacity is very limited, it comes as no surprise that researchers
have found that mental simulations involve only a very small number of factors. According to Klein (1999),
for instance, even experts’ mental simulations rarely involve more than three factors (or “moving parts”)
and six transition states (stages). Simulating a system’s behavior at a low level of abstraction can fail as
a result of too many variables or states.

Researchers (e.g., de Kleer and Brown, 1981; Markman and Gentner, 2001) have emphasized the
often qualitative nature of mental simulations, meaning that simulations tend to be based on relative
properties rather than specific quantities. People do not calculate the specific values of the variables
involved in a simulation. Rather, they reason about relative properties such as relative speed, and relative
mass in a physical system. Qualitative simulation does not require the significant computation that would
be necessary to carry out detailed quantitative simulations. Since the simulation process is demanding,
people shift to using learned rules and cached results as they gain experience with the system.

While the level of abstraction must not be too low, simulation at an excessively high level of abstraction
will not produce working solutions to problems either, and even when the overall level of abstraction is
appropriate, people tend to neglect or abstract out important information. To solve problems successfully,
it is crucial to simulate systems at a level of abstraction that is just right for the problem at hand, and to
focus exactly on those factors that are important to produce the kind of prediction or solution aimed for.
To do so is difficult and requires considerable experience (Klein, 1999; Markman and Gentner, 2001).

5.2 Eventually, a mental model can store robust, transferable knowledge
In this section, I describe three different theoretical frameworks that give insights into the transferability
of the knowledge stored in mental models. Schumacher’s theory describes mental model formation as
a three-stage sequence that culminates in abstraction from specific models to generic knowledge at the
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expert stage. De Kleer and Brown characterize mental models in terms of their adherence to certain
robustness principles, and suggest that robust models allow better transfer to new situations. Finally,
Wickens and Kessel’s studies show that certain kinds of learning activities are better than others at
fostering the creation of mental models that transfer to similar tasks.

Schumacher: stages of model formation

Schumacher proposed a theory of forming mental representations of causal systems, which is empirically
based and consistent with a number of related theories (Schumacher, 1987; Schumacher and Czerwinski,
1992). A three-stage sequence describes the acquisition of both specific and generic knowledge, with the
latter arising from the recognition of common features in the former.

1. During the pretheoretic stage, an initial mental model of a specific system is formed by a user of
the system. The initial model is a collection of retrieved experiences of superficially similar systems
(e.g., other systems having a similar physical appearance). If no such experiences are found in
memory, performance in using the system is reduced.

2. During the experiential stage, some understanding of causal relationships emerges through prolonged
exposure to the system, even if the understanding is not supported by any superficial similarities to
other systems. Knowledge embodied in the mental model is not yet readily transferable to other
systems unless they are superficially very similar to the known system. During the experiential stage,
the mental model becomes increasingly well ingrained.

3. During the expert stage, generic information is abstracted from multiple system representations.
The user easily recognizes systemic patterns of behavior and effortlessly retrieves old knowledge
about systems. Knowledge is easily transferred across instantiations of a system type, even when
the system instances are superficially dissimilar.

This learning sequence provides a platform for making several points.
First, since previously known instances are used as a basis for learning, prior knowledge plays a key

role in the acquisition of knowledge, both about specific systems and when abstracting to the general
case at the expert stage.

Second, the early stages of learning about a system depend greatly on the superficial characteristics
of systems. Many writers on mental models have noted the role played in mental model formation by
social norms and schemas related to the surface structure of the system. Similar GUI controls in software
applications create superficial similarities between systems, for instance.

Third, the experiential stage, which is often quite long, highlights the difficulty of transferring
knowledge from one mental model to another. According to Schumacher and Gentner (1988), the less
superficially similar two systems are, the worse the transfer is, even when the systems are functionally
isomorphic. It is unrealistic to expect the transfer of a mental model before it is well ingrained.

Fourth, it is commonly easier to form some kind of pretheoretical mental model based on surface
similarities than it is to substantially alter one’s existing model during the experiential stage. As mentioned
earlier, people tend to cling to their existing models. Moray (whose work is reviewed by Schumacher and
Czerwinski, 1992) found that changing one’s mental model took significantly longer than it took to
originally form an initial model of similar complexity. Making matters worse is that mere coincidences can
reinforce people’s confidence in their existing yet flawed models (Besnard et al., 2004).

De Kleer and Brown: robustness

De Kleer and Brown’s (1981; 1983) work on mental models provides another perspective on knowledge
transfer. Using electrical devices as examples, they studied the mental models that people construct.
De Kleer and Brown stressed the importance of knowledge that can be used to understand various
systems, as “any single device however complex is of no fundamental importance”. They argued that to
be as useful as possible, a mental model should be internally consistent and correspond behaviorally to
the actual device under consideration. Further, they argued that only certain kinds of mental models,
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meeting certain “esthetic principles”, lend themselves to answering unanticipated questions or predicting
the consequences of novel situations. They contended that using such mental models, which they termed
robust, is characteristic of expert behavior.

De Kleer and Brown’s theory defines mental models as topologies of submodels that represent
components of the system. Each submodel is a collection of rules that describe the causal behavior of a
component. Robustness arises out of the component models. The better a mental model’s component
models meet the following principles, the more robust the overall model is.

• The no-function-in-structure principle: the rules that specify the behavior of a system component
are context free. That is, they are completely independent of how the overall system functions. For
instance, the rules that describe how a switch in an electric circuit works must not refer, not even
implicitly, to the function of the whole circuit. This is the most central of the principles that a
robust model must follow.

• The locality principle: the rules that specify the behavior of a system component are represented
only in terms of the internal aspects of the component and its connections to other components,
not in terms of the internal aspects of other components. For instance, the rules that describe a
switch in an electrical circuit must not depend on the internal state of any other component in the
circuit. The locality principle helps ensure that the no-function-in-structure principle is met.

• The weak causality principle: the rules of the mental model attribute each event in the system to a
direct cause. The reasoning process involved in determining the next state does not depend on any
“indirect arguments”. For instance, what happens next to a component in an electrical circuit must
be directly attributable to some local cause rather than indirectly inferred by elaborately reasoning
about other components. The weak causality principle is important for the efficient running of the
mental model.

• The deletion principle: the mental model should not predict that the system will work properly even
when a vital component is removed.

An overarching aspect of robust models is that the components of the model are understood in terms of
general knowledge that pertains to those components rather than specific knowledge that pertains to the
particular configuration of the components. A non-robust model may serve for mental simulations of a
particular system under normal circumstances. A robust model is needed for transferring the knowledge
embodied in a mental model to a similar but novel problem. A robust model is also needed to mentally
simulate exceptional situations such as when a component malfunctions or a change to the system is
either made or planned. This makes robust models highly desirable.

Wickens and Kessel: transferable models through active learning

Wickens and Kessel’s work (see Kessel and Wickens, 1982; Wickens, 1996; Schumacher and Czerwinski,
1992) provides another perspective on mental model formation. They studied the performance of people
trained alternatively as monitors, who supervise a complex technological system, or as controllers, who
control the system manually. As one would expect, Wickens and Kessel found that training in system
monitoring improves people’s monitoring skills, and training in controlling a system improves controlling
skills. However, and significantly, they also found that the controllers could transfer their skills to
monitoring tasks, while the reverse was not true of the monitors. The controllers were also found to
be better at detecting system faults from subtle cues that escaped the attention of the monitors. Wickens
and Kessel inferred that the two kinds of training led to different kinds of internal models being formed.
Process control researchers evoke worrying images of supervisors of automated nuclear power plants
trained to monitor rather than to control, and of airplane pilots whose training is excessively based on
autopiloting.

Wickens and Kessel’s results are important as they show how people doing similar yet different tasks
on the same system develop different kinds of mental representations and different kinds of expertise. In
particular, a more passive task resulted in worse learning. This is not the last time that we will run into
this thought on these pages.
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5.3 Teachers employ conceptual models as explanations of systems
Designing, learning about, and using a system such as a software or household application involve several
different models. The users and the designers of a system have their own understandings of it, the designer
has an idea of what the system’s users are like, and explanatory material can be presented to users to
help them interact with the system. In the field of human–computer interaction, these different models,
mental and otherwise, have been called by such a variety of names that it prompted Turner and Bélanger
(1996) to write a paper specifically to “escape Babel” by sorting out terminological issues regarding causal
mental models. Their take is paraphrased in Table 5.1.

Table 5.1: Terms related to mental models of systems, adapted from Turner and Bélanger (1996)

Term Definition

target system T
A system that is designed, used, or learned about,
e.g., a piece of software.

design model MD(T ) A designer’s mental model of the target system.

user model MD(U)
A designer’s mental model of the (stereotyped)
user of the system.

system image I(T )
The parts of the target system that are visible to
its users, e.g., displays, controls, help files.

user’s model MU (T ) A user’s mental model of the target system.

conceptual
model C (T ) An explanation of how the target system works.

A conceptual model is not a mental model but an explanation of a system deliberately created by a
system designer, a teacher, or someone else. Its purpose is to explain a system’s structure and workings
to potential users. A conceptual model may be just a simple metaphor or analogy, or a more complex
explanation of the system. The aim is usually to give an accurate and consistent account of the system,
but conceptual models can be incomplete and even somewhat inaccurate if the author of the model deems
it appropriate for present purposes. In other words, the purpose of a conceptual model is to present some
or all of the content of a design model in a pedagogically motivated way to facilitate the creation of
a viable mental model. A conceptual model may be worked into the system itself, attached to it as
documentation, or presented to users separately.

Conceptual models have been shown to be useful in many contexts. Schumacher and Czerwinski (1992)
describe what a typical study of mental models is like: one group of learners is given procedural instructions
on how to control a system (‘what to do’) while another group is given ‘how-it-works’ knowledge (a
conceptual model). According to Schumacher and Czerwinski’s review, the typical study concludes that
those taught using a conceptual model demonstrate better performance.

Let us now take the general psychology of this chapter into the context of programming education.

5.4 The novice programmer needs to tame a ‘notional machine’
The discussion in Chapter 4 highlighted the fact that writing and reading programs requires mental
representations of problem-solving patterns as well as models of the program itself and the problem
domain. There is another important entity that needs to be mentally represented: the computer that
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executes the programs.3 But what aspects of a computer are relevant and what can be abstracted away?
Let us first read about the reasoning of Bruce-Lockhart and Norvell (2007), who describe what they are
trying to teach novice programmers about.

The essence [of Norman’s work on mental models] is that given a system T, a mental model
of T can be defined as M[T]. Norman’s work, however, was based on a very well defined T (a
simple calculator). In teaching high-level (as opposed to machine language) programming it
is much harder to define T. As we struggled to impart to our students that each instruction
they wrote was meaningful, we had an important insight. The machine (or system) T we were
programming (and which we wanted the students to understand), was not really a computer,
at least in the classic, hardware, sense. Consider the following simple C code:

��� ����

��� � � 	
�

��� ��

� � ���  ��	�

In the language of programming, we say, there are four instructions to be executed.
Instructions to what and to be executed by what? T of course, but T is certainly not the
CPU. The first three “instructions” are actually to the compiler. We view them as requests
for allocation of memory, in the stack, if they are internal declarations, in the static store if
external. The fourth is a minefield. There’s a truncation and two automatic type conversions.
If you really want students to understand it they need to be able to interpret the expression
and see the conversions, but these are normally done by the compiler. CPU operations
include fetching the value for y (whether in a register or memory), carrying out the separate
calculations, one in the integer arithmetic unit and one in the floating-point processor, and
writing the final value back to z. We define T to be the system to which we are giving
instructions. That is, T is at least partly defined by the language. In the case of C++ and
Java languages, T is an abstraction combining aspects of the computer, the compiler and the
memory management scheme. Our T is not nearly as “knowable” as Norman’s. That does
not relieve us of the responsibility of at least trying to define it. We developed [our software
tool] the Teaching Machine to provide students with a visual representation of the T that we
believe approximates the one most professional programmers program to.

5.4.1 A notional machine is an abstraction of the computer
Benedict du Boulay was probably the first to use the term notional machine for “the general properties of
the machine that one is learning to control” as one learns programming. A notional machine is an idealized
computer “whose properties are implied by the constructs in the programming language employed” but
which can also be made explicit in teaching (du Boulay et al., 1981; du Boulay, 1986).

Abstractions are formed for a purpose; the purpose of a notional machine is to explain program
execution. A notional machine is a characterization of the computer in its role as executor of programs
in a particular language or a set of related languages. A notional machine encompasses capabilities
and behaviors of hardware and software that are abstract but sufficiently detailed, for a certain context,
to explain how the computer executes programs and what the relationship of programming language
commands is to such executions.

Since a notional machine is tied to a way of programming, different kinds of programming languages
will have different notional machines. An object-oriented Java notional machine can be quite different
from a functional Lisp notional machine4. Most notional machines that execute Prolog are likely to be
quite different again. Similar languages may be associated with similar or even identical notional machines.

3If you share the extremist views of Edsger W. Dijkstra, you may disagree with this claim and argue for a computer-free
CS1. See Section 14.5.3 for further discussion.

4A functional programming notional machine may not be very ‘machine-like’ at all if it is grounded in mathematics and
lambda calculus. Nevertheless, I consider that such a mathematical perspective on how computer programs work when
executed also falls under the term “notional machine”.
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Not only are there different notional machines for different languages and paradigms, but even a single
language can be associated with different notional machines. After all, there is no one unique abstraction
of the computer for describing the execution of programs in a language. Let us consider, for instance, the
following ways of understanding the execution of Java programs.

One notional machine for single-threaded Java programs could define the computer’s execution-time
behavior in terms of abstract memory areas such as the call stack and the heap and control flow rules
associated with program statements. The notional machine embodies ideas such as: “the computer is
capable of keeping track of differently named variables, each of which can have a single value”, “a frame
in the call stack contains parameters and other local variables”, “the computer goes through the lines of
the program in order except when it encounters a statement that causes it to jump to a different line”,
etc. A Java notional machine at a higher level of abstraction could define the computer as a device that
is capable of keeping track of objects that have been created and to pass messages between these objects
as instructed by method calls in a Java program. Objects take turns at performing their defined behaviors
and stop to wait for other objects whose methods they call. The computer stores the objects and makes
sure each object gets its ‘turn to act’ when appropriate. A third Java notional machine could define the
role of the computer on a relatively low level of abstraction in terms of bytecodes and the components of
the Java Virtual Machine.

Notional machine: a definition

To summarize, a notional machine:

• is an idealized abstraction of computer hardware and other aspects of the runtime environment of
programs;

• serves the purpose of understanding what happens during program execution;

• is associated with one or more programming paradigms or languages, and possibly with a particular
programming environment;

• enables the semantics of program code written in those paradigms or languages (or subsets thereof)
to be described;

• gives a particular perspective to the execution of programs, and

• correctly reflects what programs do when executed.

An obverse of the definition

I have heard computing education researchers use the expression “notional machine” to mean different
things; there is also some variation in how the term is used in the literature. It is also instructive to
consider what a notional machine is not, in my definition.

A notional machine is not a mental representation that a student has of the computer, that is,
someone’s notion of the machine. Students do form mental models of notional machines, however, as
discussed below.

A notional machine is not a description or visualization of the computer, either, although descriptions
and visualizations of a notional machine can be created (by teachers for students, for instance). Notional
machines are implicitly defined by many visualizations of program execution.

Finally, a notional machine is not a general, language- and paradigm-independent abstraction of the
computer. At least it is not that by definition, although notional machines can be generic enough to
cover many languages, a whole programming paradigm, or even all programming languages. However,
the prototypical notional machine is limited to a single language or a few similar languages. From the
perspective of the typical monolingual CS1 course, the monoglot programming beginner, and this thesis,
it is less generic notional machines that are usually of greater interest.
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5.4.2 Students struggle to form good mental models of notional machines
In Section 5.3 above, I distinguished between a user’s mental model of a target system and a conceptual
model of the target system that is used for teaching purposes. In those terms, a notional machine is a
target system that the CS1 student (a user) needs to construct a mental model of in order to program.
A teacher, on the other hand, may wish to facilitate the creation of viable mental models of a notional
machine by employing conceptual models of it.

A notional machine reflects the runtime semantics of statements. A mental model of a notional
machine allows a programmer to make inferences about program behavior and to envision future changes
to programs they are writing. A beginner will only have a mental model of the specific system that they are
using for programming (a specific language-dependent notional machine), but as he gains in experience, he
forms mental models of other notional machines and increasingly general schemas of computer behavior.

On the importance of the machine

There is plenty of agreement in the CER literature on the importance of a model of the computer for CS1
students. Du Boulay (1986) writes of the “bizarre” ideas that students have of how the computer executes
programs, and identifies the notional machine as one of the main areas of difficulty that the programming
novice needs to come to grips with. According to Cañas et al. (1994), “it is widely accepted that
programming requires having access to some sort of "mental model" of the system”. Perkins et al. (1990)
“attribute students’ fragile knowledge of programming in considerable part to a lack of a mental model of
the computer”. Smith and Webb (1995a) state that novices’ difficulties in developing and debugging their
programs stem from the fact that “their mental model of how the computer works is inadequate”. Ben-Ari
(2001a) concludes from the literature that “intuitive models of computers are doomed to be non-viable”
and that novices’ lack of an effective model of a computer can be a serious obstacle to learning about
computing. And so on.

The lack of a viable model of the computer can lead to misconceptions, difficulties with understanding
program state, and problems in knowledge transfer. I will comment on each of these topics in turn.

On misconceptions and hidden processes

A running program is a kind of mechanism and it takes quite a long time to learn the relation
between a program on the page and the mechanism it describes. (du Boulay, 1986)

A computer program has two forms: static and dynamic. The static aspect of a program is visible in
code, but the dynamic aspect is usually implicit. The hidden nature of program dynamics has been linked
to the multitude of misconceptions about programming concepts that students have.

In Section 3.4, I gave a lengthy list of studies that have uncovered misconceptions of programming
concepts. Many of the inadequate understandings and difficulties discovered in those studies can be
explained by the lack of a viable mental model of the notional machine that one is learning to control.
Sleeman et al. (1986) concluded as much after reporting numerous misconceptions about Pascal programs:
“even after a full semester of Pascal, students’ knowledge of the conceptual machine underlying Pascal
can be very fuzzy”. With reference to the literature on misconceptions, Sajaniemi and Kuittinen (2008)
likewise attribute student difficulties with basic concepts to a lack of understanding of a notional machine.
Kaczmarczyk et al. (2010) identify, from their empirical data, “the relationship between language elements
and underlying memory usage” as a major theme in students’ misconceptions.

The list of misconceptions in Appendix A provides many examples of the kind of “hidden, internal
changes” within the notional machine that du Boulay (1986) noted as being problematic for students.
Consider for instance the notion that the object assignment � � � (in Java) copies the values of an
object’s instance attributes to another object. Overcoming this misunderstanding requires the concept of
a reference to an object, which is something that is not apparent in code. Many misconceptions, if not
most of them, have to do with aspects that are not readily visible, but hidden within the execution-time
world of the computer: references, objects, automatic updates to loop control variables, and so forth.

Some generic misconceptions may lie behind many of the other more specific misconceptions. A few
such generic misconceptions are listed at the beginning of Appendix A – for instance, it is thought that
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the computer can carry out deductions regarding what the programmer intends to do. These generic
misconceptions concern the capabilities of the computer and/or the execution-time behavior of programs.
In other words, they indicate problems with students’ mental models of notional machines.

Subtle, ‘hidden’ aspects of programs also top some polls on difficult CS1 topics. Milne and Rowe
(2002) surveyed students’ and tutors’ opinions of the difficulty of programming concepts. They conclude
that the most difficult concepts, such as pointers, have to do with the execution-time use of memory, and
that “these concepts are only hard because of the student’s inability to comprehend what is happening
to their program in memory, as they are incapable of creating a clear mental model of its execution.” A
Delphi survey of computing educators identified references, pointers, and an overall memory model as
some of the most difficult topics in introductory programming (Goldman et al., 2008). The students from
various educational institutions that were surveyed by Lahtinen et al. (2005) found pointers and recursion
to be the most difficult topics.

It is not just what the computer does behind the scenes that needs to be understood. The novice
must also realize what the notional machine does not do, unless specifically instructed by the programmer.
People do not naturally describe processes in the way programmers need to – the equivalents of ����

clauses, for instance, are conspicuous by their absence in non-programmers’ process descriptions, as people
tend to forget about alternative branches and may consider them too ‘obvious’ to merit consideration
(Miller, 1981; Pane et al., 2001). The novice needs to learn what the notional machine does for them on
the one hand, and what their own responsibility as a programmer is on the other.

Difficulties with program state

How the computer keeps track of program state is one of the central aspects of most notional machines.
However, execution-time state is generally not explicit in program code. This is a source of confusion
for novices, who “sometimes [forget] that each instruction operates in the environment created by the
previous instructions” (du Boulay, 1986). Concrete examples of student difficulties can be found in the
work of Sajaniemi et al. (2008), who studied student-created visualizations of the states of object-oriented
programs. Their results showcase the variety of misconceived ways in which students envision state.

A finding from program comprehension experiments (Section 4.6) that has received relatively little
attention is the difficulty of comprehending state-related aspects of programs. Corritore and Wiedenbeck
(1991) compared novices’ ability to answer questions about elementary operations, control flow, data
flow, program function, and program state after reading a small program. They found that questions
about state had a dramatically and unexpectedly high error rate. A comparison of upper and lower
quartile novices showed that they differed particularly in their ability to answer questions about program
state (although both had the most difficulty with state questions compared to other kinds). According
to another study reported in the same paper, the difference between upper and lower quartile novices’
ability to answer questions about state was even more pronounced when dealing with longer programs.
Corritore and Wiedenbeck contrast their findings on novices with Pennington’s (1987b) comparable study
on experts, which showed no such highly elevated error rate on state questions. They conclude that
understanding state is an area where novices differ from experts.

Notional machines and transfer

Programming should not be taught as a copy-paste art that only incidentally results in a
correctly functioning program, but as a clearly defined activity that deals with unambiguous
constructs. (Sajaniemi and Kuittinen, 2008)

The importance of the notional machine is emphasized in situations where knowledge needs to be
transferred to new contexts or where creative solutions, rather than familiar templates, are needed.
Furthermore, research shows that pedagogy can have a significant impact on how well students can
transfer their knowledge.

Kessler and Anderson (1986) conducted a sequence of studies on novice learners’ iteration and
recursion. One group of novices learned recursive programming first, followed by iterative programming,
and another group were introduced to the topics in the reverse order. Neither group was explicitly
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taught about a notional machine. In this study, the students who started with iteration initially formed
better mental models of control flow, which they were later able to transfer to the novel context of
recursive programming. In contrast, the students who started with recursive programming tended towards
a template-based programming style in which they tried to match the surface features of problems to
the surface features of known program examples. Consequently, the recursion-first group managed to
solve certain kinds of recursive problems, but failed to transfer what they knew to iterative programming,
becoming “overwhelmed by the surface differences between recursion and iteration”. A protocol analysis
suggested that the recursion-first group did not construct a model of the implicit principles of control
flow underlying the example programs they saw – in other words, they had failed to understand the
notional machine. In terms of Schumacher’s theory of mental model formation (Section 5.2 above), it
might be said that the students in Kessler and Anderson’s studies who started with iteration soon reached
the experiential stage with respect to possessing a mental model of a notional machine that supports
repetition, whereas those who started with recursion struggled to get past the pretheoretical stage. A
similar study by Wiedenbeck (1989) produced results compatible with Kessler and Anderson’s.

For present purposes, what is most significant about these studies is that while even novice
programmers manage to solve certain kinds of problems without being taught about a notional machine,
a viable mental model of a notional machine is needed to understand programs on a deeper level and
to transfer that understanding to new contexts for which ready-made templates are not available. No
machine model is needed if the goal is to produce learners who will not use the programming language
creatively, but if and when the goal is to produce creative problem solvers, then learning about the machine
early on is “quite useful”, as Mayer (1981) mildly puts it.

The birth of naïve models

Unfortunately, novices’ mental models are often based on mere guesses.
Mental model theory tells us that people rely heavily on analogies based on surface features when

forming mental models of new systems they encounter (Section 5.2). There is evidence of this in
programming education as well. As du Boulay points out, a notional machine’s properties are implicit in
the constructs of the corresponding programming language (which is, in terms of Table 5.1, a key aspect
of the system image of the notional machine). Indeed, program code is a fertile basis for constructing a
mental model as “novices make inferences about the notional machine from the names of the instructions”
(du Boulay et al., 1981). Many programming languages, on the surface, resemble natural language and the
language of mathematics. Misconceptions (Section 3.4 and Appendix A) are brought about by unsuccessful
analogies with these realms, such as when students conclude that the Java statement � � � � �� defines
a mathematical equation.

Mental model theory further explains that novices may have several contradictory mental models of a
notional machine that they use to deal with different scenarios, whereas an expert’s mental model is more
generic and stable. Assignment statements with integer variables might be explained with one mental
model, for example, and assignments using record types with an entirely different one.

The impact of environments

Programming paradigms and programming environments can make a difference to learning about program
dynamics. Some existing environments and perhaps especially the programming environments of the future
blur the line between development time and program runtime – consider, for instance, the Smalltalk
environment, the BlueJ IDE (Kölling, 2008), the DISCOVER tutor (Ramadhan et al., 2001), and the
recent work of Victor (2012). Such developments bring many exciting benefits to both novice and expert
programmers. They may also introduce some pedagogical challenges. For instance, as Ragonis and Ben-
Ari (2005a,b) studied high-school students learning object-oriented programming, they “became aware of
serious learning difficulties on program dynamics” as “students find it hard to create a general picture of
the execution of a program that solves a certain problem”. They suggest that object-oriented modeling
and pedagogical tools that involve direct manipulation of objects while authoring a program (such as
BlueJ) may exacerbate this difficulty.
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Therefore: teach early and teach long

Studies of mental models suggest that people cling to initial models, so that fixing a ‘broken’ model can
be more work than constructing a viable model in the first place. This is one reason why it is important
to help students form a workable mental model of a notional machine early on in their programming
studies. Another concern is that a seriously flawed model of a notional machine may work for explaining
the behavior of some program examples, even though it fails generally, which further deepens the learner’s
belief in their present understanding. While students obviously do not come in as blank slates, no matter
what teachers do, getting in as early as possible seems a good idea.

Starting early does not mean ending early, either. Programming teachers often expect students to be
able to switch between programming languages (and notional machines!) fairly early on in programming
curricula, commonly after a first programming course. While transfer on the basis of superficial features
is commonplace, transfer to even similar notional machines that look dissimilar on the surface (i.e., in
program code) requires a deeply ingrained mental model of the original notional machine. As forming such
models tends to require a substantial amount of experience, teachers need to make sure that students get
plentiful practice with the original notional machine before expecting them to transfer to other languages
and paradigms.

Learning about a notional machine can draw on a conceptual model that makes explicit the way
in which the machine works and underlines how a programming language differs from natural language
and familiar mathematics. A conceptual model of a notional machine can take the form of a drawn
visualization, a verbal or textual description, or a software application that visualizes the notional
machine. It makes explicit the hidden effects of commands in program code. In these terms, what
Bruce-Lockhart and Norvell (2007) describe (p. 59 above) as their target system T is a notional machine
for C programming, and the visualization in the Teaching Machine software serves as a conceptual model
for teaching about this notional machine.

I will discuss conceptual models of notional machines in more detail in Part III. Visual program
simulation, which is introduced in Part IV, is a way of engaging students in interactions with a conceptual
model of a notional machine.

The notional machine is also involved in the activity of program tracing.

5.5 Programmers need to trace programs
Tracing a program means analyzing its execution to determine what operations occur and how its state
changes. The human act of tracing a program can be viewed as a form of mental simulation (cf.
Section 5.1.3). Tracing is a key programming skill that expert programmers routinely use during both
design and comprehension tasks (Adelson and Soloway, 1985; Soloway, 1986). As discussed in Section 3.3,
developing the ability to trace programs is linked – at least to some extent – to the development of program
comprehension and program writing skills.

5.5.1 Novices especially need concrete tracing

Concrete vs. symbolic tracing

Détienne and Soloway (1990) distinguish between two different techniques that experienced programmers
use when trying to comprehend a program: symbolic and concrete tracing (also known as symbolic and
concrete simulation, respectively).

Symbolic tracing means using generic values while tracing a program’s execution, e.g., “it loops ten
times, reads a number, compares the number to maximum and sets Max to Num if something is true”
(Détienne and Soloway, 1990). This was the default strategy used by the experienced programmers studied
by Détienne and Soloway when they first encountered a new program. They used it whenever possible,
that is, as long as they thought that the program matched their existing plan schemas and no problems
were evident. Concrete tracing, on the other hand, uses specific values: “the number should be five, so
the average should be five, I put five in Sum, add 1, Num is not 99999 [the sentinel value], enter 99999
to get out, Sum is now five, Count is one.” (ibid.) Experienced programmers used concrete tracing, in
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Détienne and Soloway’s parlance, “to evaluate the external coherence between plans, i.e., to check for
unforeseen interactions”. In other words, concrete tracing was useful for studying programs which merged
familiar plans in an unfamiliar way. For experts, concrete tracing is a “last resort in cases that are complex,
hard to understand, or when the program does not work the way that symbolic tracing suggests” (Vainio
and Sajaniemi, 2007).

Concrete tracing and debugging

Concrete tracing is a vital skill for any programmer. It is especially useful in the fight against bugs: the
programmer may know what the various code constructs do in isolation, but not what happens when they
are combined in the buggy way they currently are, and need to “check for unforeseen interactions”.

Concrete tracing is even more important for novices. Vainio and Sajaniemi (2007; Vainio, 2006) argue
that the novice programmer needs to trace code carefully in order to understand the causal relationships
between statements, and cannot use symbolic tracing as the default strategy. The novice lacks plan
schemas that provide solutions to common problems, which hinders symbolic tracing and can force the
novice to work at the concrete level. Before they can raise the level of abstraction during tracing, novices
need to automate – through experience and practice – the processing of syntactic and semantic details.

Some important skills are pedagogically unproblematic. Unfortunately, as we have already seen in
Section 3.3, there is plenty of evidence that many CS1 students fail to learn how to trace programs.
Moreover, Perkins et al. (1986) found that many novices do not even try to trace the programs they
write, even when they need to in order to progress. In their study, “students seldom tracked their
programs without prompting”. Failure to trace one’s programs, Perkins et al. argue, may be due to
reasons such as a failure to realize the importance of tracing, a lack of belief in one’s tracing ability, a
lack of understanding of the programming language, or a focus on program output rather than on what
goes on inside.

5.5.2 Tracing programs means running a mental model

One of Perlis’s (1982) famous epigrams states that “to understand a program you must become both
the machine and the program”. Similar sentiments have been expressed in the psychological research
literature.

One might view program tracing as running a mental model of a program with some input, while
also running a separate mental model of a notional machine for which the program itself serves as input.
However, when we run a program, “the computer effectively becomes the mechanism described by the
program” (du Boulay, 1986). When we speak of program execution, we use expressions such as “the
program does X”, as well as “the computer does X”, to mean effectively the same thing. As noted earlier
in the chapter, the borders of mental models are often vague. Even though the models of the machine and
program can be viewed analytically as separate, they may be inextricably entwined during mental tracing
and are not necessarily distinct in the programmer’s memory. For present purposes, it is convenient to
speak of mental tracing as the ‘running’ of a single mental model that encompasses both the notional
machine and the program that is being traced.

Two challenges to the successful running of a mental model during tracing are the difficulty of keeping
track of program state in working memory, and the robustness of the mental model.

Status representations

Tracing a program requires keeping track of the state the execution of the program. Such a description
of state, which Perkins et al. (1986) call a status representation, must be dynamic, changing as execution
proceeds. A status representation consists of the elements of (one’s mental model of) the notional machine
used: variables, objects, references, function activations, etc.

As discussed in Section 5.1.3, mental tracing is taxing for working memory, and success is predicated
on carefully choosing a level of abstraction and the ‘moving parts’. People tend to run their mental
models qualitatively rather than with specific values, and correspondingly prefer symbolic to concrete
tracing. However, as noted above, programming tasks like debugging call for concrete tracing. A status
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representation of a complex program involves an amount of information that often exceeds the capacity
of working memory, which is why we use external aids such as scraps of paper and debugging software.

Novices in particular need concrete tracing often, but are not experienced at selecting the right
‘moving parts’ to keep track of in the status representation, causing them to fail as a result of excessive
cognitive load (see, e.g., Vainio and Sajaniemi, 2007; Fitzgerald et al., 2008). Vainio and Sajaniemi
(2007, p. 239) discuss how failure to abstract can lead to overwhelming cognitive load: “Tracing a sorting
algorithm without [the abstraction of a swap operation] may result in too many objects taking part in
the simulation, which may cause the simulation to exceed the limits of working memory and become
error-prone or too slow to be practical.5 Vainio and Sajaniemi discovered a novice strategy (commonness
unknown) for concrete tracing which is motivated by its low load on working memory. This strategy,
which they call “single-value tracing” limits the number of non-trivial variable values in one’s mental
status representation to one.6 That is, only a single unnamed ‘slot’ is used to store the value of whichever
variable was most recently non-trivially assigned to. Single-value tracing does not work in the general
case, but the novice may not even realize this as “it works fine with small programs that are typical to
elementary programming courses”.

Despite problems with mental status representations, novices tend not to use external aids as much as
they need to. Lister et al. (2004) report that the most common type of ‘doodle’ on paper used by students
during a tracing task was no doodle at all. Thomas et al. (2004) experimented with object diagrams that
describe runtime state, essentially an external visual aid for object-oriented status representation. They
found that novice programmers were not helped by object diagrams that they were given, and were
distinctly lacking in eagerness to draw diagrams themselves. The results of Vainio and Sajaniemi (2007)
suggest that there are two kinds of difficulties: novices not only struggle to produce state diagrams, but
also fail to make use of such diagrams when they have produced them. Moreover, anecdotal evidence
from CS1 courses suggests that students do not voluntarily use debuggers – another form of external
status representation – as much as their teachers would like them to (this is my own experience; see also,
e.g., Isohanni and Knobelsdorf, 2010).

Robust models needed

According to de Kleer and Brown’s theory (Section 5.1.3 above), a mental model of a causal system needs
to be robust if it is to be transferred to novel component configurations. If de Kleer and Brown’s theory
holds, and assuming that computer programs are causal mechanisms of the sort that their theory applies
to, then for students to transfer their understanding of one program to other programs, they need a robust
model of the original program. The components of a program are the programming constructs used in
the program code and the corresponding mechanisms within the notional machine. To stay with de Kleer
and Brown’s theory, models of these program components ideally follow certain “esthetic principles” of
robustness. De Kleer and Brown also contended that a model must be robust to be usable in unexpected
contexts where the behavior of the system does not follow one’s prediction. A robust mental model of
both the program and the associated notional machine would therefore be needed to debug programs.

Vainio (2006; Vainio and Sajaniemi, 2007) applied de Kleer and Brown’s theory to programming. They
focused in particular on the no-function-in-structure principle and the locality principle that supports it
(Section 5.1.3). Consider the following code fragment.

��� �� � �� � 	 
�� ���� 

����������������������

�

5When the program is sufficiently complex, experts will also be overwhelmed by cognitive load. Parnas (1985) criticized
tracing as a software development tool: “As we continue in our attempt to "think like a computer," the amount we have
to remember grows and grows [along with program complexity]. The simple rules defining how we got to certain points in
a program become more complex as we branch there from other points. [. . . ] Eventually, we make an error.” However, as
Soloway (1986) pointed out in response, tracing is the best way invented so far for understanding the dynamic aspect of
programs, and therefore should be learned by students. Programmers today have access to ever better software tools that
support mental tracing and sometimes even eliminate the need for it, but Soloway’s observation still appears to hold largely
true.

6‘Trivial variable values’ are those that can be seen directly from the program code, such as literals assigned to variables.
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Figure 5.1: Robust models transferred into an unexpected context (Rubens, ca. 1623).
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A reasonable description of this ��� loop is: “First, the variable – � in this case – is set to zero. Then
the loop iterates over all the values of � from 0 to 9 and prints them out.” A novice programmer may
form a mental model of this program that matches this description and is viable when it comes to dealing
with this specific program, but is not robust. For instance, some of the students in Vainio’s study had
developed an understanding according to which whichever variable is used within the body of a ��� loop
is always set to zero at the start of the loop. Such an understanding is clearly not generally viable.

A problem with an understanding such as the above is that the student has formed a component
model of the ��� statement (within their model of the program) that does not meet the principles set out
by de Kleer and Brown. The understanding violates the no-function-in-structure principle, as it mixes up
the definition of a ��� statement (its structure) with what the ��� statement is used for in a particular
context (its function, which here includes assigning zero to a variable). A related violation is that of the
locality principle. The component model of the ��� construct is not independent of the specifics of other
constructs; it is dependent on the idea that somewhere within the body of the loop there is at least one
other statement that makes use of a variable that affects what the ��� statement does.

Vainio and Sajaniemi (2007) describe violations of the no-function-in-structure principle as common,
attributing this in part to the tendency in CS1 courses to associate each type of problem with only a single
kind of programming construct, and each programming construct with a single kind of problem. Their
work emphasizes the need for novices to separate what a construct is and what it is typically used for.

To summarize this section, tracing a program requires the ability to mentally simulate programs running
in a notional machine. Novices especially need concrete tracing at a low level of abstraction to make
sense of programs, but often lack the ability or even the inclination to trace programs. Ideally, mental
simulations are based on robust, generalizable mental models of programs, and rely on abstraction and
external status representations if and when the limits of working memory are met.

5.6 Where is the big problem – misconceptions, schemas, tracing, or
the notional machine?

Let us reflect on what this and the previous chapters have told us about learning to program. My review
of learning programming has so far centered around five challenges that face the novice programmer.

1. Creating programs imposes a great cognitive load on novice programmers.

2. Programmers need plan schemas which represent generic solutions to common problems, but novices
have few.

3. Novice programmers have misconceptions about basic programming concepts, which give them
trouble when reading and writing programs.

4. Many creative and unexpected programming tasks require mental tracing of programs, something
that novices are not always capable of.

5. Novices need to form a viable mental model of a notional machine to be able to understand program
execution.

Some pertinent and difficult questions are as follows: Which of these challenges are the most important?
Is there a particular bottleneck for learning? How do the challenges depend on each other?

Different researchers have given different answers to these questions.

A legion of misconceptions

Research on misconceptions has a long history which demonstrates that non-viable understandings of
programming concepts have been considered an important and pedagogically fertile area of computing
education research by numerous authors. Clancy enthuses:
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To me, this [research on misconceptions and mistaken attitudes] is the most interesting and,
for my teaching, the most relevant education research. It helps me interpret wrong answers
– which I see a lot of! – and also guides me toward activities that address student problems.
(Clancy et al., 2001, p. 330)

As a teacher, it is easy to agree with Clancy that knowing about the kinds of mistaken understandings
that students have is very useful in practice, and can help in the design of better programming courses
and communicating better with students. On the other hand, some of my colleagues have called research
on misconceptions passé or pointless, as there are presumably an infinite number of incorrect ways to
understand a concept and charting out all these ways is a futile effort.7 While I certainly do not consider
such research pointless, it is true that the multitude of misconceptions is an issue. If we manage, through
research, to get at the general causes underlying some of the more specific misconceptions, we gain better
insight into learning programming and can perhaps swat out entire families of novice bugs in one stroke.

Some phenomenographers have argued that rather than misconceptions, we should be concerned with
the different correct but partial ways in which people understand programming concepts. Research à la
Eckerdal and Thuné (2005) can point out the educationally critical aspects of programming concepts,
which – according to the constitutionalist perspective on learning (Chapter 7) – are limited in number.
A different approach that seeks to explain why certain kinds of understandings are not viable is Vainio’s
application of de Kleer and Brown’s ‘esthetic principles’ to programming (Section 5.5 above). Soloway
and Bonar’s ‘bug generators’ and Pea’s ‘superbug’ of the anthropomorphic computer (Section 3.4) also
aim to get at the general reasons behind various specific misconceptions.

My last-not-least example of a principled way to address numerous misconceptions at once was
already discussed in Section 5.4: the notional machine. To recapitulate, it seems that many non-viable
understandings can be explained by the root cause of novice programmers not understanding program
execution and the role the computer plays in it. While little empirical work exists that has investigated
whether or how particular misconceptions can be helped by learning about a notional machine, there
is plenty of general evidence and agreement in the literature that learning how the machine works is
important.

Soloway & Spohrer: schemas > misconceptions + syntax

A line of thinking influentially argued for by Spohrer and Soloway (1986a,b) is that syntax and
misconceptions about language constructs are not as significant a problem for learning programming as
the lack of plan schemas that enable novices to solve common problems. Spohrer et al. (1985) attribute
many novice mistakes to an inability to successfully merge plans. Winslow (1996) claims that “study
after study has shown that students have no trouble generating syntactically valid statements once they
understand what is needed. The difficulty is knowing where and how to combine statements to generate
the desired result.”

Prerequisites of high-level schemas

What is required to use programming schemas to solve problems? Misconception-free understandings of
syntax and semantics, and some skill at tracing, at least.

When emphasizing the importance of plan schemas, Spohrer and Soloway referred especially to
higher-level plan schemas (e.g., the find-average schema) rather than low-level ones (e.g., the assign-
to-variable schema). As discussed in Section 4.4.1, high-level schemas build on low-level ones. To
be useful, these low-level problem-solving schemas must contain viable, non-fragile understandings of
the semantics of programming constructs and the associated notional machine. Misconceptions about
fundamental programming concepts lead the novice to ignore pertinent aspects of a situation and miss
links between examples, reducing germane cognitive load and hindering the formation of higher-level
schemas. Misconceptions can also lead to the formation of ‘buggy schemas’ at higher levels.

As discussed in Section 3.3, many novices lack tracing skills, which are important for many debugging
tasks and bug-free problem solving using plan schemas. One study explicitly concludes that their findings

7Personal communication.
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are “somewhat contrary to the classic work of Spohrer and Soloway”: students are sometimes able to
create buggy template-based (schema-based) code, but do not necessarily understand the code that they
themselves produce, and cannot trace its execution to fix the bugs (Thomas et al., 2004).

Overall, recent research does not disagree with Spohrer and Soloway’s identification of problem-solving
schemas as important, but does emphasize that lower-level issues are also worthy of attention.

Garner, Haden, and Robins categorized the problems that CS1 students needed help with in class and
examined the resulting distributions (Garner et al., 2005; Robins et al., 2006). Many of the problems had
to do with program design, but many also involved various construct-related issues. Trivial mechanical
problems (e.g., missing semicolons) were also common. The distribution pattern was similar across course
offerings; high-, medium-, and low-achieving students also all exhibited similar patterns. Fitzgerald et al.
(2008) report that novice programmers with 15 to 20 weeks of programming experience behind them
had more trouble finding non-construct-related bugs than construct-related ones. Ko and Myers (2005)
presented a framework for analyzing the causes of software errors; applying it, they found that many bugs
were rooted in cognitive difficulties with particular language constructs, although other causes of difficulty
were common as well. Denny et al. (2011) demonstrated that novices have great trouble in producing even
small programs that are syntactically correct. McCauley et al. (2008) point out that construct-related
bugs feature even in a revered pedant’s classification of the bugs in TeX (Knuth, 1989).

Drawing on the BRACElet studies (Chapter 3), Lister (2011b,c) has recently emphasized that although
struggles with syntax initially contribute to students’ cognitive load – and are important to address –
the great cognitive load inherent in program writing remains a major concern even when those earliest
problems have been overcome. Kranch (2011) studied novice programmers taught using three different
topic sequencings, including one that started with higher-level schemas before moving to their elements,
and one that did the opposite. He found that irrespective of ordering, the higher-level schemas were
always the most difficult topic (both in terms of achievement and student-given difficulty ratings), a
finding that he attributes to higher intrinsic cognitive load. Kranch argues that novices should be given
ample opportunity to practice lower-level fundamentals before they are taught higher-level schemas.

The studies from the 1980s that pointed to the relatively minor importance of misconceptions used
simple imperative programs. It is not obvious to what extent the findings are generalizable to object-
oriented programming, which has brought a slew of new concepts and misconceptions into many CS1
courses. Many OOP misconceptions are about the fundamental nature of pivotal concepts such as object
and class (see Appendix A).

Conclusion: they all matter

My conclusion from the literature is that all five challenges – cognitive load, plan schemas, misconceptions,
tracing skills, and notional machines – are significant. Furthermore, none of these challenges is independent
of the others. Of particular interest to the present work is the fact that the other four challenges appear
to be affected by the fifth: the novice’s ability to understand the notional machine. Understanding the
role of the machine in program execution:

• prevents and corrects numerous misconceptions;
• serves as a basis for the formation of low-level schemas which in turn form the basis for the successful

formation and application of higher-level ones;
• thereby indirectly reduces cognitive load as one is able to rely on increasingly complex problem-

solving schemas, and
• is key to the skill of tracing programs, which is useful in both program authoring and comprehension

and in finding bugs whether they be misconception-related or the results of high-level schema
failures.

The notional machine is not a singular bottleneck responsible for students’ struggles, but it does appear
to be one of several main sources of difficulty.
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5.7 The internal cognition of individual minds is merely one perspective
on learning

Cognitive psychology has made useful, empirically warranted contributions to the study of learning, but
it has also come in for criticism from various quarters. Researchers from a number of overlapping camps
– phenomenologists and phenomenographers, proponents of situated learning, qualitative researchers,
philosophers, and neo-behaviorists, as well as cognitive psychologists themselves – have pointed out the
limitations and possible fundamental problems of cognitive science. Before we turn to other traditions
of educational research in the following chapters, let us consider some of the complaints concerning the
cognitive tradition, or cognitivism as it is sometimes dubbed.8

Controversy 1: internal representations

Cognitivism tends to see reasoning in terms of the manipulation of symbols. A famous argument against
internal mental representations is the problem of the homunculus (see, e.g., Marton and Booth, 1997,
pp. 9–10): it is claimed that to operate on an internal representation of the world one needs something
other than the representation itself – a so-called homunculus, or a “little human in the head”. Following
the same logic, the homunculus represents the representation internally, requiring another homunculus
within it. This leads to an infinite regress. Many solutions to the problem have been proposed. Marton
and Booth’s self-statedly ‘non-psychological’ solution sidesteps the little human by choosing to research
not mental representations at all but the relationships of people to phenomena as embodied in dialogue,
actions, and artifacts. I will explain their phenomenographic approach further in Chapter 7.

Another way to answer the conundrum is to assume that the cognitive apparatus that operates on
internal representations is innately capable of manipulating entities of the general form that internal
representations have. That is, operating on an internal representation does not require a representation of
the representation but only the ability to operate on representations of that general type. The traditional
cognitivist way to phrase such an answer is to liken the human cognitive system to a computational device
which contains both mental representations (data) and procedures that manipulate the representations
(see, e.g., Markman, 1999, p. 13). This answer brings us to our second controversial theme.

Controversy 2: mind as machine

Cognitivism is associated with the idea that the human cognitive system resembles a general-purpose
computer. Within this apparatus, information is stored within memory and processed algorithmically.
Because of this analogy, cognitive science has been criticized for “vastly oversimplifying both the human
mind and the human brain” (Westbrook, 2006), “for imposing severe constraints on potential descriptions
and explanatory models” (Marton and Booth, 1997), and for committing so heavily to the analogy of a
computer as to ignore consciousness and intuition (Searle, 1992; Dreyfus, 1992; Klein, 1999).

Perhaps the most fruitful way to address this point is to accept that the information-processing view
can serve – as it has – to provide insights into the human mind, but that – like all analogies – it has its
limits. Other perspectives are also needed.

Controversy 3: individual, context-free knowledge

Most cognitivists view reasoning primarily as a mental operation performed by individuals. Exploring
the social situatedness of learning – more on which in the next chapter – has not traditionally placed
especially high in the cognitivist agenda. According to proponents of some social theories of learning,
cognitivists tend to ignore or pay too little attention to the relationship between individual thought and
social context, and the way knowledge is shaped and problems are solved socially rather than individually.
Researchers into situated cognition (cognition embedded in physical/social/cultural contexts) have been
critical of the dominant role of internal memory in much of cognitivist research, arguing instead for a focus
on situated perception and knowledge that is created on the fly, in activity, rather than retrieved from

8It is my impression that the term “cognitivism” is used more often by detractors of cognitivism than by its proponents.
I do not use the word in a pejorative sense.
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memory storage (see, e.g., Greeno, 1994; Anderson et al., 2000a, and references therein). An example of a
moderate position is that of Anderson et al. (2000a), who seek to mediate the conflict. They sensibly point
out that the individual and the social perspectives are not incompatible but provide two complementary
views on the study of learning and thinking.

Controversy 4: content-independent cognition

A related issue is that many cognitivists seek to discover generally applicable principles and forms of
representation (e.g., schemas) that explain activities in any field of knowledge and in any context. This
universalist goal has been criticized by phenomenologists (e.g., Dreyfus, 1992) and phenomenographers
(e.g., Marton and Booth, 1997), who prefer to investigate specific phenomena and people’s relationships to
specific phenomena. Such critics see generic cognitive psychology as flawed because the specific content
that is processed is of fundamental importance. In seeking to differentiate their work from cognitive
psychology, Marton and Booth (1997) argue that “the general can only be revealed through the specific”
and that “ideas and principles need to be developed anew in specific contexts and contents of learning
and teaching”. This criticism does not acknowledge the fact that results in cognitive psychology, too,
can arise from specific contexts, and sometimes apply only to a specific domain. For example, some
of the work presented in this chapter and the previous one has “developed anew” general ideas from
psychology, using programming education for context and content (e.g., programming plans and the roles
of variables). Nevertheless, Marton and Booth’s criticism serves as a reminder to moderate the eagerness
for wide generalization that typifies cognitivist work.

Controversy 5: accessibility

Cognitivism is based on the notion that mental entities are accessible to researchers. Behaviorists –
and others – have accused cognitivism of overestimating researchers’ ability to elicit people’s mental
representations and analyze them objectively. A related claim is that in seeking to explain thought,
cognitivists are as likely to invent one internal mechanism as another. To Uttal (2000, p. 12), “it
seems that many cognitive psychologists are not deeply enough concerned with the fundamental issue
of accessibility. Usually, the issue is finessed and ignored.” He is concerned that the inaccessibility of
mental processes leads to poor experiments with “embarrassingly transient” results that tend to be soon
contradicted.

As I studied and reviewed the "high level" literature, I came to a rather surprising general
conclusion. The reliability, durability, and presumably the validity of the data from the sample
of experiments with which I was concerned seemed to evaporate. Data, as well as conclusions,
seemed to last only for a few issues of the journal in which they had been published before some
criticism of it emerged. Or, when the experiment was repeated, slight differences in the design
produced qualitatively distinct, not just marginally different quantitative results. My summary
statement on this issue still expresses my conviction that the high level, cognitive aspects of
perception and other aspects of mentation are far less accessible than many mentalists would
accept simply because the very database is so fragile. (Uttal, 2000, p. 77)

The results of Uttal’s review are worrying and must be taken seriously. Still, there also certainly exists
evidence within cognitive psychology of the convergence of results. In some cases, mixed results may be
later clarified by an improved, unifying theory; we have seen examples of this in Section 4.4.2, in which
Rist’s theory of schema formation helped make sense of earlier mixed results, and in Section 4.5, in which
the discovery of the expertise reversal effect helped make sense of confusing results concerning several
other effects of cognitive load.9

Controversy 6: dualism

Cognitivism has been tagged with the “original sin of dualism” by critics from different backgrounds (e.g.,
Uttal, 2004, 2000; Uljens, 1996; Marton, 1993; Marton and Booth, 1997). A dualist view of ontology

9Problems of the sort Uttal mentions nevertheless continue to concern cognitive load theorists, as discussed by Moreno
(2006).
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maintains that physical and mental objects are fundamentally disparate and ‘inhabit different worlds’ or
consist of different substances. Dualism is commonly criticized, among other things, for failing to explain
how it is possible for mind and matter to interact. Many cognitivists, however, denounce dualism and prefer
a monist, materialist position in which the mental is viewed as reducible to physical phenomena. Another
alternative to traditional dualism is property dualism, which draws a dichotomy not between substances of
mind and matter but rather between objective physical and subjective mental phenomena that arise out of
a single physical matter but are fundamentally distinct in character from each other. These philosophical
positions, and others, have been reviewed, e.g., by Searle (1992, 2002), who himself promotes biological
naturalism, the “fairly simple and obvious” solution that mental phenomena are physical but additionally
have higher-level, emergent characteristics that are irreducible to physics.

Mind–matter dualism has been a source of bother and employment for philosophers for a long time,
without a generally accepted solution in sight.

Controversies 7 and 8: quantitative “positivist” research

Finally, since cognitivism has traditionally been characterized by quantitative, experimental, “positivist”10

research, it has come in for criticism from various quarters that are opposed to those paradigms.
“Positivism” and quantitative research have been criticized on ontological, epistemological, and practical
grounds by qualitative researchers (e.g. Lincoln and Guba, 1985; Patton, 2002) and others. Claimed
weaknesses include:

• a reliance on a correspondence theory of truth, that is, the idea that facts correspond to a one real
world,

• a naïve belief in objectivity; ignoring the context-, subject- and theory-dependence of facts,
• equating the natural and social sciences,
• the belief that (all) science is transcultural,
• losing richness of data and validity of research through the reductionist attempt to operationalize

complex phenomena into simple variables,
• being good only for hypothesis testing rather than exploration,
• a focus limited to laws, causes, and predictions as opposed to multiple interpretations,
• ignoring the societal embeddedness of phenomena,
• invalid results that ignore the humanness of research subjects and researchers,
• the idea that inquiry can be value-free, or at least should be as value-free as possible,
• vain attempts at wide or universal generalization, and
• an obsession with the reproducibility of experiments.

Obviously, the extent to which these criticisms are applicable to particular cognitivists and studies within
cognitive psychology varies. Controlled laboratory experiments in the quantitative tradition do have a
credible track record of success in motivating educational reform (see, e.g., references in Atkinson et al.,
2000). They are also hardly the only form of cognitivist research. Many of the CER studies in the
cognitivist tradition that I have reviewed in this and the previous chapter are actually qualitative in
character (e.g., much of the work on identifying programming misconceptions and plans).

A detailed review of this long and complicated debate is well beyond the scope of this thesis. For the
present, I will only note that cognitivist research and its competing paradigms have different strengths
and weaknesses. In my own empirical work for this thesis in Part V, I take a pragmatist approach that
mixes paradigms.

10The word “positivism” has been defined in many different ways, and is often not very well defined at all when employed
as a bludgeon (Phillips, 2004). I use it here, in quotes, to refer loosely to various criticized views that have been assigned
this label. Typically, “positivists” are associated with the view that all scientific knowledge must be founded on value-free
empirical testing of hypotheses.
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Chapter 6

Constructivists Say: Knowledge is
Constructed in Context

The central tenet of the educational paradigm known as constructivism is that people actively construct
knowledge rather than passively receive and store ready-made knowledge. Knowledge is not taken in as is
from an external world, and is not a copy of what a textbook or teacher said. Instead, knowledge is unique
to the person or group that constructed it – constructivists differ among themselves as to whether individual
minds or social groups (or both) are the constructing agents. From these premises, constructivist thinkers
have derived pedagogical recommendations which tend to promote active, learner-centered education.

Proponents of constructivism often claim a positive, even revolutionary impact on education; skeptics
either point at perceived flaws in constructivist reasoning or dismiss constructivism as not so much a
revolution as a rephrasing of prevalent wisdoms. These issues notwithstanding, many critics, too, agree
that the currently extremely influential constructivist movement has done good by bringing epistemological
issues to the forefront of educational discussions, by advancing the increasingly widespread recognition of
the social aspects of learning and the importance of learners’ prior knowledge, and by emphasizing active
learning (Phillips, 1995, 2000).

To get an overall feel, let us begin with a list of selected constructivist claims (my phrasings based
on von Glasersfeld, 1982; Phillips, 1995, 2000; Steffe and Gale, 1995; Greening, 1999; Ben-Ari, 2001a;
Larochelle et al., 1998; Rasmussen, 1998; Anderson et al., 2000b; Patton, 2002; Kirschner et al., 2006;
Tobias and Duffy, 2009). These claims range from the epistemological to the pedagogical. Some are
considerably more controversial than others. Not all of the claims are equally, or at all, accepted by all
constructivists.

1. Knowledge is constructed by learners, it is not (and cannot be) transmitted as is.
2. The knowledge that people – or groups of people – have is different from the knowledge of other

people who have ostensibly ‘learned the same thing’.
3. Knowledge construction takes place as prior knowledge interacts with new experience.
4. Knowledge is not derived from, is not about, and does not represent an external, observer-

independent natural reality, but an experiential, personal (or socially shared) ‘reality’.
5. If an extraexperiential reality exists, it is not rationally accessible.
6. There is no objectively correct or incorrect, true or untrue knowledge, only knowledge that is more

or less viable for a purpose.
7. The social and cultural context mediates the construction of knowledge.
8. Effective learning features the learner as an intellectually active constructor of knowledge; good

teaching means facilitating and motivating such construction.
9. Allowing students to leverage their prior knowledge is key to good teaching.

10. Learners should be presented with minimal information and allowed to discover principles and rules
for themselves.

11. Hands-on learner-directed exploration is an effective form of learning.
12. Effective learning requires complex, authentic learning situations. Learners should solve ill-

structured, open-ended problems similar to those that experts solve.
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13. Effective learning has a social dimension, e.g., groupwork.
14. Education should not impose learner-independent norms or goals; the learner is in charge.
15. It is not possible to, or does not make sense to, apply standard evaluations to assess learning.

The following sections elaborate on these claims. Section 6.1 below gives an overview of the main
types of constructivism. In Section 6.2, I describe in more detail some of the main features of
constructivist epistemology. The discussion in that section revolves largely around the more extreme forms
of constructivism; I outline a moderate position in Section 6.3. Section 6.4 provides a brief overview
of constructivist pedagogy. Sections 6.5 and 6.6 introduce two relatives of constructivism, conceptual
change theory and situated learning, respectively. In Section 6.7, we get to computing education and the
impact of constructivism on CER. Finally, Section 6.8 reviews some of the not insignificant criticism that
constructivism has drawn.

6.1 There are many constructivisms

The roots of constructivism go well back in time. John Locke was an early influence, and Immanuel
Kant is sometimes mentioned as one of the first real constructivists. Many of John Dewey’s progressivist
ideas are echoed in present-day constructivism. Especially through the seminal work of Jean Piaget and
Lev Vygotsky, constructivism has become a major force in education since the 1900s. Subsequently, an
ever increasing number of different interpretations of constructivism have come into existence. Gunstone
(2000, p. 254) even suggests on the basis of an internet search that “there are no areas of human activity
to which the label "constructivist" is not currently being applied in some form!”. Phillips (2000, p. 7), who
sets out to describe the “constructivist landscape”, characterizes the view as “nightmarish” in reference
to the daunting task of making sense of the myriad interrelated, sometimes complementary, sometimes
contradictory constructivisms in the literature.

6.1.1 Nowadays, everyone is a constructivist(?)

It is nigh on impossible to find a present-day educational researcher that believes that learning simply
involves the transmission, or ‘pouring’, of pre-existing knowledge from a teacher or a book into students.
Calling oneself a constructivist is politically correct; denying the active role of learners in building knowledge
is to invite scorn. “There is a very broad and loose sense in which all of us these days are constructivist”
(Phillips, 1995, p. 7). However, we vary in how constructivist we are, and in how we are constructivists.

How constructivist are you?

Phillips (1995, 2000) characterizes constructivists by considering their positions along a dimension that is
essentially a measure of how much one emphasizes the idea of knowledge as a construction. That is, to
what extent does one consider knowledge to be a reality-independent, perspectival human construction
as opposed to something that is dictated by nature itself, i.e., by what is real? In this scheme, those
who espouse extreme versions of constructivism are at one end, and non-constructivists at the other, with
the middle of the constructivist landscape occupied by “a marsh of wishy-washy scholars”. Wishy-washy
constructivists prefer watered-down, non-radical versions of constructivist epistemology.1 Like Phillips, I,
too, find myself in these wetlands. (Section 6.8 discusses the reasons.)

A popular buzzword

Constructivism has become a common buzzword that features in numerous publications whose basis in
constructivist learning theory or epistemology is debatable. A colleague of mine recently made what I
think was a more-than-half-serious comment to the effect that “Nowadays, you may need to put some

1This should not be interpreted as being wishy-washy about the importance of epistemological questions.
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Figure 6.1: A classification of constructivisms, roughly based on Phillips (1995, 2000).

learning theory into CER papers. But don’t worry – just mention constructivism and the reviewers will be
happy.”2

Matthews (2000) observes that some educationalists apply the term “constructivism” to any non-
behaviorist learning theory, or to any view that recognizes social, cultural, and historical aspects of
cognition. Many practitioners are not aware of the differences between forms of constructivism, or indeed
about the underlying epistemological and ontological assumptions of whichever form of constructivism
they profess allegiance to (Prior McCarty and Schwandt, 2000). These practitioners are not decidedly
wishy-washy; they are uncommitted and may retain a traditional epistemology merely by default.

These developments make the term increasingly ambiguous and hinder the debate on the deeper issues
involved. This has understandably made many authors unhappy, as they would prefer to reserve the term
for epistemologically explicit variants of constructivism. This group includes critics of constructivism,
wishy-washy constructivists, and proponents of extreme positions such as Ernst von Glasersfeld, who
coined the term radical constructivism specifically to differentiate his views from “naïve constructivism”
that does not question traditional epistemology.

6.1.2 Constructivism comes in a few main flavors
Buzzwords aside, there are dozens of variants of epistemologically grounded constructivism (see, e.g.,
Matthews, 2000; Ernest, 1995, and references therein) that I will not even attempt to cover. However,
constructivisms can be roughly grouped by their main emphasis (Phillips, 1995, 2000). Figure 6.1 is a
breakdown of some of the main branches of constructivism.

A constructivism is typically concerned with one (or sometimes both) of two things: 1) sociological
issues: the construction of bodies of knowledge by societies at large (e.g., bodies of scientific knowledge),
or 2) psychological issues: the construction of individuals’ knowledge. Constructivist views on sociology
have been seminally influenced by Kuhn (1962) and taken to an extreme by the so-called Edinburgh strong

2It may not be as simple as that. This is amusingly illustrated by Derry’s (1996, p. 172) anecdote, in which constructivist
journal editors pick on an eminent Immanuel Kant Professor of Psychology for his use of words such as “say”, which
supposedly suggest a knowledge-transmission view of learning, despite the fact that the professor and his academic ancestors
“were constructivist when constructivism was not cool”.
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programme led by David Bloor (see, e.g., Phillips, 2000). They are of primary interest to sociologists and
philosophers of science but less pertinent for my present purposes. I will largely focus on psychological
constructivism, which applies more directly to education.

Psychological constructivisms can be divided into personal constructivisms and social constructivisms3.
Personal constructivists emphasize the idiosyncratic construction of individual knowledge. Social
constructivists instead emphasize the importance of the social and cultural nature of individuals’ knowledge
construction. Radical constructivism, the influential extremist version of personal constructivism fathered
and fronted by von Glasersfeld (e.g., 1982, 1995, 1998), is worthy of separate mention as it is a staple of
constructivist literature that has been claimed to represent “the state of the art in epistemological theories
for mathematics and science education” (Ernest, 1995, p. 475). Situated learning, which also appears in
Figure 6.1, is a specific form of social constructivism; I will say more about it in Section 6.6.

6.2 Knowledge is an (inter-)subjective construction
The subsections below briefly outline constructivist positions on learning, epistemology, and educational
goals.

6.2.1 We learn by combining prior knowledge with new experience
Two ideas are central to most constructivist views of learning (Howe and Berv, 2000).

1. The learning of something new builds on the learner’s existing knowledge and interests that learners
bring into the learning context.

2. Learning is the construction of new understandings through the interaction of the existing knowledge
and new experience.

These ideas are very generic. Precisely what kinds of processes take place as prior knowledge interacts with
new experience, and what kinds of conceptual structures are constructed as a result, are not something
that constructivists agree on. Some constructivists do not even look for a more specific description,
sometimes because they hold the view that not only is everyone’s knowledge different, but also the way
in which construction takes place and the nature of the resulting conceptual structures are idiosyncratic
and cannot be universally described. So-called cognitive constructivists seek to reconcile constructivist
ideas with the information-processing views of cognitive science (e.g., Derry, 1996) and use, e.g., schema
theory and mental model theory to explain construction. Conceptual change theories (Section 6.5 below)
are also espoused by some constructivists.

While the above principles of learning are readily accepted by many who do not call themselves
constructivists, constructivist views on epistemology are not all equally uncontroversial.

6.2.2 Do we all have our own truths?
The traditional, commonsense view of ontology is that there exists a real world that is independent of our
understandings of it. Traditional, commonsense epistemology suggests that knowledge reflects an existing
reality, and the truth value of a proposition depends on its correspondence with said reality.

Constructivism questions the very notions of objective knowledge and truth. For the full-blooded
constructivist, an objective reality is unknowable, if there is one at all. Von Glasersfeld makes a distinction
between ontological reality and each individual’s lived, experiential reality. Only the latter is relevant:

for the constructivist, ‘existence’ must not be interpreted ontologically but epistemologically.
That is to say, it refers to the realm of cognitive operating and structuring, and not to the
realm of ‘being’ in the traditional sense. (von Glasersfeld, 1982)

3The label “social constructivism” is variously attached to one or both of what I call “social constructivism” and what I
call “sociological constructivism” (and some authors do write simultaneously on both sociological and psychological issues).
In addition, the term “social constructionism” is used in a number of ways. I will steer clear of the latter term and use
“social constructivism” to mean those constructivisms that have an interest in psychology and emphasize social aspects of
individuals’ knowledge construction.
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Social constructivist reasoning takes a different path, but the conclusion is the same; for instance, Gergen
describes his (extreme) social constructivism as ontologically “mute” (Prior McCarty and Schwandt, 2000).

No objective knowledge

According to radical constructivists, knowledge is non-foundational and non-representational. It is not a
copy, a reflection, or a representation of an external, observer-independent ontological reality. Instead,
all that we call knowledge is derived – constructed – from the lived, experiential world of the individual
mind (e.g., von Glasersfeld, 1998). Social constructivists disagree with radical constructivists’ emphasis
on the individual, but share with them a key epistemological claim. According to extreme proponents of
both branches of constructivism, knowledge refers only to the individual’s (personal constructivism) or
the social group’s (social constructivism) constructions.

For the radical constructivist, knowledge is idiosyncratic and “no grounds exist for believing the
conceptual structures that constitute meanings or knowledge are held in common among different
individuals [. . . ] and one can never say whether or not two people have produced the same construct”
(Howe and Berv, 2000). For the social constructivist, on the other hand, knowledge is shared; sharing
is in fact what creates knowledge, which is defined as “temporal locations in dialogic space – samples
of discourse that are accorded status as "knowledgeable tellings" on given occasions” (Gergen, 1995,
p. 30). According to this interpretation, whether something counts as knowledge does not depend on an
external reality but on whether the participants in a ‘language game’ jointly grant that something the
status of knowledge. Any knowledge so constructed by those participants is particular to that game and
incommensurable with others’ knowledge.

No truth, only viability

Since individuals’ or groups’ knowledge can be compared neither to that of other individuals or groups,
nor to an ontological reality, constructivism in its more extreme forms abandons the notions of correct
and incorrect, true and false. All knowledge is individually or socially constructed, imperfect, and fallible.

Many constructivists think of knowledge less as something that is possessed than as the ability to
accomplish something in a particular context. Von Glasersfeld (1995) exhorts: “Give up the requirement
that knowledge represents an independent world, and admit instead that knowledge represents something
that is far more important to us, namely what we can do in our experiential world” (pp. 6–7, original
emphasis). At the social constructivist extreme, being knowledgeable is conceived as a status given by
participants in a language game to one of their number: “For the purposes of the conversation, ‘I know’
when I speak in ways that enable you to treat me as if I know, and vice versa. We successfully generate
dialogue because we are mutually accorded the status of knowledgeables across time.” (Gergen, quoted
by Prior McCarty and Schwandt, 2000, p. 58)

This procedural view of knowledge affords the notion of viability, the radical constructivist’s stand-in
for truth. Viability refers to the pragmatic adequacy and task-relevance of knowledge, as determined by
the knower.

Simply put, the notion of viability means that an action, operation, conceptual structure,
or even a theory, is considered “viable” as long as it is useful in accomplishing a task or in
achieving a goal that one has set for oneself. Thus, instead of claiming that knowledge is
capable of representing a world outside of our experience, we would say [. . . ] that knowledge
is a tool within the realm of experience. (von Glasersfeld, 1998)

For instance, knowledge of a programming language that allows a particular bug-free program to be
written is viable for that task. The same knowledge may not be viable for the task of writing a different
program. Different programmers have possibly vastly different conceptual structures that may or may not
match the defined standard of the programming language and its technical implementation. However,
for the radical constructivist, such judgments are beside the point as long as one’s knowledge is viable
for one’s intended purposes. Only when one’s knowledge is inadequate is it necessary to construct a new
understanding.

78



Context-dependence of knowledge

The constructivist claim goes beyond stating that the viability of knowledge – that is, the usefulness of
the conceptual structures we have constructed – is context-bound. In the constructivist view, the content
and the very nature of our conceptual structures depend on the contexts in which we created them.
Knowledge, then, is not only specific to each individual or group, but to learning contexts as well.

Many constructivists emphasize the difficulty of transferring knowledge from one context to another.
Achieving viability in one context is barely any guarantee of viability in another kind of context. An
example is given by Greening (1999, p. 50), who discusses the knowledge students construct in traditional
lectures. According to Greening, such knowledge may only be useful (viable) in the “fairly artificial and
constrained” educational system itself – in an exam, for instance – rather than in real-life situations that
call for it.

These views on epistemology have led constructivists to oppose traditional education.

6.2.3 Is it impossible to standardize any educational goals?

In traditional views of education, teachers – as possessors of more true knowledge than learners – are in a
position to decide what kind of knowledge learners should acquire. The job of learners is to receive true
knowledge from their teachers and from books. Whether they succeed can be summatively measured.
Constructivists – personal and social alike – challenge this view, questioning the primacy of the teacher,
the setting of educational goals that are the same for each student, and the meaningfulness of standardized
assessment.

From the radical constructivist perspective, the knowledge of a teacher or a curriculum-writer speaks
merely of their own experiential reality; social constructivists like Gergen likewise reject claims of teachers’
authority and consider teachers and learners to be equal participants in the social constitution of knowledge
(see, e.g., Gergen, 1995; Prior McCarty and Schwandt, 2000). Educators are not in a privileged position
that would justify externally setting educational goals for others; instead, the goals of education must
emerge from the learners themselves, their interests, and their interactions with new experiences and with
other people. To the fully committed constructivist, knowledge is not content that exists independently
of the learner; correspondingly, constructivist education is less about covering content than it is about
developing a range of views on interesting matters, with everyone involved serving as both learner and
teacher.

Reassessing assessment

The way educational goals elude standardization naturally carries over to the constructivist view of
assessment. Many constructivists maintain that since knowledge and viability are context-dependent,
assessment should be based on fitness for purpose rather than correspondence with ‘fact’. Furthermore,
since the goals of education are largely learner-set, and viability learner-determined, it is the learners
themselves who are primarily responsible for judging whether they have reached their goals (Greening,
1999). In the social perspective, viability is assessed via social negotiation that compares one’s knowledge
with that of others, with the learning community serving as a test bench.

This view of assessment is in sharp contrast with the traditional objectivist view. It is clearly not
accepted by all constructivists. Larochelle and Bednarz (1998), who adopt a strongly constructivist
stance, are not satisfied with those self-proclaimed constructivist educators who nominally accept the fact
that learners construct their own knowledge, but fail to take constructivist thinking to its conclusion; it is
only accepted that many roads lead to Rome, but they all still lead to Rome. To extend Larochelle and
Bednarz’s metaphor, the radical constructivist view is that the Eternal City might not even exist; rather,
learners construct their own experiential Romes. If the learner is satisfied that they have got a satisfactory
peek at the Coliseum, then they have reached a viable destination (for now).
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Figure 6.2: A radical destructivist (de Lipman, 1897).

6.3 But a wishy-washy constructivist also acknowledges reality

‘Wishy-washy’ constructivists generally accept some form of the realist proposition that a world exists, and
search for a reasonable epistemological middle ground that avoids completely jettisoning the concepts of
truth and reality while at the same time allowing for subjectivity. According to Phillips (1995, p. 12), “any
defensible epistemology must recognize [. . . ] the fact that nature exerts considerable constraint over our
knowledge-constructing activities, and allows us to detect (and eject) our errors about it”. One possible
basis for such an epistemology was provided by Popper (1972), who suggested an ontology of three
interacting ‘worlds’. World1 is a world of physical objects. World2 consists of psychological, subjective
experiences constructed by people of the other two worlds. World3, which is dependent on the first two
worlds, contains the products of the human mind, such as art, mathematics, values, and science. The
latter exists as a result of human activity and is maintained by it, rather than existing as an ideal world that
transcends World1 and World2 as Plato would have it. Popper’s is essentially a moderate constructivist
view (as discussed, e.g., by Harlow et al., 2006; Niiniluoto, 1980).

Regarding goals and assessment, a wishy-washy constructivist might say that while everyone has their
own Rome and their own Appian Way, those constructions and their usefulness are affected by the location
of the actual city. Ideally, experiential Romes should be reasonably close to the real one, with all roads
leading at least to its near vicinity.

6.4 For better learning, constructivisms tend to encourage collaboration
in authentic contexts

Where the traditional teacher-centered direct instruction is the norm in teaching, there exists
a paradox: “The more you teach, the less they learn.” [. . . ] the time the teacher spends on
direct instruction takes away from the dialogue, negotiation, debate and assessment that could
take place between students. [. . . ] Learning in its constructivist sense therefore requires us
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to reduce teaching that is based on direct instruction and to emphasize the social interaction
between learners and personal reflection. (Sahlberg, 1996, p. 79, my translation)

Constructivist pedagogy encourages teachers to engage the learner in order to to help them construct their
own knowledge and to take individual differences and prior knowledge into account. Constructivism is
generally associated with a move away from traditional pedagogies in which the learners’ role is relatively
passive. Some constructivists vehemently oppose lectures in particular. Decontextualized teacher-given
practice tasks devoted to narrow topics (such as those found in many textbooks) are also criticized as
‘drill and kill’. For many constructivist teachers, engagement implies hands-on tasks.

Even bearing in mind that there are different varieties of constructivism, a general trend can be
observed in that constructivists tend towards learning environments that are situated in (or emulate)
complex, realistic contexts, and that require students to solve problems. Social constructivists in particular
(but personal constructivists as well) emphasize social interaction in learning environments: students
collaborate, negotiate, and compare their ideas with those of the other students and the teacher. Some
constructivists advocate using ill-structured problems that students need to make sense of on their own or
in groups, with limited guidance from teachers. This form of constructivist pedagogy can be considered
as a form of discovery learning (e.g., Bruner, 1979; Papert and Harel, 1991), as it leaves students to
discover solutions on their own – this is a hotly debated issue that I will return to in Section 6.8 below.

Problem-based learning (PBL) is a currently popular pedagogy that exemplifies many constructivist
principles (see, e.g., Savery and Duffy, 1995; Norman and Schmidt, 1992). PBL is driven by substantial,
realistic problems that groups of learners try to solve with limited help (and no ready-made solutions)
from teachers and tutors:

The principal idea behind problem-based learning is that the starting point for learning should
be a problem, a query or a puzzle that the learner wishes to solve. . . Problem-based courses
use stimulus material to engage students in considering a problem which, as far as possible,
is presented in the same context as they would find it in ‘real life;’ this often means that it
crosses traditional disciplinary boundaries. Information on how to tackle the problem is not
given, although resources are available to assist the students to clarify what the ‘problem’
consists of and how they might deal with it. Students work cooperatively in a group or
team with access to a tutor who is often not an expert in the field of the particular problem
presented, but someone who can facilitate the learning process. (Boud and Feletti, quoted by
Kay et al., 2000)

PBL seeks to activate students’ prior knowledge in the search for solutions to meaningful problems, to
encourage the sharing of cognitions amongst learners and (self-)explanation of solutions, and to foster
the development of self-directed learning skills (Norman and Schmidt, 1992).

Inquiry-based learning (IL) is another popular constructivist approach to teaching that is closely related
to PBL – indeed, it is often almost indistinguishable from it (Hmelo-Silver et al., 2007). Whereas PBL
arises from the diagnosis problems of medical education, IL draws on the scientific method: students form
questions, then collect and analyze data to answer them.

Despite the emphasis on hands-on activity and methods such as PBL and IL, many constructivists are
careful to point out that using a particular method has no intrinsic value – a lecture can be constructivist if
it succeeds in engaging learners to construct viable knowledge, just as richly contextualized learner-driven
groupwork fails when inappropriately used.

6.5 Conceptual change theories deal with the dynamics of knowledge
construction

This section briefly introduces a group of learning theories related to constructivism. Depending on
interpretation, these conceptual change theories can be said to be either versions of constructivism or
separate theoretical frameworks that have considerable commonalities with forms of constructivism. They
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certainly fall under the broad usage of the term “constructivism” (see Section 6.1).4
Theories of conceptual change characterize the kinds of conceptual structures that people have, and

when and how those structures change as we learn. Of particular interest to conceptual change theorists
are people’s intuitive, naïve (as opposed to scientific) conceptions of phenomena. Problematically for the
educator, as well as the learner, the naïve knowledge that arises from everyday experience is notoriously
resilient to change.

Conceptual change theories generally fall into one of two ‘families’, termed by Özdemir and Clark the
knowledge-as-theory and knowledge-as-elements perspectives (Özdemir and Clark, 2007; diSessa, 2006).5

Knowledge-as-theory

One well-established family was seminally influenced by the work of Posner, Strike, and McCloskey
(and their colleagues) which in turn draws on Kuhn’s paradigm shifts and the Piagetian notion of
accommodation (see, e.g., Posner et al., 1982; Strike and Posner, 1985).

Knowledge-as-theory perspectives liken individuals’ knowledge – even naïve knowledge – to scientific
theories. What this means is not that individuals are necessarily aware of their knowledge in the same
way as scientists are of their theories, or that they seek to verify it as scientists do. The similarity to
scientific theory is merely that even naïve knowledge is considered to be organized and coherent, to allow
consistent application across contexts, and to be replaceable by a new ‘theory’ when it is found lacking.

When a learner experiences something new, they relate it to their existing ideas and judge its
consistency with them. As existing concepts form coherent structures, they are not independent of each
other; changes to one concept require changes in others. The difficulty of getting rid of misconceptions is
explained by this interdependency: making broad, complex changes to one’s existing overall ‘theory’
– misconceived or otherwise – is a daunting task. However, when sufficient conditions are met, a
revolutionary change akin to a scientific paradigm shift (Kuhn, 1962) occurs in the conceptual ecology
as one’s old ‘theory’ is replaced by a new one. A revolution is not necessarily abrupt, but may occur
gradually (Posner et al., 1982). Such a revolution does not result in anarchy; on the contrary, it restores
the conceptual ecology to a state where one’s new ‘theory’ accommodates the disruptive new ideas that
previously failed to fit in.

From a practical point of view, the meat of knowledge-as-theory perspectives is in what they say
about the conditions under which conceptual revolutions occur. Posner et al. (1982) detail four primary
conditions for conceptual change: 1) dissatisfaction with existing conceptions; 2) a sufficient minimal
understanding of the new conception; 3) the apparent plausibility of the new conception (it must seem
on the surface as if it could solve problems that one’s existing conception does not), and 4) an apparent
possibility that the new conception will be fruitful in leading to new insights beyond present needs. Many
learning events start with anomalies that lead to dissatisfaction and increase the plausibility and apparent
usefulness of new conceptions. Anomalies “provide the sort of cognitive conflict (like a Kuhnian state
of "crisis") that prepares the student’s conceptual ecology for an accommodation” (Posner et al., 1982,
p. 224, my italics). From a knowledge-as-theory perspective, teachers should foster cognitive conflict that
leads learners to confront and supplant their misconceptions.

Knowledge-as-elements

Another family of conceptual change theories, championed by Andrea diSessa, lies on the other side of
the “fault line between coherence and fragmentation” (diSessa, 2006). According to these theories, naïve
knowledge is not coherent and consistent but consists of a collection of quasi-independent, often tightly
context-bound elements that form a loosely connected structure. In diSessa’s influential knowledge-
as-elements theory, these low-level elements of naïve knowledge are called p-prims (phenomenological
primitives). A p-prim is a minimal abstraction of common phenomena that is – for whoever experiences

4I have placed this discussion of conceptual change theories in this chapter on constructivism. This body of work also
intersects significantly with cognitive psychology, as indeed does constructivism in general (assuming a broad definition of
the latter term).

5In the literature, it is not rare for the term “conceptual change theories” to be used to refer exclusively to what I call
knowledge-as-theory perspectives.
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it – intuitive and self-evident. An example of a p-prim in naïve physics is the notion of ‘bouncing’: as a
smaller object comes into impingement with a large or otherwise immobile other object, the smaller object
will recoil (diSessa, 1993). ‘Bouncing’ is a common-sense equivalent of a physical law: it helps explain
other phenomena but does not itself, as a primitive, require explanation.6

Knowledge-as-elements perspectives emphasize context-dependence. There is no overarching theory-
like structure that allows for generalization. As the learner forms a new idea, it becomes an element in
the learner’s conceptual ecology, associated with a particular context. It is possible for a learner to hold
several contradictory understandings of a phenomenon, each particular to a different context. Instead of
having a single consistent theory for the many physical phenomena governed by F = ma, for instance, one
may have entirely distinct p-prims for bouncing and throwing, and even for throwing objects of a certain
shape.

Marton (1993) provides a nice summary of diSessa’s view of learning:

This view of characterizing what it takes to learn physics contradicts other characterizations
in which the transition between naive and scientific physics has been seen in Kuhnian terms
as the replacement of one world view with another. [. . . ] The picture presented by diSessa is
more evolutionary than revolutionary: Scientific physics evolves from naive physics more by
organization than by reorganization, more by structuring than restructuring. (p. 228)

According to knowledge-as-elements perspectives, it is context-specificity that makes misconceptions
resilient to change; instruction intended to correct a misconception may simply add a parallel understanding
rather than replace the old. However, some proponents of knowledge-as-elements maintain (from an
explicitly constructivist position) that rather than being a problem, misconceptions are a useful or even
necessary basis for further learning (e.g., Smith et al., 1994). Although Smith et al. agree with knowledge-
as-theory perspectives that states of cognitive conflict are “certainly desirable and conducive to conceptual
change” (p. 22), they oppose the idea of confronting misconceptions and trying to replace them with
correct understandings. The challenge of learning from such a knowledge-as-elements perspective is not to
replace the learner’s naïve misconception-ridden understanding with another – there is no well-organized,
general structure to replace! – or even to replace individual misconceptions. Instead, the goal is to help the
learner to organize their knowledge elements, to find borders for the rules they have constructed so as not
to over- or under-generalize, to select the most productive ideas and refine them, and to observe similarities
across contexts. The elements of naïve knowledge – misconceptions included – are the raw materials for
such processes, which, if learning is successful, evolve into a theory-like scientific understanding.

Recent developments have seen knowledge-as-theory and knowledge-as-elements move somewhat
closer to each other, with researchers suggesting that both evolutionary and revolutionary changes are
important during learning and that both families of conceptual change theory can inspire improvements
in pedagogy (see, e.g., Özdemir and Clark, 2007; Hammer, 1996).

6.6 Situated learning theory sees learning as communal participation
This section introduces another theory that is a relative or form of constructivism, depending on
interpretation. The theory of situated learning conceives of learning as an intrinsically contextualized
process of social participation in a community (Lave and Wenger, 1991). Although it is not always
phrased in such terms, situated learning theory is based on a social constructivist epistemology in which
knowledge exists within a community rather than within individuals.

Ben-Ari (2004, pp. 86–87) primes us on the lexicon of situated learning, as defined by Lave and
Wenger:

The learner is considered to be a participant within a community of practice (CoP). Learning
occurs by a process of apprenticeship called legitimate peripheral participation (LPP): (a)
the learner participates in a community of practice, (b) the learner’s presence is legitimate

6Although they were concerned with societal phenomena rather than physical ones, and their approach was less theoretical,
Run-D.M.C. (1984) might as well have been rapping about p-prims as they cautioned would-be inquirers: “Don’t ask me,
because I don’t know why, but it’s like that, and that’s the way it is.”
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in the eyes of the members of the community, and (c) initially, the learner’s participation is
peripheral, gradually expanding in scope until the learner achieves full-fledged membership in
the community.

Situated knowledge

The place of knowledge is within a community of practice. (Lave and Wenger, 1991, p. 100)

Situated learning theorists, like constructivists in general, emphasize the contextualization of knowledge
and difficulties in transfer. Knowledge is seen as located – situated – in the lived world of concrete
practice in which it is put to use, and tied to that cultural, social, and physical context. All knowledge is
situated in some way or another, as “a community of practice is an intrinsic condition for the existence
of knowledge” (ibid., p. 98). Conversely, the importance of individuals, even the recognized ‘masters’ or
teachers within a community, as bearers of knowledge is of lesser importance: “mastery resides not in the
master but in the organization of the community of practice of which the master is part” (ibid., p. 94).
This is a quintessentially social-constructivist view.

Learning is participation

According to Lave and Wenger, learning occurs as the learner participates in the practice of a community
in some useful – although initially minor, even menial – capacity.

Participation in the cultural practice in which any knowledge exists is an epistemological
principle of learning. The social structure of this practice, its power relations, and its conditions
for legitimacy define possibilities for learning (i.e., for legitimate peripheral participation).
(Lave and Wenger, 1991, p. 98)

Participation does not mean mere observation and imitation of what the senior members of the community
do, but taking an active, social, useful, collaborative role within the community that enables the learner to
take part in the community’s everyday activities, becoming familiar with all its aspects, including “who is
involved; what they do; what other learners are doing; [. . . ] how masters talk, walk, work, and generally
conduct their lives; [. . . ] how, when, and about what old-timers collaborate, collude, and collide, and
what they enjoy, dislike, respect, and admire” (ibid., p. 95). The other members of a community are
exemplars of social roles and professions that learners can aspire to. The learner’s gaining of expertise
is embodied in changes that take place within the community: the learner gradually progresses from the
periphery to ever more central roles, eventually reaching mastery.

The problem of decontextualized schooling

Since learning and its goals are characteristics of a community of practice, Lave and Wenger (1991,
p. 97) advise against analyzing curricula “apart from the social relations that shape legitimate peripheral
participation”. According to them, engaging in the practice of a community is not merely the future
goal of a learning process (as it is traditionally seen in the context of schooling that prepares students
for later participation in other, professional communities) but is an intrinsic aspect of learning. In their
seminal work, Lave and Wenger (1991) deliberately skirt around questions of pedagogy, but, as a whole,
the situated learning movement is severely critical of the notion of teaching knowledge that is abstracted
from authentic practice, as “the organization of schooling as an educational form is predicated on claims
that knowledge can be decontextualized” (ibid., p. 40).

In the situated view, all learning is situated, and useful results are only likely to be obtained by
situating learning in the community of practice in which the skills that are learned are genuinely needed.
Participating in a traditional school community, for instance, will only (or mostly) foster skills that are
needed in that inauthentic setting; “there are vast differences between the ways high-school physics
students participate in and give meaning to their activity and the way professional physicists do” (ibid.,
p. 99) – for the purpose of becoming physicists, they are participating in the wrong community of practice.
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The challenge of the educational enterprise, from the situated learning point of view, is to find ways
for learners to become members of meaningful communities of practice and to engage in legitimate,
useful participation right from the start. The key to this is access for newcomers to all that membership
of the community entails: ongoing activity, old-timers and other members, information, resources, and
opportunities for participation. Lave and Wenger point out that although this is essential, it is always
problematic all the same.

6.7 Constructivisms are increasingly influential in computing education
We feel that constructivist principles are exerting strong influences on professional practice
in computer science education. However, constructivism – as a body of theory – maintains
a relatively low visibility within our discipline. [. . . ] [Constructivism] has spawned a host of
principles for good practice that have propagated independently of theoretical roots. (Greening
and Kay, 2001)

According to Greening (1999), “a constructivist future for computer science education is almost assured”.
Be that as it may, the influence of constructivisms has indeed become more explicit in both computing
education and CER since the late 1990s.

Compared to its impact on mathematics and science education, the visible influence of constructivisms
in computing education has been minor. Certainly, there are famous initiatives in programming education
that are based on a kinstheory of constructivism that goes by the name of constructionism (Papert
and Harel, 1991). The ‘toolkits-for-learning-by-creating-for-sharing’ spirit of constructionist education is
embodied in the Logo and Smalltalk programming languages, and, more recently, Scratch (MIT Media Lab,
n.d.), Squeak (Ingalls et al., 1997), Lego Mindstorms (Lego Group, n.d.), and Media Computation (Media
Computation teachers, n.d.). Equally certainly, many computing education practices are compatible with
many forms of constructivism. For instance, project-based teamwork on open-ended problems that are
intended to be fairly authentic is relatively common in programming education.

However, it is only in recent years that constructivism has become a clearly visible force in CER. The
use of “constructivism” (as a buzzword, or as a genuine theoretical framework) is increasingly common and
constructivism in some form is now used to justify and inform pedagogical interventions in programming
education (Hadjerrouit, 1998; Gray et al., 1998; Van Gorp and Grissom, 2001; Parker and Becker, 2003;
Lui et al., 2004; Gonzalez, 2004; Wulf, 2005; Thota and Whitfield, 2010; Yadin, 2011, and many more), to
motivate research questions or approaches (e.g., Madison and Gifford, 1997; Rajlich, 2002; Knobelsdorf,
2008; Ma et al., 2011), or as an analytical tool that retroactively justifies existing pedagogy (Pullen,
2001). Some recent work in CER has explored pedagogy that builds on the notion of legitimate peripheral
participation (e.g., Hundhausen, 2002; Guzdial and Elliott Tew, 2006) or otherwise used situated learning
as a research framework (e.g., Booth, 2001b; Knobelsdorf and Schulte, 2007). The related constructivist
approach of cognitive apprenticeship, which seeks to make thinking processes visible (Collins et al., 1989)
has also found some recent applications in computing education (e.g., Caspersen and Bennedsen, 2007;
Bareiss and Radley, 2010), as has problem-based learning (e.g., Kay et al., 2000; Kinnunen and Malmi,
2005; Nuutila et al., 2005, and see Section 10.1).

The vast majority of CER papers that mention “constructivism” are concerned directly with pedagogy.
Only a few authors have considered the applicability of a constructivism as a theory to computing education
from a wide perspective. The discussion in two such publications, by Greening (1999) and Ben-Ari (2001a),
forms the spine of Subsections 6.7.1 and 6.7.2 below. In Subsection 6.7.3, I review Ben-Ari’s commentary
on the applicability of situated learning theory to computing education.

6.7.1 Programmers’ jobs feature ill-structured problems in an ill-structured world
Greening (1999) argues that, from the constructivist point of view, the main challenge of learning
programming is not the acquisition of knowledge about programming languages, syntax, and semantics.
Rather, learners must come to see programming as an essentially creative pursuit involving the skills of
synthesizing and problem solving. Genuine skill in programming involves being able to tackle ill-structured,
complex problems in authentic contexts. To cope with such contexts, students need to learn the skills
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of proper design, coding style, requirements elicitation, software development processes, teamwork, and
communication. Greening advocates PBL as a pedagogical technique suitable for learning these skills.

Greening further claims that constructivism is much needed in computer science education to address
the modern trends of information explosion, rapid technological change, globalization, and the resulting
need to recognize the validity of multiple viewpoints on knowledge. “Education will not be able to assume
that a singular world view will provide an adequate working model; it will need to deal instead with
multiple world views in flux” (p. 67). This is something that constructivism, with its subjective view of
knowledge, is more comfortable with than the traditional objectivist paradigm is.

When it comes to various human aspects of computing, such as software engineering practices, good
design, usability, etc., Greening is no doubt right to stress the usefulness of learning to cope with multiple
viewpoints. However, when it comes to learning how to cope with the computer itself, a different line of
constructivism-inspired thinking is suggested by Ben-Ari (2001a). The computer does not negotiate. . .

6.7.2 The novice needs to construct viable knowledge of the computer
Even if no effort is made to present a view of what is going on ‘inside’ the learners will form
their own. (du Boulay, 1986)

Ben-Ari (2001a) discusses the application of constructivism – primarily personal constructivism of a
cognitivist bent – to computing education, drawing a number of conclusions that “seem to follow directly
from constructivist principles”. Ben-Ari’s conclusions rest on three claims. The first is that learners
necessarily construct knowledge about the phenomena they encounter, for better or worse. The other two
are characteristics of computing as a discipline:

I claim that the application of constructivism to CSE must take into account two
characteristics that do not appear in natural sciences:

• A (beginning) computer science student has no effective model of a computer.
• The computer forms an accessible ontological reality.

(Ben-Ari, 2001a, p. 56)

Let us look at each of the three claims in more detail, starting with students’ initial models.

Lack of an effective initial model

Constructivism emphasizes the importance of prior knowledge for learning, and knowledge of the computer
is, Ben-Ari (2001a) argues, a prerequisite for understanding computing as we know it. However, beginning
students of computing lack knowledge that “the student can use to make viable constructions of knowledge
based upon sensory experiences such as reading, listening to lectures and working with a computer”. That
is, students lack knowledge that is viable for the purpose of learning about programming and other aspects
of computing.

Some students come to computing studies with self-taught, viable knowledge of the computer and of
programming concepts. However, prior knowledge may also be a hindrance: “Autodidactic programming
experience is not necessarily correlated with success in academic computer science studies. These students,
like most physics students, come with firmly held mental models that are not viable for academic studies”
(ibid., p. 58). Depending on which variant of constructivism one subscribes to, dealing with such non-viable
prior knowledge is either a matter of correcting it or of refining it to create coherent, viable knowledge
(cf. Section 6.5).

Inevitable construction

Ben-Ari (2001a; Ben-Ari and Yeshno, 2006) argues that, according to constructivist principles, when
learners come across a system they construct a mental model of it. Constructing knowledge is inevitable
and will happen regardless of whether the learner has been taught a normative conceptual model of the
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phenomenon, although instruction can have an effect on the resulting model. For instance, a person
encountering a WYSIWYG word processor for the first time may construct a model based on an analogy
with paper and ink, which is viable to begin with but may soon become non-viable once one starts
tinkering with fonts (which are implemented as invisible markup within the visible document). A technical
description of how a word processor actually works may contribute towards the construction of a different
model.

Ben-Ari (2001a) marshals evidence from the literature – much of which is familiar to readers of this
thesis from Section 3.4 and Chapter 5 – to support his argument that when faced with abstractions of
the computer, students will necessarily construct their own, often non-viable mental models of what lies
beneath. Ben-Ari points out that even though these difficulties with are sometimes attributed to features
of particular languages, the phenomenon of constructing non-viable models of the computer does not
seem to be constrained to any single language or programming paradigm.

Accessible ontological reality

By accessible ontological reality, I mean that a “correct” answer is easily accessible, and
moreover, successful performance requires that a normative model of this reality must be
constructed. (Ben-Ari, 2001a, p. 56)

In essence, what Ben-Ari is saying is that computing (the parts of it that directly involve computers,
at least) does have an ontology that is reflected in useful knowledge; this goes against the radical
constructivist rejection of ontology as an epistemological basis. The computer is an artifact that behaves
in a certain way, and unless the learner’s understandings of the computer are a close enough match
with this reality, there will soon be consequences. Feedback on non-viable understandings is often
immediate and “brutal” in the shape of error messages, crashes, and bugs. Moreover, while the specifics
of people’s constructed understandings of the computer are unique, all viable understandings must match
the normative understanding fairly closely, leaving little room for disagreement. As Ben-Ari (ibid., p. 58)
points out, “there is not much point negotiating models of the syntax or semantics of a programming
language” once the decision to use a particular programming language has been made. So much for the
“spectrum of views” (Greening, 1999) that constructivist educators generally hope students will explore!

Implication: underlying models early

If Ben-Ari’s claims are accepted, introductory programming students need to learn not just what program
code does, but also what goes on beneath, within the computer. Leaving the computer as an abstract
‘black box’ in teaching means that people will rely on the ineffective, intuitive knowledge that they
will nevertheless construct. The students’ knowledge of the computer need not be ‘complete’ but must
be viable for the purpose of understanding programs. Ben-Ari goes even further in his pedagogical
recommendations, suggesting that students need to confront underlying models (of the computer and
software artifacts like word processors) before learning about the abstractions above. Encountering
abstractions first will lead to the ill-fated construction of intuitive models.

Greening (1999) is skeptical about Ben-Ari’s claim7 that a model of the computer is needed for learning
computing, and emphasizes that constructivism is less about prescribing what prerequisite knowledge is
needed than it is about acknowledging that prior knowledge plays a part in knowledge construction.
Greening further argues that a model of the computer will be less important in the (near?) future:

Increasingly, perhaps as a sign of maturity of the discipline(s) of computing, the need to
understand the machine will dissipate. This statement will surely horrify some readers.
(Greening, 1999, p. 73)

I think Greening’s statement (as I interpret it) has an unhorrifying point, but may at the same time miss
the point that Ben-Ari was (I believe) trying to make.

7Greening did not have a time machine. I have referred here to Ben-Ari (2001a), a longer version of a 1998 paper that
Greening (1999) commented on.
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In any particular course you will be teaching a specific level of abstraction; you must explicitly
present a viable model one level beneath the one you are teaching. (Ben-Ari, 2001a, p. 68)

Ben-Ari is not suggesting that introductory programming students (who primarily target an understanding
of programs at program code level) should understand in detail how computer hardware or the operating
system works. What he is saying is that given a targeted level of abstraction, a lower-level understanding –
slightly lower but still as high as possible – is needed that is viable for the purpose of explaining phenomena
at the targeted level. To put this claim differently, and into context: in order to learn about programming
at the code level, students need to learn about a notional machine (see Section 5.4) that concretizes the
semantics of code constructs.

Greening appears to be talking about the importance of understanding the actual machine at a fairly
low level. I agree with Greening that levels of abstraction in programming appear still to be rising.
That may indeed mean that the low-level machine is becoming less and less important for introductory
programming education. However, unless computing and the nature of program execution change in
a dramatic way that I cannot foresee, a viable understanding of the computer “one level beneath” the
targeted level will still be needed. The level of abstraction of the notional machine that is needed may
increase in the future, along with the level of abstraction of programming itself, but a notional machine
will nevertheless be required by would-be computer programmers.8

6.7.3 Situated learning theory is ‘partially applicable’ to computing education
Ben-Ari (2004, 2005) discusses the applicability of apprenticeship-driven pedagogy based on situated
learning (Section 6.6) to education in computing and other high-tech fields. He identifies open-
source software development as an area of computing where legitimate peripheral participation is vividly
demonstrated. However, his overall conclusion is that legitimate peripheral participation cannot be
accepted as a general model of computing education as “it simply ignores the enormous gap between the
world of education and the world of high-tech CoPs [communities of practice]” (Ben-Ari, 2004, p. 98).
Ben-Ari questions, among other things, the improbable notion that corporations (genuine communities
of practice) would hire and educate newcomers lacking skills that can be taught in a school context. He
also understandably bristles at the suggestion that learners should choose, or be chosen, professions and
future communities of practice early in life, as is the case in the low-tech communities studied by Lave
and Wenger (1991), and notes that situated learning may help perpetuate social class structures.

To consistently uphold a policy of real situations [. . . ] A class of rich kids could be asked to
compute the most efficient route to sail a yacht from Nice to Barcelona, while a class of poor
kids could be asked to compute the salary at which it is advantageous to give up welfare and
take a job. (Ben-Ari, 2005, p. 372)

Despite these strong criticisms, Ben-Ari does not entirely dismiss the potential of situated learning theory
for high-tech education. Taken “metaphorically” rather than at face value, he argues, situated learning
can serve as a source of inspiration for computing teachers and computing education researchers. In
particular: we should take it seriously that learning computing – even at school or university – is a step on
the way towards students’ initiation into authentic communities of practice within industry and academia.
Learning to be a programmer, for instance, requires the learner to learn about communities in need of
programmers and the authentic practices in which they engage, and to become motivated to join such
a community. Ben-Ari further notes the domain-tied nature of most genuine computing communities of
practice, and argues that computing education should introduce one or more non-computing domains to
learners, even if this does not take place in a truly authentic setting but a simulated one.

8Ben-Ari’s claim raises the suspicion of an infinite regress. To learn at one level, you first need to learn at the level
below. To learn at that lower level, do you first have to learn at one below that, and so forth? Does this lead to the
conclusion that learning to program requires one to start at the level of subatomic particles and work upward in abstraction
from there? The regress is avoided through the observation that the understanding at “one level beneath” does not need to
be as comprehensive as the understanding at the target level. At each successively lower level, the understanding needed may
be increasingly vague, serving only the purpose of being viable (that is, ‘good enough’) for learning about the next level up.
At a sufficiently low level, which is perhaps not very low, even a trivially teachable or intuitively formed vague understanding
is enough.
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6.8 Constructivisms have drawn some heavy criticism
The constructivist landscape is not a tranquil place, but a gory battlefield on which some wage civil
war while others defend against foreign attacks and lead crusades against non-believers. Much of the
critical literature is highly polemical, with constructivists having been denounced variously as inquisitors,
Stalinists, drunkards, necromancers, and – worst of all – behaviorists.

I cannot hope to do justice to the complex dialogue in the literature, but will try to present some of
the main issues. I will largely ignore the in-fighting between branches of constructivism, and focus on
general criticisms of constructivist theories.

I have organized this section around nine contentious points, or ‘skirmishes’.

Skirmish 1: relativism

The common constructivist move is from uncontroversial, almost self-evident premises stating
that knowledge is a human construction, that it is historically and culturally bound, and that
it is not absolute, to the conclusion that knowledge claims are either unfounded or relativist.
(Matthews, 1994, p. 143)

Perhaps the most common criticism of constructivist epistemologies (see, e.g., various articles in Phillips,
2000; Steffe and Gale, 1995) is that they easily lead to a denial of reality and to moral relativism: in a world
of one’s own construction, it is meaningless to care about others. There is widespread agreement that
moral relativism is bad, which is why it is a popular beating stick for critics to wield. Constructivist theorists
are keen to escape accusations of relativism. On the radical constructivist side, such claims are called
“misunderstandings of constructivism” (von Glasersfeld, 1995), and sometimes dodged by labeling one’s
own version of constructivism non-dualistic, that is, by asserting that the world and humans’ constructions
of it are inseparable (see, e.g., Howe and Berv, 2000, and cf. the next skirmish). In a rather similar vein,
Gergen claims that extreme social constructivism transcends such issues since it does not commence with
the external world as its fundamental concern nor with the internal mental world (which would lead to
solipsism) but with language (Gergen, 1995); this defense, however, simply leads to solipsism of a different,
social kind, according to its critics (Bickhard, 1995).

It has been argued that escaping the trap of utter relativism requires a notion of shared meanings
between individuals. Towards this end, von Glasersfeld claims that even though for the radical
constructivist, meanings are not genuinely shared, they may be “taken as shared” by individuals, as
beliefs that have more or less viability. Howe and Berv are critical:

Is the meaning of “taken as shared” merely “taken as shared”? [. . . ] How can radical
constructivists talk to each other? Worse, how can they talk to themselves? Are von
Glasersfeld’s meanings on Monday the same as his meanings on Friday, or does he merely
take them to be the same? How could he know? (Howe and Berv, 2000, p. 33)

Social constructivists are keen on shared meanings but also fail to escape accusations of relativism. Taken
to the extreme, social constructivism argues that the very notion of knowledge is merely a matter of social
agreement, an epistemologically relativist view which readily leads to ontological relativism as well (see,
e.g., Prior McCarty and Schwandt, 2000).

Many words have been said in the relativism debate, but a resolution does not seem near.

Skirmish 2: logical flaws: foundationalism, dualism, and the element of surprise

Perceived flaws in constructivist claims about epistemology include the failure to explain the notions of
construction and viability, as well as constructivists’ claims of non-dualism.

Extreme constructivists consider themselves antifoundational, with no reality to found knowledge
on. Prior McCarty and Schwandt (2000) contest this view on several accounts, contending that “it is
patently absurd, even hilarious, to consider describing either von Glasersfeld’s views or those of Gergen as
"antifoundational"”. They argue, for instance, that the very idea of knowledge construction depends on
an ontology since for construction to happen there need to be some people and materials whose existence
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precedes construction. Therefore, constructivism is actually a foundationalist theory in which every idea
is founded on the metaphysics of construction (pp. 71–72).

Prior McCarty and Schwandt (2000, p. 70) point out another problem with constructivism: its failure
to explain surprise. For instance, it is possible for a seemingly healthy person to be surprised when a doctor
tells them that they have only two months left, which seems strange if our experiences are independent
of ontological reality. According to Prior McCarty and Schwandt, denial of surprise follows from the
ontologically agnostic positions of the radical forms of personal and social constructivism. An extension
of this argument is that since it is possible for our understandings unexpectedly to turn out to be non-
viable, then there must be an ontological reality ‘out there’ that leads to such developments. The notion
of viability therefore appears to lead to an acceptance of ontology (see also Marton and Booth, 1997,
pp. 6–8). Arguments of this kind have prompted the suggestion that radical constructivism is a dualist
theory, unlike its proponents claim. Dualism comes with baggage of its own; see, e.g., Controversy 6 in
Section 5.7 above.

Skirmish 3: the content of teaching and educational norms

Many constructivisms question the idea of educational norms (Section 6.2.3 above). However, critics in
science education take issue with the idea that students “construct their own sciences” during education
as per the Piagetian maxim “to understand is to invent”. Critics point out that even if existing theories are
not always ‘correct’, education needs to familiarize learners with what the broader intellectual community
regards as the products of science, and that it is patently impossible for students to themselves construct
ideas that scientists have spent centuries researching (e.g., Phillips, 2000, pp. 14, 32, 179).

A related criticism concerns the constructivist dismissal of standardized assessment:

In the hands of the most radical constructivists, [the dismissal of standard evaluations] implies
that it is impossible to evaluate any educational hypothesis empirically because any such test
necessarily requires a commitment to some arbitrary, culturally-determined, set of values.
[. . . ] If the "student as judge" attitude were to dominate education, it would no longer be
clear when instruction had failed and when it had succeeded, when it was moving forward
and when backward. [. . . ] To argue for radical constructivism seems to us to engender deep
contradictions. Radical constructivists cannot argue for any particular agenda if they deny a
consensus as to values. The very act of arguing for a position is to engage in a value-loaded
instructional behavior. (Anderson et al., 2000b)

Skirmish 4: Piaget’s legacy and the brand of cognitive science

Radical constructivists and cognitive scientists – and others – both draw heavily on the work of Jean Piaget
and hold him in great esteem. This has led to arguments between the groups over whose interpretation
of Piaget is correct (or more viable). Some cognitivists advise radical constructivists to construct “a more
careful understanding of Piaget” that also acknowledges the critical role of the relatively passive process of
assimilating knowledge into existing structures (Anderson et al., 2000b). Radical constructivists consider
non-radical understandings of Piaget to be naïve (e.g., von Glasersfeld, 1982, 1995, 1998), and suggest
that critics who claim that Piaget failed to give sufficient consideration for social issues ought to apply
“the necessary attention” to his original work.

Adding perceived insult to injury is the fact that various constructivist authors state that their work
is in line with findings from cognitive science, a claim that Anderson et al. (2000b) – who are eminent
cognitive scientists – vehemently deny. Anderson et al. do not cite any examples from computing
education, but one suspects that they might consider the book chapter by Greening (1999) (discussed
above in Section 6.7) to be a case in point: as Greening pushes a constructivist agenda, he suggests that
constructivism contributes to educators’ awareness of how important it is to avoid cognitive load, although
the critical cognitive scientists are suggesting that it is precisely constructivist teaching practices that are
causing cognitive overload (see Skirmishes 5 and 6 below). Both views may be right at the same time, in
their own ways: even if some constructivist teaching practices tend to cognitively overload students, good
constructivist teachers are more likely to use substantial scaffolding that reduces cognitive load (although
perhaps still not as much as critics might like; see Skirmish 7).
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Skirmish 5: ignoring evidence

Various authors have complained about the vagueness of constructivist ideas. For instance, Prior McCarty
and Schwandt (2000, p. 42) describe knowledge construction as “a range of hazily imagined mental
activities”, while Anderson et al. (2000b) claim that constructivists “refuse to focus on details and
precise specifications”. Indeed, many constructivists seem to be satisfied with a highly abstract notion of
construction, although conceptual change theorists (Section 6.5) and cognitive constructivists who rely
on schema theory and mental models are exceptions.9 The vagueness of instructional frameworks and
a lack of rigorous studies and testable hypotheses have been acknowledged as weaknesses also by some
scholars otherwise sympathetic to constructivism (Tobias and Duffy, 2009).

A related criticism is that constructivisms are said to be oblivious to much that is known through
research. Mayer (2004) and Kirschner et al. (2006) accuse constructivists of ignoring half a century of
empirical evidence from cognitive psychology regarding the human cognitive apparatus and its effects on
learning. Anderson et al. (2000b) pursue a similar line:

This [constructivist] criticism of practice (called “drill and kill,” as if this phrase constituted
empirical evaluation) is prominent in constructivist writings. Nothing flies more in the face of
the last 20 years of research than the assertion that practice is bad. All evidence, from the
laboratory and from extensive case studies of professionals, indicates that real competence
only comes with extensive practice.

Critics have called for radical constructivists and supporters of constructivist pedagogies to produce
testable predictions and empirical data that supports their claims. At least part of the challenge may
go unheeded, since some extreme forms of constructivism seem even to deny the possibility or relevance
of empirical data to educational decisions (Prior McCarty and Schwandt, 2000; Anderson et al., 2000b).

Skirmish 6: complex, authentic contexts

An issue of disagreement between (some) cognitive psychologists and (some) constructivists is the
constructivist claim that knowledge is context-dependent and effective learning requires rich contexts,
authentic settings, and ill-structured problems which learners make sense of largely on their own. Mayer
(2004), Anderson et al. (2000b) and Kirschner et al. (2006) cite numerous empirical studies whose results
indicate that knowledge can be transferred between contexts (under the right conditions), and that ill-
structured problems, complex settings and other constructivist pedagogies tend to cognitively overload
learners and are commonly ineffective.

The psychologists that I have cited do not claim that authentic contexts are never useful or that no
knowledge is context-dependent or best learned in a complex context. Anderson et al., for instance, do
agree that some skills are best practiced in a complex setting, for motivational reasons or to learn special
skills that are unique to the complex situation. However, they object to the sweeping statements on this
topic that many constructivists make.

Mayer (2004) warns against “the constructivist fallacy” of equating behavioral activity (hands-on tasks)
with fruitful cognitive activity. According to Anderson et al. (2000b), situated learning and constructivism
are movements which claim to oppose behaviorism, but which, through their neglect of cognition, have
ironically ended up reiterating Burrhus F. Skinner’s utopian vision of behaviorist education from his novel
Walden Two, in which people learn best from being subjected to the control of the community in which
they participate.

Situated learning theory places a particularly heavy emphasis on how effective learning is dependent
on participation within a complex, authentic context. This makes situated learning a prime target for the
critical cognitive scientists. One of the assertions of Kirschner et al. (2006) is a succinct antithesis of
the situated theory of learning: “The practice of a profession is not the same as learning to practice the
profession.”

9A colleague of mine once half-seriously commented that “constructivism can be used to justify any pedagogical
innovation” and – on a separate occasion – that “constructivism can’t be used to justify anything”. This apparent contradiction
is explained by the fact that constructivism, when taken in the broad sense, is so abstract when it comes to the processes of
learning that it says everything and nothing at the same time.
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Skirmish 7: minimal guidance pedagogy

Problem-based learning, inquiry learning, and other constructivist teaching approaches are sometimes
labeled minimal guidance approaches, as in the title of the provocative paper by Kirschner et al. (2006):
Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist,
Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching. Kirschner et al. review evidence
that points to the supremacy of direct-guidance methods (such as worked-out examples) in teaching.
Influential threads within educational psychology, such as cognitive load theory (Section 4.5), emphasize
the need to give significant guidance to novice learners, even to the extent of providing ready-made
solutions to problems for the learner to study. This contrasts with the fairly common interpretation of
constructivist learning theory according to which learners should be left to discover meanings, patterns, and
solutions on their own, with little guidance from a teacher. Such a combination of complex contexts with
limited guidance has come in for particularly harsh criticism from the cognitivist camp (see, e.g., Mayer,
2004; Kirschner et al., 2006). Mayer laments that in the face of overwhelming evidence to the contrary,
pure discovery pedagogies seem to reappear every decade in a different guise – presently constructivism –
“like some zombie that keeps returning from its grave”. Sweller has argued that constructivist pedagogy
has failed to account for the different kinds of instruction needed to learn biologically primary knowledge
that we have evolved to acquire easily and automatically – such as language, which can be taught by
immersing the learner into complexity – and biologically secondary knowledge, such as politics or computer
programming, which call for direct, explicit instruction (Sweller, 2010a; Sweller et al., 2007)

The paper by Kirschner et al. (2006) has given rise to a rich exchange of views between academics
from the two schools of thought (Schmidt et al., 2007; Hmelo-Silver et al., 2007; Kuhn, 2007; Sweller
et al., 2007; Tobias and Duffy, 2009). The typical constructivist defense against the attack of Kirschner
et al. has been to emphasize how constructivism – or one’s particular interpretation of it, at least – is not
a pure discovery or minimal guidance approach. Proponents of various constructivist pedagogies such as
PBL have been quick to point out that although some implementations of constructivism might involve
little direct guidance, at least the particular variant that is being promoted features significant scaffolding.
These arguments have not been entirely to the satisfaction of direct-instruction advocates: disagreement
persists concerning the amount of guidance needed, and in particular on whether providing the solution
to a problem is an inappropriate form of strong scaffolding or a very useful one. Many constructivists
emphasize that methods such as PBL improve ‘softer’ skills that the attacking psychologists do not test
for, such as teamwork and self-directed learning skills. Some (such as Kuhn, 2007) even question the goal
of teaching knowledge, preferring to emphasize the development of generic thinking and learning skills
(which is a goal that goes against the schema theory view of expertise as domain-knowledge dependent;
Chapter 4).

Both sides of the argument have sought to present empirical evidence for their respective views and
criticized the studies cited by the other side. The book edited by Tobias and Duffy (2009) features
some increasingly fruitful dialogue between the two camps. Future research may help us gain better
understanding of under what circumstances and for which goals the different pedagogies work best, and
how they can complement each other.

Skirmish 8: nothing new

Nearly all critics of constructivism, it seems, have cast doubt upon the originality of constructivist ideas
and the pedagogical practices they result in. Phillips (2000), for instance, asks if constructivism has
really changed anything or if it is just the newest form of Kant’s philosophy, Dewey’s progressivism, and
discovery learning. Matthews (2000) suggests that constructivism has mostly succeeded in introducing
new jargon that – instead of simplifying complex matters, as terminology should – complicates simple
matters. Matthews even provides a tongue-in-cheek dictionary that maps “constructivist new speak” to
“orthodox old speak”. Elsewhere, Matthews (1992) calls constructivism old wine in new bottles, while
Levitt (quoted by Patton, 2002, p. 101) goes one better as he describes constructivism as a manifestation
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of postmodernism that is essentially “a particular technique for getting drunk on one’s own words”.10

The less extreme and more wishy-washy one’s constructivism is, the more susceptible one is to
accusations of unoriginality and weak potential for genuine change. Greening (1999) warns us that
constructivism cannot be merely approached, it must be accepted in its entirety, lest we end up merely
diluting our curricula with an assortment of constructivist principles that mean little in isolation from
each other. According to Larochelle and Bednarz (1998), “softer” non-epistemological versions of
constructivism have “scarcely modified the usual teaching modus vivendi at any level of instruction
one chooses to examine”. Some critics of constructivism agree with this latter claim: “A less radical
constructivism may contain no contradictions and may bear some truth. However, [. . . ] such a moderate
constructivism contains little that is new and ignores a lot that is already known” (Anderson et al., 2000b).

Skirmish 9: a disconnect between pedagogy and theory

A corollary of the claim that constructivist theory is vague (see Skirmish 5 above) is that there
is a disconnect between constructivist theory and the pedagogies that are commonly advocated by
constructivists. That is, it “seems possible for a person who accepts constructivism as a philosophy
to adopt any variety of pedagogical practices (or for a teacher who uses constructivist classroom practices
to justify doing so in a variety of ways, some of which might not philosophically be constructivist at all)”
(Phillips, 2000, p. 18). Many constructivists and critics have commented on this issue; some see it as a
problem, others do not.

Ben-Ari (2001a) asks the delicate question of whether “being a constructivist requires an
epistemological commitment to empiricism and idealism (or social idealism), as opposed to rationalism
and realism that seem to come more naturally to scientists”. Citing the work of Matthews, Ben-Ari
further notes how “pedagogical constructivists” avoid the problem by concentrating solely on improving
pedagogy and ignoring epistemological details as not worth disputing. The question then becomes whether
we need constructivist theory at all. Prior McCarty and Schwandt (2000) certainly do not think so, arguing
that even though some constructivists may advocate good pedagogical practices, those practices hardly
require, or benefit from, justification in the form of the “garage sale of outdated philosophical falsisms”
that is constructivist theory. An example of an explicitly constructivist epistemological position which is
nevertheless based on “traditional” pedagogy and experimental findings from cognitive psychology is that
of Renkl (2009).

I give the last word to Greening (1999), who points out that one may care less “whether constructivism
is required to bring about the beneficial changes in learning that have been attributed to it, and more
about whether or not it has” (p. 50, emphases in original). Even a skeptic of constructivist theories accepts
that the constructivist movement is influentially advocating certain pedagogies. Because of this, if for no
other reason, it is important to consider how present-day pedagogical innovations relate to constructivism.

10Adding to this curious theme linking constructivism and alcohol, Richards’s (1995) description of the problems of
constructivism is zymological: social and personal constructivism are analogous with two non-communicating descriptions of
the process of beer-brewing.
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Chapter 7

Phenomenographers Say: Learning
Changes Our Ways of Perceiving
Particular Content

Phenomenography is a primarily qualitative tradition of empirical research, whose main contributions lie
within education and its hybrid disciplines such as CER. Since the 1970s, phenomenographers have sought
to explore the educationally critical variation in how people experience, perceive, or understand various
phenomena.1 A phenomenon of interest can be specific – such as number in kindergarten mathematics,
matter in physics, or variable in computing – or more generic – such as learning to program or even learning
in general. Learning, from the phenomenographic point of view, involves becoming able to experience
phenomena in significantly different new ways.

In this chapter, I introduce the phenomenographic research tradition and some of its epistemological
and learning-theoretical foundations. This enables us to then review phenomenographic work on
programming education. My treatment of phenomenography in this chapter will be extended by Chapter 17
in connection with a phenomenographic study on visual program simulation.

Section 7.1 outlines the constitutionalist belief system which provides an epistemological backdrop to
phenomenographic research. In Section 7.2 we get a glimpse of the kinds of results that phenomenographic
research produces. The implications of phenomenographic theory and research for learning are the topic
of Section 7.3. Pedagogical issues follow in Section 7.4, and bring us back to the focus of Part II – what
it takes to learn programming – which I discuss from a phenomenographic perspective in Section 7.5. The
chapter concludes with the consideration of some criticisms of phenomenography in Section 7.6.

7.1 Phenomenography is based on a constitutionalist worldview
Our world is a world which is always understood in one way or in another, it can not be defined
without someone defining it. On the other hand, we can not be without our world. (Marton,
2000, p. 115)

Phenomenographic research is associated with a worldview that is sometimes termed constitutionalism
(Prosser and Trigwell, 1999). Constitutionalism, which draws on the phenomenology of Edmund Husserl2,
has been presented as a basis for phenomenographic research by Marton (2000; Marton and Booth 1997).
From the constitutionalist point of view, the only world that humans can meaningfully think about is
their ‘lifeworld’ of lived experience. Understanding exists as an internal, two-way relationship between
human experiencers and the phenomenon that is experienced. It is inseparable from the experiencer and
phenomenon alike, and is a reflection of both.

1The words “experience”, “perceive”, and “understand” are often used interchangeably in the phenomenographic literature.
I do the same in this chapter. Phenomenographers use these words in a particular sense. The intended meaning should become
clearer over the course of the chapter, and further in Chapter 17.

2For linkages between phenomenography and (Husserl’s version of) phenomenology, see, e.g., Marton and Booth (1997)
and Uljens (1996).
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Figure 7.1: The phenomenographic research perspective. The researcher investigates the relationship
between a population and a phenomenon; the results are a reflection of both. I have
followed a fledgling tradition sparked by Berglund (2002) in my asinine portrayal of the
phenomenographer in this figure.

The constitutionalist view is in sharp contrast to cognitive psychology (Chapters 4 and 5) and many
forms of constructivism (Chapter 6), as it discards the notion of mental representation, viz., the notion
that there exist representations within minds that are distinct from the phenomena that they represent.
Marton (2000), for instance, rejects the idea that experiences are structures in a separate mental world,
accusing cognitive psychologists of an untenable mind–matter dualism (see Section 5.7). By adopting a
view of knowledge as ways of experiencing the world – as internal relations between knower and known –
we achieve, Marton argues, a paradox-free non-dualist epistemology. Uljens (1998) remarks that Marton’s
“non-dualism” is essentially a type of monism. There is only one world, within which people, phenomena,
and their relationships exist alike.

Philosophical considerations aside, two practical points arise from the constitutionalist stance. The
first concerns research: a phenomenographer investigates neither people nor phenomena exclusively, but
their relationship, which reflects both at once. The second concerns learning: learning must be considered
in terms of both the learner and the specific content (phenomenon) being learned about. Let us first look
at the nature of phenomenographic research and the type of results it produces, and return to learning in
Section 7.3.

Investigating experiences of phenomena

We should explore [. . . ] what the world we experience is like, on the one hand, and what our
way of experiencing the world is like, on the other hand. And of course: these are not two
things. They are one. (Marton, 2000, p. 115)

Phenomenographers seek to find out how people experience phenomena. But what exactly is a
phenomenon and what does it mean to experience one? The constitutionalist answer is that these
two questions are inextricably linked. When he investigates experience, the phenomenographic researcher
studies the relationships between people and phenomena (Figure 7.1).

A phenomenon is “something in the world – concrete or abstract – which can be delimited from the
world, by the researcher and by others, according to their knowledge of the world” (Booth, 1992, p. 53).
Marton (2000) defines a phenomenon as a complex of all the different ways in which something can
be experienced. A way of experiencing something is one of the various facets that together constitute
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the phenomenon. An individual’s experience of something is shaped by both the experiencer and the
phenomenon.

An example. Marton and Booth (1997) summarize a phenomenographic study by Marton, Watkins,
and Tang, which explored Open University students’ experiences of what learning is. Learning was
experienced in one of six ways: increasing one’s knowledge, memorizing and reproducing, applying
knowledge, understanding and gaining insights about the world, opening one’s mind to see things in
a different way, and changing oneself as a person. These ways of experiencing learning play a part in
constituting what the phenomenon of learning is (along with other ways of experiencing learning that the
particular study did not discover). The research results speak not only of the students, or of what learning
is, but of both.

7.2 There is a small number of qualitatively different ways of
experiencing a phenomenon

People experience the same phenomenon differently. Even the same person experiences the same
phenomenon differently at different times and in different contexts. Are there countless significantly
different ways of experiencing the same phenomenon? Phenomenographers posit that it is not so.

The constitutionalist view differs significantly from constructivism in that learners are seen
to experience what they are learning in a small, identifiable range of different ways (usually
between three and seven). An identifiable range of variation is thus assumed to be present in
any given group (as compared with the idiosyncratic construction of every individual). (Bruce
and McMahon, 2002, p. 12)

This is not to deny that everyone’s conception of a phenomenon is unique. However, it is posited that a
researcher can describe ways of experiencing a phenomenon in an abstract way that captures the telling
differences between the few qualitatively different ways of experiencing the phenomenon.

Critical aspects

A phenomenon, viewed from a particular perspective, is characterized by certain critical aspects (also
known as critical features; I use these terms interchangeably). These aspects are critical in that they
define how ways of perceiving the phenomenon are qualitatively different:

Every phenomenon that we encounter is infinitely complex, but for every phenomenon there is
a limited number of critical features that distinguish the phenomenon from other phenomena.
What critical features the learner discerns and focuses on simultaneously characterises a
specific way of experiencing that phenomenon. (Pang, 2003, p. 148)

Let us take an example from CER. Eckerdal (2006) investigated how CS1 students understand what an
object is. Her data – typically for a phenomenographic study – consisted of in-depth interviews with
learners. Eckerdal describes three qualitatively different ways of understanding the phenomenon of object,
which I have summarized in Table 7.1. There is a logical structure to the three categories listed in the
table. Category A describes a very simple way of understanding what an object is: a piece of code. Only
the critical aspect of program text is in focus. In the understanding described by Category B, program
code is also recognized as a defining aspect of objects, but objects are additionally seen as active entities
during a program run. This relationship between objects and execution-time events is another critical
aspect of objects. The understanding in Category C includes those from the two first categories, and
further attributes a world-modeling aspect to objects.

Outcome spaces and categories of description

The results of a phenomenographic study usually take the form of an outcome space that consists of
a small number of interrelated categories of description. Table 7.1 is an example of an outcome space
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Table 7.1: Qualitatively different ways of understanding the programming concept of object (adapted
from Eckerdal, 2006).

Code Description

A An object is experienced as a piece of code.

B An object is experienced as a piece of code, and as something that is
active in the program.

C An object is experienced as a piece of code, as something that is active in
the program, and as a model of some real-world phenomenon.

with three categories of description. In each category, the researcher has crystallized a description of a
particular way of understanding that is different from the others in an educationally critical sense.

A category does not represent a particular person’s understanding or mental representation of a
phenomenon, although it is possible for a person, at a particular time, to conceive of the phenomenon in
a way that is consistent with a category. The categories are not defined in isolation; an outcome space is
defined by the way the conceptions contrast with each other. These differences between categories arise
out of the way certain critical features – or relationships between features – are discerned in one category
but not in another.

This hierarchicality of Eckerdal’s outcome space is typical of phenomenographic results, as is the way
some types of understanding can be considered richer while others are more limited. Compared to a
richer understanding of a phenomenon (e.g., one that matches Category C), a limited understanding of a
phenomenon (e.g., one that matches Category A or B) either focuses on a subset of the critical aspects
of a phenomenon or fails to discern relationships between particular critical aspects.

We now have an inkling of what phenomenography is and how phenomenographers view human
experience. What does all this mean for learning?

7.3 Learning involves qualitative changes in perception

Knowing the phenomenon can be seen as having a multi-faceted view of the [phenomenal]
object, while learning about it is gaining access to views of further faces and developing an
intuitive relationship with the object so that an appropriate face or set of faces is seen in
appropriate circumstances (Booth, 1992, p. 261)

7.3.1 Discerning new critical features leads to learning

Most phenomenographic work focuses on a certain kind of learning that takes place in educational settings:
learning to experience particular phenomena in richer, significantly different ways than before, in keeping
with learning goals set by teachers or the learners themselves. The discourse on learning within the
phenomenographic tradition may sound limited – after all, learners should learn to do things, they should
acquire new skills, not just new understandings. However, phenomenographers are in fact very concerned
with concrete abilities, which are seen as an outcome of learning to experience phenomena in richer ways.
“If we are able to handle a situation in a more powerful way, we must first see it in a powerful way, that
is discern its critical features and then take those aspects into account by integrating them together into
our thinking simultaneously, thus seeing them holistically” (Marton, 2007, p. 20). By discerning what is
critical about that which they encounter – and what is not critical, but a mere detail – learners become
prepared to deal with future situations, which they can make sense of in terms of their critical aspects
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(Bowden and Marton, 2004). A way of experiencing is the key to a new way of doing.3
From the phenomenographic perspective, learning is not a process that happens solely within a learner’s

mind, nor something external. To learn to experience the world in a significantly different way implies a
change in the two-way relationship between the learner and a phenomenon within the world that they both
inhabit. Such changes bring about new ways of discerning the meaning of the phenomenon, the part–
whole relationships within the phenomenon, and the relationships of the phenomenon to its surroundings
(Marton and Booth, 1997).

The relational view of learning emphasizes that learning is not generic, but involves the development of
new perspectives on particular phenomena. As learning always involves both a learner and a phenomenon,
it is not sufficient to consider merely cognitive processes that enable learning to take place, but also the
content of learning, the particular features of the phenomenon that characterize the significantly different
ways of understanding it.

7.3.2 The discernment of critical features requires variation
Pang (2003) distinguishes between two “faces of variation” that are relevant to phenomenographic
research. The first type of variation exists in the differences between qualitatively different ways of
understanding a phenomenon. This is the kind of variation that I have discussed so far in this chapter.
Another kind of variation pertains to a particular critical feature of a phenomenon. This variation is key to
discerning a critical feature in a particular way and, consequently, to learning to experience a phenomenon
in a significantly different way. The second kind of variation is the domain of variation theory.

Variation theory (Marton and Tsui, 2004; Pang, 2003) is a theory of learning closely associated with,
and inspired by, constitutionalist epistemology and the phenomenographic research movement. Its chief
tenet is that in order to learn, the learner must discern variation in educationally critical features of the
object of learning, that is, what one learns about.

As discussed above, to learn to experience a phenomenon in a new way requires new critical features,
or relationships between critical features, to be discerned. According to variation theory, each critical
feature is associated with a dimension of variation. To be able to discern a feature, one must experience
variation along the dimension of variation corresponding to that feature.

The jargon of variation theory can get complicated, but the basic idea is very simple, indeed quite
commonsensical. To experience something as red, we must experience other colors as well. To experience
the height of a person, we must experience people of different heights. Different colors and different heights
are values along the dimensions of variation in color and height, respectively. A strategy for solving a
programming problem is a value along a dimension of variation; other strategies for solving similar problems
are values along the same dimension. To compare strategies, you have to have experienced more than
one.

To experience variation in a dimension requires simultaneous awareness of different values along that
dimension, either through being exposed to the values at the same time or by juxtaposing one’s current
experience with prior experiences. In addition, the learner must be able to experience each of the critical
features as features of a single phenomenon, joined together in his experience. That is, the learner needs
to be focally aware of each critical feature simultaneously so that the critical features are present at
the same time as features of the phenomenon, with relationships to other critical features and to the
phenomenon as a whole (Marton et al., 2004; Pang, 2003).

7.4 Phenomenographers emphasize the role of content in instructional
design

To a teacher, a phenomenographic outcome space may be useful as a tool for analyzing their own teaching,
the content they teach about, and the ways in which their students understand (or might understand) the

3This is not to say that this kind of learning is the only one there is. Phenomenographers acknowledge that there is
learning that involves (merely) further developing or fine-tuning a perspective – a way of experiencing – which one already
has access to. However, it is the presumably more profound kind of learning brought about by qualitative shifts in experience
that phenomenography focuses on.
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content. “The assumption is that if we want to make the student think in a certain way about something,
it should be useful to know what other ways there are to think about it” (Johansson et al., 1985, p. 255).
Marton and Booth (1997, p. 81) suggest that phenomenographic outcome spaces serve to identify “a
notional path of developmental foci for instruction”. Some phenomenographers use variation theory as
an additional tool to analyze and report differences in ways of experiencing, and to offer pedagogical
recommendations.

7.4.1 Teachers’ job is to aid students in discerning critical features
In many cases, it is not enough for a teacher to just say to students what the critical features of a
phenomenon are. In order for students to actually experience these features, the teacher needs to help
learners discern variation in the corresponding dimensions, wherever those dimensions are not already
familiar to the learners.

Marton et al. (2004) discuss variation-based pedagogy in terms of creating a space of learning, which
is “the pattern of variation inherent in a situation” and “comprises any number of dimensions of variation
and denotes the aspects of a situation, or the phenomena embedded in that situation, that can be
discerned due to the variation present in the situation”. A space of learning “delimits what can be possibly
learned (in sense of discerning) in that particular situation” as it is “a necessary condition for the learner’s
experience of that pattern of variation unless the learner can experience that pattern due to what she has
encountered in the past” (p. 21).

Marton et al. are at pains to emphasize that their work is about ‘making learning possible’ rather
than guaranteeing learning results, as “no conditions of learning ever cause learning” (p. 22). That is not
to say that they place the burden of learning entirely on the shoulders of the learner; on the contrary,
the teacher’s expertise plays a great role in constructing an effective space of learning. The job of the
teacher is to facilitate discernment by creating situations in which students get to experience the critical
variation. Learners must have the opportunity to observe values along the dimensions of variation that
correspond to the critical features of the object of learning. For instance, when learning about object-
oriented programming, students should be presented with opportunities to observe objects as code, as
interacting agents within programs, and as parts of domain models. Without such a space of learning,
Marton et al. argue, a qualitative shift in perception is not possible. Eventually, the critical features of
the phenomenon should be discerned not only in isolation but as interconnected aspects of the object of
learning; such discernment, too, is affected by how the phenomenon is present in the space of learning.4

It is not only what varies that is relevant, but also the static context against which the variation
appears and against which it can be discerned. Marton et al. (2004) encourage teachers to think about
and exploit ‘patterns of variation’ through texts, speech, and learning materials to enable learners to
discern new variation. These patterns include contrast (comparing values along a dimension of variation),
generalization (showcasing an aspect by demonstrating different instances in which it features), separation
(varying an aspect while others remain invariant), and – often the most challenging – fusion (varying
multiple features at the same time to appreciate their relationships and give a holistic ‘feel’ for the
phenomenon).

7.4.2 For critical features to be addressed, they should be identified

Content-based pedagogy

Constructivists (Chapter 6) promote active and collaborative learning methods such as problem-based
learning and groupwork. Cognitive load theory (Section 4.5) emphasizes the usefulness of managed
assignments such as worked-out examples. What teaching methods do phenomenography and variation
theory recommend?

4Ko and Marton (2004, p. 62) describe good mathematics teaching as “planned, choreographed, and well thought-out
lessons” which nevertheless offer “plenty of space for the students’ own independent and spontaneous ideas”. In relation to
the present-day buzzwords “teacher-centered” and “student-centered”, Ko and Marton note, good teaching can be equally
both, if “teacher-centered” is taken to mean that the teacher has the key role of making sure that a space of learning is
created that matches the intended learning outcomes, and “student-centered” is taken to mean that students take ownership
of the space of learning and participate in creating it.
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The answer is none in particular, which is to say, none in general (see, e.g., Marton and Booth, 1997;
Marton and Tsui, 2004; Bowden and Marton, 2004). Phenomenographers have contended that many
teachers do not evaluate pedagogical approaches in terms of how well they are suited to dealing with
particular content, and that many scholars likewise underplay the role of content, chasing instead the
chimeric “art of teaching all things to all men”. Marton and colleagues oppose the notion of a general
pedagogical aid, be that project-based learning, example-based direct instruction, peer teaching, or IT-
aided learning. Although these often-proffered techniques may be very useful for some content and in
some circumstances,

no general approach to instruction can ever ensure that the specific conditions necessary for
the learning of specific objects of learning are brought about. In order to do this, we must take
the specific objects of learning as our point of departure. (Marton and Tsui, 2004, p. 229)

What phenomenographers recommend is to use whichever method works for highlighting the particular
variation needed in order to learn about the particular content that is being taught (when that content is
considered from the point of view of what the learners are intended to learn about it). What works must
be discovered for each object of learning separately and is tied to the educationally critical features of the
object.

Teachers or researchers?

Pedagogic recommendations based on phenomenography and variation theory blur the line between the
teacher and the educational researcher.

If pedagogic solutions need to be discovered for each object of learning separately, if perhaps even
generic capabilities such as thinking strategies and communicative skills are domain-specific (as suggested
by Marton and Tsui, 2004, p. 229), then the good teacher must be very aware of the pedagogically
sensitive aspects of the content they teach. Variation theorists call for teachers to engage “in finding out
what the specific conditions [of learning] are in every specific case, and how they can be brought about”
(ibid., p. 231). This is a non-trivial task even for the content expert, Bowden and Marton (2004) contend,
as the more fundamental and important one’s way of seeing things is, the harder it is to even notice it.

In the light of variation theory, teachers should define objects of learning in terms of ways of
experiencing particular content, learn about the ways in which learners may experience that content,
and determine what variation is critical for experiencing the content in the intended kind of way. Such
explorations enable the teacher to enact learning situations which afford the educationally critical variation,
and which have a motivating relevance structure (Marton and Booth, 1997, Chapter 8) that draws students
to experience the critical variation.

From a phenomenographic point of view, the goals of the teacher, then, have much in common with
those of the phenomenographic researcher who studies the relationships between people and particular
phenomena. Teachers should build on research findings that are particular to the object of learning they
wish to teach about.

With that in mind, let us look at what phenomenographic research says about introductory
programming.

7.5 Learning to program involves qualitative changes in experience

Phenomenography has gained popularity in the past decades, a development which has impacted on CER
as well as other fields. There is a small but growing body of phenomenographic work that investigates
the challenges of learning to program. This work can be roughly sorted into two threads. The first thread
is concerned with very general questions: in what ways do learners experience what programming is and
what it means to learn to program? The second thread is more varied and investigates the ways in which
particular programming concepts are understood. Both of these threads were influenced by the seminal
doctoral thesis by Booth (1992), which is a good place for us to start looking.
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Table 7.2: Different ways of experiencing learning to program (adapted from Booth, 1992).

Code Description

A Learning to program is experienced as learning a programming language
(or several).

B Learning to program is experienced as above, and as learning to write
programs using various techniques and language features.

C Learning to program is experienced as above, and as learning to solve
problems in the form of programs.

D Learning to program is experienced as above, and as becoming participant
within a programming community.

7.5.1 Learners experience programming differently

Booth (1992) conducted a pioneering phenomenographic study of learning introductory programming,
based on interviews with novice programmers during a semester-long CS1 course. She found that
her interviewees experienced what it means to learn to program in four qualitatively different ways.
This outcome space, which I have paraphrased in Table 7.2, features a hierarchical progression from
a rudimentary way of understanding (‘just learning a language’) in Category A to the rich way of
understanding in Category D (’learning to solve problems as part of a community’). Booth also found
that her interviewees had three qualitatively different ways of experiencing what programming is: A)
something directed towards the computer; B) something directed towards a problem that one intends to
solve, and C) something directed towards a product that is the outcome of the programming activity.5
Programming languages, Booth reports, were experienced in four different ways: A) as utility programs
that belong in computer system; B) as sets of code elements of which programs are built; C) as a means
of communicating between program components, the programmer, and/or a program’s users, and D) as
a medium of expression that allows the programmer to express solutions to problems.

Later studies have developed the themes opened up by Booth (1992), lending support to and
complementing her findings.

Booth (2001b) herself takes her earlier work – in which the richest ways of understanding are
characterized by a communal aspect (e.g., Table 7.2) – and relates it to situated learning theory
(Section 6.6) in order to explore the relationships between her categories and three computing subcultures:
the academic, the professional, and the informal culture.

Bruce and her colleagues also studied learners’ experiences of learning to program (see, e.g., Bruce
et al., 2004; Stoodley et al., 2004). Bruce et al. (2004) report that their interviewees experienced learning
to program as A) following the structure of a programming course to keep up with set assignments;
B) learning to code using the right syntax; C) learning to write programs through understanding and
integrating the concepts one encounters; D) learning to do what it takes to solve problems, and E)
learning what it takes to be a part of the programming community and to think like a programmer. The
findings of Bruce et al. partially match and partially extend Booth’s earlier work.

Eckerdal et al. (2005) observed that students talk about learning to program in terms of developing
a special “way of thinking”, which is different from everyday thinking and from the thinking in other
subjects they had learned about. Eckerdal et al. report an interview-based phenomenographic study in

5It is perhaps useful at this point to clarify that the phenomenographer seeks to look beyond language. Booth’s primary
focus, for example, was not on the different meanings that students assigned to the word “programming” but on the different
ways in which students related to the subject they studied. The meaning(s) of the word “programming” are a separate (even
though related) issue that is also an important consideration for the programming teacher (cf. Walker, 2011) and indeed for
the phenomenographic analyst who tries to get at the underlying conceptualizations.
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Table 7.3: Different ways of experiencing programming (adapted from Thuné and Eckerdal, 2010)

Code Description

A Computer programming is experienced as using a programming language
for writing program texts.

B Computer programming is experienced as above, and as a way of thinking
that relates instructions in the programming language to what will happen
when the program is executed.

C Computer programming is experienced as above, and as producing
applications of the kind familiar from everyday life.

D Computer programming is experienced as above, and as a ‘method’ of
reasoning that enables problems to be solved.

E Computer programming is experienced as above, and as a skill that can be
used outside the programming course, and for other purposes than
computer programming.

which they found that students experience learning to program in five different, hierarchically connected
ways: A) as learning to understand and use a language; B) as learning a hard-to-define way of thinking
related to a programming language; C) as learning to understand computer programs in real life; D) as
learning a ‘method’ of thinking which enables problems to be solved, and E) as learning a skill that can be
used outside the programming course. Thuné and Eckerdal (2009, 2010) analyzed students’ experiences
of what programming is. They describe a hierarchical outcome space (Table 7.3), whose categories largely
mirror those from Eckerdal et al.’s results – as one might expect, since conceptions of programming and
learning to program are interdependent.

7.5.2 A limited way of experiencing programming means limited learning opportunities

Some of the above ways of understanding programming and learning to program are very simple and
do not provide a fruitful basis for learning programming concepts. For instance, a learner who perceives
learning to program merely as learning to write program text according to syntactic rules, will inevitably
miss out on many opportunities to learn until his overarching view of programming changes in a significant
way.

The outcome spaces produced by phenomenographic studies within CER suggest that learning to
program may require multiple large-scale qualitative shifts in learners’ perceptions of programming. A
static perspective limited to program text needs to be developed into a dynamic one that takes execution-
time behavior into account. Ultimately, one should learn to view programming as an empowering skill
applicable to problems in one’s community.

Pedagogical implications

In line with variation theory, phenomenographers in CER emphasize the importance of highlighting
variation in the critical aspects of phenomena, rather than championing any specific teaching methods
as blanket solutions. When teaching methods such as groupwork and visual tools are advocated, it is
with the caveat that these pedagogies will only be useful if they help learners discern new critical aspects
and relationships between them. Unsupervised groupwork, for example, may, but also may not, lead to
discernment of critical variation. Often, the role of the teacher as a facilitator and guide rather than a
transmitter of information, is emphasized. Here is the view of Booth (1992), for instance:
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Teaching should encourage well-founded conceptions through example. Teaching should
not merely try to bring about expert behaviour in students by offering expert views on the
content, but give students the range of challenges which enable them to come to the expert
understanding via experience. Teachers should above all be aware of the range of conceptions
held by their students, and that poor conceptions are not necessarily caught in lab exercises
and examinations.

To learn to view programming in terms of execution-time behavior, for example, learners need to be
placed in environments that enable and motivate them to become focally aware of the execution-time
behavior of programs and its relationship with program code. Thuné and Eckerdal (2009) apply variation
theory to their outcome space concerning conceptions of programming (Table 7.3). They recommend that
instruction bring students to focus not only on various pieces of program code, but also: different program
actions during execution, different applications of programming to everyday life, different problems for
which there are programming solutions, and different contexts within which programming skills can be
used. They further warn against varying too many aspects at once and provide examples of teaching
techniques that, it is hypothesized, highlight the critical aspects. For instance, making students aware of
how a tiny change in program code can lead to dramatic changes in program behavior may be effective in
helping students pay attention to the runtime aspect of programs. After this aspect is discerned, software
tools may be used to illustrate the relationship between program code and the resulting behavior.

As it is important for a teacher to be aware of the qualitatively different ways in which learners may
understand the subject matter, the pedagogical expertise of teachers and teaching assistants is highly
important. Booth (2001a) reports a study in which it turned out that the classroom tutors employed did
not have a sophisticated way of understanding the goals of the course and in particular failed to see how
the content of the course was intended to relate to a broader context. Matters improved greatly with tutor
training: “An important insight the course team has gained is that the insights gained by the students
can hardly be expected to surpass those of the tutor team. The relevance structure for the students can
only be brought about through [the] tutor’s experienced relevance.” (Booth, 2001a, p. 185)

7.5.3 Learners experience programming concepts in different ways

Some phenomenographic projects have studied how programming students experience particular
programming topics that are relevant to at least some CS1 courses.

Booth (1992) found several different ways of experiencing the concepts of recursion and function;
the concept of recursion, for instance, was experienced in three different ways: A) as a construct in a
programming language B) as a means of bringing about repetition, and C) conceptually as self-reference
that enables a function to make use of itself.

I have already used as an example Eckerdal and Thuné’s (2005) outcome space of different ways of
understanding what an object is (Section 7.1). The same paper by Eckerdal and Thuné also reports an
analogous outcome space for the concept of class. Later work has suggested that students may initially
develop either a static “text conception” or a dynamic “action conception” of an object which they then
need to relate to the other conception (Eckerdal et al., 2011). I myself have conducted phenomenographic
studies of students’ ways of understanding what it means to store objects in memory (Sorva, 2007), and
of different kinds of variables (Sorva, 2008).

Stamouli and Huggard (2006) studied students’ perceptions of program correctness (see also Booth,
1992). Boustedt explored students’ understandings of the concepts of interface and plugin (Boustedt,
2009) and UML class diagrams (Boustedt, 2012). Lönnberg (2012) focused on students’ perceptions of
bugs in concurrent programs. Thompson (2008, 2010) studied practitioner perceptions of object-oriented
programming with a view to improving education on the topic.

These studies contribute to the large body of evidence that shows that novices understand many
fundamental programming constructs in limited ways that may hinder further learning and are non-viable
for many common programming tasks. The lists of ‘misconceptions’ in Appendix A include many of the
specific limited understandings that these phenomenographic studies have uncovered.
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7.6 Phenomenography has not escaped criticism, either
In this section, I paraphrase a few main criticisms of phenomenography from the literature and
phenomenographers’ responses to those criticisms.

Criticism 1: language and the nature of outcome spaces

Critics from both within the phenomenographic movement (e.g., Säljö, 1994) and outside (e.g., Webb,
1997) have criticized the perceived disregard of interview-based phenomenography for the role of language,
communication, and social construction. Scullion (2002, pp. 101–103) reviews this debate. According to
him, phenomenographers in Marton’s tradition see language as a relatively unproblematic device that the
phenomenographer must get past to learn about the interviewee’s conceptions. Critics such as Säljö call
for a more careful and explicit treatment of language:

To me, phenomenography has a weak spot in its lack of a theory of language and
communication, and in its almost dogmatic disregard for paying attention to why people
talk the way they do. The assumption seems to be that what is meant by what is said can
be construed as representing a conception of the phenomenon which one – according to the
interviewer – is talking about. (Säljö, 1994)

A related question is what phenomenographic outcome spaces really tell us. Some critics have argued
that it is impossible to genuinely explore and describe what other people really experience. For instance,
according to Richardson (1999), phenomenographers fail to deliver on their promise to describe the world
as people experience it: “they have to depend on other people’s discursive accounts of their experience
[and] are merely describing the world as people describe it.”

Some phenomenographers are happy to agree that outcome spaces are no more than descriptions of
how people describe things in a particular kind of situation. This does not mean they are not useful in
practice:

I don’t wish to assert that I ‘know’ an individual’s conception of a phenomenon. What I do
want to be able to say is that, following a given interview context, analysis of the transcripts
enables me to differentiate between a number of different ways of seeing the phenomenon
that are apparent in that kind of conversation. [. . . ] Also, it is not possible for the researcher
to ‘be’ that person; the researcher interprets the communication with the person. [. . . ] I am
satisfied that phenomenographic research produces descriptions which owe their content both
to the relation between the individuals and the phenomenon (that is, their conceptions) and
also to the nature of the conversation between the researcher and each individual and its
context (which includes the relation between the researcher and the phenomenon). (Bowden,
2000, pp. 16–17)

Bowden’s pragmatic position seems a reasonable way to address criticism of this kind.

Criticism 2: value-loaded norms

Webb (1997), who writes from a post-modernist perspective, is critical of the way phenomenography
posits that some ways of understanding are qualitatively better or more correct than others. Webb calls
phenomenographic research hopelessly value-loaded and contaminated by the researcher’s own conceptual
apparatus. He accuses phenomenographers of making normative, even dogmatic judgments, and of
forbidding learners to develop alternative views.

Phenomenography does indeed posit that some ways of understanding are richer and better than
others in the sense that they enable learners to perform more effectively. Marton and Booth (1997, p. 2),
for instance, explicitly take a stand:

We are living in an age of relativism, but a fundamental principle we are assuming in this book
is that education has norms – norms of what those undergoing education should be learning,
and what the outcomes of that learning should be.
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If one dismisses educational norms and embraces relativism full on, phenomenography may have
little or nothing to contribute; the usefulness of educational norms is probably axiomatic to most
phenomenographers.

In introductory programming education perhaps even more than in some other fields, educational
norms are needed in order to succeed, as the computer represents an artificial, non-negotiable ontological
reality (see Section 6.7.2). Even where acceptable alternative views can be developed, it is useful for
university students to learn to ‘see’ phenomena in the ways that experts presently ‘see’ them.

Criticism 3: the quality of qualitative research

Phenomenography is, by and large, a qualitative research approach, and many general criticisms of
qualitative research also apply to phenomenography. These include doubts about the reliability, objectivity,
generalizability, and overall trustworthiness of interpretive research. I will return to these issues in
Chapter 16 when discussing the quality of some of my own research. For now, it must suffice to point out
that the rigor of qualitative research is typically evaluated differently than that of traditional quantitative
research. Many qualitative researchers do not even attempt to fulfill all the goals of traditional quantitative
research, such as replicability.

Criticism 4: unenlightening results

Another of Webb’s (1997) criticisms concerns the predictability of phenomenographic results, suggesting
they tend to tell us little that is new.

[Phenomenographic activities are] informed by theory and prejudice. It seems likely then that
phenomenographic research will tend to report the history of a particular discipline as it is
understood by the researchers and as they reconstruct it through the people they interview.
Phenomenographic explanation is prone to reproduction of the discourses it studies. [. . . ] A
phenomenographer considers himself to have constructed [the different ways of understanding
he reports] from raw data. It is only of passing interest that these conceptions have a close
similarity with the history of the discipline. A critic might ask how it could be otherwise.
(Webb, 1997, pp. 196–197)

Phenomenographers argue back that it is not assumed that the researcher’s own understanding does
not affect the results, but that rigorous steps are taken to ‘bracket’ the researcher’s understanding of
the phenomenon and be as open-minded as possible. Merely reproducing known wisdom is a risk in
phenomenography (as well as in qualitative research in general and, indeed, research in general). However,
there are clear examples of phenomenography informing education by challenging the existing consensus of
the mainstream (an example is Neuman’s study of how children experience numbers, described in Marton
and Booth, 1997, pp. 57–67).

Criticism 5: doomed to repeat SOLO?

Many phenomenographic outcome spaces bear a resemblance to the SOLO taxonomy (Section 2.2): the
lowest-ranking categories describe unistructural ways of understanding that focus on a single aspect of the
phenomenon, and richer categories describe increasingly complex multistructural ways of understanding
that lead to a coherent relational way of understanding. The outcome space is sometimes capped off
by an extended abstract understanding in which the experiencer is capable of taking the phenomenon
into novel contexts. Table 7.3 is an example of an outcome space of this kind. This begs the question:
are phenomenographic studies doomed to do little more than replicate the SOLO taxonomy in different
contexts?

The counterargument is that even when phenomenographic outcome spaces do resemble SOLO, they
still describe evidence-supported, concrete instantiations of SOLO for particular phenomena, and detail
what particular dimensions of variation pertain to the unistructural, multistructural and relational ways of
understanding those phenomena. Prosser and Trigwell (1999, p. 120) point out that SOLO – as its name
implies – is concerned merely with the general structure of learning outcomes, whereas phenomenographic
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outcome spaces describe both the structure of learners’ understandings and the meanings learners assign to
particular phenomena (see Section 7.1). This concrete information is helpful for teachers as an analytical
tool and helps provide “a notional path of developmental foci for instruction” (Marton and Booth, 1997,
p. 81). Taking the SOLO taxonomy to different contexts in a rigorous, empirically founded way is not
an unworthy undertaking. In this sense, phenomenographic outcome spaces are considerably more than
what you get by ‘simply’ applying SOLO to a phenomenon.
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Chapter 8

Interlude: Can We All Just Get Along?

The learning theories reviewed in the preceding chapters come from different research traditions, which
use different kinds of research methods and base themselves on different ontological and epistemological
assumptions. The final sections of Chapters 5, 6, and 7 show that the traditions and theories are in conflict
with each other, with some heavy criticism flying in all directions. It makes sense to pause for a moment
to consider whether it is sensible, or indeed possible, to make use of all these frameworks simultaneously.

Section 8.1 below briefly compares the theories and traditions that I introduced in the previous chapters.
In Section 8.2, I endorse combining theories to inform educational research from several perspectives.

8.1 There are commonalities and tensions between the learning theories

Figures 8.1 through 8.4 list some claims about learning originating from cognitive psychology1 (Chapters 4
and 5), constructivism (Chapter 6), and phenomenography (Chapter 7). The reader should note that each
of the three headings within these tables corresponds to a broad area, and that these broad areas overlap
with each other – there are many proponents of cognitive constructivism, for instance. My intention is
not to make sweeping statements and claim, for example, that all constructivists believe every one of the
claims I have attributed to constructivism. I merely seek to highlight a selection of significant claims that
originate from, and have relatively wide support within, each tradition.

The three traditions are in agreement on some points, in disagreement on others. Sometimes their
claims are orthogonal with each other.

Ontological and epistemological issues (Figure 8.1) are at the heart of many of the arguments between
proponents of the various theories and research traditions; these concern the nature of learning as well as
the trustworthiness of scientific knowledge and the research methods suitable for rigorous research.

When it comes to how learning takes place, each tradition has its own points of emphasis (Figure 8.2).
The cognitivist theories that I have reviewed tend to be the most detailed and specific in this respect.
Phenomenographers tend to focus on the preconditions for learning which are realized in the variation
present in the learning situation (as opposed to the generic processes that take place when the learner
learns something). Many constructivist writers are very vague about knowledge representation and the
processes of knowledge construction; some consider these to be idiosyncratic. Some constructivists –
often with one foot in the cognitivist camp – make use of schema theory or conceptual change theory
(Section 6.5).

On the pedagogical side, there are clear tensions between the three camps, especially between strong
forms of constructivism and others (Figure 8.3). Where constructivists tend to encourage authentic,
complex learning activities that are carried out in collaboration with others and chosen by learners
themselves to correspond to their own goals, various cognitive psychologists (Section 6.8) are careful
to remind us of the importance of ‘managing’ learning so that cognitive load does not become excessive
and is fruitfully employed through practice to generalize from instances to increasingly automated schemas.
This does not always need to involve an authentic, complex context.

1In Figures 8.1 through 8.4, “cognitive psychology” refers to schema theory, mental model theory, and cognitive load
theory in particular.
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Figure 8.1: Views from three traditions: the foundations of learning and research

Cognitive psychology
Knowledge about the world is represented mentally.
The mind is (metaphorically) an information-processing machine.
Working memory is very limited, which constrains simultaneous manipulation of knowledge.
Reliable scientific knowledge is gained primarily through hypothesis testing, experimental setups, and quantitative analysis.

Constructivism(s)
Knowledge is a subjective (or social) construction.
Different individuals/societies have different knowledge and different ‘truths’.
Knowledge may not reflect any external world.
Qualitative, interpretive inquiry is (also) needed to gain scientific insight.

Phenomenography
Knowledge resides in experience, which is an inextricable two-way relationship between person and world.
Any phenomenon is understood only in a small number of qualitatively different ways.
Humans have a very limited capability for simultaneous focal awareness of phenomena and their aspects.
Qualitative, interpretive inquiry can illuminate human experience on a collective level.

Figure 8.2: Views from three traditions: mechanisms and processes of learning

Cognitive psychology
Excessive cognitive load on working memory prevents learning.
Domain-specific schemas (mental representations of concepts and patterns) are a key ingredient of expertise.
Abstraction to schemas facilitates chunking: ever larger elements can be dealt with as a single chunk.
Lengthy practice leads to ever more automated schemas which no longer strain working memory.
People are guided by their mental models of particular objects or systems; these models are often simplistic and incorrect.
To successfully simulate a system’s behavior, a robust mental model of the system is needed.
With increasing experience, initial mental models of specific systems generalize to abstract, transferable schemas.

Constructivism(s)
Specifics of knowledge construction are often left vague; however, new knowledge is seen as crucially building on prior
knowledge.
Some constructivists make use of cognitive theories such as schema theory. Some advocate conceptual change theories.
Some emphasize the plurality of perspectives to learning.
Social constructivists emphasize the interpersonal nature of learning and its situatedness within the authentic practice of
communities.

Phenomenography
Each phenomenon has certain educationally critical aspects; each way of experiencing a phenomenon can be described in
terms of these aspects.
Each such critical aspect is characterized by a dimension of variation.
Discerning variation along a dimension leads to discerning the critical aspect and to new ways of experiencing the phenomenon.
The most significant form of learning is learning to experience phenomena in new, more powerful ways that permit more
powerful ways of acting.
Learning proceeds from understanding vague wholes to understanding ever more detailed parts within the wholes.
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Figure 8.3: Views from three traditions: pedagogy

Cognitive psychology
Pedagogy should involve practice that helps the formation and automation of schemas.
Decontextualized, deliberate practice is a valuable tool in teaching.
Emphasizing patterns and similarities between cases can aid in schema formation.
Cognitive load should be managed through the careful sequencing of examples and problems.
Complex, authentic problems often lead to cognitive overload.
Active engagement with learning content helps learners form better mental models.
Teachers should seek to find out students’ misconceptions about important content and to correct them.

Constructivism(s)
Learners should have a driving role in goal-setting; teacher- or institution-given norms for education are questionable.
Students should be heavily involved in the design of learning activities and their assessment.
Learning works best in rich and complex problem-driven contexts.
Learning tasks should reflect authentic practice by experts.
Learning should involve collaboration between students and their peers, and between students and experts.
Misconceptions or alternative frameworks are inevitable and can be used as a basis for further learning.
Teachers should explore students’ prior knowledge and leverage it in teaching.

Phenomenography
Some ways of experiencing phenomena are better than others; education should have norms against which
understandings can be judged.
Suitable pedagogies must be discovered separately for particular disciplines and particular subject matter.
A learning situation provides a space of variation in which certain variation can be discerned but other variation cannot.
The teacher’s task is to find the best way to make it possible and likely for students to experience the critical variation.
Learning situations should engage the students’ interest to explore the variation that is present.
Teachers should explore students’ understandings of specific phenomena to discover the critical dimensions of variation.

Figure 8.4: Views from three traditions: programming education

Cognitive psychology
Both novices and experts may use top-down and bottom-up strategies for program comprehension,
depending on schema availability.
In the absence of high-level schemas, novices have to work at a lower level more often than experts,
and need to mentally trace programs at a lower level of abstraction.
Students have many misunderstandings of very fundamental programming concepts, such as variables and references.
Many of the problems students have involve the dynamics of program execution and the role of the computer
(a notional machine) in the process.
Many novices do not know how to mentally trace program execution, nor are they much inclined to do so.
A robust mental model of a notional machine is important for many debugging tasks.
A conceptual model of a notional machine is useful as a teaching aid.

Constructivism(s)
Programming education should involve active work on complex projects that are as realistic as possible.
Novices often have no effective prior knowledge of how the computer works.
Students construct idiosyncratic knowledge of how the computer works at lower levels of abstraction than the code level.
Teaching in CS1 should address a lower level of abstraction than the code level the learners normally operate at.
Program dynamics in particular are a source of many misconceptions, which are troublesome because the computer is
an accessible ontological reality that reacts to novice misconceptions in an unforgiving manner.

Phenomenography
Sometimes, novice programmers see programs merely as pieces of text, and programming merely as writing instructions.
One early challenge for the novice programmer is to go beyond this static perspective and to understand programming
from other perspectives.
In particular, learning to program involves learning a new way of thinking in terms of what the computer does at
execution time.
Other challenges include seeing the relationships between code and the real-world problems that programs solve.
Novices also understand various programming concepts (e.g., object, class, variable) in limited ways that restrict
programming ability and further learning.
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There is substantial agreement between the traditions, too. There is widespread agreement, for
instance, on the usefulness of engaging learning activities that require the learner to take an active role
in manipulating the content that is to be learned. Further agreement can be found where the theories
have been applied to learning computer programming (Figure 8.4). Cognitivists, constructivists, and
phenomenographers alike have reached the conclusion that a, if not the, crucial challenge for many novices
at the CS1 level is to come to understand the relationship between program code and the computer, which
is realized in the run-time dynamic behavior of programs.

Finally, I should mention that within each of the three traditions I have discussed, there exists
a movement that emphasizes the social aspects of learning. This is perhaps most prominent within
constructivism, where social constructivism and situated learning theory are highly influential. I admit the
value of socio-cultural theories of learning as an additional perspective, but my focus in this thesis is not
on the social aspects of learning. I will briefly discuss – mostly criticize – my work from the perspective
of situated learning theory in Section 14.5.

8.2 Multiple theories give complementary perspectives
The ontological and epistemological assumptions of some schools of thought are difficult or impossible to
reconcile, except by accepting them as alternative frameworks for thought, which can be compared and
contrasted to gain new insights. The mental representations of a cognitive psychologist and the monist
mind–world relationships of a phenomenographer, for instance, are two explicitly different ways of looking
at the nature of knowledge, each with its own strengths and issues. Nevertheless, each of these views
is fundamental to a research tradition that has expanded our understanding of what it takes to learn in
general, and what it takes to learn computer programming in particular.2

The strengths of schema theory, cognitive load theory, and much of educational psychology lie in their
detailed and rigorous consideration of the general processes and mechanisms of thought and learning.
The strengths of phenomenography lie in the careful exploration of the ways in which particular contents
of learning are crucial to the success or failure of the educational enterprise. As for the various flavors
of constructivist theory, their main contribution to present-day education is arguably as torch-bearers for
certain pedagogies which have previously been underappreciated, such as active and collaborative learning
and learner empowerment.

Where findings from different research traditions point in the same direction, they strengthen each
other. Where they point in different directions, they give us food for thought and remind us that learning
is complex and multilayered. Often, different theoretical perspectives complement rather than conflict
with each other, and something may be learned from points of conflict, too.

Multiple learning theories can also suggest, for projects such as my present one, different kinds of
research approaches that complement each other; Thota et al. (2012) argue that drawing from different
paradigms is useful, even necessary, for the present-day computing education researcher. According to
the pragmatist Charles Sanders Peirce, “reasoning should not form a chain which is no stronger than its
weakest link, but a cable whose fibers may be ever so slender, provided they are sufficiently numerous and
intimately connected” (Menand, 1997, pp. 5–6, from the 1868 original). In this spirit, I take an eclectic
and pluralistic view of learning theory. This view is consistent with the pragmatic perspective on mixed-
methods research advocated by Johnson and Onwuegbuzie (2004), who draw on classical pragmatists
such as Peirce. I am inspired by multiple learning-theoretical perspectives, and will make use of multiple
research approaches in my own empirical work in Part V of this thesis.3

End of interlude. Now, one more theoretical framework of learning.

2There are of course still other perspectives on learning, beyond what I can cover here, such as those provided by
biochemistry and activity theory, for instance (see, e.g., Jonassen, 2009). The traditions I have covered in my review are
arguably the ones that have had the greatest influence on research on introductory programming education.

3Am I sitting on fences? I prefer to think of it as a small contribution to fence-lowering.
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Chapter 9

Certain Concepts Represent Thresholds
to Further Learning

An introductory programming course has a lot of content to cover in a limited time. What makes matters
worse is that often a student gets stuck. There is something in the curriculum that he just cannot seem
to get past. He cannot cope with the content that follows because he is ‘thinking about it the wrong
way’; he feels frustrated, insecure, and angry. Too often, the teacher forges ahead to new topics, leaving
the student trailing.

Meyer and Land (2003, 2006) propose that embedded within academic disciplines there are
troublesome barriers to student understanding, which they term threshold concepts. These “jewels in
the curriculum” represent transformative points in students’ learning experiences that allow them to
view other concepts in a different light. Proposed threshold concepts in programming include program
dynamics, information hiding, and object interaction.

Threshold concepts (TCs) are still a fairly young theoretical framework that requires better empirical
support. However, they are obviously a fruitful basis for discussion and pedagogical explorations, as
evidenced by the rapid growth of TC literature over the past few years. The ongoing work on threshold
concepts may help us gain further insights into why some students seem not to learn ‘any of the stuff’,
while other students seem to get ‘all of the stuff’ – a phenomenon familiar from CS1 courses. The answer
may lie in the curriculum itself: TC theory suggests that some particularly transformative and integrative
‘stuff’ leaves many students stuck and unable to proceed until they are able to see the connections between
related concepts.

Section 9.1 is a brief overview of threshold concept theory. In Section 9.2, I comment on the challenges
of identifying threshold concepts. Section 9.3 reviews the work within CER that has sought to identify
programming-related threshold concepts. Finally, Section 9.4 considers some pedagogical implications.1

9.1 Mastering a threshold concept irreversibly transforms the learner’s
view of other content

A threshold concept is not a mere ‘core concept’. To qualify as a TC, a concept must meet a stricter
definition, albeit one which is still being debated. Meyer and Land (2006) list five characteristics that a
threshold concept is likely to have.

• A threshold concept significantly transforms how the student perceives a subject or part thereof,
and perhaps even occasions a shift of personal identity;

• it is probably irreversible so that the transformation is unlikely to be forgotten or undone;

• it integrates other content by exposing its interrelatedness;
1This chapter has been adapted from an earlier publication. Large swaths of text have been reproduced from: Juha

Sorva: “Reflections on Threshold Concepts in Computer Programming and Beyond”, in Proceedings of the 10th Koli Calling
International Conference on Computing Education Research, pp. 21–30 c©2010 Association for Computing Machinery, Inc.
����������	
��	�����	������������	������� Reprinted by permission.
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• it may mark boundaries in ‘conceptual space’ between disciplines or schools of thought; and

• it is potentially very troublesome to students for any of a variety of reasons including conceptual
complexity, tacitness in expert practice, apparent meaninglessness, and counter-intuitivity.

The literature attributes some additional characteristics to threshold concepts. I will briefly discuss three:
1) crossing a threshold involves a state of liminality; 2) the resulting transformations lead to new ways of
thinking and practicing, and 3) threshold concepts are often associated with generic ‘everyday’ ideas.

Liminality

A liminal space is the transitional period between beginning to learn a threshold concept and fully mastering
it (McCartney et al., 2009; Meyer and Land, 2006). While some learners cross some thresholds quickly
(as a single a-ha! moment) and sometimes effortlessly, liminality often lasts for a considerable length
of time. The liminal space is a fluctuating place of transformation: students in liminal spaces tend to
oscillate between old and new states and experience strong, often negative emotions, and may attempt
to mimic the behavior of others whom they perceive as having crossed the threshold already. Meyer and
Land argue that pre-liminal variation – variation in students’ perceptions of a threshold concept as the
concept first ‘comes into view’ – plays a key role in how and why some students negotiate liminal spaces
productively while others struggle and may give up altogether.

Ways of thinking and practicing

A way of thinking and practicing within a discipline or subject area (or community of practice; cf.
Section 6.6 above) involves concepts, forms of discourse, values or indeed “anything that students
learn which helps them to develop a sense of what it might mean to be part of a particular disciplinary
community” (McCune and Hounsell, 2005). Many authors have commented on the apparent relationship
between threshold concepts and ways of thinking and practicing: mastering a TC provides a new ‘lens’
through which to view the subject, opening up new avenues for thought and action (Meyer and Land,
2006; Land and Meyer, 2008; Moström et al., 2009; Zander et al., 2009). Conversely, failing to internalize
a TC and make it a part of how one thinks and acts leaves the student stuck. Without crossing the
threshold, the student cannot perceive other concepts, new problems, potential solutions, and indeed the
very subject they are studying, like a full-fledged member of the disciplinary community would.

Transforming ideas from everyday life

Another framework for curricular analysis that may be used alongside threshold concepts was formulated
by Schwill (1994) from the earlier work of Bruner (1960). Fundamental ideas are lasting, general ideas of
broad, perhaps universal significance. They connect topics within and beyond the borders of an academic
discipline. The distinguishing feature of a fundamental idea is its wide applicability – across disciplines,
across levels of education, across time, and across the divide between academic pursuits and everyday life.
Algorithmization, language, abstraction, and state, among others, have been proposed as fundamental
ideas of computer science – they characterize the discipline and yet are applicable beyond its confines
(Schwill, 1994; Sorva, 2010).

Fundamental ideas have an ‘everyday’ character. Building from an observation by Zander et al. (2008),
I have suggested that threshold concepts often involve the transformation of one or more fundamental ideas
into discipline-specific forms (Sorva, 2010). For instance, the (possible) threshold concept of information
hiding is a form of the universal notion of abstraction that is central to how computer scientists think (cf.
Colburn and Shute, 2007). The everydayness of the fundamental idea(s) involved in a TC means that
students have intuitive pre-liminal understandings of aspects of a TC. Everyday understandings are often
‘obvious’ and tacit, and may be difficult to change. Shinners-Kennedy (2008) provides a good discussion
of how the notion of state – quite common and unproblematic in everyday life – becomes troublesome
once the student has to make it central to their conscious thinking and relate it to programming.
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9.2 Identifying threshold concepts is not trivial
Meyer and Land (2006) use very cautious language as they describe the characteristics of threshold
concepts. A TC “is likely” (p. 7) to have the five main features listed in the previous section; it opens
up a way of thinking that “may represent” (p. 3) how people think within a particular discipline or about
particular phenomena; it is “often more” (p. 101) than just a core concept, and so forth. Additionally,
Meyer and Land do not clearly define what they mean by “concept”.

Meyer and Land’s caution, although it has been criticized (Rowbottom, 2007), is understandable, since
the threshold concept theory is still a young one. Moreover, constructivist learning theory (Chapter 6)
suggests that people have different kinds of knowledge structures, and what is a threshold for someone
may not be one for someone else – a notion that has also been pointed to as a weakness of the threshold
concepts framework (Rowbottom, 2007). However, as nature restricts our knowledge-constructing
activities (Section 6.3), certain concepts may be particularly troublesome and transformative (etc.) to
most people.

Thought-provoking though it is, Meyer and Land’s fairly loose definition of threshold concepts does
not make the job of identifying TCs very easy. A variety of interpretations exists concerning what counts
as a TC. As I see it, there are two main issues: the use of the word “concept”, and different opinions as
to how well a candidate concept has to fulfill each of Meyer and Land’s five main criteria.

A threshold what?

Various scholars operating within the threshold concepts framework have found it useful to consider
educational thresholds that are not necessarily individual concepts with commonly accepted names, but
something broader. Lucas and Mladenovic (2006) suggest that learning accounting involves a “threshold
conception” – a transformation of world-view not associated with a single concept. Savin-Baden (2006)
argues that problem-based learning may become a “threshold philosophy”. Some authors simply avoid
the word “concept”, and speak merely of thresholds. One recent trend in threshold concepts research,
suggested by Davies and Mangan (2008), is to characterize disciplinary ways of thinking not so much via
individual concepts, but as “webs” of interrelated TCs.

A related issue is that one does not simply ‘get’ or ‘not get’ a concept – one gets it in a particular
way (cf. Chapter 7). Crossing a threshold means understanding something – which may previously have
been understood differently – in a way that opens up a powerful new perspective.

My use of the word “concept” in “threshold concept” may be read as shorthand for “way of
understanding certain curricular content”.

How TC does it need to be?

Clearly, the concept of pointer does not integrate as much content as the concept of information hiding.
Does that make it less of a threshold concept? How widely does a threshold concept have to integrate?
How radical does the resulting transformation have to be? Should we keep the bar high, with fewer TCs
per subject area, or low, with a smaller difference between a core concept and a TC? Some suggested
threshold concepts (in computing and in other disciplines) are claimed to be responsible for large-scale
transformations of students’ views of an entire discipline, while other ‘local thresholds’ only integrate a
handful of neighboring concepts. Rountree and Rountree (2009) have noted how difficult it is to agree on
the granularity of threshold concepts, and to expose possible hierarchies of threshold concepts at different
levels of granularity.

For me, much of the promise of the threshold concepts framework lies in how a threshold concept
is curricular content that is not just another bit of content, but provides a way of dealing with a lot of
other concepts. Of greatest interest are those concepts whose effect is the greatest. As Perkins (2006)
puts it, TCs include concepts that are more than particularly tough conceptual nuts – some threshold
concepts shape students’ sense of entire disciplines or large subject areas, giving them access to new ways
of reasoning, gaining knowledge and problem solving. Below, I set the bar high, as I discuss candidates for
‘big’ TCs that change how students think about and practice computer programming, and that provide
them with new tools for tackling many kinds of programming problems.
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Telling TCs apart from other content

I have argued (Sorva, 2010) that if we are to learn about the nature of threshold concepts and identify them,
we need to learn to discern contrasts between TCs and other forms of curricular content. One such form
is fundamental ideas, introduced above. The gently developing, extremely broad nature of fundamental
ideas contrasts with the drastically transformative, troublesome, irreversible, discipline-specific nature of
TCs. Identifying fundamental ideas may also help the search for threshold concepts in that transformative
thresholds may be found where fundamental ideas from everyday thought ‘meet’ a discipline.

Another non-TC form of content is what I have called a transliminal concept (Sorva, 2010), that is, a
concept that ‘lies across the threshold’. A transliminal concept is not in itself transformative or crucial for
developing a new way of thinking and practicing, although it may certainly be a core concept which is well
worth understanding. However, mastering a transliminal concept is predicated on first acquiring a new way
of thinking and practicing by crossing the threshold. Learners may struggle with transliminal concepts,
sometimes not because the concept itself is so troublesome, but because their progress is blocked by the
barrier of the prerequisite threshold concept. Many transliminal concepts can be associated with a single
threshold concept; this is indeed likely to be the case, as a threshold concept has wide applicability within
a discipline.

9.3 The search is on for threshold concepts in computing
Learning to program is not just the accumulation of commands, templates, and strategies, but the
development of a new way of thinking (Section 7.5). In the words of one of the students quoted by
Moström et al. (2009), one needs to become more than “just someone typing in code”. The threshold
concepts framework suggests that coming to grips with certain content is decisive in transforming a
‘code typist’ into a programmer. But which content? In Section 9.3.1 below, I argue that program
dynamics represents a ‘big’ transformative threshold that beginners must cross. Section 9.3.2 reviews
other candidate threshold concepts within programming.

9.3.1 Program dynamics is a strong candidate for an introductory programming
threshold

A crucial distinction in programming is the one between the existence of a program as code and its
existence as a dynamic execution-time entity within a computer. Code is tangible and its existence is easy
to perceive. The existence of the latter aspect of a program, which I will call program dynamics, is much
less so.

Integration

A dynamic view of a program brings together program code, the state of the program, and the process
that changes it, as well as the computer on which the program runs (if not the actual hardware, at least
a notional machine; see Section 5.4). The ability to view programs as dynamic is required to genuinely
understand a legion of transliminal concepts and distinctions: variables and values; function declarations
vs. function calls; classes, objects, and instantiation; expressions and evaluation; static type declarations
vs. execution-time types; scope vs. lifetime; etc. The dynamic use of memory to keep track of program
state is central to much of this integrative power (cf. Vagianou, 2006; Shinners-Kennedy, 2008).

Transformation

Learning to see a program in dynamic terms transforms a learner’s understanding of programming concepts.
A phenomenographic study by Eckerdal and Thuné (2005) showed that there is an educationally significant
qualitative difference between seeing an object as a piece of code and seeing it as something active
(dynamic) in a program. Even more pertinently, the same authors found a more generic difference
between how students see computer programming as writing code or as a way of thinking that relates
program code to what happens during execution (Thuné and Eckerdal, 2009, and see Section 7.5).

114



Program dynamics further takes the everyday notion – fundamental idea – of state and transforms it
into something central in how the programmer thinks. A dynamic view of programs leads to what Perkins
(2006) calls a new episteme, a new way of reasoning about programs that is impossible unless the student
has ingrained the notion of program dynamics into their thoughts and practices. In particular, thinking
in terms of program dynamics makes possible the key skill of program tracing: stepwise reasoning about
runtime behavior in terms of what the notional machine does as it executes a program (Section 5.5).

Trouble

Program dynamics are troublesome. Practically any student of programming can pay lip service to the
idea that programs are executed step by step, making things happen within the computer. However,
not all of those students genuinely internalize this notion and make it work for them. We have seen
in the preceding chapters plentiful evidence of novices failing to learn what happens when a program
is run. From a threshold concepts perspective, Vagianou (2006) comments on the use of memory in
programming, noting that novice programmers may not “realize how such use takes place and their active
role (through the program) in this process”. In light of the evidence, it is not too surprising that novice
programmers often do not systematically trace the execution of their programs, sometimes because they
do not know how, sometimes because they fail to perceive that as a useful pursuit (Section 5.5).

Part of the troublesomeness of program dynamics lies in its tacitness. As I noted in Section 5.5,
programmers rarely make explicit the dual nature of programs, which is obvious to them – when we speak
of a “program” we refer to either the code, or to what the code does upon execution, or to both at
once. The centrality of the previously unproblematic notion of state to program dynamics may also be
counter-intuitive to novices (Shinners-Kennedy, 2008).

Boundaries

Vagianou (2006) points to how end users and programmers have different stances towards computer
programs. Only the latter group has a sense of being directly involved in what happens when a program
gets executed by a computer. This is one way in which program dynamics serves as a boundary marker,
separating computer programmers from non-programmers. A student who does not trace programs
or think about the dynamics of their execution is not really thinking and practicing like a computer
programmer.

Program dynamics also demarcates two schools of thought within computing: it lies at the border of
computer programming and programming-as-mathematics. The latter episteme, which Dijkstra famously
and controversially advocated as the perspective of choice for CS1 courses, is ruled by formal logic and
proofs, and the former by testing, mental tracing, and operational reasoning (Dijkstra vs. al., 1989, and
see Section 14.5.3).

Irreversibility

I have little to offer in the way of research-based evidence of irreversibility. However, I have never heard
of a programmer forgetting how to see programs as dynamic, traceable entities once they have made that
concept their own, nor do I expect to hear of one. A sign of irreversibility may also be the difficulty that
some experienced programmers have in perceiving how programming appears to the novice who has not
yet crossed this early ‘obvious’ threshold.

9.3.2 Other programming thresholds have also been suggested

Much of the work on threshold concepts within CER has been done by various lineups drawn from the
multinational “Sweden Group” of researchers. In an early paper, Eckerdal et al. (2006a) discussed the
relationship of threshold concepts to other theoretical frameworks that are influential within the context
of computing. Based on the literature, they suggested abstraction and object-orientation as two possible
threshold computers in computing. In their later work, they found evidence in student interviews to
support the claim that object-oriented programming and pointers could be threshold concepts (Boustedt
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et al., 2007). The latter was later rephrased as “memory/pointers” (Zander et al., 2008); I have suggested
(Sorva, 2010) that the pointer may be a transliminal concept for the TC of addressable memory.

Moström et al. (2008, see also Thomas et al., 2010) returned to the candidate TC of abstraction and
argued on the basis of their data that abstraction in general does not appear to be a threshold concept
even though they found evidence of transformative, integrative and troublesome experiences that students
have had with specific forms of abstraction in software design and implementation. Building on their work,
I suggested information hiding as a threshold concept that transforms the fundamental idea of abstraction
to a discipline-specific form (Sorva, 2010).

The “Sweden Group” have also found evidence supporting the existence of liminal spaces in computing
education (Eckerdal et al., 2007; McCartney et al., 2009) and described the transformations of identity and
ways of thinking and practicing that take place as computing students learn threshold concepts (Moström
et al., 2009; Zander et al., 2009).

Vagianou (2006) proposed program–memory interaction as a threshold concept in introductory
programming; my discussion of program dynamics extends her argument. Reynolds and Goda (2007)
suggested that the pervasive themes given in ACM curricula (e.g., abstraction and professionalism) fulfill
the criteria for threshold concepts. As discussed above, such topics might be better interpreted as
fundamental ideas; the same goes for Shinners-Kennedy’s (2008) suggestion of state. Flanagan and
Smith (2008) contended that in introductory programming, the nature of programming languages is an
overall threshold that students need to overcome before being able to tackle smaller “local thresholds”
(transliminal concepts?) such as the Java interface construct.

Rountree and Rountree (2009) critically review the literature on threshold concepts and conclude by
emphasizing how expert computer scientists, rather than students, should be focal in the ongoing effort
to identify threshold concepts. They mention generics and recursion as possible TCs within computing.
Holloway et al. (2010) considered recursion as well as object-orientation to be threshold concepts as they
sought to develop a quantitative instrument for assessing whether a concept is a TC or not. I have
suggested that the idea of object interaction – objects collaborating through message passing – is a TC
that opens up to the object-oriented paradigm (Sorva, 2010; see also Sien and Chong, 2011).

9.4 Pedagogy should center around threshold concepts
The programming curriculum is a conceptual space inhabited by entities of various kinds. Teachers need to
identify which areas of knowledge constitute transformative thresholds, which threads enter the curriculum
as fundamental ideas, and what roles other important concepts may play in students’ attempts to navigate
the conceptual space. Different pedagogical solutions may be required for teaching TCs than for other
content.2 Teachers may influence the paths that students take, affecting when a TC is first seen, the
angle from which it is initially viewed, and the transliminal concepts that are seen behind it. It is not likely
that any sequencing of content is universally better than all the others, but the teacher who bears in mind
the characteristics of different kinds of conceptual content is better positioned to make good decisions.

I will use the proposed TC of program dynamics as a running example as I consider some pedagogical
implications of threshold concepts.

9.4.1 Threshold concepts demand a focus, even at the expense of other content
From a pedagogical point of view, threshold concepts are supremely important, as lack of mastery of a
threshold concept renders further teaching inefficient if not entirely fruitless. In Cousin’s (2006) words,
the threshold concepts framework suggests “a less is more approach” to teaching: the teacher should
spend time and effort on the selected concepts that transform the student’s view of the discipline and
make learning other concepts easier, rather than burying these conceptual jewels within a vast bulk of
knowledge where they may go all but unnoticed.

Recursion, reference parameters, and instantiation are concepts that are hard enough to grasp even
for a novice who is capable of thinking about programs in terms of their dynamic aspect and tracing

2For instance, it might be that fundamental ideas are initially best approached by fostering learners’ everyday intuitions
(as suggested by Bruner, 1960), but that TCs require actively challenging established everyday thinking in pedagogy.

116



execution step by step. Without the TC of program dynamics, understanding those other important
concepts becomes next to impossible. A programming teacher must not fall into the trap of assuming
that students think as the teacher does. Instead, teachers need to help students uncover the nature of
the tacit “underlying game” (Meyer and Land, 2006).

Perkins (2008) notes that there is a cost to be paid for teaching TCs – just as they are hard to learn,
they are hard to teach – but that it is a cost that is generally worth paying. TCs demand an emphasis in
teaching and assessment, even at the expense of other concepts. A student who passes a programming
course without having developed a dynamic perspective on program execution has not really learned very
much about computer programming, no matter how many concept definitions they may have memorized
or how many code templates they may be capable of applying. Conversely, someone who has crossed the
threshold is well positioned to learn more with relative ease.

Neither the teacher nor the student should be allowed to settle for mere lip service to the idea that
programs run step by step and use memory. Each threshold concept within a curriculum should be worked
on enough to make sure that students genuinely work them into their ways of thinking and practicing. This
requires time: the student who is rushed may experience “psychological vertigo” (to borrow an expression
from Booth, 2006), trip on the threshold, and fall flat on their face.

9.4.2 Teachers should make tacit thresholds explicit and manipulable
The threshold concepts literature makes many pedagogical suggestions (Meyer and Land, 2006; Land and
Meyer, 2008). For instance, teachers should seek to inform students about the existence of threshold
concepts and liminality, increase students’ metacognition about their liminal states, and help them deal
with uncertainty and the emotional issues involved. Students should be helped to become aware of the
ways in which they presently think and practice, and motivated to transform those ways. The kinds of
mimicry that are motivated by a genuine attempt to cross a threshold should be seen as positive rather
than negative. Students need to be engaged in actively and consciously manipulating each threshold
concept in order to internalize it.

Consider again the example of program dynamics. CS1 teachers should try to help their students
become aware of the importance of this concept, its possible troublesomeness, and how the students
themselves think about programs and reason about what programs do. One way to accomplish this may
be through tools, visualizations, and metaphors that concretize the dynamic aspects of programs. By
making program dynamics visible, the teacher may not only help the student to think about programs
dynamically but make the student more aware of what they are doing. A student who is aware of thinking
about program execution as a dynamic step-by-step process – perhaps in terms of a visualization – may
find it easier to grasp the general principles embodied in the TC and relate them to multiple contexts.

Meyer and Land (2006) call for a pedagogy of threshold concepts that engages the student in
manipulating the conceptual material. This can be a challenging task, since threshold concepts tend
to be abstract and tacit. Program dynamics is no exception: as noted, many students appear to be
not only unable but disinclined to trace the dynamics of their programs. Students should be placed in
situations where they feel they need a new way of thinking – a threshold concept – in order to explain
something they wonder about or to solve a pertinent problem. Marton and Booth (1997) speak of building
a relevance structure for a learning situation – defined as a person’s experience of what a situation calls
for – and encourage teachers to “stage situations for learning in which students meet new abstractions,
principles, theories, and explanations through events that create a state of suspense”. There are many
ways to build a relevance structure for program dynamics, for instance. Having students confront the
reasons for bugs in their own programs is one option; another is requiring students to predict program
behavior and face the fact that their predictions often fail. To build relevance structures, teachers may
employ specific transliminal concepts such as pass-by-reference and instantiation. These concepts puzzle
students and cannot be fully understood without a shift of perspective. Transliminal concepts may serve
as ‘educational macguffins’ that draw students into and through the ‘main plot’ of learning a threshold
concept. For students to eventually appreciate the power of the generic TC, a combination of multiple
transliminal concepts may be needed.

Part III will present many specific examples of making program dynamics visible.
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Part III

Teaching Introductory Programming
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Introduction to Part III

The learning theories reviewed in Part II have put forward many recommendations on teaching, most of
them in fairly generic terms. How do those recommendations translate into something more tangible?
What concrete practices and recommendations for teaching CS1 have been made – whether inspired
by some learning theory or teachers’ personal experience and intuition? What different approaches to
teaching CS1 are being used?

The two chapters in Part III examine these questions, the first with a broader scope and the second
with a narrower one. In Chapter 10, I take a look at several prominent themes in scholarly debates on
CS1 teaching approaches. One of the topics of Chapter 10 is the role of the notional machine; we will
see that those teachers who explicitly teach about the execution-time dynamics of programs often make
use of visualization. Software tools for visualizing notional machines are the topic of Chapter 11. I review
existing systems and their empirical evaluations, and discuss the possibly key role of user interaction in
the success of software visualization as a learning aid.
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Chapter 10

CS1 is Taught in Many Ways

The literature on teaching CS1 is large. Popular topics in practice papers and research papers on CS1
include language and paradigm choices, different kinds of assignments and assessments, the ordering of
topics in the curriculum, technology-supported learning, pair programming, gender issues, motivational
techniques, predictors of student success, student-driven pedagogies, and more. In this chapter, I focus
on a few topics that give us a big picture of CS1 education or are otherwise relevant for the upcoming
discussion of visual program simulation in Part IV.

Section 10.1 tries to convey a sense of what kinds of approaches to teaching CS1 there are, in broad
terms. I especially focus on the arguments for complex, authentic, limited-guidance problem solving in
CS1 versus carefully managed instructional design with less learner control. Section 10.2 is a very brief
review of approaches that seek to enhance CS1 by exposing expert programmers’ schemas and processes.
Section 10.3 discusses how (and if) teachers have approached the question of teaching about a notional
machine; visualization is identified as a relatively popular approach. Finally, Section 10.4 reviews the
hottest debate in CS1 education in recent years – the role of object-orientation – and relates it to our
discussion of notional machines.

10.1 Keep it simple, or keep it real?
Table 10.1 lists features of CS1 pedagogies, paired up as opposites.

Generally speaking, the strategies on the left are more ‘student-centered’ in the sense that learning
goals and activities are chosen and managed by students rather than teachers, and more complex, in the
sense that the learning tasks are larger, more complicated, and more realistic. Many of these strategies
match constructivist recommendations (Chapter 6).

In the strategies on the right-hand side of Table 10.1, the teacher tends to exert more direct control
over the goals and activities; they might be termed ‘teacher-centered’ but also ‘learning-centered’, as the
goal is to ease the learning process and maximize students’ achievement of learning goals. Sometimes,
the use of these strategies is motivated by the recommendations for instructional design derived from
educational psychology.

Table 10.1 does not mean that there are two main ways to teach CS1, and certainly is not meant
to imply that all the items on one side go with each other. Any given CS1 offering is almost certain to
feature a mix of strategies from each side of the table and compromises between the polar opposites that
I have listed.

The subsections below consider in more detail some of the themes present in Table 10.1.

10.1.1 Complexity is good
Just as CS1 courses traditionally have goals that are relatively challenging from a cognitive point of view
(see Chapter 2), they also commonly center around a relatively complex learning activity, namely, solving
problems by writing programs.

The traditional way to teach programming is by having the students program – an intuitively appealing
practice which is in line with advice from the literature of education as it aligns the goal with the teaching
(Biggs and Tang, 2007). Practically any CS1 course is going to involve some coding, usually quite a lot of
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Table 10.1: Some strategies for teaching CS1

Students practice real professional skills in
authentic contexts.

Students start with fundamentals, eventually
proceeding to real professional skills.

Students design programs. Students examine or use given program
designs.

Students write program code. Students read program code.

Large and complex programming assignments. Relatively small programming assignments.

Ill-structured programming projects; students
must manage requirements and engage in
simplifying complex problems.

Well-structured programming projects;
students work to a specification given by the
teacher.

Open-ended projects: tasks are expansible
according to students’ desires.

Closed projects: task scope is restricted by the
assignment.

Groupwork, social participation, negotiation of
goals and/or content.

Assignments solved individually.

New concepts are motivated through inquiry,
e.g., “How is it possible to create a program
that does X?”

Students are taught about the ways in which
present content will be useful in the future.

Students select their learning goals. The teacher selects learning goals.

Students solve problems themselves. Students study examples of problem solutions.

Computing is presented in a contextualized
way that takes students’ future professions
(e.g., engineering) into account.

Computing concepts are presented in a
general, decontextualized way that is intended
to transfer to different contexts.

Assessment based on authentic programming
work in an authentic context.

Exams and other artificial assessment settings.

The teacher leaves it to the learners to
determine what content is relevant and useful.

The teacher guides learners to relevant
content.

Limited guidance: the teacher interferes as
little as possible in the learning process.

Direct guidance: the teacher strongly controls
the learning process to maximize its efficiency.

“Jump in at the deep end (or as near to it as
you possibly can).”

“Wade in and take careful steps towards the
deep end.”
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it and right from the beginning. Some teachers advocate design-first approaches in which novices design
software components from the get-go, further adding to the authenticity and complexity of the learning
activity (e.g., Alphonce and Ventura, 2002; Moritz and Blank, 2005).

Many forms of constructivism (Chapter 6) suggest that learning is most successful when learners
are actively engaged in complex, authentic activities. Given the above, we can say that the majority of
existing CS1 courses are – in this limited sense – constructivist. The extent to which this is true varies, as
teachers make varying use of open-ended assignments, ill-structured problems, inquiry-driven pedagogy,
groupwork, and other constructivist practices.

No reproduction, please (we’re constructivists)

Some teachers introduce programming through ill-structured problems that the learners need to make
sense of for themselves. The pedagogy of Greening and his colleagues exemplifies this standpoint well.
They call for less explicit linking between the assignments given and the programming techniques needed
to solve them:

The production of an ill-structured problem is likely to add an element of reality to the lab, and
allows the students to have their own Eureka!s about the underlying nature of the exercise.
We have seen courses where each lab is a straightforward instance of “write code using the
language feature covered last week”; this does not support effective problem-solving. (Fekete
and Greening, 1996, p. 298)

Elsewhere, Greening (1999) is critical of assignments in which each student (or group) produces their own
clone or near-clone of a solution that was already previously known to the teacher and that is much the
same as every other student’s solution. An example is a program-writing assignment which has to satisfy
a precise set of teacher-given low-level specifications. Greening claims that “many existing courses appear
to have an obsession with knowledge reproduction that borders on the petty” (p. 59) and cites automatic
assessment of programming assignments as a symptom of this unsatisfactory pedagogy as “the desired
product outcome is typically so trivial and predictable that it makes sense to have students submit their
work for automatic marking as a matter of convenience” (p. 54).

Greening argues that we must not postpone solving interesting programming problems until later in the
curriculum. His constructivist position is to bring complexity into the learning environment, which means
that we should allow the students themselves to engage in structuring the complex problems presented,
rather than have them simplified for them.

Problem-based learning

Problem-based learning (Section 6.4) is a quintessentially constructivist pedagogy that is increasingly being
applied to different educational subfields, including computing education. PBL embraces complexity and
fuses together many of the practices from the left-hand side of Table 10.1.

There is limited support for the suitability of problem-based learning for CS1 courses. A group of
teachers and researchers from the University of Sydney report experiences and survey results on the use
of PBL in introductory-level computing courses over several years (Kay et al., 2000; Fekete and Greening,
1996). Their results are tentatively positive regarding the development of generic skills and elimination
of plagiarism, in particular. Greening (1999) concludes that this trial has shown that PBL “works well
with first-year students with a range of prior computing experience”. Nuutila et al. (2005) discuss how
PBL can be adapted for learning programming and report a low drop-out rate among students who took
a problem-based CS1. Kinnunen and Malmi (2005) report mixed findings from a series of experiments
with PBL in CS1, and discuss at some length the characteristics of different PBL groups, some of which
did well while others did quite poorly.

Problem-based learning continues to inspire the development of some introductory programming
courses (e.g., O’Kelly and Gibson, 2006; Ambrósio and Costa, 2010), but a detailed picture of what
it takes to successfully make use of PBL in CS1 is yet to emerge.
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10.1.2 Complexity is bad

In teaching writing [. . . ] one starts with writing sentences, then paragraphs, then essays. In
computer science, an error has been made by assuming that the student should start out by
writing the equivalent of a whole literary form. (Buck and Stucki, 2000)

Some scholars within CER have called for pedagogy that helps students take small, carefully managed
steps rather than immersing them too soon in the complexity of program design and writing code. Such
advice tends to emphasize code-reading before writing, the use of numerous small program examples for
deliberate practice, and the completion of partial programs before writing entire programs from scratch.

Different teachers justify their pedagogies differently. Some see the skill of reading code as a
prerequisite for writing so that it makes sense to develop a reading ability first, with learning to read
programs perhaps a more realistic goal for CS1 courses than the notoriously difficult goal of program
creation. Others argue that reading and completion tasks are simpler and that they do not cognitively
overload students but that they nevertheless they can serve the goal of learning problem solving (see
Section 4.5). This line of thinking goes against the conventional wisdom that one learns programming
best by (only) writing programs.

Van Merriënboer and Krammer (1987) presented a case for an introductory programming curriculum
in which students primarily read, modify, and extend programs. Their approach has since been established
as an example of the ‘completion effect’ of cognitive load reduction, which states that beginners
benefit from completion problems more than from full-blown problem solving (see Section 4.5.3 above).
Inspired by the work of van Merriënboer and his colleagues, Chang et al. (2000) implemented an
introductory programming course that revolves around template-supported completion problems; Garner
(2002) similarly designed a software-supported pedagogy of completion problems for CS1. According to
Shaffer et al. (2003), the completion effect is not yet sufficiently recognized in programming education,
despite its empirical support.

Carbone et al. (2000) observed various “poor learning behaviors” in their students and set out to
address these by revamping assignments. Among their main recommendations is replacing some of the
coding by alternative activities, such as tracing code and answering questions about it.

Buck and Stucki (2000) argue that having novices design their own programs is a folly. They “feel
strongly that students learn better when they are provided a context that constrains their thinking in
a directed fashion”. Buck and Stucki recommend a progression of assignments that matches Bloom’s
taxonomy (Section 2.1), which culminates in design and the evaluation of designs only at the highest levels.
Initially, program-writing tasks should require students to merely implement given designs or complete
teacher-authored programs. A similar approach was used by Caspersen and Bennedsen (2007; Caspersen,
2007), who “adopt an incremental approach to programming education in which novices [. . . ] initially do
very simple tasks and then gradually do more and more complex tasks, including design-in-the-small by
adding new classes and methods to an already existing design.” Caspersen and Bennedsen put cognitive
load theory and worked-out examples to use throughout their theory-driven CS1 course design. Their
approach further portions complexity through the ‘consume-before-produce principle’ – students use given
classes, methods, interfaces etc., before they define their own (cf. Pattis, 1993; Howe et al., 2004) – and
through systematic simple-to-complex sequencing of the object structures that students encounter. Yet
another approach is that of Thompson (2010), who suggests a reading-first strategy for teaching object-
oriented programming that is inspired by variation theory (Section 7.3.2) and the BRACElet studies on
reading, tracing, and writing code (Section 3.2).

Lister (2001, 2011a) goes a step further: he argues that students should not be required to write any
original code at any stage of CS1. Only when students have built up the ability to reason about code in a
sufficiently sophisticated manner will they benefit from designing their own code. To get students to this
point, teaching should emphasize learning tasks such as explaining what given code does, implementing
given pseudocode, and making small modifications to given code. Lister and Leaney (2003) used Bloom’s
taxonomy to structure assignments in a CS1 course so that to get a higher grade, students were required
completion of tasks of a higher level of cognitive complexity (e.g., to get an A, a student would have
to create an original program from scratch), while cognitively less demanding tasks such as reading code
were enough to get lower grades (see also Burgess, 2005).
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10.1.3 Guidance mediates complexity
In Section 6.8, I reviewed the general dispute concerning constructivist vs. direct instructional methods.
Echoes of this hot debate can be observed in the CER literature as well. An issue that is central to
it is the amount of guidance given to students. Within computing education, too, scholars have been
keen to distance themselves from minimal guidance pedagogy, emphasizing the need for guidance even
when adopting constructivist pedagogies. For instance, Hamer et al. discuss the criticism by Kirschner
et al. of minimal guidance pedagogy (see Section 6.8) as they apply a constructivist contributing student
pedagogy (CSP) to computing education:

[Kirschner et al., 2006] is an important review and critique paper that could be interpreted as
providing evidence that CSP approaches are not likely to represent an advance on learning.
This is not the case. CSP is not ‘minimal instruction’; on the contrary, CSP activities typically
require substantial instructor guidance and support to ensure success. This guidance may not
be in the traditional form of preparation of materials or the static delivery of lectures, but
may rather include pointing students in the right direction towards resources (and making
sure that sufficient resources are available), fostering the development of student trust in the
creation of a safe environment for students to present their contributions, fair negotiation of
assessment processes and criteria, development of software or IT tools to support the CSP
activity, and individual student support in an unfamiliar learning environment. Kirschner’s
paper reminds us that CSP is not a ‘cheap option’; time and resources formerly spent on
traditional content delivery now need to be deployed elsewhere. (Hamer et al., 2008, p. 197)

Proponents of constructivist CS1 commonly do stress the need to mediate task difficulty in some way
even as they allow complexity into the classroom (see, e.g., Greening, 1998; Ellis et al., 1998). Scaffolding
can take many forms, from teacher-given hints to given learning materials or tools, or program code. For
instance, novices may be able to finish or modify a given complex programming project – an authentic
task! – even if they are not capable of designing or coding it from scratch (see, e.g., Kölling and Barnes,
2008). The given parts of a program may either be intended for the students to read or may be ignored
by the student, depending on learning goals (a glass-box scaffold or a black-box scaffold, respectively, as
defined by Hmelo and Guzdial, 1996). Moritz and Blank (2005) used an intelligent tutoring system to
scaffold their design-first CS1.

Kinnunen and Malmi’s (2005) experimentation with different forms of PBL also highlighted the need
for significant guidance in a constructivist CS1: when less tutor time was available (or when tutor
meetings were not obligatory) some groups did very poorly, whereas more guidance led to more consistent
performance.

Balance?

Learning programming involves a complicated weave of content, cognition and cognitive load, motivation,
problem solving, practice, and participation. When successful, it changes ways of thinking about
programming and the world. There are benefits to both authentic complexity and simple manageable
steps. The two approaches can be combined by mixing different kinds of activities and the clever use
of scaffolding. In the end, the teacher who strikes a balance between student freedom and learning
management that is well suited to his particular teaching context and content will probably have the
greatest success.

10.1.4 Large-class introductory courses suffer from practical restrictions
Many introductory programming courses around the world have large numbers of students, often in the
hundreds. At Aalto University, for instance, our two main CS1 courses currently take in over 400 and over
700 students, respectively; in the past, we have had to deal with classes of over a thousand students.

Different institutions have very different teaching budgets, but too often the number of students is not
reflected in the number of teachers. What this means in practice is that the possibilities for one-on-one
teaching or even small-group work are often limited. Teachers of large classes struggle to provide enough
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guidance and feedback to their students. The matter is not helped by the fact that programming is a
highly skill-oriented subject that requires a lot of practice. This practice can take the form of many small
assignments or fewer large ones, but in either case the strain on resources is considerable – merely marking
thousands of programming assignments can be a daunting task, not to speak of giving useful formative
feedback to individual students.1

Problem-based → expensive?

When the teacher-student ratio is low in a CS1 course, using methods such as problem-based learning
is potentially problematic. Open-ended, complex, and authentic tasks require a great deal of teacher
guidance to work, and guidance is expensive.

Shipman and Duch (2001) – who taught physical science, not computing – report that PBL can
work in large classes but warn that their teaching worked significantly better in a “large” class (of 120
students) than in a “very large” class (of 240). Within computing education, Kay et al. (2000) used PBL
with apparent success in a very large course, and in fact cite problems with large classes as their motivation
for adopting a problem-based approach. However, what little other evidence there is of the applicability
of PBL to CS1 suggests that the availability of significant amounts of guidance from experienced tutors
is key to success (Kinnunen and Malmi, 2005), which means that a sizable teaching budget is needed to
implement PBL for hundreds of students. Carbone and Sheard (2003) have reported promising results
with a ‘studio approach’ to CS1 that resembles PBL in that it emphasizes groupwork and integrates
programming into other curricular content; however, they acknowledged that the approach adds to the
expense of teaching. Bareiss and Radley (2010) used a cognitive apprenticeship approach with apparent
success, but many institutions with a large intake will surely be put off by the cost estimate of “one faculty
hour per student per week”. Finding suitable facilities for small-group work can also be a problem.

A strongly teacher-controlled learning environment is usually easier to implement on a budget than
a learner-driven method such as PBL. When specific topics are covered in a predetermined sequence,
teachers can compensate for a poor teacher-student ratio by working as much as possible of their own
pedagogical expertise into the learning environment – into explanatory materials, ready-made code,
worked-out examples, lectures etc. – in a way that is reusable and can be prepared in advance. The
cost of such preparation is not negligible but does reduce the need for expensive face-to-face guidance.

Automatic assessment

Many CS1 teachers, especially those who teach large classes, make use of computers to assess students’
work and provide feedback automatically. Approaches to the automated assessment of programming
assignments have been reviewed by Ala-Mutka (2005), Carter et al. (2003), and Ihantola et al. (2010).

Compared to direct guidance from human teachers, automatic marking and feedback is cheap in the
long run, as development and deployment costs even out over a period of time. There are benefits
beyond money, as well: an automated assessment system is quick, available 24/7, precise, consistent, and
tireless. The main downside is that such tools are limited to particular kinds of closed assignments which
have predictable outcomes, and to particular kinds of feedback. There are systems for assessing program
functionality, certain aspects of coding style, test coverage, and/or answers to multiple-choice questions,
but good feedback on important issues like design quality or the programming process cannot be fully
automated (although semi-automation can help; see, e.g., Auvinen, 2009).

Despite the significant limitations, many teachers find automated assessment extremely useful in
practice, and in many large courses that aim for genuine skill development, it seems to be a near-necessity.
Alternative and complementary methods to automated assessment, which also reduce teacher workload,
include peer and self-assessment. Each of these techniques comes with its own set of pros and cons; these
are, however, beyond the scope of this thesis.

1There are exploitable positives to large CS1 classes too (see, e.g., Wolfman, 2002), but I focus here on certain pertinent
problems.
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10.2 Some approaches foster schema formation by exposing processes
and patterns

The psychological literature reviewed in Chapter 4 suggests that programming expertise is to a large extent
based on mental representations called schemas, which represent general information about the concepts
and processes of programming. Various pedagogical strategies have been put forward that may help CS1
students form schemas.

Promoting the use of the authentic programming process as content that students should learn about
is increasingly common in the CER literature (e.g., Zendler et al., 2008; Caspersen and Bennedsen, 2007;
Bennedsen and Caspersen, 2008; Boisvert, 2009; Bareiss and Radley, 2010). In these approaches, the
teacher’s task is to show how programmers really work and think as they solve problems and carry out other
tasks. Not all of this work is explicitly grounded in a cognitive perspective on learning. However, from a
schema theory point of view we can interpret it as facilitating the formation of scripts and problem-solving
schemas that characterize the cognitive patterns of a competent programmer.

Another family of schema-theory-based CS1 pedagogies relies on the specific algorithmic patterns
which occur and reoccur in different kinds of programs, and which experts recognize and work with. The
more recent work in this vein builds on Soloway’s pioneering work (see Section 4.4.1). Many authors have
identified and named common algorithmic schemas that are said to capture some of the same knowledge
that experts have in their mental schemas. Such patterns can be taught explicitly to novice programmers
to help them on the path to expertise (see, e.g., Wallingford, 1996; Proulx, 2000; Muller, 2005; Sajaniemi,
n.d.; Proulx and Cashorali, 2005; de Raadt, 2008; Hu et al., 2012, and references therein). For instance,
Sajaniemi’s roles of variables (which I briefly discussed on p. 42) explicate standard patterns of variable
use.

As we saw in Chapter 4, programmers use a combination of top-down and bottom-up strategies when
writing and reading programs. These strategies make use of schemas at different levels of abstraction.
Novices who initially lack any programming schemas have to build from the lower levels upwards, while
experts can work more efficiently top-down, resorting to bottom-up strategies when needed. Pattern-based
approaches such as Soloway’s plans and Sajaniemi’s roles of variables are concerned with helping novices
‘put the pieces together’. Although these approaches clearly operate at a lower level than, say, design
patterns (Gamma et al., 1995), they are nevertheless concerned with fairly high levels of abstraction. To
apply the plans successfully, novices need to understand the pieces that they will put together. Extended
practice with low-level fundamentals may be necessary to deal with the high cognitive load inherent in
learning about higher-level patterns (cf. Kranch’s study on p. 70 above).

In other words, novices need low-level schemas that correspond to the primitives of the notional
machine they are learning to control, e.g., “what is a reference?”, “how does one pass a parameter?’ The
next section discusses pedagogical strategies for helping students understand the notional machine. From
the perspective of schema theory, those strategies can be viewed as supporting the formation of crucial
low-level schemas.

10.3 Visualizations and metaphors make the notional machine tangible
Ben-Ari (2001a) advocates explicitly teaching a conceptual model of a notional machine to novice
programmers so that they will form mental models of the machine that are viable for the purpose of
programming. His advice to teachers, which is based on his take on constructivism (Section 6.7), includes
the following.

• Explicitly present a conceptual model of the computer. Teach about this underlying model before
you teach about abstractions based on it.

• Do not require students to engage in activities without viable understandings of the abstractions
that those activities are based on. Specifically: delay programming exercises until students have
constructed a viable mental model of the computer.

• Guide students to fix their non-viable mental models of the computer.
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While delaying programming exercises is a controversial suggestion (cf. Section 10.1 above), the
importance of explicitly teaching about a notional machine is much less so. In Part II, we saw that
the runtime dynamics of programs and the role of the computer as an executor of programs have been
widely identified as a key challenge in introductory programming education. The importance of the
notional machine is supported by multiple theoretical perspectives and by plentiful empirical evidence.

A relatively popular way of teaching about a notional machine is visualization.

Why visualization?

Visualization is intuitively appealing as an educational tool. There is also considerable support for it in
the literature. Any reader of educational research will sooner or later – usually sooner – come across texts
exhorting the use of visualization in learning environments. It seems that nearly every learning theory has
been used as a basis for recommending the use of visualization by someone or other.

Practitioners agree. Using pictures as clarification is common in teaching in textbooks and classrooms
around the world, both within and outside computing education. According to one survey, most attendees
of a computing education conference use visualizations of some sort in their teaching almost every day
(Naps et al., 2003).

Let us briefly consider some learning-theoretical support for visualization from the traditions of research
on learning that were discussed in Part II.

Mayer (1981), like many others in the literature on psychology of programming, advocates using a
visualization such as that in Figure 10.1 as a conceptual model for learning about a notional machine.
More generally, Mayer’s (2005, 2009) theory of multimedia learning emphasizes the need to use both the
visual and the auditory channels to optimize the use of working memory.

Ben-Ari (2001b) reminds us that according to (cognitive) constructivism (Chapter 6), learning is
brought about by exposing learners to situations that require them to change their cognitive structures.
He points out that if we assume that cognition is at least partially visual, then visualization in general
and software visualization in particular ought to be effective.

Recommendations from the phenomenographic tradition (Chapter 7) tie in with the specific content
of learning. From this perspective, visualization is one of the tools that can be used to highlight variation
in the critical aspects of a phenomenon to be learned about. Marton and Booth (1997) describe how
a visualization system for teaching Newtonian physics allows changes in perspective, and observe that
“a software tool can be used to vary something that is normally taken for granted and turning it into
an object of variation”. They also recommend (p. 81) making the technical implementation of recursion
visible in programming education in order to draw learners’ attention to the self-referential nature of
recursive functions. Along similar lines, I myself have previously suggested that visualization could serve
to highlight critical aspects of important programming concepts such as object and variable (Sorva, 2007,
2008).

Obviously, there are also proponents of cognitive psychology, constructivism, and phenomenography
who have never recommended visualization. It appears that advocacy of visualization is to some extent
independent of which general learning theory one prefers.2

Visualizations in the classroom

Mayer (1975, 1981) experimented with a simple diagrammatic conceptual model of a computer
(Figure 10.1), which he used for explaining how simple imperative programs written in a BASIC-like
language work. In Mayer’s studies, learning about the conceptual model transferred to better performance
in tasks that require the creative transfer of knowledge about programming constructs to new situations.
One experiment suggested that the effect appears when the model is taught before the language
commands, but not if the order is reversed.

2According to some ‘learning style’ frameworks – which are popular but have questionable validity (Coffield et al., 2004;
Pashler et al., 2008) – there are people who are ‘visual learners’ and prefer to learn from visualizations. Educators who
subscribe to this claim differ among themselves as to whether teaching should be tailored to match each learner’s style, the
alternative being to attempt to broaden learners’ ability to work with different kinds of materials and approaches.
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Many CS1 teachers have come up with their own conceptual models of the machine, which they have
taught to students on the blackboard, in textbooks, or in electronic format. I, for instance, have used
bespoke PowerPoint animations to illustrate the inner workings of object-oriented example programs at
two different levels of abstraction.

A consistent and concrete high-level memory model for object-oriented programming was presented
by Gries and Gries. In their model (Figure 10.2), a class is analogous to a file drawer in a filing cabinet,
while the manila folders in a particular drawer correspond to objects (Gries and Gries, 2002; Gries, 2008).
Gries and Gries (2002) also present a graphical notation for drawing method activations within a call
stack (Figure 10.3). Gries (2008) argues for a conceptual model that “rises above the computer and
that is based on an analogy to which students can relate”. Gries and Gries’s conceptualization of classes
and objects indeed operates at a level far removed from computer hardware, but nevertheless falls well
within the definition of a notional machine (Section 5.4). Their diagrams serve as a conceptual model of
a high-level notional machine for object-oriented programming.

How does one use a visualization? Ross (1991) commented on the traditional way:

The time honored approach to teaching program execution dynamics (mainly because no
other approach has been available) is for the instructor to do program walkthroughs at the
blackboard, pretending to be the computer while describing the effects of executing each
statement in succession. As any instructor would know, this process is very error prone, slow,
and not easily repeatable should questions be raised about something that occurred earlier in
the walkthrough. Perhaps the worst part of this approach is that the students have no way
of capturing the walkthrough on paper for later review; if they take notes, they again wind
up with a static, rather messy picture of the status of the walkthrough as it last appeared on
the blackboard, with little chance of being able to repeat the walkthrough on their own later.

One alternative to the chalk-and-talk approach is to involve the students.

Student-drawn visualizations

Having students draw the visualizations themselves is a cognitively engaging way to visualize the notional
machine. Some teachers set the ability to draw program state as an explicit goal:

We believe that students in the first two programming courses (using Java) should have
practice with a model of execution. They should be able to draw instances of classes and
subclasses, with enough technical detail to determine the variable or method that is referenced
by an identifier within a method body. They should be able to execute method calls by hand,
including pushing the frame for a call on the call stack and popping it off when the call is
completed. This material is often taught in a later programming language course; we believe
it belongs in the first programming course. (Gries and Gries, 2002)

Gries and Gries made sure their students could not simply ignore the conceptual model presented to
them: “We draw objects often, and we force our students to draw them” (Gries, 2008). Assuming that
having students draw is useful, making the activity obligatory may well be a sensible policy, given the
empirical evidence suggesting that many novices do not voluntarily trace program execution, or draw status
representations, even when it would benefit them or when they are encouraged to do so (Section 5.5).

Holliday and Luginbuhl (2003, 2004) used a similar approach to the Grieses. They introduced students
to a memory diagram notation for representing program states, and had students use it in class. Student-
drawn diagrams were further used as a part of assessment. Holliday and Luginbuhl report that the ability
of students to draw diagrams in an exam correlated positively with their performance on other questions.
It is unclear, however, if drawing memory diagrams caused the students to do better overall. Vagianou
(2006) and Mselle (2011) have also reported on the use of memory diagrams drawn by teachers and
students alike. The latter got a positive result in an experiment, which did not, however, have the same
teacher in the control and treatment groups.

A kinesthetic alternative to drawing visualizations is in-class role-playing of the actions that the
computer takes when executing a program. This can be done at a different levels of abstraction, in
terms of object interaction, for instance (see, e.g., Andrianoff and Levine, 2002).
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Figure 10.1: A visualization of a simple notional machine by Mayer (1981).

Figure 10.2: A visualization of classes and objects by Gries and Gries (2002). is a class, represented as
a file drawer. is an identifier for an object of type , represented as a manila folder.

Figure 10.3: A visualization of objects and call stack frames by Gries and Gries (2002). On the right,
there are two classes: , which has a static method , and . One object of type
has been created; it has the identifier a7. On the left is the call stack. In this example, the
parameterless method has been called on the object a7, which is referenced by the
local variable of the method.
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Vagianou (2006) observes that a weakness of pen-on-paper methods (and comparable computer-aided
drawing) is that producing pictures of program states may take up a lot of space and can be inefficient.
The time needed to draw diagrams is a concern, especially if students are not convinced that that time
will be well spent. The last point was also made by Gries et al. (2005), who observed that “students
often complain about these exercises, as drawing (and re-drawing) diagrams is tedious”. Software can
make things easier. Visualization software has been used to illustrate particular programming concepts
and entire notional machines.

Visualizing specific concepts with software

Many CS1 teachers employ visualizations of specific programming concepts and parts of a notional
machine. For instance, to teach about variables and references to objects, I myself have used an analogy
that likens variables to pegs, and objects to balloons that are attached to pegs with strings (adapted and
extended from Barker, 2000), and Bataller Mascarell (2011) has presented an assortment of visualizations
to be used in CS1 under the mantra “one concept, one drawing”.

Generic presentation software such as PowerPoint is one way to give students access to visualizations.
Another is to use software that is custom-made for programming education. Naps and Stenglein’s (1996)
visualization of scope and parameter passing (Figure 10.4), Ma’s (2007; Ma et al., 2011) visualization of
variables and assignment, and Kumar’s (2009) tutorial on pointers are examples of software tailored to
visualize specific programming concepts. The WadeIn II system (Brusilovsky and Loboda, 2006) visualizes
stages of expression evaluation and quizzes students about them, as does another “problet” by Kumar
(2005). The BlueJ IDE’s object workbench – shown in Figure 10.5 – allows students to experiment with
objects (Kölling, 2008); a similar functionality is provided by Aguia/J (Santos, 2011). Anchor Garden
(Miura et al., 2009) facilitates the visual exploration of the runtime semantics of variables, references and
assignment: the system serves as a sort of exploratorium for these concepts (Figure 10.6). Recursion is
another topic for which several specialized visualizations have been proposed (see, e.g., Eskola and Tarhio,
2002; Velázquez-Iturbide et al., 2008, and references therein).

The Python Visual Sandbox (Weigend, n.d.) represents an unusual approach: it is a web site
which shows visiting students multiple alternative visualizations of the internal behavior of programming
constructs such as list assignment and recursion – most of them at a high level of abstraction (Figure 10.7).
The visitor is then invited to think about which of the visualizations accurately represents the runtime
behavior of those constructs.

Generic program visualization software

Generic program visualization systems take as input a program written in a real programming language
(or a subset), and provide a dynamic visualization of how a notional machine deals with the program.
A familiar example is a common visual debugger in any modern IDE, which shows the execution of a
program line by line, and displays some pertinent information about the contents of computer memory,
most importantly variable values and call stack frames. More learning-oriented and beginner-friendly
systems also exist. Jeliot 3 (Moreno et al., 2004), for instance, explains program execution in a detailed
fashion using a visualization of a notional machine for Java programming.

Generic program visualization systems are central to this thesis. I will discuss existing systems in more
detail in the next chapter. Later, Chapter 13 introduces a new generic program visualization system for
CS1.

Warning: difficulties in transfer

The literature widely suggests that learning about a notional machine is important and that the ability
to trace programs is eminently useful. However, there is also some evidence that explicit teaching about
how programs get executed does not always lead to transferable knowledge.

Studies have indicated that novices often depend on templates and analogies to write recursive
programs (see, e.g., Kessler and Anderson, 1986; Anderson et al., 1988). According to Pirolli (1991),
producing a recursive function is, in principle, a “rather straightforward” task in which there is “little
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Figure 10.4: A visualization of the stack during a Pascal procedure call (Naps and Stenglein, 1996). A
procedure of the form ������ � �	
����� �� �� � � �	
����� is called with the
expression ��������� �� ��. ���� modifies the value of a (full code not shown here).

Figure 10.5: Images from the BlueJ IDE (Kölling, 2008). The image on the left shows a context menu
that the user has opened by clicking on an object in BlueJ’s object workbench. The user
can invoke the object’s methods through the menu. The image on the right shows an object
inspection dialog that displays the object’s state.
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Figure 10.6: A view of Anchor Garden (Miura et al., 2009). The user can use the palette of tools on the
left to create variables, objects, and primitive values. Variables can be assigned to by using
the mouse. In the “advanced mode” (shown), the fruits of the gardener’s labor are shown
as Java code on the right.

Figure 10.7: One of the alternative visualizations of lists and variables shown in the Python Visual
Sandbox (Weigend, n.d.). Note that this visualization of the code appears to store the
names of referring variables in the list object. This makes it a questionable visualization for
the concept, which the user is expected to detect.
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or no need for simulating the process created by a recursive function”. Pirolli argues that the main
difficulty comes from a lack of analogues for recursion in everyday thinking. If this is the case, it is
perhaps reasonable to expect the skill of writing recursive programs and the skill of tracing them to be
only loosely connected to each other. Studies by Anderson, Pirolli, and their colleagues have indeed
found that teaching students about the execution of functional (typically recursive) programs can help
students develop the skill of tracing, but that this skill does not necessarily translate into an ability to
write programs. Anderson et al. (1989) review experiments from their research group, which indicate
that training students to evaluate LISP expressions manually (i.e., to simulate execution within a LISP
notional machine) did not significantly help them to write LISP programs. Conversely, training in coding
transferred rather poorly to expression-evaluation skill. On the basis of an analysis of exam questions,
Anderson et al. (1989) further suggest that evaluation training transferred poorly even to debugging skill.
They do not report the exam questions they used, however, and it is unclear to what extent the debugging
questions in the exam necessitated the tracing of execution. In another study, Pirolli (1991) experimented
with two ways of teaching recursion by giving some students “how-it’s-written” information (about how to
put together a recursive program) and others “how-it-works” information (about how a recursive program
behaves when run; in other words, about a notional machine). He found that how-it’s-written information
was more effective in teaching the learners to write small recursive programs, producing equal success in
less time.

Visualizations of notional machines are all about how-it-works information. The findings cited above
contrast somewhat with the success stories reported from within the software visualization field (see
the next chapter). It is not obvious to what extent the limitedness of transfer discovered by Anderson,
Pirolli, and their colleagues is particular to recursive programs, LISP, or the functional paradigm and its
straightforward high-level notional machine. Even within the realm of LISP programming, positive transfer
effects from how-it-works information to debugging have also been documented through empirical research
(Mann et al., 1994).

The alternative: leaving the notional machine implicit

By no means all CS1 teachers explicitly teach their students about a notional machine. Not everyone
agrees that it even makes sense to do so. For instance, Greening (1999) downplays the need to teach a
model of a computer (see Section 6.7). He claims that with the employment constructivist practices such
as PBL (see Sections 6.4 and 10.1), problems will not arise because students will necessarily discover viable
understandings of the computer while working on larger projects: “a constructivist environment would not
find students writing the trivial code fragments needed to allow such misconceptions to escape” (p. 74).
If this is the case, the implications for introductory programming education are significant; however, the
CER literature presently appears to provide little in the way of concrete evidence supporting this argument.

Many textbooks appear to neglect the issue of a notional machine. It is not rare that the computer
is introduced in terms of its hardware and perhaps machine code, but that that low level of abstraction
is only very loosely linked to the execution-time dynamics of a higher-level language.

An interesting observation was made by Schulte and Bennedsen (2006), who surveyed the opinions of
programming teachers on the relative importance of various CS1 topics. They report that even though
programming teachers found some specific dynamics-related topics (e.g., references) to be relatively
important compared to other specific topics, the notional machine itself was seen as relatively unimportant
compared to learning about notation and pragmatics, among other things. Schulte and Bennedsen’s result
may be affected by the teachers not agreeing on what exactly is meant by “notional machine”, but probably
also reflects the status quo in CS1 teaching, in which the big picture of how programs work at runtime
does not get quite the attention it deserves in the light of learning theory and empirical evidence.

10.4 Objects are a bone of contention

A chapter on teaching CS1 would not be complete without a consideration of the so-called objects-early
debate.

It is a common sentiment that the first few weeks of a CS1 course are critical for student success. First
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impressions of computing matter and affect student motivation; what is learned first may set the tone for
the rest of the course and color further learning. Some, plausibly many, CS1 strugglers start experiencing
difficulties already near the beginning of the course (Teague et al., 2012). The tight integration of
programming topics may mean that failing to learn what is covered first leads to failure to learn further
concepts (Robins, 2010). Key threshold concepts such as program dynamics may need to be mastered
right at the start (Chapter 9). For these reasons, various ‘this-first’ and ‘that-early’ pedagogies have been
proposed, each of which emphasizes the importance of teaching about a particular topic at or near the
start of CS1: objects first, objects early, functional first, imperative first, design patterns first, components
first, testing first, and so forth.3 An ongoing – and often heated – debate amongst practitioners concerns
whether to start out with object-oriented or procedural programming (Bruce, 2004; Lister et al., 2006a).
Since the 1990s, objects-early approaches have become common, but more traditional procedural-first
approaches also continue to be popular. I will gloss over functional-first approaches, which have not been
focal in this debate; for an example of a relatively popular functional-first approach, see Felleisen et al.
(n.d.).

Lewis (2000) observed that the term ‘objects first’ is commonly bandied about with no clear definition
and that a lot of significantly different approaches are lumped together under that general term. Bennedsen
and Schulte (2007) analyzed descriptions of ‘objects first’ elicited from over 200 teachers from the world
over, and found three main meanings for the term: 1) using objects of predefined classes right at the
beginning at CS1; 2) defining and instantiating classes right at the beginning, and 3) learning about
general OO principles and object-oriented modeling right from the start. At the risk of oversimplifying, I
will consider all of these approaches as falling under the term objects early below, while objects later will
refer to all approaches that do not emphasize object-orientation in the early weeks of CS1.

10.4.1 Is OOP too complex to start with?
One wonders [. . . ] about teaching sophisticated material to CS1 students when study after
study has shown that they do not understand basic loops; more time spent on looping problems
might pay a much larger return in the long run. (Winslow, 1996)

Winslow’s sentiment has been echoed by educators who oppose the objects-early movement and prefer to
stick to (or return to) procedural or functional programming for all or most of CS1. The reasoning is that
object-orientation brings further content into an already content-packed CS1 and ‘basic constructs’ such
as loops and conditionals will not get the necessary attention. It has also been argued that such basics
must logically be taught very early, which is not always done in objects-early approaches (Bruce, 2004;
Lister et al., 2006a). A prominent critic of objects-early is Stuart Reges, who is unconvinced that many
students are capable of learning about OOP early, that many teachers have what it takes to successfully
teach about objects early, and that, in general, objects-early approaches solve more problems than they
create (Bruce, 2004; Reges, 2006).

Sajaniemi and Kuittinen (2008) revisit the objects-early debate from the notional machine point of
view, warning us that object-oriented programming inevitably requires a more complex notional machine
than procedural programming does (see Section 10.4.3). This, Sajaniemi and Kuittinen argue, is prone
to cognitively overloading novices, something that is easier to avoid when using a procedural approach.
Critics of objects early have also pointed to the large number of different misconceptions that novice
programmers have of object-oriented concepts (see Appendix A). Ben-Ari (2001a), who advised us in
Section 6.7.2 that learning computing should not start with abstractions, argues against objects early by
noting that a high level of abstraction is inherent in OOP, and misconceptions are inevitable if students
start with OOP without being taught what lies beneath. The claim that OOP is a ‘natural’ way of
programming has also been questioned (Pane et al., 2001; Guzdial, 2008).

Reges (quoted by Bruce, 2004) argues that the existence of various elaborate forms of scaffolding (see
below) is an indication of how OOP is unnecessarily complicated as a starting point. He suggests that
OOP may not be very fundamental to computing at all. Ben-Ari (2010) agrees with the latter point as
he presents one of the more radical criticisms against objects early. According to Ben-Ari, object-oriented

3There is even a “pigs-early” approach (Lister, 2004). Some of the initiatives that address gender balance issues in CS1
(e.g., Rich et al., 2004) might be termed ‘ladies first’.
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programming is not a dominant technology, and OOP advocates have not done a good job of explaining
exactly what OOP is good for and why it is a good idea to teach it to all programmers, let alone to start
off beginners with objects.

10.4.2 Is OOP too good not to start with?
Object-oriented programming holds appeal for educators for many of the same reasons that were associated
in Section 10.1 with complex, authentic assignments: objects-early approaches are said to improve student
motivation, to facilitate the teaching of good professional practices, and to be the natural way to start
when the goal is to teach about this popular programming paradigm. Skeptics, too, acknowledge some
of these benefits:

I appreciate the attractiveness of an objects-first approach; the gap between the standard
libraries (especially the GUI libraries) of a modern programming environment and the model of
a computer is so great that motivating beginners has become a serious problem. Furthermore,
OOP can be used to teach good software development practice from the beginning because
“OOP allows – even encourages – one to address the "big picture" by emphasizing a strategic
approach to programming” (Decker and Hirshfield, 1993, p. 271). (Ben-Ari, 2001a)

It is for such reasons that proponents of objects early feel OOP is a suitable choice for the modern CS1
course, despite the challenges it poses for teachers (see also Bruce, 2004).

Goodbye, Hello!

Compared to its alternatives, a particular benefit of an objects-early approach is said to be how it allows
teachers and students to rid themselves of “Hello, World!” and other trivial early programs, whose
behavior is uninteresting, useless, and unmotivating. Many authors have stressed the limitations of such
examples and the downright harmful effects they may have on learning (e.g., Westfall, 2001; Dodani,
2003; Kölling, 2008). In many objects-early courses, by contrast, early examples feature classes with rich
behaviors, whose inner workings students may not be at all familiar with at the beginning.4 A number
of authors have emphasized that in order to keep misconceptions to a minimum, early object-oriented
examples must be particularly carefully designed and crafted by the teacher (e.g., Holland et al., 1997;
Caspersen and Bennedsen, 2007; Nordström and Börstler, 2011).

Scaffold to succeed

Objects early is claimed to allow natural treatment of larger, more interesting problems. In fact, an
object-oriented CS1 probably requires such examples in order for students to appreciate the power of
object-orientation. Objects-early teachers use various scaffolding techniques to manage complexity. Rasala
(quoted by Bruce, 2004) groups these methods in three categories:

• pedagogical IDEs such as BlueJ (Kölling et al., 2003; Kölling, 2008) and DrJava (Allen et al.,
2002), which allow novices to easily create and interact with interesting objects without writing a
full program;

• microworlds such as Alice (Cooper et al., 2003) and Karel J. Robot (Bergin et al., 2005), which
feature ready-made classes that provide graphics and rich primitives for students to work with;

• pedagogically designed class libraries such as ACM’s Java library (Roberts et al., 2006) and Java
Power Tools (Rasala et al., 2001), which provide novice-friendly APIs for various purposes, especially
for creating graphics and GUIs.

A further consideration is the way topics are sequenced, which can be designed to minimize the risk of
cognitive overload, as in Caspersen and Bennedsen’s (2007) consume-before-produce CS1 discussed above
in Section 10.1.

4OOP does not, of course, have a monopoly on rich behaviors hidden behind interfaces. However, starting with such
examples is common in object-early approaches, and relatively uncommon otherwise.
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The paradigm shift

There is anecdotal evidence both for and against the claim that – assuming one’s eventual goal is to
teach OOP – it makes sense to start with object-oriented programming rather than to require students to
shift from the procedural paradigm to OOP. The latter alternative requires students to change their way
of thinking about problems and their programming solutions and is said to involve difficult ‘unlearning’
processes.

This is why I think it is a mistake for educators to try to teach procedural programming first,
if the goal is object programming. The better a job you do in the beginning, the harder it
will be for your students later, because their natural problem solving skills will all be wired
to look for solutions in the processes and not in the objects. If you do a really excellent job
of teaching them to think like a procedural programmer, they will face this 12 to 18 month
paradigm shift. I don’t know where to put this year of confusion in a four-year educational
program. (Bergin, 2000)

Strong evidence both for and against such claims is scarce, as is direct evidence about the effectiveness
of objects early in general (see Robins et al., 2003; Decker, 2003; Lister et al., 2006a; Ehlert and Schulte,
2009, 2010). Ehlert and Schulte (2009, 2010) compared the results of an objects-first CS1 and an
objects-later one, which were otherwise identical to each other (same teacher, etc.). They report that
“both groups showed the same increase in learning gain, but perceived the difficulty of topics differently”.
Earlier, Wiedenbeck et al. (1999) reported that novices trained in procedural programming outperformed
object-oriented novices in program comprehension questions (when the programs were not very short).
Wiedenbeck et al. speculated that this was due to the fact that object-oriented programming is more
complex and has a longer learning curve. Consequently, the object-oriented novices who had studied
programming for an equally long time had not made as much progress as a result of having had to cope
with additional topics in their studies.

10.4.3 OOP can be expressed in terms of different notional machines

To follow the advice given in the previous sections and chapters, an objects-early teacher should provide a
conceptual model of a notional machine that explains the dynamic behavior of object-oriented programs
at a reasonable level of abstraction. But what is an appropriate object-oriented notional machine like?

An extended imperative machine?

Some have argued that a notional machine suitable for object-oriented programming is an extension
of a procedural or imperative notional machine. Sajaniemi and Kuittinen (2008) compare two notional
machines for object-oriented programming and procedural programming, both of which describe execution
at the same level of abstraction. They argue that a notional machine for very simple imperative programs
needs to feature (only) variables, I/O devices, and a program counter. It can be seamlessly expanded into
a richer notional machine by adding pointers, a call stack, and mechanisms for parameter passing and
returning values once students reach programs involving pointers and functions. In contrast, Sajaniemi and
Kuittinen argue, any object-oriented notional machine must be more complex, featuring objects, object
references, a call stack, mechanisms for parameter passing and return values, variables, I/O devices, and
a program counter. According to Sajaniemi and Kuittinen, “not only is the size of the required notional
machine much larger than in the procedural case, but the initial notional machine needed in order to
understand the first programs is much more complicated, as well”. They draw on the literature to further
claim that “the OO notional machine is even more poorly understood by students than the imperative
notional machine”.

Schulte and Bennedsen (2006) briefly mention an object-oriented notional machine that “comprises
traditional imperative aspects of the programming language as well as an understanding of the interaction
among objects that take place during run-time”. This phrasing suggests an object-oriented notional
machine that is an extension of an imperative one, but also involves higher-level aspects.
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A high-level OO machine?

Sajaniemi and Kuittinen’s object-oriented notional machine operates on the same level of abstraction as
their procedural notional machine, dealing with primitives such as variables and stack frames. In contrast,
Bergin emphasizes the dramatically different way computation is thought about in OOP:

One fairly typical component of a beginning course of programming using the procedural
paradigm is a discussion of the von Neumann machine architecture. [. . . ] This simple machine
model fits well with the procedural paradigm, but less well with other, more abstract, ways of
looking at computation. There is a simple relationship between the physical level provided by
the von Neumann architecture and the virtual level provided by most procedural languages.
This is just not the case with the functional or object-oriented paradigm. The functional
paradigm, of course, completely hides the underlying physical architecture. The object-
oriented one does not hide it, but turns it on its head. Instead of the data being moved
to the CPU for processing, a very common metaphor in OOP is that the CPU moves inside
the objects. (Bergin, 2000)

Gries (2008) also criticizes the use of low-level abstractions in teaching object-orientation:

But many programming texts fail to use abstraction appropriately, e.g., by describing variables
and assignment in terms of computers [. . . ]

“A variable is a name for a memory location used to hold a value of some particular data
type.”
“When [the assignment statement is] executed, the expression is evaluated . . . and the
result is stored in the memory location . . . .”
“The computer must always know the type of value to be stored in the memory location
associated with a variable.”
“An object reference variable actually stores the address where the object is stored in
memory.”

[. . . ] introducing computing concepts in terms of the computer can create unnecessary and
confusing detail, especially when OO concepts are described in terms of a computer, with
discussions of pointers to objects in memory, heaps, and other implementation-related terms.
(p. 32)

Gries prefers to scrap difficult terminology – e.g., ‘reference’, ‘pointer’ – as “with appropriate abstraction
away from the computer, these terms become unnecessary”. We saw Gries’s higher-level conceptual model
of objects and classes in Section 10.3.

In a similar vein to Gries, Caspersen and his colleagues (Caspersen, 2007; Bennedsen and Schulte,
2006; Henriksen, 2007) have sought to represent an object-oriented notional machine on a higher level
of abstraction. They argue that object-oriented programmers need to understand program execution in
terms of a notional machine that deals with interacting object structures. Henriksen (2007) envisioned a
visualization of a notional machine that would abstract out execution details such as expression evaluation
and concentrate on object interactions. Caspersen (2007) outlines a future system in which students could
‘play’ with the visualization of an object model, stepping forward and backward, and making changes to
program state at will (cf. Victor, 2012).

Two machines?

Berglund and Lister (2007, 2010) found through phenomenographic analysis that amongst participants
in the objects-early debate, objects early is experienced in different ways: as learning an extension
of imperative programming or as learning something conceptually quite distinct from imperative
programming. This qualitative divide is, in my interpretation, reflected in the literature on object-oriented
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notional machines. Sajaniemi and Kuittinen’s OO notional machine is an example of the former perception,
while Bergin represents the other line of thinking.5

Most writers, perhaps for simplicity’s sake, talk of a single procedural/imperative notional machine
and of a single, more complex, object-oriented notional machine. Another way to think about the matter,
which Henriksen (2007) alludes to and which I prefer, is that while a single notional machine may be enough
to understand procedural/imperative programs, object-oriented programming effectively requires (at least)
two different notional machines. One can be seen as an object-enabled extension of a procedural notional
machine à la Sajaniemi and Kuittinen, and another describes message-passing between interacting objects.
The two notional machines operate on different levels of abstraction and give two different perspectives
on object-oriented programming. This is consistent with the idea that object-oriented programming is
simultaneously an extension of imperative programming and something conceptually different from it.6

10.4.4 So who is right?
Much of the objects-early debate is driven by anecdotes and attitudes, and is not very well grounded in
research literature. Irrespective of what credibility one attaches to these opinions, they unquestionably
form a part of the CER community and have a great impact on how CS1 courses are being taught around
the world.

I present here some of my own opinions, based on the above and my experience as a CS1 teacher.
There are strong arguments both for and against objects-early approaches. It seems clear that both

objects-early and objects-later approaches can work, under the right circumstances, if they are carefully
implemented.

The existing arsenal of educational tools available for teaching OOP, the perceived need for these
tools, and some empirical research all support the idea that object-oriented programming is ‘more’ than
imperative programming from a learning point of view. This makes objects-early more difficult to teach
successfully – more is demanded of the teacher so as not to demand too much of the students. Even
more scaffolding is needed to teach an object-oriented CS1 than in an imperative or objects-later one. If
you succeed, however, you have accomplished more.

A significant challenge with objects-early is that just as OOP has the dual nature of being an extension
of imperative programming and a separate paradigm in its own right, so novice students need to learn
about two different notional machines. One of these can be thought of as an extension of an imperative
notional machine and the other as a more abstract, purely object-oriented machine. My feeling is that
objects-early students need – or at least can greatly benefit from – explicitly being taught about both
notional machines early. This adds further to the object-oriented teaching challenge.

In this chapter, we have seen some strategies for teaching CS1. We have explored, in broad terms, themes
such as complexity vs. manageability, the role of object-orientation, and the importance of notional
machines. In the next chapter, we take a narrower but deeper look at programming pedagogy to find out
what software tools have been created to visualize program dynamics for novice programmers.

5OOP can also be seen as an extension of functional programming, but this perspective has, perhaps surprisingly, only
rarely featured in the objects-early debate. I focus here on the mainstream, imperatively grounded OOP that is commonly
taught in introductory courses.

6Whether one agrees that this statement about OOP is true depends, of course, on one’s definition of OOP. I am talking
here of OOP in the form in which it appears in programming languages such as Java, Python, and C++, in which it makes
sense to think of OOP as (also) an extension of imperative programming.
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Chapter 11

Software Tools can Visualize Program
Dynamics

Software visualization (SV) is an active field of research and system development. A wide variety of SV
systems exist for many different purposes and more crop up every year. In this chapter, I review software
visualization tools for teaching introductory programming.

Gračanin et al. (2005) define software visualization as follows:

The field of software visualization (SV) investigates approaches and techniques for static
and dynamic graphical representations of algorithms, programs (code), and processed data.
SV is concerned primarily with the analysis of programs and their development. The goal
is to improve our understanding of inherently invisible and intangible software [. . . ] The
main challenge is to find effective mappings from different software aspects to graphical
representations using visual metaphors. (p. 221)

Software visualization is a fairly broad field in which educational concerns play only a small part. In
Section 11.1 below, I use existing classification systems to specify what kind of SV tool I am presently
interested in. To provide an additional context for what comes later, Section 11.2 surveys a current
debate in the educational SV community that concerns the importance of learners actively engaging with
visualizations, and presents a framework that I have used for classifying modes of engagement in the tools
that I review. The lengthy Section 11.3 contains the review proper: descriptions of specific visualization
systems and their empirical evaluations. Finally, in Section 11.4, I briefly reflect on what is known about
the role of engagement in the systems reviewed; it turns out that there is rather little in the way of
empirical evidence.

Ville Karavirta and Lauri Malmi participated in reviewing the systems described in this chapter.

11.1 There are many kinds of software visualization tools

As the field of software visualization is varied, many authors have tried to structure it by proposing
classification systems and taxonomies of software visualization tools (see, e.g., Myers, 1990; Price et al.,
1993; Stasko and Patterson, 1992; Roman and Cox, 1993; Maletic et al., 2002; Hundhausen et al.,
2002; Naps et al., 2003; Lahtinen and Ahoniemi, 2005, and references therein).1 From a different
perspective, Kelleher and Pausch (2005) laid out a classification of software environments for use in
introductory programming education; the set of these systems overlaps with SV. In this section, I will use
the classification systems of Maletic et al. (2002) and Kelleher and Pausch (2005) to give an overall feel
for the field and to specify the scope of my review of software visualization tools in Section 11.3 below.
Let us start, however, by considering some broad areas within software visualization.

1My use of the terms “taxonomy” and “classification” (or “classification system”) – which are often used interchangeably
– is based on that of Bloom (1956, p. 17). According to Bloom, a classification serves a purpose if it is communicable and
useful, while a taxonomy is intended to be validated through research. A taxonomy can also be used as a classification.
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Program visualization vs. algorithm visualization vs. visual programming

Within software visualization, two broad subfields can be identified (Figure 11.1). Algorithm visualization
(AV) systems visualize general algorithms (e.g., quicksort, binary tree operations), usually at a high
level of abstraction, while program visualization (PV) systems visualize concrete, implemented programs,
usually at a lower level.2 Within program visualization, some visualizations represent program code (e.g.,
dependencies or code evolution) while others illustrate the runtime dynamics of programs. Program
animation refers to dynamic visualization of program dynamics – the common variety of program
visualization in which the computer determines what happens during a program run, and visualizes this
information to the user (e.g., as in a typical visual debugger). Also within program visualization, research
on visual programming attempts to find new ways of specifying programs using graphics rather than
visualizing software that is otherwise in non-visual format.3

This chapter focuses on program visualization tools. Algorithm visualization tools operate at a level of
abstraction that is too high to be interesting for learning about the fundamentals of program execution.
The review presented also does not cover visual programming. Although many visual programming
environments do feature a facility for animating the execution of a visual program (see, e.g., Carlisle,
2009; Scott et al., 2008), I have here focused on mainstream programming paradigms. I will, however,
include a few select systems with AV and visual programming functionality, which have additional features
that are intended for teaching about program dynamics of non-visual languages to novices.

Maletic et al.’s classification

In the task-oriented classification by Maletic et al. (2002), software visualization systems are primarily
categorized by their purpose:

• Tasks – why is the visualization needed? (e.g., reverse engineering, defect location)

• Audience – who will use the visualization? (e.g., expert developer, team manager)

• Target – what is the data source to represent? (e.g., source code, execution data)

• Representation – how is it represented? (e.g., 2D graphs, 3D objects)

• Medium – where to represent the visualization? (e.g., onscreen graphics, virtual reality)

Even though Maletic et al. are actually concerned with programming-in-the-large and not with education,
their framework is well suited to explaining what part of the SV landscape I am interested in. The task
of the systems I review is to aid the learning and teaching of introductory programming, with an intended
audience of novice programmers and introductory programming teachers. This goal is different from the
goal of many other SV systems, which seek to help (expert) programmers to learn about the complex
software systems that they visualize. As for the target dimension, my review focuses on systems that
visualize the execution-time dynamics of concrete programs. Any form of representation will do as far as
my review is concerned, as long as the medium is an electronic one and the visualization can be viewed
onscreen.

Kelleher and Pausch’s classification

Kelleher and Pausch (2005) defined a hierarchical classification of programming environments and
languages for novice programmers. A part of the hierarchy is shown in Figure 11.2; I have left out
some subcategories which are not central to the present work.

At the top level, Kelleher and Pausch divided environments and languages into teaching systems,
which attempt to teach programming (as understood in the mainstream) for its own sake, and empowering
systems, which attempt to support the use of programming in pursuit of another goal. My present interest
lies on the teaching systems side.

2In some of the older literature especially, “program visualization” refers to what I have just called software visualization,
but at present, the terms are commonly used the way I use them here.

3“VPS” in Figure 11.1 stands for “visual program simulation” which I will get to properly in Part IV.
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Figure 11.1: Forms of software visualization (loosely adapted from Price et al., 1993). The size of each
area is not important. For the sake of simplicity, not all intersections are shown.
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Figure 11.2: A part of Kelleher and Pausch’s classification system for programming environments and
languages for novice programmers. Some branches are not shown. (Adapted from Kelleher
and Pausch, 2005.)
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Teaching systems are further divided into mechanics of programming and learning support. Learning
support systems try to ease the process of learning to program through “basic educational supports such
as progressions of projects that gradually introduce new concepts or ways for students to connect with
and learn from each other”. Of more interest from my perspective are systems in the mechanics of
programming category, which come in three varieties. First, systems for expressing programs attempt
to make it easier for beginners to express instructions to the computer. Second, systems for structuring
programs attempt to facilitate the organization of instructions by changing the language or programming
paradigm (e.g., Pascal, Smalltalk) or by making existing programming languages or paradigms more
accessible (e.g., BlueJ). And third, systems for understanding program execution attempt to help novices
understand how such instructions are executed at runtime. It is systems in this last category that I intend
to review.

Kelleher and Pausch identify three ways in which systems try to help students to understand program
execution. A system for tracking program execution visualizes what happens in memory during a program
run. The actors-in-microworlds approach makes programming concrete by replacing a general-purpose
programming language by a mini-language whose commands have a straightforward physical explanation
in a virtual microworld. Finally, systems in the models of program execution category describe actions in
a (general-purpose) programming language through metaphors and graphics, which “help students both
to imagine the execution of their programs and perhaps more clearly understand why their programs do
not perform as expected”.

As my concern is with learning general-purpose languages – which all programming students eventually
need to learn and which represent the mainstream of CS1 education – I will not cover the actors-in-
microworlds approach in detail. This leaves two subcategories, tracking program execution and models of
program execution, both of which involve visualizations of program execution either as abstract graphics
and text, or through metaphors. The line between these two subcategories is a vague one, and I will not
attempt to pigeonhole systems in either of them.

I make one more delimitation: I will focus on systems that are more or less generic in the sense that
they can be used to illustrate a variety of programming language constructs and corresponding runtime
phenomena. There are also many systems which attempt to tackle more specific problems by visualizing
one or a few select programming concepts. I will not attempt to cover those here. (A few examples of
such specific systems were mentioned in Section 10.3.)

To summarize the above, this chapter contains a review of generic program visualization systems in
which the execution of programs – written in a general-purpose language in a traditional non-visual way
– is visualized onscreen in a manner suitable for novice programmers so that the system can be used to
learn about program execution.

Before turning to the actual systems, let us consider the ways in which learners may use a visualization.

11.2 Engagement level may be key to the success of a visualization

“They will look at it and learn” thought many an enthusiastic programming teacher while putting together
a visualization. But it might take more than that. Petre (1995, p. 34) writes:

In considering representations for programming, the concern is formalisms, not art – precision,
not breadth of interpretation. The implicit model behind at least some of the claims that
graphical representations are superior to textual ones is that the programmer takes in a
program in the same way that a viewer takes in a painting: by standing in front of it and
soaking it in, letting the eye wander from place to place, receiving a ‘gestalt’ impression of
the whole. But one purpose of programs is to present information clearly and unambiguously.
Effective use requires purposeful perusal, not the unfettered, wandering eye of the casual art
viewer.

The representational aspects of a visualization – its constituent parts and level of abstraction – are
doubtless relevant to learning. In the lingo of the variation theory of learning (Section 7.3.2), these
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aspects can play a decisive part in enacting a space of variation: what it is possible to learn from the
visualization and what content the visualization is suitable for learning about.4

Yet although careful design of a visualization is important, it is not the whole story. Even a ‘good
visualization’ may fail to aid learning in practice. In the past decade, educators with an interest in SV have
increasingly paid attention to how learners engage with visualizations. Evidence from research suggests
that what learners do with a visualization may matter a great deal, perhaps more than most of the
representational issues.

11.2.1 A picture does not always better a thousand words
Naps (2005, p. 53) comments on how attitudes to software visualization in computing education have
changed during the past couple of decades:

As often happens with eye-catching new technologies, we have gone through what in retrospect
were predictable phases: An initial, almost giddy, awe at the remarkable graphic effects,
followed by disenchantment that the visualizations did not achieve their desired purpose in
educational applications. Then we went through a period of empirical evaluation in which we
began to sort out what worked and what did not.

The recent period of sobering reflection was fueled by a review of experiments on the effectiveness of
visualization, discussed below. The original work was done on the algorithm visualization side of the SV
world but the results have been applied on the PV side as well.

An influential meta-study

Hundhausen et al. (2002) conducted a meta-study of the effectiveness of algorithm visualization
technology. They compared 24 earlier experiments to nutshell:

In sum, our meta-study suggests that AV technology is educationally effective, but not in
the conventional way suggested by the old proverb ‘a picture is worth 1000 words’. Rather,
according to our findings, the form of the learning exercise in which AV technology is used
is actually more important than the quality of the visualizations produced by AV technology.
(Hundhausen et al., 2002, p. 284)

The results from the studies were mixed overall, but the meta-study showed that the experiments which
compared groups that engaged in different kinds of activities involving a visualization had produced more
significant results than had those studies which compared only representational characteristics (e.g., text
vs. animation or different visuals).

Engage to succeed

Hundhausen et al. (2002) observed that most of the successful AV experiments – in the sense that they
showed a significant improvement in learning as a result of AV – are predicted by the theory of personal
constructivism (see Section 6.1.2), which emphasizes the need to actively engage with one’s environment to
construct one’s subjective knowledge: “our results suggest that algorithm visualizations are educationally
effective insofar as they enable students to construct their own understandings of algorithms through a
process of active learning” (p. 284). Hundhausen et al. showed that most of the successful AV experiments
had learners engage in visualization-related activities that were cognitively more demanding and required
the learner to improve their understandings of the visualization and the software it visualized. The authors
concluded that visualization technology is not an instrument for transferring knowledge into students, but
can serve as a catalyst for learning.

The findings of Hundhausen et al. are in line with learning theory. In Chapter 8, I observed that one of
the main areas of agreement between the general learning theories discussed in Part II is their unequivocal

4The work of Mulholland (1997) is an example of how principled visual design driven by explicit educational goals can
improve the impact of a software visualization.
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support for active learning, that is, the need to make the learner engage with what is to be learned.
Compatible results have also been reported by researchers of educational visualization outside SV: videos
and animations can be perceived as “easy” and their impact may be inferior to that of static images or
even to not viewing a visualization at all, whereas interactive multimedia that cognitively engages the
learner can lead to more elaborative processing (integration with prior knowledge) and consequently to
better learning (see, e.g., Najjar, 1998; Scheiter et al., 2006, and references therein).

In part, the benefit of active engagement may come simply from the fact that learners end up spending
more time with the visualization, increasing the time spent on studying.

Since the study of Hundhausen et al., SV researchers have increasingly sought to create teaching
approaches and systems that promote learner involvement, and to further explore how different kinds of
engagement impact on learning. My thesis can be seen as part of this movement.

11.2.2 Engagement taxonomies rank kinds of learner interaction
Drawing on the work of Hundhausen and his colleagues, a sizable working group of SV researchers put
their heads together to differentiate between the ways in which visualization tools engage learners (Naps
et al., 2003). They presented an engagement taxonomy whose levels describe increasingly engaging ways
of interacting with a visualization.

The original engagement taxonomy (OET)

Table 11.1 describes the six levels of the engagement taxonomy created by Naps et al. (2003), namely, no

viewing, viewing, responding, changing, constructing, and presenting. Naps et al. note that the levels after
viewing do not form a strict hierarchy, but they do nevertheless hypothesize that using a visualization on
a higher level of the taxonomy is likely to have a greater impact on learning than using it on one of the
lower levels. (In Table 11.1, and elsewhere in this chapter, I use the term target software to refer to the
programs or algorithms that are visualized by SV software, as opposed to the SV software itself. I will
sometimes also refer to the target software as the content of a visualization.)

SV systems sometimes feature different modes that engage students at different levels. Even a single
activity may engage students at multiple levels of the taxonomy. Indeed, by definition, all activities at any
but the no viewing level always involve viewing the visualization in addition to whatever else the student
does. Naps et al. hypothesize that “more is better”: a mix of different engagement levels leads to better
learning.

The extended engagement taxonomy (EET)

Myller et al. (2009) presented a more fine-grained version of the engagement taxonomy. Their extended
engagement taxonomy, summarized in Table 11.2, introduces four additional levels and somewhat changes
the definition of some of the original categories.

The research focus of Myller et al. (2009) was on collaborative learning. They added to the hypotheses
of Naps et al. by proposing that as the level of engagement between collaborating visualization users and
the visualization increases, so does the communication and collaboration between the users.

Empirical support

The OET is grounded in the empirical work that inspired it, as reviewed by Hundhausen et al. (2002).
Naps et al. (2003) discuss how these early experiments map onto the levels of the OET. The body of
such work is not large enough to allow overall conclusions about the taxonomy to be drawn.

Since the introduction of the OET and EET, some SV researchers (mostly on the AV side) have used
them to set their research questions and to interpret prior work.

Urquiza-Fuentes and Velázquez-Iturbide (2009) surveyed successful evaluations of software
visualization systems in education, and relate these evaluations to the OET. They observed that various
tool-supported visualization-based activities from the different levels of the OET have been found to be
conducive to learning when compared to not using a visualization at all. A few evaluations also support
the claims that students engaged in active forms of learning on the changing, responding, constructing,
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Table 11.1: The original engagement taxonomy (OET) (based on Naps et al., 2003).

# Level Description
1 No viewing The learner does not view a visualization at all.
2 Viewing The learner views a visualization.
3 Responding The learner responds to questions about the target software.
4 Changing The learner changes a visualization, e.g., by changing the

input given to the target software.
5 Constructing The learner constructs a visualization, e.g., by drawing, by

combining visual elements provided, by directly manipulating
a predefined visualization, or by annotating source code to
produce a visualization as the program is executed.

6 Presenting The learner explains a visualization to others.

Table 11.2: The extended engagement taxonomy (EET) (based on Myller et al., 2009).

# Level Description
1 No viewing The learner does not view a visualization at all.
2 Viewing The learner views a visualization without interacting with it

by other means.
3 Controlled viewing The learner controls how he views a visualization, e.g., by

changing the animation speed or choosing which objects to
examine.

4 Entering input The learner enters input to the target software before or
during execution.

5 Responding The learner responds to questions about the target software.
6 Changing The learner changes a visualization while viewing, e.g., via

direct manipulation of the visualization’s components.
7 Modifying The learner modifies a visualization before viewing, e.g., by

changing the target software or an input set.
8 Constructing The learner constructs a visualization interactively from

components such as text and geometric shapes.
9 Presenting The learner presents a visualization to others.
10 Reviewing The learner views the visualization in order to provide

feedback to others about the visualization or the target
software.
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and presenting levels of the OET outperformed students who merely viewed a visualization. The relative
impact of the higher levels has been little studied within CER, however. For more information on the
evaluations covered by Urquiza-Fuentes and Velázquez-Iturbide’s survey, see their article and references
therein.

Lauer (2006) used the OET to compare the performance of three groups of students using the MA&DA
AV system for viewing, changing, and constructing visualizations, respectively. He found no significant
differences between the groups’ performance, which he suggests may be due to the interfering effects of
other factors in the experimental setup.

Myller, Korhonen, and Laakso have compared the controlled viewing and changing levels in the EET in
the TRAKLA2 AV system. Myller et al. (2007b) found no significant difference between a group that used
the system in a controlled viewing mode and another group which engaged with the tool on the changing

level as well. The authors conclude, however, that “students without previous knowledge seem to gain
more from using visualizations on [a] higher engagement level”. Continuing the study, Laakso et al. (2009)
also found no statistically significant differences between a controlled viewing group and a changing group.
They report that this may be in part due to the fact that the students in the changing group did not use
the tool as intended. Korhonen et al. (2009b) found that when AV users who work in collaboration are
engaged on a higher level of the EET, they also communicate more and discuss the topic of the lesson
on more levels of abstraction than when engaged on a lower level. Myller et al. (2009) got similar results
with the Jeliot 3 PV system.

To summarize, it can be said that empirical work to date does tentatively support various claims
behind the engagement taxonomies, but a solid general validation of the taxonomies does not exist at
present. In Section 11.4, I will return to what is known about learner engagement in the specific context
of the PV tools for visualizing notional machines that are the focus of my review.

11.2.3 I prefer a new two-dimensional taxonomy for describing modes of interaction

In Section 11.3 below, one of the aspects that I describe for each of the tools that I review is its support
for different modes of learner engagement. I might have used the OET or EET for this purpose, but have
decided instead to use my own adaptation of them. I will briefly explain the reasons for this before I
outline the framework that I used.

Comments on the OET and EET

The constructing category in the OET seems crowded. Creating a visualization from scratch or from
primitive components is a cognitively demanding task, which requires a kind of reflection on the properties
of the visualization that is distinct in nature from what is required to manipulate a given visualization or
to add annotations (of given kinds) to source code.5

The EET splits the activities originally placed in the changing and constructing categories variously into
entering input, changing, modifying, and constructing. The reasoning behind the order of the categories
in the EET is not clear, and some specific choices seem questionable. For instance, is directly changing

a visualization necessarily less engaging than modifying the visualization’s input set? Does entering input

during viewing belong three levels lower than providing an input set before viewing (which counts as
modifying)?

The EET’s introduction of additional categories seems reasonable and potentially helpful. However,
the EET (especially) conflates two dimensions that might best be analyzed separately: how the learner
engages with the visualization itself, and the relationship that the learner has with the software being
visualized.

Finally, the responding category in both taxonomies is somewhat troublesome, as there are many
different kinds of questions that may be asked, some of which demand rather more cognitive effort than
others. This concern does apply to other levels as well, but responding is arguably the vaguest. (Cf. the
criticism of Bloom’s taxonomy at the beginning of Section 2.2.)

The following is my analytical attempt to improve on the taxonomies.
5A similar criticism has been made by Lauer (2006).
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The 2DET

The engagement taxonomy of Figure 11.3 – for lack of a better term, let us call it 2DET – has two
dimensions. The first dimension, direct engagement, is concerned with the engagement that the learner
has with the visualization itself. The second dimension, content ownership, is concerned with an indirect
form of engagement that results from the learner’s relationship with the target software, that is, the
content of the visualization. Both dimensions contribute to the learner’s overall engagement with the
visualization, as shown in Figure 11.3.

The levels along both dimensions are largely familiar from the OET and the EET, but I have modified
some of the definitions and names. I have summarized the categories of the 2DET in Table 11.3 and will
describe them in some more detail below.

The direct engagement dimension

The direct engagement dimension consists of seven categories, or levels.
On the first level, no viewing, no visualization is used. Example: reading a textual description about

how an example program works.
When viewing, the learner has no control over how he views the visualization. Examples: watching a

video or non-stop animation of a dynamic process without being able to control pacing, watching someone
else use a visual debugger.

On the controlled viewing level, the learner plays a part in deciding what he or she sees. He may change
the pace of the visualization or choose which part of a visualization to explore. Examples: stepping through
a program in a visual debugger, viewing a sequence of program state diagrams printed on paper, choosing
which variables to show in a visual program trace (either before or during execution), navigating an avatar
through a virtual 3D world.

When responding to a visualization, the learner uses the visualization to answer questions presented
to him either while or after he views it. Examples: What will the value of that variable be after the next
line is executed? What is the time complexity of this program?6

A learner applies a visualization when he makes use of or modifies given visual components to perform
some task related to the target software. The task may be carrying out some procedure or algorithm,
illustrating a specific case, or creating a piece of software. Examples: simulating the stages of an algorithm
using a given visualization of a data structure, using given elements to record a visualization of how the
evaluation of an expression proceeds, using given visual components to produce a piece of code, annotating
a program’s source code so that a visualization of key stages is produced when it is run.

When engaging on the presenting level, the learner makes use of a visualization to present an analysis
or description to others. What is presented can concern either the visualization or the target software. The
presentation task has to be demanding enough to require significant reflection and a detailed consideration
of the visualization on the part of the presenter. Examples: an in-class presentation of a visualization and
the program it represents, a peer review of a visualization created by another student.7

Finally, creating a visualization means designing a novel way to visualize some content. Examples:
drawing a visualization, producing a visualization by combining given graphical primitives previously void
of meaning, writing a program that visualizes software. This creative activity represents the highest form
of engagement along this dimension (cf. the revised Bloom’s taxonomy from Section 2.1).

The content ownership dimension

There are four categories on the content ownership dimension.

6I noted above that the responding category of the OET and the EET is problematic since different questions call for
different kinds of cognitive engagement. The 2DET does not fix this issue.

7This category effectively combines the presenting and reviewing categories of the EET. Intuitively, both appear to be
tasks of analysis and communication that are roughly equally engaging. Oechsle and Morth (2007), whose work inspired the
addition of reviewing into the EET, in fact used reviewing in place of – rather than on top of – the presenting level of the
OET.
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Figure 11.3: The two dimensions of the 2DET engagement taxonomy.

Table 11.3: The categories of the 2DET engagement taxonomy.

The direct engagement dimension
# Level Description
1 No viewing The learner does not view a visualization at all.
2 Viewing The learner views a visualization with little or no control over

how he does it.
3 Controlled viewing The learner controls how he views a visualization, either before or

during the viewing, e.g., by changing animation speed or
choosing which images or visual elements to examine.

4 Responding The learner responds to questions about the target software,
either while or after viewing it.

5 Applying The learner makes use of or modifies given visual components to
perform some task, e.g., direct manipulation of the
visualization’s components.

6 Presenting The learner uses the visualization in order to present to others a
detailed analysis or description of the visualization and/or the
target software.

7 Creating The learner creates a novel way to visualize the target software,
e.g., by drawing or programming, or by combining given
graphical primitives.

The content ownership dimension
# Level Description
1 Given content The learner studies given software whose behavior is predefined.
2 Own cases The learner studies given software but defines its input or other

parameters either before or during execution.
3 Modified content The learner studies given software that they can modify or have

already modified.
4 Own content The learner studies software that they created themselves.
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Given content means that the learner engages with a visualization of software that they have not
produced themselves and whose behavior they do not significantly affect. Examples: a teacher-given
example program, a program chosen from a selection of predefined examples in an SV tool’s library.

Own cases is defined as above, except that the learner can choose inputs or other parameters that
significantly affect what the target software does. Example: choosing a data set for an algorithm, entering
inputs that affect loop termination during a program visualization that illustrates control flow. Merely
typing in some relatively arbitrary input does not count as own cases.

Modified content means that the learner engages with a visualization of given software which they have
already modified themselves or may modify while using the visualization.

Own content means that the learner engages with a visualization of software that they wrote themselves.

A note on the 2DET

I have introduced the 2DET primarily to help me produce a nuanced and yet succinct and systematic
description of the learning activities supported by different program visualization systems. In this chapter,
I have used the taxonomy only as a classification tool for structuring my review of program visualization
systems. I feel that it allows a clearer expression of modes of visualization use than the OET or the EET.
I will further use the 2DET to describe the functionality of our own PV system in Part IV.

The 2DET could be used in the future in research that tests hypotheses about the role of engagement
in software visualization, and could serve as a basis for a wider and more detailed review of software
visualization in programming education. Such initiatives may establish how useful the taxonomy is in
general, but are beyond the scope of my present work. That said, I do expect that both kinds of
engagement highlighted by the two dimensions of the 2DET can help bring about the “purposeful perusal”
of program visualizations that Petre called for (p. 144 above).

In the end, perhaps it matters less which classification system you use than how you engage with the
one you do use.

11.3 Many existing systems teach about program dynamics
This section describes a number of program visualization tools for introductory programming education, as
delimited in Section 11.1 above. A summary of the tools appears in Tables 11.5, which gives an overview
of each system, and 11.6, which goes into more detail on the systems’ visualization and modes of user
interaction. The preceding Table 11.4 provides a legend to the other two tables.

11.3.1 Regular visual debuggers are not quite enough
Tools that reflect code-level aspects of program behavior, showing execution proceeding
statement by statement and visualizing the stack frame and the contents of variables [. . . ] are
sometimes called visual debuggers, since they are directed more toward program development
rather than understanding program behavior. (Pears et al., 2007, p. 209)

Programming experts – and novices, though not as often as many programming teachers would like –
use debugging software such as that shown in Figure 11.4 to find defects in programs and to become
familiar with the behavior of complex software. These tools are not particularly education-oriented or
beginner-friendly, but can still be useful in teaching (see, e.g., Cross et al., 2002) and may be integrated
into otherwise beginner-friendly environments such as the BlueJ IDE (Kölling, 2008).

Typical visual debuggers have significant limitations from the point of view of learning programming
fundamentals. They generally step through code only at the statement level, leaving most of the
educationally interesting dynamics of expression evaluation implicit. The visualization and user interface
controls of a ‘regular visual debugger’ are geared towards programming-in-the-large, not towards
explicating programming concepts and principles such as assignment, function calls, parameter passing,
and references, all of which the user is assumed to understand already. Only information essential for
an expert programmer is shown, with the goal of helping the programmer to find interesting (defective)
stages of execution in as few steps as possible while ignoring as many details as possible. The target
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Table 11.4: A legend for Tables 11.5 and 11.6. In several columns of those tables, square brackets mark
features that are peripheral, untried, or at a prototype stage of implementation.

Legend for Table 11.5 on p. 153
Column Explanation
System name (or author) The name of the system. Closely related systems are grouped together as one item. Systems

without a published name have the authors’ names in parentheses instead.
Page The page within this thesis where the description of the system begins.
At least since The year when the first version was released or the first article on the system was published.

May not be quite accurate, but gives an idea of when the system came into being.
Status My understanding – or best guess – based on web searches and/or personal communication, of

whether the system is still being used in teaching, maintained and/or developed. May be
inaccurate.

Used for The overall purpose of the system: what students can do with it. Examples is listed when the
system is intended for studying given examples only. Debugging refers to any examination of code
that can be edited within the system itself; it subsumes examples. Development subsumes
debugging, and means that the system is intended to be used as a software development
environment. Assignments means that the tool facilitates an assignment type – e.g.,
multiple-choice questions or program simulation – that is not a part of a programmer’s usual
routine of read/test/debug/modify/write/design code. Although this review does not include pure
algorithm visualization systems, I mention AV as a goal of some AV/PV hybrid systems.

Paradigm The programming paradigms that the software can primarily help learn about. Imp is used for
imperative and procedural programming, which may include the occasional or implicit use of
objects such as arrays. OO stands for richer object-oriented programming, and func for functional
programming.

Programming language The programming language(s) in which the programs being visualized (the target software) are
written. For systems which visualize user-written programs, I have used the subscript SS to mean
that only a significantly limited subset of a language is available for use (e.g., functions or
object-orientation are missing). Lesser limitations are common and not marked.

Evaluation The types of empirical evaluations of the system in the context of introductory programming, to
the best of my knowledge. Anecdotal means that only anecdotal evidence has been reported about
student and/or teacher experiences with the system (but this still implies that the system has been
used in actual practice). Experimental refers to quantitative, controlled experiments or
quasi-experiments. Survey refers to producing descriptive statistics and/or quotes from
systematically collected user feedback or other data. Qualitative refers to rigorous qualitative
research (e.g., grounded theory, phenomenography). See the main text and Table 11.7 for more
details on the evaluations.

Legend for Table 11.6 on p. 154
Column Explanation
Direct engagement with
visualization

The levels of direct engagement between learner and visualization which the system explicitly
supports, in terms of the 2DET (Section 11.2.3). The presenting and creating levels of the 2DET do
not feature in the table, as none of the systems explicitly support them – which of course does not
imply that the visualizations shown by the systems cannot be presented to others. The basic
engagement level of merely viewing a visualization is not listed separately unless it is the only one
present (which is not the case in any of the tools reviewed). I consider each system as a generic
PV system: modes of interaction that are particular to a specific subsystem or programming
concept (e.g., an object inspection tool) are not listed.

Content ownership The degree of learners’ ownership of the software whose behavior is visualized by the system.
Again, the levels are taken from the 2DET taxonomy. In this column, I have generally only listed
the highest degree of ownership that the system allows, as systems that support learner-defined
content also support teacher-defined content. However, given content is separately listed along with
own content in cases where the system has a distinct mode of use specifically meant for ready-made
example programs.

Notional machine elements What the visualization covers: a non-exhaustive list of key elements of the notional machine
visualized by the system. Control refers to control flow: the system makes explicit which part of
program code is active at which stage. Vars stands for variables. ExprEv means expression
evaluation. Calls refers to the sequencing of function/procedure/method calls and returns (which
may or may not be expressed in terms of call stacks). Refs stands for references and/or pointers,
Addrs for memory addresses. Objs is short for objects. Classes means that the system visualizes
classes not only as source code or a static class diagram, but as a part of the program runtime.
Structs refers generally to any composite data – arrays, records, lists, trees, and the like – that has
a bespoke representation within the system. All these categories are my own abstractions, which
are realized in different ways in different systems. It has not been possible to try all the systems;
the descriptions given are an interpretation of the descriptions and images in the literature. All the
systems reviewed depict control flow in one way or another; this is not listed separately.

Representation What the visualization primarily consists of, on the surface: the kinds of visual elements used.
Step grain The size of the smallest step with which the user can step through the program. Statement means

that an entire statement, definition or declaration (usually a single line) is executed at once,
although stepping into and out of functions/methods may be a separate step. Expression means
that the user steps through stages of expression evaluation in more detail.
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Table 11.5: A summary of selected program visualization systems. See Table 11.4 for a legend.

System name Page At least
since

Status Used for Paradigm Programming
language

Evaluation

‘regular visual debuggers’ 151 varies varies debugging varies varies varies
Basic Programming 155 1979 inactive development imp BASIC unknown
LOPLE / DynaMOD /
DynaLab

156 1983 inactive examples imp Pascal, [Ada], [C] survey

Amethyst 156 1988 inactive debugging imp Pascal none
Bradman 156 1991 inactive debugging imp C experimental
EROSI 156 1996 inactive examples imp Pascal survey,

qualitative
VisMod 156 1996 inactive development, debugging,

[AV]
imp Modula-2 anecdotal

(Fernández et al.) 159 1998 inactive examples OO Smalltalk none
DISCOVER 159 1992 inactive development imp pseudocode experimental
(Kasmarik and Thurbon) 160 2000 inactive debugging? imp, OO Java experimental
CMeRun 160 2004 inactive debugging imp C++ss anecdotal
(Korsh and Sangwan) 160 1998 inactive debugging imp C++ss none
VINCE 160 1998 inactive debugging imp C experimental,

survey
OGRE 160 2004 inactive? debugging imp, OO C++ experimental,

survey
JAVAVIS 162 2002 inactive debugging imp, OO Java anecdotal
(Seppälä) 162 2003 inactive debugging imp, OO Java none
OOP-Anim 162 2003 inactive debugging imp, OO Java none
JavaMod 162 2004 inactive debugging imp, OO Java none
JIVE 162 2002 active debugging imp, OO Java anecdotal
Memview 162 2004 inactive? debugging imp, OO Java anecdotal
JavaTool 162 2008 active development, assignments imp Javass none
PlanAni 164 2002 active? examples imp Pascal, Java, C,

Python
experimental,
qualitative

Metaphor-based OO
visualizer

164 2007 active? examples OO Java experimental

Eliot / Jeliot I 165 1996 inactive debugging, AV imp, [func] C, Javass,
[Scheme]

survey,
qualitative

Jeliot 2000 / Jeliot 3 165 2003 active debugging, [development],
[assignments]

imp, OO Java, [C],
[Python]

experimental,
survey,
qualitative

GRASP / jGRASP 169 1996 active development, debugging,
AV

imp, OO Java, C, C++,
Objective-C,
Ada, VHDL

experimental
(on AV),
anecdotal

The Teaching Machine 170 2000 active debugging, AV,
[assignments]

imp, OO C++, Java survey

VIP 170 2005 active debugging imp C++ss experimental,
survey,
qualitative

(Miyadera et al.) 170 2006 inactive examples imp Css none
ViLLE 173 2005 active examples, assignments imp Javass, C++ss,

Pythonss, PHPss,
JavaScriptss,
pseudocode

experimental,
survey

Jype 175 2009 inactive? development, assignments,
AV

imp, OO Python anecdotal

Online Python Tutor 175 2010 active debugging, assignments imp, OO Python none
WinHIPE 175 1998 inactive? debugging, development func Hope experimental,

survey
CSmart 175 2011 active assignments imp C survey
(Gilligan) 177 1998 inactive development imp, [OO] Pascal, [Java] none
ViRPlay3D2 177 2008 unknown software design, examples OO N/A (CRC

cards)
none

(Dönmez and İnceoğlu) 179 2008 unknown examples, assignments imp C#ss none
Online Tutoring System 181 2010 inactive assignments imp VBAss experimental,

survey
JV2M 183 2003 unknown assignments bytecode Java / bytecode none
UUhistle 192 2009 active assignments, debugging imp, OO Python, [Java] experimental,

survey,
qualitative
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Table 11.6: A summary of how selected program visualization systems present notional machines and
engage learners. See Table 11.5 for an overview of the systems and Table 11.4 for a legend.

System name Notional machine elements Representation Step grain Direct engagement
with visualization

Content
ownership

‘regular visual
debuggers’

Control, Vars, Calls, Objs,
Refs, Structs (e.g.)

standard widgets statement controlled viewing own content

Basic Programming Control, Vars, ExprEv symbols expression controlled viewing own content
LOPLE / DynaMOD /
DynaLab

Control, Vars, Calls symbols statement controlled viewing own cases, [own
content]

Amethyst Control, Vars, Calls, Structs,
[Refs]

abstract 2D statement? controlled viewing own content

Bradman Control, Vars, ExprEv, Refs symbols, explanations,
[abstract 2D], [smooth
animation]

statement controlled viewing own content

EROSI Control, Vars, Calls abstract 2D, [audio] statement controlled viewing given content
VisMod Control, Vars, Refs, Calls,

Structs
standard widgets,
abstract 2D

statement controlled viewing own content

(Fernández et al.) Refs, Objs, Classes, Calls abstract 2D, visual
metaphors

message
passing

controlled viewing modified content

DISCOVER Control, Vars abstract 2D statement controlled viewing own content
(Kasmarik and
Thurbon)

Control, Vars, Refs, Calls,
Objs, Structs

abstract 2D statement controlled viewing own content?

CMeRun Control, Vars, ExprEv text statement controlled viewing own content
(Korsh and Sangwan) Control, Vars, Refs, Calls,

ExprEv, Structs
abstract 2D expression controlled viewing own content

VINCE Control, Vars, Refs, Calls,
Addrs, Structs

abstract 2D, explanations statement controlled viewing own content

OGRE Control, Vars, Refs, Objs,
Classes, Calls, Structs

abstract 3D, smooth
animation, explanations

statement controlled viewing own content

JAVAVIS Vars, Refs, Objs, Calls,
Structs

abstract 2D, UML statement controlled viewing own content

(Seppälä) Control, Vars, Refs, Objs,
Calls

abstract 2D statement controlled viewing own content

OOP-Anim Control, Vars, Refs, Objs,
Classes

abstract 2D, smooth
animation, explanations

statement controlled viewing own content

JavaMod Control, Vars, ExprEv, Refs,
Objs, Calls, Structs

standard widgets, UML expression controlled viewing own content

JIVE Control, Vars, Refs, Objs,
Classes, Calls, Structs

standard widgets,
abstract 2D

statement controlled viewing own content

Memview Control, Vars, Refs, Objs,
Classes, Calls, Structs

standard widgets statement controlled viewing own content

JavaTool Control, Vars, Structs abstract 2D statement controlled viewing own content
PlanAni Control, Vars, ExprEv,

Structs
visual metaphors, smooth
animation, explanations

expression controlled viewing own cases

Metaphor-based OO
visualizer

Control, Vars, ExprEv, Refs,
Objs, Classes, Calls, Structs

visual metaphors, smooth
animation, explanations

expression controlled viewing own cases

Eliot / Jeliot I Control, Vars, [ExprEv],
Structs

abstract 2D, smooth
animation

event-
based

controlled viewing own content

Jeliot 2000 / Jeliot 3 Control, Vars, ExprEv, Calls,
Refs, Objs, Classes, Structs

abstract 2D, smooth
animation

expression controlled viewing,
[responding]

own content

GRASP / jGRASP Control, Vars, Calls, Refs,
Objs, Structs

standard widgets,
abstract 2D, smooth
animation

statement controlled viewing own content

The Teaching Machine Control, Vars, ExprEv, Calls,
Addrs, Refs, Objs, Structs

standard widgets,
abstract 2D

expression controlled viewing own content

VIP Control, Vars, ExprEv, Calls,
Refs, Structs

standard widgets,
explanations, [abstract
2D]

statement controlled viewing own content

(Miyadera et al.) Control, Vars, ExprEv, Calls abstract 2D statement? controlled viewing given content
ViLLE Control, Vars, Calls, Structs standard widgets,

explanations
statement controlled viewing,

responding,
[applying]

given content,
[modified
content]

Jype Control, Vars, Objs, Refs,
Calls, Structs

standard widgets,
abstract 2D

statement controlled viewing own content

Online Python Tutor Control, Vars, Objs, Classes,
Refs, Calls, Structs

abstract 2D statement controlled viewing own content

WinHIPE Control, Vars, ExprEv, Refs,
Calls, Structs

abstract 2D expression controlled viewing,
applying

own content /
given content

CSmart Control, Vars, ExprEv explanations, visual
metaphors, audio

statement controlled viewing given content
(model solution)

(Gilligan) Control, Vars, ExprEv, Calls,
Structs, [Objs], [Classes],
[Refs]

visual metaphors,
standard widgets

expression applying own content

ViRPlay3D2 Vars, Objs, Classes, Refs,
Calls

virtual 3D world message
passing

applying (when
designing) /
controlled viewing
(scripted mode)

own content
(when designing)
/ given content
(scripted mode)

(Dönmez and İnceoğlu) Control, Vars, ExprEv standard widgets expression applying own code
Online Tutoring System Control, Vars, ExprEv standard widgets,

explanations
expression applying given content

JV2M the Java Virtual Machine virtual 3D world bytecode
instruction

applying given content

UUhistle Control, Vars, ExprEv, Calls,
Refs, Objs, Classes, Structs

abstract 2D, smooth
animation, explanations

expression applying, responding,
controlled viewing

given content /
own content
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Figure 11.4: The PyDev debugger for Python programs within the Eclipse IDE (image from Helminen,
2009). A Python program is being executed, with line 4 up next. Threads and call stacks
are listed in the top left-hand corner. Global and local variables are shown on the right.
The yellow highlight signifies a change in the value of a variable.

programs may be large in terms of both code and data. For such reasons, the visualization shown by
a typical visual debugger is not particularly graphic, and consists primarily of text within standard GUI
widgets.

Bennedsen and Schulte (2010) conducted an experimental study in which a group of CS1 students
used the visual debugger built into the BlueJ IDE to step through object-oriented programs, while a
control group used manual tracing strategies. They found no significant differences in the performance of
the groups on a post-test of multiple-choice questions on program state. A rerun of the experiment using
a different debugger yielded similar results. Bennedsen and Schulte surmise that “it could be that the
debugger is not useful for understanding the object interaction but just for finding errors in the program
execution” (p. 18).

Despite their limitations, visual debuggers are worth a mention in this section because they are highly
useful tools that novices do encounter in CS1 courses, because they do visualize certain aspects of program
dynamics, and because they serve as a point of departure for reviewing the more education-oriented systems
below.

11.3.2 Many educational systems seek to improve on regular debuggers
Most of the systems reviewed in this chapter are program animation tools that can be thought of as
educators’ attempts to improve on regular visual debuggers. Some of these systems look very similar to
regular visual debuggers, others feature more unusual visualizations.

An early system on the Atari: Basic Programming

An early educational PV system that supported visual tracking of program execution was Basic
Programming, “an instructional tool designed to teach you the fundamental steps of computer
programming” (Robinett, 1979). Shown in Figure 11.5, Basic Programming was an integrated environment
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Figure 11.5: A part of the Basic Programming environment on the Atari 2600 (image from Kelleher and
Pausch, 2005). A snapshot of a tiny program in mid-execution is shown. The Program
panel contains BASIC code. The Variables panel shows the current values of variables. The
Stack panel shows the stages of expression evaluation: here 1 is just about to be added to
2, which is the current value of �.

for the Atari 2600 computer, in which the user could input BASIC code and view its execution. The Stack
panel of the display showed the stages of expression evaluation in more detail than a regular visual debugger
does, as illustrated in Figure 11.5. The system also featured a 2D graphics area for displaying sprites.

Libraries of animated examples: LOPLE, DYNAMOD, and DynaLab

Although many software visualization systems were developed in the 1980s, few (that I am aware of) fall
within the scope of this review, as education-oriented systems tended to deal with algorithm visualization
(e.g., BALSA; see Brown, 1988) and program visualization systems were intended for expert use (e.g.,
VIPS; see Isoda et al., 1987). An exception to this trend was LOPLE, a dynamic Library Of Programming
Language Examples (Ross, 1983). LOPLE was designed to allow novices to step through the execution
of given example programs. The manner of execution in LOPLE was similar to that of a modern visual
debugger.

LOPLE evolved first into DYNAMOD (Ross, 1991) and then into DynaLab (Birch et al., 1995; Boroni
et al., 1996). DynaLab allowed execution to be stepped backwards, a feature that novices prized, according
to student feedback. The earliest work was done with Pascal; the platform later supported various other
programming languages as well. A screenshot of DynaLab is shown in Figure 11.6.

The authors provide anecdotal evidence of the usefulness of the tool in their teaching (Ross, 1991;
Boroni et al., 1996). Their students liked it, too (Ross, 1991).

Towards more graphical systems: Amethyst, Bradman, EROSI, and VisMod

Myers et al. (1988) presented an early PV system prototype called Amethyst. Amethyst visualized data
as two-dimensional graphics during a program run (Figure 11.7). The system differed from the earlier
algorithm visualization systems from which it was derived in that it created visualizations automatically
for any program. The user would nevertheless manually mark through the GUI which data items should
be visualized.

Smith and Webb (1991, 1995a) created Bradman, a visual debugger intended for novice C
programmers. The explicit goal of the system was to improve students’ mental models of program
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Figure 11.6: DynaLab executing a Towers of Hanoi example program (Pratt, 1995).

execution by helping them visualize the dynamic behavior of programs. As with any debugger, a user
of Bradman could put in their own code and examine its behavior statement by statement. Compared
to regular debuggers, a novelty in Bradman was the detailed English explanations of each statement as
it was executed. Smith and Webb (1995b) report that students liked these explanations and reacted
particularly positively to a version of Bradman that included them in comparison to one that did not.
The other major novelty in Bradman was its illustration of changes in program state. Bradman showed
previous and current states of a program side by side for convenient comparison. This is pictured in
Figure 11.8, which also illustrates how Bradman visualized references using graphical arrows. The explicit
treatment of state changes was particularly useful since Bradman did not support stepping backwards as,
for instance, DynaLab did. Smith and Webb (2000) report on an experimental evaluation of Bradman in
which they found that CS1 students who used Bradman for examining teacher-given programs performed
significantly better in a multiple-choice post-test on parameter passing than did students without access
to Bradman. Other, similar tests performed during the intervention did not yield statistically significant
differences between groups.

George (2000a,b,c, 2002) evaluated a system called EROSI, which was built primarily for illustrating
procedure calls and recursion. EROSI featured a selection of program examples, whose execution it
displayed. Subprogram calls were shown in separate windows with arrows illustrating the flow of control
between them. George demonstrated through analyses of student assignments and interviews that the
tool was capable of fostering a viable ‘copies’ model of recursion which students could then apply to
program construction tasks. The students liked it.

VisMod (Jiménez-Peris et al., 1999) was a beginner-friendly programming environment for the Modula-
2 language. The system had various features designed with the novice programmer in mind, including a
pedagogically oriented visual debugger (Figure 11.9). The system had a cascading-windows representation
for the call stack, as well as line graphics of certain data structures (lists and trees). The authors report
that students liked it.
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Figure 11.7: A Pascal program in Amethyst (Myers et al., 1988). Amethyst used different shapes to
emphasize the different types of values; for instance, the rounded rectangles in this figure
denote integer values.

Figure 11.8: One of Bradman’s GUI windows after the C statement has just been executed
(Smith and Webb, 1995a). The previous state is shown side by side with the current state.
(The rest of the program does not appear in the Variables window.)

Figure 11.9: A Modula-2 program in VisMod (Jiménez-Peris et al., 1999).
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Figure 11.10: The user has just completed writing a program in DISCOVER (image from Ramadhan
et al., 2001). He has used the editor to input pseudocode into the Algorithm Space. In
the immediate execution mode, the effects of each new statement on execution instantly
shown through updates to the other panels.

A high-level objects view: Fernández et al.’s tool

Fernández et al. (1998) presented a system for illustrating the inner behavior of Smalltalk programs. Their
innominate system was built on top of a more generic learning platform called LearningWorks, which used a
visual book metaphor to present information. Their tool visualized the dynamic object relationships within
teacher-defined example systems of classes by drawing object diagrams in which interobject references
and messages passed were shown as arrows of different kinds.

Immediate visualization: DISCOVER

DISCOVER (see Ramadhan et al., 2001, and references therein) was a prototype of an intelligent tutoring
system which featured an explicit conceptual model of a notional machine in the form of a visualization
(Figure 11.10). I discuss here only the DISCOVER’s software visualization features.

One way of using DISCOVER was similar to that found in many of the other tools reviewed: the user
could step through an existing program’s execution and observe changes in variables, etc., with the help
of a graphical machine model. A more unusual feature of the system was the (optional) immediacy of the
visual execution of partial solutions during editing: the user could type in an additional statement into
their programs upon which DISCOVER would instantly show onscreen the effects of the new statement
on the entire program when executed.

Some of the evaluations of DISCOVER examined the impact of the visualization. In an experiment,
students who used a visualization-enabled version of the system made fewer errors and completed tasks
quicker than other students who used a version that did not visualize execution or support line-by-line
stepping through execution, although the result was not statistically significant (Ramadhan et al., 2001;
see also Ramadhan, 2000).
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Producing snapshots: Kasmarik and Thurbon’s tool and CMeRun

Kasmarik and Thurbon (2003) used an unnamed system that could produce visualizations of specific
program examples. Their tool took Java code as input and produced a sequence of graphical diagrams
to illustrate the given program’s states, in particular the values that variables get at different stages of
execution. The authors evaluated their visualizations (which had been created by the teacher using the
tool) experimentally in a CS1 course. They had students answer questions about small example programs,
which were additionally accompanied by visualizations in the case of the treatment group. The treatment
group’s results were significantly better than the control group’s, without a significant increase in the time
they spent on the task.

Etheredge (2004) described a tool called CMeRun, designed to aid novice programmers debug their
programs. CMeRun instrumented C++ code in such a way that when the code was run, an execution
trace was printed out. The user could examine the trace to see which statements were executed and what
the values of variables were at each stage. For instance, an execution of the line

��� �� � �� � 	� 
��� ����

might appear in the trace of a CMeRun-augmented program as

��� �� � �� �	�� 	� 
��	��� �	�����

Etheredge reports a positive response from teacher and student evaluators.

Memory models in C/C++: Korsh and Sangwan’s tool, VINCE, and OGRE

A prototype system for visualizing the behavior of C++ programs for CS1 and CS2 students was presented
by Korsh and Sangwan (1998). Their tool used abstract graphics (mostly boxes inside boxes; see
Figure 11.11) to visualize the values of variables, the call stack, and the stages of expression evaluation.
The system required the user to annotate the source code to indicate which parts he wished to visualize,
which may have made it quite challenging for novices to use effectively. The user could also adjust the
level of detail by selecting which operations were animated and which were not.

VINCE was a tool for exploring the statement-by-statement execution of C programs – self-written
by students or chosen from a selection of given examples (Rowe and Thorburn, 2000). VINCE visualized
computer memory on a relatively low level of abstraction, as a grid which illustrated where pointers
point and references refer (Figure 11.12). Rowe and Thorburn (2000) compared the confidence and C
knowledge of CS1 students who used VINCE for extra tutorials over a three-week period to those of a
control group who did not do the extra tutorials. Their results suggest that VINCE had no significant
impact on students’ self-assessment of their programming ability, but the VINCE users did in fact learn
more than the control group (as might be expected since they had extra learning activities). The students
liked it.

A related later system, OGRE, visualized C++ programs using 3D graphics (Milne and Rowe, 2004).
Each scope within a running program (e.g., a method activation) was represented by a flat plane on
which small 3D figures appear to represent objects and variables. References and pointers were shown
as arrows, and data flow as an animation in which a cylinder moved through a pipe between source and
target (Figure 11.13). The user could step forward and backward in the execution, and use 3D-game-like
controls for moving about, rotating the view, and zooming in and out. Milne and Rowe (2004) conducted
an experimental study to determine the effectiveness of the OGRE approach. Their target group was
not a CS1 course but second-year students who had just completed a course on object-oriented C++
programming. Milne and Rowe report that students who were given additional OGRE-based tutorials
on certain difficult topics to complement other learning materials could answer questions on those same
topics significantly better than other students who had not had that access. An additional interview study
showed that their students liked OGRE, as did the instructors who had used it.
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Figure 11.11: Korsh and Sangwan’s (1998) program visualization tool. The user has used uppercase
type declarations to mark which parts of the program should be visualized on the right.
Expression evaluation is shown step by step in the Operations panel.

Figure 11.12: VINCE executing a C program (Rowe and Thorburn, 2000). Each square in the grid
corresponds to a single byte of memory. Note that the mouse cursor is over a four-byte
integer, which is currently stored in the variable ������ as indicated by the text at the
bottom.
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Figure 11.13: Two snapshots of the animation that OGRE used to show a value being assigned from a
variable to another (Milne and Rowe, 2004).

Java animators: JAVAVIS, Seppälä’s tool, OOP-Anim, JavaMod, JIVE, Memview, and JavaTool

Three distinct system prototypes from around the same time built on UML to illustrate the execution of
Java programs. JAVAVIS (Oechsle and Schmitt, 2002) was an educationally motivated debugger, which
used UML object diagrams and sequence diagrams to expose program behavior in a learner-friendly way.
Unlike many of the other systems reviewed, JAVAVIS featured limited support for multithreading. Seppälä
(2004) presented a similar visual debugger for CS1 use. His prototype system visualized the execution
of object-oriented Java programs as dynamic object state diagrams, a notation that “attempts to show
most of the runtime state of the program in a single diagram”. In particular, the system visualized both
method invocations and references between objects in the same graph. Seppälä’s visualization essentially
combined elements of the object diagrams and collaboration diagrams of UML. OOP-Anim (Esteves and
Mendes, 2003, 2004) was a program visualization tool for object-oriented programs, which produced a
step-by-step visualization of its execution, showing classes in UML, and objects as lists of instance variables
and methods. Variables were visualized as small boxes which could store references to objects (shown as
connecting lines between variable and object).

Gallego-Carrillo et al. (2004) presented JavaMod, a visual debugger for Java programs with applications
in education. The primary difference between JavaMod and a regular visual debugger lies in how JavaMod
treated each structural element of the code separately rather than stepping through the program line by
line. For instance, the initialization, termination check, and incrementation of a loop were each
highlighted as separate steps in execution (cf., e.g., the Basic Programming system, above, and Jeliot
and the Teaching Machine, below).

JIVE is a sophisticated debugging environment for Java programs (see, e.g., Gestwicki and Jayaraman,
2005; Lessa et al., n.d.), currently implemented as a plugin for the Eclipse IDE. JIVE is not meant
exclusively for pedagogical use and its expandable visualizations (Figure 11.14) can be used also for
examining larger object-oriented programs, including multithreaded ones. JIVE supports reverse stepping
and has various other features beyond the scope of my review. The authors have used the system in a
variety of courses, introductory-level programming among them.

The creation of the Memview debugger (Gries et al., 2005) was motivated by the desire to support
the use of Gries and Gries’s (2002; and see Section 10.3 above) teachable memory model by introducing
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Figure 11.14: JIVE displays various aspects of a Java program’s execution (Gestwicki and Jayaraman,
2005). Object relationships are illustrated on the left, with a sequence diagram of history
information below it.

Figure 11.15: A Java program running in Memview (Gries et al., 2005). The classes � and � appear
within Static Space, objects within the Heap, and frames on the Stack.
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a system that automates the creation of memory diagrams. Memview, which is an add-on for the DrJava
IDE (Allen et al., 2002) works much like a regular visual debugger, but has a more sophisticated and
beginner-friendly way of displaying the contents of memory that works well for small CS1 programs
(Figure 11.15). Gries et al. (2005) report anecdotal evidence of the tool’s success in teaching.

One more tool for visualizing Java programs to novices is JavaTool (Pereira Mota et al., 2009; Rossy
de Brito et al., 2011). The system is similar to a regular visual debugger, but features beginner-friendly
controls for stepping through an animation of the program. Only a small subset of Java is supported
(no objects; only a handful of standard functions can be called). JavaTool’s most distinguishing feature
is that it is designed as a plugin for the popular Moodle courseware. It is intended to be used for small
programming assignments in which the student writes and debugs code in their web browser and submits it
for grading, receiving instant feedback from the system and optionally peer feedback from other students.

Roles and metaphors: PlanAni and the metaphor-based OO visualizer

Roles of variables (briefly discussed above on p. 42) are stereotypical variable usage patterns. For instance,
a variable with the role ‘stepper’ is assigned values according to some predefined sequence, e.g., 0, 1, 2,
etc., while a ‘fixed value’ is a variable whose value is never changed once it is initially assigned to.

Sajaniemi and his colleagues built a system called PlanAni for the visualization of short, imperative
CS1 program examples in terms of the variables involved and in particular their roles (Sajaniemi and
Kuittinen, 2003). Each variable is displayed using a role-specific visual metaphor (see Figure 11.16).
For instance, “a fixed value is depicted by a stone giving the impression of a value that is not easy to
change, and [. . . ] A stepper is depicted by footprints and shows the current value and some of the values
the variable has had or may have in the future, together with an arrow giving the current direction of
stepping” (Sajaniemi and Kuittinen, 2003, p. 11). PlanAni visualizes operations on these variables (e.g.,
assignment) as animations which, again, are role-specific.

PlanAni cannot visualize arbitrary programs, only examples that a teacher has configured in advance
(in Pascal, C, Python, or Java). The teacher can include explanations to be shown at specific points
during the execution sequence. Through roles, the system aims to develop students’ plan schemas (see
Section 4.4.1).

Sajaniemi and Kuittinen (2003) report that PlanAni had a positive impact on in-class discussions
compared to a control group that used a regular visual debugger. The students liked it, and worked for
longer with PlanAni whereas the debugger group tended to surf the web more during labs. Sajaniemi and
Kuittinen (2005) argue, on the basis of an experiment, that using PlanAni helped foster the adoption
of role knowledge and PlanAni users understood programs more deeply than non-users did, although
the deeper understanding of the PlanAni users was not significantly reflected in the correctness of their
answers. Expanding upon these results, Byckling and Sajaniemi (2005) report that students using PlanAni
outperformed other students in code-writing tasks and exhibited significantly more forward-developing
behavior while coding, which is suggestive of increased schema use (see Section 4.4.2).

Nevalainen and Sajaniemi (2005) used eye-tracking technology to compare the targeting of visual
attention of PlanAni users on the one hand and visual debugger users on the other. As might be expected,
PlanAni users focused a great deal more on variables. Nevalainen and Sajaniemi also studied program
summaries written by the two groups immediately after using the tool, and conclude that PlanAni increased
the use of higher-level information at the expense of low-level code-related information. Nevalainen and
Sajaniemi further report that students found PlanAni to be clearer but relatively unpleasant to use (because
too slow) compared to a visual debugger. Nevalainen and Sajaniemi (2006) similarly compared how novice
programmers used a regular PlanAni and a variant with no animations. They found that irrespective of the
version of the tool, the users mainly relied on textual cues (popup windows and program code). Nevalainen
and Sajaniemi conclude that the location and size of visualizations is more important than animation, and
that using the role images is more significant than animating them. In yet another experiment, however,
Nevalainen and Sajaniemi (2008) did not find the presence of role images to be crucial to the formation of
role knowledge compared to a version of PlanAni in which only textual explanations of roles were present.
Stützle and Sajaniemi (2005) found that the role metaphors used in PlanAni worked better than a neutral
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Figure 11.16: PlanAni executing a Pascal program. Variables are visualized in role-specific ways. A ‘fixed
value’ is represented by carving a value in stone. A ‘most-recent holder’ is represented by
a box with previous values crossed out. A ‘stepper’ is represented by footprints leading
along a sequence of values. The lamp representing a ‘one-way flag’ is being switched on,
as explained by the popup dialog.

set of control metaphors.
A ‘sequel’ to PlanAni is the metaphor-based animator for object-oriented programs envisioned by

Sajaniemi et al. (2007), who recommend that their system be used by students who have first grasped
some fundamental programming concepts using PlanAni and are now learning about object-oriented
concepts. Their OO animator (Figure 11.17) also uses visual metaphors for variable roles but further
adds support for classes (‘blueprints’), objects (‘filled-in pages’), references (‘flags’), method calls and
activations (‘envelopes’ and ‘workshops’), and garbage collection (by a ‘garbage truck’). The system is
otherwise fairly similar to PlanAni. It does not work with arbitrary programs but only with predefined
examples – the existing incarnation of the system is a web page on which a number of examples can be
accessed as Flash animations.

Long-term tool development: from Eliot to Jeliot 3

One of the longest-lasting and most-studied program visualization tools for CS1 is Jeliot. Its longevity,
as with almost any successful piece of software, is based on shedding its skin a few times, sometimes
accompanied by a change of viscera. The stages of the Jeliot project have recently been reviewed by
Ben-Ari et al. (2011).

Jeliot started out as Eliot (Sutinen et al., 1997), a software visualization tool that graphically animated
data (variables) in user-defined C programs. In Eliot, the user selected which variables were animated,
and also had a partial say in what the visualization of a program run looked like through the choice of
colors and locations for the boxes that represented variables. Eliot’s goals were primarily on the algorithm
visualization side, and it reportedly worked best when used by programmers who had at least a bit of
experience rather than by complete beginners.

Jeliot I, a Java implementation of Eliot (Haajanen et al., 1997), was a proof-of-concept system for
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Figure 11.18: A snapshot of a Java program being executed in Jeliot 2000 (Ben-Bassat Levy et al.,
2003). The code is shown on the left. On its right is shown the topmost frame of the call
stack, with local variables. A conditional has just been evaluated in the top right-hand
corner.

bringing program animations to the World Wide Web. Lattu et al. (2000) evaluated Jeliot I in two
introductory programming courses. Some of their interviewees found Jeliot I to be helpful and suitable
for beginners. Although a statistical comparison was not possible, Lattu et al. observed that students in
a course whose teaching was reworked to include Jeliot I as much as possible in lectures and assignments
gained much more from the experience than did students in a course that introduced the system only
briefly and gave it to students as a voluntary learning aid. Lattu et al. conclude that using Jeliot I forces
teachers to rethink how they teach programming. Despite the positive experiences, Lattu et al. (2000,
2003) also found problems with bringing Jeliot I to a CS1 context: the GUI was too complex for some
novices to use, and many aspects of program execution, which novices would have found helpful to see,
were left unvisualized (e.g., objects and classes).

Jeliot 2000 (Ben-Bassat Levy et al., 2003) was a reinvention of Jeliot as a more beginner-friendly
tool, with complete automation and a more straightforward GUI (Figure 11.18). In Jeliot 2000, the user
did not control the appearance of the visualization or what aspects of execution were animated. Instead,
Jeliot 2000 automatically visualized Java program execution in a detailed and consistent manner, all the
way down to the level of expression evaluation. Control decisions were shown as explanatory text (see
Figure 11.18). The user stepped through the animation using control buttons reminiscent of a household
remote control. Jeliot 2000 did not support object-oriented concepts in general, although references to
array objects were graphically displayed as arrows.

Ben-Bassat Levy et al. (2003) studied introductory programming students using Jeliot 2000 in a year-
long course. They found that students using the system significantly improved the results of the students
who used it, with an apparent ‘middle effect’:

Even in long term use, animation does not improve the performance of all students: the
better students do not really need it, and the weakest students are overwhelmed by the tool.
But for many, many students, the concrete model offered by the animation can make the
difference between success and failure. Animation does not seem to harm the grades neither
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of the stronger students who enjoy playing with it but do not use it, nor of weaker students
for whom the animation is a burden. [. . . ] The consistent improvement in the average scores
of the mediocre students confirms the folk-wisdom that they are the most to benefit from
visualization. (p. 10)

As the improvement in grades occurred only some way into the course, Ben-Bassat Levy et al. conclude
that “animation must be a long-term part of a course, so that students can learn the tool itself”. Ben-
Bassat Levy et al. further found that the students who used Jeliot 2000 developed a different and better
vocabulary for explaining programming concepts such as assignment than did a control group that did
not use Jeliot. This, the authors remind us, is particularly significant from the socio-linguistic point of
view, according to which verbalization is key to understanding.

Jeliot 2000 was improved upon by adding support for objects and classes to produce Jeliot 3 (Moreno
and Myller, 2003; Moreno et al., 2004). Jeliot 3, shown in Figure 11.19, can be used as a standalone
application or as a plugin for the pedagogical IDE BlueJ (Myller et al., 2007a). Kirby et al. (2010) created
a variation of Jeliot for visualizing C programs by combining the user interface of Jeliot 3 with a C++
interpreter taken from the VIP tool (see below). Pears and Rogalli (2011) extended Jeliot to generate
prediction questions that students can answer with their mobile phones in classroom situations.

A number of studies have investigated Jeliot 3 in practice.
Kannusmäki et al. (2004) studied the use of Jeliot 3 in a distance education CS1 course, in which

using the tool was voluntary. They report that their weakest students in particular found Jeliot helpful for
learning about control flow and OOP concepts, but some other students chose not to use the tool at all.

Moreno and Joy (2007) and Sivula (2005) conducted small-scale studies of students using Jeliot 3 in
first-year programming courses. All of Moreno and Joy’s students – who were volunteers – found Jeliot 3
easy to use, and most of those who tried it continued to use it voluntarily for debugging. Despite this,
Moreno and Joy found that their students did not always understand Jeliot’s animations and failed to
apply what they did understand. Sivula also reports positive effects of Jeliot on motivation and program
understanding, but points to how the students he observed did not use Jeliot’s controls effectively for
studying programs and ignored much of what might have been useful in the visualization.

Ebel and Ben-Ari (2006) used Jeliot 3 in a high-school course, and report that the tool brought about
a dramatic decrease in unwanted pupil behavior. Ebel and Ben-Ari’s results came from studying a class
whose pupils suffered from “a variety of emotional difficulties and learning disabilities”, but had normal
cognitive capabilities. Although it is unclear how well this result can be generalized to other contexts, the
study does indicate that program visualization can help students focus on what is to be learned.

Bednarik et al. (2006) used eye-tracking technology to compare the behavior of novices and experts
who used Jeliot 3 to read and comprehend short Java programs. They found that experts tested their
hypotheses against Jeliot’s animation, using Jeliot as an additional source of information. Novices, on the
other hand, relied on the visualization, interacting with the GUI and replaying the animation more. They
did not read the code before animating it.

Sajaniemi et al. (2008) studied the development of student-drawn visualizations of program state
during a CS1. Parts of their findings concern the effect of visualization tools on these drawings. Some of
the students used Jeliot 3 for part of the course, then switched to the metaphorical OO animations (see
above), while the others did the reverse. Irrespective of the group, the great majority of students did not
use visual elements that were clearly taken from the PV tools. When they did, students’ visualizations
appeared to be mostly influenced by whichever tool they had used most recently. Sajaniemi et al. discuss
the differences in some detail, pointing out, for instance, that Jeliot users tended to stress expression
evaluation more, but made more errors when depicting objects and their methods.

Myller et al. (2009) investigated the use of Jeliot 3 in a collaborative learning setting. CS1 students
worked in small groups in a number of laboratory sessions, during which their behavior was observed by
the researchers. They found that students were especially interactive when they were required to engage
with Jeliot 3 by entering input to the program. Viewing the visualization made students particularly
uninteractive, even when compared to moments where they were not viewing a visualization of program
execution at all. Myller et al. conclude that having students merely view a visualization is not a good
idea as it reduces collaboration.
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Figure 11.19: Jeliot 3 executing a Java program. The visualization extends that of Jeliot 2000
(Figure 11.18). The main novelty of Jeliot 3 is its support for object-orientation. This
picture, from Ben-Ari et al. (2011), also shows how active method calls are stacked on
top of each other in the Method Area.

Ma et al. (2009, 2011) observed that Jeliot 3 helped many of their students to learn about conditionals,
loops, scope, and parameter passing, but that they found its visualization of references to be too complex.
The authors contend that a simpler visualization system tailored for the specific topic of object assignment
seemed to be more suitable for the task.

Maravić Čisar et al. (2010, 2011) used experimental studies in two consecutive years to evaluate the
impact of Jeliot 3 on a programming course. During the course, some students used Jeliot for programming
and debugging in the place of a regular IDE (which includes a visual debugger). In code comprehension
post-tests, the students who used Jeliot performed significantly better than the control groups. Student
feedback was also positive.

A versatile IDE: GRASP / jGRASP

GRASP (Cross et al., 1996), later jGRASP (Cross et al., n.d.; Cross et al., 2011), is another long-lived
software visualization system. The system is an IDE which features a wide array of enhancements for
the benefit of the novice programmer, such as the static highlighting of control structures in code, and
conceptual visualization of data structures. Of most interest for present purposes is the aspect that falls
within the domain of program animation: jGRASP’s visual debugger features ‘object viewers’, which can
visualize not only certain high-level data structures but also runtime entities of CS1 interest, such as
arrays, objects in general, and instance variables (Cross et al., 2011).

The original GRASP was meant for Ada programming; jGRASP has full support for several languages,
including Java and C++. Experimental evaluations of jGRASP have so far revolved around its AV support
in courses on data structures.
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Figure 11.20: An object viewer window within the jGRASP debugger. Control has just returned from
the third constructor call on line 14, and a reference is about to be assigned to variable �.

More debuggers: The Teaching Machine, VIP, and Miyadera et al.’s system

Like the later incarnations of Jeliot, The Teaching Machine (Bruce-Lockhart and Norvell, 2000) is a system
for visualizing the execution of user code at a detailed level. The Teaching Machine visualizes C++ and
Java programs in a way that is similar to, but richer than, a regular visual debugger (Figure 11.21). In
particular, the novice can choose to view the stages of expression evaluation in detail to aid comprehension.
Stepping back within the execution is also supported. Moreover, as shown in Figure 11.22, The Teaching
Machine is capable of automatically creating dynamic diagrams of the relationships between data. Bruce-
Lockhart et al. (2009) added support for teacher-defined popup questions; their interest in such questions
appears to have been primarily motivated by a wish to quiz students about algorithms on a higher level
of abstraction. The Teaching Machine can be used as a plugin within the Eclipse IDE.

Bruce-Lockhart et al. (2007) and Bruce-Lockhart and Norvell (2007) used The Teaching Machine in
various programming courses. They give anecdotal evidence of how the system helped them teach in class.
Their students liked it, especially when the system was tightly integrated with course notes. However,
while the students of more advanced courses used The Teaching Machine on their own to study programs
with apparent success, CS1 students tended to leave the tool alone and only viewed it while the instructor
was using it. Bruce-Lockhart and Norvell (2007) report on a modified CS1 course that did not work very
well, in which “we found at the end of the course that most of the first year students had never run [The
Teaching Machine] on their own and consequently didn’t really understand how either the [system], or
the model it was based on, worked.” However, after a suitable emergency intervention – extra labs in
which students had to work hands-on with the system – at the end of the course, “student response was
overwhelmingly positive and the course was at least rescued”.

VIP is another system for visualizing C++ programs that is akin to a visual debugger but intended for
a CS1 audience (Virtanen et al., 2005). It is fairly similar to The Teaching Machine, discussed above, and
also displays relationships between variables (references are shown as arrows) and highlights the details of
expression evaluation. VIP does not support object-orientation nor does it allow the user to step backwards
within a program. VIP has a facility for displaying teacher-given hints and instructions to the student at
predefined points in ready-made example programs (Lahtinen and Ahoniemi, 2007). An example is shown
in Figure 11.23.

Isohanni (née Lahtinen) and her colleagues have reported on the use of VIP in a number of recent
papers.

Lahtinen et al. (2007a) describe a CS1 course in which students were given the opportunity to use
VIP when doing voluntary “pre-exercises” in preparation for lab sessions. Of the students who did the
pre-exercises, over a quarter chose to use VIP, but traditional pen-and-paper strategies were more popular
still. Lahtinen et al. also observed that the volunteers who used VIP were less likely to drop out of the

170



Figure 11.21: The Teaching Machine executing a C++ program (Bruce-Lockhart and Norvell, 2007).
The view resembles that of a regular visual debugger, the main difference being the
Expression Engine at the top, which displays expression evaluation in detail. The part
of the expression that will be evaluated next is underlined.

Figure 11.22: Another layout of windows within The Teaching Machine (Bruce-Lockhart and Norvell,
2007). The a stack frame and the heap are explicitly shown, along with a linked view that
graphically displays relationships between data.
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Figure 11.23: A C++ program within VIP. The �� method of a string is just about to be called. The
evaluation pane in the top right-hand corner displays previous steps; in this case, the
most recent steps involve the evaluation of ��’s parameter expression. This is a teacher-
given example program, into which the teacher has embedded natural language information
about individual lines of code. One such explanatory message is shown in the top left-hand
corner.

course; this does not imply that VIP was responsible for this trend, however.
Lahtinen et al. (2007b) surveyed programming students in a number of European universities on their

opinions of program visualization. This study was not specific to VIP, but roughly half of the students
surveyed had taken a course in which VIP was used. The survey results suggest that the students who
found programming challenging but manageable were the most positive about using visualizations, while
the strongest and weakest students were less impressed. These findings are in line with the study of
Ben-Bassat Levy et al. (2003) on Jeliot 2000, discussed above, in which a ‘middle effect’ was observed.

Ahoniemi and Lahtinen (2007) conducted an experiment in which randomly selected students used
VIP during CS1, while a control group did not. They tested the students on small code-writing tasks. No
significant differences were found when the entire treatment group and control group were considered.
However, Ahoniemi and Lahtinen also identified among their students “novices and strugglers” who either
had no prior programming experience or for whom the course was difficult. Of the novices and strugglers,
the ones who used VIP did significantly better than the ones in the control group. Ahoniemi and Lahtinen
also surveyed the students to find out how much time they had used to review materials and found that
the novices and strugglers in the VIP group used more time than the ones in the control group did; this
is not very surprising, since the students who used VIP had some extra materials (the visualizations and
their usage instructions) to study. The authors conclude that the benefit of visualizations may not be
directly due to the visualization itself but to how the visualization makes studying more interesting and
leads to increased time on task.

Isohanni and Knobelsdorf (2010) qualitatively explored how CS1 students used VIP on their own.
They report that students use VIP for three purposes: exploring code, testing, and debugging. Isohanni
and Knobelsdorf discuss examples of ways in which students use VIP for debugging in particular. Some
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students used VIP in the way intended by the teacher, that is, to step through program execution in order
to find the cause of a bug. Other working patterns were also found, however. Some students stopped
running the program in VIP as soon as a bug was found and from then on relied on static information
visible in VIP’s GUI (an extremely inefficient way of making use of VIP, the authors argue). Others still
abandoned VIP entirely after they discovered a bug. Isohanni and Knobelsdorf’s study shows that students
do not necessarily use visualization tools in the way teachers intend them to, and underlines the need for
explicit teaching about how to make use of a PV tool. Isohanni and Knobelsdorf (2011) further describe
the ways in which students use VIP; their work provides an illustration of how increasing familiarity with
a visualization tool over time can lead to increasingly productive and creative ways of using it.

A different system for animating C programs – with some of the same functionality as VIP and the
Teaching Machine – has been created by Miyadera et al. (2007); their main research focus has been the
monitoring learners’ use of controls and assessment of the difficulty of different lines in code.

Variety in assignments: ViLLE

ViLLE is an online learning platform which started out as a program visualization system for CS1 that
displays predefined program examples to students statement by statement (Rajala et al., 2007). My review
focuses on ViLLE’s program visualization functionality.

ViLLE comes with a selection of example programs; teachers can also define and share their own.
The user can choose to view a program within ViLLE as either Java, C++, Python, PHP, JavaScript,
or pseudocode, and change between languages at will. ViLLE supports a limited ‘intersection’ of these
languages.

ViLLE’s program visualizer has several beginner-friendly features beyond what a regular visual debugger
offers, some of which are shown in Figure 11.24. The user can step forward or backwards. Each code line
is accompanied by an automatically generated explanation. Arrays are graphically visualized. Teacher-
defined popup questions can be embedded into programs to appear at predefined points of the execution
sequence (see Figure 11.25 on page 174). ViLLE can grade the answers to multiple-choice questions in
the popup dialogs and communicate with a course management system to keep track of students’ scores
(Kaila et al., 2008).

Apart from multiple-choice questions, ViLLE also supports a few other assignment types (Rajala et al.,
n.d.). Students may be required to sort lines of code that have been shuffled or to fill in some Java code
to complete a program. Recent versions of ViLLE feature a “Clouds & Boxes” assignment type, which I
will discuss separately in Section 11.3.3 below.

ViLLE’s authors have investigated the impact of the tool with a series of experimental studies.
Laakso et al. (2008) found that previous experience with using ViLLE had a significant effect on

how well high-school students learned from given examples, and conclude that to get the most out of
a visualization tool, students need to be trained to use it effectively. Rajala et al. (2008) compared
the performance of a treatment group using ViLLE and a control group on code-reading tasks. They
found no significant differences in post-test scores between the groups. Kaila et al. (2009a) found that
having students respond to ViLLE’s popup questions during program execution had a better impact on
learning than merely having students view example programs. Rajala et al. (2009) found that introductory
programming students learned more when using ViLLE in pairs than when working alone, especially with
regard to more challenging topics such as parameter passing. Kaila et al. (2010) studied three consecutive
introductory programming course offerings in high school. The teaching in the courses was identical
except for ViLLE being used throughout the course in the third offering. They report that using ViLLE
significantly raised course grades.

Oh, and the students liked it (Kaila et al., 2009b).
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Figure 11.24: A Python program within ViLLE (image from Rajala et al., n.d.).

Figure 11.25: A multiple-choice question which ViLLE requires the student to answer once execution
reaches a specific line of code (image from Laakso et al., 2008)
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Python in the browser: Jype and the Online Python Tutor

Jype is a web-based integrated development environment for Python programming (Helminen, 2009). In
addition to serving as an IDE, Jype can be used for exploring teacher-given example programs and as a
platform for the automatic assessment of given programming assignments. Jype is intended specifically
for CS1 use and has a number of beginner-friendly features. Among these is support for program and
algorithm visualization.

Jype uses the Matrix framework (Korhonen et al., 2004) for visualizing data structures such as arrays
and trees automatically when they appear in programs. Jype also visualizes the call stack in a richer way
than a typical visual debugger, as illustrated in Figure 11.26.

Another new, web-based system for visualizing small Python programs is Online Python Tutor (Guo,
n.d.), shown in Figure 11.27. Like Jype, it allows the user to step forward and backwards in a Python
program at the statement level, and supports the distribution of teacher-given examples and small
programming assignments with automatic feedback.

Functional programming: WinHIPE and others

WinHIPE is an education-oriented IDE for functional programming that includes a program visualization
functionality (Pareja-Flores et al., 2007). WinHIPE visualizes an execution model of pure functional
programs that is based on rewriting terms (no assignment). The user configures each animation by
selecting which aspects are to be visualized and in what order term-rewriting proceeds in the visualization.
Using this facility, teachers can produce and customize dynamic visualizations of selected examples, which
can be exported for students to view. When a visualization is being viewed, the evaluation of expressions
is shown step by step, and the user can step back and forth in the evaluation sequence.

Unlike many of the other visualization tools in this review, WinHIPE is designed to scale up to handle
larger programs. WinHIPE is not specifically directed at CS1 – the authors have used it in more advanced
courses (Pareja-Flores et al., 2007; Urquiza-Fuentes and Velázquez-Iturbide, 2007) – but is a plausible
choice for beginners as well.

An earlier system for visualizing the dynamics of functional programs (in the Miranda language) was
presented by Auguston and Reinfelds (1994). Mann et al. (1994) reported a study using LISP Evaluation
Modeler, which traced the evaluation of LISP expressions. They found positive transfer effects from the
use of the system for debugging, and their students were eager to use it. ELM-ART (see, e.g., Weber and
Brusilovsky, 2001) is an intelligent LISP programming tutor for beginners, which features a component
that visualizes expression evaluation. The DrScheme/DrRacket IDE for the Scheme language also uses
some visual elements to present program dynamics, among its other beginner-friendly features (Findler
et al., 2002).

Visualizing before writing: CSmart

CSmart (Gajraj et al., 2011) takes an approach to visualization that is quite different from all the other
tools reviewed here. Instead of visualizing the execution of an existing program, the focus in CSmart is
on already visualizing each statement of a C program to the student before the student types it in.

CSmart is an IDE with a particular pedagogical goal: to assist the student in duplicating teacher-
defined example programs, thereby practicing programming fundamentals. The system knows exactly
what program it requires the student to write in each assignment. It instructs the student at each step
using text, graphics, and audio. Some of the guidance is teacher-annotated into the model solutions,
some generated automatically. Various visual metaphors have been built into the system to illustrate the
runtime semantics of the programming language. An example is shown in Figure 11.28.

Gajraj et al. (2011) report that their students liked it.
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Figure 11.26: A part of Jype’s user interface (Helminen, 2009). The call stack is visualized at the bottom
left. The blue box signifies returning from a function.

Figure 11.27: A program running in Online Python Tutor.

Figure 11.28: The user has just finished typing in a program within the CSmart IDE (Gajraj et al.,
2011). The system’s instructions to the user are still visible below line 10. In this case,
they consist of the code that the student must duplicate, a short teacher-created comment,
and a graphical metaphor of the statement to be written.
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11.3.3 A few systems make the student do the computer’s job
A few fairly recent systems have a different take on how to make use of a program visualization, and
involve a high degree of interactivity. This makes them particularly relevant for this thesis. The systems
discussed next are all either closely related to, or forms of, visual program simulation – the kind of program
visualization that I define in Part IV.

Gilligan’s programming-by-demonstration system

Programming by demonstration is a visual programming paradigm that uses expressive GUIs to empower
end-users to program without having to write program code: “the user should be able to instruct the
computer to "Watch what I do", and the computer should create the program that corresponds to the
user’s actions” (Cypher, 1993). The first programming-by-demonstration system was Pygmalion (Smith,
1975); many others have been created since (see, e.g., Cypher, 1993).

By and large, programming-by-demonstration systems – even those whose target audience is
programming beginners – fall into the empowering systems category in Kelleher and Pausch’s taxonomy
(Figure 11.2) and out of the scope of this review. However, I am aware of one programming-by-
demonstration system whose goals were different enough to justify an exception.

Gilligan (1998) created a prototype of a programming-by-demonstration system for novice
programmers. The system aimed not only to provide an accessible way of expressing programs but
also to explicitly teach a model of computation in the process. It used analogies to everyday objects to
present a user interface through which the novice programmer expresses what they wish their program to
do: the computer’s math processor and logic unit are represented by a calculator, a stack of initially blank
paper represents memory, a clipboard with worksheets represents the call stack, and so forth. Figure 11.29
shows a screenshot.

The user of Gilligan’s system – the programmer – takes on the role of a clerk who intends to accomplish
a task using this equipment according to certain rules. In doing so, the user produces a sequence of actions
that defines a program. Using the calculator produces an arithmetical or logical expression, for instance,
and adding a new worksheet to the clipboard starts a subroutine call (Figure 11.30). The system writes
and displays the resulting program as Pascal code that matches the user’s interactions with the GUI.
By engaging in these clerical activities, the user would learn about their correspondence to the execution
model of Pascal programs and would – hypothetically, at least – be better equipped to transition to regular
programming later.

The system was never evaluated in practice, as far as I know. Deng (2003) implemented another
prototype system which extended Gilligan’s ideas to object-oriented Java programming.

ViRPlay3D2

Jiménez-Díaz et al. (2005) presented early work on a 3D environment which was intended to allow students
to role-play and learn to understand the (inter)actions of the objects of a given OOP program as it runs.
This project has since evolved towards having groups of students role-play object actions in order to specify
the actions of an OOP program that is to be created. Jiménez-Díaz et al. (2008, 2011) used a system
called ViRPlay3D2 to provide a virtual three-dimensional world in which students control avatars that
each represent an object in the execution of an object-oriented program (Figure 11.31). Each student
tries to follow the instructions specific to his or her kind of object. One of the students at a time is
active and can delegate tasks to other objects by passing messages to them. The goal is to collaboratively
produce a working object-oriented software design for a problem and to verify that it works. Students can
choose to change the definitions of classes to improve their design. Execution simulations can be saved
and reviewed. The system also features a “scripted mode” in which the characters act automatically
instead of being controlled by students. In addition to designing programs, ViRPlay3D2 can also be used
to examine case studies of program design.

Although ViRPlay3D2’s main goals involve high-level software design – in this, it is related to visual
programming systems – it also serves as a visualization of a high-level object-oriented notional machine
that features classes, objects, and message-passing. Participating within ViRPlay3D2 could help CS1
students learn about the object-oriented execution model.
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Figure 11.29: Gilligan’s (1998) programming-by-demonstration system.

Figure 11.30: Calling a function in Gilligan’s system. In this instance, the function is being called for the
first time and has not been defined yet. The user carries out the call manually, thereby
defining the function by demonstration. He has already created a worksheet (stack frame)
named Factorial in the clipboard (stack), thereby adding the line ���������	
 into the
definition of the main program. Just now, he has dragged the value 5.0 from the variable
�� into the frame, adding the parameter expression �� to the code. The user may now
proceed by clicking on the function name to call it, at which point he will start adding code
to the function body. For an in-depth explanation of the example, see Gilligan (1998).
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Figure 11.31: Students interact within the virtual world presented by ViRPlay3D2 to design object-
oriented programs (Jiménez-Díaz et al., 2008). Two separate screenshots are shown here.
On the left, a user is viewing message passing in action between two other objects (avatars)
from a first-person perspective. Passing a message is graphically represented as throwing a
ball to the recipient. On the right, a user is examining another object’s Class-Responsibility-
Collaboration card (Beck and Cunningham, 1989), which describes how he can interact
with the object.

The results of an experimental study (Jiménez-Díaz et al., 2011) did not show a significant difference
between ViRPlay3D2 users and a control group that role-played object-oriented scenarios without the help
of a software system. Both students and instructors liked the software.

Dönmez and İnceoğlu’s tool

Dönmez and İnceoğlu (2008) present a program visualization system that engages students in taking an
active role in program execution in order to improve their understanding of the notional machine that
underlies C# programming. Using the tool’s GUI, students simulate the execution of code they have
written in a limited subset of C#. Students use the GUI to evaluate arithmetical and logical expressions,
and to create and assign to variables.

Figure 11.32 shows the main display of Dönmez and İnceoğlu’s system. The view resembles that of
a regular visual debugger, with one major difference: there is no way to make the computer run or step
through the program. Instead, GUI controls are present that allow – and require – the user to indicate
what happens when the program is run. Here are the steps that the user is expected to follow to deal
with the example code in Figure 11.32:

Press the New Variable button in the variables area; a dialog pops up (Figure 11.33). Type in
the variable name, select its type, and click OK. This makes an icon representing the variable
appear in the variables area. Proceed to the next line of code by clicking it.

The system notices the input function and immediately prompts for input. Enter a string; it
appears in the literals area. Drag the input into the active area to be processed and select

from the Functions menu to produce the return value within the active
area. Then drag the return value into the variable before moving on to the next line.

Calculate the sum by dragging the variable value to the active area, selecting the sum
radio button, and dragging the literal value 20 from the literals area (where it has appeared
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automatically) to the active area. The result now appears automatically in the active area.
Drag it into the variable and click the last line.

���������	
���
�����
�

First drag the parameter value into the active area, then select the function from the Functions
menu as above.

Dönmez and İnceoğlu’s system can only handle certain simple kinds of programs. Many fundamental
topics with complex runtime dynamics – such as functions (except for a handful of built-in single-parameter
functions, as above), references and objects – are not supported.

To my knowledge, no evaluation of the system has been reported.

Figure 11.32: Dönmez and İnceoğlu’s (2008) program simulation system.

Figure 11.33: Creating a variable in Dönmez and İnceoğlu’s (2008) system.
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Online Tutoring System

Kollmansberger (2010) developed and used another highly interactive system. His Online Tutoring System
(Figure 11.34) presented students with short ready-made programs written in Visual Basic for Applications.
Similarly to Dönmez and İnceoğlu’s tool, the Online Tutoring System required the student to predict
which statement the computer will execute next (by clicking on the correct line), and to indicate the
order in which the parts of the statement are dealt with (by clicking on the appropriate part of the code).
Furthermore, the student must type in the resulting values at every stage of expression evaluation and
assignment (examples in Figures 11.34 and 11.35). The system provided textual prompts at each step
of the way to indicate what type the next step should be (e.g., subexpression selection or accessing a
variable).

When the student got an answer wrong, the system told them the correct answer, which the student
nevertheless had to reproduce within the system in order to proceed. Incorrect answers were reflected in
the student’s grade for the assignment, but the same assignment could be tried repeatedly.

The Online Tutoring System supported a subset of Visual Basic that included function calls, but
excluded recursion and object-oriented concepts, for instance.

Kollmansberger (2010) reported that two sections of a CS1 class that used the Online Tutoring System
for twelve additional exercises at various points of the course had an average course completion rate of
92%. For the four sections that did not do these additional exercises the corresponding figure was only
66%. According to opinion surveys, the students liked it for the most part, although some found the user
interface unwieldy and the exercises too repetitive.

Clouds & Boxes in ViLLE

Recent versions of the ViLLE system (see above) feature a new assignment type – “Clouds & Boxes” –
which is inspired by the present work on visual program simulation. In a Clouds & Boxes assignment,
ViLLE does not run the program automatically; instead, the student has to manually carry out certain
aspects of program execution themselves in order to make execution proceed. The focus is on variables,
assignment, and the use of stack frames.

For instance, the program in Figure 11.36 would be correctly simulated as follows (Rajala et al., n.d.):

��� � � ��

Click New variable to make a dialog appear. Click on a Basic variable button in the dialog,
choose ��� from a pulldown menu, type in the name of the variable and its initial value in
text fields. Press the Step button to move to the next line.

�	
���������������	�������������

Nothing to do here at this point, simply press Step to move to line 5 inside the method.

������ 
����� ��� �	������������ ���������� �

Click Subprogram call to create a new frame on the stack. Type in the name of the function
being called and the number of parameters. Type in the name of the parameter and its value.
Click Step again.

������ ��������� � ��

No action needed, returning is automatic. Click Step.

�	
���������������	�������������

Back on line 3. Finish the call by clicking Remove from stack. You are done.

ViLLE’s Clouds & Boxes assignments are at a prototype stage; at the time of writing, the results of any
empirical evaluations have not, to my knowledge, been published.
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Figure 11.34: An assignment on string catenation within the Online Tutoring System (Kollmansberger,
2010). The student has first chosen the expression ����������	�� 
 ����	�����	��

for evaluation, then the subexpression ����������	��. Now the system informs them
that the next step is to access the variable: consequently the user has to look at the values
in memory (on the right) and type in ���� (in quotes, to highlight that it is a string).
Subsequent steps include typing in ��� and ����� at the appropriate moments.

Figure 11.35: Stages of expression evaluation within the Online Tutoring System (Kollmansberger, 2010).
Some steps have been omitted.
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Figure 11.36: A “Clouds & Boxes” assignment in ViLLE has the user take charge of running a program.
The buttons at the top allow the user to manipulate variables and the call stack.

11.3.4 Various systems take a low-level approach

The systems reviewed in this chapter so far have represented notional machines that operate on high-level
languages at various levels of abstraction that are not very close to the underlying hardware. One way to
learn about program dynamics – albeit rare in CS1 – is to first build low-level foundations by visualizing
an actual or simplified system that explains programming on the assembly language or bytecode level.
Many existing program visualization tools might serve a purpose in such an endeavor.

Biermann et al. (1994) created a system – This is How A Computer Works – for visualizing Pascal
programs to freshmen at different levels of abstraction below the code: a compiler level, a machine
architecture level, and a circuit level. The simulator MPC1 presented a simplified computer in terms
of processor operation codes, RAM cells, and registers (Sherry, 1995). The SIMPLESEM Development
Environment (Hauswirth et al., 1998) and MieruCompiler (Gondow et al., 2010) also map high-level
language semantics to assembly code. EasyCPU (Yehezkel et al., 2007, and references therein) visualizes
a model of computer components – registers, I/O ports, etc. – and highlights how each component
is active in the execution of an assembly-language program. A different sort of low-level approach was
implemented in ITEM/IP, which visualized the execution of a Pascal-like language in terms of a Turing
machine (Brusilovsky, 1992).

Some low-level systems have featured modes of interaction beyond controlling the view. In the
CpuCITY virtual 3D world the student used an avatar to perform hardware-level operations such as
“take this packet to RAM” (Bares et al., 1998). JV2M applies a similar immersive approach to Java
programming by having a student-controlled avatar perform in-game tasks that match the bytecode
instructions corresponding to a given Java program (e.g., Gómez-Martín et al., 2005; Gómez-Martín
et al., 2006). Figure 11.37 shows a screenshot of JV2M. The way in which CpuCITY and JV2M engage
the student makes them similar in a sense to our concept of visual program simulation (see Part IV),
although the level of abstraction and the virtual world approach are quite different.

Various other low-abstraction PV systems exist; the above is a fairly arbitrary selection. Many of the
systems may be useful for the goal of teaching about low-level phenomena (which is indeed the stated goal
of most of the systems). I will not review low-level systems in more detail, as my primary interest is in CS1
and systems that help students learn the runtime semantics of a high-level language. I consider systems
that deal with assembly language too detailed to be practical for this purpose – the ‘black boxes’ inside
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Figure 11.37: The user is executing a compiled Java program in JV2M (image from Gómez-Martín et al.,
2006). The bytecode instructions correspond to actions in the virtual world. The user’s
avatar is the big feline in the middle. The dog on the right is Javy, a helpful intelligent
agent that provides advice. I do not know what the mouse is.

the ‘glass box’ of the notional machine shown are too small and too numerous to achieve the necessary
simplicity (cf. du Boulay et al., 1981).8

11.4 In program visualization systems for CS1, engagement has been
little studied

Many of the visualization systems for CS1 have been evaluated informally, with positive teacher experiences
and encouraging course feedback often being reported. Some of the systems have also been evaluated in
more rigorous ways, either qualitatively or through controlled experiments. Usually, the evaluations have
been carried out by the system authors themselves at their own institutions, often in their own teaching.
Many of the findings from these studies have been positive, suggesting that the program visualizations
have served a purpose, at least in the context in which they were crafted.

What about the role of engagement, identified as potentially so important by the software visualization
community (Section 11.2 above)? As Table 11.6 (above on p. 154) shows, most of the systems within
the scope of my review are meant for controlled viewing of given or student-created content, but a few
recent systems especially feature other ways of engaging students. To what extent do the hypothesized
engagement effects apply to notional-machine visualization?

Barely any of the empirical studies of the program visualization tools that I have reviewed have been
phrased in terms of the engagement taxonomies from Section 11.2.2. However, we may consider whether
the existing research answers any of the questions regarding modes of engagement. In Section 11.3, I
referred to a number of studies that have evaluated the various program visualization systems. Table 11.7
uses the 2DET to summarize those of the evaluations that sought to determine the relative effectiveness
of different engagement levels. To produce Table 11.7, I made the following delimitations.

8I do think that showing compiled code to students in CS1 can be instructive, but as an additional measure, not as the
main way to learn about a notional machine for a high-level paradigm.
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Table 11.7: Experimental evaluations of program visualization tools comparing levels of engagement.

System Source Scope of
experiment

Treatment Control Measure Statistical
significance?

two visual
debuggers

Bennedsen and
Schulte (2010)

lab controlled viewing /
given content

no viewing /
given content

reading tasks no

Bradman Smith and
Webb (2000)

lab controlled viewing /
given content

no viewing /
given content

reading tasks yes (in one
task only)

VIP Ahoniemi and
Lahtinen (2007)

lab controlled viewing /
given and
modified content

no viewing /
given and
modified content

writing tasks yes (among
novices and
strugglers)

ViLLE Rajala et al.
(2008)

lab controlled viewing
(and responding?) /
given content

no viewing /
given content

reading and
writing tasks

no

ViLLE Kaila et al.
(2009a)

lab responding /
given content

no viewing and
controlled
viewing /
given content

reading and
writing tasks

yes

ViLLE Kaila et al.
(2010)

course responding /
given content

no viewing /
given content

reading and
writing tasks

yes

• The table lists only quantitative between-subject experiments that checked for the statistical
significance of results.

• Only studies that used different modes of engagement as conditions are listed. (Not using a
visualization at all does count as no viewing.) This excludes studies comparing two different tools
(e.g., a regular visual debugger vs. an educationally oriented visualization) used in the same way.

• Only studies in which the participants learned about typical CS1 content are included.

• Studies that gave the experimental group additional assignments to do on top of those of the control
group are excluded.

• Only studies in which researchers or teachers assessed learning outcomes are included. This rules
out opinion polls, for instance.

• Only studies in which an intervention was followed by a distinct assessment phase that is the same
for each group (e.g., an exam) are included.

Table 11.7 shows that most of the experimental studies to date involve comparisons between low levels of
engagement, and usually pit controlled viewing or responding against not using a visualization at all. The
studies have revolved largely around example-based learning and given content. Most of the systems built
have not been experimentally evaluated at all.

The results of these evaluations largely support the use of visualization, but it is difficult to draw further
conclusions. All in all, the CER literature does not yet tell us very much about the relative effectiveness
of levels of engagement beyond controlled viewing in the context of program visualization for CS1.
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Part IV

Introducing Visual Program Simulation
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Introduction to Part IV

We have now seen that there are serious problems in introductory programming education (Part I), that
there is significant concern about novice programmers’ difficulties with understanding program dynamics
and the notional machines that run programs (Part II), and that program visualization is one way to teach
about this challenging topic (Part III).

In Part IV, I formulate the idea of visual program simulation (VPS), a pedagogical technique for
learning about program execution.

Chapter 12 is a brief introduction to visual program simulation. Chapter 13 presents a new tool,
UUhistle, that lends software support to VPS. In Chapter 14, I draw on the literature presented in
Parts I to III to explain why VPS is a sensible approach in the light of what is known about introductory
programming education. Finally, Chapter 15 explains some of the specific design decisions taken during
UUhistle’s development.

All this lays the foundations for the empirical evaluation of VPS in Part V.
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Chapter 12

In Visual Program Simulation, the
Student Executes Programs

This short chapter describes the concept of visual program simulation, the interactive visualization-based
approach to teaching about program dynamics that I will investigate in the rest of this thesis.

In this chapter, I merely outline what visual program simulation is. Later chapters will provide more
detail and justify the approach in relation to learning theory and other prior work.

12.1 Wanted: a better way to learn about program dynamics
Here is my agenda in brief:

• to help novice programmers understand the notional machine that they are learning to control
through programming;

• to help novice programmers reason about programs’ runtime behavior and make successful
predictions about what programs do, and

• to help novice programmers learn about the semantics of programming constructs.

And here is how our approach addresses the goals:

• by visualizing a notional machine;
• by having novice programmers explicitly and directly control the notional machine through the

visualization, and
• by encouraging students to be cognitively active as they trace a program’s execution.

12.2 Visual program simulation makes learners define execution
Visual program simulation (VPS) is an activity that immerses students in the dynamics of program
execution.

In visual program simulation, a learner takes on the role of the computer as executor of a program.
The learner has to ‘do the computer’s job’: read code, follow instructions in the appropriate order, make
control flow decisions, and keep track of program state. To keep things explicit and manageable, the
learner uses a visualization of some kind as an external aid. The visualization – a drawing on paper or
a software visualization tool, for instance – helps the learner to track state changes and reason about
program behavior.

Visual program simulation can serve as an exercise in which learners practice tracing programs and
learn about a notional machine. In a VPS exercise, the learner not only has to think about how a program
works, but also to demonstrate their understanding in a concrete way – at least to themselves, and perhaps
to a teacher as well. Ultimately, albeit indirectly, visual program simulation is intended to contribute to
the skill of writing programs.
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An example

Here is a short Python code fragment that defines a function and calls it:

��� ������	
��

����� 
 � 


������ � �

����� � ������	� � �������

Let us consider how a programmer might visually simulate the execution of the last two lines. The
simulation could involve the following steps, performed by the learner while reading the code.

1. The learner makes a visualization of the variable ������ and marks it as having the value 5.

2. The learner determines the value of the parameter expression by adding 1 to the value of ������,
and makes a note of this result (6).

3. The learner makes a visualization of a call stack frame.

4. The learner adds to the frame a visualization of a variable called 
, taking a value (6) for it from
the evaluation in Step 2.

5. The learner determines the return value (36) and makes a note of it.

6. The learner makes a visualization of a new variable ����� alongside ������ and marks it as having
the returned value. (The frame created in Step 3 becomes redundant.)

In practice, ‘making’ visualizations could mean either drawing them from scratch or using ready-made
components in a suitable software tool such as the one I describe in the next chapter. In Section 14.4, I
will argue that tool support increases the potential of visual program simulation.

What I just presented is one way of simulating the execution of the example code. Other ways can
include more steps (e.g., the learner also explicitly keeps track of the current line), have a different overall
level of abstraction (e.g., a bytecode level), or present the execution from a different perspective (e.g., a
functional one based on term rewriting). Different kinds of notional machines and visualizations can be
used as the basis for visual program simulation. The defining features of VPS are the driving role of the
learner and the use of an external visual representation as an aid.

12.3 Visual program simulation is not program animation or visual
programming

Let us consider the relationship VPS has to a few related concepts and terms.
Visual program simulation is a type of program tracing, a term that I use in a generic sense to mean

examination of the execution sequence of a program. Tracing can be done by people, computers, or both
in collaboration. For instance, a visual debugger traces the execution sequence of a program and helps
the programmer to mentally trace the program.

I briefly defined software visualization and its main subfields at the beginning of Chapter 11. In
this scheme, visual program simulation falls under the domain of software visualization, more specifically
program visualization, as it is concerned with concrete programs rather than generic algorithms (see
Figure 11.1 on p. 142).

Again in terms of the classification from Chapter 11, a visual debugger is a program animation system.
In program animation, the computer determines what happens during a program run, and visualizes this
information to the user. The key difference between program animation and visual program simulation
is just this: in the former it is the computer that automatically defines what happens and when, while
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VPS leaves this task to the user. Most of the educational systems reviewed in Chapter 11 are program
animation systems.1

Visual programming is a form of program visualization that is related to, but distinct from, visual
program simulation. Visual programming shares with VPS a high level of user interaction with a program
visualization. However, the purpose of visual programming – to use a visualization as a means for program
creation – is quite different from that of VPS, which is a vehicle for exploring the behavior of existing
programs.

1My use of the terms ‘simulation’ and ‘animation’ follows that of Korhonen (2003), who similarly distinguished between
algorithm animation and visual algorithm simulation in his work on interactive algorithm visualization; see Section 13.8.
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Chapter 13

The UUhistle System Facilitates Visual
Program Simulation

UUhistle (pronounced “whistle”) is a program visualization system for introductory programming
education. It is meant for visualizing the execution of small, single-threaded programs in CS1 courses and
similar settings.

UUhistle visualizes a notional machine for the Python programming language. This notional machine
executes programs on a level of abstraction right below program code, in terms of expression evaluation,
the call stack, variables, objects, classes, references, and other concepts.

UUhistle can be used for a number of activities, including the following.

• Debugging with animations. Learners can view animations of the execution of programs that they
wrote themselves. In this mode of use, UUhistle serves as a graphical, very detailed sort of debugger.

• Exploring examples. Learners can view animations of teacher-given programs. Teachers may
configure UUhistle to adjust how particular example programs are shown.

• Visual program simulation. Learners can engage in visual program simulation exercises in which they
manually carry out the execution of an existing program (see previous chapter). UUhistle facilitates
VPS by providing visual elements for the learner to manipulate. UUhistle gives automatic feedback
on VPS exercises and can automatically grade students’ solutions.

• Interactive program animation. UUhistle can animate the execution of programs created on the fly
so that the execution of each instruction is shown as soon as the instruction is typed in. This allows
for another interactive, graphical way of exploring program behavior.

• Presentations. Teachers and learners can use UUhistle’s animations as an aid when explaining the
execution-time behavior of programs.

• Quizzes. Stop-and-think questions can be embedded into teacher-defined example programs for
learners to answer.

The primary feature that sets UUhistle apart from the mainstream of educational program visualization is
the support the system provides for visual program simulation. This chapter is a tour of UUhistle’s main
functionality, including but not limited to VPS. The later chapters in this thesis revolve around VPS.

Section 13.1 below introduces UUhistle’s GUI and its animations of program execution. Section 13.2
shows how the system can interactively animate programs created on the fly. Section 13.3 is an overview of
the options available for the teacher to configure program examples for students to view later. Section 13.4
describes how visual program simulation works in UUhistle. Section 13.5 briefly presents how the system
supports automatic grading. Section 13.6 reviews the different ways in which UUhistle allows learners
to engage with program visualizations. Section 13.7 is an advertisement for the UUhistle web site, and
Section 13.8 concludes the chapter by comparing UUhistle to its closest relatives.

The UUhistle system has been developed as a part of the research project reported in this thesis. It is
joint work by Teemu Sirkiä and myself. I have been responsible for the conceptual design of the system,
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specific requirements, and the embedded textual materials. Teemu has done the software design and the
coding. We have both contributed to the user interface.1

UUhistle supports a sizable, and growing, subset of the Python language. This thesis does not
document all the capabilities of the system.

13.1 UUhistle visualizes a notional machine running a program
Figure 13.1 shows a snapshot of the most recent UUhistle release, paused during the execution of a
Python program. The right-hand side of UUhistle’s display is dominated by a visualization of the state of
a notional machine. Contents of memory appear as abstract graphics.

What follows is an overview of the main features of UUhistle’s visualization and user interface.

13.1.1 State is shown as abstract graphics
UUhistle displays the program code of a running Python program on the left (marked 1 in Figure 13.1).
The current line is highlighted by a blue background and a blue arrow pointing at it.

Both the trivial and composite objects stored within the heap appear in the top right-hand corner.
Objects of user-defined types such as ��� in Figure 13.1 have explicit object identifiers and instance
variables. Objects, like many things in UUhistle, are visualized as rounded, colored rectangles – objects
are blue (with a few exceptions, see below). Objects of certain common immutable Python data types
– ���s, ��	��s, 
		����s, and �����s – as well as certain exception types have simplified default
representations, as also shown in Figure 13.1. This reduces visual clutter and allows simple Python
programs to be visualized in a way that does not rely on object-oriented concepts. Below, I will occasionally
refer to objects of these types as “simple values”.

Classes and functions appear in their own panels (3 and 4 in Figure 13.1). Although Python classes
and functions are also objects in the heap, this division emphasizes the roles that class and function
objects play in most Python programs. In this example, we have a user-defined class ��� and two built-in
functions. To save space and simplify the visualization, UUhistle seeks to display only those classes and
functions that the running program directly uses; the same goes for operators (5). As it is not possible
to fully know in advance which classes and functions will be needed, UUhistle uses the program code and
some simple heuristics to make a ‘best guess’. If it turns out during the program run that more classes
or functions are needed, those are added on the fly. (This does not commonly occur in CS1 example
programs.)

The call stack and its frames (6) are where most of the action is. In Figure 13.1, the method ��������

has been called from the module level and the body of �������� is being executed. Consequently, there
are two frames: one for the module level and another for the call. Each frame has its own expression
evaluation area. The ongoing evaluation of �	������������������� is shown within the bottom frame,
and another expression is being processed in the upper frame. Each stack frame may also contain variables;
UUhistle visualizes all variables as rounded green rectangles, irrespective of their contents and location
in memory. Built-in functions and methods are treated as ‘black boxes’ – their internal behavior is not
visualized.

The representation of a references features the text “ref” and an object identifier. Whenever the
mouse cursor is on top of a reference, the reference is additionally visualized by an arrow pointing to the
target object. To underline to the learner that multiple references can point to the same object, UUhistle
also shows other references with the same target as dimmer arrows. An example is shown in Figure 13.1.

You can change a few aspects of the visualization through the Settings menu or with hotkeys. For
instance, you can toggle whether simple values are shown as in Figure 13.1 or as full-fledged objects. If
you find the dimmed ‘sibling arrows’ of references (see above) distracting, you can disable them.

1Parts of this chapter are taken from two earlier publications. 1) Juha Sorva and Teemu Sirkiä: “UUhistle – A Software
Tool for Visual Program Simulation”, In: Proceedings of the 10th Koli Calling International Conference on Computing
Education Research, pages 49–54, c©2010 Association for Computing Machinery, Inc. ����������	
��	�����	�����

�������	������� Reprinted by permission. 2) Juha Sorva and Teemu Sirkiä: “Context-Sensitive Guidance in the UUhistle
Program Visualization System”, In: Proceedings of PVW 2011, Sixth Program Visualization Workshop, pages 77–85,
Darmstadt, Germany, Technische Universität Darmstadt, 2011. Reprinted by permission.
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You can adjust the sizes of various panels and the overall size of the GUI window with the mouse. If
display space runs out, scrollbars appear automatically.

13.1.2 It is simple to watch an animation
In the default mode, UUhistle serves as a program animation system that takes a Python program and
shows how it executes. How do you get UUhistle to animate a program?

First, you need a program

The Program menu provides a selection of options for creating Python programs and accessing existing
ones. You can start editing a blank file. You can load an example program, previously created and
configured by a teacher. Or you can open an existing Python source code file from the local file system.

UUhistle features a basic text editor for creating and modifying single-file programs. The editor is
available on the left of the UUhistle window whenever no program run is being visualized. The editor
supports standard GUI operations; you can, for instance, paste in Python code from another source.

Teachers can define ready-made example programs, which you can then load into UUhistle either
online or locally (see Section 13.3 below).

Much as in any modern visual debugger, you start running the program using either a control button,
a menu item, or a hotkey.

Then, you control its viewing

Once the program run has been started, you choose the pace of execution and may step back and forth
within the execution sequence as you please.

To control the viewing of the program’s execution, you press the buttons in the lower left-hand corner
(near number 7 in Figure 13.1). From left to right, the buttons are: Stop, Rewind, Undo, Next Step,
Next Line, Redo, and Hint. Of these, the Next Step button is the most central to program animation in
UUhistle: pressing the button tells UUhistle to show the next execution step and pause again afterwards.
Choosing Next Step repeatedly lets you see the entire program executed in small steps.

UUhistle uses smooth animations to draw attention to what happens. To the right of the control
buttons is a slider that adjusts the speed of these animations.

Execution steps: an example

The execution of a single line of code usually consists of several steps. As an example, the execution steps
of the Python statement � � � � � are listed below, and illustrated in Figure 13.2.

1. The value of � is fetched from memory, shown as a copy of the value ‘gliding’ from the variable to
the expression evaluation area in the topmost frame.

2. The operator � is fetched from memory, shown as a copy of the operator gliding from the Operators
area to the expression evaluation area.

3. The simple value � is fetched from memory, shown as a copy of the value gliding from the “Data
in heap” panel to the expression evaluation area. (If the value did not already exist in the heap, it
instantly appears there first.)

4. The sum is calculated, indicated by the operator being briefly highlighted, after which the resulting
value replaces the arithmetical expression in the expression evaluation area.

5. The sum glides from the expression evaluation area into the variable �, which is created in the
process if it did not exist already. A new variable that is being created is first shown in outline while
the value glides towards it, then in full once the value reaches its destination.2

After these steps are performed, control moves from the current line to the next, as a separate execution
step.

2N.B. UUhistle’s notional machine reflects the Python language, in which variables are bindings of names to objects. In
this abstraction, a variable does not exist before it is first bound to a value.
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Figure 13.2: The between-step stages of the execution of � � � � �, as animated by UUhistle. Pressing
Next Step causes UUhistle to transition to the next stage. Most transitions are accompanied
by a smooth animation.

More GUI controls

The Next Line shows all the (remaining) steps of the current line as one continuous animation at a high
speed, then pauses execution. You may keep the Next Line button pressed to fast-forward an arbitrary
number of steps.

The Stop button terminates execution. Rewind restarts it. Undo reverts to the state at the previous
execution step or line, without reverse animation, canceling an earlier Next Step or Next Line command.
Redo cancels one such backstep, also without animation. The Hint button is only relevant to certain
kinds of visual program simulation exercises (Section 13.4 below).

The primary way to view short program animations in UUhistle is one step or line at a time. However,
sometimes you want to get past a section and view a particular stage of execution. Clicking on a line of
code (or its line number) brings up a context menu in which you can choose to continuously execute the
program until that line is reached or there is another reason to pause execution, such as a breakpoint.
Breakpoints can be set from the same context menu.

Active user control of execution is the norm, and is recommended in order to avoid mere passive
viewing. However, you can completely automate execution through the Settings menu. If you do, the
Next Step button is replaced by a Play button, which makes the animation run continuously, starting each
step after the previous one finishes until you click on the button again to pause.

13.1.3 Textual materials complement the visualization

There is a fairly large amount of textual materials embedded in UUhistle that explain programming
concepts and UUhistle’s visualization of them, and provide various kinds of hints to the learner. These
materials can be accessed through the Info box and through context menus that pop up when you click
on visual elements.

The Info box

During and after each execution step, the Info box (number 8 in Figure 13.1) gives a brief status report.
While execution is paused, the Info box suggests possible user actions and provides context-specific links
to learning materials that UUhistle displays in popup dialogs.

A staple among Info box links is “Explain the previous step” (see, e.g., Figure 13.1). Clicking on this
link brings up a more detailed hypertext explanation of the previous execution step (or steps, if multiple
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Figure 13.3: An example of a dialog that pops up when the user clicks an “Explain the previous step”
link in the Info box. The user can follow links within the dialog to further materials.

execution steps have just been shown in sequence). Many of the explanations are context-sensitive and
incorporate knowledge of the specific program run. An example is in Figure 13.3.

Various other links appear in the Info box at certain times during a program animation, allowing
learners to read about interesting aspects of program execution. For instance, when multiple references
point to an object whose state has just changed, UUhistle provides a link to an explanatory text, as shown
in Figure 13.4. When two variables with the same name appear in different stack frames, a link gives
access to an explanation of how the local variables of each frame are separate from those in other frames,
and how this allows for ‘namesakes’. When a function is called for the second time, creating a new frame,
a link leads to a text that underlines the difference between a function definition and a function call, and
explains why it is not practical to keep in memory a single reusable frame corresponding to each function
definition (as students sometimes suggest).

If you click Next Step many times in quick succession – perhaps in an attempt to reach a section of
code as fast as possible – a link appears in the Info box to hint about some potentially useful GUI features
(Figure 13.5).

“What is this?”

Many elements of UUhistle’s visualization can be clicked to bring up a context menu that features a
“What is this?” option. Choosing this menu item brings up an explanation of that visual element and
corresponding programming concepts. An example is shown in Figure 13.6.

13.1.4 Graphical elements are added as needed

Figure 13.1 shows UUhistle running a program that uses functions, classes, and objects so that they are
all treated as ‘glass boxes’. However, UUhistle reveals these parts of the notional machine only as they
are needed. Specifically:

• the Functions panel is only shown if the program to be visualized contains function definitions, or
if any functions are called from the visible code;

• the Classes panel is only shown if the program to be visualized contains class definitions, or if any
methods are called, or if classes are used as class objects (e.g., values are assigned to their instance
variables);

• the Call Stack is only shown if the Functions or Classes panel is. An additional requirement is that
at least one non-built-in function or method is called. That is, there must be a need to visualize
the internal details of function or method calls. If not, only a single frame is shown.
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Figure 13.4: UUhistle highlights a point of interest. The “Notice the references?” link gives access to
the explanatory dialog.

Figure 13.5: If the user appears to be trying to get past a section of code very quickly, UUhistle attempts
to help. The dialog appears when the user clicks on the link in the Info box.
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Figure 13.6: An example of a UUhistle dialog that explains a programming concept and UUhistle’s
visualization of it.

Various examples of simplified views, in which some of these parts have been omitted, appear in the
screenshots within this chapter.

There are three interrelated reasons for these simplifications:

• avoiding unnecessary visual clutter and distractions;

• enabling learners and teachers who are so minded to cover certain topics while steering clear of
others (e.g., imperative programming without explicit objects), and

• facilitating instructional design that reveals complexity only gradually, starting out with fewer
concepts and ending up with more.

This behavior conforms to the consume-before-produce principle (Caspersen, 2007, and references therein),
which encourages a form of black-box scaffolding (Hmelo and Guzdial, 1996). Learners can learn
how function calls (opaque ‘black boxes’) are set up before they have to worry about how function
implementations work. The same goes for objects. Moreover, UUhistle allows teachers to include ‘hidden’
functions and methods in predefined program examples (see Section 13.3 below); those are then treated
as black boxes, just like functions and methods built into Python. This further strengthens UUhistle’s
support for the consume-before-produce teaching approach.

The omission of parts of the visualization is reflected in the textual learning materials as well. For
instance, when only a single frame is shown rather than a call stack, UUhistle’s dialogs explain what a
frame is in a simpler way.

13.2 In interactive coding mode, the user can view as they type
The previous section described how UUhistle can animate existing programs that are first written in the
UUhistle editor or loaded from a file. There is also another way.

In the Program menu, you can start up UUhistle’s ‘interactive coding mode’. This mode allows you
to mix code writing and execution in much the same way as a typical Python interpreter’s interactive
mode does. Each input is executed immediately. UUhistle’s interactive coding mode adds three things to
a typical interactive interpreter session:

• UUhistle shows a detailed visualization of how each input is executed;

• UUhistle conveniently displays all earlier inputs to make it easier to keep track of how the current
state was reached

• UUhistle allows you to step back and forth in the session history (undoing and redoing inputs) via
the control buttons.
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Figure 13.7: UUhistle’s interactive coding mode. The user enters code at the top left. The new input
appears below the earlier ones, and is immediately executed visually. Here, a few inputs
have been executed and the user is typing in another function definition. Program output
appears in the I/O console as normal. The value of the most recently evaluated input is
visible in the expression evaluation area; here, � � � has evaluated to 22.

The interactive coding mode is depicted in Figure 13.7.
After you type in a Python instruction and hit the Enter key, UUhistle starts animating the execution

of the input right away, and shows all of its execution steps continuously. The GUI stays responsive during
the animation, so you can keep typing in more code while the animation is running; the execution of each
later instruction will be animated as soon as the previous animation finishes.

In this mode, pressing Undo cancels the execution of an entire previously entered instruction.
The interactive coding mode is intended for use both by learners for experimentation and by teachers

for demonstration.

13.3 Teachers can configure program examples in many ways
One way for a teacher to provide an example program for students to view in UUhistle is to distribute the
program code as a plain text file. Students can then store the file in their local file system and open it
using UUhistle’s Program menu.

Another way of distributing examples to students is to use a course config file. A course config file
is an XML file in which the teacher can store a selection of Python programs and specify how they wish
UUhistle to present those programs to students. Once the teacher has placed a course config file online –
or distributed it in some other way – students can use UUhistle as a client to load the examples in it (by
choosing Open Example Program in the Program menu). UUhistle can load a course config file either
from a local path or a remote URL; the location of the file can be specified in UUhistle’s general settings.

The UUhistle website ��������������	
������� gives a full list of supported configuration options
and a description of the XML format. Below, I have listed some of the main things teachers can affect
through a course config file.

• Program descriptions. Texts that highlight interesting points, provide example-specific advice to
the learner, or give an overall idea of the example code. An example of how UUhistle displays the
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Figure 13.8: A selection of predefined program examples in UUhistle. This is the dialog that appears
when the user chooses to open an example program through the Program menu. The user
can select one of the programs defined in a course config file. If the teacher has provided a
description of the example, UUhistle displays it on the right while the example is selected.
Clicking Start loads the program into UUhistle’s main window.

program description is shown in Figure 13.8.

• Execution-time commentary. Customized descriptions of individual lines of code that the learner
can access through Info box links while control is on that line. Popup dialogs that appear at specific
lines to alert the learner to interesting phenomena.

• Grouping of examples. Examples can be divided into named units, e.g., to correspond to stages of
a programming course.

• Visualization settings. For instance, the teacher may wish an example to highlight how even simple
values are objects.

• Hidden code. An example can include code which is not shown onscreen and whose internal behavior
is not visualized. For instance, a ‘hidden’ class or function can be included that the visualized non-
hidden example code makes use of as a black box.

• Stop-and-think questions. Dialogs that pop up when control reaches a particular line of code, and
require input from the user. UUhistle supports multiple-choice questions and questions that can be
answered with a single line of text.

• Other settings. Preset breakpoints. Disabling the Next Line button to force the learner to pause
after each small step. Etc.

The teacher may configure settings at different levels of granularity: for a specific example program, for
a unit of related programs, or for all the contents of a course config file at once.

A course config file can also be used to create visual program simulation exercises.
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13.4 Teachers can turn examples into visual program simulation
exercises

As described in the previous chapter, a visual program simulation exercise puts the learner in the driving
seat. Instead of watching an animation, the learner has to read the given code and manipulate UUhistle’s
visualization to execute the instructions, allocating and using memory to keep track of program state.

The learner can, through the Settings menu, enable visual program simulation for any program in
UUhistle. However, a more likely scenario is that the teacher first designs a selection of example programs
and places them in a course config file. In the config file, the teacher can then enable visual program
simulation for some or all of those programs (while disallowing the use of the Next Step and Next Line
buttons to simply view them). This turns the example programs into visual program simulation exercises.

How does a VPS exercise work in UUhistle?

13.4.1 To simulate a program, the learner directly manipulates the visualization
UUhistle provides the graphical elements that the learner directly manipulates to indicate what happens
during execution, and where, and when. Any execution step that UUhistle can display when animating
a program can also serve as a part of a VPS exercise: the learner can create variables and objects in
memory, evaluate expressions, assign values, manipulate the call stack, pass parameters, and so forth.

An introductory VPS example

Let us again consider the Python statement � � � � �, whose animation steps I listed on page 195 and
illustrated in Figure 13.2. Here is a corresponding list of simulation steps that the learner needs to perform
upon encountering this line of code in a VPS exercise.

1. Evaluate the subexpression � by dragging and dropping the variable’s value into the expression
evaluation area in the topmost frame.

2. Access the definition of the � operator by dragging and dropping it from the Operators panel to the
expression evaluation area.

3. Evaluate the literal � by dragging and dropping it from the heap to the expression evaluation area.
4. Apply the sum operator by clicking on it. The result appears in the evaluation area automatically,

replacing the arithmetical expression.
5a. (If the variable � exists already.) Assign the sum to � by dragging it from the evaluation area into

the variable. The previous value is automatically overwritten.
5b. (If the variable � does not yet exist.) Create the variable � by assigning the sum to it: drag the sum

from the evaluation area to the area reserved for variables in the active frame (once you grab the
value, an outline appears in the frame to highlight the possibility to drag the value there). Upon
dropping the value in the new variable, name the variable through the context menu that pops up.
The menu lists various identifiers that appear in the code from which to choose the name. (This
process is illustrated using a different example in Figure 13.9.)

After these steps, control automatically moves to the next line.

GUI rules of thumb

In general, the GUI operations needed to perform simulation steps are highly analogous to the animations
that UUhistle shows when viewing a program. Only a few different kinds of GUI interactions are used.
Nearly all the simulation steps fall into one of the following four general categories.

• To access the contents of a memory location, drag the appropriate element with the mouse and
drop it at the desired destination. The destination is either a variable (when assigning a value) or in
the evaluation area (when forming expressions). This works on values in the heap and in the stack
(including references), as well as on function and method calls and operators.

202



Figure 13.9: A visual program simulation exercise in UUhistle. The user is simulating the execution of
a small recursive program, and has just dragged a parameter value into the topmost frame
in order to create a new variable there. He is just about to name the variable using the
context menu that has popped up.

• To invoke a routine, click on the appropriate element (operator or function/method call) in the
evaluation area.

• To create a new element in memory (a frame, a function definition, etc.), click on the appropriate
memory panel. This brings up a context menu in which you get to select what to create. To bring
up the menu, you can click anywhere within the frame background or on the little plus in the upper
right-hand corner, which is there only to hint that the frame is clickable. Exception: variables are
created by dragging values, as described above.

• To move to a new line, click the line or its number. (This is not always required on default settings;
see below).

More examples of simulation steps

I will now briefly describe how to perform certain common simulation steps in UUhistle.
To deal with �� and �����, first evaluate the condition expression. Once you have ��	� or 
����

in the evaluation area, click the line that execution proceeds to. On default settings, UUhistle’s VPS
exercises mostly do not require the user to manually control the ‘instruction pointer’. With the exception
of branching instructions such as ��, UUhistle changes lines automatically as soon as the user is done
with the current line. This is one of many default behaviors that can be affected by an associated setting.

To evaluate �  � � � � �� � ��  �, first drag and drop the value of � into the topmost expression
evaluation area, then do the same for the  operator and the value of �. Evaluate the subexpression �  �

by clicking on the operator; the product appears in the evaluation area, replacing the subexpression. Add
the � operator, then the literal � from the heap. Apply the operator. Add the �. Add the value of �.
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Add another �, then the literal �. Now evaluate the subexpression � � �. Add a value of �, and click on
the operator. Add a � and the value of �, and apply the multiplication operator. You are left with two
numbers separated by a �. Finish up by clicking on the plus. This is the only step sequence for evaluating
the expression that UUhistle accepts without complaint. You must make sure to evaluate subexpressions
as soon as possible, but no sooner. This example illustrates how UUhistle leaves to the user the task
of keeping track of the order of expression evaluation. Parentheses are never explicitly manipulated in
UUhistle’s VPS exercises or animations.

Function calls involve a number of steps. First, access the function definition: drag and drop the
appropriate element from the Functions panel into the expression evaluation area. UUhistle automatically
provides ‘slots’ (expression evaluation areas) where you can evaluate function parameters – that is the
next step. Click the function call to signal the start of function execution. What happens next depends
on whether the function is a built-in or defined in the code that is to be simulated. In the case of a
built-in function (including ‘hidden code’; see Section 13.3 above), the function is immediately executed,
and a return value produced that replaces the function call in the evaluation area. Otherwise, you need
to deal with the function implementation in more detail, as follows. Create a stack frame by clicking
on the stack and choosing the appropriate option (New frame) from the context menu. Then pass the
parameters: drag each parameter value from the call into a new variable in the top frame. After all
parameters are in, execute the function body. The function call finishes with a return command: evaluate
the return expression and drop the result onto the calling expression in the frame below. The top frame
automatically vanishes from view.

To create an object, first click on the heap and select the appropriate type in the context menu. Then
create a reference by dragging the object to the evaluation area. Initialize the object by invoking an
�����	�� method (a constructor-like method in Python) on it, if it has one. Calling �����	�� or any
other method works just like calling a function except that you need a reference to the target object in
the evaluation area before you drag the method there.

Shortcuts

Assignment always involves evaluation of the right-hand side. Evaluation in UUhistle takes place in the
expression evaluation area. For convenience, however, UUhistle accepts ‘shortcuts’ in trivial cases such as

 � � or 
 � �: you can drag the value of � or the value � directly into the target variable without
first placing it in the evaluation area.

Similarly, a trivial return statement such as ��	��� ���� or ��	��� ����
� can be executed as a
single step by dragging the return value directly onto the calling expression in the second-from-top frame.
The ‘proper way’ of first placing the return value in the evaluation area of the top frame also works.

13.4.2 UUhistle gives immediate feedback

In a VPS exercise, the learner needs to pick the correct execution steps from among many alternatives.
There is plenty of room for making mistakes, as there should be, lest the VPS activity degenerate into
mere controlled viewing with an unwieldy user interface.

Learners may misunderstand the semantics of many programming constructs and pick the wrong kind
of execution step. They may use the wrong values or the wrong operators. They may not realize the
need to allocate memory for frames or objects. They may perform steps in the wrong order. Rather than
preventing mistakes like these, UUhistle allows the learner to make them and then gives feedback to help
the learner fix what is wrong.

Whenever the learner makes a mistake, a warning dialog pops up, accompanied by a change of colors
in the GUI; see Figure 13.10. The learner can disable the dialog as they become familiar with the system.

UUhistle encourages the learner to undo the incorrect step and try to find the correct solution. The
Info box mentions the type of error and links to further materials.

Figure 13.10 shows a couple of example links. Asking “What was wrong with that?” brings up a more
detailed explanation of what went wrong. The “What did I just do?” link invites reflection. It is possible
for the learner to perform simulation steps whose meaning they do not themselves understand; clicking
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Figure 13.10: UUhistle reacts to a user mistake during a VPS exercise. A generic explanation of the
problem appears in the Info box, with links leading to further reading. UUhistle uses the
color red as an alert for errors where the user has performed an entirely wrong sort of
execution step. When there is a ‘lesser’ problem with the step – e.g., the user assigns the
wrong value to the right variable – yellow is used instead.

on the link summons an explanation of the previous (possibly incorrect) step, much like the “Explain the
previous step” link in animation mode (cf. Figure 13.3).

UUhistle gives highly specialized feedback in some situations – for certain particular missteps
performed in certain particular conditions. These specialized feedback texts address specific programming
misconceptions that the student’s mistake may reflect and suspected specific misunderstandings
concerning UUhistle. Figures 13.11 and 13.12 show two examples of such feedback, which is accessible
through the “What was wrong with that?” links. Section 15.3 says more about the way in which UUhistle
is designed to address misconceptions.

In part because of the instant feedback, UUhistle’s VPS exercises are not invulnerable to guessing
and naïve trial-and-error strategies. These approaches are inconvenient because of the fairly large number
of options from which the next step is to be picked, but the persistent student may still rely on them.
When the user has trouble making progress – perhaps because of a naïve strategy – UUhistle attempts to
encourage a more reflective approach, as shown in Figure 13.13.3

13.4.3 Many varieties of simulation exercise are supported

I have described above a basic sort of VPS exercise supported by UUhistle. Through a course config file
(see Section 13.3 above), teachers can set up different kinds of visual program simulation exercises for
their students.

In a vanilla exercise, the user needs to simulate each execution step, with the exception of line changes
that do not involve explicit boolean conditionals (��s or �����s). For a more thorough simulation, the
teacher may require the learner always to change lines manually. This makes for more laborious exercises
but immerses the learner in control decisions. It is necessary for the learner not only to know which line
to jump to, but also to figure out exactly when the previous line is done with.

The teacher may also set up programs as animation/simulation hybrids. In a hybrid exercise, the learner
can view parts of the program using Next Step and Next Line (or Run until line), but has to simulate

3This is one of the features added to recent versions of UUhistle that are partially inspired by the empirical work that I
present in Part V.
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Figure 13.11: The user has created a new object when they should have merely formed another reference
to an existing object. UUhistle’s feedback – which the user accesses by asking “What
was wrong with that?” – seeks to address a suspected misconception concerning object
assignment.

Figure 13.12: The user is evaluating parameters in non-standard order. They have possibly thought
that the order does not matter and they might as well start with the simplest parameter
expression.
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Figure 13.13: UUhistle attempts to encourage reflection and discourage guessing. The “I have trouble
making progress” link, which brings up this dialog, appears in the Info box if the user
makes a sequence of two mistakes: misstep→undo→misstep.

key points manually. In the config file, the teacher can specify either that certain types of simulation
step must be simulated while others are animated (e.g., basic arithmetic is animated but function calls
are not), or that only particular lines of the program code must be simulated. For a line that is executed
multiple times, the teacher may specify that it must be executed manually a set number of times (e.g.,
one) but that later iterations are automatic.

It is possible to allow animation and visual program simulation simultaneously for a program example.
In this case, the user can choose at each step whether to view it or simulate it. This is probably mostly
useful for teachers experimenting with UUhistle.

The teacher may enable a tutorial mode (Figure 13.14) in which the Info box guides the learner at
each step. Even if the tutorial mode is disabled, the teacher may allow the learner to ask for similar ‘hints’
by clicking on the Hint button (the one with the question mark). A maximum number of hints allowed
per exercise can be set.

Just as when configuring program animation examples, the teacher can affect a VPS exercise’s
visualization settings, ‘hidden code’, stop-and-think questions, etc., as described in Section 13.3.

Again, for more details of the configuration options, see the web site ��������������	
�������.

13.5 UUhistle can automatically grade solutions

As UUhistle is capable of checking the correctness of answers, it can also do automatic grading. Teachers
can define grading policies for VPS exercises in the course configuration file. A point value can be set
for each exercise. The learner may be given a partial score for each correct step or may be required to
complete the entire exercise correctly to gain any points. Control freaks can fine-tune the relative values
of code lines. The effects of tutorial mode and hints (if enabled) on grading can be specified.

Stop-and-think questions (Section 13.3) can also be given point values. This can be used to award
points for viewing non-VPS animations.4

When the end of a graded example is reached, UUhistle asks the learner whether they wish to submit
their solution online. UUhistle can send solutions and grades as per the hypertext transfer protocol (HTTP
POST). This facilitates integrating UUhistle with a web-based course management platform, for instance.
Details on this process can be found at the UUhistle web site.

4Some teachers might wish to give point values for program animations with no multiple-choice questions, as a carrot for
bothering to load up and view the examples; UUhistle supports this, too.
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Figure 13.14: A VPS assignment in tutorial mode. The Info box guides the user. Clicking on “Show
where” highlights the part(s) of the visualization that the next step applies to. For instance,
here the function definition and the evaluation area are highlighted with a thicker, violet
border and an animated, flickering background color.

13.6 UUhistle is built to engage students with visualizations
UUhistle supports multiple ways of engaging with a visualization. Figure 13.15 illustrates how UUhistle
fits into the 2DET engagement taxonomy from Section 11.2.3.

Program animation in UUhistle, on default settings, is controlled viewing. It can turn into mere
viewing if the learner only plays the animation continuously instead of advancing step by step. Just
watching someone else work in UUhistle is also viewing, of course. Answering stop-and-think questions is
a form of responding.

Visual program simulation in UUhistle involves applying given visual elements to a program tracing
task.

In theory, learners could do visual program simulation on programs that they wrote themselves.
Technically, UUhistle supports this. In practice, however, VPS may be best used as a tool for instructional
design so that teachers create VPS exercises for students to solve (see Chapter 14). In terms of the
2DET, VPS is likely to work best with given content. The same goes for stop-and-think questions on the
responding level.

Working in the interactive coding mode (Section 13.2) is a variety of controlled viewing of own content.
More or less any program visualization can be presented to others. UUhistle’s visualizations are no

exception.5

13.7 The system is available at UUhistle.org
UUhistle v0.6, the newest release at the time of writing, is available free for non-commercial use at
��������������	
������.

UUhistle is written in the Java programming language. It can be run as an applet in a web browser
or downloaded as a standalone application.

There are two different builds of UUhistle available at the web site. The slightly simpler ‘lean build’
is essentially a client for ready-made example programs – animations and VPS exercises – that have been

5UUhistle provides little direct support for learners to present or share their visualizations. It does feature a markup pen
that can be used to draw on top of the visualization while the right mouse button is kept pressed. This may improve the
visualization’s ‘referencability’ (Hundhausen, 2005).
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Figure 13.15: UUhistle in the 2DET engagement taxonomy. Stars mark the forms of engagement that
UUhistle supports. However, the forms of engagement that correspond to the orange
stars in UUhistle are perhaps not sensible in practice. The circled star corresponds to the
recommended form of visual program simulation: learners applying given visualizations to
teacher-created programs. UUhistle provides little specific support for the presenting level
of direct engagement, but its visualizations can, of course, be presented to others.

stored in course config files. The full build additionally allows the user to edit program code, and open
and save source code files locally.

13.8 UUhistle has a few close relatives

There are other educational software visualization systems whose functionality overlaps with UUhistle’s.
Many systems were reviewed in Chapter 11; let us compare and contrast UUhistle with some of its closest
relatives.

13.8.1 UUhistle is the love-child of Jeliot 3 and TRAKLA2

Jeliot 3, described on page 165 above, uses the same level of abstraction and similar graphics as UUhistle
to visualize Java programs. When it comes to animating program execution as graphics, UUhistle is by
and large a Python equivalent of Jeliot 3. Jeliot does not support visual program simulation.

TRAKLA2 (Korhonen, 2003; Korhonen et al., 2009a) is an algorithm visualization system developed
within the same research group as UUhistle. Its standout feature is its support for automatically assessable
visual algorithm simulation assignments: the student starts out with a description of an algorithm and a
visualization of a related data structure, and uses GUI operations to directly manipulate the visualization.
The goal is to demonstrate and learn about how the given algorithm works. For instance, an exercise
might present the student with a pseudocode algorithm for adding values to an AVL tree, and the student
uses the GUI to show where and when nodes are added and rotated. As is typical with an AV system, the
level of abstraction in TRAKLA’s visualizations and simulations is high (Figure 13.16).

UUhistle combines the lower-level abstractions of Jeliot with the engaging mode of interaction in
TRAKLA2. One might say that UUhistle is to program visualization what TRAKLA2 is to algorithm
visualization.
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Figure 13.16: A visual algorithm simulation assignment in the TRAKLA2 system (image from Korhonen
et al., 2009a).

13.8.2 A few other systems feature support for visual program simulation

The Online Tutoring System (p. 181) and Dönmez and İnceoğlu’s visualization system (p. 179) each
support a limited form of visual program simulation. However, UUhistle differs from these tools in a
number of significant ways. UUhistle’s scope is wide: it supports a larger subset of a programming
language, including support for functions, user-defined classes, references, and recursion, among other
things. UUhistle also explicitly emphasizes the various uses of computer memory during execution, and
makes the call stack central to program state.

Another difference is in the use of graphics: UUhistle’s visualization is a graphical abstraction of
memory, while the Online Tutoring System was largely based on text, and Dönmez and İnceoğlu’s tool
makes heavy use of widgets such as dialogs, radio buttons, and drop-down lists, which the student uses
to select what the computer does next. Arguably, UUhistle’s user interface is less cumbersome than the
those of the other two tools, which require the user to repeatedly type in text in order to name identifiers
or specify the values of expressions. (We will have more to say about the details of UUhistle’s design
in Chapter 15.) The breadth of UUhistle’s feature set and configurability also appears to significantly
exceed those of the other two tools. Each of the three systems visualizes programs written in a different
language. Unlike the other two tools, UUhistle supports different modes of visualization use within the
same system.

The ViLLE system also features a form of VPS assignment, which is currently at an early stage of
development (see p. 181).

Gilligan’s PV system (p. 177) was based a similar form of user interaction to UUhistle’s VPS
assignments, and shared with UUhistle the goal of teaching novices about program execution. However,
Gilligan’s programming-by-demonstration approach was crucially different from visual program simulation
in that the simulations were used to create programs rather than trace the execution of existing ones.

Some other systems feature user-controlled simulations at different levels of abstraction. JV2M
(p. 183), for instance, supports a form of VPS at a bytecode level. ViRPlay3D2 (p. 177), on the
other hand, works at a very high object-interaction level. Both systems are based on three-dimensional
virtual-reality worlds, which sets them further apart from UUhistle.
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The intelligent tutoring system LISP Tutor (see, e.g., Anderson et al., 1989) featured a mode of
interaction similar to VPS, albeit without visualization: the learner was expected to input the stages of
expression evaluation of LISP programs.

Now that we have presented a definition of visual program simulation, and a supporting software system,
it is time to link VPS to learning theory.
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Chapter 14

Visual Program Simulation Makes Sense

In this chapter, I draw on the literature presented in Parts I to III to analyze visual program simulation and
explain why it is a sensible pedagogical approach in the light of learning theory and empirical research.

Throughout this chapter, I often refer to previous chapters and sections rather than directly to the
original literature; the reader will find literature references in those chapters and sections.

I have structured this chapter as follows. Section 14.1 establishes that VPS addresses important
educational concerns. Section 14.2 considers the importance of reading code in CS1 and how VPS serves
as a vehicle for learning to read code. In Section 14.3, I discuss the form of active learning that VPS
promotes and how it fits in with the software visualization literature. Section 14.4 explains why and how
a supporting software system is useful, if not critical to the success of VPS. Finally, Section 14.5 points
out a few of the main weaknesses of visual program simulation.

14.1 The literature widely highlights the importance of program
dynamics

Several strands of computing education research have suggested in different ways that a crucial challenge
in introductory programming is learning to reason about the behavior of program code as it runs. It is
this challenge that visual program simulation seeks to address.

14.1.1 VPS targets improved mental representations of program dynamics
In the psychology of programming literature, the challenge of program dynamics is sometimes phrased in
terms of a notional machine – an abstraction of a computer as the executor of programs of a particular
kind (Section 5.4). A notional machine implements the runtime semantics of programming language
constructs and takes care of the ‘hidden’ processes that make programs work. The importance of learning
about a notional machine has gained widespread agreement and empirical support in the literature, as
Chapter 5 showed in some detail. Below, I summarize the arguments and relate them to visual program
simulation.

Mental models of a notional machine

People form mental models of the systems that they interact with. For the novice programmer, one such
system is the notional machine that the student learns to control as they learn to program (Chapter 5). A
novice’s initial mental model of a notional machine is likely to be – typically of mental models in general
– incomplete, unscientific, deficient, lacking in firm boundaries, and liable to change at any time. It may
be based on guesswork that draws on superficial program characteristics such as keywords and identifiers.
Despite these shortcomings, the learner may feel comfortable with the model and rely on it while developing
behavioral patterns for programming. Novices may also use multiple, possibly contradictory models to
deal with different situations.

By contrast, experts’ mental models are more stable and accurate, and draw on general principles
rather than superficial characteristics. Learning should facilitate the evolution of students’ models so
that they have these features. Aiding mental model formation as early as possible is important, as
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changing an ingrained but flawed mental model is more difficult than helping a model to be constructed
in the first place. Mental model research further predicts that novice programmers can be expected
to have trouble transferring their mental models of a notional machine to an even superficially different
programming language unless the original model is well ingrained through a substantial amount of practice.
A programming teacher can affect the formation of mental models via a conceptual model, that is, an
explanatory device that is used to explicate the concepts behind the system.

In these terms, visual program simulation can be characterized as follows.

Visual program simulation combines a conceptual model of a notional machine with a

learning activity that teaches about the model. It aims to facilitate the formation of

principled, stable, and consistent mental models of a notional machine. VPS is a form

of practice that helps the student ingrain their mental model.

Misconceptions and difficulties with state

Many of novice programmers’ specific misconceptions and limited understandings can be explained by a
lack of a viable mental model of the notional machine (see Sections 3.4 and 5.4, and Appendix A). These
misconceptions often have to do with ‘hidden’ runtime mechanisms which are implicit in the concrete
code, such as parameter passing, constructors, and references. Perhaps the most significant are the
more general misconceptions about the nature of the computer or the programming environment, such
as attributing human-like cognitive capabilities to the computer.

The relationship of programming language elements to what happens during execution – underlying
memory usage in particular – has emerged as a major theme in misconceptions research and a
major educational challenge in introductory programming education. Psychological studies of program
comprehension have highlighted program state – keeping track of which is a central responsibility of a
notional machine – as the aspect of programs that is the most difficult to understand (compared to other
aspects such as control and data flow).

By making the notional machine explicit, visual program simulation aims to address

students’ misconceptions about computer capabilities. By explicating memory and the

effects of code constructs on memory, visual program simulation aims to address students’

misconceptions about those constructs and to help students reason about program state.

Programming schemas

One line of thinking within the psychology of programming literature is that the most important challenge
in learning to program is to learn to ‘put the pieces together’. In other words, the challenge is to learn and
apply higher-level schemas that suggest how to combine the relatively simple code instructions so that
they solve a particular kind of problem (see esp. Sections 4.4 and 5.6). These higher-level schemas (e.g.,
how to compute an average) build on lower-level ones that correspond to notional machine primitives
(e.g., how to assign a value to a variable or how to send a message to an object) and can themselves be
used as building blocks for ever more abstracted schemas.

Studies suggest that both novices and experts use a mix of top-down and bottom-up strategies when
writing and reading programs. Applying known schemas at a higher level allows the programmer to adopt
a more efficient top-down approach. Choice of strategy is determined by the availability of schemas
in the programmer’s repertoire: people use top-down strategies when possible, and resort to bottom-up
approaches when faced with difficult or novel problems for which they lack existing schemas. The complete
beginner does not yet have any schemas and will have to work on programs bottom-up, reasoning from
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the individual instructions of the programming language upwards, or try to apply a higher-level template
despite not understanding its ‘pieces’. The automation of low-level schemas is necessary for the successful
formation and application of complex high-level schemas.

Visual program simulation encourages the formation of lower-level schemas that

correspond to the constructs of the programming language and the behavior of the

notional machine. The lower-level schemas are the basis for understanding and applying

problem-solving patterns at higher levels of abstraction.

Tracing and debugging

Students have trouble with the key programming skill of tracing (Sections 3.3 and 5.5). Tracing is
needed when a schema-based top-down approach to program comprehension fails as a result of incorrect
expectations or bugs in the program. As novices do not have many schemas and their programs are
buggy, they need tracing even more often than experts do. In addition to being useful during program
comprehension and many debugging tasks, tracing is also an important part of the program design process.

In terms of mental model theory, tracing a program is the act of ‘running’ a mental model of the
program and the notional machine that executes it. Tracing a program that is behaving unexpectedly or is
of an unfamiliar variety requires a mental model that is robust, that is, based on general properties of each
program component rather than a specific configuration of code elements seen in a previously encountered
example. Experts tend to have robust mental models, whereas novices do not. Robust mental models can
be fostered by separating programming constructs from the functions they serve in particular programs,
by inspecting the constructs in isolation, and by using them in different construct–program configurations.

Semantics are defined for language primitives rather than their combinations. A notional machine
running a program is only concerned with those primitives, not with what surrounds it. VPS promotes the
ability to take a similar focus when needed. The student is to focus on each instruction to be simulated
locally, without caring – for the moment – about its function in the program. The correct action is
determined directly by the particular piece of code currently under consideration. This is in line with the
‘esthetic principles’ for robust models put forward by de Kleer and Brown (Section 5.2).

Visual program simulation is a way of practicing the stepwise tracing of programs, a

skill that is intended to be transferred out of the VPS environment and into authentic

programming situations. Especially if the program examples are designed in such

a way that they allow the learner to examine programming constructs in different

combinations, VPS examples can aid the formation of robust mental models that are

useful in debugging.

Tracing a program involves keeping track of the current state of the program run in terms of the elements
of a notional machine. To manage this the limitations of working memory, the programmer needs to
successfully select the ‘moving parts’ that they keep track of and a suitable level (or levels) of abstraction.
Expert programmers also often make use of external representations (e.g., the view of a debugger) to help
them to avoid cognitive overload. Novices are less adept at choosing what to keep track of and often fail
to make use of external representations. Visual program simulation may help here, much as many other
forms of program visualization can:
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The visualizations used in visual program simulation can serve as external status

representations that help the novice manage cognitive load while tracing a program.

The visualization may suggest to the learner what kinds of ‘moving parts’ it is useful to

keep track of while thinking about program execution. Using a visual program simulation

system might serve as a basic platform for learning to make use of external status

representations that are used by professionals (i.e., debuggers).

Program and domain models

Many studies of novice and expert program comprehension have been conducted, with a mix of results
(Section 4.6). One of the clearest areas of agreement is that when interpreting an actual program that
accomplishes a task, a successful comprehender forms models both of the program and of the problem
domain, and relates the two models. Teachers should therefore look for ways to foster the creation of
each kind of model. Where does VPS fit into this scheme of things?

Visual program simulation supports the formation of program models during program

comprehension, including the static and dynamic aspects of programs and their

relationship. VPS does not directly address the formation of domain models or the

linking of domain models to program models – such learning has to be facilitated in

other ways.

Teachers can certainly try to design and present visual program simulation examples in a way that
encourages the formation of domain models, but the simulation activity does not contribute directly
to domain knowledge as the perspective is that of a notional machine.

Studies cited in Section 4.6 have suggested that experts form both domain and program models, while
novices tend to focus on either the program model (perhaps especially when taught in the procedural
paradigm) or on the domain model (perhaps especially when taught in the object-oriented paradigm). A
conjecture from these results is that object-oriented novices in particular need help with the creation of
program models as their paradigm emphasizes the problem domain. If this is the case, VPS is potentially
of more assistance when used in an objects-early course or in some other form of CS1 that emphasizes
domain modeling.

14.1.2 VPS seeks to help students construct knowledge below the code level

Chapter 6 introduced several variants of constructivist learning theory. Visual program simulation is a
poor fit with those more extreme forms of constructivism that denounce ontology and educational norms.
However, it sits better with a more conservative constructivism that emphasizes the need to facilitate the
construction of viable knowledge that enables one to interact successfully with the world.

Ben-Ari’s interpretation of cognitivistically tinged personal constructivism (Section 6.7) gives a few
pertinent points for the programming teacher to consider. First, beginner programmers lack a model of
the computer that is effective for the purpose of programming. Second, students inevitably construct their
own understandings of what goes on beneath the level of abstraction that one teaches at, which in CS1 is
typically a level that corresponds to program code. And third, the computer forms an accessible ontological
reality and is a merciless, unnegotiating judge of the correctness of students’ knowledge. Taken together,
these points imply that students should be helped as early as possible to construct viable understandings
of the abstractions underlying program code, and guided to improve on any non-viable understandings
that they harbor as they enter CS1 or that they construct during their programming studies.
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Visual program simulation seeks to help the novice programmer construct viable

knowledge on a level of abstraction that underpins the code level that students usually

operate at. Part of this process is coming to see the non-viability of one’s existing

knowledge. Incompatibly with some forms of constructivism, visual program simulation

relies on the assumption that there are correct answers which are defined by the

technical reality of the computer.

14.1.3 VPS seeks to help students experience dynamic aspects of programming
The phenomenographic tradition of educational research (Chapter 7) sees learning primarily as qualitative
changes in the relationship between the learner and aspects of his experiential lifeworld. The most
significant moments of learning are those in which the learner gains the ability to perceive a phenomenon
in a different, richer way than before. Phenomenographic learning theory suggests that educationalists
must find the specific aspects of the content of teaching that are critical to such qualitative changes in
learning.

Phenomenographic work within CER (Section 7.5) has underlined a key early challenge in introductory
programming education: novice programmers have trouble learning to think about programs not only
statically in terms of program code, but as dynamic runtime entities. Analogous results have been
discovered regarding programming in general, which is sometimes experienced merely as writing program
text and not in terms of controlling execution, and also regarding specific programming concepts (object
and class) that are sometimes perceived merely as pieces of code. The pedagogical solution to this
problem, from the phenomenographic point of view, is to help learners become focally aware of the
execution-time behaviors of programs and their relationship with instances of program code.

Visual program simulation seeks to create situations that encourage learners to focus

on the execution-time behavior of programs as they are run by a computer. This

enables learners to discern a dimension of variation corresponding to programs’ dynamic

behavior. Further, focusing on program code and behavior simultaneously allows learners

to discern the relationship between these two aspects of programs.

14.1.4 VPS seeks to help students across the threshold of program dynamics
Like phenomenography, the theory of threshold concepts (Chapter 9) also emphasizes the importance of
the content of learning for pedagogy. The theory maintains that within curricula there are particularly
powerful – but troublesome – discipline-specific concepts or ideas that lead to new kinds of thinking and
practicing and new opportunities for learning. These threshold concepts demand a focus on teaching and
learning, even at the expense of other important concepts, as failing to master a threshold concept may
make further learning difficult or even impossible.

Program dynamics is a plausible threshold concept in computer programming as it appears to have the
main characteristics of such concepts. It is integrative, explaining relationships between other programming
concepts. It is transformative, as mastering it leads to a dramatically different dynamic view of programs
as ‘more than just code’ and makes possible a new kind of reasoning about programs through tracing.
It is troublesome for many learners, as is well documented in the research literature, partially because it
tends to be part of experts’ tacit ‘obvious’ knowledge. It tends to be irreversible in the sense that learners
do not forget it once they master it and have difficulty understanding how someone who is yet to cross
the threshold thinks. It sits at a boundary between schools of thought within the discipline of computing.
Finally, learning about program dynamics involves making a universal, everyday idea – state – central to
discipline-specific thinking, a feature that also appears to characterize many threshold concepts.
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Visual program simulation seeks to promote a teaching and learning focus on the

candidate threshold concept of program dynamics. Crossing this threshold is a crucial

early step in helping novices to think about and work with programs as programmers do.

Failure to cross it is a serious barrier to further learning and may result in a significant

waste of time and energy on the part of both learners and teachers.

14.2 Reading code contributes to other programming skills

Visual program simulation is an activity that is based on reading program code. Reading code is, of course,
a useful professional skill in itself, but is also useful in education because of its impact on the development
of other skills. I have presented the foundations for the arguments in this section in Chapters 2 and 3,
and Sections 4.5 and 10.1.

14.2.1 VPS is a stepping stone towards writing code

Some recent work in CER has sought to establish the relationships between learning to trace, explain,
and write program code (Chapter 3). If there exists a learning hierarchy in which the ability to trace code
precedes the ability to explain comparable code, which, in turn, precedes the ability to write similar code,
then it would make sense to start students off with code-reading assignments and progress from there
towards writing. This could alleviate the problem that was highlighted by the educational taxonomies
discussed in Chapter 2: the typical goal of CS1 education (writing original programs) is cognitively very
demanding for the introductory level.

Visual program simulation directly targets the third level of (the revised) Bloom’s

taxonomy: students apply their knowledge of programming constructs and the notional

machine to simulate program execution. This category has a cognitive complexity that

is appropriate for introductory courses.

Clear evidence of a learning hierarchy has not emerged, and some studies have highlighted significant
challenges in transferring tracing knowledge to code-writing situations. Nevertheless, recent studies
suggest that even if there is no strict hierarchy, the skills of tracing, explaining, and writing can reinforce
each other, and it makes sense to nurture their development in tandem.

Visual program simulation seeks to aid the development of code-reading skills both for

its own sake, and for its supporting role in the development of code-authoring skill,

which is the primary goal of programming education.

VPS assignments, like all program visualizations of notional machines, focus on exposing how programs
work, not on the steps involved in creating programs. VPS trains students in tracing skills, which may be
of more direct benefit in building debugging skill rather than program-writing skill. While tracing is not
needed in all debugging situations, it is needed in many of them, and debugging is, of course, a necessary
skill for any substantial code-authoring project.
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14.2.2 VPS exercises can have elements of worked-out examples and unsolved
problems

Let us again consider Table 10.1 on page 122, which gives a rough overview of different approaches to
teaching CS1. Where does visual program simulation fit in?

There is some leeway in how visual program simulation can be used. VPS assignments can be done
individually or in groups. They can be offered to students ‘because they will be useful later’ or can play
a part in a more inquiry-driven curriculum (e.g., “How is it possible that this is what happens when
this program runs?”). They can feature planlike programs with explicit goals and subgoals (although
accentuating high-level goals is not a part of VPS itself) or unplanlike programs that students simulate
to improve on their low-level schemas. They can perhaps be used to present contextualized examples as
well as decontextualized ones (although this may be challenging in practice; see Section 14.5 below).

Overall, however, it is clear that visual program simulation is a form of direct instruction and matches
many of the features listed on the right-hand side of Table 10.1. VPS exercises promote learning about
fundamentals rather than direct practice of authentic professional skills. They use given programs rather
than have students design their own. They involve reading rather than writing. They are small, closed,
highly structured, and address teacher-set goals and content. They involve an artificial form of assessment.

Visual program simulation is a tool for measured instructional design when teaching

about fundamental programming concepts. It serves to lay a foundation for completing

larger, more complex, and more authentic tasks that can be interleaved with VPS

exercises.

Worked-out examples of writing code

Table 10.1 also contrasts having students solve problems and having them study worked-out examples,
i.e., expositions of solutions. Worked-out examples can be used in instructional design as a device for
managing cognitive load (Section 4.5) and thereby to foster schema formation and learning in general. A
weakness of worked-out examples is that they may not engage learners to study them carefully enough.
Interspersing worked-out examples with problem-solving tasks has been shown to be an useful pedagogical
strategy.

A programming problem generally means writing a piece of code in order to do something – either
something that is directly useful or something intended merely to serve an educational purpose. The
simplest type of worked-out example for such a problem is an example program: the learner can study
the way an expert has put together language constructs and the way the constructs combine to produce
program behavior. To the extent that experts forward-develop the kinds of simple programs shown to
novices, a piece of code also exposes something of the sequence of steps involved in creating the program.1

A visual program simulation exercise can serve as a type of worked-out example of

program writing, as it presents program code for the learner to study. In this way, it

can serve to manage cognitive load and aid the formation of programming knowledge.

The manner in which a VPS exercise can serve as a worked-out example is defined (and restricted) by
the particular VPS example and its documentation. An ‘unplanlike’ piece of code that does not address
meaningful high-level goals is only an example of how a few constructs can be put together in order to

1Merely presenting the code and how it works is nevertheless only a limited sort of worked-out example. A more elaborate
worked-out example would clearly explicate the expert’s reasoning while writing the code, and dissect the program in terms
of its subgoals and their solutions.
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examine what they do.2 A more ‘planlike’ program will also serve as an example of applying higher-level
plans to solve a problem. The downside of planlike programs is that they tend to be lengthier and more
laborsome to simulate visually.

Problematizing program animation

When it comes to the topics of program tracing and the behavior of a notional machine, a visual program
simulation is not a worked-out example but an educationally motivated problem that demands to be
solved. Program animations – that is, merely viewing execution – can be seen as worked-out examples
that correspond to visual simulation problems.

The second nature of VPS assignments as tracing problems may mitigate a recognized weakness of
worked-out examples, namely, that students sometimes fail to engage with the examples provided. An
explanation of how the example program works is only gradually uncovered during a VPS exercise, and the
learner has to work to access it. Hypothetically, the interaction that VPS assignments demand increases
the average student’s germane cognitive load compared to program animations, as VPS requires the
student to anticipate future solution steps.

Visual program simulation is a way of problematizing the execution of programs and the

behavior of a notional machine on a level of abstraction lower than program code. It is

a way of presenting students with execution-related problems for which more passive

program animations can, in turn, serve as example solutions. The interactive nature of

VPS is a way of encouraging and requiring students to pay attention to examples.

14.3 Visual program simulation makes active use of visualization
Many theories of learning have been used to support the use of program visualization, among them
mental model theory, constructivism, and the phenomenographic theory of variation (Section 10.3).
Program visualization also has a credible track record in CS1 education, and various studies have reported
a positive impact on learning from using a program visualization system (Section 11.3). Reviews of
software visualizations in education have generally concluded that visualization can be effective, but is
not a panacea.

14.3.1 Visualizations work best with active engagement

Actively engaging learners with visualizations has been suggested as an important factor in the educational
success of a visualization (Section 11.2). This is in line with advice from educational research and various
learning theories that emphasize the role of active learning (see Part II).

What this means is that merely showing students a notional machine in action may not be enough,
as this method fails to engage some learners enough for them to really study the visualization and make
the notional machine a part of their own thinking. Further means of activating the learner are needed.

Applying a visualization

Researchers in CER have proposed taxonomies of increasingly engaging ways of interacting with a
visualization; I proposed one such taxonomy myself in Section 11.2.

The simplest way to use a visualization is just to look at it, which may work if the learner is motivated
enough to study the visualization in depth, but is likely to fail otherwise. A slightly more engaging activity
is for the learner to control the viewing of a visualization in one way or another; this form of engagement

2This is also an authentic practice; experts write and study unplanlike programs when learning a new language, for
instance.
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features prominently in many program visualization systems which allow the learner to move through the
execution of a program step by step at their own pace.

According to proposed taxonomies, responding to questions about a visualization is the next step up
in engagement. This, however, depends greatly on the questions. It is possible for questions to point
the learner’s attention to important issues within the content of the visualization. A possible downside
to posing questions is that they may direct the learner to focus narrowly on the specific issues that are
asked about. Many questions about content may not in fact require the learner to actually understand
the visualization. While understanding the visualization is not an end in itself, failing to engage with the
visualization makes it unhelpful as a learning aid and does prevent the visualization from being used as a
platform for thinking. Some common types of question are also vulnerable to guessing.

More engaging still than responding to questions is to manipulate visual components to carry out a
contet-related task. This is where VPS fits in (see Section 13.6).

Visual program simulation is a way of engaging with a visualization of program execution.

It involves a form of direct engagement with a visualization that calls for a cognitive

investment beyond that required for merely controlling execution or responding to

occasional questions. Having the learner apply visual components to show how execution

proceeds invites him to study the meaning of the visualization and to make the meaning

part of his thinking. The requirement to interact with the visualization is likely to

increase time on task compared to passive visualization; part of the hypothesized effect

of VPS is due to the additional time spent on studying the example programs provided.

Manipulating the hidden

VPS requires the learner to manipulate what is normally hidden and automatic.
I observed in Section 9.4 that since threshold concepts tend to be abstract and tacit in expert

knowledge, it is not a trivial matter to follow the advice of the theory’s creators and engage students in
manipulating the conceptual material. This, however, is precisely what visual program simulation intends
to do with the possible threshold concept of program dynamics. Unlike in a programming exercise, in
which learners work primarily at the code level, visual program simulation calls on the learner to manipulate
what is usually not seen.

Not only does visual program simulation make program dynamics – a perspective which is

commonly automated by a computer and is often tacit and ‘obvious’ in expert knowledge

– visible, it also invites students to manipulate this ‘hidden’ conceptual content both

mentally and concretely. This follows advice from the threshold concepts research

community.

An interesting parallel can be drawn between the way VPS requires the learner to simulate what can be –
and usually is – automated and Wickens and Kessel’s studies of process control training. To recapitulate
from page 57 above, Wickens and Kessel found that people trained to manually control the behavior
of a complex system formed better mental models of it than people who were trained to monitor the
system as it was running automatically. The former group were able to transfer their learning to system
monitoring and fault detection, while the latter group had trouble transferring theirs to manual control
and performed worse on fault detection tasks. Similarly, an active hand in controlling programs may make
a better notional machinist of the novice, even if such manual control will not be a part of their eventual
routine as a programmer.
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14.3.2 Using a given visualization has practical benefits
What about the highest levels – present, create – of the engagement taxonomies in Section 11.2? Why
should every teacher not just have students present visualizations to others and create novel visualizations
from scratch?

Presenting visualizations and creating novel ones is a viable way to learn about algorithms (see
Hundhausen, 2002). The higher levels of the direct engagement could also be a part of visual program
simulation. Learners could present how they simulate the execution of a program (although it is debatable
if this would engage them any more than presenting a program animation). Instead of using a given
visualization such as the one in UUhistle (on the applying level of the 2DET), a program simulation task
could require them to design their own way of visualizing a notional machine (on the creating level) and
using it to explain the execution steps of programs.

However, my discussion of VPS and the UUhistle system is primarily concerned with VPS realized as
applying. The reason is that engagement is not all, and when it comes to program visualization in CS1,
this level of engagement may be more feasible than the higher levels.

Designing a novel way to visualize program execution requires great cognitive involvement. Successful
creation will doubtless be useful in leaning about program dynamics, but the risk of cognitive overload
must be considered. Moreover, creating a program visualization may be next to impossible with fragile
knowledge of the notional machine. Even using a ready-made external representation of execution is
challenging enough if one has a vague or fragile understanding of the content, let alone creating a
meaningful and useful representation oneself (Vainio and Sajaniemi, 2007). Fragile knowledge is very
common in CS1. Asking students to create a novel, correct visualization of a notional machine would
certainly be a way to require them to learn about program dynamics, but might not be the best way to
help them learn.

It is also pertinent to wonder if creating novel program visualizations places too much of an emphasis
on visualization design at the expense of other useful CS1 activities. The time investment is substantial
even if learners do not need to go for a polished look. Having novices devise a generally viable way to
visualize program execution is a big ask and will involve a long process. The presenting level suffers from
some of these same weaknesses, albeit to a lesser extent, while engaging on the lower levels probably
requires less time on average. A reasonable instructional strategy might be to use a judicious mix of
engagement levels, as the creators of the original engagement taxonomy indeed suggested (Naps et al.,
2003): some presenting here, maybe a bit of creating there, combined with the staples of applying and
controlled viewing, with the occasional stop-and-think question to address some key points.

Visually simulating a program by applying a given visualization engages programming

beginners in a balanced way that is intended neither to be cognitively overwhelming

nor to require an excessive time investment. VPS seeks to temper fragile knowledge

rather than rely on it. It can be used in combination with other forms of engagement.

Last but not least, one practical weakness of presenting and creating visualizations is that humans are
needed to give feedback on presentations and designs. In large introductory courses with limited resources,
automatic assessment is very valuable (Section 10.1.4). Even if the use of visualizations is not graded or
resources are available for grading by other means, the ability to have a system produce timely feedback
to learners is a great boon. As the UUhistle system demonstrates, this is feasible on the applying level of
engagement.

Which brings us to our next topic.

14.4 Tools make visual program simulation practical
It is possible to get a pen-and-paper approach to visualizing program states to work reasonably well. Gries
and Gries, for instance, have used such an approach with some success (Section 10.3), although they,
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too, later decided to develop a software tool (Memview from Section 11.3.2). Nonetheless, a system that
facilitates VPS can be very valuable if not critical to the success of a VPS approach.

14.4.1 Tool support facilitates convenient practice
Some of the benefits of using software visualization systems are automation, consistency, and speed.
A particularly noteworthy advantage of a program visualization system compared to pen-and-paper
visualization and kinesthetic simulation in class is that a system makes it convenient and quick for learners
to work on many example programs. Such practice can be done at any time, irrespective of class hours
and at the student’s own pace. The system provides a visualization so that the learner does not need to
spend time drawing. Going back and forth in a dynamic visualization is simple in a tool but inconvenient
on paper.

A programmer will only be able to program efficiently if he or she does not need to actively process
the semantics of each language construct and how it solves a small subgoal of the complex problem at
hand. The schemas corresponding to these low-level goals must be automated so that they do not tax
working memory. Similarly, to form schemas on higher levels of abstraction, working memory must not
be taxed by the details of each lower level. Research in cognitive psychology (Chapter 4) suggests that
first forming and then automating a schema takes prolonged practice.

Visual program simulation supported by a software system enables learners to

conveniently practice execution-related topics. Deliberate practice helps learners form

and automate the low-level schemas that complex activities build on.

14.4.2 A tool can give timely, automatic feedback
One of the benefits of a (bug-free) program animation is that unlike a human drawing a visualization,
it does not make mistakes. All a program animation system does, however, is ‘show how it really goes’.
Program animation does not necessarily lead the learner to experience cognitive conflict (Section 6.5)
between their conceptual structures (misconceptions) and the reality of the notional machine, unless
the learner actively seeks to do so. A visual program simulation system such as UUhistle makes use of
the computer’s ability to automatically determine the correct answer without forgetting that the human
tendency to err also plays a part in learning.

Visual program simulation supported by a software system can be designed to allow

learners to make mistakes in tracing a program. When mistakes occur, a system can

help the learner (and the teacher) by giving automatic feedback in a timely fashion.

Feedback tailored to the learner’s own mistakes can help the learner to experience

cognitive conflict between misconceptions and what is shown as the correct answer. An

automated system can give feedback continuously, at each step of the simulation task.

14.4.3 Automatic assessment is a way to encourage engagement
Providing a learning resource to students is not the same as getting them to use it, and allowing students
to engage with a visualization is not the same as getting them to engage with it. Asking CS1 students to
use visualizations when tracing programs, or suggesting that the debugger is quite a useful tool, is not at
all guaranteed to work. What is more, some students (and teachers, too) consider that stopping to cover
underlying principles is a waste of time which could be better spent on writing programs, no matter how
unlikely or fortuitous any success is without a viable understanding of those principles.
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A crucial tool with which teachers can affect what students in formal education do – and what they
learn – is assessment. If we want our students to learn the ability to trace the execution of programs
in terms of a notional machine, then that is what they should practice and that is what they should be
assessed on (cf. Biggs and Tang, 2007).

Just as a software system is capable of giving feedback about the execution of a program, it is capable
of automating grading, and can be used to perform a part of the normative assessment of a programming
course.

Visual program simulation tasks can be normatively assessed by a software system.

This makes possible the automatic assessment of knowledge about a notional machine.

Assessment can play a role in getting students to pay attention to the visualization.

14.5 But visual program simulation has weaknesses, too
I have pointed up some positive aspects of VPS. Now let us look at a few negative ones.

14.5.1 VPS is not an authentic professional activity

Many forms of constructivism (Chapter 6) suggest that knowledge is highly context-dependent and the
best way to facilitate learning is to have learners work on authentic tasks in complex, realistic contexts.
Accordingly, learning to program should be a matter of working on complex, ill-structured, realistic,
intrinsically meaningful programming projects, preferably in groups (Section 10.1).

The theory of situated learning (Section 6.6) is particularly big on these matters, and states that
learning occurs through participation in a community of practice. Learning that is to be useful in a
professional community should not be taught in a decontextualized school, but in that professional
community, by making novices legitimate members of the community and having them participate in
experts’ work in some useful capacity, however peripheral.

Artificial simulation

Visual program simulation is not an activity that professional programmers engage in, and having novices
perform it as part of their formal schooling is not a form of participation in the professional community.
Many constructivists would undoubtedly worry about whether VPS will result in the development of
skills that are only useful within the educational institution, perhaps only within the VPS system and
its associated assessment mechanisms. Visual program simulation is precisely the kind of inauthentic
practice that some would label “drill and kill” (but that does serve a purpose, as the previous sections
have established).

Artificial assessment against well-defined correct answers also goes against the grain of those
constructivists who question the idea of teachers setting standardized goals for their students in the
first place. Visual program simulation is not in itself a way of enabling learners to create new programs
whose quality and meaningfulness could be assessed by teachers and students in collaboration. Instead, it
requires the learner to follow steps in a process that smacks of the sort of “knowledge replication” whose
undesirability various constructivists underline (Section 10.1). From a constructivist point of view, VPS
can nevertheless be seen as a form of scaffolding along the way to being able to create programs, which
continues to be the main goal of programming education.

The challenge of contextualized content

Apart from the issue of real communities of practice, there is another matter that concerns the relationship
between visual program simulation and programming context.
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The easiest examples for a programming teacher to create are decontextualized toy programs that
illustrate a point without being complicated by domain concepts and application code. As potential
content for visual program simulation, such programs have the significant advantage that they have been
pared down to the barest of essentials and involve a small number of simulation steps for the user to
perform. This prevents the VPS exercise from becoming very long and tedious.

Using contextualized examples has clear advantages when seen from a constructivist point of view.
Even if the programming course is not contextualized in a way that takes the students’ specific future
professions into account, using examples with real-world significance can be a great way to motivate
students (see, e.g., Pattis, 1990; Media Computation teachers, n.d.). However, adding a realistic problem
domain makes designing practical VPS exercises considerably more challenging. The example author will
need to consider the trade-off between the benefits of a real-world problem domain and the ‘clutter’ that
adding a domain brings into the visualization and the simulation task. Obviously, the issue is highly
domain-dependent and also greatly affected by the level of abstraction used during VPS.

In mitigation, the decontextualized toy programs used in education do resemble the sort of ‘foobar
programs’ that professionals actually write in authentic contexts, such as when learning a new programming
language or trying out a new technology.

A trade-off between authenticity and direct engagement

The 2DET engagement taxonomy (Section 11.2) provides another framework for discussing task
authenticity in visual program simulation, in contrast to other forms of program visualization.

When professional programmers use program visualization tools to visualize program dynamics, it
is typically on the controlled viewing level of direct engagement, most commonly in a visual debugger.
Different use cases involve different levels along the content ownership dimension of the 2DET, up to and
including programs entirely written by the programmer.

Controlled viewing of various kinds of content is exactly the sort of engagement that most program
animation systems for CS1 support (Section 11.3). Compared to these systems, visual program simulation
involves a trade-off: it sacrifices the authenticity of controlled viewing in order to provide a higher degree
of direct engagement and encourage learners to make use of the visualization.

A related limitation of visual program simulation – at least on a detailed level, as in UUhistle – is that
VPS is effectively constrained to the lower levels of the content ownership dimension. Nothing actually
prevents students from visually simulating programs that they wrote themselves, but this does not seem a
very fruitful direction in practice. Not every program makes a good VPS exercise, and novices’ solutions
to programming problems often do not. Many learners would be quite annoyed by having to manually
simulate a program after managing to write it, especially when using a program animator or debugger is
also an available option should they wish to examine or present their creation’s behavior.

Lessons learned?

In Sections 6.6 and 6.8, I presented critiques of the situated and constructivist theories of learning, some
of which can be summarized as follows: complexity and authenticity are not always good; not everything
needs or should be learned in context especially in high-tech fields; knowledge transfer is difficult but does
happen; it makes sense sometimes to rely on a notion of correctness, especially when it comes to the
technical reality of the computer; repeated practice is important for some learning. Even many critics
agree that constructivist and situated theories can teach us important lessons about learning, but that
extremist proponents of these theories take things too far.

What can we learn from the critical views of visual program simulation I have presented in this section?
An acknowledged weakness of visual program simulation is task authenticity. The risk of bringing

about learning that fails to transfer outside the VPS system or outside programming courses must be
taken seriously. Teachers must also be aware of the possibility of students questioning the legitimacy of
VPS as a meaningful activity.3 Authentic, motivating problems with real-world significance are important

3The empirical work that I will present in Part V supports the notion that knowledge formed during VPS can be transferred,
but also underlines the fact that teachers need to support this transfer.
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in programming education. As VPS does not address this need, teachers must cater for it in other ways,
using a combination of complementary approaches.

Compared to the more common technology of program animation, VPS sacrifices some task
authenticity for a greater degree of direct engagement between learner and visualization. Teachers must
acknowledge this trade-off and also present learners with more authentic ways of using tools; again, a
combination of different instructional strategies may be the best bet. One way to combine these modes of
working with programs (in UUhistle, for instance) is to visually simulate teacher-given problems in order
to learn about programming fundamentals and the visualization itself, and then make use of the same
visualization in program animation mode to debug the learner’s own creations.

I close the topic of task authenticity by noting that while the visual program simulation activity itself
is not authentic, the activity that it is designed to teach about – program tracing – is very much so.
Thinking about the execution of programs is something programmers really do; looking at visualizations
without thinking about what they mean is not!

14.5.2 VPS involves a usability challenge and a learning curve

In visual program simulation, some of the complexity of program execution – which is usually taken care
of by the computer so that we do not have to – becomes the learner’s responsibility. Of course, the learner
must not be required to take care of every single bit and byte, but needs to engage in the learning of key
concepts. If the learner’s task is oversimplified, VPS becomes mere program animation with an unusual
interface. Nevertheless, VPS must be easy to use in order to be practical.

The interface of a VPS system must be easily learnable and convenient to use, and must not add too
much extraneous cognitive load so as to detract from learning the content of the visualization. At the
same time, it must be powerful enough to allow various manipulations of the notional machine. The task
that the learner must perform is not very similar to anything that they are likely to have done in the past.
Usability is a significant challenge.

Learning to use

Petre and Green (1993) found that inexperienced users of a visualization tend to get confused during a
‘reading’ of the visualization, and fail to make strategic use of it or even to notice what useful information is
present. Ben-Ari (2001b), among others, has warned programming educators that non-trivial visualizations
must be used in the long term so that users have time to become familiar with the tools used and the
nature of the visualization. These concerns are highly pertinent in the case of a visual program simulation
system such as UUhistle and its intricate controls.

A couple of isolated VPS exercises thrown into a CS1 course will have a significant overhead. It is
also unlikely that a single short exercise will have much of an impact on its own. VPS probably needs
to be used in a good number of exercises, preferably over a number of weeks at least, to be worth the
bother.

Easing in features gradually as they become necessary (which UUhistle does; see Section 13.1.4 above)
is a way of making the learning curve steeper.4

I discuss the usability of UUhistle in more detail in the next chapter.

14.5.3 VPS infantilizes the curriculum, Dijkstra would say

Visual program simulation will not help very much if you already have a dynamic perspective on program
execution and know how to trace programs, and if programming concepts come to you easily. As we know
from the early chapters in this thesis, this is not the case for many CS1 students. Nevertheless, we must
not ignore those who come in with significant programming experience or who find it relatively easy to
learn to program.

Ideally, only those students who need it and whom it helps would engage in visual program simulation.
Fully succeeding in such an endeavor in any class let alone a large one would be quite a feat. Compromises

4Steeper in the positive sense of ‘fast to make initial progress on’.
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may be necessary; at the very least we should design VPS exercises in such a way that our stronger students
are not wasting a great amount of time on something that merely bores them.

Consideration of the stronger students raises a number of questions. Am I making a mountain out
of a molehill? Does VPS simplify what should not need so much simplification to be learnable, or worse,
what must not be simplified? Does VPS in fact promote a naïve view of computing?

In 1988, a much-publicized and highly controversial manuscript by the celebrated computer scientist
Edsger W. Dijkstra challenged the way computer science is taught. Dijkstra proposed a radical departure
towards a CS1 that is very explicitly and formally grounded in mathematics and logic, and in which
computers and notional machines play no part. While he was at it, Dijkstra singled out software
visualization as a particularly ill-advised and contemptible form of curriculum infantilization that prevents
students from embracing the radically different way of thinking that formal methods – and therefore also
programming – require. Dijkstra’s opinion piece and some of the ensuing critical debate were subsequently
published by ACM (Dijkstra vs. al., 1989).

While the educational change Dijkstra advocated has not materialized, it is enlightening to stop to
imagine what he would have thought about visual program simulation. I have attempted to do so in
Figure 14.1. The interested reader may also wish to take a look at Tedre and Sutinen’s (2008) overview
of the three traditions of computing – mathematical, scientific, and engineering – and the implications of
this tripartition for computing educators.
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Figure 14.1: Facing Edsger W. Dijkstra in court

Bailiff: All rise. In the matter of the computing community vs. Sorva, the court is now in session, the Honorable Peter J.
Denning presiding. Please be seated and come to order.

P. J. Denning: We are here to discuss charges of aggravated curriculum infantilization and computer use in the first degree.
Prosecution, please proceed.

E. W. Dijkstra: We have been exposed to a demonstration of what was pretended to be educational software for an
introductory programming course. With its “visualizations” on the screen, it was such an obvious case of curriculum
infantilization that its author should be cited for “contempt of the student body,” but this was only a minor offense compared
with what the visualizations were used for. They were used to display all sorts of features of computations evolving under
control of the student’s program! The system highlighted precisely what the student has to learn to ignore; we must expect
from that system permanent mental damage for most students exposed to it.

Automatic computers are a radical novelty that one has to approach with a blank mind, consciously refusing to try to link
history with what is already familiar. This the defendant, a true believer in gradual change and incremental improvements,
is unable to see.

I have heard students and faculty speak of programs wanting things, knowing things, expecting things, believing things,
etc. The anthropomorphic metaphor – for whose introduction we can blame John von Neumann – is an enormous handicap
for every computing community that has adopted it. The analogy that underlies this personification is so shallow that it is
paralyzing. Because persons exist and act in time, its adoption effectively prevents a departure from operational semantics
and, thus, forces people to think about programs in terms of computational behaviors, based on an underlying computational
model. This is bad because operational reasoning is a tremendous waste of mental effort. We must learn to work with
program texts while temporarily ignoring that they admit the interpretation of executable code. We should reason about
programs without even mentioning their possible “behaviors.”

[Proceedings are interrupted by a deranged computer engineer who would rather continue to act as if it is all only a matter
of higher bit rates and more flops per second. After a brief but spirited chase, he is caught and detained.]

E. W. Dijkstra: I would like to invite you to consider the following way of doing justice to computing’s radical novelty in an
introductory programming course. This is a serious proposal and utterly sensible.

It really helps to view a program as a formula. First, it puts the programmer’s task in the proper perspective: he has to
derive that formula. In order to train the novice programmer in the manipulation of uninterpreted formulae, we teach it more
as boolean algebra, familiarizing the student with all algebraic properties of the logical connectives. The essential thing is
that for whatever we introduce, the corresponding semantics are defined by the proof rules that go with it. Right from the
beginning and all through the course, we stress that the programmer’s task is not just to write down a program, but that his
main task is to give a formal proof that the program he proposes meets the equally formal functional specification. Finally,
in order to drive home the message that this introductory programming course is primarily a course in formal mathematics,
we see to it that the programming language in question has not been implemented on campus so that students are protected
from the temptation to test their programs.

[Proceedings are interrupted by a deranged mathematician who would rather continue to believe that Leibniz’s Dream of
providing symbolic calculation as an alternative to human reasoning is an unrealistic illusion. After a brief but bloody scuffle,
she is caught and detained.]

E. W. Dijkstra: Confrontations with insipid “tools” of the “software visualization” variety have confirmed my initial suspicion
that we are primarily dealing with yet another dimension of the snake-oil business. The defendant, like the “software
engineering” profession as a whole, has accepted as his charter “How to program if you cannot.”

If I look into my foggy crystal ball at the future of computing science education, I overwhelmingly see a depressing picture.
The universities will continue to lack the courage to teach hard science; they will continue to misguide the students, and
each next stage of infantilization of the curriculum will be hailed as educational progress. I ask you, members of the jury, to
convict this criminal, even if it is merely an exercise in futility whose only effect is to make him feel guilty.

The prosecution rests.

P. J. Denning: Thank you. The jury will now listen to the expert testimonies of several recognized computing professionals.

W. Scherlis: I am troubled by DA Dijkstra’s suggestion that certain modes of thinking be avoided in problem solving. A
successful problem solver will have a broad array of means at hand to tackle problems together with the maturity to make
choices of which means are appropriate to circumstances. For the programmer, one of the means available is the use of
informal operational intuition. Of course, this does not excuse failures to think intensionally when appropriate. It also does
not excuse failure to come to grips with underlying computational models.

continues on next page

227



Figure 14.1 continued

M. H. van Emden: I think the course described by Mr. Dijkstra, where students derive programs from logic specifications
into an unimplemented language, is a great idea. However, it will only work if the symbols manipulated have meaning for
the players. And I do not see where that meaning can come from other than having messed around with programs that run
or fail to.

J. Cohen: I feel that learning the foundations for writing sound programs ought to be fun and there should be a genuine
sense of accomplishment when a student actually runs a program, finds unexpected errors, and corrects them. Our goal
should be to provide not one but several approaches in teaching our students how to reason about programs.

R. Hamming: In the prosecution’s statement, there is much “sound and fury”, but only a fool would think it can be safely
ignored. Apparently, reformers must often be extreme in what they say and do if they are to achieve a reformation.

One of the errors that Mr. Dijkstra’s extremism has produced is that even if we tried to use the idea that programs
should be “proved” by humans before they are run, the proofs are fallible. The idea applies to paper programs on a paper
machine and not to reality. I also doubt that it is always wise to equate a program to a mathematical formula as he does.

Mr. Dijkstra flatly asserts that he knows “reality” and his opponents do not, but I put about as much faith in this as
in the statement, “I am Napoleon.” Indeed, in my opinion Mr. Dijkstra comes to grief simply because his “reality” is so far
from most other people’s.

T. Winograd: If DA Dijkstra is talking about the education of “computer scientists” in the narrow sense of theoreticians of
formal computation, there is a bit of sense to his claim. However, I take Dijkstra’s argument not to be just about the training
of the small elite cadre of theoreticians, but, rather, about his hundreds of freshmen – the broad population of people who
work with computing devices.

The DA must face the unpleasant truth that it is the job of someone to produce a collection of instructions that allow
computing devices to function appropriately in practice. In some cases, this might be best done by producing a full formal
specification and then converting that into code, but that methodology is debatable, at best, and far from universally
applicable.

The DA’s idealized view of programming shows its inadequacy when he says, “we should reason about programs without
even mentioning their possible ‘behaviors’.” How can we do this and consider what is to happen in the drawing program I use
if I drag the cursor outside of the window while in the process of specifying a rectangle? In other words, once we recognize
that we are engaged in the design of operational computing devices, we must train people to think well in operational terms.

The primary subtext of DA Dijkstra’s diatribe is a complaint about the lack of rigor in computer science education. I fully
support his pleas that as educators we demand rigorous thinking, teach the beauty of mathematics, and encourage the virtue
of facing uncomfortable truths. But, he confuses this with the claim that the essential part of computing education lies in
the ability to manipulate formal abstractions, detached from considerations of operational devices, their behaviors, or their
embedding in a world of people and activities. If he deludes his students into thinking this, they are in for a rude awakening
when they try to function as computing professionals.

It would be foolish to ignore the value of the abstract mathematical skills the DA advocates, but it would be even more
foolish to indulge the fantasy that they offer some magic that allows students to escape the hard work of learning about real
computing.

P. J. Denning: Thank you, gentlemen. Does the defendant wish to make a statement?

Defendant: I do, Your Honor. Let me start with the charge of computer use. I confess to not promoting the use of formal
proofs in the first programming course, and to endorsing the use of computers. However, these are not crimes. As the expert
testimonies have pointed out, using computers in introductory programming is a good thing.

I do not accept the accusation of failing to nurture changes in thinking, although it is true that I do not endorse the
particular change to introductory programming education that the DA is pushing for. Visual program simulation is one way
of helping students significantly change their perspective on programs from a static one to a dynamic, operational one. Von
Neumann and operational thinking may be at fault when it comes to some of the misconceptions that students have, but
mathematics and declarative thinking also carry part of the blame. As for non-viable anthropomorphic metaphors of the
computer, that is one of the very things that I seek to address through visual program simulation.

I plead not guilty to the charge of curriculum infantilization. As has been amply demonstrated, the need for better
teaching of the runtime behavior of programs is real and has been identified as such by the computing education community.

P. J. Denning: Thank you. The jury will now retire to discuss the case.

I have not told the whole truth; this passage quotes and bastardizes Dijkstra vs. al. (1989).
This thesis has been in no way, shape, or form endorsed by any of the esteemed personages mentioned.
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Chapter 15

UUhistle is the Product of Many Design
Choices

The devil is in the details. Just because visual program simulation makes sense in theory does not mean
it is easy to make it work in practice. The UUhistle system – our attempt to make VPS work – is a
product of countless small design decisions. This chapter is a reflection on the way VPS is implemented
in UUhistle.

Section 15.1 explains why we wished to create a program visualization system that is generic rather
than specializing in certain concepts. In Section 15.2, I consider UUhistle’s notional machine and the
level of detail in the system, and their fitness for purpose. Section 15.3 explains how UUhistle is designed
to address many different programming misconceptions. Finally, in Section 15.4, I examine UUhistle’s
usability in the light of established usability heuristics and rules of thumb.

Before reading this chapter, which goes into some detail about UUhistle, the reader should make sure
they have either read Chapter 13 or experienced the system in action.

15.1 A generic visualization is a consistent platform for principled
thought

We can group systems that visualize program execution into two categories. Generic systems (such as
those reviewed in Section 11.3) visualize a generic notional machine that can deal with many language
constructs. Specialized systems (see Section 10.3) visualize the dynamics of a particular construct such
as pointers, parameter passing, or assignment.

Specialized systems have the advantage of being able to center on a topic and abstracting out all
other aspects of the notional machine, for less clutter and a clear learning focus. They can also make use
of visual tricks and metaphors that suit the particular topic especially well.

UUhistle is a generic system.

Advantages of generic systems

Generic systems have many advantages. An obvious one is that you can use a single generic tool to cover
a lot of different concepts, rather than having to use a number of different systems. One implication is
that the teacher who wishes to create their own example visualizations only needs to know one system in
which they can create a variety of examples. Suitable specialized tools may also not be available for each
topic of interest.

Even more importantly, learners do not have to learn to use many different visualization tools, many of
which come with a learning curve of their own. Assuming that visual elements are used consistently within
the generic system, learners have the further advantage of being able to anchor their understandings of
new examples in their prior knowledge of the visualization and the notional machine it represents. Generic
systems give a big picture of a notional machine which a motley combination of specialized tools will
not provide. This intuitively pleasing idea is in agreement with many learning theories; fostering the
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integration of new material with prior knowledge is stressed as important by constructivists, cognitive
psychologists, and others.

Support for a generic system can be drawn, for instance, from conceptual change theory (Section 6.5),
whether one subscribes to a knowledge-as-theory or a knowledge-as-elements perspective on conceptual
change.1 A visualization of a notional machine engenders conceptual change by occasionally cognitively
conflicting with the learner’s naïve knowledge. From a knowledge-as-theory perspective, the consistent
theoretical framework of a generic visualization can be used to revolutionize the learner’s naïve theory,
replacing it with a viable model of a notional machine. From a knowledge-as-elements perspective, the
generic visualization serves to provide a larger whole into which the student’s existing knowledge can be
integrated by highlighting underlying principles.

Research on the psychology of programming (Chapters 4 and 5) has shown that novices have many
kinds of fragile, context-dependent, undergeneralized understandings of programming concepts, including
program execution. They may have and unconsciously apply multiple and possibly contradictory mental
models of the notional machine they are learning to control. Moreover, novice knowledge transfer tends to
be based on superficial features rather than general principles, which is problematic. Consider parameter
passing and assignment to non-parameter variables in Python, for instance. Although they look different
in program code, parameters and assignment statements are both mechanisms for associating names with
references. Both parameters and other variables are instances of the same concept (variable) and can be
used in precisely the same way once initialized. This similarity is reflected in UUhistle’s notional machine
and its graphical representation of variables. Using one system for learning about assignment and another
for parameter passing allows for different bespoke ways of visualizing these two concepts at the cost of
not highlighting the similarities between them. Some novices struggle to make the connection and may
end up with two context-dependent – and possibly contradictory and untransferable – mental models of
these two parts of the notional machine.

Student-created content

Finally, an important practical advantage of generic systems is that they can be used with a variety of
student-created content. Even though having students visually simulate their own programs is not likely to
be a great idea (see Section 14.5 above), a hybrid simulation/animation system such as UUhistle is made
all the more versatile by allowing students to explore self-selected aspects of self-selected (or self-written)
example programs. This is something that only a generic system can accomplish.

15.2 UUhistle visualizes a useful notional machine
We designed UUhistle to visualize one particular notional machine. There were other options.

15.2.1 The notional machine supports two paradigms

UUhistle’s notional machine consists of a particular set of elements (variables, stack, etc.) presented
at a fixed level of abstraction, no matter whether the program shown is a purely imperative one or an
object-oriented one (or a functional one, for that matter).

We chose this kind of notional machine for three reasons. The first reason is that the notional
machine is useful not only for imperative but also for object-oriented programming. As I have argued in
Section 10.4.3, object-oriented programming (in the sense in which the term is commonly understood)
relies on two notional machines: a lower-level one that is an extension of an imperative machine, and a
higher-level one expressed in terms of object interactions. It is the former kind of notional machine that
UUhistle visualizes – necessary although not sufficient for genuine object-oriented programming.

The second reason for choosing this kind of notional machine was the good experiences and promising
empirical results reported regarding the Jeliot 2000 and Jeliot 3 systems (Section 11.3), which visualize a
similar notional machine for Java.

1My personal suspicion is that people have both naïve theories and context-dependent ‘pieces’ of naïve knowledge (with
the latter being more common, possibly by a large margin).
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The third reason was pragmatic: the CS1 for non-majors in which we were to try out our approach is
a course in imperative Python programming that covers some basics of object-orientation near the end.

15.2.2 Concrete tracing is a natural choice

A mater-studiorum from Section 5.5. Programmers use two kinds of mental tracing strategies. Concrete
tracing uses actual values, while symbolic tracing uses generic symbols (e.g., the value assigned to �,
the return value of �����). Symbolic tracing is lighter on working memory and is typical of the way
people prefer to run mental models ‘qualitatively’. Concrete tracing is needed in challenging situations,
and novices need it often.

UUhistle’s notional machine uses actual values to provide a form of concrete visualization, for several
fairly obvious reasons. First, the computer uses concrete values when running Python programs. Second,
novices need to learn concrete simulation to deal with difficult and common situations such as unfamiliar
and buggy programs. Third, the external representation that is the visualization compensates for the
failings of working memory.

Are there downsides to using concrete values? One might be that it leaves symbolic tracing untaught.
However, it may be that people move quite effortlessly from the concrete to the qualitative/symbolic
running of mental models when they have a solid enough understanding of the concepts involved, so
perhaps symbolic tracing is not a skill that needs separate teaching.

15.2.3 There is not an unmanageable amount of detail

The developers of the Jeliot program visualization system specifically wished to show novices details
about program execution that seem self-evident to experts (Ben-Bassat Levy et al., 2003). This serves
an obvious purpose. However, when the level of abstraction is fixed, as in Jeliot, there is a very real risk
that controlling the viewing of a detailed animation may turn into an endless ‘click-a-thon’ that merely
bores students and distracts them from the meaning of the visualization. An occasional criticism of the
Jeliot system is that the user has to view everything in detail without being able to focus on the aspect
of execution that they are most interested in (Moreno and Joy, 2007).2

UUhistle is also all about exposing certain details of execution to novices and has a similar fixed level
of abstraction to Jeliot, so the risk of excessive detail is there. Moreover, when UUhistle is used for visual
program simulation rather than animating programs, the danger is even more ominous, as learners have
to work to get past each execution step.

Excessive detail can be fought by learners themselves, by teachers, and by the system designer directly.

The learner vs. excessive detail

One way to fight excessive detail is by empowering the learner. Just like a debugger, UUhistle in program
animation mode allows the user to have a program run until a specified line of code and set breakpoints
(Chapter 13). The user can also choose to execute code one line at a time, reducing the number of
interactions needed to get to an interesting point in the program run.

The teacher vs. excessive detail

A visual program simulation exercise does not allow the user to skip freely to an arbitrary stage of
execution. Wherever the user has to manually simulate the program’s execution in UUhistle, he does so
at the lowest level of granularity. However, with careful VPS exercise design, the teacher can allow the
user to skip past boilerplate code and other unnecessary detail (Chapter 13). The teacher can configure
exercises so that some code is executed automatically before the VPS task starts (either by making it
‘hidden’ or by defining a preset breakpoint); there are also many ways of fine-tuning simulation/animation
hybrids.

2The newest version of Jeliot supports a “Run until line” command that somewhat alleviates this problem if students find
and use it.
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The system designer vs. excessive detail

The system designer can fight excessive detail is by automating or altogether eliminating any execution
steps that are of secondary importance to the learning goals of the system. UUhistle shows a lot of detail,
but not all; although a VPS exercise requires the user to do quite a lot manually, it certainly does not
require them to do everything. Chapter 13 already gave an idea of the animation steps UUhistle shows
and the simulation steps the user needs to perform in a VPS exercise. Now let us consider what the user
does not see in UUhistle and what they do not need to do.

Mayer (e.g., 1979, 1985) uses the term transaction for the kind of operation that corresponds to a
primitive operation of a notional machine right above the machine (or hardware) level:

Transactions are not tied to the actual hardware of the computer; however, they are related
to the general functions of the computer and are the building blocks from which statements
are made. A transaction is a unit of programming knowledge in which a general operation is
applied to an object at a general location. (Mayer, 1979, p. 590)

In the notional machine Mayer uses for teaching BASIC, executing the statement ��� � � � � � requires
no less than ten transactions (Mayer, 1985):

1. find the number literal in the program code;
2. store that number in a temporary memory area;
3. find the number stored in �;
4. store that number in the temporary memory area;
5. add the two numbers;
6. find the location of variable �;
7. erase its value from memory;
8. put the sum into variable �’s location in memory;
9. go on to the next statement;

10. do what it says.

Representing all of these operations as separate execution steps in UUhistle would make stepping
through animations – let alone visually simulating programs – unbearably tedious. Compared to Mayer’s
transactions, UUhistle simplifies things in several ways. Reading code and locating objects and variables in
memory are done automatically by the computer when animating and visually by the user (when VPSing);
they are never separate execution steps. Variable values get replaced by new ones automatically as part
of the assignment step. On default settings, moving to the next line is shown as a separate step when
animating, but happens automatically when simulating (except when branching). The decision to keep
going with the fetch-execute cycle as each new statement is reached is implicit.

Beyond the above single-statement example, too, there are many things that UUhistle does for the
user automatically, including creating ‘simple values’ in the heap (integers, strings, etc.), storing return
locations in stack frames, and deallocating frames. All these happen without any input from the user or
a separate execution step. Following a reference to access an object’s attributes is also automatic when
animating, and the learner uses his or her eyes for dereferencing when simulating.

Although some students may be initially puzzled by the way ‘simple values’ appear in the heap
automatically – and it is good to explain this behavior to them – the creation of these objects is so
common in all Python programs that automation is necessary to keep the visualization practical.

The selection of the simulation steps that the learner needs to perform in a VPS exercise reflects our
intention to allow the learner to focus more on progressing forward and worry less about memory cleanup.
The learner’s progress is kept track of by the ‘program counter’ (that is, the highlight on the current line).
Requiring the learner to change lines manually seems excessive for most purposes, as we expect that even
novices generally correctly know that they are done with a line of code when they really are, at which
point it is reasonable to have the line change happen automatically.3

Finally, the way UUhistle allows the learner to take ‘shortcuts’ past certain routine simulation steps
(see Section 13.4) is a practical compromise between consistency and convenience.

3Probably a more common problem is that the learner thinks they are done with a line when they are not.
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15.3 UUhistle is designed to address known misconceptions
Visual program simulation in UUhistle is based on the idea that the learner needs to locate the next
execution step. To encourage the learner to think, there need to be many GUI operations to choose
from even if only one of them is the correct one. Allowing many ‘wrong paths’ to be taken reduces the
effectiveness and, presumably, the appeal, of mindless trial and error.

Allowing incorrect operations also provides a way of addressing students’ misconceptions about
program execution and language constructs.4

15.3.1 A VPS system can be misconception-aware
Ben-Ari (2001b) leavens our enthusiasm with a cognitive constructivist point of view:

For the use of [an educational software visualization system] to be effective, the teacher
must (a) have a clear idea of the existing mental model of the student, (b) specify in advance
the characteristics of the mental models that the instruction is intended to produce, and (c)
explain exactly how the visualization will be instrumental in effecting the transition. This is an
immensely difficult undertaking. [For one thing,] the existing mental models of the individual
students are different and it takes quite a lot of effort to elicit even an approximation of a
cognitive structure.

Ben-Ari’s statement underlines the usefulness of knowing about the mental models and misconceptions
of individual students. Eliciting these from each student is indeed immensely difficult. A couple of things
make life easier for the visualization designer, however. First, nature constrains our knowledge-constructing
activities (see Section 6.3 above), so it is reasonable to expect there to be similarities between learners’
mental models and certain misconceptions to be more common than others. Second, creating a state of
cognitive conflict does not necessarily and always require a clear idea of the learner’s mental model. In
some cases, it is surely possible to make the learner deal with a conceptual model (visualization) so that
the learner him- or herself is in a position to discover a discrepancy between the conceptual model and
his or her own prior mental model, whatever it is like.

That having been said, Ben-Ari’s point is an important one. A visualization that directly and explicitly
addresses a learner’s misconception probably has a better chance of success than one that does not.

How can a fully automatic visualization system possibly address individual students’ misconceptions?
A visual program simulation system may fare better than most.

VPS and misconceptions

Here is one way of looking at how a VPS system may address a specific misconception that concerns
program behavior.

Level 0 By doing nothing. The system does not address the misconception. Nothing in the
visualization conflicts with the misconception.

Level 1 By showing what’s right. The system shows that what actually happens when the
program is run does not match the learner’s misconception. If the learner pays enough
attention, they may experience cognitive conflict between their understanding and the
visualization.

Level 2 By having the learner do what’s right. The VPS system requires the learner to
simulate aspects of program execution that pertain to the misconception. The system
prevents making the kind of mistake the learner would probably make if they consistently
followed through with their misconception. The learner has to perform simulation steps
that go against their misconception. The system does not encourage the learner to
contrast the accepted (correct) simulation step with any alternatives.

4Substantial parts of Section 15.3 are replicated, with the publisher’s permission, from an earlier publication: Juha Sorva
and Teemu Sirkiä: “Context-Sensitive Guidance in the UUhistle Program Visualization System”, In Proceedings of PVW
2011, Sixth Program Visualization Workshop, pages 77–85, Darmstadt, Germany, Technische Universität Darmstadt, 2011.
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Level 3 By allowing what’s wrong. The VPS system requires the learner to simulate aspects
of program execution that pertain to the misconception. Further, the learner can follow
through with their misconception by taking an incorrect simulation step that corresponds
to it. To solve the VPS exercise, the learner has to pick the correct execution step
rather than one that matches their misconception. If the learner fails to do so, the
system notifies the learner that something is wrong. Ideally, this alerts the learner to the
shortcoming in their thinking, even though the system cannot guess what the specific
problem is.

Level 4 By discussing what’s wrong. As above, except that the system gives the learner
feedback that is tailored to the kind of misconception that the learner’s mistake probably
indicates. The system helps the learner reflect on the particular misconception.

By presenting this scheme, I have sought to enumerate different ways of addressing misconceptions, not
to suggest that every misconception needs to be addressed at Level 4. Showing carefully selected program
examples will sometimes suffice to address a misconception. Misconceptions can also be addressed during
program-writing tasks, for instance. Not every misconception even can be addressed at the higher levels
– the learner’s understanding may be so vague or inconsistent that they cannot follow through with it in
a VPS exercise.

Nonetheless, it seems a reasonable conjecture that for many misconceptions, each higher level in this
scheme is more likely to result in fruitful cognitive conflict than the lower ones.5

A program animation that does not activate the learner and has no clue about what the learner thinks
can only get to Level 1 in the hierarchy. Visual program simulation can address misconceptions on all
these levels, as the following examples show.

15.3.2 UUhistle addresses different misconceptions in different ways

Appendix A is a catalogue of over 150 introductory-level programming misconceptions reported in the
literature. I reviewed the studies that reported these misconceptions in Section 3.4. Here, I use the
word misconception in a very broad sense to refer to many kinds of understandings that are likely to
be non-viable in many CS1 contexts. This includes not only understandings that contradict commonly
accepted definitions and the actual behavior of computers in more or less specific ways, but also partial
understandings and vaguely reported ‘difficulties’ with a particular concept.

We designed UUhistle to address many of these known novice misconceptions at high levels of the
above hierarchy. Some others it addresses only at lower levels. I will give examples below.

Level 0: doing nothing

UUhistle addresses a few of the misconceptions listed in Appendix A at Level 0, that is, not at all. An
example is the misconception that the computer keeps program output in memory as part of program
state. This particular misconception is, in fact, one that UUhistle and other program visualization systems
may encourage, as they show a visualization of program state alongside output.

Also at Level 0 are the misconceptions in which the learner thinks it is possible for the programmer to
do something that is not actually supported by the language used, e.g., to write a method that replaces the
object itself with another. UUhistle cannot demonstrate that such instructions do not exist. Sometimes
an increased understanding of what existing instructions do, which may be gained through VPS, may still
indirectly show that the nonexistent instructions are unnecessary for the learner’s intended purpose.

Level 1: showing what’s right

UUhistle’s VPS exercises address some of the listed misconceptions at Level 1. Most of these have to do
with control flow, which is largely automated in UUhistle on default settings.

5It is not my intention in this thesis to test this assumption. My primary aim here is just to illustrate different ways in
which a VPS system can address misconceptions, not to rank them.
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Consider the misconception according to which whenever the conditional part of an �� statement is
executed, anything that comes after the statement is not. This is shown to be incorrect by UUhistle’s
visualization, which the learner may observe from the way control moves from line to line. After the
learner is done with executing the conditional part, UUhistle chooses the next line automatically. The
learner is not in any way involved in the act of changing lines. This misconception, like many control-flow
related misconceptions, can be addressed at a higher level in a VPS exercise that is configured to require
the user to change lines manually.

Level 2: having the learner do what’s right

UUhistle can address roughly half of the misconceptions in Appendix A at Level 2, by forcing the learner
to simulate the correct behavior of programs.

Consider the misconception that a variable can hold multiple values at the same time. This is in direct
conflict with what happens in UUhistle when the user drags a new value to a variable. No matter how
much the learner might expect to produce a variable with two values, it will not happen as a result of the
drag-and-drop operation, nor will they find another GUI operation that makes it happen.

Another, more generic misconception is some learners’ failure to see that a program has a dynamic
existence in addition to its static aspect. UUhistle’s VPS exercises address this by requiring the user to
simulate program dynamics, without allowing any alternative way of dealing with the program merely as
code.

A class of misconceptions incorrectly constrains the capabilities of the programmer. For instance, the
learner may believe that the attributes of simple objects must always be accessed through a composite
object. Arguably, the main way – and often a sufficient way – to address such misconceptions in teaching
is to select examples so that they show variation in the ways in which the task can be accomplished.
What VPS can add is the requirement for the learner to think their way through the execution of the
counterexamples. A similar sort of misconception is the excessively narrow definition of a concept, e.g.,
an object may be seen as just a wrapper for a single variable (Holland et al., 1997); here, too, VPS can
require the learner to work through an example that shows that objects can be more than that.

Level 3: allowing what’s wrong

Several dozen of the misconceptions in Appendix A are addressed at Level 3 by UUhistle. Here, the
system allows a misstep that matches the misconception, but signals that there is a problem. Automatic
feedback points out that a mistake was made, and may give some generic advice, but does not directly
address the specific misconception.

For instance, the simple misconception that the assignment of simple values works in the opposite
direction is reflected in the learner dragging a value in the wrong direction. UUhistle allows the learner
to carry out this incorrect step and informs them that they need to think again. UUhistle v0.6 does
not, however, address the misconception that (possibly) led to the mistake by specifically explaining the
right-to-left unidirectionality of assignment statements.

Also at Level 3 is UUhistle’s response to the misconception that values are updated by the computer
according to their logical context. The learner can try to reflect this understanding in how they simulate
a program – by updating variables at the wrong times – but will get an error message. Similarly, there are
some misconceptions in which the learner thinks that the programmer does not need to do something (e.g.,
call constructors, store return values), because that something is somehow automatically and implicitly
taken care of without explicit instructions to do so. A suitably designed VPS exercise in UUhistle allows
the learner to carry out these implicit steps at whichever point of execution the computer supposedly does
them, and will inform the learner that they made a mistake.

Level 4: discussing what’s wrong

UUhistle v0.6 addresses a handful of misconceptions at Level 4. UUhistle attempts to identify these
misconceptions and gives tailored feedback when the learner appears to be under one of them.

For instance, the learner may fail to create another frame for a recursive call and instead reuse the
current frame’s variables. This mistake may reflect a “looping model” of recursion. UUhistle remarks
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about this mistake to the user in a particular way, explaining the need to create new frames for each
recursive call. Another example is the misconception that assigning an object (reference) creates a copy
of the assigned object. Figure 13.11 on page 206 shows how UUhistle handles this second example.

Reaching the highest levels

Adding more Level 4 guidance for the user is one of the main priorities in UUhistle’s development for
the near future. In our tentative estimate, at least several dozen of the misconceptions catalogued in
Appendix A look promising in the sense that we can make a reasonable guess as to what the user is
likely to do in VPS if they consistently follow the misconception. These misconceptions could perhaps be
detected fairly reliably by UUhistle from the learner’s VPS actions, and could be addressed automatically
with context-sensitive, misconception-aware feedback. An example is the assigning-in-the-wrong-direction
misconception mentioned above, which is presently addressed at Level 3.

15.4 UUhistle is fairly user-friendly
The following is an informal commentary on the usability of UUhistle’s VPS exercises and some trade-offs
in the system’s design.

We – UUhistle’s creators – are not usability experts. The purpose of this section is to expose our
thinking for criticism and to highlight what we think are relevant issues to other creators of program
visualization systems who wish to do either something similar or something better.

This section focuses on VPS exercises as seen by students. I will not discuss, for instance, the animation
controls, the pitfalls of having a separate mode for interactive coding, or the many improvements that
might be made to UUhistle’s teacher interface.

15.4.1 The user interface is not maximally simple. . . and should not be

We have tried to design UUhistle to be easy to use. We have not tried to design it to be extremely simple.
Devices that are meant to be easy to use, and products that are meant to appeal to their potential

users, do not necessarily need to be simple (see, e.g., Norman, 2007, 2008, and links therein). Simplicity
is one way towards usability, but not the only one.

The world is complex, and so too must be the activities that we perform. But that doesn’t
mean that we must live in continual frustration. No. The whole point of human-centered
design is to tame complexity, to turn what would appear to be a complicated tool into one
that fits the task – a tool that is understandable, usable, enjoyable. [. . . ] most important
of all is to provide an understandable, cohesive conceptual model so the person understands
what is to be done, what is happening, and what is to be expected. (Norman, 2008, pp. 45,
46)

In a learning tool especially, maximal simplicity of user interactions is not a goal in itself. We want
convenience, yes, but convenience of successful learning. We want users – learners – to take a bit of
time to engage with the system and to have a bit of trouble of the right kind while avoiding unnecessary
complications and excessive cognitive load.

The user interface of UUhistle’s VPS exercises is somewhat complex, but we have aimed for that
complexity to be understandable. Executing a program on UUhistle’s general-purpose notional machine is
an intrinsically complicated task that is usually automated (simplified!) but whose complexity is brought
to the fore by the VPS exercise. We want learners to stop and think about the visualization and the
simulation task. The design challenge is to accomplish this while minimizing the extraneous difficulties
created by the user interface.

We are encouraged by recent work on spatial algorithm visualization which suggests that programming
students can cope with simulation exercises that involve fairly complex visualizations and GUI operation
semantics (Nikander et al., 2009).
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15.4.2 UUhistle’s VPS exercises strike a balance between cognitive dimensions

Green and his colleagues have developed a set of cognitive dimensions of notations (see, e.g., Green and
Petre, 1996; Green and Blackwell, 1998; Green, 2000; Green et al., 2006). These dimensions serve as a
vocabulary for discussing cognitively relevant aspects of artifacts, and are intended as a convenient and
inexpensive “broad-brush evaluation technique” during the design of user interfaces and notations. An
influential paper by Green and Petre (1996) applied the dimensions to visual programming; the authors
and others have applied them to many other domains (see Green et al., 2006).

Table 15.1 names and outlines 14 of Green’s cognitive dimensions, and gives my interpretation of what
the dimensions mean in a VPS context. Slightly different versions of the cognitive dimensions framework
have been published in different articles; Table 15.1 is based on Green and Petre (1996), Green and
Blackwell (1998), and Green (2000).

I will now discuss how UUhistle’s visual program simulation exercises are located in these cognitive
dimensions. Out of necessity, my commentary (like UUhistle’s design) is partially based on conjecture as
an empirically grounded psychology of visual program simulation does not yet exist.

When reading what follows, the reader will observe that – as Green and his colleagues have underlined
– the dimensions are interdependent and involve many complex trade-offs. For instance, allowing the user
to define abstractions can have the desirable effect of reducing viscosity but may also introduce hidden
dependencies. The relative importance of each dimension depends on the task.

Closeness of mapping

Even someone who knows very well how Python programs work will need to learn a few tricks in order to
simulate programs in UUhistle. Figuring out how the evaluation areas work and finding where to click to
create new elements of different kinds are perhaps the trickiest of the tricks.

However, most aspects of a VPS exercise map directly to deeper meanings. There is very little in
UUhistle’s display that does not closely correspond to a concept in the notional machine that UUhistle
teaches about. The simulation steps that the user performs have been chosen to correspond directly to
what the notional machine does as it executes a program.

Not all of the ‘games’ the user has to learn to play are notation-induced, and neither are they necessarily
bad. For instance, that a function call requires the creation of a frame and some local variables is part of
what users need to learn and what they may struggle with. However, such a struggle is not an undesirable
side effect of UUhistle’s notation – unless it is the case that the notation makes it hard to realize the need
for frames and local variables – but part of an intended learning activity.6

Novice programmers do not yet have a clear idea of the domain that UUhistle’s representation maps
to (the notional machine). When they use UUhistle, they learn about representation and domain at the
same time. Consequently, they may not realize whether they struggle with a superficial GUI issue or are
failing to understand a deeper concept. I will return to this important consideration in Part V.

One of the main reasons why not too many ‘simulation games’ need to be learned in UUhistle is
consistency.

Consistency

Internal consistency has been the driver behind many of the design decisions made during UUhistle’s
development. As I explained in Section 13.4, there are few different kinds of GUI operations that the
user needs to learn, and each kind of operation is consistently used to accomplish a particular kind of
simulation step. For instance, once the user has learned that arithmetical operators are first dragged
to the evaluation area and then clicked on to execute, it is not difficult to transition to calling library
functions by first forming the function call in the evaluation area and then clicking on it.

There are limitations to UUhistle’s consistency, some due to the notional machine, others due to
choices we made regarding representation and convenience of use. One limitation is that most visual

6One of the additional cognitive dimensions proposed in the literature to extend Green’s original set is “useful
awkwardness”, which forces the user to reflect on their task, seeking to produce an overall gain in efficiency (Blackwell,
2000). One way to look at visual program simulation is that it promotes useful awkwardness for the purpose of learning.
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Table 15.1: Cognitive dimensions of visual program simulation

Dimension Description Key questions in VPS

Closeness of
mapping

closeness of representation to problem
domain

Are there any graphical elements that are there
only for the sake of the simulation activity? What
‘simulation games’ do you need to learn that do
not teach about programming concepts?

Consistency similar semantics expressed similarly When something about the simulation GUI is
known, is it possible to guess the rest?

Visibility the ability to view components easily Is it easy to get any part of the visualization into
view?

Diffuseness number of symbols or amount of space
used to express a meaning

Do graphical elements take more space than
necessary?

Role-
expressiveness

the purpose of a component (with
respect to an overall plan or a different
notational layer) can be readily inferred

Is it easy to tell what aspect of the given
program’s execution a visual element represents?

Secondary
notation

facilities for the user to express
information using secondary means (e.g.,
color, formatting, annotations)

Can the user move, group, or annotate visual
elements in ways that they find useful but which
are not part of the simulation?

Hidden
dependencies

important links between entities are not
visible; changing one may have
unexpected repercussions on another

Can performing a simulation step impact on a part
of the visualization that the user is not presently
focusing on?

Hard mental
operations

operations that – because of the
notation used – become difficult to work
out in one’s head when used in
combinations

Are there execution steps or visual elements that
the VPS system represents in a confusing way
when they appear in combinations?

Progressive
evaluation

work-to-date can be checked at any time Can the user already get feedback on their actions
during the simulation?

Error-
proneness

the notation invites careless mistakes
and the system gives little protection

How likely is it for the user to make a careless
mistake even when they understand the program
code, and for that mistake to go unnoticed?

Premature
commitment

the user has to make choices before all
the necessary information is available

Does the user need to revisit previous decisions as
more information becomes available?

Provisionality support for sketching, exploring
alternatives, and playing ‘what if’ games

Can the user explore what would result if the
notional machine behaved differently?

Abstraction the role of user-defined abstraction
mechanisms in the system

Does the system preclude, allow, or require
user-defined ways of grouping related simulation
steps?

Viscosity resistance to change; effort needed to
accomplish a goal

Does it take many repetitive simulation steps to
accomplish a goal that is thought of as a single
action?
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components (variables, values, classes, functions, etc.) look similar – like boxes with rounded corners –
but some of them are used differently from others. Variables cannot be dragged and dropped, for instance,
and only some element types (function and method calls, operators) can be clicked to execute them, and
then only while they are in an expression evaluation area. Elements lock in place after being dragged and
cannot be dragged back to undo operations.

We have used various small tricks to partially compensate. For instance, changes in mouse cursor
signal what can be dragged, possible drop locations are highlighted during a drag operation, and tooltips
suggest what can be clicked. Colors, sizes, and locations are the main ways of distinguishing between
different kinds of ‘rounded boxes’; tooltips help, too. For example, all variables in UUhistle have the same
color (green). All values have the same color (light blue). The uniform use of color emphasizes how all
variables in Python are similar, no matter where they are located or what type their contents have, and
how all values of different types are dealt with in the same way.7

Green and Petre (1996) caution us that consistency depends on the user’s understanding of the
structures involved. What seems consistent to the designer given his understanding of a notional machine
and the structure of a GUI may well not match the user’s mental models. Given that we hope UUhistle to
be usable by untrained users who are novice programmers, the reader should take my claim of consistency
with a pinch of salt.

Visibility

A visual program simulation system with high visibility allows the learner to view and access any part
of the visualization at will. UUhistle is built for very high visibility: the small programs typical of VPS
exercises and their small data sets often fit nicely on a typical display so that everything is readily visible.
When space runs out, the user can resize areas and use scrollbars that appear automatically within each
panel as needed. The user never has to open up new views or expand components to gain access to
something.

Complex programs use more memory, require more graphics, and limit visibility somewhat. However,
since VPS exercises are meant to be short and to the point anyway, visibility will not usually be a serious
problem in practice.

Diffuseness

As noted above, nearly all of UUhistle’s user interface is devoted to representing the state of a notional
machine. Is this accomplished with a minimal set of graphical elements and a minimal use of space?
Green and Petre (1996) concede that assessing diffuseness is challenging.

There does not appear to be a significant problem with diffuseness in UUhistle. As noted, there
is enough space to visualize simple programs in VPS exercises. The number of graphical elements is
comparable to that in the Jeliot 3 system (Section 11.3.2), which has proven to be usable by novices.
One difference is that UUhistle shows all the frames in the call stack simultaneously, whereas Jeliot and
typical debuggers show only a single frame at a time. The use of more space and more visual components
pays off in heightened visibility and role-expressiveness.

Role-expressiveness

Green and Blackwell (1998, p. 41) explain role-expressiveness as follows:

This dimension describes the ease with which the notation can be broken into its component
parts, when being read, and the ease of picking out the relationships between those parts. An
experienced electrical engineer can look at a radio circuit diagram and quickly pick out the

7Ford (1999) studied how second-semester programming students visualized C++ programs, and reports that students are
fond of using different colors or shapes to distinguish between different types of variables in situations where type information
is important. Python variables are not typed, however, and having a variable ‘change’ as it is assigned a differently typed
value could give students the wrong idea. We did consider having different shapes for differently typed values, but decided
(for now) against it, as we were not convinced that the benefit would outweigh the additional complexity of the visualization.
We do not expect that not being able to tell the type of each value is a major challenge to using UUhistle.

239



parts that deal with different stages of the process (detecting the signal, first amplification
stage, etc.).

In my interpretation, role-expressiveness in VPS primarily concerns the clarity of the mapping between the
program code and the visualization of its execution. Ideally, it should be easy for the user to tell what the
purpose of any graphical element is in the current program run, that is, how it serves the overall purpose
of making the given code do what it does. For instance, given a program and a visual snapshot of its
execution, it should be easy to tell that certain elements are used to store the state of certain function
calls currently in progress.

UUhistle addresses this issue by littering the visualization with more and less obvious clues, which
include the following.

• The current line of code is always highlighted, showing that the current simulation steps are
concerned with the execution of that line.

• Identifiers used in the code also appear in the visualization, drawing explicit mappings between
entities in memory and the program code.

• The expressions in the evaluation area use symbols (operators, parentheses, etc.) that match Python
syntax.

• The different panels in the UUhistle GUI are named to indicate their different roles in the notional
machine.

• Colors are used to distinguish different kinds of elements (function definitions, objects, variables)
from each other. Some objects (function objects and class objects) are grouped in their own areas
in the GUI to emphasize their particular natures.

• The call stack is shown in its entirety. In each frame, the currently active function call is highlighted
to clarify which part of a complex expression is currently being executed (see, e.g., Figure 13.1 on
p. 194). This underlines the relationships between the frames in the call stack and makes explicit
the stages of expression evaluation.

Moreover, visual program simulation as an activity demands that the user constantly pays attention to
both code and the visualization of program state so as to know what to do next. Because of this, we may
conjecture that the user is likelier to be aware of the relationships between code and visual elements than
when merely looking at a visualization.

Role-expressiveness, too, is difficult to measure. The above can perhaps be taken as an indication
that UUhistle is fairly role-expressive.

There are weaknesses, too. One is that since most visual components look similar, one has to rely on
the texts, colors, and layout to figure out what is what. Contrast this, for instance, with the very different
graphics of Sajaniemi’s metaphorical program animations (Figure 11.17 on p. 166).

Another weakness is that UUhistle only highlights the current line of code in its entirety and does
not show which part of the line is being executed. This is because it is the learner’s job during VPS to
determine the order in which the execution steps at each line are to be carried out. The downside is that
sometimes it may be unclear (because forgotten by the user) how a value came to be in the evaluation
area or which parts of a line’s execution have already been dealt with. There is an elevated risk of this
happening when control returns from a function or method call to a partially executed line. This problem
is likely to be a minor one, however, and UUhistle’s support for undoing and redoing (to bring to mind
what has just been going on) alleviates it.

A final remark on role-expressiveness. The user cannot understand the role a visual element serves
in expressing program execution unless they know that such a role exists. The “What is this?” links are
designed to help novices learn about what the visual elements mean, as is the Info box (see Section 13.1
above).

Secondary notation

UUhistle’s VPS exercises simply do not support secondary notation. The user cannot color, move, group,
label, or otherwise annotate any of the visual elements in any way beyond the VPS task proper. The use
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of color, the layout of objects and variables, and all other aspects of the visualization are strictly under
the control of the system; UUhistle uses them in an attempt to bring about a particular interpretation of
the visualization and enhance role-expressiveness (see above).

If the purpose of UUhistle were different, the complete lack of support for secondary notation could
be a problem. However, since it is intended to be used by novices with a shaky (albeit improving)
understanding of the content of the visualization, this lack might even be a blessing. Someone with a
poor understanding of the concepts involved is not likely to make efficient use of secondary notation and
might use it to produce representations that are misleading; Green et al. (2006) conjecture that novices
may benefit from a system that minimizes secondary notation. There is also a real danger that learners
would confuse any facilities for using secondary notation with the actual simulation steps. Given the
further consideration that secondary notation tends to increase viscosity – already a somewhat problematic
dimension for UUhistle (see below) – I conclude that UUhistle is probably better in this respect as it is.

Hidden dependencies

In a VPS exercise in UUhistle, not much happens without the direct involvement of the user, and most of
what happens happens right where the user’s attention is expected to be: at the mouse cursor and in the
program code panel. Simulation exercises themselves do not, then, suffer from major hidden dependencies.
There is one exception: built-in functions may have non-obvious side effects when applied. For instance,
executing the ����� function causes output to appear in the console below. We are planning to highlight
side effects visually in future versions of UUhistle.

Some hidden dependencies are intrinsic to Python and programming.8 UUhistle cannot eliminate these
dependencies (and must not, since the user is expected to learn to live with them), but can assist the
learner with them. For instance, changing an object’s state through a reference impacts on every other
part of the program in which that object is used through any reference. As shown in Figure 13.4, UUhistle
tries to draw learners’ attention to this kind of hidden dependency, which is known to be problematic for
many novices.

Hard mental operations

“Hard mental operations” are operations that are not intrinsically difficult aspects of what is being
expressed, but are instead made difficult by the notation used. Further, they have the property that even
though a single occurrence of the operation is easy to understand, a combination of even two or three
such operations greatly complicates things. When faced with such combinations, users often experience
cognitive overload and resort to strategies such as making notes on paper and tracing visualizations with
their fingers (Green and Petre, 1996).

I am not aware of UUhistle’s visualization introducing any hard mental operations in this sense.

Progressive evaluation

In a VPS exercise, UUhistle not only progressively assesses the user’s actions at each step but provides
automatic and instantaneous feedback on any mistakes the user makes. The user does not have to wait
until the end of the program is reached to find out if their solution works.

Giving feedback only at the end of a simulation exercise would not be a user-friendly option and would
punish the learner excessively for mistakes. Constant progressive evaluation has obvious benefits. However,
from a learning point of view, there is also a potential drawback: instant feedback given at each simulation
step may encourage mindless trial-and-error strategies. We have considered various midway alternatives
between these two extremes, but no alternative feedback-giving strategies are currently implemented in
UUhistle.

The availability of constant automatic feedback also significantly impacts on several of the remaining
cognitive dimensions.

8Python as a program-authoring language is an entirely different artifact to which the cognitive dimensions can be applied.
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Error-proneness

A VPS exercise in UUhistle involves many details. There are opportunities for careless mistakes even if
one ‘knows what one is doing’. Users may absent-mindedly perform simulation steps in the wrong order.
Values may be dragged accidentally to the wrong places. Steps such as defining parameter variables may
be passed by in haste.

All this has the potential to be very troublesome. However, UUhistle is redeemed by its instant
automatic feedback: mistakes are not left unnoticed.

Premature commitment

Instant feedback also means that there is no need for the user to correct earlier decisions that have already
been assessed as correct. Neither does the user, in the role of a deterministic machine, need to make any
premature guesses. The necessary information for choosing each simulation step is available in a timely
manner.

Provisionality

UUhistle supports the provisional ‘sketching’ of answers to VPS exercises, yet does not.
In principle, it is possible for the user to ‘see what would happen if it was done this way’. The

user can use UUhistle to explore alternative paths that execution might take if the notional machine
worked differently. For instance, the student could use a looping model of recursion instead of creating
new frames on the stack for each recursive call (running into an eventual problem, assuming a non-tail-
recursive program). Easy-to-access undo and redo commands also support provisionality.

In practice, however, UUhistle does not encourage such use. On the contrary, the instant negative
feedback for deviations actively discourages it.

Encouraging provisionality would help learners follow through with their misconceptions and come to
realize their non-viability. It could also allow for other ‘mind games’ that would contrast the notional
machine being taught with other notional machines. In our case, however, the practical usefulness of
instant feedback outweighs these intriguing possibilities.

Abstraction

Green and Petre (1996) define an abstraction as “a grouping of elements to be treated as one entity,
whether just for convenience or to change the conceptual structure”. They group systems into three
categories on the basis of their relationships to user-defined abstractions.

An abstraction-hating system does not allow the user to define macros, templates, functions, concepts,
or other abstractions.

An abstraction-hungry system requires the user to define abstractions in order for the system to be
useful. The price paid for greater expressive power is a more challenging learning curve. Novice users
especially may struggle to form useful abstractions and may be put off by a system that requires them to
be defined. Abstractions may also introduce problems with hidden dependencies.

An abstraction-tolerant system supports but does not demand user-defined abstractions.
In these terms, UUhistle is an abstraction-hating system. The user cannot, for instance, form macros

that correspond to the execution of several execution steps at once. The learning curve is one reason for
this. Spending a significant amount of time learning to build macros within a VPS tool seems less than
optimal. Novice-designed abstractions might also accidentally ‘make things too easy’ and lead the user to
ignore important details that UUhistle’s pedagogy seeks to emphasize. On the downside, UUhistle’s lack
of support for user-defined abstractions contributes to its viscosity (see below) and limits the effectiveness
of experienced users.

Despite the drawbacks, the abstraction-hating nature of UUhistle seems reasonably justified.

Viscosity

It is useful to distinguish between two different kinds of viscosity in VPS exercises:
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1. the amount of work needed to initially accomplish a goal using a combination of simulation steps
(manually executing a part of the code for the first time), and

2. the amount of work needed to implement a change in plans (undoing and doing something else
instead).

In UUhistle, the second form of viscosity is unproblematic for a familiar reason: instant feedback means
that the user will not embark on lengthy misconceived trips that need to be undone. However, the first
form is something of a problem.

Some aspects of execution that are often thought of as a single action require multiple repetitive
simulation steps to complete in UUhistle. One of the clearest examples is parameter passing, which
requires processing each parameter separately. When the concepts are understood, this is unnecessary
repetition. However, requiring the user to deal with each parameter separately is meant to encourage
the learner to pay attention to exactly what parameters are involved. In my experience, even if a novice
programmer understands how a particular parameter works in a particular case, that knowledge does not
necessarily generalize well. For instance, a novice may expect that a particular parameter variable does not
need to be created if a variable with the same name already exists somewhere else in memory. For such
reasons, and to keep the user interface simpler and more consistent, the increase in viscosity is (arguably)
acceptable.

15.4.3 UUhistle’s design follows many accepted rules of thumb
Our design and analysis of UUhistle have been informed by various design rules of thumb suggested in
the literature. These include Nielsen’s well-known usability heuristics (Nielsen, n.d.), Tognazzini’s (2003)
principles of interaction design, Gloor’s (1998) “ten commandments” of educational software visualization
design (see also Naps et al., 2003), and cognitive load effects on multimedia learning (Plass et al., 2010;
Mayer, 2005, 2009).

There is considerable overlap between these recommendations and the cognitive dimensions discussed
above. I will comment on a few salient points that have not yet come up in this chapter.

Adaptation and anticipation

UUhistle shows only those memory areas and components that are relevant to the task at hand
(Section 13.1.4). For instance, the call stack is only shown when needed. Given a suitable selection
of example programs, this helps the user to make gradual progress and improves the learnability of the
system. As programs grow more complex, the initial scaffolding is shed and more features appear in the
visualization. Used in this way, UUhistle adapts to the user’s growing familiarity with programming and
UUhistle itself.

A system that brings the information that is presently required to the user is easier to use than one
in which the user has to go and find that information. UUhistle attempts to anticipate the user’s needs
in many small but – we hope – significant ways in the Info box (see the various figures in Chapter 13).
Some of the texts and links that appear there have been tailored to match very specific situations. We
are working towards making UUhistle increasingly sensitive to context and a better guesser of user needs.

Abstract graphics vs. standard widgets

Regular visual debuggers and many educational visualization tools from represent program state using
standard widgets. In Dönmez and İnceoğlu’s VPS system (p. 179 above), too, the learner uses standard
widgets for controlling the program.

Following platform conventions and using standard widgets are commonly accepted as parts of good
user interface design. UUhistle, however, uses unconventional components both for visualizing state and
for program simulation. There are a few reasons behind this approach.

One reason for using tailor-made abstract graphics instead of a ‘debugger-like’ representation is that
we wanted the user interface to reflect the change in perspective that the CS1 student undergoes as they
start viewing programs like a programmer rather than an end user. We wished to subtly emphasize to
the learner that what they see in UUhistle is a diagram of concepts in a new discipline and represents
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something that resides ‘within the program’, rather than being ‘just an interface to an application’ in the
familiar sense. The separation between the standard widgets used on the left-hand side of the UUhistle
window and the abstract graphics that represent memory on the right reflects this distinction (in principle
but possibly ineffectually).

Users come in with their existing mental models of standard widgets, such as lists, combo boxes, and
radio buttons. This is usually a good thing. However, it is difficult to gauge the impact of those mental
models on how the student would apperceive a notional machine visualized using standard widgets. By
using an unfamiliar sort of representation for an unfamiliar kind of content we may have avoided some
pitfalls at the cost of not being able to fully leverage students’ prior UI knowledge.

An obvious benefit of custom graphics is flexibility both in terms of visualization and how the user
interacts with them. Another reason we had for abstract 2D graphics was the reported success of the
well-researched Jeliot 3 system (p. 165 above), which uses similar graphics for a similar purpose.

Even given the decision to visualize memory as abstract 2D graphics, we might have opted for (and
did indeed consider) using a separate set of standard widgets to control the visualization during VPS.
However, we decided not to do so for a number of reasons. Most importantly, we wanted the VPSing
learner to interact directly with the visualization so that they cannot ignore the visual representation of
state and will learn to make use of it. Space concerns were another reason; a separate set of controlling
widgets would be hard to fit onscreen, given our quest for maximal visibility (see above). Other reasons
concerned specific components that we might have used: buttons, input dialogs, radio buttons, and the
like. We wanted each individual simulation step to be quick and convenient to perform once you know
what to do. For this purpose, we outlawed all typing in of values and identifiers. Selecting each simulation
step from a complex menu or a (long) list of multiple-choice options requires a lot of reading on the user’s
part and is not convenient in the long run.

In the end, contextual popup menus are effectively the only standard GUI widget that the UUhistle
user manipulates during VPS. The popups do not interfere with the visualization of memory and do not
take up space.

The clear downside of our approach is that users do not know from the start how they can use the
custom components. It can be tricky to know at the beginning where to click to create a frame, for
instance. However, because of the consistency of the GUI, there should not be too much to learn.

Cognitive load effects in multimedia learning

Cognitive load theory (Section 4.5) suggests that many ‘effects’ come into play as learners deal with
material that stretches their cognitive capacity. Two of these are the split-attention effect and the modality
effect (see, e.g., Plass et al., 2010; Mayer, 2005, 2009). The split-attention effect means that learning is
hindered when the learner has to keep a part of the learning material in mind while consuming a separate
part; a special case of this effect occurs in multimedia learning when the visual channel is overloaded by
the need to follow an animation and a textual explanation of it which are spatially separated. The closely
related modality effect suggests that presenting materials using both the visual and the auditory channels
simultaneously is more effective than presenting all the material through only a single channel, especially
when the material is difficult or unfamiliar.

One implication of the split-attention effect on VPS design is that support for novice learners should
be fully integrated into the environment in which the learning task is carried out, rather than existing
as a separate document that needs to be accessed and mentally integrated with the environment by the
learner (van Merriënboer and Kirschner, 2007). Otherwise, the support, however useful, is likely to be
ignored by the learners, who have enough on their plate without accessing external resources. Through
the “What is this?” links and the Info box (see Section 13.1), we have sought to integrate UUhistle’s
documentation into the visualization environment itself for maximal ease of reference.9

A possible concern related to the split-attention effect in UUhistle is that UUhistle’s Info box is located
outside the graphical visualization of memory, which means that in order to keep track of both texts and
graphics, visual scanning is needed. The user also has to keep track of program code, which is in yet

9In contrast, in an earlier version of UUhistle, instructions and explanations only appeared at the beginning of each
animation; see Section 16.1.
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another panel. A better solution in the future might bring explanatory texts closer to where the VPS
action is.

Another limitation of UUhistle that is highlighted by the split-attention and modality effects is its lack
of support for the auditory channel. The human capacity to receive sensory information is very limited,
and one of the few known ways to alleviate the problem is to use visuals and sound simultaneously. The
current failure of UUhistle to do so must be viewed as something to improve upon.

The overall effects of UUhistle’s user interface on cognitive load are unknown at present.

Conclusions on usability

UUhistle’s usability appears fairly good.
The analysis of cognitive dimensions suggests that the design of UUhistle’s VPS exercises suits their

intended purpose. The laborsome, viscous nature of some interactions is perhaps UUhistle’s greatest
usability challenge from the cognitive dimensions point of view. The split-attention effect is another
cause for concern. There are many small problems that we are aware of and UUhistle is, of course, still a
work in progress.

Ultimately, UUhistle’s usability depends on how learners use it. We have conducted no formal usability
studies. However, thousands of students have succeeded in using the system and most have found it easy
enough to use. I present some results from an opinion survey in Chapter 20.

An external evaluation

This chapter has presented our own analysis of UUhistle. In a recent independent review of visualization
systems, Gondi (2011) evaluated a visualization example in UUhistle against nine best practices identified
in the literature. A 2–3–4-tree visualization in UUhistle was found to support eight of these practices,
namely, support for flexible execution control, providing a context for users to interpret the visualization
(such as a textual description), providing multiple views or representations, allowing user-specified data
sets, showing the source code of what is being visualized, suitability for use as a lecture aid, suitability
for self-study, and suitability for debugging.

The ninth best practice, having students answer questions or make predictions, was apparently not
present in the particular example evaluated by Gondi. As the reader will know by now, UUhistle does, of
course, very much support such modes of interaction as well.

In Part IV, I have presented visual program simulation and a supporting piece of software as the outcomes
of what I hope appears to be a rational and logical process.

In a keynote address at the Koli Calling 2010 conference on computing education research, Michael
Kölling10 remarked that the design of pedagogical software by computing educators is often informed
by gut feeling, but that this is not bad – gut feelings are important and useful. Nevertheless, Kölling
reminded us, with reference to Parnas’s famous article A Rational Design Process: How and Why to Fake
It, it is worthwhile to rationalize our design process and to relate it to theory.

According to Parnas, no software project, past, present, or future, proceeds in the ‘rational’ way, but
we can still make an effort to approach rationality and to document our software as if we had followed
the ideal process: the documentation should help the reader to understand what we have created, not to
relive the creation process. “It is very hard to be a rational designer; even faking that process is quite
difficult. However, the result is a product that can be understood, maintained, and reused.” (Parnas and
Clements, 1986, p. 256)

Parnas wrote about designing and documenting software artifacts and their modules. My concern
in this thesis is not one of software design in Parnas’s sense, but the design and documentation of a
software-supported pedagogical approach. This work on visual program simulation has not followed a
rational, well defined sequence of steps, although this thesis may sometimes portray it as such. The work
has been informed throughout by a complex interweaving of gut feeling, literature, and emerging empirical

10Say this five times fast: collected colleagues of Kölling at Koli Calling.

245



evidence. Like the documentation of Parnas’s software projects, I hope that Part IV serves as a rationale
for VPS to the benefit of anyone who wishes to understand it, use it, or improve on it.

Now it is time to look at some empirical findings.
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Part V

Empirical Investigations of Visual
Program Simulation
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Introduction to Part V

Reflecting on their lengthy experience of developing and researching the Jeliot program visualization
system for introductory programming education, Myller and Bednarik (2006, p. 41) wrote:

Classroom studies inform [us] about the practices taking place [. . . ] and can generate testable
hypotheses. Controlled experiments, when designed well, can provide answers to the previously
established hypotheses and can give accurate insights into interaction and cognitive processes
involved in programming. Data from surveys and questionnaire studies can be used both
to collect data related to attitudes and current practices, and generate testable hypotheses.
Furthermore, all these methods can indicate issues for further development in the form of
usability problems or unexpected behavior of users. [. . . ] Each of the described methodologies
has its own place in the research and development cycle. [. . . ] We think that both short-term
and longitudinal studies are needed as well as quantitative, qualitative and especially mixed
methods studies.

This part of the thesis contains multiple interrelated studies in which my colleagues and I investigate
VPS from many different perspectives. Chapter 16 is a general introduction to the chapters that follow.
It reviews our research questions and describes our pragmatic, mixed-methods approach to empirical
research and the context of our research. Chapter 17 reports a phenomenographic study of how students
perceive learning through VPS. In Chapter 18, we qualitatively explore what happens during VPS sessions.
Chapter 19 reports an experimental study in which we quantify the short-term effects of a VPS session on
students’ program-reading ability. Chapter 20 reviews student feedback on VPS and UUhistle. Together,
these chapters constitute a preliminary empirical evaluation of VPS and our implementation of it.
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Chapter 16

We Investigated If, When, and How
Visual Program Simulation Works

This chapter introduces the interrelated empirical investigations which we will present in detail in the
following chapters. It consists of five sections. Section 16.1 is a general commentary on pedagogical
research that serves as a background to our choice of research questions. Section 16.2 starts with a recap
of the research questions; I then explain how we have sought to address these questions with a pragmatic
mixed-methods approach. In Section 16.3, I consider issues of research quality and trustworthiness.
Section 16.4 gives some concrete details about our primary research setting – a particular CS1 – and the
prototype of UUhistle that students used during the 2010 course offering that we investigated. Finally,
Section 16.5 explains who “we” are.

16.1 Evaluations of pedagogy must go deeper than “yes” and “no”
Not every new pedagogy or piece of educational software should be adopted by everyone, even if it is
‘a good one’. Context matters. Learners matter. Teacher preferences matter. Institutional strategies
matter. It is impossible to incorporate all good things into a single teaching context. Conducting research
that informs complex, context-dependent decision making on pedagogy is anything but trivial.

Difficult dissemination

In formal education, teachers have the deciding role in choosing which pedagogical advances and new
educational systems to adopt. However, many teachers do not adopt these innovations, even when they
and their students might benefit from them. This general concern has also been observed in the specific
context of educational software visualization.

According to Hundhausen et al. (2002) and Naps et al. (2003), teachers’ reasons for not adopting
software visualization tools include the lack of teacher time for learning about systems or configuring them,
concern about SV taking away class time needed for other activities, and suspicions of limited educational
effectiveness. Ben-Bassat Levy and Ben-Ari (2007) wrote a paper – We Work So Hard and They Don’t
Use It – exploring the reasons behind teachers’ reluctance to adopt the unusually well-researched program
visualization tool Jeliot. They found that teachers’ personal pedagogical styles significantly affected their
decisions regarding program visualization and that integrating tools into other learning materials could
encourage some teachers to adopt Jeliot.1 Kaila (2008) interviewed Finnish teachers of introductory
programming about their use of software tools, and reports that teachers chose not to adopt tools for a
variety of reasons. These included lack of teacher time, excessive overhead in terms of class time, poor fit
with specific context (e.g., programming language), the poor usability of tools, the sentiment that tools
complicate topics that are already complicated, and issues with the specific visualizations used.

A number of recent initiatives have sought to aid the dissemination of pedagogical practices within
computing education in general and educational software visualization in particular. Forums have been

1When it comes to software tools for computing education, some of the biggest success stories involve the integration of
a tool with a textbook (e.g., Barnes and Kölling, 2006).
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launched for sharing (e.g., Fincher et al., n.d.; Korhonen, n.d.; AlgoViz, n.d.), teachers have been given
financial aid to lower the collaboration threshold (e.g., Korhonen, n.d.), and technical solutions have been
developed to increase intercompatibility and extensibility so that tools are easier to integrate into different
contexts (e.g., Moreno, 2005; Karavirta, n.d.).

Such initiatives may alleviate some of the difficulties. Other issues – those that involve teachers’
knowledge of and trust in new pedagogies – can be addressed through empirical research. However, one
is then confronted with the problem that new pedagogies always work.

Doomed to ‘succeed’

In CER, a fledgling discipline, there is often no experiment or any other kind of scientific research setup
behind claims of success. A lot of the CER literature consists of so-called Marco Polo papers (Valentine,
2004) that conclude something to the effect of “I did X. It was exciting, seemed to work, and my students
liked it”. Marco Polo papers are valuable in community building and as inspiration, but do not amount
to rigorous evaluation.

Even rigorous evaluations are not always very informative. According to a chagrined sentiment that
gets bandied about in educational circles, “every educational experiment is doomed to succeed”.2 Teacher-
researchers develop new pedagogies inspired by their particular contexts. They apply those pedagogies
enthusiastically themselves, and evaluate them in the context of their own teaching. Not surprisingly, the
results of these evaluations are often positive in the sense that the new pedagogy is found to be effective.

Descriptive evaluations needed

As noted, teachers are concerned about the effectiveness of candidate pedagogies, the overhead of adopting
them, and their fit with context. To help teachers make well-informed decisions, we need evaluations whose
conclusions reach deeper than “yes, this works, you should do it too” (and the occasional “no, this doesn’t
work”). We as researchers also need to explore how and under what circumstances a new pedagogy or
tool works, and precisely what it is good for. Conversely, we must be critical and consider what, how, and
when the new pedagogy does not work, and what effort it takes to apply it successfully. There is often a
price to pay for benefits gained.

Given a rich set of empirical research findings, the teacher can consider what the new pedagogy could
bring to their teaching and whether it would be worth the bother of adopting it. The teacher may weigh
pros against cons against the backdrop of their particular context of teaching and learning. Explorative
evaluations that go beyond “yes” and “no” can also help the teacher understand the pedagogy and to
work out how best to put it into practice (and how not to).3

16.2 We used a mix of approaches to answer our research questions

Through the empirical research presented in this thesis, we wished not only to obtain tentative evidence
regarding whether visual program simulation is a useful pedagogical approach, but also to be able to
describe its good and bad sides, and to discuss what it takes to make use of VPS in teaching. The two
overarching questions we wished to answer were:

In what ways does visual program simulation impact on learning?

and

How can we improve our implementation of visual program simulation in the UUhistle system?

2This expression is sometimes credited to Albert Shanker – see, e.g., Shanker (1969).
3None of this will happen, of course, if the teacher does not have enough time for planning their teaching or following

educational research. This significant practical concern I will gloss over here.
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We operationalized parts of these broad, related questions as smaller subquestions.

1. In what ways do novice programmers experience learning through visual program simulation?

2. What happens during visual program simulation sessions? In particular:

(a) In what ways do students justify their choice of simulation steps?
(b) What other interesting episodes can we observe?

3. Does a short VPS session help produce short-term improvement in learners’ ability to predict the
behavior of given programs?

(a) Does a short session of studying examples using UUhistle (v0.2) bring about greater short-term
improvement in students’ ability to predict program output than studying examples without a
visualization does?

(b) Are there differences in the effectiveness of this treatment for different content?

4. How do students react to the use of UUhistle in CS1 (and why)?

This is a varied bunch of research questions that is best answered using a mix of research methods. Let
us first consider some general points concerning mixed-methods research before returning to our research
questions and how we attacked them.

16.2.1 Mixed-methods research is demanding but worthwhile
Try to imagine a real-life situation that is important to you in which you had to make an
evidence-informed decision. What reason could you have for ignoring relevant evidence simply
because it was numeric or textual? (Gorard, 2010, p. 249, parentheses removed)

We adopt an eclectic and pluralistic view of learning theory (cf. Chapter 8). This eclecticism extends to
research design and is evident in the empirical work presented in the following chapters. We eschew the
extreme positions on qualitative and quantitative research, and attempt to find a middle road.

Our empirical investigations form an interconnected whole that constitutes a body of mixed-methods
research. Mixed-methods researchers reject the “incompatibility thesis” that pens qualitative and
quantitative purists in their own enclosures, and are open to using both kinds of research as situations
call for them (Tashakkori and Teddlie, 2010). We believe that both qualitative and quantitative analyses
can contribute to an increased understanding of how visual program simulation impacts on learning, and
that both can help us determine when and how it is best used.

Some writers consider mixed-methods research to be a separate research paradigm of its own alongside
qualitative and quantitative research. Adopting this view for convenience in this chapter – even though it
is an oversimplification (Tashakkori and Teddlie, 2010) – let us (briefly!) consider some of the merits and
weaknesses of the three paradigms as they are commonly conceived. The following is largely based on
Johnson and Onwuegbuzie (2004) and Patton (2002); many similar lists appear elsewhere in the literature.

Qualitative methods work well for data-driven, naturalistic exploration and the generation of tentative
theories and hypotheses. They help us develop rich understandings of phenomena in context and to
describe those phenomena vividly, drawing on the meanings that participants attach to phenomena.
Qualitative exploration can adapt to what is discovered during the research and can make use of
the researcher as a research instrument. The weaknesses of qualitative methods include their relative
unsuitability for testing hypotheses, the context-dependence of results, the often time-consuming nature
of qualitative data analysis, and a higher risk of researcher bias affecting the findings.

Quantitative methods are particularly useful for testing existing hypotheses and for studying large
groups. In a controlled setting, the effect of confounding variables can be minimized to focus on a particular
aspect and examine cause-and-effect relationships in a credible way. Numerical data is often relatively
quick to process and can be presented precisely and succinctly. The results of statistical analyses are
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relatively independent of the researcher. The weaknesses of quantitative methods include an increased risk
of missing out on important aspects of a complex situation because they were not covered by hypotheses,
a greater reliance on the scientist’s views of a situation at the expense of the participants’, a tendency to
provide highly abstract results that may be difficult to apply directly in specific situations, and a sometimes
excessive focus on universal or near-universal generalizability at the expense of context-sensitivity.

Mixed-methods research seeks to use both qualitative and quantitative methods in a way that allows
their strengths to complement each other and compensate for the weaknesses of each purist paradigm.
Rich qualitative descriptions add meaning to numbers obtained through quantitative work. Numbers
add precision to words, pictures, and narrative. The mixed-methods paradigm allows the use of a wide
range of research methods, which enables the researcher to pick methods freely on the basis of research
questions and their subquestions instead of following the dogma of qualitative or quantitative purists. The
weaknesses of mixed-methods research are primarily practical. It takes more time (or more researchers)
to learn to use different methods well and to apply them. Similarly, more is demanded of peer evaluators
of mixed-methods research. Another practical concern is that the method-mixing researcher runs the risk
of offending both qualitative and quantitative purists at the same time.

16.2.2 A pragmatist philosophy of science supports method-mixing

In this thesis, I adopt a pragmatist view of scientific research. In this, I am influenced especially by the
somewhat different but related positions of Johnson and Onwuegbuzie (2004) and Phillips and Burbules
(2000). These authors draw in turn on the work of classical pragmatists, especially the triumvirate of
Charles Sanders Peirce, William James and John Dewey; the pragmatism-influenced postpositivism4 of
Phillips (Phillips and Burbules, 2000) also owes a great deal to the work of Karl Popper.

Johnson and Onwuegbuzie argue that pragmatism is a suitable philosophical partner for present-day
mixed-methods research. The following is a list of some of the general characteristics of pragmatism as
they define it (selected and adapted from Johnson and Onwuegbuzie, 2004).

Pragmatism. . .

. . . has attempted to find a workable solution (sometimes including outright rejection) to many long-
standing philosophical dualisms (e.g., rationalism vs. empiricism, realism vs. antirealism, free will
vs. determinism, Platonic appearance vs. reality, facts vs. values, subjectivism vs. objectivism)
about which agreement has not been historically forthcoming;

. . . recognizes the existence and importance of the natural or physical world as well as the emergent
social and psychological world that includes language, culture, human institutions, and subjective
thoughts;

. . . views knowledge as being both constructed and based on the reality of the world we experience and
live in;

. . . endorses fallibilism (current beliefs and research conclusions are rarely, if ever, viewed as perfect,
certain, or absolute). Capital “T” Truth (i.e., absolute Truth) is what will be the “final opinion”,
perhaps at the end of history. Lowercase “t” truths (i.e., the instrumental and provisional truths
that we obtain and live by in the meantime) are given through experience and experimenting;

. . . views theories instrumentally (they become true and they are true to different degrees on the basis
of how well they currently work; workability is judged especially on the criteria of predictability and
applicability);

4“Postpositivism” is defined very differently by different authors, and I cannot identify my views in many of the definitions
(e.g., that provided by Lincoln et al., 2011). Like “positivism”, the term is often strongly associated with correspondence
theories of truth, quantitative research, and the falsification of hypotheses, which is why it bears stressing that Phillips’s
postpositivism – which I am partial to – is quite open to various forms of research and reasoning. Phillips’s view is related
to pragmatism (cf. Phillips, 1975) and is in many ways compatible with it. Of course, “pragmatism” is hardly a single
unambiguous position, either.
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. . . endorses eclecticism and pluralism (e.g., different, even conflicting, theories and perspectives can
be useful; observation, experience, and experiments are all useful ways to gain an understanding of
people and the world);

. . . endorses a strong and practical “empiricism” as the path to determining what works;

. . . prefers action to philosophizing;

. . . endorses theory that informs effective practice.

I will elaborate on my position regarding a few related points.

On science, knowledge, and truth

Niiniluoto (e.g., 1980, 2002) – whose writings form the basis of the thesis-writing advice given to doctoral
students in Finnish technical universities (Airila and Pekkanen, 2002) – defines scientific research as the
systematic and rational pursuit of scientific knowledge. According to Niiniluoto (who builds on Popper),
scientific knowledge should be true or, failing that, truthlike – a term that means, informally, ‘similar to or
approximate to truth’. These definitions of scientific research and knowledge rely on a definition of truth.

The critical scientific realism advanced by Niiniluoto is founded on a correspondence theory of truth
in which truth is a relationship between reality and meanings expressed through language. It dismisses
pragmatistic theories of truth – summarized as “true is that which works in practice” – on the grounds
that being useful in practice is less a suitable definition of truth than an emergent property of acting on
propositions that correspond to reality.

Truth may indeed not be best defined as what works. It has been proposed that the pragmatist may
skip past this objection by treating it as a terminological quibble and conceding it. Dewey warned against
identifying knowledge with reality, and suggested that instead of truth we would be better off speaking
about “warranted assertibility” (see, e.g., Phillips and Burbules, 2000, p. 3). The scientific enterprise, in
this view, is better characterized as the rational and systematic pursuit of warranted beliefs backed up
by evidence – empirical and otherwise – but not solidly founded on any single basis. Although absolute
Truth is usually, or always, unattainable, the concept of truth can nevertheless be useful as a “regulative
ideal” (Phillips and Burbules, 2000, after Popper) towards which scientists strive as they seek to muster
ever better warrants for propositions that are useful for acting upon, and probably truthlike, but always
subject to revision.

Pragmatists accept that science produces some results that appear to be useful in practice, but are not
actually True. Pragmatist science has perhaps an increased risk of failing to discover truthlike knowledge
that serves no immediately obvious practical purpose. Despite these weaknesses, I consider pragmatism
a ‘good enough’ and indeed appropriate stance for the purposes of this project. I am satisfied to say
that our results lead to warranted beliefs rather than truths – however, the likelihood of an empirically
warranted belief being truthlike is better than that of most beliefs. Should our warrants for making our
claims be insufficient, I trust the scientific community will do its best to point this out. In the event that
our claims are not truthlike enough to be useful, I trust that future research and endeavors to apply the
claims will fail to corroborate them, at which point they can be revisited and replaced with improved ones.

Finally, pragmatism stresses that many knowledge claims are highly context-dependent; what can be
reasonably asserted about one context can not be asserted about other contexts without powerful warrants
for doing so. Pragmatism is a form of practical fallibilism: we can never fully trust our knowledge to work
in the novel situations that confront us in our ever-changing world (see, e.g., Biesta and Burbules, 2003).

On values

Qualitative methods purists (e.g., Lincoln and Guba, 1985) contend that value-neutral inquiry is
impossible, and, more controversially, that researchers should be openly ideological and allow their values
to (openly, not covertly) affect the way they conduct science. Many advocates of quantitative methods
agree that absolute value-neutrality is impossible but nevertheless see it as a desirable goal in principle.

Phillips and Burbules (2000) draw attention to a useful distinction made by earlier writers between
internal and external values, which matches how we think of values within the present project.
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There are values that are internal to science and epistemically relevant (Phillips and Burbules, 2000,
p. 54). For instance, one must not falsify evidence and must be open to criticism. Without these values
– which “foster the epistemic concerns of science as an enterprise that produces competent warrants for
knowledge claims” – “scientific inquiry loses its point”.

External and epistemically irrelevant values range from the personal (e.g., “computing education
is important and we must make sure everyone who does our courses learns at least the basics”) to
externally given agendas (e.g., “we need to find out how best to advertise our department to potential
future students”). These values may and do (and must) guide the scientist as they choose which
research questions are important enough to merit investigation – a decision which may change during
an investigation. They also affect the courses of action that we take and recommend on the basis of our
results. However, we should minimize the intrusion of epistemically irrelevant values into the process of
establishing empirical evidence for knowledge claims about our object of research. In other words, our
results are ideally not affected by what we would prefer them to be.

Phillips and Burbules (2000) are careful to point out that “of course the judgment about what is
epistemically relevant or irrelevant is itself – like all judgments – potentially a fallible one” (p. 54).

On methods and results

Various pragmatists and mixed-methods scholars (recently, e.g., Patton, 2002; Johnson and Onwuegbuzie,
2004; Morgan, 2007; Tashakkori and Teddlie, 2010) have argued that there is a disconnect or only a very
loose connection between philosophy and research methods. Johnson and Onwuegbuzie (2004), for
example, caution that “there is rarely entailment from epistemology to methodology” (p. 15). Patton
(2002) makes a similar comment and concludes: “In short, in real-world practice, methods can be separated
from the epistemology out of which they have emerged” (p. 136). Similarly, a set of research findings
can be useful to researchers and practitioners who subscribe to different ontological and epistemological
assumptions than the original researchers. The final word on the epistemological status of our results lies
with our readers, who will interpret our results on the basis of their own beliefs.

I will return to the fundamentals of qualitative and quantitative research shortly to discuss the
trustworthiness of our research. Now, let us return to our research questions.

16.2.3 The following chapters describe several interrelated studies

The pragmatist may use any methods for empirical work that produce useful results and that suit the
research goals. That is what we have done.

To answer Question 1, “In what ways do novice programmers experience learning through visual
program simulation?”, we adopted a phenomenographic perspective. As discussed in Chapter 7,
phenomenography is a research approach that is geared towards studying the different ways in which
people experience phenomena in educational contexts. Compatibly with our research questions – and
typically of phenomenographic studies – we used qualitative methods to explore learners’ understandings
of VPS.

We also adopted a qualitative orientation to answer Question 2, “What happens during visual program
simulation sessions?” More specifically, we used a form of data-driven, qualitative content analysis, an
approach suitable for the exploration of complex data.

We approached Question 3, “Does a short VPS session help produce short-term improvement in
learners’ ability to predict the behavior of given programs?” quantitatively, and used an experimental
setup to measure the short-term impact of VPS in classroom use.

Finally, we sought to answer Question 4, “How do students react to the use of UUhistle in CS1 (and
why)?”, through both qualitative and quantitative analyses of course feedback questionnaires, which are
an inexpensive way of surveying the opinions of many students.

Table 16.1 presents an overview of our studies.
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Table 16.1: An overview of the empirical studies in Part V. The way we have broken down each study
into a research purpose, framework, data source, and form of analysis is adapted from Malmi
et al. (2010). Only the primary research questions, purposes, and methods are shown.

Chapter Research question Research
purpose

Research
framework

Data source Form of
analysis

17 In what ways do novice
programmers experience learning
through visual program simulation?

qualitative
evaluation,
formulating a
model

phenomeno-
graphy

interviews qualitative
analysis

18 What happens during visual
program simulation sessions?

qualitative
evaluation

content
analysis

observations,
interviews

qualitative
analysis

19 Does a short VPS session help
produce short-term improvement in
learners’ ability to predict the
behavior of given programs?

quantitative
evaluation

controlled
experiment

pre- and
post-test

statistical
analysis

20 How do students react to the use of
UUhistle in CS1 (and why)?

quantitative
and qualitative
evaluation

survey online
questionnaire

descriptive
statistics,
qualitative
analysis

16.3 You decide if you trust our research

Don’t label [your own inquiry processes and procedures] as ‘objective’, ‘subjective’,
‘trustworthy’, ‘neutral’, ‘authentic’, or ‘artistic’. Describe them, and what you bring to them,
and then let the reader be persuaded, or not, by the intellectual and methodological rigour,
meaningfulness, value and utility of your result. (Patton, 2002, p. 576)

To establish ‘truth’ – that is, warranted assertibility – we need good research. What does this mean for
our pragmatic mixed-methods project? The qualitative and quantitative paradigms put forward different
quality criteria but also share some common ground. Below, I deliberately use stereotypes of polarized
purist positions in each camp as I discuss the two paradigms.

16.3.1 Quantitative and qualitative research share the goals of authenticity, precision,
impartiality, and portability

Within the quantitative paradigm, research is traditionally assessed in terms of its validity and reliability.
Some qualitative researchers and mixed-methods researchers use these same terms albeit often with
adjusted definitions – something that quantitative purists jealously guard against. Some qualitative purists
instead reject the terms as oppressive relics of the quantitative regime. In a seminal account, Lincoln
and Guba (1985) presented credibility, transferability, dependability, and confirmability as the qualitative
researcher’s alternatives to traditional criteria for trustworthiness.

Onwuegbuzie and Johnson (2006) argue that because of such tensions, using terms such as validity
in mixed-methods research is counterproductive. They suggest legitimation as a neutral term to be used
instead when discussing the overall criteria for the assessment of mixed-methods studies.

The legitimative concerns of qualitative and quantitative researchers are similar at heart. Both wish
to perform good research and to convince readers to pay attention to the results reported and find value
in them. Both agree that to be scientific, a rigorous, rules-based, systematic approach to research is
required. Wesley (2011) builds on the more confrontational work of Lincoln and Guba (1985) to propose
a bridge-building terminology that captures the commonality in the two paradigms. I paraphrase:
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• Authenticity is an abstraction of validity (or measurement validity) in the quantitative paradigm
and credibility in the qualitative paradigm. Research is authentic when it is appropriately geared
towards research questions.

• Precision is an abstraction of reliability in the quantitative paradigm and dependability in the
qualitative paradigm. Research is precise when it has been competently carried out.

• Impartiality is an abstraction of objectivity in the quantitative paradigm and confirmability in the
qualitative paradigm. Research is impartial when it is free of inappropriate bias.

• Portability is an abstraction of generalizability (external validity) in the quantitative paradigm and
transferability in the qualitative paradigm. Research is portable when lessons can be taken from it
to other contexts.

The two paradigms have different strengths. Authenticity has been viewed as difficult to establish in
quantitative research, while qualitative research arguably struggles more with the other three facets of
legitimation. Each paradigm can learn something from the other. Below, I use Wesley’s terminology as I
review what the two paradigms have to say about legitimation and the concrete procedures suggested in
the literature for establishing legitimacy. The discussion here draws primarily on Lincoln and Guba (1985),
Kvale (1996), Patton (2002), Airila and Pekkanen (2002), Breakwell et al. (2006), and Wesley (2011).

Authenticity

Within the quantitative paradigm, the assessment of authenticity (validity) has at its core the question: are
you measuring what you intend to measure? Authenticity arises from good research design, in particular
from operationalizing phenomena of interest into variables, using appropriate instruments (tests) for
measurement, and designing controlled experiments so that observations about a dependent variable can
be attributed to controlled variation in an independent variable. Threats to validity include poor design
of tests, sampling bias, testing effects (e.g., pretests affecting ability to do what is being measured),
maturation effects and history effects (the gradual or sudden influence of outside factors), research
subject dropouts, and interference between control and experimental groups (e.g., experimental treatment
spreading to the control group; demoralization of the control group).

Researchers within the qualitative paradigm are likewise concerned with the appropriateness of their
research instruments for what they are trying to accomplish. The qualitative researcher is not as focused
on measurement, but asks a broader question: are you investigating what you intend to investigate? To be
authentic (credible), the researcher must produce a report that is tenable as judged by its readership. Kvale
(1996) distinguishes between two kinds of authenticity that qualitative researchers rely on. Communicative
validity is the extent to which research holds up in critical public discussion among either a community
of research experts or members of the population being investigated. Pragmatic validity refers to the
extent to which the research assists in producing useful actions, which also means that the research
must be judged to be authentic enough by decision makers. The authenticity of qualitative research
rests on the choice of methods and research instruments (to gather high-quality data and to analyze it
systematically), and the measures taken to ensure that the findings are credible to the consumers of the
research. Techniques include triangulation, peer evaluation, rich ‘thick description’ of method, setting,
and analysis, and extensive quoting from empirical data. (More on specific techniques below.)

In interpretive qualitative research, the researcher is seen as a key research instrument. Accordingly,
Patton (2002) emphasizes that authenticity depends on the researcher’s personal attributes, such as
training, experience, track record, and status.

Precision

In the quantitative tradition, precision (reliability) is largely defined by how replicable a research effort and
its findings are. Assuming that the original researchers have carried out their research plan competently
enough, and their instruments are designed in such a way that they produce consistent measurements, a
repeat study would be expected to produce the same findings even if carried out by other (competent)
researchers.
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As noted, the qualitative tradition views the researcher as a key research instrument whose involvement
and interpretations are reflected in the research results. Just as different tests may produce different
insights into a phenomenon, different researchers may discover different insights as they study a
phenomenon – in fact, even the same researcher (who changes with time and deepens their understanding
during research) may discover new facets of the object of research with repeated attempts. Precision
(dependability) in the qualitative paradigm, too, is concerned with competence, consistency, and the
elimination of mistakes. However, instead of requiring findings to be replicable, the qualitative tradition
instead mandates that the researcher should demonstrate that their findings are consistent with empirical
data and follow procedures that reduce the risk of careless mistakes.

Impartiality

Traditional quantitative science seeks impartiality in the sense of objectivity: objective knowledge is
something that is ‘Real’, does not depend on anyone’s opinion, and can be tested independently of any
particular researcher. Research questions are put to, and research findings are about, ‘Nature Itself’.
Measures are taken to ensure that findings are as free of researcher interpretation and as unsoiled by
values as possible. The researcher seeks to maintain a distance from the object of research through large
sample sizes and quantitative methods.

As with authenticity and precision above, the qualitative researcher’s conception of the researcher as
a research instrument brings a different perspective on impartiality (confirmability). Although the results
of interpretive qualitative research – and indeed any research – depend on the researcher, they can be
impartial to the extent that they are free of prejudice. According to Patton (2002, p. 575) distancing
oneself from the data “does not guarantee objectivity; it only guarantees distance”. Similarly, it is argued
that the use of measurement and statistics does not protect against bias, as any research design inevitably
involves countless researcher-dependent decisions. Patton, citing Lincoln and Guba, prefers to approach
impartiality in the social sciences through the notion of “fairness”: the researcher should test for and rule
out (or acknowledge) his own biases and seek to allow multiple competing viewpoints fairly and equally.

Portability

The quantitative paradigm entrusts the researcher with the quest of producing portable (externally valid)
knowledge that applies widely, perhaps even universally, across settings, people, and time. An important
estimate concerning the portability of findings arises out of the sampling model: the researcher must judge
to what extent their sample is representative of a more general population. Large sample sizes reduce the
probability of chance findings that represent only the sample rather than the general population.

The qualitative paradigm has a very different take on portability (transferability). Many scholars
emphasize that knowledge of both the source and target contexts is needed to make estimates about
portability. It is neither necessary nor appropriate to hold a researcher responsible for ‘proving’ the
portability of their findings. Assessing portability is primarily a task for the consumer of the research, who
knows the target context. The job of the original researcher is to provide sufficient information for the
consumer to be able to make informed judgments about the similarity of the two contexts.

16.3.2 The literature presents an assortment of techniques for research legitimation
The four aspects of legitimation are connected in complex ways. Authenticity and portability depend on
precision, for instance. Many of the techniques presented in the literature impact on multiple aspects of
quality either directly or indirectly. I list here some techniques for increasing and establishing authenticity,
precision, impartiality, and portability without going into detail about each technique or linking them to
specific aspects of legitimation. (For more information, see, e.g., Lincoln and Guba, 1985; Kvale, 1996;
Patton, 2002; Airila and Pekkanen, 2002; Breakwell et al., 2006; Wesley, 2011.)

• Being clear and explicit in general: reflecting on and clearly reporting research questions and the
motivations behind them; rich, ‘thick’ description of the research setting and methods and of
the analysis process; assessment of methodological choices on the basis of their suitability for the
research questions.
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• Triangulation: triangulation of data sources, methods, research designs, perspectives, and theories
(either to show that they produce similar results or at least to check for such similarity and analyze
discrepancies); replication studies or continuation studies; team research.

• Researcher capabilities and learning: reflection on and publication of personal and professional
information of relevance about researchers; prolonged, open-minded researcher engagement with
the phenomenon of interest within context; pilot studies; training in the use of instruments and
methods.

• Data collection: carefully justified choice of data sources and sampling strategies (explicitly aligned
with each other and with research questions); large sample sizes; explicit justification of how
phenomena have been operationalized as variables; controlling and randomizing variables; construct
validity checks (e.g., comparing an instrument to another); reflection on possible pitfalls in the use
of the methods chosen.

• Analysis and analyses: repeated passes through data; analyses of test consistency (e.g., test-retest
checks); computer-aided analysis; intercoder reliability calculations and other team-based analysis
techniques; demonstration of how alternative explanations were looked for; explicitly reporting
uncertainties in analysis; exploration of discrepant cases in the data that do not fit the generalizations
made; “member checks” of findings by research participants or others like them; explicit linking of
conclusions to empirical data (e.g., through abundant verbatim quoting of data such as interviews);
publication of all data.

• Peer assessment: peer review by the research community, formal audits of process.

In the studies that follow, we have used some of these techniques. Others we have not used, due to lack
of time, inconvenience, or their unsuitability for the research questions, and because we deemed what we
did to be sufficient for present purposes.

In the spirit of the quote from Patton at the beginning of this section (p. 255), we leave it to the
reader to reflect on research quality and our take on it, and to judge the quality of our craftsmanship as
we present what we did in the chapters that follow.

16.4 Our data comes from a certain CS1 course offering
Our empirical data comes from the course T-106.1208 Basics of Programming Y (Python) at Aalto
University, and specifically from its offering during the spring 2010 semester. During this course offering,
we conducted student interviews (see Chapter 17), video observations (see Chapter 18), and a controlled
experiment (see Chapter 19). By way of triangulation, we also review some student feedback from
course-end questionnaires (Chapter 20).

Below, we will refer to the course T-106.1208 with the label CS1–Imp–Pyth, short for CS1 – imperative
programming – Python.

16.4.1 We studied a CS1 for non-majors
CS1–Imp–Pyth is a large-class CS1 course for non-computing majors at a multidisciplinary research
university whose mission is to bring together technology, economics, and art and design. Hundreds
of students from a variety of scientific and engineering disciplines take CS1–Imp–Pyth each spring term.
A total of 759 students enrolled in 2010. For many – probably most – of the students, CS1–Imp–Pyth is
the only programming course they ever take.

CS1–Imp–Pyth is designed to teach about fundamental aspects of programming that engineering
students are expected to find useful in their future work. The primary focus is on having students practice
the writing of small, script-like imperative programs. In terms of content and ordering of topics, the course
is a traditional CS1 that starts from variables and basic operators and selection, then turns to iteration
and functions. Graphical user interfaces and object-oriented programming are touched upon near the end
of the course. The course uses the Python language.
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Many students take CS1–Imp–Pyth mainly because it is obligatory for students in their degree program.
Problems with student motivation have been reported anecdotally by course staff. Many students find
the course very difficult, and struggle to master even the basics. The drop-out rates in past years have
oscillated between (roughly) 20% and 40%. Certainly, many students do well also; there is great variation
in learner attitude, aptitude, background, and performance.

Assignments

Programming assignments are the main learning activity in CS1–Imp–Pyth. There are two main kinds of
assignments: program-writing assignments and program-reading assignments.

In 2010, there were 27 program-writing assignments and 24 program-reading assignments. The
assignments were divided into 9 rounds. Each round had a deadline, usually a week after that of the
previous round. Students worked on the assignments individually.

The program-writing assignments were fixed in scope (as opposed to open-ended). Each assignment
required the student to write a small program that produces console output as specified. The programs
were small. The most complicated assignment required writing a program that reads in the chemical
formula of a molecule (no parentheses allowed) and prints out the corresponding molecular mass.

The program-reading assignments were implemented in UUhistle, as follows.

The role of UUhistle and VPS

Most rounds contained small program-reading assignments. These included program animations in which
students merely watched UUhistle animate a given program’s execution, and VPS exercises, in which they
had to manually simulate given programs.

On the course web site, the program-reading assignments were listed separately from the program-
writing assignments and other course materials; the program-writing assignments and other materials also
did not refer to the program-reading assignments . Students did all course assignments in whichever order
they chose to. The program-reading assignments were numbered in such a way that each topic was first
introduced through an animation and then elaborated on in one or more VPS exercises.

Here are the topics of the program-reading assignments in UUhistle:

Round 1: Variables, arithmetic, and I/O (two animations, five VPS exercises)
Round 2: Selection and boolean logic (one animation, two VPS exercises)
Round 3: ����� loops (one animation, one VPS exercise)
Round 4: Functions and parameters (one animation, three VPS exercises)
Round 5: More functions (two VPS exercises)
Round 6: (no program-reading assignments)
Round 7: (no program-reading assignments)
Round 8: Recursion (one animation, one VPS exercise)
Round 9: Classes, objects, and methods (two animations, two VPS exercises)

The programs appear in Appendix B.
Two short introductory videos were published that introduced students to UUhistle’s visualizations

and to VPSing. They were linked to from the first UUhistle assignments and from the course web site.
(Some students watched them, others did not.) Students did not receive any other guidance in the use
of UUhistle unless they asked for it themselves in the voluntary exercise sessions (see below).

Assessment and grading

Students submitted their solutions to assignments into a web-based course management system. The
solutions were assessed automatically. Program-writing assignments were assessed by comparing the
submitted program’s output to that produced by a model solution. UUhistle graded students’ solutions
to program-reading assignments (see Section 13.5) and sent their scores to the associated courseware.
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Each assignment was worth a number of points; the overall assignment grade was determined by the
sum of the points received during the semester. The program-writing assignments were by far the most
valuable in terms of points. VPS assignments were worth considerably less (as was natural, since they
were meant to be easier and quicker to do than the program-writing assignments). Even the program
animations were worth a very small number of points that the student got just for watching the animations.
In total, the program-reading assignments accounted for 14% of all the assignment points available.

Getting the highest grade for the course required the production of a working solution to most
assignments. The overall assignment grade was averaged with the grade from a final examination to
produce the overall grade.

Students could freely choose whether to do any of the program-reading assignments in UUhistle.
Getting the highest grades required them to do at least some of them, but it was possible to pass the
course without ever using UUhistle at all.

Exercise sessions and lectures

All the assignments in CS1–Imp–Pyth – program-reading and program-writing alike – were ‘open labs’.
Students worked on them at their own pace, mostly outside of class. There were no ‘closed labs’ with a
fixed agenda. Instead, teaching assistants supervised ‘exercise sessions’. In these sessions, students worked
freely on whichever assignment they wanted, and could ask the assistant for guidance when they felt they
needed it. Attendance was voluntary. Students could also voluntarily attend lectures. Most students in
CS1–Imp–Pyth did not attend either the lectures or the exercise sessions, preferring to study on their own
or with friends.

The lecturer occasionally made use of UUhistle to illustrate program execution during the lectures. The
visualizations in UUhistle were the main (and almost only) explicit form of teaching about the underlying
execution model of programs in CS1–Imp–Pyth. During one lecture at least, the lecturer drew diagrams
of computer memory to illustrate references.

Staff

For a number of recent years, CS1–Imp–Pyth has been designed, lectured and organized by a teacher
who has not otherwise been involved in UUhistle’s development or this empirical study. She agreed
to adopt UUhistle after it was suggested to her during a demonstration of the tool by the authors.
The program-reading assignments were created by UUhistle’s authors and subsequently approved by the
teacher. UUhistle’s programmer, Teemu Sirkiä, was one of 18 part-time teaching assistants. He did not
play a direct role in conducting the empirical studies presented in the next chapters.

The teaching assistants were asked to familiarize themselves with UUhistle and VPS on their own and
did not receive any other training on the topic.

A few statistics

A total of 562 students did at least one of the program-reading assignments. That means 74% of all
enrolled students, and 81% of those who submitted at least one assignment of some sort – among the
enrolled students there are always some “ghosts” (Mason and Cooper, 2012) who fail to turn up at all or
at least do not put in nearly any work.

The students made 11,010 submissions through UUhistle in total, including a small number of
resubmissions.

The code of each of the program-reading assignments was fairly short, ranging from 2 to 28 lines in
length. The shortest program animation (assignment 1.1, that is, the first program-reading assignment
of round 1) was 13 (correct) steps long, and the longest (assignment 9.3) about 200 steps. The shortest
VPS exercise (assignment 1.2) was 12 steps, and the longest (assignment 4.9) about 80 steps.

The easiest VPS task as measured by the number of mistakes made was assignment 3.3 on �����

loops, in which the submissions had a median of 1 misstep. The hardest was assignment 5.1 – which
combined function calls, boolean values, selection, and logical operators – with a median of 30 incorrect
steps per submission.
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Students typically spent a few minutes on each VPS assignment. Assignment 1.4 was the VPS
assignment with the shortest average completion time; students spent a median time of 1.4 minutes on
it. By the same measure, the longest exercise was the above-mentioned assignment 5.1, completed in a
median time of 14 minutes.5

Language

The course language was Finnish. Finnish identifiers were used in program code. The students used a
Finnish-language version of UUhistle. The author of the thesis has translated all the quotes and identifiers
in the following chapters from Finnish to English. We are not aware of any significant language-dependence
in our results.

16.4.2 In the studies that follow, students used an early prototype of UUhistle

Chapter 13 described UUhistle v0.6, the most recent release at the time of writing. The offering of CS1–
Imp–Pyth in Spring 2010 used UUhistle v0.2, an earlier prototype. There are some possibly significant
differences between the two versions, which the reader should bear in mind when reading the following
chapters.

• The Info box, the explanatory texts that it links to, and the “What is this?” menu choices accessible
through context menus (see Section 13.1.3) did not exist in v0.2. A simple textual explanation of
the previous execution step (in animations) or a prompt (in VPS exercises) was shown on the status
line at the bottom of the window (see Figure 16.1).

• Assigning to a new variable involved two entirely separate steps: first you created an empty variable
using a context menu (see Figure 16.1) and then dragged the value to it. (Cf. in UUhistle v0.6 you
assign to a new variable by dragging the value to the frame, which brings up a context menu for
creating and naming the variable.)

• The Next Line / Fast Forward button did not exist.

• UUhistle v0.2 gave almost no context-specific feedback, nor did it attempt to draw the user’s
attention to points of interest or directly address specific misconceptions through the textual
materials (cf. Sections 13.1.3, 13.4.2, and 15.3). UUhistle notified the user when they made a
mistake, but all textual feedback was very generic, along the lines of “You performed the wrong
kind of execution step.” or “You used the right value but misplaced it.”, and the user had to click
a button (the one with the question mark icon) to receive it.

• When the user moused over a reference in v0.2, the target object was highlighted in green but no
arrows were drawn (cf. Figure 13.1 on p. 194).

• (Many additional features and small tweaks with a lesser impact on the present work.)

The students of CS1–Imp–Pyth used the ‘lean build’ of UUhistle v0.2 (see Section 13.7), which only
serves as a client for ready-made program-reading assignments. That is, students could not edit code in
UUhistle or use the system to animate their own code.6

We close this chapter with a brief exposition of ourselves.

5The figures given here have been calculated from UUhistle’s submission logs. The times are measured from opening an
assignment to the submission timestamp. Abandoned sessions (which did not result in a submission) are excluded.

6The main reason for using the lean build was that we were concerned about technical problems that would emerge if
students were to run arbitrary Python code within the early UUhistle prototype.
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Figure 16.1: The earlier version of UUhistle (v0.2) that was used in the 2010 offering of CS1–Imp–Pyth.
Cf. Figure 13.9 on page 203, which shows the newest version (v0.6).

16.5 Who are “we”?
The author of this thesis, Juha Sorva, was the lead researcher in each of the empirical evaluations of VPS
in Part V. The thesis supervisor, Lauri Malmi, also had a hand in each of the projects. Jan Lönnberg
participated in the work we present in Chapter 17. We will describe the roles of the researchers separately
in each chapter.

We undertook this research in our roles as teachers at Aalto University and computing education
researchers in the university’s Learning+Technology research group.7 Our goals were to evaluate VPS
and UUhistle in order to improve our own teaching, our students’ learning, and the teaching and learning
of others elsewhere, and to produce this dissertation.

The author of the thesis has many years of experience in teaching introductory programming courses at
Aalto. He has made the occasional contribution to the design of materials for CS1–Imp–Pyth but has never
taught that course himself. Lauri Malmi is the leader of the Learning+Technology group and the head
of introductory programming education at Aalto University, and has long experience within computing
education, software visualization, and computing education research. Jan Lönnberg is a doctoral student
in computing education research,8 with teaching experience from a concurrent programming course.

All of us had taken courses in research methods (both quantitative and qualitative, including
phenomenography); the thesis supervisor had also given such courses. We all had previously written
peer-reviewed publications reporting empirical research unrelated to this thesis. The two doctoral students
were nevertheless still fairly inexperienced as researchers.

None of us was involved in the teaching of CS1–Imp–Pyth, but we all know the teacher as a colleague.
The thesis supervisor is married to the CS1–Imp–Pyth teacher, but is not directly involved in decision
making regarding the pedagogy of that course.

7What is now known as the Learning+Technology group was formed when the Software Visualization Group (SVG) and
the Computing Education Research group (COMPSER) merged in 2010, during this thesis project.

8Was at the time, I should say. He beat me to finishing (Lönnberg, 2012).
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We must acknowledge the possibility that our attitudes and expectations may have biased our research.
We come from a professional subculture within which there exists significant belief in the educational use
of visualizations in general and interactive visualizations in particular. Interest in, and the use of, software
visualization systems such as those reviewed in Chapter 11 is considerable within our community. We,
too, were hopeful that our tool would turn out to be valuable for CS1 teachers and students, including
ourselves. As the author of the thesis is one of the designers of UUhistle, there is a risk of bias in favor of
results that portray the system in a positive light. As we conducted the research, we actively sought at all
stages to be aware of our own hopes and views on VPS, to remain open-minded to others’ different views,
and to honestly identify problems in the use of VPS (some of which we expected to exist on theoretical
grounds; see Section 14.5 and Chapter 15). Such a critical attitude, we feel, is necessary even from a
selfish point of view: while we hope to be able to make use of VPS in the future in our own teaching and
research if it is a worthy pedagogy, we believe in empirical evaluation as the key to deciding if, when, and
how to use VPS.
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Chapter 17

Students Perceive Visual Program
Simulation in Different Ways

This chapter reports on an empirical study conducted by the author of the thesis with the help of Jan
Lönnberg and Lauri Malmi. We investigated the question:

In what ways do programming students experience learning through visual program
simulation?

Other studies (e.g., Isohanni and Knobelsdorf, 2010) have shown that programming students often do not
use program visualization tools in the ways that their teachers had in mind. Not all ways of using these
tools are equally likely to result in effective learning. VPS can only be successful if students relate to it,
and use it, in a meaningful way. Taking this as a point of departure, we sought to examine aspects of the
relationship between programming students and a software visualization system that supports VPS.

In this study, we do not test existing hypotheses. Our study is exploratory and qualitative. We seek
to expand our knowledge of learning through VPS by finding out, through an analysis of empirical data,
what different ways there are of understanding the phenomenon. Our results may serve as a basis for
future hypothesis-testing experiments or may be extended by other exploratory studies.

Learning about VPS

The way we formulated our research question arises out of the phenomenographic theory of learning
(Chapter 7). In the phenomenographic view, powerful ways of acting on a phenomenon are made possible
by rich ways of perceiving the phenomenon.1 Effective learning through VPS therefore presupposes a
sufficiently powerful way of perceiving what learning in a VPS context can be.

By posing and answering our research question, we sought to identify what students need to understand
about VPS so that VPS will be useful to them for learning programming. Phenomenography posits that
the most significant form of learning involves becoming able to experience phenomena in a qualitatively
different, richer way than before. It is such critical differences in understanding that we explore in this
study. In particular, we wished to discover what obstacles there are to students using VPS effectively –
what educationally critical aspects in the phenomenon of learning through VPS a student must discern in
order to develop a qualitatively better understanding and make the most of VPS – so that those obstacles
can be tackled in teaching.

Chapter structure

Chapter 7 has already introduced some of the fundamentals of phenomenographic research. In the first
two sections below, we delve a bit deeper into phenomenography in order to clarify our research question
and to review the tools that the phenomenographic tradition provides for answering it. Section 17.1
focuses on theory and Section 17.2 on research-methodological considerations from the literature. In

1We use the terms ‘way of experiencing’, ‘way of perceiving’, and ‘way of understanding’ effectively synonymously with
each other, in the sense described in Chapter 7.
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Section 17.3, we get to a more concrete explanation of what we did in practice to collect and analyze
data. Section 17.4 presents the results of our study. In Section 17.5 we discuss what the results mean
from the point of view of learning to program. We build on that discussion in Section 17.6 to present
some pedagogical recommendations. Finally, in Section 17.7 we acknowledge some vague spots in our
findings and some plausible alternative analyses.

17.1 We adopted a phenomenographic perspective on how students
perceive learning through VPS

Before we proceed, let us bring to mind some of the main points made about phenomenography in
Chapter 7.

• Phenomenography seeks answers to questions of the form “in what ways do people experience
phenomenon X?” and subquestions thereof.

• The ‘unit of phenomenographic research’ is a way of experiencing a phenomenon, defined as an
internal two-way relationship between the experiencer and the experienced.

• A phenomenon is constituted by the different ways in which it can be experienced. The question
“in what way do people experience a particular phenomenon” does not ask – and phenomenography
does not answer – only about learners or the phenomena they experience, but about both at the
same time.

• A phenomenographic study investigates the relationship between a population of experiencers and a
phenomenon. The researcher attempts to ‘see through the eyes of the learners’ in order to describe
the different ways in which they as a collective experience the phenomenon. The results are the
researcher’s interpretation of others’ experience.

• The typical phenomenographic study produces an outcome space of a few categories of description.
Each category describes a way of understanding the phenomenon of interest that is qualitatively
different from the other ways of understanding the phenomenon. (Chapter 7 gives several examples
of outcome spaces.)

• The categories in an outcome space typically have logical, hierarchical relationships. Some categories
can be said to be richer, more powerful, and more desirable from an educational point of view than
others.

In our study (Figure 17.1), the phenomenon is learning through VPS, by which we mean any learning
that involves a visual program simulation context (in the students’ experience). A way of understanding
learning through VPS involves, and relates to each other, a way of perceiving what VPS is, and a way of
understanding what one can learn about while doing VPS.

17.1.1 We studied the ‘act’ and ‘why’ aspects of learning
Our research question can be made clearer still. What do we mean when we say “learning through
VPS”? We can clarify this by analytically viewing learning as several aspects. Marton and Booth (1997,
Chapter 5) separate learning into a ‘how’ aspect and a ‘what’ aspect (Figure 17.2). The ‘how’ aspect of
learning is the way one learns. It is crucial for the learning outcome as it defines what the learner’s goals
are and how he goes about achieving them. The ‘what’ aspect of learning is the content that one learns
about, e.g., computer programming or a particular concept. The two aspects are interrelated. How the
learner goes about learning affects what he learns about; conversely, the content of learning affects how
he goes about learning.

The ‘how’ of learning can be further divided into the ‘act’ of learning and the ‘why’ of learning. The
‘act’ of learning refers to the activities – of any kind – that the learner engages in as they learn. The
‘why’ of learning – also called the motive or the indirect object of learning – is what the learner wants to
be able to accomplish as a consequence of learning.
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Figure 17.1: The phenomenographic research perspective we adopted in this study. The phenomenon is
learning through VPS. The people experiencing the phenomenon are novice programmers
taking CS1. Three researchers are studying the relationship between the experiencers and
the phenomenon. (This is an instantiation of the general case depicted in Figure 7.1 on
p. 95.)

Figure 17.2: Aspects of learning, adapted from Marton and Booth (1997). For each aspect, we have
listed a pertinent research question.
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Figure 17.3: Aspects of learning applied to our research on VPS. As in Figure 17.2, we have listed a
pertinent research question for each aspect. The research focus of our study is highlighted.

Just as learning can be experienced in qualitatively different ways, so can any of these aspects of
learning. In a particular phenomenographic study the researchers may be interested in investigating one
or more of these aspects. In our case, we are interested in the ‘how’ aspect of learning through VPS, as
we have illustrated in Figure 17.3. This interest encompasses both the ‘act’ and the ‘why’ of learning.
In contrast, our research focus is not on the content of learning, the ‘what’ aspect. We are not seeking
answers to questions in the vein of “in what ways do students experience control flow / the execution
model of programs / computer memory / the call stack?”. In fact, we do not presume to know what
content it is that students feel they learn about in a VPS context. What content is perceived as being
learned through VPS is one of the things that we hope will emerge through our study of the ‘how’ aspect
of learning.

Marton and Booth (1997) stress that the distinction between the aspects of learning is an analytical
one made for the researcher’s benefit to distinguish between different research points of view, and that in
people’s experience these aspects are not separate entities but facets of an undivided whole.

17.1.2 Marton’s theory of awareness further structures our research

We have already established that when phenomenographers say ‘experience’ they do not mean it in just
any sense of the word, but in the relational sense described in Chapter 7. Some phenomenographers
have found it useful to further dissect the nature of human experience. Of particular interest for present
purposes is Ference Marton’s theory of awareness.
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Figure 17.4: The structure of human awareness, adapted from Marton and Booth (1997).

A structure of awareness

In a sense we could say that we are aware of everything all of the time. But we are surely
not aware of everything in the same way. Certain things are focused, others less and less. Of
most things we are only very, very marginally aware. Then the situation may suddenly change
and with it the structure of our awareness. (Marton and Booth, 1997, p. 98)

According to Marton and Booth (1997, Chapter 5), an experience of something can be expressed in terms
of the structure that our awareness has at a given time. This structure is represented diagrammatically
in Figure 17.4.

To illustrate, Marton and Booth use the example of coming across a deer in dark woods. As we
recognize what we see as a deer, we simultaneously experience both a structure and a meaning. The
referential aspect of an experience is discernment of meaning: what I see is a deer. The structural aspect
of an experience is the discernment of the structure of the phenomenon. To discern the structural aspect
of the deer we must make out its individual parts (legs, head, etc.) and their relationships to each other
and the whole deer. Marton and Booth call this the internal horizon of the experience. The internal
horizon encompasses what is focal to our experience of this phenomenon. To experience the deer as a
deer, we must also relate it to, and distinguish it from, its surroundings. The dark forest, as well as all
previous experiences of deer – including the notion that deer are a kind of animal, for instance – form the
external horizon to which the deer is related.2

Again, the referential and structural aspects are merely analytical tools through which the researcher
can structure their analysis and discussion of experience. The experiencer experiences the phenomenon
simultaneously, as one.

The structure of awareness & categories of description

Each different way of experiencing a phenomenon can be characterized by considering the structure of
the experiencer’s awareness as they are aware of the phenomenon in that way. Each category in a
phenomenographic outcome space describes a way of experiencing and can be analyzed in this way. By
way of example, let us consider the first two categories in Eckerdal’s outcome space concerning the concept

2Berglund (2005) observes that because the word ‘horizon’ in ‘internal horizon’ and ‘external horizon’ greatly emphasizes
the border between the phenomenon and its surroundings, the terms are not always very intuitive. We agree, but persist
with these terms here in the absence of existing better ones.

268



of object (which is shown in full in Table 7.1 on p. 97 above). In Category A, the structural aspect of the
object phenomenon is experienced in terms of program code. The internal horizon of the structural aspect
is the piece of code that defines an object, while the rest of the program code and its syntactical rules
belong in the external horizon against which objects are discerned. The referential aspect is summarized
in Table 7.1: an object is a piece of code. Other aspects of the programming endeavor (such as objects’
runtime behavior) are marginalized and the experiencer is barely conscious of them. In Category B, by
contrast, an object’s role at runtime also falls within the internal horizon and gives new meaning to the
phenomenon.3

The example above illustrates that a category of an outcome space can describe – and often does
describe – a way of understanding in which the borders of the phenomenon are perceived differently than
in the other categories. Does this mean that an outcome space actually describes not people’s different
experiences of a single phenomenon but multiple different phenomena? It might, if the categories were
disjoint. Marton (2000, p. 105) reminds us that the phenomenon of interest to the researcher is constituted
by the various ways in which it can be experienced. “These different ways are logically related to each
other, it is in this sense they are experiences of the same object.” For instance, in the example above,
Category B is a richer variant of Category A; the critical features discerned in Category A are a subset
of those discerned in Category B. It is up to the phenomenographer, in dialogue with his data, to delimit
the phenomenon and conduct the analysis in such a way that the outcome space has a logical structure
through which the categories relate to each other.

The structure of awareness & aspects of learning

Experience of each of the aspects of learning – the ‘act’, the ‘why’, and the ‘what’ – can be considered
in terms of the structure of awareness (Figure 17.5). This permits us to use the structure of awareness to
further break down our research question. As we ask “In what ways do programming students experience
learning through visual program simulation?” we are asking several interrelated questions:

• What do programming students perceive as being the components involved in the act of learning
through VPS and how are these components perceived as connecting? (the internal horizon of the
act of learning)

• In what context do programming students perceive learning though VPS as taking place? (the
external horizon of the act of learning)

• What does learning through VPS mean to programming students? (the referential aspect of the
act of learning)

• In what situations do programming students expect to find a use for what they learn through VPS?
(the internal horizon of the why of learning)

• In what broader contexts do such situations occur? (the external horizon of the why of learning)
• What is the eventual use of successful learning through VPS? (the referential aspect of the why of

learning)

17.2 Phenomenography places loose restraints on research methods
Now that we have an idea of what we are going for, what does phenomenography say about concrete
research methods? Nothing very prescriptive, although it does depend on who you ask.

17.2.1 Phenomenography is an ‘approach’ to research
Those who try to understand what a phenomenographer does risk falling for one of two
misunderstandings: that phenomenography is a method which can be copied by following a
sort of recipe, or that phenomenography is mystical and transcendent. Phenomenography is
not a method which can be applied to a research question in some unproblematic way, nor
does it involve introspection or meditation. (Booth, 1992, p. 61)

3Eckerdal (2006) does not explicitly discuss her outcome space in terms of internal and external horizons; this is our
interpretation of her categories.
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Figure 17.5: The structure of awareness applied to each of the aspects of learning. Adapted from Marton
and Booth (1997).

Marton and Booth (1997) describe phenomenography as

a way of – an approach to – identifying, formulating, and tacking certain sorts of research
questions, a specialization that is particularly aimed at questions of relevance to learning and
understanding in an educational setting. (p. 111)

Above all, they continue (p. 135), phenomenography is defined by its object of research, that is,
human experience. Approaching research phenomenographically means seeking certain kinds of answers
(primarily: categories of description) to certain kinds of research questions (primarily: how do people
experience a phenomenon?). However, phenomenography, in the sense we use the term, does not impose
methods for data collection or analysis.

That does not mean that phenomenography is entirely silent on these matters. “Since a research
approach has its history, there is a tradition, or a network of competence, that the researcher partly
can lean on in his selection to use one method [. . . ] over another” (Berglund, 2005, p. 36). The
phenomenographic literature does suggest that certain ways of going about data collection and analysis
have served well. The phenomenographer can draw on this literature as he assesses how best to address
his research questions in his particular context.

The following methodological advice is drawn in part from the phenomenographical literature and in
part from the general literature on qualitative research methods.

Sources of data

Interviews are particularly well suited for studying people’s understanding of the meanings
in their lived world, describing their experiences and self-understanding, and clarifying and
elaborating their own perspective on their lived world. (Kvale, 1996, p. 105)

As the researcher does not have direct access to others’ experience, he must content himself with
other forms of empirical data. Any data that gives insights into people’s experience can be used in
a phenomenographic study. This data may include transcripts of interviews, video observations, others’
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research findings, and, in principle, even physical artifacts and organizational structures (Marton and
Booth, 1997). Although interviews are not the only option, they are, in practice, the one tried-and-true
phenomenographic data source.

Phenomenographers like interviews because – as the word suggests – they enable an interactive
exchange to take place about the views of the research subjects. In particular, they allow the researcher to
follow up on interesting themes that emerge during an interview, and to ask the interviewee to elaborate on
unclear points. This can be immensely helpful for gaining insights into the research subjects’ experiential
worlds.

Setting up interviews

Who to interview? Or might some existing interview data, collected for another purpose, do? Many
phenomenographic studies – including ours – are directed towards improving pedagogical practice in
a particular setting and other settings like it. In such “developmental phenomenography”, Bowden
(2000) argues, it is vital that the interviewees are learners in the particular setting. In this way it is
possible to relate the partial understandings that emerge from the analysis to the educational setting
of the students. Bowden also recommends that the entire study be guided from beginning to end by a
phenomenographic mindset; interviews, for instance, should be conducted in such a way that they maintain
a phenomenographic focus on experience. This precludes the use of interviews collected for another
purpose. Some other phenomenographers are more open to combining phenomenographic analysis with
non-phenomenographic data collection.

The selection of interviewees depends on the specific research goals, but also on the general goal of
capturing the variation within the population of interest (Åkerlind, 2005b). With this in mind, a suitable
strategy may be to choose a pool of interviewees who have different backgrounds or other characteristics
(although they are from the same target population, which may have a shared background of some kind).
This is consistent with the goals of maximal variation sampling (Patton, 2002, pp. 234–235).

How many people to interview? A downside to interviewing is that interviews, especially in-depth
ones, are time-consuming to transcribe and analyze. However, practice has shown that for the purposes
of a typical phenomenographic study, a fairly small number of interviewees is often sufficient. Ten to thirty
interviews is a typical number. One way to proceed is not to decide the exact number of interviewees in
advance, but to keep doing interviews until they start appearing similar and repetitive, and do not seem
to reveal new perspectives. (Making a judgment on this requires doing data collection and early analysis
in parallel; see below.) This does not guarantee exhaustiveness but is good enough for many practical
purposes.

Inasmuch as a phenomenographic study derives its descriptions from a smallish number of
people chosen from a particular population [. . . ] the system of categories can never be claimed
to form an exhaustive system. But the goal is that they should be complete in the sense that
nothing in the collective experience as manifested in the population under investigation is left
unspoken. (Marton and Booth, 1997, p. 125)

Conducting an interview

The typical phenomenographic interview can also be characterized as a semistructured one: “It is neither
an open conversation nor a highly structured questionnaire. It is conducted according to an interview
guide that focuses on certain themes and that may include suggested questions” (Kvale, 1996, p. 27).
Despite the thematic focus and prethought questions, “there is an openness to changes of sequence and
forms of questions to follow up the answers given and the stories told by the subjects” (ibid., p. 124).

Marton and Booth (1997, pp. 130–131) urge the interviewer to guide the interviewee to a “state of
meta-awareness” in which they reflect on their own understanding of the phenomenon of interest and
articulate it as completely as possible. Marton and Booth observe that such an interview has elements
of both social and therapeutic discourse. The latter aspect is more challenging and may require the
interviewer to repeatedly bring the interviewee back to reflect on certain matters, or to offer interpretations
of the interviewees’ statements for the interviewee to examine and possibly reject. Marton and Booth
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further note the importance of establishing a comfortable relationship between interviewer and interviewee
in a phenomenographic interview, as affective issues may need to be addressed and defenses overcome for
the interview to reach an open, self-reflective state (see also Bowden and Green, 2005).

The questions asked are of decisive importance, of course. Surely, it takes bright ideas and
creative insights to formulate questions that stimulate openness. [. . . ] The fact that we are
interested in what the students think about and how they think, not in whether they manage
to produce the right answer should be obvious to them as well. The interview should be an
open-minded exploration of the landscape of thoughts, not an examination nor an instructional
session. (Johansson et al., 1985, p. 252)

Kvale (1996, pp. 133–134) enumerates types of questions for qualitative interviews. Introducing questions
open up the interview by introducing a broad topic of conversation, Follow-up questions seek to get the
interviewee to expand on a word or topic that has come up. Probing questions request elaboration.
Direct questions request information about a particular aspect that the interviewee has previously not
spoken about. They are usually best left to the latter part of the interview. Indirect questions request the
interviewee to reflect on the topic from a different perspective, such as that of other students; the answers
can be hard to interpret. Structuring questions move the conversation in a new direction when a theme
has been exhausted or because of time pressure. Simple silence often works in getting the interviewee to
elaborate on something or to open up a new line of dialogue. Finally, interpreting questions present an
interpretation of what the interviewee has said back to them for them to comment on.

Any or all of these types of questions may be employed in a phenomenographically motivated interview.
For interviewees to articulate their experiences as completely as possible, follow-up and probing questions
are especially important. They can be used to encourage the interviewee to explain their understandings
of aspects of the phenomenon that they have mentioned, and to elaborate on how they see particular
aspects or their relationships. Åkerlind (2005a,b) emphasizes the need for the phenomenographer to
get beyond ‘what’ questions to ask ‘why’ questions and get at the reasons behind how the interviewees
think. Bowden (2000) encourages the use of interpreting questions in a phenomenographic interview.
In particular, he suggests that pointing out apparent inconsistencies in the interviewee’s ideas can be a
fruitful way of getting the interviewee to speak about their understanding of the phenomenon.

Marton (1986, p. 42) prefers “questions that are as open-ended as possible in order to let the subjects
choose the dimensions of the question they want to answer.” On a related note, Bowden (2000, 2005)
suggests that questions of the form “what is X?” may work against the goals of phenomenography,
and that it is not always necessary for the interviewer to explicitly mention X (the phenomenon) at all
when putting questions to the interviewee. Instead, Bowden promotes the use of problems related to
the phenomenon under study during the interview – for instance, when seeking to find out students’
understandings of a physics concept, students might be invited to solve a physics problem and discuss it
with the interviewer. This gives the interviewee the opportunity to choose the aspects of the phenomenon
that are most relevant (which the interviewer may then pick up on), and helps to avoid the problem of
the interviewer putting words into the interviewee’s mouth. The concrete context of the problem further
helps the interviewer and the interviewee to establish agreement about what is being discussed.

Overlapping data collection and analysis

In qualitative research in general (see, e.g., Patton, 2002, pp. 436–437), and phenomenography more
specifically (see, e.g., Marton and Booth, 1997, p. 129), analysis may begin while data collection is still
ongoing. This brings the risk of jumping to premature conclusions and inadvertently affecting the later
interviews. Because of this, some phenomenographers (e.g., Bowden, 2005) object to starting analysis
before all the interviews are complete. However, doing data collection and analysis in parallel has the
great advantage that early phases of analysis can inform later parts of data collection. For instance,
later interviews may be adjusted to explore in greater depth some themes that early analysis suggests are
important. Such flexibility allows the researcher to take advantage of important insights that occur during
the data collection phase.
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Analysis: individuals ←→ themes

Marton outlines, in general terms, a process that may be used for constructing outcome spaces (Marton,
1986; Marton and Booth, 1997). We have paraphrased this advice below in an itemized format, which is
not to be interpreted strictly algorithmically; analysis may flow back and forth in a natural way between
the ‘steps’ listed below.

1. Interpret each utterance by assessing its meaning against the individual context (e.g., interview
transcript) that it is a part of.

2. Select which utterances appear to be relevant for answering the research question.

3. Abandon the boundaries separating individuals (for now). Shift your attention to the meaning in
the selected quotes. A single, large ‘pool of meaning’ forms.4

4. Look for themes in the pool of meaning.

5. Interpret each quote against this pool of meaning, without forgetting the individual context that
the quote comes from.

• Do not judge the quotes in relation to what the phenomenon ‘is really like’ or your own
experience of it. Instead, assess the quotes in relation to how they fit in with how the
utterer appears to experience the phenomenon. Be open to others experiencing it in different,
surprising ways.

• Vary between a focus on individuals and a focus on themes. Alternate between the thematic
and individual contexts as you examine a quote.

• Look for consistencies within what an individual says. Assume that what people say is logical,
given a particular way of understanding the phenomenon.

6. Sort quotes (rather than individuals or full transcripts) into categories based on their similarities to
and contrasts with other quotes.

7. Make explicit the criteria for the provisional categorization.

8. Check the categories against the entire data.

9. Refine the categorization iteratively. Finish when the categorization is well defined and does not
change between iterations.

Some qualitative analyses start with the construction of case studies of individuals. Other qualitative
analyses start with a thematic analysis across individuals. The form of analysis suggested by Marton
interleaves the two, requiring the researcher to move fluidly between individual and thematic contexts.
Patton (2002, p. 440) warns about the difficulty of qualitative analysis that attempts to do work on cases
and themes at the same time. Within the phenomenographic literature, Bowden (2000) is concerned
with the same issue. He prefers that entire transcripts (e.g., interviews with a single individual) rather
than quotes are sorted into categories. Bowden argues that using entire transcripts makes it easier to be
mindful of the individual context in which each utterance must be interpreted.

Åkerlind (2005c) further discusses variants of the phenomenographic analysis process. In addition to
using different units of categorization, phenomenographers vary in how much importance they give to the
goal of forming logically related categories, and in how they see the role of researcher collaboration in
phenomenographic analysis (see also Bowden and Green, 2005).

4The phenomenographer ultimately looks for the meaning behind particular utterances, rather than the ways in which
those utterances are worded. Language is nevertheless often a supremely important aspect of phenomenographic analysis, as
the phenomenographer has to consider how the research participants use language and what words mean to them (Bowden
and Green, 2005, pp. 86–87, and references therein). In a field riddled with technical terms (such as programming) it is
perhaps especially important to remember that people, and novice learners in particular, may use words in a sense quite
unlike what the content expert might expect.
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Whichever variant of the analysis process is adopted, analysis involves consideration of both individual
and collective perspectives. What about the results? Many – probably most – phenomenographers
maintain that the results must be interpreted on a collective level. An individual’s understanding changes
with time and context (see, e.g., Marton and Pong, 2005), and it is not meaningful to assign individual
research participants to the categories.

The individual student comes to serve as a “carrier” of (fractions of) one or many ways
of understanding something. The outcome of the project then describes the ways in which
something is understood within a cohort. The individual voices have “disappeared” from the
final result. What remains is the researcher’s interpretation of what they have said. Thus,
the result can only be interpreted for a collective. (Berglund, 2005, p. 38)

The target: a good outcome space

What is a good outcome space like? Marton and Booth (1997, p. 123) warn us that “There is no complete,
final description of anything and our descriptions are always driven by our aims”. Instead of completeness
and finality, Marton and Booth (ibid., pp. 125–126) present three criteria for judging the quality of an
outcome space, which we interpret as follows.

1. The outcome space must clearly relate to the phenomenon of interest in a way that meets the
goals of phenomenography. That is, each category should be a distinct way of experiencing the
phenomenon. The categories, taken together, should describe variation in experience rather than
be some other kind of categorization of how people think or behave.

2. The categories have to be logically connected to one another, usually in a hierarchical structure.

3. The outcome space should be parsimonious. Only the critical aspects that are needed for describing
the variation between ways of understanding or for delimiting the phenomenon should be described.

The second criterion is an often-debated aspect of phenomenography and worth elaborating on.

Analysis: seeking logical structures

Educationally, it is a reasonable assumption that there is a norm, a particular way of
experiencing a phenomenon that is to be preferred over others, and that is what the educational
effort is designed to foster. [...] Thus, we seek an identifiably hierarchical structure of
increasing complexity, inclusivity, or specificity in the categories, according to which the quality
of each can be weighed against that of the others. (Marton and Booth, 1997, p. 126)

The researcher chooses and delimits the phenomenon of interest. He has an initial notion of what he
wishes to investigate, which is affected by his own understanding of the phenomenon. The limits of the
phenomenon are molded during analysis as the researcher’s dialogue with the data highlights aspects that
the subjects associate with the phenomenon.

Each of the resulting categories of description should highlight some facets of the phenomenon of
interest. Together, the ways of experiencing captured in the categories constitute the phenomenon; in
terms of the outcome space, the phenomenon is ‘that which can be experienced in these different ways
(and possibly others that did not emerge in this study)’.

To ensure that the results do indeed describe a single phenomenon (and are more readily intelligible
and useful), the researcher should try to identify categories that are logically connected to each other.
In practice, “logically connected” effectively means that each category is a grouping of aspects of the
phenomenon and relationships between aspects, and that each such grouping is a subset of some or all of
the other categories. A single top category usually groups together all the critical aspects and relationships
identified. It is the researcher’s responsibility to delimit the phenomenon and conduct the analysis in a
way that ensures that such logic emerges. “Inevitably, there is tension between being true to the data and
at the same time creating, as the researcher sees it, a tidy construction which is useful for some further
explanatory or educational purpose" (Walsh, 2000, p. 21).
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Here it is important to stress the intentionality of the researcher and how it relates to the resulting
categorization. Categories of description (that is, ways of understanding) are an analytical product
constructed by the researcher, who relies on a particular research framework, has delimited the phenomenon
in a particular way, and examines it from a particular perspective affected by his overall research goals,
and on a particular level of abstraction. The categories do not pre-exist analysis, waiting for the researcher
to pick them out from the data. Instead, they emerge from the relationship between the data and the
researcher (Walsh, 2000).

Such analysis runs several risks, including “adding or adjusting categories where this is not supported
by the data; imposing a logical framework on the data where this is not justified; and analyzing the data
from the researcher’s or content expert’s framework, so that the interpretation of the data is skewed
towards an accepted or expert view of the phenomenon” (Walsh, 2000, p. 23). The main way to address
these challenges, Walsh argues, is alertness to them on the part of the researchers.

Phenomenographers differ in how much emphasis they place on the importance of logical relationships
(Åkerlind, 2005c; Bowden and Green, 2005). Often, the emergence of a logical structure is seen as a
criterion for a good outcome space. The lack of a such structure to the categories raises questions about
the quality of the analysis and about whether the results do indeed describe ways of understanding in the
phenomenographical sense. The lack of structure is a warning to the phenomenographer, and needs to
be addressed when reporting results, unless a logical structure emerges through further reflection on the
data (Berglund, 2005, p. 84).

Establishing reliability

Multiple positions on how to establish reliability (or “precision”; see Section 16.3) have been advanced
within the research community (see, e.g., Åkerlind, 2005c; Bowden and Green, 2005; Sandberg, 1997).
An established practice is to use a form of interjudge reliability check in which other researchers are given
the data and an outcome space that has been produced by a lead researcher who has analyzed that data.
The other researchers check whether they can also ‘see’ the same categories within the data as the lead
analyst. Bowden (e.g., 2005) promotes a team process in which multiple analysts discuss and mutually
critique each other’s interpretive hypotheses. Sandberg (1997) is critical of all forms of interjudge checks
in phenomenography on the grounds that such checks do not help to critique the quality of the data
collected and that they are a poor epistemological fit with phenomenography. Sandberg prefers instead
that the researcher concentrate on making their personal interpretive process as explicit as possible.

17.2.2 So it is not a method?

It is not rare to hear phenomenography referred to as a method or methodology. Marton, the father of
phenomenography – who has more recently stated that phenomenography should be primarily defined
by its research goals and not by its use of methods (see p. 269 above) – has also previously referred to
phenomenography as a research method.5

The reason for this ambiguity may be historical. Above, I have introduced present-day
phenomenography as a research approach that answers a particular kind of question with a particular kind
of answer, and is founded on theories of awareness and variation. However, the first studies which are now
termed phenomenographic predate the term itself and the theories on which current phenomenography is
based. Phenomenography originates not from theory but from empirical studies in the 1970s of students’
approaches to learning (e.g., Marton and Säljö, 1976), which gave rise to the notions of deep and surface
approaches to learning. (These early findings remain the most broadly influential phenomenographic
results.) Only afterwards were the theoretical frameworks of variation and awareness introduced by
Marton and his colleagues. One might say that phenomenography has evolved from a research method
used in the 1970s into a theoretically laden, methodologically varied approach to empirical research on
human experience. Historical perspectives on phenomenography have been provided by Pang (2003) and
Richardson (1999).

5The elusive definition of phenomenography has caused some gray hairs to emerge and gray cells to suffer, not only in
our own research group but among PhD students elsewhere, too (Ireland et al., 2009).
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Different phenomenographers define phenomenography differently, and there are distinct movements
within the phenomenographic tradition, some of which are more closely tied to specific research methods
than others are. Some of these variants could well be called methods or methodologies. Hasselgren et al.
(n.d.) give an overview of the main flavors of phenomenography (see also Åkerlind, 2005c; Bowden and
Green, 2005).

Enough generic talk.

17.3 Here is what we did in practice

17.3.1 We collected data from interviews with programming students

The way we conducted the interviews accommodates many of the considerations from the previous section.

The interviewers

To improve the trustworthiness of our research, we wished to have an interviewer who was independent
of UUhistle’s development. On the other hand, the author of the thesis would be doing much of the
analysis, some of it during the interviewing process, so we also wished to involve him in the interviewing
so that he could make use of the early analysis to explore emergent themes in more detail.

Consequently, two researchers collaborated to do the interviews. One interviewer, Jan Lönnberg,
interviewed five students, and the author of the thesis interviewed six, making eleven interviews in total.
The author was in charge of student selection.

Both interviewers had some experience with phenomenographically motivated interview studies from
earlier projects.

Student selection

Our interviewees were students taking the spring 2010 offering of CS1–Imp–Pyth described in Section 16.4.
A couple of weeks into the course, all the students of CS1–Imp–Pyth answered an online questionnaire

in which they were asked to rate their programming background, their attitudes towards programming,
and the workload and difficulty of the CS1 course so far. We used the answers to this questionnaire,
and the results from the assignments submitted, to mold our interviewee selection process so that we
got a mix of interviewees with different backgrounds, attitudes, and estimates of course difficulty, as well
as a mix of scores from the course assignments. Such a selection, we felt, would give us a good basis
for exploring the variation in ways of experiencing. The interviewees also came from a variety of degree
programs within engineering.

We surmised that students who had a harder time with the course or were less enthusiastic about it
would have more trouble seeing VPS in a rich way and might be a good source of data for studying partial
understandings of the phenomenon. We therefore skewed our selection process towards such students,
inviting more of them and fewer of the experienced and motivated students. The selection process was
unformulaic and involved randomly picking out names from a list until we had what appeared to be a
suitable mix.

Given our research interest, we ensured that all our invitees had submitted an answer to at least one
VPS exercise; most had submitted many.

The interviews were conducted partially in parallel to the experimental study described in Chapter 19.
We checked that none of our invitees had been part of the experimental group in that other study.

Both the interviewers had taught at our university in past semesters. We confirmed from our
department’s records that none of the students was interviewed by a researcher that the student had
previously taken a class with.
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We aimed for a minimum of 10 interviews. From earlier experiences of interviewing CS1–Imp–Pyth
students for another project, we knew that far from all of the invitees would agree to being interviewed.
The total number of invitations thus significantly exceeded that of the interviews we needed.

Invitations

Again wishing to introduce variation, we sought data from different phases of the course, with some
interviews being conducted nearer the beginning of the course and some at the end. We decided to invite
students in stages, adapting to the situation as we went along, depending on the acceptance rate of the
invitations and the early stages of analysis.

We sent the invitees a fairly informal email that invited them to participate. Students who did not
answer the invitation were sent another email a few days later; those who did not respond to this one
either were not approached again.

The invitations stressed that the interviews were not a part of CS1–Imp–Pyth and that they would be
handled confidentially. It was explained that the interviews were about the course assignments, but VPS
was not singled out as a topic.

The participating students received two movie vouchers as remuneration for a half-hour interview.
In total, we invited 31 students, of whom 11 accepted the invitation: 4 students around the fourth

week of the course, 5 around the sixth week, and 2 around the eleventh week. In our estimation, the set
of eleven interviewees satisfied our goal of ‘variety with an emphasis on strugglers’. Six of the interviewees
were female, five male. Most were around 20 years of age; one was an older student. Only one of the
students had prior programming experience beyond the quick brush with Visual Basic that some of the
other interviewees had had.

Interview (semi-)structure

The interviews were semi-structured (see Section 17.2 above), and involved a great deal of improvisation.
The following gives a general feel of how the interviews progressed. Specific interviews differed in their
details.

Each interview started with introductions of the participants. We made a conscious effort to keep
the atmosphere casual and conversational, and the interviewee relaxed. One interviewer invited the
interviewees to his office, the other interviewer arranged the interviews on the ‘neutral ground’ of a small
meeting room. During many interviews, we offered a selection of soft drinks and water for the interviewee.

We asked the students for permission to record the interview. The interviewer briefly explained that
our research aims to improve the teaching and learning of programming, and reiterated that the interview
would be treated confidentially and anonymously, and would not affect their course grade.

The interviewer then directed the conversation towards the course assignments and towards the VPS
assignments in particular. Once the topic of VPS was mentioned, the interviewer suggested that it would
be easier to discuss it through a concrete example. He then asked the interviewee if they would mind
showing and discussing how they work on a VPS exercise on a computer provided by the interviewer.

It was suggested to the student that they work on the next VPS exercise from CS1–Imp–Pyth that
they had not previously done. Failing that (because the student had already done all the assignments they
had the prerequisite background for), we suggested one of a selection of small VPS exercises prepared for
the purpose of the interviews.

The interviewee mostly worked on the exercise without help from the interviewer. We only gave small
hints for solving the exercise when the learner got completely stuck, and only after discussing what the
problem was. On occasion, if an exercise seemed to be too difficult, we switched to a simpler example
program before returning to the original exercise.

Much of each interview focused around the VPS task. The student would work on the exercise,
thinking aloud. Frequently, we would ask questions about a pertinent topic. A discussion, sometimes
lengthy, sometimes short, would ensue before the student returned to work on the exercise. These
discussions would typically start from questions directly related to the VPS exercise, such as “What are
you doing now?”, “How do you think about what you just did there?”, “What do you think about as you
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choose what to do?”, “What does this [visual element] here mean to you?”, and “What happened there?
What does that mean to you?”.

Many of our questions were prompts for more information on something that the student had
mentioned before: “Can you say more about that?”, “What do you mean by X?”, etc.

We attempted to get the interviewee to talk as much as possible, while talking as little as possible
ourselves. We avoided introducing new concepts or vocabulary into the interview but waited for the
interviewee to do so. In several interviews, this was quite challenging, however, and we had to compromise
and use more direct questioning on occasion. For instance, we sometimes had to introduce a learning
perspective into the conversation with a question such as “Have you learned something from this?” to
get the interviewee to talk about matters of interest. (Ideally, we would have preferred any mention of
learning to originate from the interviewee.)

Another pattern to our question-setting was an attempt to approach the same topic from multiple
angles by changing the context. In particular, we approached the issue of learning in the concrete context
(“Did you learn something from what you’ve done right here?”), other contexts in past experience (“Can
you think of some other UUhistle exercise where you learned something?”), a more general course context
(“Would you say it’s useful for someone somehow that you have this kind of assignment in the course?”,
“Does this kind of assignment seem meaningful to you?”), and the context of an imagined conversation
with a friend (“How would you describe the point of these assignments to a friend, if they asked you?”). By
using multiple contexts in this way, we sought to get a richer articulation of the interviewee’s experience.6

We sometimes, in an improvised manner, used interpreting questions to get the interviewee to confirm
or disconfirm our initial interpretations, or to get them to elaborate on their perspective. This included
pointing out apparent inconsistencies in what the interviewee had said (e.g., the interviewee might alternate
between saying that the VPS exercises are useful and that they are not).

Near the end of the interviews, we asked the students directly to comment on the relationship between
the VPS exercises and program-writing activities, unless they themselves had spontaneously brought up
that topic before.

At the end of the interview, the interviewee could comment freely on anything they wished to bring
up and could ask questions. The interviewer also occasionally took the initiative to teach about some
programming topic that the student had had trouble with during the interview.

All the interviewees agreed to being recorded. We recorded the sound and the onscreen activity from
each interview. The recording quality was good, and we were able to include all the recordings in our
analysis.7

On interview quality

We note in hindsight that we ended up spending rather too much of most interviews on making progress
through the entire VPS exercise and prompting the interviewees (“What next?”), a pattern that the
students also easily fell into. We were perhaps not quite focused enough on the research question that
the interviews were primarily designed to answer (stated above); a lot of the material from the interviews
involves details about specific simulation steps and does not contribute a lot towards answering the main
research question. If we were to do the interviews again – or to extend this work later – we would attempt
to keep the interviews more focused on a still deeper discussion of how students perceive VPS and UUhistle
in general. Nevertheless, we obtained data that we feel is quite satisfactory for phenomenographic analysis.

6This question-setting strategy, which we found very helpful, was recommended to us by Anders Berglund (personal
communication).

7It is perhaps worthwhile to mention that one of the interviewees was somewhat drunk at the time of the interview.
However, in the interviewer’s judgment, the inebriation – although visually and olfactorily appreciable – did not significantly
affect the conversation, and the interview remained focused throughout. In the absence of authoritative methodological
advice regarding bibulosity in a qualitative interview setting, the data from this interview was included in the analysis as per
usual. We have found no reason to believe any of the categories in our outcome space emerged as a result of intoxication.
Even though the interviewees have been anonymized, it is perhaps best to err on the side of caution and not to identify which
of the interviews is the one in question.
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Supplementary observational data

In addition to the interviews, we analyzed recorded observations of student pairs working on VPS exercises.
This data – also in the form of sound-and-screen captures – had been collected primarily for the studies
described in Chapters 18 and 19; the data collection process is also described there.

We wanted to use the video observations as a secondary data source to enlarge our data base and to
enrich it with material from a setting that is more natural than an interview.

17.3.2 We analyzed the data to come up with logically connected categories
Nearly immediately after the first interview finished, our analysis of the data started (as an activity in
its own right; in a sense, data analysis starts even during the interviews). The early stages of analysis
interleaved with the data collection.

Researcher roles

Three researchers participated in the analysis. The lead researcher – the author of the thesis – had the
primary responsibility for going through the data and coming up with draft categorizations. He was also
in charge of transcription and reporting. The two other researchers – Jan Lönnberg and Lauri Malmi
– had the role of critical discussants: several times during the analysis process they commented on the
drafts and suggested clarifications, modifications, and improvements for the lead researcher to consider
as he refined the analysis.

Dealing with the recordings

During the first pass through the data, the lead researcher watched each recorded interview, made notes
about the topics of conversation covered, and paraphrased the discussion. On the basis of these notes, he
chose the sections of potential interest for answering our research question, and transcribed those sections
verbatim. These selected sections of interest in the interviews served as the primary data for the analysis.

This approach saved the trouble (or expense) of transcribing the entire material – which contained a
lot of repetitive detail about specific VPS steps and other discussion about topics that were uninteresting
from the point of view of our research. However, it came with the risk of missing out on interesting data
that did not seem important at the beginning of the analysis. To ensure that this did not happen, the
lead researcher watched the recordings again at a late stage of the analysis, looking for any previously
ignored sections of interest. (None were found.)

The observational data of student pairs working on VPS served a supplementary role. The lead
researcher watched the recordings once, noting sections of potential interest, reflecting on how they
related to a draft of the outcome space, and considering whether the observations suggested any new
categories beyond what we had outlined on the basis of the interviews. The observational recordings were
not transcribed, apart from the sections quoted below as we present our results (in the next two chapters
as well as this one). As things turned out, the impact of the observational data on this chapter’s study
was minor and resulted in no new categories.8

Categorizing quotes

The way we analyzed the interviews was based on the advice given in the literature, outlined in the previous
section. We took a general outline for the analysis process from Marton’s advice (p. 273 above). This
choice means that we treated individual quotes (rather than whole transcripts) as the unit of categorization.
Nevertheless, we sought to be mindful of the individual context from which each quote was taken. While
keeping track of the thematic and individual contexts at the same time is challenging, we felt that it was
feasible, given the relatively small amount of data we had to handle.

8We did not find the observations to be a very good source of data for answering our phenomenographic research question,
since, in the absence of an interviewer to probe deeper, the discussions between students were rarely of the sort in which
ways of experiencing were articulated. The observations were much more useful for answering some other questions – see
the next two chapters.
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We sought to form an outcome space whose categories are logically connected in the sense described in
Section 17.2. Constructing the categories and crystallizing their precise definitions and relationships took
many iterations. The categories in the final version of our outcome space form a hierarchical structure,
which, in our estimation, is logical and at the same time does justice to the data.

Sensitizing concepts

During the analysis, we made use of the theoretical constructs from Section 17.1: the aspects of learning
and the structure of awareness. These constructs were brought into the analysis process from outside
the data and served as a sensitizing framework (Patton, 2002) in our study. We used them to inspire
our analysis process, to suggest places to look for interesting aspects, and to give structure to our
characterization of each of our categories and their relationships.

Some other phenomenographical studies have focused on a single one of the ‘act’, ‘why’, or ‘what’
aspects of learning and reported outcome spaces pertaining to just that aspect. Others still have studied
both the ‘act’ and ‘why’ separately and reported distinct outcome spaces for each one. As our interest
was on the ‘how’ aspect of learning – which comprises the ‘act’ and the ‘why’ – we, too, considered the
latter option. However, during the analysis we came to feel that in our data the ‘act’ and ‘why’ of learning
are very tightly integrated – motivations for doing VPS relate directly to the ways in which the act of
VPSing was perceived – and we wished our results to reflect this. We therefore formed a single outcome
space that encompasses the entire ‘how’ aspect of learning. Within each category, nevertheless, we have
analytically separated the ‘act’ and ‘why’ aspects and the structure of awareness that pertains to each of
them. This approach allows us to structure our findings through the sensitizing concepts, while at the
same time emphasizing that the ‘how’ aspect of learning is perceived as an integrated whole.

This approach is reflected in how we present our results, next.

17.4 Students experience learning through VPS in six qualitatively
different ways

From our analysis of the data, an outcome space of six logically connected, qualitatively different categories
of description emerged. We have labeled these with letters from A to F. Category A is the least inclusive
and describes the simplest way of understanding what it means to learn through visual program simulation.
Category F is the most inclusive and describes the richest way of understanding we found. The other
categories fall in between.

An overview of our outcome space is given in Table 17.1. Figure 17.6 illustrates the relationships
between the categories. The following subsections elaborate on each category in turn. While reading,
the reader may also wish to peek ahead at Table 17.2 on page 292, which characterizes each category in
terms of the aspects of learning and the structure of awareness.

On names and genders

To preserve student anonymity, we have randomly assigned each of the students quoted below one of the
first names – Beth, Elizabeth, Jan Erik, William, Robert, Lynda, Sue, Otto, Raymond, Morten, Kate, and
John – of the authors of an influential CER paper. Of these, we have used the names Kate and John
with subscripts to refer to the paired students whose work we observed on video; for instance, Kate17 and
John17 are the two students that form pair number 17. (Pair numbers are essentially random.) The other
names we have used for the students who participated in the in-depth interviews described above.

We considered gender irrelevant during the analysis. We are not aware of any gender-related issues in
our results. The random names we have given to students frequently do not match their actual gender.9
Our use of personal pronouns below is in accordance with the aliases we have given.

Interviewer1 is Jan Lönnberg. Interviewer2 is Juha Sorva.

9Readers who are fans of Cash (1969) may be interested in knowing that the student known as “Sue” is actually male.
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Table 17.1: Ways of perceiving what it means to learn through VPS, in brief. For more detail, see
Figure 17.6 and Table 17.2.

Category Learning through visual program simulation is perceived as. . . And as in Category

. . . learning to manipulate graphics in order to complete course
assignments.

. . . learning about what the computer does as it executes programs.

. . . gaining a new perspective on the execution sequence of programs
within the computer.

. . . learning to recall programming commands and patterns of code.

. . . learning to understand programming concepts present in example
code.

. . . learning programming via learning about program execution.

Figure 17.6: Logical relationships between the six categories. Each arrow indicates a relationship where
a richer way of understanding is an extension of a simpler one. For example, Category F
extends both C and E (and, transitively, all the other categories as well).
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17.4.1 A: VPS is perceived as learning to manipulate graphics
Category A describes a way of experiencing learning through visual program simulation as learning to
manipulate graphics in order to complete course assignments.

In Category A, awareness is focused on the concrete. The act of learning through VPS is experienced
primarily in terms of what one sees (graphical elements, program code) and does (e.g., moving elements
around). A vague relationship between visual elements and sections of program code is discerned.

The topic of frames has come up in Robert’s interview:

Interviewer1: What do these frames tell you?
Robert: Pauses for a bit. I don’t know.
Interviewer1: Uh-huh. Okay.
silence
Interviewer1: You can’t say more than. . . you clicked on, yes, what is that?
Robert: Well, these (points at frames) are things at different levels. . . That you move around
here (points at the stack). Like, you don’t dump them all into the same square. . . I mean,
box.
Interviewer1: Yeah. What do these boxes mean, then?
Robert: Points at a function definition in program code. They are like some of that kind of
stuff, at one level. Maybe.

Robert is focused on what you do with each element.

Interviewer1: In general, what kinds of things have you seen there in the heap?
Robert: Well, what gets offered there.
Interviewer1: Mmm. Offered. . . wha. . . ?
Robert: Interrupts. Well, like when these things (points at the entire code) get asked, then
these (points at the heap) are what you answer.
Interviewer1: Okay. So what do they mean for the execution of the program?
Robert: Nothing. It’s just to. . . I don’t know.

In this view, the act of learning in UUhistle involves the program code, the visualization and its components,
the operations that the student can perform on the visualization, and the student himself. The visualization
is seen as an aspect of the VPS system. It provides affordances for the student to perform actions as
required – to “answer the code”, as Robert puts it. The code, the visual elements, and the operations are
further perceived as being related to rules or requirements set by the VPS system, which determine what
the correct operation is at each stage of the exercise. VPS is seen as a sort of ‘game of boxes’ in which
the student aims to manipulate the boxes to get forward in the game and eventually to complete it.

Robert appears preoccupied with “getting to jump forward” in the assignment, something that he
struggles greatly with. He observes that one eventually learns what do to deal with the system.

Robert: Of course when you know what you must do, then it gets easier, but for me it’s
difficult to get to jump forward in these things.

Another student also feels he has learned something about what to do.

Raymond is working through some simulation steps very fluently after some earlier trouble.
Interviewer2: It seems to feel pretty consistent to you, how it goes?
Raymond: Well, yeah, once you do it wrong once then you maybe remember the next time.

The quotes from Robert and Raymond illustrate how learning in a VPS context is perceived as directed
towards the VPS activity itself. VPS work is perceived as increasing one’s ability to follow the system’s
rules and perform the correct graphical manipulations. Doing the assignments teaches about doing the
assignments. In Category A, this is the only reason for learning within VPS. Robert comments on UUhistle
and its role in CS1–Imp–Pyth with distaste:

282



Robert: Yeah, well, this UUhistle is completely awful, but this course is basically pretty well
run. [. . . ] This UUhistle is, like, the biggest flaw in the whole thing, because it’s no use at
all.
Interviewer1: Uh-huh.
Robert: It only does harm because it’s annoying.

John37 voices a similar sentiment as he and his partner begin to work on a VPS exercise:

John37 clicks around seemingly at random in the UUhistle GUI.
John37: What! . . . okay. . . first. . . What the fu. . . Why do we have to do these
incomprehensible things?
Continues to poke around in the GUI.
John37: In dismay: Nonononononono. You know, I’ve done all of these so that I just fucking
tried every option.
Kate37: Mmm.
. . .
John37: With deliberation, straight into the microphone: These assignments appear slightly
silly.

According to Robert and John37’s comments, visual program simulation exercises are pointless. Similarly,
what satisfaction Robert gets from doing a VPS derives from being finished with the task:

Interviewer1: So, does this seem meaningful, this kind of exercise?
Robert: No. Pauses. Except if you get it done in one go, by accident.
Interviewer1: Uh-huh. Okay. You don’t feel that you learn anything from having to do these?
Robert: No, because you get so annoyed that you just start doing it by force and once you
get rid of it, you’re pleased.

Any link between simulation steps and programming is theoretical and vague at best. In the following
excerpt, Raymond and the interviewer are discussing whether Raymond reflects on what he has done after
finding the right simulation step:

Interviewer2: So you just move forward?
Raymond: Yeah. You don’t think about it much. Like, I don’t know about this mouse-
clicking, if it has anything to do with programming.
Interviewer2: Yeah.
Raymond: Perhaps misunderstands the interviewer’s “yeah”, which was intended to be non-
committal, as affirmative. Yeah? Like, I have to click on this “false”10, and. . . what the
connection to programming is? Like, I can’t come up with anything that corresponds to it.

Near the end of the interview, the interviewer returns to the topic with a more direct question:

Interviewer2: So, does this affect how you think when you program, like, when you do the
[program-writing assignments]? Does this reflect on that?
Raymond: No. . . not really. Pause.
Interviewer2: So this is, so to speak, a pretty separate thing?
Raymond: Yeah. Yeah. This is what you get the points for, when you just do it.

In this view, the need to learn arises out of the need to complete VPS assignments and score points. Or,
to rephrase in phenomenographical terms, the assignments one must do comprise the internal horizon of
the why of learning, which is seen against an external horizon of the educational setting (see Figure 17.2).

10UUhistle does not actually ever require the user to click on a boolean value.
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17.4.2 B: VPS is perceived as learning about what the computer does
Interviewer2: How about if your friend, who’s never seen this UUhistle thingy, asked you
what this is, what it is that you see here?
Lynda: I’d say that this is the computer. What the computer does when. . . when I click to
make it run the code. This is what the computer does by itself.

In Category B, the visualization used in VPS is perceived as being related to programs’ execution within
a computer. Learning through VPS is seen generally as learning about what the computer does as it
executes programs.

Pair 20 have just started a VPS exercise. John20 explains what is going on to his partner,
who has never done an assignment in UUhistle before.
John20: These are, like, you basically. . . you, like, try to think of what the computer. . . like,
what the computer would do if those comman-. . . instructions had been given, so what would
happen within, how it, like, the computer, executes the program.
Kate20: Right. Okay.
John20: Here’s, like, what happens in there. Waves the mouse cursor about the call stack.
And here’s what it, like, prints out. Motions at the output console. And. . . we have to, like,
do it by dragging things ourselves. . . Motions at the operators and the heap. Let’s see how
we get started.
They soon return to the topic as John22 is manipulating a frame to simulate the line �����

� ��	
 �
 	�:
Kate20: So here we’re supposed to create what it looks like, what it prints out?
John20: Yeah, well, that goes there. Motions at the output console. Here we’re supposed to
do what, like. . . how the computer, like, handles it. Like, we have ‘first’ there, so we have to
create a new variable.

In this view, the visual elements are seen as relating to the computer’s view of program execution. Lynda
comments on the elements representing functions, for instance:

Interviewer2: Now the code is ready, here. And then there’s these pink boxes there. . .
Lynda: These here (points at function boxes) are. . . how the computer sees them, as boxes
like that.

Lynda, here, sees the visualization in terms of how the computer carries out the program. We may also
conjecture that this view is present in some of the thoughts that occur to her as she works on the VPS
exercise. For instance, at one point, she becomes concerned with the question of how the computer (or
UUhistle, which presents the computer) keeps track of a parameter value, and asks “How does it know
what ���� is?” (The question is resolved as she realizes she herself has just passed the appropriate value
of the ���� parameter into an upper frame.)

Whether it is useful to know what the computer does is a different matter. Even though she muses
vaguely that she should know something about the computer, Lynda does not find the VPS assignments
meaningful.

Interviewer2: How would you compare the UUhistle assignments and [the program-viewing
assignments]. . . their relevance to the course, or what you learn from them, or. . . ?
Lynda: Well, somehow the [program-writing assignments] seem quite a bit more meaningful,
because that’s the real thing, what you need to do yourself. Because this here is only about
what the computer does. . . and at least I’m not terribly interested in that. In what the
computer is actually up to. For me, it’s much more important to be able to create a program
myself. . . Even though I should know what the computer does, too.

Jan Erik also sees UUhistle as a system that makes the computer internals explicit. He interprets the
visualization in terms of computer memory.
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Jan Erik: They [the boxes in UUhistle’s view] are some kind of wholes that are connected to
each other somehow, here in memory. I genuinely don’t know. . .
. . .
Jan Erik: Laughs. I have a feeling that. . . I don’t know any better, so I’d imagine this is
pretty much like how they are there. . . stored there. In this way. Well, not exactly as boxes
but. . . I can’t really say. . . Well, there are these structures there, floating about in memory,
I suppose. We have these variables, which have some values, and they’ve been put here as
boxes. Here, for example, the name, and then a reference to some memory location. . . where
something is. Points at the visualization to indicate that he is speaking of a variable name
and the reference stored in the variable, which points to the heap.

Jan Erik goes on to explain how he interprets various parts of the visualization. The Classes and Functions
panels, for instance, mean that “what functions and classes we can call, create, and use” is “stored
somewhere in memory”. These computer-memory-related concepts are perceived to be the central content
of learning in UUhistle. Unlike Lynda, Jan Erik is pleased with this:

Jan Erik: At least for me, it’s been [i.e., UUhistle has been] an interesting new acquaintance.
Even though I’ve taken some other programming courses, I hadn’t realized all this, how it
really goes. . . These heaps and stuff. . . frames. . . So in this way it’s been useful, this UUhistle.

Jan Erik further explains that he has learned about how objects first get created in the heap and how the
computer then forms references to them. However, Jan Erik does not perceive there to be much direct
use for what he has learned.

Interviewer1: Do you feel that it [UUhistle] has in any way contributed to your learning?
Jan Erik: Yeah, I’d say so. . . Even though, myself, I had some earlier experience with
programming, so the exercises – the coding exercises – have been easy. So I didn’t learn
any coding in the sense that this would tell me what to do in the exercises. But this structure
(points at UUhistle’s display of memory) became clearer. So even though in the basic course
on Java had, in one of the lectures, an explanation of what the heap is, and what a frame
is. . . they never really stuck in my mind.11 But here I’ve properly figured out what data
goes. . . what data goes where and how these things work, so this did, like, make that clear
in a big way. I mean this here about how it goes, like, beneath the surface, that was really
clarified.
Later, he remarks:
Jan Erik: From this [the use of UUhistle in CS1–Imp–Pyth], what I’ve come away with is
how this data works in the heap. I’ve managed so far without that information but it’s nice
to know. Can’t hurt. Pretty interesting.

For Jan Erik, implementation matters are an issue separate from actual programming. He feels that he
knows how to program already and that learning about how the computer works does not significantly
contribute to his ability to program, interesting though it may be. He does not, for instance, appear
to think that knowing about references improves his ability to program. At least, he does not focus or
comment on such improvement in this context.12

One more example from Morten explicitly illustrates how in Category B, as in Category A above,
the learning gains from UUhistle are directed inwards towards UUhistle itself, or at least not towards
programming in general. Morten describes UUhistle as a system that shows “what the computer does
within itself, like, without necessarily showing us what it’s done”. During the VPS session, he first mentions
that the assignments have been “useful”. However, when asked to elaborate, he clarifies: it is not that
the VPS assignments have been useful, but that the program animations in UUhistle have been useful for
the purpose of doing the VPS assignments:

11Jan Erik had earlier taken another programming course in which the lecturer – the author of this thesis, as it happens –
showed animations in PowerPoint that were similar to UUhistle’s program animations.

12Jan Erik, above, does seem to imply that others might learn what to do in coding exercises from UUhistle, even though
he did not. While the views Jan Erik expressed during the interview were generally typical of Category B, in this instance he
expresses a view that brings to mind Category E.
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Interviewer2: Can you describe how these have been useful. . . You said that they have been
useful somehow? Can you elaborate?
Morten: Well, it’s more, like, that for the purpose of the UUhistle assignments – for doing
the actual [VPS] assignments – that the examples have been useful.
Morten goes on to complain about how it is hard to see where the error is in UUhistle.
Morten: So it’s, like, for the purpose of UUhistle itself that UUhistle has been useful, but I
don’t really know how useful it is for. . . coding.

To summarize, in Category B the act of learning is to learn to understand how the computer works by
simulating the computer’s behavior during program execution. Whether this act is meaningful for the
learner depends on the learner’s interest – or lack thereof – in learning to understand the computer. The
objective of learning about the computer is, in this view, only vaguely linked to programming ability and
is essentially seen as something separate from ‘actual coding’.

17.4.3 C: VPS is perceived as giving a perspective on execution order
Kate1: To UUhistle: Well, aren’t you being careful that we do it in the correct order!

UUhistle requires a specific order of doing things. This is something that students focus on and that they
have trouble with. In our video observations of VPS, students often discussed the order of simulation
operations – dialogue in the vein of “first you click there, then create the other parameter”, “don’t create
it yet, only after you have something to assign to it” is common.

Category C is an extension of Category B. As in that category, VPS is perceived to teach how the
computer executes programs. In Category C, an additional emphasis is placed on a particular aspect of
computer behavior, the actual execution order of programs when run by a computer. Learning through
VPS is perceived as gaining a new perspective on the execution sequence of programs within the computer.

Otto comments:

Interviewer2: . . . what do you see here and what is the whole point?
Otto: We go through the program code item by item, so that we see how the computer sees
it.
Interviewer2: Mmhmm. Brief silence. What does it mean to you, that the computer sees it
like that?. . . does it see it like that?
Otto: Well, not like that, I guess there’s some ones and zeros running about.
Interviewer2: Yeah.
Otto: But it, like, handles things in this order.

William also singles out order of execution as what UUhistle has given a new perspective on. He gives
a concrete example and remarks that the order he has been taught by UUhistle differs from the order in
which he thinks about program elements when he writes code.

William: This [UUhistle] brings a different perspective. Here the code is ready, and we view
in what order the computer, like, executes it, what its way of thinking is.
Interviewer1: So, what is it that you can say about the “way of thinking” of the computer
based on it?
William: Laughs nervously. Well, it executes the commands according to what they mean in
the code language. . . and it always starts from the right! Laughs again.
William elaborates, referring to assignments: he means that first the right-hand side gets
evaluated, and then “what comes out from there is given a name”.
Interviewer1: Has UUhistle highlighted this in a different way somehow than writing your
own code has?
William: Yes, yes, definitely.
Interviewer1: Can you explain how it’s different?
William: Well this starts with. . . the content. And then it’s given a name. Here in UUhistle.
Interviewer1: Mmhmm.
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William: When I write code myself, I start by thinking that I’m going to name this thing
somehow and then it’s going to contain something, and then I take it from there.

Even though a new perspective on execution order can be gained through VPS, it is not necessarily clear
how to make use of it. William, for instance, vaguely remarks that the UUhistle assignments have been
“fairly useful, as such”, but states that it feels “useless” to have both program-reading and program-
writing assignments “about the same topic”, especially as the program-writing assignments are “definitely
more useful”. Although UUhistle assignments give a new perspective on program-writing assignments, a
further relationship between the two is not perceived (cf. Category F below).

17.4.4 D: VPS is perceived as learning to recall code structures
Category D describes a way of experiencing learning through visual program simulation as learning to
recall programming commands and patterns of code. This category extends Category A.

In Category D, as in Category A, the visual aspects of visual program simulation are perceived
as relatively meaningless graphical manipulation that follows the VPS system’s rules and is primarily
motivated by a need to complete assignments successfully. Beyond Category A, in Category D the VPS
system is perceived as a platform where the student encounters example code.

Interviewer2: Let’s say one of your friends hasn’t done any of these assignments and asks
you if they’re worth doing and what, like, the point of these is? What would you say?
Raymond: Well, probably that here you learn to recall these commands (points at �����) a
bit and. . .
Interviewer2: Commands. What do you mean?
Raymond: That it says “print” there. And what it’s supposed to look like. Waves mouse
cursor around the entire program code. But I think those [program-writing assignments] are
much more useful than these.
Interviewer2: Yeah.
Raymond: So, this is, like, what it is. Pauses. It pays to collect every stray point. Continues
with the assignment.
Interviewer2: Interrupts. Yeah. So, um, you said that this is “what it is” (small laugh), so
I’m intrigued by what “what it is” is?
Raymond: Eagerly: Well, it’s, like, awfully frustrating that the box won’t go where I drag it,
and. . . the usefulness. . . you go a bit like “does this make any sense?”.

Program code is focal to this view. For Raymond, what learning potential there is in visual program
simulation involves the program code (and not the graphics). Seeing the code may lead to a better ability
to recall commands. Additionally, a code example can give an idea of what a program “is supposed to
look like”. Otto expresses a similar view:

Interviewer2: How would you say, why do you have these things in your course? Does it
benefit someone somehow, to have these assignments there?
Otto: Well, at least you get to see a bit of that code. Later you have to write, I think, the
same kind of thing in the [program-writing] exercises. So, when you do, you don’t have to
completely pull it out of thin air.

Being exposed to example code gives Otto something to work with in exercises13 This is something that
he feels improves his program-writing skill.

To summarize, the act of learning in Category D is to learn to recall the individual commands or more
general patterns that one has seen in example code. The why of learning is to improve one’s ability to
write programs.

13Otto, as an individual, appears to rely greatly on patterns of code when he thinks about programs. Early in the interview,
he gets badly stuck in the VPS exercise because the example program does not start with (or contain) an input-reading
instruction. He is “confused that the program doesn’t have any ��������	 command [. . . ] in the code that I write, there’s
always a ��������	 bit”.
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17.4.5 E: VPS is perceived as learning to understand programming concepts in example
code

In Category E, learning through VPS is perceived as learning to understand programming concepts present
in example code. This category is an extension of Category D. As in Category D, learning through VPS is
understood to be founded on studying example programs and taking things from the examples into one’s
own program-writing work. There is one significant difference, however, between the categories. Whereas
in Category D, little or no meaning is attributed to the visualizations, in Category E the visualizations
have a purpose as clarifications of example program code and programming concepts present in the code.

Interviewer2: You said that you get a “big picture”. . . What is it that you learn? Or what
do you mean by big picture?
Beth: Mmm. . . Thinks for a bit.
Interviewer2: I ask all these terrible follow-up questions. . . Laughs.
Beth: Eagerly: Awfully difficult to. . . like. . . You kinda learn to understand what it is that
they’re after. That: Okay, here we have these variables and over there we have some data,
and some operators at some point, too. Because you don’t really. . . Like, these [assignments
in UUhistle] are quite easy, in a way.
Interviewer2: Mmm.
Beth: And here we have everything explained so clearly. So, like, [in the program-writing
assignments] you don’t have things explained so that you see, instead you’re just told in words
what you’re supposed to, like, do. And you have to divide it into these parts yourself. So,
that’s what I mean, like, that you get a big picture because you see the parts all at once here.
Points at the display. You don’t have to look for it and try to build it yourself like in the
[program-writing assignments].
Interviewer2: You said there are “parts”. How do you think about what those are?
Beth: Points at the main panels of the UUhistle GUI. Well, it’s like, there’s three parts. An
operator, like what you do with the data, which is up here. And these are variables that
contain operators and the data that’s inside them. And then here on the left (points at the
code), you see where you’re at.
Interviewer2: Yeah.
Beth: So I mean that in a way there are four parts, in total.

For Beth, the VPS assignments clarify what goes into a particular program and what the role of each
piece of code is: what serves as data, what the operations performed on the data are, what the variables
are, and so forth. The visualization and the program code are alternative ways of expressing the same
information. Beth opines that the visualization is in fact a better medium for expressing such information
in lucid, beginner-friendly manner than code is.

Beth and the interviewer are discussing an example program in which objects represent cars.
Interviewer2: Here we have these ��� boxes. You said they are. . . that they somehow clarified
things?
Beth: Yeah. Well, I mean that since they’re visual like that, it lets you see that: okay, we
have a car there and it contains this gas tank and that amount of gas. And it kinda says
all this here. Circles the mouse cursor around the Car object. But in [the program-writing
assignments] if there’s some piece of code that says it, it’s much harder to make sense of than
this here.

Beth does not discuss, or appear concerned with, how computers execute Python programs. For her,
such matters do not appear to bear on the design of the visualization or the required sequence of GUI
operations. What matters more is that the VPS assignment should clearly illustrate the “parts” of each
program and that it is convenient to find the GUI operations that allow her to produce this illustration.
During the interview, Beth offers suggestions as to how she thinks the assignments could be made “more
logical”. For instance, she would like to split the heap into a part that contains elements that the user has
created and another with “what is given”, and she would prefer to first determine which method is called
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and only then which object it is called on. In contrast to Categories B and C, in Category E neither control
flow nor the computer’s role in executing the program are focal. The way of understanding described by
Category E sees programs as relatively static – program dynamics are not in focus – and the visualization
is not seen as a step-by-step trace of what actually happens, but as an educational device that clarifies
what entities are present in the program and what connects where.

As VPS assignments clarify examples and give a breakdown of program components, they can also
help users learn about new kinds of components and component relationships. Beth has learned about
objects.

Asked for a concrete topic that she has learned about, Beth brings up the last round of
exercises, which introduces objects and classes.
Beth: Well, the latest is that I’ve – I’ve not done the last [program-writing assignments] on
objects yet – but I took a look at the assignments in UUhistle, because I didn’t have, like,
any idea of what an object is. . . in programming.
Interviewer2: Mmm.
Beth: So that’s the kind of thing you learn to understand through it.

During the interview, Beth works through a VPS exercise in which two variables refer to the same ���

object.

Interviewer2: Could you explain in more detail what it is that you get out of this?
Beth: Mmm. . . Umm. . . Pauses.
Interviewer2: From this exercise, for instance?
Beth: Um. . . Well, here you at least. . . Someone can tell you that you can do this kind of
thing, but here you learn in a concrete way, for instance. . . I think the idea here is that you
learn that you can start referring to something (points at a statement ������� � ��	
 in
which a reference to a car object is assigned to another variable) with another name by writing
it like this.

In Category E (as in D), learning about example programs is motivated by being able to apply ideas
when writing programs. In Category E, this means taking programming concepts and techniques from
the examples. Beth alludes to this above as she mentions how she has noticed that you can “write it like
this” to make two variables refer to a single object. When asked directly, she is more explicit about how
VPS has helped her build a foundation for doing the program-writing assignments.

Interviewer2: You said that these give a big picture, but that the [program-writing
assignments] are more difficult. Are these two connected, these assignments?
Beth: Yeah! They are. Pauses. Isn’t the idea that they are about the same topics?
Interviewer2: Mmm.
Beth: Yeah.
Interviewer2: How about when you said that this gives you a big picture. . . Can you somehow
make use of that in the [program-writing assignments], or are they, like, something separate?
Beth: I think you can make use of that. What it gives you is. . . You can’t really do them just
based on these, I mean, these are quite different-looking after all, but you do get a bit about
what the trick to this business is. Or at least since I haven’t gone to the lectures and stuff,
so otherwise it’s quite hopeless to get what the trick is.
Interviewer2: Yeah.
Beth: And it’s pretty painful to start reading the handouts, too, so this [UUhistle] has been
a sort of easygoing thingy for getting started.

17.4.6 F: VPS is perceived as learning programming through an understanding of
program execution

Category F describes the richest understanding of learning through VPS that we found in this study. In
this category, which extends Categories C and E, and therefore all the other categories as well, learning
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through VPS is perceived as learning programming via learning about program execution. This view is
more than the sum of the other categories in that not only is VPS perceived to be about the computer (cf.
Category C) and about learning programming concepts that can be applied in one’s programming work
(cf. Category E), but a connection is perceived between these aspects: learning about implementation
concepts and what the computer does is seen as improving one’s ability to program. This improvement
concerns both the ability to understand programs and to write them oneself.

Sue sees UUhistle’s visualization as a reflection of computer memory and what the computer does.
She is enthusiastic about how useful the system is for understanding program code, partially because it
makes her think about execution in detail and allows what Sue calls a trial-and-error tactic for exploring
and getting feedback.14

Sue: Here, you have to think a lot about what it [the code] does. And obviously you do
get things wrong quite a bit, too. So it becomes a trial-and-error tactic at that point. . . in
this UUhistle. . . game. When you have to look at code without UUhistle, to understand it,
it’s difficult, because there the trial-and-error doesn’t. . . I mean, UUhistle tells you pretty well
what. . . like, how it goes. But when you look at [just] the code, you don’t see it in UUhistle’s
graphical way, it’s hard to understand, because you can’t make sense of the code as easily.

Sue finds it easier to understand programs in UUhistle. Moreover, she sees UUhistle not merely as a tool
for examining programs but as a learning aid. She is quite explicit about this:

Sue is in the midst of discussing why immediate feedback is a good thing.
Sue: . . . this [UUhistle] has been made so that you learn, so it [UUhistle] must give it [feedback
about errors] right away. And then you start learning from. . . when you think about what went
wrong.

During the interview, Sue works on a program that recursively computes a factorial. Sue has never seen a
recursive program before, but learns to understand it quite well during the interview. She attributes this
learning to the view given by UUhistle and the implementation concepts shown, such as the call stack.

Sue: Especially now that we have. . . these functions inside functions. . . it’s difficult, at least
for me, to understand how. . . inside a function you call some function again, with a different
value, for instance. . . so in what order does this – in principle, the computer – do things? And
at which stages do you process the numbers in which ways? That is still a little bit fuzzy.
The topic comes up again later in the interview.
Interviewer1: So, if I understood right. . . you feel that you get something different. . . that
UUhistle helps you understand in a different way what you’ve seen elsewhere?
Sue: Yeah! And right here, for instance, in this example that we did. . . that makes it a lot
clearer. . . the function calls that are within one another. . . basically, you get a clear sense of
order. From the code, you don’t get, like, any sense of how long it works on it. That we
find this ������ (‘underlines’, with the mouse, the code ������ ����	�
��), and then the
function is called yet again. Quickly ‘draws circles’ around the recursive function’s code with
the mouse cursor. So here (motions at the call stack) it’s, so to speak, illustrated in pictures,
and it makes it way clearer, how it works. That these. . . functions that haven’t been executed
until the end yet, they stay here in a queue waiting, as it were, until new values comes from
here (points higher in the stack). And those in turn fetch – call – the function.
Interviewer1: Mmm.
Sue: In a way, the name “call stack”, too, says. . . makes it clearer how the functions
behave. . . in relation to each other. That they stay waiting there and, in principle, we always
have only one function running. And the others wait in the meantime. This example clarified
that really well, I think.

14What Sue does as she works on VPS exercises involves a lot of thought and is a far cry from what we would call a naïve
trial-and-error strategy. More on Sue in the next chapter.
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Sue finds that what she has learned in UUhistle is useful for understanding programs outside UUhistle
as well. She points out that learning to understand code in UUhistle is useful “because if you don’t
understand it here, on any level, then you definitely won’t understand it in the code, how it goes.”

Elizabeth is another student whose comments serve to illuminate Category F. Elizabeth says UUhistle
helps her learn about “what the things really are that you write” and “what structure it actually works
on”, instead of just learning “how to make it work”. She sees the visualization as “memory locations”
within the computer. What Elizabeth learns in UUhistle is something that she feels she can take to her
own program-writing work outside UUhistle. Having, like Sue above, just visually simulated a recursive
program, Elizabeth suggests that her chances of writing a recursive program herself have improved. She
envisions that this learning could transfer to writing recursive programs in other contexts in the future.

Interviewer1: What did you get from doing this exercise, generally speaking? What would
you say you have accomplished?
Elizabeth: Well, you do notice at least that there can be quite a few of those, um. . . the
same function, when it gets called many times in the code. . . that it forms like. . . (laughs)
in layers, that structure. And then it starts coming back. . . like a snowball or something like
that. Maybe it’s now easier to understand how to. . . if I wrote code like that myself. . . Of
course I’d have to know everything else as well, but I mean, um, I’d know how the computer
works on it.

17.4.7 The categories connect logically
A breakdown of our outcome space in terms of the structure of awareness (Section 7.1) is shown in
Table 17.2. The table provides a systematic view of the categories of description that form the outcome
space and expands on the logical relationships between them. In our outcome space, as is normal in
phenomenographic results, the richer categories of the outcome space are extensions of simpler ones (as
Figure 17.6 on p. 281 shows diagrammatically). In other words, some of the categories describe ways of
understanding that subsume simpler ways of understanding learning through VPS.

Figure 17.6 illustrates how our outcome space has two ‘branches’ that extend the simplest category
A and merge at the richest category F. The ‘blue branch’ formed by categories B and C extends the
superficial understanding of Category A by emphasizing the actual operation of the computer as it works
on programs. The ‘red branch’ of D and E extends Category A in a different direction. It emphasizes the
role of VPS as a platform for studying example program code (in Category D) and the concepts present
in examples (in Category E). Category F relates these two branches to each other: it is understood that
learning about computer behavior serves a purpose in understanding programs and programming.

Another way of looking at the categories further highlights how the categories form a whole and how
the other categories are limited relatives of Category F. Consider first the following statement, which
summarizes some of the main points of a Category F view:

To learn through visual program simulation is to use a visualization to study example programs,
to learn what happens within the computer as it works step by step through the example code,
and thereby to improve one’s programming skills.

Each of the simpler categories has its primary focus on a different aspect of this statement, as indicated
by the emphases below.

Category A:
To learn through visual program simulation is to use a visualization to study example
programs, to learn what happens within the computer as it works step by step through the
example code, and thereby to improve one’s programming skills.

Category B:
To learn through visual program simulation is to use a visualization to study example programs,
to learn what happens within the computer as it works step by step through the example
code, and thereby to improve one’s programming skills.
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Category C:
To learn through visual program simulation is to use a visualization to study example programs,
to learn what happens within the computer as it works step by step through the example
code, and thereby to improve one’s programming skills.

Category D:
To learn through visual program simulation is to use a visualization to study example programs,
to learn what happens within the computer as it works step by step through the example
code, and thereby to improve one’s programming skills.

Category E:
To learn through visual program simulation is to use a visualization to study example
programs, to learn what happens within the computer as it works step by step through
the example code, and thereby to improve one’s programming skills.

Our exposition of phenomenographic categories of description in this way is inspired by Marton and Booth
(1997, pp. 18–19, 146–148). Accentuating the foci of the simpler categories in the context of a statement
corresponding to the richest category allows us to see something of how the simpler categories represent
partial understandings of the phenomenon under investigation.15 Further, the way that some categories
are more complex extensions of others allows us to judge the richness and quality of different ways of
perceiving the phenomenon. “We are able to make a normative judgement as to which is best and
which is worst, but that does not change the fact that they are indeed ways of understanding it [the
phenomenon]” (Marton and Booth, 1997, p. 19). The existence of these logical relationships between
categories gives credence to the idea that they are ways of understanding a single phenomenon rather
than different phenomena. Being able to judge the quality of the ways of perceiving learning through VPS
provides us with a foundation for discussing the significance of the categories for learning and teaching
(see Sections 17.5 and 17.6 below).

Connections to SOLO

We note in passing that parallels can be drawn between our results and the SOLO taxonomy (Chapter 2).
The author of the thesis remarked in Section 7.6 that phenomenographic outcome spaces tend to resemble
SOLO. Ours, for one, does. One way to interpret our result in terms of SOLO is that A is a unistructural

one where the concrete visualization is the only aspect (or ‘structure’) present. Categories B through
E describe various multistructural ways of understanding, and F a relational one in which a connection
is drawn between learning about computer behavior and learning programming. Our outcome space is
considerably more nuanced than SOLO, however. In SOLO, meaningful connections between structures
‘appear all at once’ at the relational level. In a phenomenographic outcome space such as ours, even
the partial ways of understanding often involve an understanding of some but not all relations between
aspects (e.g., in Category B the visualization is related to execution within the computer, but not to
learning programming).

17.5 Richer understandings of VPS mean richer learning opportunities
As we turn to discuss the significance of our findings for learning programming, it is good to remind
ourselves of the nature of phenomenographic results. Phenomenographic research (see Chapter 7 and the
beginning of this chapter) investigates the relationships between experiencers (people) and phenomena.
The results of our study, for instance, tell us something not only about students but also about what
the phenomenon of learning through VPS is like. People’s understandings of the phenomenon depend on

15We are not claiming that Category F represents a complete understanding of the phenomenon but it is the richest way
of understanding uncovered in our study.
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what the phenomenon is in reality, and conversely, the phenomenon of learning through VPS is defined by
what people make of it – it is constituted by the different ways of perceiving it. The two-way relationship
between experiencers and phenomena is inseparable.

What matters most for learning purposes is not what learning through VPS is as an ideal, but what
students make of VPS for themselves (or what VPS makes of itself for them). This is what our outcome
space is about.

Our findings are encouraging and sobering at the same time. The good news is that it is possible
for learners to experience VPS in a rich way that enables them to learn programming through it. The
bad news is that there are a number of limited – and limiting – ways of understanding, which must be
addressed in order for VPS to be useful in practice to as many people as possible.

A quick read through our results might suggest to some readers that VPS is liable to be problematic
for most students, as there are many different ways of understanding it poorly. However, being purely
qualitative, our results do not say anything about the frequency of the different partial understandings
in student thinking. Neither should we conclude that a similarly sized but randomly selected group of
students is likely to exhibit all the difficulties highlighted by our study. Nevertheless, we must take note
of the existence of these categories and the difficulties they bring to the fore.

Our findings agree with what has been said about the use of visualization in education in general: a
visualization can help but it is no miracle cure, and will not work ‘just like that’. This also applies to
the highly interactive form of program visualization that is VPS. There are multiple qualitatively different
ways to relate to a visualization, and not all of them are equally conducive to learning. For a space of
learning to open up for learning programming, it must first be possible for the learner to perceive the
visualization in a rich way. Our categories illustrate how learners have to experience a number of key
insights before effective learning through VPS can take place.

We will now comment on the specific categories and their relevance to the intended goals of VPS.

17.5.1 Limited understandings limit the potential of VPS
Consider Category A. If one currently perceives learning through VPS merely as graphical manipulation
of visual elements, and learning through VPS merely as learning to perform such graphical manipulations,
then performing graphical manipulations is what one learns through VPS. One may eventually learn to
perform many of the correct manipulations with a reasonable degree of success, but one is unlikely to
learn much about programming.16 In this case, the lived object of learning (Marton et al., 2004) – that
is, what the learner perceives as the capability one is striving towards – is but a scratch in the surface of
the intended object of learning – the capability the teacher hopes that students will develop. If one does
not get past a Category A understanding of learning through VPS, VPS is a waste of time. Affective
issues present an additional challenge: a student who currently only experiences VPS as in Category A is
likely to be frustrated and even angry at having to perform tasks perceived as difficult and meaningless.

In Category B, VPS is seen as being about implementation concepts irrelevant to practical
programming. If one is interested in these concepts (as Jan Erik was; see Section 17.4.2), then perhaps one
will learn about them, reflect on them, and remember them, and may yet connect them to programming
practice later as one’s understanding develops. If one does not ascribe any intrinsic value to implementation
concepts, then whatever knowledge is learned is liable to become context-dependent, fragile, and soon
forgotten.

The existence of Category C suggests that execution order is an aspect of program dynamics that is
particularly emphasized in VPS. It is possible that the interactive nature of VPS, and the requirement for
the student to decide what happens when, direct the user’s attention to ordering more than other program
visualizations do. Mistakes with the ordering of execution steps are not infrequent as novices work on
VPS exercises, which may further highlight this aspect. From a point of view of learning programming, a
Category C understanding is not a great deal better than a Category B one.

Category D describes a way of understanding that is little better than Category A from a practical
point of view. Although VPS does present a way of encountering example code, it hardly gives good value
for effort if the interactive simulation aspect is ignored or seen as meaningless.

16It is possible to learn some useful things inadvertently and without noticing, but we see no reason to believe that VPS
is a particularly cost-effective catalyst for such unconscious learning.
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Category E describes a more productive way of understanding. A focus on programming concepts
allows for knowledge to be transferred from VPS to programming practice. This makes VPS a meaningful
activity that more readily results in deeper learning of programming. That said, a Category E view is
limited. Ignorance of the regulatory ‘reality’ of the computer leads to confusion about the particular
simulation steps involved. The visualization is likely to be seen as excessively complicated. When
simulation steps are seen as fairly arbitrary, they do not invite reflection on program dynamics.

Of the categories we uncovered in this study, we consider only Category F to describe a satisfactory
understanding of learning through VPS. Only in this category is a clear link present between learning
about the computer and learning programming. Because of this, we feel that in order for VPS to be a
successful learning activity in introductory programming courses, users of VPS need to be able to adopt a
Category F view as early as possible. Category F is also desirable from an affective point of view: a task
perceived as a meaningful part of the programming course is more likely to be embraced by students.

17.5.2 VPS is only worthwhile when students understand it in a rich way

How do the goals of VPS look in the light of our qualitative evaluation? Nearly all of the claims and
hypotheses set down in Chapter 14 are predicated on students being able to perceive VPS in a fairly rich
way.

VPS does not help students perceive programs’ existence as both static and dynamic unless VPS is
perceived at least as in Category B.

VPS will not result in meaningful cognitive engagement with a visualization as long as the student
perceives his actions as essentially meaningless, as in Categories A and D. Misconceptions will be left
unaddressed by the visualization unless meaning is attributed to it.

VPS will not help students to construct and ingrain a viable model of a computer unless the
visualization is understood to represent a computer as in Categories B, C, and F. Neither will VPS
be of significant help with difficulties concerning program state.

VPS will not succeed in teaching much about programming concepts without at least a Category E
understanding, or preferably a Category F one.

VPS examples will not serve as worked-out examples for program writing unless a connection is
perceived between viewing example code in a VPS context and program-writing tasks (as in Categories E
and F, and, to a limited extent, D).

If VPS is understood to be only about the computer and implementation-level issues, then it will not
help students develop the ability to form program models as they read programs; an understanding akin
to Category E is needed.

Even while a student thinks about VPS as in Category A, they are likely to form some sorts of schemas
that help them perform the required GUI operations. However, they will not form the sorts of schemas
that are useful for learning to program unless the relevance of VPS to programming is understood (as
in Categories E/F). Only when the student thinks about VPS in terms of the underlying concepts will
they form schemas that involve the semantics of code constructs and serve as the building blocks for
higher-level schemas.

VPS may invite students to directly manipulate the important but usually tacit conceptual content of
programming that is program dynamics, but the invitation is likely to go unanswered unless that content
is perceived to be present in the VPS system, and relevant to learning to program, as in Category F.

VPS is unlikely to be a helpful way to practice program tracing, or program understanding in general,
unless a Category F understanding is achieved.

It is clear that a VPS system is no free ticket to success for the CS1 teacher. Our evaluation highlights
the need for – and suggests strategies for – good teaching about VPS.

17.6 The relevance of VPS needs to be taught

Our findings have implications for introductory programming teachers who use VPS and for the designers
of VPS systems. For VPS to work for as many students as possible, an early effort should be made to help
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the students develop a sophisticated understanding of what they can get out of program visualizations
and VPS exercises. VPS must be carefully integrated with other teaching and learning activities.

Getting to the students early is important to avoid bad first impressions, negative emotions, and
waste of time. We recommend that when a VPS system is used in a course, it be introduced early on,
preferably in the first or second week. At the same time, teachers should try to ensure that students
learn to experience the system in a rich way, and foster open-mindedness towards what can be learned
through VPS. Ideally, students would get to engage with the system themselves immediately, supervised
and guided by a teacher (although this may be impossible in many large-class scenarios). When possible,
teachers should try to find out how individual students think about VPS and help the students improve.

Our outcome space highlights aspects that early guidance should focus on. There are a number of
categories and aspects to consider; however, we have tried to distill the problem into two interrelated
teaching challenges:

1. Teachers should help students perceive a meaning behind the visualization. This means coming to
gain the insights described by the ‘blue branch’ of our outcome space, in particular the key notion
that the visualization represents computer behavior.

2. Teachers should help students come to see a purpose to the learning by making them understand
that these insights are related to programming practice. This corresponds to becoming able to view
learning through VPS as in Category F.

These two main pedagogical challenges are, we conjecture, not limited to VPS only. None of the students
we interviewed appeared to find the program visualization itself to be meaningful and useful while at the
same time considering the interactive VPS activity to be incomprehensible or pointless. While reading
the following recommendations, the reader may agree with us that much of the advice we give here could
also be applied to forms of educational program visualization other than VPS.

More broadly still, the literature of education and psychology agrees widely with our results in that
stressing underlying principles and providing motivating contexts for learning are highly important for
meaningful learning. Our findings concretize these issues in the context of programming education and
VPS, and document the conceptions learners have of the relationships between the VPS system, the
visualization, the underlying programming concepts, and learner motives.

17.6.1 Teachers should help students perceive meaning in the visualization
For students to discern – within the phenomenon of learning through VPS – the critical aspect of computer
behavior, they need to be made focally aware of the fact that the computer behaves in a certain way as
a program is executed. Furthermore – and this is probably the difficult bit – teachers must find ways to
relate this critical aspect to the visualization aspect of the phenomenon. In variation-theoretical terms,
different visual elements and simulation steps are values along one dimension of variation, and correspond
to different computer behaviors which are values along the other dimension. The teacher can tackle this
challenge by underlining these correspondences and creating learning situations that encourage students
to reflect on them. This can be accomplished through classroom discourse, materials (texts and program
examples), and the VPS system itself.

Teachers need to find ways to draw students’ attention simultaneously to visual elements and their
meanings. For example, students should be expressly taught that the rectangle representing a frame
corresponds to a concept that is relevant to the implementation of the programming language within the
computer. Teachers must not assume that the visualization will be obvious to novice programmers nor
that the interactive nature of VPS will be enough for students to discover the meaning of the visualization
unassisted.

Teachers can explain the visualization in terms of what the computer does, and what the computer
does in terms of the visualization. The student’s task can be explained as taking on the role of the
computer.

Teaching should emphasize that although it is possible to visualize what the computer does in different
ways, the visualization is not arbitrary, nor are the execution steps that the student is expected to follow
during VPS.
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Class discussion and learning materials can relate new programming constructs to what is needed
to execute a program that uses those constructs. For instance, the topic of frames can be approached
through the observation that any executor of programs needs to keep track of the variables (among other
things) that pertain to function or method calls. The role of the visualization (and VPS) is to illustrate
what techniques the computer uses for this purpose as it runs programs.

Example selection is key to the success of VPS exercises and program visualization in general. Using
simple programs as examples allows cognitive load to be managed while singling out specific aspects of
execution. However, minimal examples alone are often not enough to draw attention to all the critical
variation and to justify the complexity of the execution model presented. For instance, if all the variables
in the visualized example programs have different names, one of the main reasons why the computer uses
multiple frames to keep track of state will not be readily appreciable (and requiring students to create
frames in VPS may seem at least equally pointless).

Another example. The order in which parameters are evaluated may seem to the learner largely an
arbitrary choice of the VPS designer (cf. the ‘red branch’ of our outcome space). If all the parameter
expressions are simply literals, variable names, and arithmetical expressions with no calls and no ‘side
effects’, then evaluation order might indeed not matter. It is important to also visualize example programs
where order does matter. This can lead to a discussion of how the computer needs (and the programming
language provides) an unambiguous definition of how to execute the program. Students can be invited to
ponder interactively whether or not an alternative order or simpler usage of visual elements could work.
(Students may also volunteer such alternatives, as Beth did; see p. 288.) Through such discussions,
students can be led to conclude that the visualization is a way of illustrating the specific principles that
the computer follows so that it can work on the general case, and not just a particular simple kind of
program.

Chapter 18 explores what students do during VPS sessions. We will have more to say there on the
kinds of pedagogy that can encourage students to discern and engage with the conceptual content of
VPS.

17.6.2 Teachers should help students see a purpose to VPS

To encourage transfer from VPS to programming, teachers must help students experience a connection
between computer behavior and useful programming activities.

An important starting point is the way VPS is initially described to students. VPS should be introduced
as a tool for helping the student learn about programming concepts by looking at how the computer deals
with programs. Teaching should stress the idea that the visualization gives an execution-time perspective
on programs, and that adopting such a perspective is frequently useful to the programmer as they reason
about programs.

Novices often focus strongly on the programming language they use. From the start, it should be
stressed that VPS can help them understand the language and therefore how they can use the language
in their own programs.

Some teachers – the author of this thesis, for one – like to explain to their students some of the
pedagogical strategies behind course design, occasionally with reference to learning theory. In the case of
VPS, students could be told that the interactive nature of the visualization is something that is intended
to encourage them to pay careful attention to the visualization and reflect on it, so that they will become
better programmers.

Above all, teachers should go to some trouble to demonstrate explicitly and concretely how
understanding program visualizations can help the students read and write program code. For students
to experience the usefulness of learning about the execution model, they need to be placed in situations
where program animations and VPS exercises interact with other programming tasks in a meaningful
way. In-class activities and open labs can both be designed to emphasize the way the visualization can
help answer pertinent questions. Here are some examples of potentially useful practices (not all of which

297



involve VPS).17

• The teacher uses UUhistle (or a similar system) in class in program animation mode to explore
how example programs work. The visualization serves as an illustration of useful examples. The
examples are carefully chosen so that the programs are difficult to understand while their execution
is hidden but easier when it is explicit. VPS might also be used in class so that students vote on
key steps, and incorrect answers are also explored and explained (cf. Pears and Rogalli, 2011).

• Example selection draws on misconception catalogues so that the example programs encourage
students to experience fruitful cognitive conflict and detect their misconceptions. When possible,
teachers engage students in conversation about the mistakes they make during VPS. Teachers can
explicitly warn about common misconceptions in class, and use the visualization to demonstrate
their non-viability.

• Students encounter example programs that work in mysterious or unexpected ways that cannot
be explained without a better understanding of related concepts (e.g., references, parameters).
UUhistle is then used to figure out why the program works as it does.

• As a special case of the above, UUhistle is used to find a bug in an example program, which can
then be fixed.

• Students use (the full build of) UUhistle to visually debug their own programs.

• VPS exercises are explicitly referred to in other assignments. This can take many forms. For instance,
a program-writing assignment may refer to an earlier VPS exercise as a necessary prerequisite, or
a VPS exercise may be embedded into a larger assignment, or it may be mentioned as a potential
learning aid to be used in case the student has trouble with a program-writing task. Crucially, the
purpose and goals of the VPS exercise in relation to the other assignment are made clear so that
students know why they are doing the specific exercise.

• Visualization-based assignments feature ‘planlike’ example programs that have explicit high-level
goals.

Encountering just one or a few early cases where a concrete benefit is gained from understanding the
visualization may greatly affect students’ perceptions of the VPS system, and motivate them to adopt a
deeper approach as they work on future VPS exercises.

17.6.3 We have already incorporated some of our advice into UUhistle

Some of our recommendations on teaching about VPS can be incorporated into a software tool such as
UUhistle. We have already begun work on some of them. As soon as the first drafts of our outcome
space emerged, we reprioritized the items in UUhistle’s feature requests list, and added to it, on the
basis of our results. Broadly speaking, we switched priorities from seeking greater coverage of language
features and other technical improvements towards features that encourage students to seek meaning in
the visualization and enable them to genuinely benefit from the tool. The main differences between the
prototype that the students in this study used and the current version of UUhistle from Chapter 13 were
outlined in Section 16.4.2. The following recent features were partially inspired by the results we have
presented in this chapter:

• the Info box and its associated explanatory texts, which seek to draw the learner’s attention to the
conceptual content of the visualization and invite exploration of programming concepts;

17We may reflect on the suggestions listed here against the context of the CS1–Imp–Pyth course that we studied. In that
course offering, there was some use of UUhistle’s visualization in lectures, but for the most part, the integration of UUhistle
and VPS with other aspects of the course was limited (see Section 16.4). In effect, it was largely left to the students to
perceive meaning in the visualization and to relate it to other assignments and programming in general.
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• the “What is this?” menu choices accessible through context menus (see Section 13.1.3), which
serve a similar purpose;

• the features that attempt to draw the user’s attention to points of interest or to directly address
specific misconceptions through textual materials (see Sections 13.1.3, 13.4.2, and 15.3);

• various small additions and quality improvements towards the goal of making the full build of
UUhistle as usable and robust as possible so that students can use it to debug their own programs.
Further improvements in this vein have high priority in UUhistle’s development at the present time.

Such additions, useful though they may be, are unlikely by themselves to be sufficient to address the
issues highlighted by this chapter. Presenting VPS in the right way in teaching and integrating it well
with other course materials remains, we believe, of the utmost importance in order for students to make
the most of VPS. This requires, at least at present, effort from human course personnel.

17.7 There are vague spots in our analysis
Finding patterns is one result of analysis. Finding vagaries, uncertainties, and ambiguities is
another. (Patton, 2002, p. 437)

We comment briefly on some of the alternative analyses we discarded in favor of the one presented, and
a couple of vague spots in our results.

Our outcome space as presented has two branches. In contrast, the early versions of the outcome
space were clean hierarchies in which each category extended a single other category. These early outcome
spaces were problematic, however: it was difficult to determine which of the categories ‘in the middle’ were
extensions of which other categories. Our data eventually led us to the current bifurcate outcome space as
it appears to be possible to perceive learning through VPS as either computer-related or program-example-
related while unaware of the other ‘branch’ (cf., e.g., how Lynda and Beth discuss their understandings
above).

It can be questioned – we did – whether there is a genuine qualitative difference between Categories
A and D. Category D adds to Category A merely the realization that as one does VPS exercises, one ends
up seeing program code, and some aspects of the code may end up being remembered. This realization
is arguably very obvious. It is possible that even the simplest way of understanding the phenomenon
encompasses this realization and that Categories A and D should be merged into one category in which
all the other categories are rooted. However, our data does suggest that ways of understanding exist
that involve no consideration of VPS as a platform for example code. At least, such consideration is not
necessarily present in the dialogue of novice programmers, despite in-depth probing.

The justification for the existence of Category C as a separate category can also be questioned, the
alternative analysis being that execution order is just one aspect of computer behavior and Categories B
and C are qualitatively similar. We did, however, feel that our data tentatively supports the existence of
Category C as a category of its own, given the great emphasis that ‘actual execution order’ appeared to
have in students’ thinking and dialogue. That said, Category C is arguably not quite as solidly founded on
evidence as other parts of our outcome space.18 Students do talk about execution order, they do focus on
it as they solve problems, and they do find it difficult. Two students (William and Otto; Section 17.4.3)
highlighted execution order as what UUhistle gives them a new perspective on. This is a vague area
that further research and richer data could illuminate better. Our pedagogical recommendations are not
predicated on the existence of Category C separately from Category B.

Category E features another issue that we wish, in hindsight, that we had richer data on. This
category is entirely based on a single interview. In particular, the role of program dynamics in this
category is somewhat vague. What we can say from our data is that the interviewee, Beth, did not focus
or comment on the computer’s role in program execution, and did not appear to relate the changes in the
visualization to events in the computer. However, our data does not give a clear picture of just what Beth

18All our categories are, to an extent, based on conjecture, as are, in our pragmatist view (see Section 16.2), most or all
scientific results.
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thought about the dynamics of VPS. Our ‘best guess’, based on what we have, is that she considered the
user’s actions to be largely arbitrary operations (cf. the tools available in a drawing program) which she
uses to produce a visualization of program structure.

Finally, our outcome space does not precisely define, for every category, how widely applicable what
is learned during VPS is expected to be. Consider Table 17.2. When it comes to the internal and
external horizons of the why of learning (the second- and third-from-right columns), several categories
of description are vaguely phrased. In particular, the phrase “programming situations” appears without
a clear definition of what it means or a specification of the larger scope for such situations. Here, our
data does not allow us to be more specific. The existence of this vague spot is explained by the fact that
students’ conceptions of programming in general were not focal to our study – we considered programming
itself to be a separate, although related, phenomenon. However, we can compensate for the vagueness by
relating our outcome space to earlier work which has problematized what programming means to novices.
Consider, for instance, the work of Thuné and Eckerdal (2010), described in Section 7.5. According to that
study, programming may be perceived (among other things) as merely the production of program texts,
or as a skill for solving problems in everyday life. These two views lead to two entirely different meanings
for the phrase “programming context”. Systematically relating, on a collective level, two outcome spaces
of understandings of two related concepts appears to us a theoretically and practically challenging general
problem that is beyond the scope of the present work. However, we can make the generic observation
that on an individual level, how a student views VPS is related to how they view programming in general,
and a richer understanding of programming contributes towards envisioning a wider variety of situations
where one may apply what one learns during VPS.
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Chapter 18

We Explored What Happens During VPS
Sessions

This chapter reports empirical work conducted by the author of the thesis in collaboration with Lauri
Malmi. We explored the question:

What happens during visual program simulation sessions?

Like the phenomenographic study of the previous chapter, the work we present in this chapter is exploratory.
Visual program simulation is a new instructional approach about which not much is known. We sought a
rich, empirically founded description of what students do as they work on VPS exercises. Such a description
can give practitioners a better sense of what goes on and can inspire further research questions.

The above research question is broad. In this work, we focused on two subquestions, the second of
which is an open-ended one:

1. What informs students’ choices of simulation steps?
2. What other interesting episodes can we observe?

In Section 18.1 below we describe our research methods. Section 18.2 presents our main findings, which are
complemented by some quantitative results in Section 18.3. In Section 18.4, we consider the implications
of our findings for VPS system design and pedagogy.

18.1 We analyzed recordings of students

18.1.1 The data came from observations and interviews
We used data from both observations and interviews. We surmised that a blend of more ‘natural’ data
with interviews, which allow probing questions from the researcher, would give us a rich idea of what
happens during VPS session.

Observations

We collected videos of 41 pairs of students working on two VPS exercises in UUhistle. The students had
been asked to discuss what they did as they solved the exercises.

The students were volunteers who had been solicited with an announcement on the course web site.
They were roughly seven weeks into the spring 2010 offering of CS1–Imp–Pyth (see Section 16.4). All
of the 41 student pairs featured at least one student who had used UUhistle in previous assignments; in
most pairs, both had. The students received a small number of assignment points for taking part.

This observation data was collected as a part of a broader research setup, which we describe in the
next chapter. (The pairs formed the VPS group in the controlled experiment reported in that chapter.)
In short: the pairs were given one program animation and two VPS assignments, and their task was to
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solve the assignments using the animation and/or any other material they wished to make use of. The
programs featured lists, reference assignment, and parameter passing.

The code for the assignments is in Appendix C.
The topics of lists and references were still new for the participants. They had had a lecture on these

topics (which some had and some had not attended), and some of the students had already done one or
more program-writing exercises featuring lists when they participated in the VPS session. None had seen
any visualizations of lists in UUhistle before.

Our videos consist of an audio track and a screen capture. One of the videos is missing a substantial
segment as the pair inadvertently switched off the recording. The other recordings contain the entire VPS
session.

Interviews

In addition to the observation data, we used the 11 phenomenography-driven interviews from Chapter 17.
The interviews were conducted for the primary purpose of studying people’s ways of experiencing, but
also featured material that gives insights into what happens during VPS sessions.

18.1.2 We examined the data using qualitative content analysis
Our analysis process can be described as data-driven qualitative content analysis, given a sufficiently broad
definition of this ambiguous term.

Qualitative content analysis

In a much-read guidebook on content analysis, Krippendorff (2003, p. 18) defines the term as “a research
technique for making replicable and valid inferences from texts (or other meaningful matter) to the
contexts of their use”. Krippendorff further “question[s] the validity and usefulness of the distinction
between quantitative and qualitative content analyses”, as “ultimately, all reading of texts is qualitative,
even when certain characteristics of a text are later converted into numbers” (ibid., p. 16).

Our present work is not content analysis in Krippendorff’s sense. Our work is not characterized by the
strict requirement of replicability (see Chapter 16), nor do we use most of the specific techniques outlined
in Krippendorff’s book.

Our usage of the term content analysis matches that of Patton (2002), according to whom “content
analysis is used to refer to any qualitative data reduction and sense-making effort that takes a volume
of qualitative material and attempts to identify core consistencies and meanings” (p. 453). Our work is
qualitative not only in the sense that we look at the different qualities present in our data, but also in the
sense that the “core consistencies and meanings” are the main result of this work; we are not interested,
here, in frequencies or distributions.

We can further characterize what we did as cross-case analysis (as opposed to case analysis of specific
pairs). We looked for salient themes in the data and sought to identify instances of student behavior and
thought related to those themes. Students’ choice of simulation steps was one theme of interest that we
had already decided to look for prior to the start of the analysis.1

We also hoped to be able to document concrete instances of learning through VPS. Other themes we
let emerge from the analysis so that we could comment on those aspects about which our data appeared
to ‘speak’.

Researcher roles

The author of the thesis was the lead researcher in the work described in this chapter, and had the main
responsibility for all aspects of the work. Lauri Malmi critically reviewed the resulting analysis (but not
the original data, beyond what is cited) and gave feedback.

1To be more precise, we had initially hoped to categorize strategies or processes that lead students to choose a simulation
step. However, the analysis suggested that it was difficult to found such a categorization on the data we had. This is why we
reformulated one of our research questions during analysis so that we looked instead at what kinds of information students
use as they make choices.
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Kimmo Kiiski and Teemu Koskinen supervised the sessions in which the observational data was
collected (more on the sessions in Chapter 19).

Analysis process

The most frequent form of interview analysis is probably an ad hoc use of different approaches
and techniques for meaning generation. [. . . ] no standard method is used for analyzing the
whole of the interview material. There is instead a free interplay of techniques during the
analysis. (Kvale, 1996, pp. 203–204)

Kvale (1996, p. 181) points out that, in qualitative analysis, one must not overemphasize standardized
techniques. Instead one must be ready to “go beyond method and draw upon the craftsmanship of the
researcher, on his or her knowledge and interpretive skills”. In this spirit, we conducted the analysis in a
fluid, non-algorithmic manner. Nevertheless, we may roughly describe how the analysis process unraveled
as three main phases.

During the first phase, the lead researcher watched the videos carefully, searching for anything of
interest, and watching out for emergent themes and possible categorizations. During this process, the
researcher made notes paraphrasing what happened during interesting episodes in the recordings, and
iteratively sketched out categorizations of the justifications that students gave for VPS steps. Each
video was considered against the background of the ones already seen, comparing and contrasting. A
categorization gradually evolved. The researcher sometimes went back to an earlier recording to check
how it matched a tentative categorization. The first phase resulted in a draft categorization of the types
of information students use when choosing simulation steps, and a collection of notes on other potentially
interesting episodes in the data.

During the second phase, the lead researcher sorted the notes collected during the first phase so that
they corresponded to a few themes of interest. He reflected on these, trying to capture the significance of
each episode. This phase again involved going back – at whichever point it seemed useful – to the original
recordings for more detail. The second phase produced a draft of the results described in Section 18.2
below.

The third phase of the analysis was a second sweep through most of the recordings. While watching
the videos, the lead researcher looked for any episodes of interest in the data that had previously been
ignored or that were in conflict with what we intended to report.

Overall, our analysis process can be seen as gradually moving from ‘open coding’ and inductive logic
towards deduction and a confirmatory phase during which we took the findings back to the data for a
final examination of their appropriateness (this is in line with Patton, 2002, pp. 453–454).

Because of practical concerns – lack of time/money, combined with a large amount of data and the
need to consider not only speech but also the state of the VPS GUI – we only transcribed verbatim those
parts of the observational data that are quoted below to illustrate our results.

18.2 Various noteworthy features of students’ VPS work emerged from
the analysis

The four subsections below report our results. In order, they deal with:

• the kinds of information students use when choosing a simulation step,
• different kinds of episodes leading to learning,
• other pedagogically interesting patterns of behavior, and
• problem spots and mistakes by students.

18.2.1 Students use different kinds of information when choosing simulation steps
We identified five kinds of information, summarized in Table 18.1, that students use as they choose
simulation steps during VPS.
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Table 18.1: Types of information used by students when choosing simulation steps

Information used Prototypal scenario Pattern of usage

Code semantics ‘What does this code do and
how can we achieve that?’

The semantics of the code are considered and
related to the visualization in order to find a
simulation step that makes sense.

Program text ‘That box looks like what’s in
the code.’

Superficial resemblance between code and
visualization suggests a simulation step.

Unsuccessful GUI
operations

‘Let’s just try everything until
we find what doesn’t give an
error.’

Knowledge of what did not work is used to
narrow down the range of possibilities.

Textual feedback ‘The system gave a hint there.’ A response from the VPS system suggests a
different solution than the one that was tried.

Instructions /
Examples

‘The example showed that we
should do this.’

The current situation is matched to given
instructions or a previously seen example that
suggests a solution.

Category: Code semantics

The meaning of the program code informs some of the decisions that students make during VPS. A
student can attempt to figure out the semantics of the program code, and use his understanding of the
program to choose (correctly or not) a simulation step.

The following episode illustrates how John36 and Kate36 discuss the meaning of code in conceptual
terms – speaking of lists, values, and variables – and identify GUI operations that match the intended
program behavior.2

Pair 36 are working on the line ����� � ��	
 �
 	�.
John36: So now we have to first create one of those lists. It’s, umm. . . I guess you have
to, like, right-click. . . in there somewhere. . . there in the empty space. And then “Create in
heap”. . . “list”. . . yeah. . . . And now we put in the values.
A bit later, they have initialized the list.
John36: And then. . . then. . . mmm. . .
Kate36: We, like, give it the name “first”.
John36: Yeah. So we need to. . . create. . . a variable, so you have to right-click there. . . that’s
right.

The second example below illustrates how dialogue between pair members can lead to successful conceptual
reasoning. Here, one of the students fails to come up with the correct simulation step until his partner
gets him to stop and reflect on what the code really does:

Pair 29 is trying to deal with the line ��� � ��
 ����	��, but have run into some trouble.
A couple of early guesses have failed to yield progress.
Kate29: No-oo. . . What does that sort of thing do?
John29 appears to ignore his partner and tries a number of different simulation steps in quick
succession – e.g., dragging the literal 3 to the evaluation area and creating new variables –
to no avail.

2The aliases of the students are the same as in the previous chapter (see p. 280). Unsubscripted aliases refer to interviewees,
subscripted aliases to the paired students whose work we observed.
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Figure 18.1: List operators in the early UUhistle prototype used by the students. The left-hand operator
is used for assigning to a list and the right-hand one for reading a list.

John29: No! Small laugh.
Kate29: Grunts frustratedly. What does that, like, mean. . . three comma list zero?
John29: It’s like, it now creates. . . a list with this three in it, and this list zero, the first value.
Kate29: Yeah. . . So. . .
John29: Brightly: Should we create a new list here? Could that be the thing? Clicks on the
heap and creates a list object. Alright!

Category: Program text

Some student reasoning draws on the similarities between the program text, as written, and the visual
elements present in the VPS system.

For instance, the line of code ����� � ��	
 �
 	� and the assign-to-list operator of the UUhistle
prototype (Figure 18.1) look similar.3 This suggests a simulation step to Pair 17:

Kate17: Shouldn’t we do it so that we create a “first” and move them into it so it creates a
variable? Points where variables are created.
John17: But, hey, right there we have brackets like that and an equals sign.
Kate17: Mmm. . . Brings the cursor to the assign-to-list operator.

Another example of this category is provided by Otto, who, during his interview, mentions trying to match
the line of code to what he sees in the visualization.

Otto is struggling with the line �� ��� ������	
���� ����� and is making no progress
despite trying many different simulation steps.
Interviewer2: Could you tell me something about your reasoning, how do you know what to
do when you reach a line? For the most part it’s gone fairly well. . . you’ve known at each step
what to do. . .
Otto: Generally speaking, within each line there are these. . . Circles the entire line of code
with the mouse. And then I can also find the things with the same names over here. Moves
the mouse cursor all about the right-hand side of the display.

Category: Unsuccessful GUI operations

UUhistle informs students when they make a mistake, so each incorrect simulation step allows the student
to rule out that option and narrow down the range of candidate steps to consider. Such elimination can
be useful whenever a mistake is made. It may also be used as a strategy unto itself. Students comment
on this explicitly:

Pair 13 are working on a VPS exercise. Kate13 hasn’t used UUhistle before, so she asks her
partner about it.
Kate13: What’s the point of this whole thing? It always shows you what’s wrong, so you just
try all the possibilities?
John13: Yup, it’s like that. . . it doesn’t have a point.

3The list operators in the most recent version look a bit different; see the UUhistle web site.
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As they start to work on the first VPS exercises, John20 explains his approach to his partner:
John20: Usually I just do it so that I first drag. . . Small laugh. I drag these about until it
stops complaining. Embarks on a trial-and-error sequence of missteps and undos.

Pair 21 have been working on a VPS assignment fairly fluently, but have run into trouble
when they are expected to pass parameters into the frame they have just created.
Kate21: As long as it doesn’t complain, you’ve got it right.
John21: Yeah.
Kate21: Usually. Not always, but usually.
After a few tries the pair manage to create one parameter variable and give it a value, but
get stuck again.
John21: So next it’s “test”, I suppose? They try creating a variable ����, which is not the
correct step. No. A small mistake.
Kate21: This is getting pretty random.
John21: Should we dump the first one there? Moves the value of the first parameter variable
– which they have managed to initialize already – into the expression evaluation area. No.
Kate21: Let’s cover all the options, then it’s gonna work.. . .
John21: Should I now dump this thing over here? Fetches the function definition from the
Functions panel into the evaluation area. No.

Category: Textual feedback

The UUhistle prototype that the students used gave simple, fairly generic textual feedback about some
missteps (in the vein of: “Incorrect type of execution step.”, “You gave the wrong name to a variable.”,
“You didn’t start executing the right function.”). In UUhistle v0.2, the user requested this feedback by
pressing a button after they made a mistake (see Section 16.4.2). We observed a few cases of students
using the feedback button and reasoning about the next step with the help of the explanation they
received.

Pair 35 have just created a frame for a function call that takes two parameters, the first of
which is called ����. A variable called ���� will be created on the first line of the function
body (later, after the parameters have been passed).
John35: Over here, we. . .
Kate35: Interrupts. Here we need to create these, the function’s. . . I suppose we’re in the
function’s. . . I suppose we’re there, inside it? Waves the mouse cursor about in the function
body.
John35: Yeah. . . Over here, we need to create. . . “test”.
Kate35: “Test”. . . Creates the variable. No-o. . . now it gives some error. Clicks on the
feedback button. Wrong name!
John35: Is it “list” then?
Kate35: Yeah, it should be that “list”. Creates the variable.
John35: Yeah. And now if you drag into it. . .

Category: Instructions/Examples

Sometimes, students justified their choice of simulation step by referring to the operational instructions
that they had been given concerning how to carry out a task in UUhistle. A similar source of information
is the program visualization examples the students had previously seen, which demonstrate how to deal
with a particular kind of program.

William here relies on instructions to tell him what to do, and also remarks that the program animations
help:
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William is just beginning to work on a VPS exercise that starts with a function definition.
William: Well, like, I’d think that it needs to be named first and only then. . . like. . . start
defining what it is that it contains.
Interviewer1: Okay. And you base this on. . . what?
William: Well. . . Laughs. I guess on the fact that it says so here in the instructions.4
After a bit of discussion about other topics, William refers to the importance of examples.
William: These [UUhistle assignments] are usually easier to do once you’ve watched the
example of how to do it, so you get this, like. . . um. . . idea of how you’re supposed to do it.

About the categories

The categories listed above map out some types of information that features in students’ argumentation
as they choose simulation steps. It is important to note here that we have not categorized people. A
particular student or pair of students may use different tactics and different kinds of argumentation at
different points of even a single VPS exercise. (Indeed, our data suggests that such changes of tactics
are very common.) For instance, a tricky simulation step that the students already made a mistake with
can be approached quite differently than a familiar step.

Vague spots

Our categorization is based on the arguments and directly observable actions of the students. We
looked at what information we could see and hear students using as they make choices, and what
information they cite as important. In some of the categories, it is relatively clear how a particular
kind of information contributes to decision making. In other cases it is less clear, perhaps especially so in
the Instructions/Examples category. Our categorization does not specify how the students make use of
the instructions and examples. We may speculate about distinct usage scenarios: a student may simply
perform steps mentioned in the instructions without a deeper understanding of what they are doing, or
they may use the operational instructions to complement their reasoning about code semantics (to find
the correct GUI operation that matches what they are trying to ‘make the computer do’). However, our
data is quite opaque on this matter and merely allows us to vaguely conclude that students do refer to
instructions as they make choices.

Our data does not enable us to see inside students’ heads. In our recordings, students often chose
simulation steps in silence, or simply stated that they “must” or “should” now perform a particular step.
In many cases, we could not determine why a step was chosen, at least not without relying heavily on
guesswork. Our categorization enumerates some of the things that inform students’ decision making
during VPS, but the categorization should not be taken as an exhaustive list.

18.2.2 We observed instances of learning
We witnessed various episodes where students learned something as they worked on a VPS exercise. To
illustrate, we have selected a few examples, below, that feature different topics and different ways of
arriving at learning.

Example: Learning about references by reflecting on the visualization

Pair 6 have been working on these lines of code:

������ � �	
 �
 	
 �����

����� � ������

�������	� � ���

����� ������

4The instructions for the VPS assignment that William is working on say that the student should define the functions in
the Functions area when they arrive on one of the ��� lines at the beginning of the program.

307



����� �����

�	
��� � �����

As they arrive at the last of the lines, Kate6’s attention is drawn to the values of the two variables at the
same time, and she notes that they are identical. The reflection that follows helps the pair learn about
reference semantics:

John6: Right. . . then it’s going to do that again. . .
Kate6: I got it! It’s like. . . You see, these refer to the same thing now. Moves the mouse
cursor between the references stored in ������ and ��	
�. Each mouseover causes the
modified list to be highlighted. Look, there. . . It put the hundred.
John6: Oh yeah, they do refer [to the same thing].
Kate6: So, like. . . So it didn’t, like, create a new list after all. . .
John6: That’s right.
Kate6: . . . instead, when the “second” gets moved to the “third” place, and then you change
“second”, then it changes the “third”.
John6: You’re right.
Kate6: Pretty cool.

A possibly significant aspect of this example is that the learning occurs not as the second reference to
the list is created – the pair had created the variable ����� and copied the value of �	
��� into it quite
effortlessly and without much apparent reflection – but only later as another assignment statement draws
the students’ attention to the two references. We will return to this topic in the next chapter.

Example: Learning about function calls the hard way

Pair 24 have great trouble with – but eventually succeed in – processing a function call. The following
transcript paraphrases their attempt to deal with parameters, which takes several minutes.

Pair 24 are processing the line �
	�� ��	
��	��� �� which calls a function defined as ���
��	
��	��� 	��������� They have successfully evaluated the parameters and created a
frame.
Kate24: Tries a few entirely incorrect steps in quick succession. Just throwing things about
isn’t working.5
They stop to think for a long time, then again try dragging various visual elements to various
places, and creating more elements.
John24: Could we print that “weird list” and then we’d get in?
Kate24: Yeah, but it’s over here. . . and now we’re basically in this section that’s orange, where
we define that. . . that. . . that. . . Trails off.
They stop to think again.
Kate24: Now it has called it down there. Then we’ve like created a function [call] of it, there,
next. What does it want now?
Kate24 takes the first parameter value from the calling frame and drags it to the evaluation
area of the top frame. They then try a few more things. John24 keeps promoting the idea of
trying to print something, but Kate explains that that can only be done after the function is
dealt with and returns something. This brings her to discuss her understanding of the meaning
of the code:
Kate24: [It will] print “weird list” of these two values. Points at the parameter expressions
�	��� �. So it does the function. It returns this. . . (Points at the return statement within
the function.) and prints it.

Kate24 has some idea of how functions work: she wants to produce the return value of the function and
has an idea that the values of parameter expressions must go ‘into the function’ somehow. Neither of the

5Kate24 repeatedly refers to her occasional attempts to solve the exercise by naïve trial and error as “throwing things
about”.
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students appears to think of the parameters as variables, however, which is the perspective that UUhistle
is designed to illustrate and teach about.

The pair continue working on the problem:

After trying an impressive array of increasingly desperate incorrect steps, including an attempt
to create more operators, Kate24 stops to think again.
Kate24: Hmh! Makes no sense at all. Mumbles something inaudible. “list”. . . and
“index”. . . And then we have “list”. . . and one. . .
Several more unsuccessful attempts at “throwing things about” follow.
Kate24: Maybe we should create one of these? Creates a variable called �����. No. Creates
a variable called ����. Oh wow!
John24: Huh?
Kate24: I created “list” there because I thought that since we have these over here. Mouses
at the function signature where the parameters are named. So I thought maybe we should
first create them here. Now we should move this here. . . like so. Drags the list reference from
the calling frame to the new variable.
They process the second parameter without any trouble.
Kate24: That’s it! Now we have. . . in the function we have defined. . . these. Mouses over the
new variables that now have values.
John24: Mmm.
Kate24: From there. Mouses towards the calling frame. And it sure took a while again.
These are always like this. You throw things about for a while and then. . . it happens. And
then maybe with luck you figure out, like this, afterwards, what has happened.

The passage shows that Pair 24 did not originally know how to pass parameters in UUhistle. They also
appear to have had a limited understanding of parameter passing in general. The idea that there is a
variable (or any kind of storage) corresponding to each parameter is conspicuous by its absence from their
reasoning. Their (or Kate24’s at least) understanding seems to be solidified by the VPS exercise: Kate24’s
summary at the end suggests that she understands the purpose of what they eventually accomplished,
even though she had little idea of what to try for earlier. John24, whose understanding of the topic
appears to have been more limited, perhaps also learned something about how return values work in
nested expressions.

Later in the same VPS exercise, there is another function call, which the pair deal with fluently.6

Example: Learning about recursion almost as a matter of course

Two of our interviewees, Sue and Elizabeth, did a VPS exercise during their interviews in which they had
to simulate the behavior of a recursive factorial function. Neither had seen a recursive program before.
Both learned to understand the program with the help of UUhistle during the interview.

Asked to reflect on her learning, Sue described how UUhistle helped her get an idea of how some of
the calls stay “in queue” waiting for the others to complete as the factorial is being calculated. Elizabeth
explained how UUhistle helped her understand that multiple frames can correspond to the same function
definition and that the recursion retracts in the call stack “like a snowball”. (Longer quotes from the two
students appear in Section 17.4.6 in the previous chapter.)

A potentially significant aspect of the two cases we observed is that not only did both students learn
about recursion, but neither appeared to find the program troublesome. This is despite the fact that
recursion is considered by many in the computing education community to be one of the most challenging
topics in introductory programming (see references in Section 3.4). Both students very quickly found the
correct simulation steps needed for the recursive call, although the process did provoke some thoughts.
Here is Elizabeth:

Elizabeth is thinking aloud as she is simulating the call 	��
	� ����	�������� � �. She
has just evaluated ��� to yield 4.

6The pair also go on to produce a perfect answer to the post-test question on (nested) function calls in our experimental
setup (Chapter 19); they had had only a partially correct answer for the same question in the pretest.
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Elizabeth: And. . . So the function is called again. I suppose that means that it sorta. . . I
wonder if I can create, here, still another. . . (Clicks the heap to bring up the “new frame”
option but does not click it.) frame, I guess I can? Or is it so that the same [frame] can. . . In
the same, like, umm. . . If the [sub]program has been called (Circles the mouse cursor around
the code of the function.) is it so that I can put it there again in the same [frame]? So that
instead I give this “n” a value within the same [frame] thingy that I’ve been working with
(Motions with the mouse from the parameter value 4 in the current top frame towards the
variable � in the same frame, which contains 5.) or do I have to create a new frame? (Clicks
the context menu to produce a new frame. No error: this is the correct step.)
Interviewer1: Feel free to try.
Elizabeth: Laughs. Well, apparently I can [create a new frame]. Proceeds to create another
variable � in the new top frame and brings the value 4 there.

In this quote, Elizabeth considers two ways of dealing with the recursive program: the correct solution
that uses multiple frames and an alternative solution that relies on a single frame and is not viable here.
She decides to go along with her first hunch of creating another frame and finds out that it works. (The
alternative ‘looping model of recursion’ is reported in the literature as a common way of misunderstanding
recursion; see Appendix A.)

Our observations are intriguing in that they concretely show that it is possible to learn to understand
recursive programs by applying one’s understanding of a notional machine. In UUhistle’s notional machine,
there is nothing special about recursive function calls compared to other nested calls. Elizabeth and Sue
learned to deal with self-calling functions quite naturally and painlessly, building on their existing knowledge
of function calls.

The above quote from Elizabeth also illustrates how the VPS system can serve as a platform for the
interactive exploration of ideas, supported by automatic feedback: had Elizabeth chosen instead to try
out the ‘looping model’, she would have received an error message and would then presumably have tried
the correct alternative.

We are not in a position to generalize these findings to any other students or to claim that VPS or
UUhistle makes learning to understand recursive programs easy. Further study is needed to establish the
extent to which these interviews are representative of CS1 students in general.

18.2.3 We saw a few pedagogically interesting patterns of student behavior
A few patterns of student behavior during VPS work stood out as potentially significant from a learning
point of view. We comment on these below.

Revisiting one’s goals. . . or failing to

One theme that emerged from the analysis was the way some students succeeded in overcoming problems
by returning to reflect on what they were trying to accomplish through the GUI. Other students failed to
revisit their goals and struggled enormously.

Analytically, we may separate what the VPS user does as they choose what to do into two parts:
deciding what one wishes to happen next, and choosing a GUI operation that (one hopes) achieves this
intended goal. Students do not necessarily draw this distinction, however. Even if they do, they may fail
to consider that the root cause of any mistake they make can lie within either part. Let us contrast two
examples.

Pair 40 initially make the wrong assumption about what a line of code does, thinking it modifies
an existing list. This gives them a headache, which is resolved as soon as they consider an alternative
meaning for the code (it creates a new list) and find a GUI operation to match the new interpretation.

Pair 40 are discussing the line ���� � ��	 �����
��.
John40: Right, so it kinda shifts the list one step forward and adds the number three in front,
doesn’t it?
Kate40: Mmm. . . let’s try.
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John40: At least I’d imagine it does.
Kate40: Yeah.
They try creating a new reference to the existing list in the evaluation area.
Kate40: No.
John40: No good.
Kate40: Then. . .
John40: I think this just adds the three to the list..
Kate40: Okay. Yeah.
John40: Let’s try one more thing. Drags a reference from the variable ���� to the evaluation
area, to no avail. Sighs.
They pause to think in silence for a lengthy spell and try a couple more incorrect options for
assigning to the list.
John40: Brings the assign-to-list operator to the evaluation area. This assigns something to a
certain index. Again brings the reference from ���� to the evaluation area. It’s going wrong.
Kate40: I’d think that’s the right one, but. . .
John40: Me too. That we should put it here first and. . . assign with these (Motions at the
operators.) to an index.
Kate40: Mmhmm. . . Hmm.
John40: What if we assign first – is this possible? – the three. Brings the literal 3 from the
heap to the evaluation area. No. No. Nono. I’d imagine that we could dump the three there,
then the list after it.
Brief pause.
John40: I would understand if we had to create. . . a totally new list.
Kate40: Right.
John40: But I bet that’s wrong too. Let’s try it. Creates a list. It wasn’t!

Let us now consider the case of Otto, who sticks with great persistence to his idea of what happens next.
Otto is working on the following code:

�� ��� ����	
��������� �����

������ �����

����� ������ ������ ���

����� ���� ���������� ���

������ ����

Otto has just successfully returned ���� from the function 	
�	����� and applied the ��

operator to produce ����� as the result of the conditional expression. (The next correct step
is to indicate which line to jump to, in this case the first print statement.)
Interviewer2: Okay, so what now?
Otto: Well, now we get to return this “False” to the other [sub]program. . . Drags the value
into the calling frame to return it, but UUhistle signals an error. The interviewer starts to
ask about Otto’s reasoning, but Otto fails to answer and decides to pursue different ways of
returning a value. He clicks on the next line – ����� ����� – in an attempt to move program
control there. Seeing that Otto has great trouble advancing, the interviewer eventually hints
that the line wasn’t the correct one. Otto eventually manages to click the right line but
appears puzzled:
Otto: [So] that’s where we went.
Interviewer2: Does it make sense to you that we went there, or. . . ?
Otto: A pretty weird thing.
Interviewer2: If you had to give your best guess why we went to that line number seven [the
first �����], what would it be?
Otto: It returned “False” and that’s why we continue from here.
A while later, another function call brings Otto back to the same situation, only this time the
conditional has evaluated to ����.
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Otto: “True”. . . And then we go. . . to return “True”. Clicks on the line ������ ���� to move
control there. No, we didn’t go there. Clicks on the first print statement. We went here last
time, no, not there, either.
The interviewer tries to initiate a discussion about the meaning of the program but Otto has
little to say beyond the fact that the program checks that some numbers are equal to or
greater than zero. Discussion returns to the present problem.
Interviewer2: So, now we are on line five and we have that “True” there?
Otto: Yeah, so. . . But that we can probably. . . take here right away. Returns ‘True’ from the
top frame into the calling frame. No, we can’t.
Otto continues with various attempts to make the function return ‘True’. He tries dragging
the boolean literal from the heap, transferring control to the calling function, and repeating
earlier attempts. Pointing at the (inactive) line ������ ����, he reiterates: The program
wants to return “True” here. Otto does not manage to progress past this point during the
interview. After the interview, the interviewer explains to him how the program works.

During the interview, Otto decides, twice, that the next step is to return the boolean value that the
conditional expression evaluated to. We do not know the precise reasons for this (he seemed to struggle
with �� statements and may have a misconception concerning them and/or the ��� keyword; he may also
have been misled by UUhistle’s way of dealing with these topics). Whatever the reasons were, he does
not appear to seriously question his conclusion at any point. Laboring under the wrong impression, Otto
wastes time looking for an answer to the wrong question of which GUI operation allows him to return the
value that is currently in the expression evaluation area.

From trial and error to reflection

We observed cases where eliminating incorrect answers through trial and error did not appear to lead to
learning even after the correct step was found (often after considerable trouble). The students would just
move on to the next step without ever thinking about the meaning of the current step.

We also observed some cases where learning did appear to take place after trial and error. Kate24 sums
this up on page 309 above: you try all kinds of things without much thinking and only after you find out
the correct answer do you get what the point was. Kate24 does look for meaning in the visualization but
starts “throwing things about” when she runs into trouble, then reflects on what she has accomplished.
Her overall approach appears to be deeper than what one might think if one were to only observe the
trial-and-error tactics she resorts to when she feels she needs them.

Sue, one of our interviewees, also discussed a way of using trial and error as part of a deeper learning
strategy. Sue says that when she worked on the VPS assignments of the course, she sometimes used “a
trial-and-error tactic” to find the correct answers and get the points, then went back to the VPS task to
make sure she understood each of the steps. This may even involve redoing the exercise several times.
Here is a selection of quotes from Sue:

On doing VPS in the past:
Sue: Many times I’ve done so that I didn’t know what to do, so I clicked many times on
different options until it didn’t complain, and then I went forward from there.
After she completes a VPS exercise during the interview:
Sue: Now I get the. . . I got this logic, but I didn’t internalize it . . . I’d need to do this so
many times that I get every click right, then I’d maybe understand the logic.
Again on how she works on the assignments:
Sue: When I’ve gotten stuck, I haven’t thought about them too carefully (Laughs.), I’ve tried
to do something and as soon as it doesn’t complain I’ve known it’s okay. And then I try to
think about why it’s okay.
Interviewer1: Mmm.
Sue: So I don’t, in a way, try to solve it beforehand, only when I know the result I try to solve
it in the sense that I think about why it went like that. It’s generally my way of learning that
I first see “how is this done”, and then I start thinking about how. . . why it’s done like that.

312



Not so that I first look and start thinking right away about why it’s done. . . . It is a bit. . . a
bit tricky, but luckily you can do them many times in UUhistle. So it isn’t, like, after you
turn it in once and get full points after you’ve struggled with it for an hour7, you don’t get
to do. . . So that you get to do it again so many times that you can then. . . like. . . basically,
you redo it a couple of times after you’ve done it once. So, after that it starts getting easier
when you. . . when you know what to do, so you can start thinking about why you’re doing
it, but in the beginning it’s more like. . . it easily becomes, like. . . you don’t necessarily, like,
think why this goes there, because you have no clue.
Interviewer1: Mmm.
Sue: About what you’re trying to do. But then when you get something to go
somewhere. . . then you get. . . it gives you this clarity, things start rolling, so to speak.

The author of the thesis noted in Section 14.2 that a program animation is, in a way, a worked-out
example solution for a VPS problem. Seen from this perspective, we could describe Sue’s strategy as
mechanically turning problems into worked-out examples, which she then studies in order to understand
how to really solve the problem.

An unusual conclusion: UUhistle ‘lied’

At the beginning of Section 18.2.2, Pair 6 saw that two references pointed to the same list and used this
to draw valid conclusions about program semantics. Pair 14 saw the same evidence but came to a very
different conclusion.

������ � �	
 �
 	
 �����

����� � ������

�������	� � ���

����� ������

����� �����

������ � �����

Pair 14 have successfully simulated the program’s execution until the last line quoted above.
They are just noticing that there is only a single, modified list in the heap which both variables
refer to:
John14: How can it first, over there. . . that this “third” equals “second”? It goes all wrong
now! Now that it’s been defined there, this “third”. Points at the code ����� � ��	
��.
Kate14: Yeah.
John14: So it’s not supposed to. . . when we changed that “second” afterward. . . [not supposed
to] make it so. Points at the modified list in the heap. But it didn’t yet. . .
Kate14: It’s not?
John14: But it didn’t complain yet?
Kate14: But. . . doesn’t it precisely because we define it first . . . and then we change “second”.
John14: It’s not supposed to, because. . .
Kate14: Interrupts: Right, [we changed] the original “second”, right. . .
John14: Like, if you define that “my name” is “your name”, and then we change your name
afterwards, it shouldn’t change my name.
Kate14: Right, yeah, right.
John14: But it didn’t whine about it in any way so I suppose this (Moves the mouse cursor
around the references stored in the variables.) is a feature in this [software].
Kate14: But now we have again: “second” equals “third”.
They carry out the assignment correctly.
John14: Doesn’t seem to be going right.

7According to our logs, students extremely rarely spent an hour or longer on a VPS exercise. It is very likely that Sue is
exaggerating here.
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The pair fail to accommodate reference semantics within their understanding of assignment and variables,
and resist the alternative view of program behavior suggested by UUhistle. They decide that references
are merely a misleading “feature” of UUhistle. In their later work during this session they show no sign
of reconsidering this view.8

This was the only case we observed in which the students explicitly challenged the fidelity of the
visualization.

Ignoring aspects of the VPS environment

Let us now consider some things that students did not do and or pay attention to.
Again, the following analysis is based on dialogue and students’ use of the mouse. We did not, for

instance, use eye-tracking equipment, nor did we have video of students’ bodily gestures. Nevertheless,
we can comment on a few elements within the VPS system, which, our data suggests, some students
entirely ignored.

Many of the students we observed had already ignored some available sources of information before
they started on the VPS task proper.

The first VPS assignment was prefaced with short instructions, which were visible onscreen before the
simulation task started. The large majority of the students clearly did not read these at all or only granted
them the briefest of browses.

Numerous student pairs also ignored the program animation provided as an introductory example of
the topics covered (see the next chapter and in Appendix C). The example of lists and references appeared
in UUhistle’s assignment selection menu right before the two VPS assignments. However, nearly half of
the 41 pairs did not start by watching the example, instead jumping directly to the VPS task (usually
without reading the instructions for that task, either). From our data it is clear that failing to read the
instructions was invariably associated with significant puzzlement and trial-and-error tactics regarding list
operations right at the start of the first VPS task. The students who had skipped the example and the
instructions had little idea of what steps are involved in carrying out a list operation in UUhistle and in
what order (e.g., to produce a new list, you had to first create a list in the heap, to form a reference to it
in the evaluation area, and finally to initialize it). Only after flailing about, usually clearly frustrated, did
the pairs eventually figure out how to move forward. We must be careful as we consider the causalities
of the situation. It is possible that another factor (e.g., a certain attitude or approach to learning) led
some of the students both to skip the example and to struggle with the list operations. Nevertheless, it
seems to us a very reasonable conjecture that the failures to look at the example and the instructions
contributed significantly towards the students’ troubles.

After they completed the second VPS assignment, students often checked UUhistle’s assignment menu
again to see if there was anything more they were required to do. At this point, many of the pairs who
had not initially watched the example animation did go back to watch the example. Viewing the example
afterwards almost invariably led to dialogue such as this:

Kate33: This is one of those where you have to just, like, click your way through it.
John33: Ow! If we had only watched this in the beginning, this one!
Kate33: Uh-huh. Laughs without humor.

During the VPS exercise itself, students’ attention was primarily on the program code and the graphical
elements they manipulated. The majority of pairs did not explicitly refer to program output at all. Even
fewer pairs appeared to reflect thoughtfully on what was printed out. None of the students ever looked
at UUhistle’s menus at any point for any purpose except to change assignments.

The vast majority of the pairs never used the feedback button to request textual feedback on their
solution. The example on page 306 is one of only a handful of individual episodes where someone did ask
for feedback.

8From a pedagogical point of view, this is not exactly a happy outcome. However, we may still speculate (and hope) that
this experience may have been a memorable one for the pair, and they perhaps came to recall it at some later stage of the
programming course, such as when references created a bug in their own program.
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18.2.4 We catalogued trouble spots and student mistakes
Within the two VPS exercises that the student pairs worked on, a few sections stood out as particularly
troublesome for the students. We comment on these below and discuss some of the specific mistakes that
students made.

We did not analyze in detail every single mistake the students made, nor can we present an exhaustive
list of all the ones we did spot. We focus on recurring mistakes related to the topics that the students
had most trouble with. The presentation below excludes trivial slips of the mouse and the ‘flailings’ of
students selecting multiple steps in quick succession in a trial-and-error process.

The two main problem areas we identified were list operations and parameter passing.

Problems with list operations

At the beginning of the first VPS exercise of the session, students had to create a list of integers in the
heap, initialize it, and then use list operators (Figure 18.1) to access the list:

����� � ��	
 �
 	�

�������� � �

����� � ��������

Many pairs made mistakes with these steps. They would attempt to use the wrong operator (read a list
instead of writing or vice versa) or try to use the operators to create lists (which is done in UUhistle by
clicking on the heap).

Lists were a topic that had just been introduced in CS1–Imp–Pyth. None of the students had previously
seen UUhistle’s visualizations of lists or references. From the dialogue, it seemed that most students had
roughly the right idea about what these lines of code did; however, they were not sure what simulation
steps were involved and how to perform them in UUhistle.

Confusion about the steps involved and the meaning of the visualization was extremely common among
those pairs who had not watched the program animation on lists before they started working on the VPS
task.

A point on usability can be made here. Lists and list operations (and references to lists) were the only
novel elements in the visualizations used during the session we observed. The students had previously
encountered variables, assignment, function calls, etc., in UUhistle. This, together with the fact that
many students did not watch the example animation, goes some way towards explaining why the students
had trouble with finding the right GUI operations for basic list operations. Such trouble was conspicuously
absent elsewhere in our data, however. That is, apart from the list operations at the beginning of the first
VPS exercise, we observed extremely few situations in which the students expressed a conceptually correct
idea of what the next simulation step should be but nevertheless had significant trouble with finding the
corresponding GUI operation. This suggests that many students had learned to use UUhistle’s GUI to
carry out the execution steps they wished to be carried out.

Beyond the first few lines of the first VPS exercise, there were two more trouble spots concerning list
operations. The line ���� � ��
 �����	��, which appears in the second VPS exercise, was a source
of puzzlement for many pairs. Many initially failed to recognize that it creates a list. Some thought
that instead it (only) performs an operation on the existing list, and tried to use the list operators to
achieve this aim. No-one who explicitly worked out that the command does in fact create a new list had
trouble creating and initializing the list (which they had already learned to do before getting to this line).
The use of brackets within a function call in ���������������
 ���������
 ��������
 ��������� 

also puzzled some students. Students’ difficulties with these list creation commands suggest that their
knowledge of list semantics was still fragile and undergeneralized, and they had probably not experienced
much variation in the contexts where lists can be created or in the kinds of expressions that can be used
to initialize lists.

Problems with parameters

Parameter passing, featured in the second exercise, was by far the most troublesome part of the VPS
work that the student pairs did. A clear majority of the pairs had some kind of difficulty with it.
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Parameter passing was the only topic about which any of the pairs asked for help from the assistant
supervising the session. It was also the only stage at which any of the pairs got so badly stuck that they
decided to give up entirely on solving the VPS assignment. (Only a few pairs did either of these things,
but all the cases involved parameter passing.)

Students’ difficulties usually started only after the pair had evaluated the parameter expressions and
created a frame. Many pairs ran into trouble immediately at this point. Every step of the parameter-
passing process proved troublesome for at least some of the pairs, with students failing to pass parameters
at all, failing to create variables to store the parameter values, not understanding which variables to create,
and/or failing to realize which values the parameter variables are supposed to get.

A list of the main parameter-passing difficulties we observed is shown in Table 18.2. The relevant
code fragments that the table refers to appear below.
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Problems with other topics

Two further trouble spots stood out from the data.
The first VPS assignment featured the line 	����� � 
����. Some pairs tried to execute this line

by assigning the value of 	����� to 
����, instead of the other way around. The reasons are not clear
from our data. Possibly, some of the students harbored the misconception that assignment works in the
other direction or that the order does not matter (at least in the case of a statement of the form "�� �

�
���#��). It is also possible that the students were bemused by the fact that at the time this line is
executed, the two variables already have identical values, so the assignment does not actually alter the
value of either one. This was the only statement in the two VPS assignments that copies the value of
an existing variable into another existing variable, so we do not have further data on this matter. The
students did not have similar trouble with other assignment statements.

Another tricky line was ��
��� 
�	
� � in the second VPS assignment: roughly one pair in four
appeared to read this as ��
��� 
�	
 and returned a list reference rather than one of the list’s elements.
The mistake was usually noticed and fixed very quickly by the students, and appears to be more of a
misread than a deeper misconception. We may speculate that the mistake may have been rooted in
superficial code-reading strategies, unfamiliarity with lists, and/or the way parenthesized expressions can
be treated as optional in many natural language texts. Our data does not allow us to confirm these
speculations, however.

What was not a problem?

Although we did not perform a formal quantitative analysis, we can note that the clear majority of
students’ mistakes involved the trouble spots listed above. Less problematic aspects included: forming
expressions bit-by-bit in the evaluation area (including function calls), creating variables, most assignment
statements (including reference assignment), declaring functions, returning values, and creating new
frames for function calls.

The distribution of mistakes is, of course, affected by the specific assignments used, the students’
existing knowledge of programming, and prior VPSing experience.
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Table 18.2: Students’ difficulties while simulating parameter passing. See the previous page or
Appendix C for the code.

Difficulty Symptoms Notes

Failing to pass
parameters at all.

Students ignore parameters and attempt to
proceed past the phase either by moving
control to the function body or simply by
starting to execute the body.

This behavior was very common in our data set. The root
causes of this rather opaque behavior may lie in
forgetfulness, failure to understand parameter passing, or
failure to realize that UUhistle requires students to pass
parameters explicitly.

Failing to make use of
variables.

Students do not create variables and instead
try to drag the parameter values into other
parts of the new frame, usually the
expression evaluation area.

May be caused by a failure to understand the role of
formal parameters in function definitions, a failure to think
of parameter variables as regular local variables, or a
failure to realize that UUhistle requires each parameter to
be explicitly stored in a variable.

Name-linked
parameter passing,
variant 1

Students only create a ���� parameter
variable into the new frame for �����. They
give it a value directly from the variable with
the same name in the calling frame, and
then try to advance inside the function body
without creating �	��
 at all.

May be indicative of a misconception that variables in the
calling code and the called functions are ‘linked by name’.
(This misconception is reported in the literature; see
Appendix A.) The way students ignored �	��
 suggests
that they may only have looked at the function call
����������� � and created only ���� because ‘it’s the
variable that is passed to the function’.

Name-linked
parameter passing,
variant 2

Students give the ���� parameter of �����

a value from the calling frame’s ����

variable. They correctly create the variable
�	��
 but are puzzled as to where it might
get its value from.

May also be suggestive of the same misconception as the
problem above. In this variant, however, the students
clearly created the parameter variables on the basis of the
function definition rather than the function call.

Variable-to-variable
parameter passing

Students give the ���� parameter of ����	�

a value from the calling frame’s ����

variable.

This variant of the two problems listed above may be
indicative of a misconception (reported in the literature;
see Appendix A) in which parameter-passing is seen as
linking variables of the caller and callee.

Avoiding duplicate
variables

Students do not pass the first parameter
���� of the function �����. They only pass
the second parameter �	��
. Once they find
out through the system that they have to
create ���� in the new frame as well, they
sometimes wonder aloud about the need to
do so since “we already have one”.

Suggests a limited understanding of parameters and scope.

Calling a function
again instead of
processing the original
invocation.

Instead of passing parameters, students form
another call to the same function in the
evaluation area of the new frame they just
created.

The function signature is highlighted by UUhistle when
the student is expected to pass parameters. Students may
react to this by fetching the graphical element that most
closely resembles the active line of code. Students may
also be confused by how UUhistle first highlights the
signature when the function is being declared and then
again when it is being called. This step was also
sometimes used as part of a naïve trial-and-error strategy.

Problems with nested
syntax.

Students try to execute the ���	� statement
in ���	� ����������� � when they are
supposed to pass parameters.

May be caused by a misconception concerning nested calls
or by a failure to realize that the student is expected to
execute each step of the ����� call manually (instead of
the call working as a black box). This was also used by
some students as a desperate move when nothing else
seemed to work.

‘Overeager’ variable
creation.

Students create the first parameter variable,
then create the second immediately, without
first passing a value to the first variable.

In a different notional machine for Python, this could be
correct. In that of UUhistle v0.2, it was not. In the most
recent version of UUhistle (Chapter 13) this is a non-issue,
because variable creation and the assignment of an initial
value form a single atomic operation.
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18.3 We have some quantitative results on students’ strategies

We now present briefly some quantitative results that complement our qualitative analysis of the
observations and interviews. These results are based on the end-of-course feedback survey of the CS1
course, which featured a number of questions concerning UUhistle. Of most relevance to this chapter is
a question that asked students to assess how they did VPS: “Which of the following best describe the
way you did the assignments in UUhistle (if multiple apply, choose several)?”. The students were given
nine options to choose from (partially inspired by early impressions of the interviews conducted earlier).
Table 18.3 presents the results.

The survey responses suggest that reflecting on the behavior of the program, naïve trial and error, and
following instructions were all common approaches to choosing simulation steps. Most students appear
to have at least tried to reflect on the meaning of simulation steps either before or after they chose them
(73% of the respondents chose at least one of options 1, 3, or 8).

We will have more to say about the feedback survey in Chapter 20.

Table 18.3: Ways of doing VPS, as reported by students in an end-of-course feedback questionnaire.
Students were encouraged to choose all the options that apply. The percentages are of the
324 students who picked at least one of the nine options.

# Option Chosen by

1 “I first tried to figure out what next happens in the program, and only then
tried it to see if I got it right.”

143 (44%)

2 “I just tried everything without thinking much, just to get the program to
advance.”

92 (28%)

3 “I advanced by trying all kinds of things. Still, I tried to think about why the
correct step was the right one after I found it.”

144 (44%)

4 “I followed the instructions that came with the assignment.” 140 (43%)

5 “I followed the instructions I had seen in the introductory videos of UUhistle.” 77 (24%)

6 “I did what a friend advised me to do, even though I didn’t quite know why.” 7 (2%)

7 “I did what a TA advised me to do, even though I didn’t quite know why.” 8 (2%)

8 “I collected the points for an assignment without thinking about its content,
then returned to reflect on why it worked as it did.”

18 (6%)

9 “I used some other strategy to work on the assignments.” 14 (4%)

18.4 The results suggest improvements to UUhistle and to its use in
teaching

The purpose of this study was to explore the novel way of studying that is visual program simulation,
and to provoke thoughts and hypotheses of how it works in practice. The results we have presented
paint a picture of what goes on during VPS sessions. They demonstrate that meaningful learning about
challenging topics can occur – but does not always occur – during VPS and provide some insights into
what makes for a successful VPS experience. Below, we consider some of the possible implications of our
results for learning, pedagogy, and VPS system design.
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18.4.1 Teaching should facilitate reasoning about program semantics during VPS
We can start our discussion of the pedagogical implications of our results by considering the five kinds of
information listed in Table 18.1. Taking the purpose of VPS – enhancing the learning of programming –
as our point of view, the first sort of information – the conceptual content of the visualization – stands out
as key. The more time we get students to spend on reasoning about VPS in terms of program semantics
and the notional machine, the more effective their learning of programming is likely to be.

From this perspective, all the other kinds of information are of secondary importance. Making use
of them during VPS is desirable only to the extent that they contribute towards reflection on program
semantics.

Following examples or instructions is a pedagogically acceptable way of solving VPS exercises when
students understand, on a conceptual level, what they do. The need to find the correct simulation steps
motivates (some) students to pay attention to the examples and instructions and to learn to follow them.
To the extent that this also brings about learning of the concepts present in the examples and instructions,
the learning is meaningful. However, if students choose simulation steps by ‘mindlessly’ following
instructions or mimicking program animations, without ever reflecting on meanings, then the process is
not likely to produce major insights. Similarly, the usefulness of textual feedback for learning programming
(as opposed to just passing the assignment or learning to pass such assignments) is dependent on how
well it helps the student to (immediately or eventually) reach a conceptual understanding of program
execution (as opposed to only helping him learn where to click).

Two of the categories suggest the existence of what can be termed surface approaches to choosing
simulation steps. In the second category, the choice of simulation step is affected by surface similarities
between code and visualization. The third category shows that students narrow down the range of
possibilities by eliminating erroneous options that they have tried. Neither of these forms of reasoning is
ideal from a pedagogical point of view, as in them cognitive effort is not primarily directed at the intended
content of learning but at secondary issues.9

A pedagogical view of the categorization summarized in Table 18.1 therefore suggests that teaching
should seek ways to encourage reasoning about program semantics when choosing simulation steps, and
discourage guesswork, the mechanical following of instructions or examples, and trial-and-error strategies.
That is not quite the whole story, however.

The most important: a deep overall approach to VPS

It is clear from our data, and an intuitively appealing notion, that failure to consider the conceptual
content of the visualization while choosing simulation steps was often associated with a failure to learn
about that content. Nevertheless, we also saw evidence of the use of what were ostensibly surface-level
tactics for choosing steps used in the service of a deeper goal of learning about programming. The most
striking example of this was the case of Sue (p. 312), who resorted to trial and error as a step-finding
tactic when in trouble, but returned to reflect on the visualization after she found the correct step.

We may speculate that Sue’s time might have been used more productively if she had been helped to
relate the visualization to program semantics at each step. This would have required better support from
the system and/or a teacher than what Sue had, so that she would not have felt she needed to resort to
trial and error because she “had no clue” as to what to do. However, even if Sue’s use of time and effort
was not optimal, the learning outcome was excellent as her approach to learning through VPS was very
deep. She also enjoyed using UUhistle.

We conclude that while using trial-and-error tactics often indicates a surface approach, this is not
always the case. Ultimately, it matters less how the student manages to find the correct simulation step.
The most important thing is whether the simulation activity brings them to reflect on that content at some
point of the process. The occasional strategic use of trial-and-error tactics or other surface approaches to
choosing a simulation step is not a problem, if the student’s overall approach to the VPS activity is deep

9Booth (1992) reports that novice programmers sometimes approach program writing without regard to the problem to
be solved: they opportunistically either try to use constructs from their existing repertoire in the hope they will do something
useful, or try to tinker with an existing program that has superficial similarities to the problem at hand. We leave to the
interested reader the consideration of the parallels between our results, the approaches to program writing identified by Booth,
and approaches to problem solving in general.
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and the student searches for meaning in the correct answer. That said, even if the student has adopted
a reflective approach to VPS, trial-and-error tactics are unlikely to be an optimally effective use of the
student’s resources.

Pedagogical challenges

A deep learning approach is predicated on a rich understanding of what learning through VPS can be.
Together with the conclusion from the previous chapter, the results in this chapter support the view that
in order for VPS to be successful, students need to develop a powerful way of understanding VPS so that
they realize its potential for helping them learn programming concepts. This is arguably the most crucial
pedagogical challenge for teachers who wish to make use of VPS in their teaching.

Another pedagogical challenge is to encourage and help students to use their time as productively
as possible when selecting VPS steps. Ideally, students would use as much of their cognitive effort as
possible on program semantics and the notional machine that serves to define those semantics, rather
than spend it mechanically trying to cover all the options or looking for superficial similarities between
code and visualization.10

The two challenges are interdependent. A student who experiences VPS in a rich way is more likely
to consider program semantics when picking simulation steps (and more likely to harness any other
information source they use to the service of the overall goal of learning programming). Conversely, a
student who finds programming concepts useful for picking VPS steps is likelier to develop the view that
VPS is useful for learning about such concepts.

Encouraging reasoning about program semantics, in practice

The previous chapter has already outlined some pedagogical strategies for enriching students’
understandings of VPS by highlighting the conceptual content present in the visualization. We can now
extend this advice on the basis of the results we have presented in this chapter. Below, we give examples
of student–teacher and student–system interactions that could encourage and facilitate reasoning about
program semantics during VPS sessions.

Our categorization provides teachers and VPS system developers with an idea of the kinds of
information students use when making decisions. Teachers and systems can try to identify these categories
in students’ dialogue and actions. Identifying how a particular student (or pair of students) reasons can
then serve as a foundation for pedagogical guidance. Teachers should, when possible, engage students in
dialogue about how they reason as they choose VPS steps. The teacher may then try to lead the students
to reflect on the meaning of the program and how it relates to the visualization, and to help students see
that understanding the program and the visualization leads to the selection of the correct simulation step.
VPS systems could also aim for something similar by inviting or even requiring students to explore texts
that explain the behavior of the program and the meaning of the visual components. Reflective dialogue
on the visualization might also be encouraged by having the students work on VPS exercises in pairs.

Both teachers and VPS systems should strive to underline the difference between knowing conceptually
what the next step in the program’s execution is and knowing what the matching GUI operation is.
Students should be encouraged to reflect on the former, and the VPS system should be designed so that
if the simulation step is known, the GUI operation will be found easily and naturally. An alternative form
of VPS (compared to UUhistle) might even seek to eliminate the distinction entirely. The user would
specify what to do not by manipulating graphics but by choosing at each step a textual description of
what happens next in the notional machine, and the VPS system would then visualize the consequences.
Such an approach would have drawbacks, too, however (cf. Chapter 15).

Students can get into a lot of trouble by failing to question their assumptions about what the given
program does (see Section 18.2.3). Students may think they have already solved the problem of figuring

10We conjecture that following a given VPS procedure or mimicking an example animation, even without quite
understanding what one is doing, can sometimes be a useful part of a learning process. Practicing the procedure of program
tracing may eventually contribute towards a conceptual understanding of what one first learns to manipulate in a concrete
way (cf., e.g., Sfard, 1991). Nevertheless, a search for meaning should be a part of this process even during the concrete,
procedural stage.
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out what the program does or may take the solution for granted. When a student experiences difficulties
during VPS, the teacher or the VPS system may ask the student to specify what it is they are trying to
accomplish next. If the student is not sure, they should be guided to reflect on program semantics and
what they have learned about the notional machine. If they are trying to do the right thing but failing
to find the correct GUI operation, they can be advised about the GUI. If they are trying to do the wrong
thing, they should be invited to challenge their assumptions about program semantics.

Teachers and VPS systems should be open to the fact that students sometimes do not know what
they have done even after they have found the correct step. Systems could be designed so that they invite
and help the student to reflect also on the simulation steps that have already been completed.

Teachers should be alert for ineffective VPSing strategies. Superficially matching program text to visual
elements should be discouraged, as should trial and error. VPS systems could also try to heuristically
detect such behaviors and offer recommendations to students on the spot. Systems could also be designed
to make naïve trial and error even more difficult and unrewarding than it is in UUhistle, by increasing the
number of possible GUI operations, for instance.

Instructions and example animations should be designed so that when students use them to figure
out what to do during VPS, they are encouraged to reflect about programming content. Assignment
descriptions and other instructions should be phrased in programming terms. Where operational
instructions need to be given about what to drag or click, they should be linked to the conceptual content
of the visualization.11 Example animations should be annotated with texts that explain the meaning of
the animation. Similarly, textual feedback from the system should be conceptual so that it helps the
student to actively figure out the underlying problem rather than suggesting a quick fix. For instance,
UUhistle’s hint of “You created a variable with a wrong name.” (p. 306 above) may be an example of
poor feedback that does not address any deeper issues behind the student’s misstep but which the student
may nevertheless use to find the correct step without ever figuring out what the real problem was.

18.4.2 Teachers and VPS systems should be alert to the reasons for specific mistakes

Awareness of the kinds of mistakes students make during VPS can lead to better pedagogy. Some mistakes
may be indicative of significant programming misconceptions. Other mistakes may be caused simply by
lack of familiarity with the VPS system and ignorance of given instructions and examples.

Relating mistakes to misconceptions

It was suggested in the previous chapter that highlighting students’ misconceptions during VPS can be
one way of demonstrating to students how VPS can be helpful for learning programming. Moreover, VPS
can serve the teacher in uncovering misconceptions and addressing them.

The results in this chapter go some way towards showing that VPS has potential as a pedagogical
analysis tool. As they engage in VPS, students expose their understandings – and misunderstandings
– of programs and the notional machine. A teacher, researcher, or VPS system may analyze these
understandings for the purpose of helping that student or in order to gain insights into the learning of
programming more generally.

Teachers should get students to comment on their own mistakes and encourage them to look for the
reasons behind those mistakes. Teachers themselves, as they observe students working on VPS, should
consider whether students’ mistakes reflect known misconceptions or perhaps previously unknown ones.
Teachers may then react to suspected misconceptions with appropriate feedback. All of these tasks are
best performed by a human teacher, but a savvy VPS system can also react heuristically to mistakes with
feedback.

Teachers and computing education researchers should be alert to, and try to expand their
understanding of, how different mistakes in VPS may map to misconceptions. The work we have presented

11Our view here is in line with the recommendation of Ben-Ari and Yeshno (2006), who argue on the basis of their empirical
study that software should be documented for end users using an explicit conceptual model rather than (or in addition to)
task-oriented, minimalistic documentation. This advice seems particularly pertinent when it comes to a VPS system whose
purpose is to help users learn about the very conceptual model of a notional machine that the system itself is based on.
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in Section 18.2.4 is a step in this direction; many of the mistakes students make with parameter passing
in particular (Table 18.2) may well be related to misconceptions about programming concepts.

On ‘useless mistakes’ and the importance of program animations

Some VPS mistakes are not related to programming, but to failures to find the appropriate GUI operations
that match one’s intentions. In our study, almost all such mistakes that we could identify had to do with
list operations – that is, the new visual elements and simulation steps that the students did not have
experience with before.

One way to reduce such mistakes is to improve the usability of the system so that it becomes more
natural to use. Another important concern is to ensure that students prepare for VPS assignments. In our
data, the mistakes with list operations appeared to afflict especially that large minority of the students
who did not watch the program animation of lists in UUhistle. Some pairs only realized too late that they
would have benefited from watching the animation, after they had already fought their way through the
VPS assignment (see Section 18.2.3).

This result strengthens our belief that it can be useful to intersperse VPS tasks with program
animations that serve as worked-out example solutions to VPS assignments. Under most circumstances,
such animations should be viewed before doing a VPS exercise on the same topic. Furthermore,
students should not be trusted to watch such animations in advance if left to their own devices, without
encouragement and a clear incentive to do so. The animations should be presented as a prerequisite
for the VPS assignments – this could be enforced by the VPS system. Students might also get a small
amount of credit for watching the animations as an additional incentive.

Textual instructions are another way of helping students to find the correct GUI operations and to
understand the concepts involved. As we noted in Section 18.2.3, UUhistle v0.2 presented such instructions
at the beginning of the first VPS assignment, but most students promptly ignored them. Trying to force
students to read lengthy instructions at the beginning of a VPS assignment may not be worth the effort.
Instead, advice should be built into the system so that students can access it during the VPS activity in
small bits and in a timely manner as the need arises.

Advice from self-explanation studies

It is instructive to view our specific findings concerning VPS in the light of (what are at least intended to
be) generic findings from educational psychology.

VPS is a way of presenting example programs to students (Section 14.2). The literature has identified
learners’ ‘self-explanations’ of solutions as a substantial factor of the efficiency of examples. There exists
a sizable body of research on the use of examples and self-explanation (for reviews, see, e.g., Atkinson
et al., 2000; Mayer and Alexander, 2011); this work overlaps significantly with cognitive load research
(Section 4.5).

Learners self-explain – explain to themselves – examples in different ways of different quality.
Characteristics of good self-explanations of examples have been shown to be: referencing underlying
principles; explicit recognition of subgoals and their solutions; anticipation of future solution steps, and
critical metacognitive evaluation of one’s own understanding of the solutions presented. Unfortunately,
learners’ spontaneous self-explanations commonly lack these desirable characteristics (see, e.g., Chi et al.,
1989; VanLehn, 1996; Renkl, 1997; Pirolli and Recker, 1994).

In a potentially very important study, Renkl et al. (1998) found that spontaneous self-explanations of
examples are not as effective as ones produced after a short training period immediately prior to studying
the example, during which learners were requested to think aloud and received feedback on their self-
explanations from a teacher. This indicates that self-explanation can be taught with reasonable effort.
Self-explanation effects and the impact of training on them have also been documented in the context of
learning to program (Pirolli and Recker, 1994; Bielaczyc et al., 1995).

Example-based teaching should encourage the recognized good characteristics of self-explanation listed
above. Students can be trained in giving self-explanations of examples before they are left to study
examples on their own. The advice is consistent with what we have suggested above concerning VPS.
The effectiveness of VPS might be significantly boosted if students got personal feedback on think-aloud
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VPS work from a teacher near the start of CS1. A single short training session for all or most students
might be feasible even in a large-class scenario.

Our advice is also consistent with the related recommendation that the study of examples should
be combined with instructional guidance on the content of the examples (see, e.g., Renkl, 2002). Van
Merriënboer et al. (2003; van Merriënboer and Kirschner, 2007) recommend that general principles
– ‘the theory’ – are presented before a selection of assignments (such as worked-out examples) on a
topic (while also keeping the theory accessible to the student during the assignments). In the context
of VPS, training in the principles behind the visualization (the programming concepts) can be provided
by teachers or textbooks. Training might also take the form of short, narrated program animations
(videos). Researchers warn, however, that merely providing instructional explanations has limited impact
on example-based learning, and that eliciting self-explanations may be more important (Wittwer and
Renkl, 2010).

18.4.3 We have already incorporated some of our advice into UUhistle
The most recent version of UUhistle (presented in Chapter 13) is different in many ways than the early
prototype the students in this study used. The above pedagogical considerations have provided part of
the inspiration for some of the new features, in particular the following.

• The way UUhistle gives textual feedback and explains what happens during program execution have
been entirely revamped. The Info box in the lower left-hand corner was added to provide feedback
at each step of a VPS exercise and to engage students in ‘conversations’. The links in the Info box
allow the user to ask questions about what is happening and what they should do.

• Since the introduction of the Info box, long textual introductions to VPS assignments have become
redundant. Students can access textual explanations as the situation calls for it. Explanations of the
visualization and instructions on VPS are now an integrated part of UUhistle rather than separate
documents associated with particular assignments.

• Many of the links in the Info box appear in a context-dependent fashion based on simple heuristics.
They seek to address potential problems in students’ VPS work. Examples of links include:

– An “I have trouble making progress” link and an associated dialog (see Figure 13.13 on p. 207).
These appear if the user makes two or more consecutive mistakes while trying to get past a
specific point in the execution sequence, which may be an indication of a naïve trial-and-error
strategy (or a difficulty of some other sort). UUhistle tries to guide the learner to reflect on
the meaning of the program and question their understanding of it;

– The “What was wrong with that?” link which appears when UUhistle suspects it may know
the reason behind the user’s mistake, such as a misconception. The dialogs that the link leads
to give feedback tailored to the mistake (see Section 15.3);

– The “What did I just do?” link that invites the user to reflect on and learn about the meanings
of the GUI operations they perform, be they correct or incorrect;

– A link to a conceptual explanation of the stages of a function call, which in turn links to an
operational explanation of how to carry out each of the steps in UUhistle.

• Various small usability tweaks have been made here and there. The “What is this?” links (see
Section 13.1.3) allow users to explore the meaning of UUhistle’s visual elements, such as the list
operators that some of the students in this study confused with each other.

The ultimate VPS system could serve as an intelligent, automatic tutor that is sensitive to students’
needs. The features implemented so far in UUhistle are small, tentative steps in this general direction.
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Chapter 19

UUhistle Helps Students Learn about
What They Actively Simulate

We believe that doing just a single VPS exercise in UUhistle is more trouble than it is worth for
students, and long-term use of the system is needed. This belief is supported by the literature on
educational visualization. Similarly, studying the use of UUhistle longitudinally could provide researchers
with important insights into VPS.

A long-term study was unfeasible for practical reasons. What we were in a position to do, however,
was to check for quantifiable short-term improvement in program-reading ability. This chapter reports
that empirical work, which has been conducted by the author of the thesis with the help of Lauri Malmi,
Kimmo Kiiski, and Teemu Koskinen. We investigated the following question.

Does a short VPS session help produce short-term improvement in learners’ ability to predict
the behavior of given programs?

More specifically, we looked at two subquestions, using the VPS tool we had available in Spring 2010 (see
Section 16.4.2).

1. Does a short session of studying examples using UUhistle (v0.2) bring about greater short-term
improvement in students’ ability to predict program output than studying examples without a
visualization does?

2. Are there differences in the effectiveness of this treatment for different content?

Our first subquestion suggests an experimental setup, and indeed the way we formulated it is influenced
by the quantitative experimental tradition in educational psychology that seeks to measure and compare
learning in different groups. Section 19.1 below describes our research methods and experimental setup.
Section 19.2 presents the results of our experiment. In Section 19.3, we use qualitative data and a deeper
analysis of our test instrument to interpret the quantitative results and answer the second subquestion.
Section 19.4 summarizes our findings. In Section 19.5, we consider the implication of our study for the
further development of VPS and VPS-based pedagogy. Finally, an addendum in Section 19.6 comments
on the effects of VPS on time on task.

19.1 We set up an experimental study to measure short-term learning
We conducted a controlled experiment in which we used a pretest and a post-test to compare the short-
term performance improvement of UUhistle users and a control group after a short intervention.

The author of the thesis had the main responsibility for designing the research setup and doing the
analysis. Lauri Malmi participated by reviewing the work critically and giving feedback. Two research
assistants, Kimmo Kiiski and Teemu Koskinen, organized and supervised the data collection sessions,
following instructions from the author of the thesis.

None of the researchers were directly involved in the teaching of the CS1–Imp–Pyth course that the
student participants were taking. The two research assistants supervising the data collection sessions were
uninvolved in UUhistle’s development, but had familiarized themselves with the system.
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19.1.1 We recruited a large number of students from a CS1 course

As they participated in the experiment, the students were roughly seven weeks into the spring 2010 offering
of CS1–Imp–Pyth (see Section 16.4). They had volunteered to take part after reading an invitation on
the course web site.

The students received a fairly small number of assignment points for taking part. The session was
advertised (accurately, we believe) as a relatively easy way to gain the points – you would get them by
actively participating and would not have to pass any test. This is likely to have biased our sample towards
weaker students eager for ‘cheap points’; we deemed this to be acceptable.

Students did not know that the research concerned VPS. The invitation explained in general terms
that they would participate in a session in which they would practice the topics of the sixth exercise round,
and in which data would be collected for the purpose of research on learning programming.

Using an online registration form, each student selected the time they wanted to come to a computer-
equipped classroom to participate. A total of 18 sessions were held, with 198 students attending in total.
Each session was either a VPS session or a control session, as arbitrarily determined in advance by the
session supervisors. The students had no control over which group they belonged to, so the allocation
of students to groups was quasi-random. (It is possible that students’ schedules introduced some sort of
bias, but we are not aware of one and do not expect that any significant bias was created.)

19.1.2 A VPS group used UUhistle, others formed a control group

The sessions took place during the sixth and seventh weeks of CS1–Imp–Pyth. At this time, the main
topic the students were dealing with in the course assignments was Python lists. Lists and the associated
reference semantics were still new to most of the students: they had had a lecture on these topics (which
some had and some had not attended), and some of the students had already done one or more program-
writing exercises featuring lists when they participated in the experiment. None of the students had seen
any visualizations of lists in UUhistle before.

We first outline the overall structure of both kinds of sessions (VPS and control), then detail the
differences between them.

Session structure

The research assistant supervising the session asked the students to form self-selected pairs in which they
would work during the session. (The pairing was for research purposes: one of the goals of the sessions
was to collect the qualitative data analyzed in the previous chapter, and we wished to get the students to
discuss VPS with each other.) Where an odd number of students participated in a session, they formed
a group of three students. Late arrivals at a session worked alone. The non-pairs were excluded from the
data.

Each session had three phases. The first phase was a pretest consisting of four program-reading
assignments. The second phase was the treatment: VPS or control, depending on the session. The third
phase was a post-test in which the students were asked to revisit the answers they had given in the pretest.

We wished the sessions to resemble the sort of low-guidance, independent-study situation that large-
class courses like CS1–Imp–Pyth routinely place students in. We did not try to provide the students
with hands-on guidance from a tutor, however pedagogically justifiable that might have been. Instead,
we allowed the participants great freedom in deciding how to approach the example programs they were
presented with, much as they would have when encountering a program example or visualization in course
materials or a textbook. Specifically:

• the students were free to choose how much time they wished to spend on each phase, and in total.
We had allocated a generous amount of time (1 hour 45 minutes) for each session so that (nearly)
everyone would have as much time to work on the problems as they wished to spend.

• The students were free to use (or not to use) any learning resources they wished, including lecture
notes, course handouts, and other online resources.
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• The supervising research assistant did not usually help the students with the problems. The students
were asked to try to work on the problems independently but could ask for help with the second-
phase assignments if they got really stuck. (Only a small minority of the pairs asked for help.)

• The supervising research assistant did, however, keep an eye on the pairs’ progress. In the rare cases
where it seemed as if time might run out because the students were stuck, the assistant suggested
that they move on to the next phase.

We captured the students’ dialogues and computer screens on video. The students were informed of this
and all agreed to be recorded. The recording was done primarily for the purpose of the qualitative study
presented in the previous chapter, but turned out to be also useful for interpreting our quantitative results;
see below.

VPS group: assignments in UUhistle

The VPS group were given three program visualizations within UUhistle v0.2:

• a program animation featuring lists. The animation was prefaced by a textual line-by-line explanation
of how the code works;

• a VPS assignment featuring lists and reference semantics. The assignment was prefaced by
instructions on how to deal with lists and references in a VPS assignment;

• another VPS assignment featuring lists, references, and function calls.

The code for the three programs appears in Appendix C. At the risk of demotivating the students, we had
made the programs ‘unplanlike’ (they did not match any useful overall goal) so as to require the students
to trace the code at a lower level of abstraction. In this early study, we wished to investigate the use of
VPS in its ‘pure form’, and did not include any info dialogs or popup questions in the VPS assignments.

The students were asked to do the VPS assignments. The program animation was suggested to them
as a useful resource which they could make use of.

As VPS has a learning curve, the research assistant asked the students whether they had done VPS
before during the course. The few pairs in which neither had done so were given the control group task
instead and were excluded from our data.

Control group: determine program output without visualization tools

Textbooks and lectures in CS1–Imp–Pyth and elsewhere present example programs for students to
look at, mentally trace, and learn from. The student is expected to make the necessary connections
between program code, execution-time behavior, and output. We used one form of such tracing-without-
visualization activity as the control condition in our experiment.1 The control group were given the same
three Python programs as the VPS group, and similar tasks to do, but no visualizations:

• a program featuring lists. This program was accompanied by a textual line-by-line explanation of
how the code works;

• a program-reading assignment in which the students were asked to look at a given program and
figure out what it does and why it produces the given output. The program featured lists and
reference semantics;

• another similar program-reading assignment featuring lists, references, and function calls.

To avoid bias between the groups, pairs in which neither student had done VPS were also excluded from
the control group data. Our results do have the overall bias that all the pairs featured at least one student
who had done at least one VPS assignment (as a large majority of CS1–Imp–Pyth students had).

1Our intention at this stage was to do a preliminary investigation exploring whether VPS was a feasible approach at all,
not to test specific hypotheses related to different modes of visualization use (cf. Section 11.2).
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19.1.3 We investigated the improvement between a pretest and a post-test
The pretest consisted of four program-reading assignments featuring lists, reference semantics, and
function calls in different combinations. The students were asked to determine the output of the programs.
These programs, too, were decontextualized and ‘unplanlike’.

The post-test was identical to the pretest in that it featured the same four programs and the students
had to revisit their earlier answers. This setup was chosen to ensure that the pretest and the post-test
were on exactly the same topics.

The program code of the assignments appears in Appendix C.

Strict assessment: ‘perfect’ answers required

A program-reading assessment can be assessed in different ways, some of which involve difficult judgment
calls of answer quality and challenging concerns of interrater reliability. We wished to be as impartial as
possible and avoid such problems. We therefore assessed the pretest and post-test answers strictly, sorting
them into ‘perfect’ ones and ‘non-perfect’ ones. We considered a ‘perfect’ answer to be one in which
the students had correctly given all the numbers and strings output by the program, in the correct order;
mistakes in formatting (e.g., bracketing, whitespace) we ignored.

Measuring improvement between tests

To compare the two groups, we checked whether each pair had produced a ‘non-perfect’ answer in the
pretest but a ‘perfect’ one in the post-test. This allowed us to compare the distribution of improved and
non-improved answers in both populations.

Our data was therefore ordinal and called for non-parametric testing. We used two-tailed Mann–
Whitney U tests to compare the groups’ answers to each question separately. For each of the four tests,
the ‘maxed-out’ pairs who had already answered the corresponding question correctly in the pretest were
ignored, as we were only interested in those students who did not already know the answers to begin with.

We used SPSS Statistics, version 19.0.0, for the statistical tests presented in this chapter.

19.2 We got different results for different test items

Two pairs did not complete the post-test and were not included in the following analysis.2 This left us
with 86 pairs (172 of the 198 students who came to the sessions), 39 in the VPS group and 47 in the
control group. As noted, for each question, only those student pairs were considered who did not have a
‘perfect’ answer to the pretest.

We now present our results concerning the number of student pairs who improved their answers from
‘non-perfect’ to ‘perfect’.

Question 1 dealt with list operations and reference semantics. We found no statistically significant
difference between the groups (Mann–Whitney U test, two-tailed, p = 0.477 > 0.05). Question 2 dealt
with list operations and function calls (including nested calls). In this question, we found a significant
difference: the VPS group outperformed the control group (p = 0.023 < 0.05). Question 3 featured only
a simple function call with list references as parameters; no statistically significant difference was found
(p = 0.478 > 0.05). Question 4 was about list operations and reference semantics, and again did not
produce a significant difference (p = 0.866 > 0.05).

Table 19.1 summarizes these findings and details the U values and group sizes for each question. From
Table 19.1 it can be seen that for Questions 1, 2, and 4, most students in both groups failed to produce
a ‘perfect’ answer in either the pretest or the post-test. Question 3 most students in both groups already
got right in the pretest (and were consequently excluded from the comparison between the groups). The
one significant difference we found between the VPS group and the control group concerns Question 2,
in which about 28% of the VPS group improved their answer to a ‘perfect’ one, while the control group
showed no such improvement.

2One of the two pairs decided they could not “be bothered” to do the post-test. The other pair decided that their time
would be better spent going back to thinking about the VPS tasks as “at least from UUhistle we learned something”.
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Table 19.1: Improvement from ‘non-perfect’ to ‘perfect’ answers between pretest and post-test. The
pairs who had a ‘perfect’ pretest answer to a question are excluded from that analysis.

VPS group (39 pairs) Control group (47 pairs)

Question pairs improved
to ‘perfect’

did not
im-
prove

pairs improved
to ‘perfect’

did not
im-
prove

Mann-
Whitney U

p

Q1: list operations,
reference semantics

37 3 34 46 2 44 883.0 0.477

Q2: list operations,
(nested) function calls

29 8 21 33 2 31 581.5 0.023

Q3: a simple function
call

15 4 11 17 4 13 131.5 0.840

Q4: list operations,
function calls,
reference semantics

39 2 37 46 2 44 904.0 0.866

19.3 Observations of students’ behavior help us interpret our results
What do our results mean as a whole?

Taken by itself, the low p value for Question 2 suggests that students learned better about the topics
relevant to that question. Should we conclude that VPS in UUhistle v0.2 appears to improve learning in
the short term when it comes to certain topics but not otherwise? Or is the low p value from Question
2 down to chance, an aberration within a big picture that suggests that the UUhistle sessions were not
helpful to the students?

We turned to our qualitative data – the video recordings and their analysis from the previous chapter
– to help us interpret our results.

To foreshadow what is coming, we believe that the most interesting aspect of our results concerns
the contrast between learning about list operations and function calls on the one hand – which the VPS
session seemed to help with – and, on the other, learning about references – which our VPS treatment
did not help with. Before we get to that, however, we will comment on two other aspects of our results:
the low number of ‘perfect’ answers and the flaws in the design of Question 3.

Few ‘perfect’ answers overall

The fact that few pairs from either group produced ‘perfect’ answers to most of the questions is not very
surprising. The fact that students struggle with tracing code even after passing CS1 is well established
in the literature (see Chapter 3), and these students were only a few weeks into the course. Our decision
to look for ‘perfect’ answers means that our numbers were always going to fail to capture such learning
that took place in both groups but did not lead to the ability to trace the programs entirely correctly in
the post-test. (That is, we must not conclude that everyone who failed to produce a ‘perfect’ answer also
failed to learn anything.)

That said, we expected the number of ‘perfect’ answers from both groups to be at least somewhat
higher. We list below some other factors that may have reduced the effectiveness of learning within both
kinds of sessions.

• The short duration of the interventions may have been insufficient to produce much improvement.

• The sessions were not designed with optimal pedagogy as the foremost criterion. Instead, they were
set up, for research purposes, to allow students freedom in their learning efforts, with little or no
help from human tutors.

• Asking the students to modify their earlier answers in the post-test was also a pedagogically
motivated choice, and was probably a bad idea. In the case of many pairs it was clear that they
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did not apply themselves to the post-test, or failed to actively question their earlier thinking on the
same problem.

• Many students seemed eager just to finish the session and get the assignment points, rather than
take part wholeheartedly. The fact that we actively advertised the sessions as a sure way to get
points without having to pass a test probably exacerbated the problem.

• The same advertising probably introduced a bias in our student population towards weaker and less
motivated students.

• Neither the VPS assignments nor the corresponding control group assignments had been designed
specifically to highlight key issues (because of our decision to investigate VPS in its ‘pure form’).
Students had to figure out for themselves which were the key moments in each program’s execution.

• The artificial, decontextualized nature of the toy programs used will have demotivated some
students. (There is some explicit commentary on this in our recordings.)

• The way the assignments were introduced to the students probably failed to emphasize sufficiently
the usefulness of reading all the instructions and looking at the given program example. (As noted
in the previous chapter, many students failed to study the example and few read instructions, even
in part.)

• The programs we used may simply have been too difficult for these students at this time.

Q3 – the flawed third question

In hindsight, we designed Question 3 very poorly. Even a shaky understanding of the constructs used in
the program suggests that the program prints out the contents of a list. Given that only two lists are
initialized in the code, the question is highly amenable to guessing and accidental ‘perfect’ answers based
on flawed reasoning. Such phenomena may have confounded our test results, and are probably a part of
the reason why we got so many ‘perfect’ answers to Question 3 from pairs who were not able to answer
any of the other questions.

Question 3 was also simply easier than the other questions. Some of the things that one does not
need to know in order to produce a correct answer to the question are:

• evaluation order within function call expressions: how the value of a composite expression evaluated
first (such as another function call or a list initializer) may then serve as a parameter value to a
function call;

• variable scope: variables with the same name (but different values) in different scopes, and
• list operations: index-based reading and writing.

Answering Question 2 correctly, however, did require an understanding of all these topics. . .

Q2 – list operations and function calls: a positive result

The VPS group outperformed the control group in Question 2. A closer look at the questions, combined
with the results from the qualitative study that we presented in the previous chapter, gives us an insight
into what made Question 2 different for the students.

As noted above, Question 2 involved function calls, nested expression evaluation, differently scoped
parameters with the same name, and list operations. Our analysis in Section 18.2.4 suggests that these
topics are the ones that students had the most difficulty with during the VPS sessions:

• List operations were a new topic to the students and applying them caused difficulties.

• Parameter passing was a problematic topic. The students had trouble understanding which
parameter variables to create and where their values came from. Some of these struggles were:
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– attempts to make variables get their values from their namesakes in another frame (rather
than from the calling expression);

– being confused by parameter passing when values did not come from a variable in the calling
context but from another kind of expression nested within the function call (such as list
initialization);

– failures to realize that (or understand why) there can be two variables of the same name in
different scopes;

– attempts to resolve invoke a routine before evaluating its parameters when the parameters
were complex.

The students’ struggles reflect the requirements imposed on them by the particular VPS assignment.
Dealing with parameter values in multiple frames, returning values, forming and evaluating nested
expressions in the correct order, and setting up list operations are all aspects of program execution
that UUhistle’s VPS assignments require students to do themselves. To make progress and pass the
assignments, the students had to find the operations matching these steps and carry them out in the
correct order.

As an additional piece of evidence, we can consider the incorrect answers to Question 2 that students
produced. The majority of these were either missing one or both of the last two lines of output, or claimed
that the program crashed because of list indexing issues. Even though we are unable to conclusively show
the precise reasons behind these incorrect answers, it seems clear that misunderstandings and careless
thinking about nested function calls and lists are behind at least some of them.

When we take our quantitative and qualitative results together, they appear to indicate a three-way
match between 1) the programming concepts that students have to consider when picking simulation
steps, 2) the difficulties that students experience during VPS, and 3) the things students learn the most
about during VPS. While we cannot prove a causal relationship, it seems reasonable to conjecture that
the students of the VPS group learned better about the topics of Question 2 because those were the
things that they had to struggle to address during the VPS task.

Q1, Q4 – reference semantics: no worries, no learning

In contrast with the topics of Question 2, our results suggest that the students did not learn very much
about references. Some of the students surely did learn that lists are associated with references, and
that such references can be assigned to variables and otherwise used in familiar ways. However, the vast
majority of the students failed to learn the main point: multiple references can point at the same object
(list) and modifying the object through any one of the references has an effect on all use of the same
object. Questions 1 and 4 were effectively impossible to give a ‘perfect’ answer to without grasping this
point. Students’ incorrect answers to the questions typically suggested they held the misconception that
assignment creates copies of lists. (Other kinds of mistakes were also present, especially in the more
complex Question 4, which many pairs got completely entangled with.)

Again, our qualitative data on what the students did during VPS helps us interpret this result.3
Reference semantics are conspicuous by their absence from the list of trouble spots of students’ VPS

work in Section 18.2.4. Indeed, virtually none of the students we observed appeared to have any trouble
with creating a copy of a reference to store in another variable, or with using a reference for familiar
purposes such as printing.

Why didn’t they? Let us take an example. Here is a part of the code of the first VPS assignment,
which was intended to teach about reference semantics.

������ � �	
 �
 	
 �����

����� � ������

�������	� � ���

����� ������

3We learned various methodological lessons while conducting this research. One was that we should have put more effort
into the design of our test instruments and been more explicit from the start about what exactly each question was intended
to measure. Another was the concretization of how a mix of qualitative and quantitative analysis can yield interesting insights.
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And here is a passage that illustrates a fairly typical way of working on this code in VPS:

Pair 33 have just reached the line ����� � ��	
��.
Kate33: Then ‘third’. . . ummm. . . we make a new one again. And then I do this. Creates the
variable and assigns the reference to it.
John33: Yup.
Kate33: And then number three from ‘second’.
John33: We take the third value. . . or the third term.
Kate33: Carries out the list assignment. Yeah. Then we print again. . .
John33: Small laugh.
Kate33: In a sarcastic tone: Exciting! Carries out the first ����� statement. Okay.
John33: All right. . . and then again, the ‘third’...
Kate33: So. . . Carries out the second ����� statement.
John33: [That was] the ‘third’ value.
Kate33: And again we change them.
John33: ‘second’ is changed to ‘third’.
Kate33: Yeah. . . Moves the cursor around the operators area. Oh yeah, there isn’t an equals
sign here. Or are we supposed to just drag this over here? Assigns from ��	
�� into third.
No. It can’t be this one either, right? Tries using the assign-to-index operator. No, did I just
do it the wrong way around now?
John33: ‘third’. . .
Kate33: Assigns from ����� into ��	
��. That’s how it goes, yeah.
John33: Yeah.
Kate33: And then another ‘print’. Yay. Executes the last ����� statement. The end of the
program is reached and the assignment is complete.
John33: Yes! Ooh, yeah!
Kate33: Yesss! Next example. Opens the second VPS assignment.

At no point during the VPS session did Pair 33 pay any attention to the fact that two references point
at a single list in the heap. At no point did they pay any attention to how this is demonstrated by the
program output (or indeed pay attention to the output at all). Nevertheless, they selected each execution
step correctly and eventually completed the exercise without great trouble.

At no point did the VPS exercise require students to understand reference semantics in order to find
the correct simulation step. The students had no trouble with references not because they understood
the concept well but because there was no particular reason for them to pay attention to it. Most of the
students we observed simply ignored the topic entirely or took it for granted.

In the light of the above, and of existing research supporting active learning, it seems reasonable to
conclude that a significant part of the reason why VPS did not help students learn much about reference
semantics lies in how the VPS assignments did not require them to use their knowledge of the topic.

Other factors may also have contributed to students’ lack of attention to references. The visualization
of references in UUhistle v0.2 (see Figure 16.1 on p. 262) is not very attention-grabbing. The toylike
nature of the example programs may have made program output (which highlights the impact of reference
semantics) less interesting for the students. In a single case (described in Section 18.2.3 above), we saw
a pair consciously decide against believing the system’s visualization of references.

Despite the problems, some students did pay attention to references. Pair 6, whose work on the same
code is described on page 307, is one of these rare cases.

19.4 VPS helps with – and only with – what learners focus on
Let us try to summarize our findings. Our experimental study enables us to answer the question: “Does
VPS in UUhistle v0.2 work?” with a cautious “Yes, but. . . ” The system appeared to help students learn
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to predict program behaviors better than merely studying the examples without the help of a visualization
did, but the help did not apply equally to all kinds of programs. Our study highlights the importance of
the second of our research questions – “Are there differences in the effectiveness of this treatment for
different content?” – and suggests that the way a VPS assignment engages (or fails to engage) students
with their intended object of learning is of crucial importance.

In our study, VPS helped the students learn about what they themselves had to think about to pick
the correct simulation steps. It did not help them to learn about reference semantics, a topic passively
present in the VPS exercises but not central to the students’ task. That is, the students appear to have
learned about precisely what the requirements of the VPS activity made focal, and not much else.

This interpretation of the results is both intuitively appealing and a good fit with the existing literature.
The human tendency to focus – for better or worse – one’s visual attention and mental efforts exclusively
on task-related issues is well documented in the psychological and educational literature.4 Not only did
the VPS task not appear to help students notice the way multiple references may point at the same object,
and the consequences of this fact, but it is also quite possible that a focus on finding the correct VPS
step actually detracted from the attention students paid to the relationships between references and the
objects they point to.

Our results show only a modest increase in collective ability to deal with Question 2 effected by
the VPS treatment. When reading the results, however, we must realize that as many students make
limited progress during an entire semester of CS1, we cannot expect immense gains from a single very
short session. The results are also likely to have been affected by some of the specific features of our
experimental setup, as discussed at the beginning of Section 19.3. In any case, the most significant
outcome from this study lies, we believe, not in measuring how much of an improvement an experimental
session with a VPS prototype produced, but in the insights the results give for the development of better
variants of VPS and educational software visualization in general.

Our results must be interpreted cautiously. Our study suggests that VPS is better than the alternative
of studying given examples without visualization, but we cannot claim an improvement to other alternative
treatments that VPS might have been compared against, including other forms of program visualization
and how-to-write-it guidance. Having only investigated the short-term effects of a few VPS assignments
given in the middle of CS1, we also cannot comment on how VPS impacts development of students
view of programs overall during the very first weeks their programming studies. Furthermore, both our
experimental and control conditions were low on tutor guidance, to match the independent work setting
of the CS1 course we studied. VPS with more tutor guidance might work differently but would of course
have to be judged against a different control condition.

Ultimately, the value of VPS is determined by its effects on learning programming as a whole and in
the long term. Our short experiment is only a small step towards better understanding the educational
impact of interactive program visualization.

19.5 The study suggests that VPS works, but should be improved
We are reasonably satisfied with the impact of VPS in our study. Even though we used an early prototype,
and although the use of UUhistle in the course had overall been more ‘strapped-on’ than integrated with
the other teaching, we observed a positive short-term transfer effect from a short VPS session.

Even so, our study clearly indicates that we must look at ways of improving VPS and its implementation
in software systems. In particular, our study has highlighted the need for extreme care in the design of
VPS assignments. In order for VPS to work, the system and assignment designers must consider each
interaction that the students are expected to make and the degree to which those interactions – and not
the other content of the visualization – match the intended learning goals. Otherwise, students may end
up performing trivial or inapposite operations that do not teach them what was intended.

4For example, Simons and Chabris (1999) document the extent of our ‘inattentional blindness’ to anything other than what
we are currently absorbed in, even if it is spatially close to what we are focusing on. Suthers and Hundhausen (2003) showed
that having people construct a particular sort of visualization for a collaborative task led them to focus their knowledge-
building discourse on exactly those aspects that the visualization made relevant. Marton and Booth (1997) reviewed studies
that indicate how presenting students with questions about a text in advance led them to focus exclusively on what seemed
to be immediately relevant to answering the questions.
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The previous chapters have already presented pedagogical suggestions for improving VPS and its use
in teaching in general. We extend this advice below as we consider, by way of example, how to teach
better about reference semantics in a VPS context.

Reference semantics: two general observations

Before we present concrete suggestions for improving VPS, we have two general points to make regarding
how reference semantics relate to VPS exercises.

First, in VPS, the student takes on the role of a notional machine. However, as the notional machine
(or a concrete runtime) makes copies of reference values and as it dereferences them, it is not concerned
with which other references may point at the same data, and does not access those other references. This
aspect of reference semantics is therefore not a natural part of the decision-making process of VPS.

Our second, related point concerns the degree of learner engagement with a visualization. As described
in Section 13.6, UUhistle’s VPS exercises seek to engage students on the applying level of the 2DET
engagement taxonomy: the students apply a given visualization to show what happens within the notional
machine. However, when it comes to the impact of reference semantics on program behavior (as in the
program on page 330 above), the VPS exercises do no more than a program animation does. The user
does not directly simulate the carry-on effects of modifying an object on multiple sections of code, they
only observe those effects happening by paying attention to the visualization and the program output (if
indeed they do, that is). With respect to this topic, a VPS exercise is in fact not applying at all but
merely controlled viewing with a complex user interface that draws attention to itself.

Drawing attention to references

For students to learn better about reference semantics in a VPS context, or program visualization more
generally, two kinds of improvements may be useful. First, and perhaps more importantly, assignments
should require students to engage with the topic on a level higher than controlled viewing. Second, VPS
systems and assignments should be designed so that they seek to draw students’ attention to the impact
of references on program behavior.

What follows is a list of specific techniques that might be used for these purposes. Some of them
concern references in particular, while others are more generic.

• Explanatory materials could be embedded into VPS exercises to draw students’ attention to
important issues and avoid key execution steps from getting lost in the crowd. For instance, a
popup dialog or further info link might appear to explain how an object being modified through
another reference has affected an output.

• Similarly, popup questions and hybrid assignments in which students only simulate a crucial section
of code could highlight important points and require students to engage with them. For instance,
students might be asked to specify how many objects have been created and how many references
point to each at a given moment in time, or to explain (by selecting from multiple choices) why the
two lines of output they just produced were identical.

• Specifying the output of a ����� statement could be made a part of the student’s task (instead of
it working as a black box).

• Although the machine is not concerned with keeping track of which references point to an object,
it may be concerned with how many there are. A different kind of VPS assignment might involve
reference-counting-based garbage collection.

• Various tricks could be employed to draw visual attention to references. For instance, arrows can
be used in various ways to highlight even references that are not directly involved in the current
operation, although care must be taken to avoid visual clutter. Having program output glide into
the I/O console might help to get students to notice it. Different forms of highlight could be used
to signal about changes in memory during the previous execution step.
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• The use of programs with a domain familiar to students and/or with a clearly defined purpose
(as opposed to arbitrary manipulations on lists of integers) could help draw students’ attention to
program output and the way reference semantics affect it.

UUhistle supports the use of popup dialogs and hybrid assignments (see Chapter 13). The newer versions
also feature a number of additions (which v0.2 did not have) that seek to help the student notice the
importance of references. These include improved visualization of references (Figure 13.1, p. 194), better
tooltips, and context-sensitive links in the Info box (e.g., Figure 13.4, p. 198). It remains to be judged
whether any of these gentle, unintrusive measures have a tangible impact. The way forward may lie in
requiring students to engage more with visualizations of references.

19.6 Addendum: VPS helped by increasing time on task
Time on task is a significant factor in any pedagogical technique, with software visualization being no
exception. One of the problems with example-based learning is that students may not apply the necessary
attention to (and spend the necessary time with) the examples, especially in courses such as CS1–Imp–
Pyth where all attendance and participation is voluntary. One of the hypothesized effects of VPS (see
Chapter 14) is that it increases students’ time on task as they study program examples, compared to merely
giving students example programs to study from or to other, more passive uses of program visualization.
This is because VPS requires the students to take a detailed look at programs that is assessed at each
step by the VPS system.

Beyond our main research questions, our experimental setup allowed us to explore the effect of VPS on
time on task. Our sessions allowed students to choose freely how much time to spend on the intervention
between the pretest and the post-test. From our session recordings, we checked the length of this interval
for each pair (rounding the start and end times to the nearest minute, and computing the difference).

The VPS group used a mean time of 28.3 minutes (median 25.0, standard deviation 13.9). The
control group used a mean time of 15.5 minutes (median 14.0, standard deviation 5.67). The difference
between the groups is statistically very significant (independent-samples t-test, N = 88, t(51.6) = 5.56,
p ≈ 0.000, equal variances not assumed).5

Our result supports the notion that VPS leads students to spend more time and cognitive effort on
the visualization and/or the example program. We conjecture that this increased time spent explains in
part the better learning in the VPS group.

Time on task is, of course, not a goal in itself, but must be considered in terms of bang for buck
compared to alternative pedagogies. Further study is needed to better evaluate the relationship between
improvements in learning outcome through VPS and time on task.

5The data was not normally distributed, and had a high kurtosis of 9.38. However, given the high sample size, a t-test
was appropriate.
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Chapter 20

The Students Liked It

Well, more or less.
Ideally, learning is both fun and effective. However, student opinions are a notoriously treacherous

measure of the effectiveness of a pedagogy. Many designers of educational SVs, for instance, have
ruefully observed that students generally respond to graphical representations of software by saying that
they “liked” the visualization or that it “was good”, yet it is much less clear whether those visualizations
have resulted in significant learning gains.

People like it when there is clarity and certainty, but clarity and certainty are sometimes the result
of failing to leave one’s comfort zone. Meaningful learning is often troublesome and discomforting as
it requires the learner to challenge their existing ways of thinking (see, e.g., Chapter 9 on threshold
concepts). Sometimes, it is the discomfited learner who has made more progress than the one who “likes
it”. Negative correlations have been found between student enjoyment of various teaching methods and
learning achievement (Clark, 1982). Learners’ assessments of what they themselves know are known to
be unreliable (Kruger and Dunning, 1999).

As long as one is aware of these caveats, student feedback can be a great source of information for the
educationalist. Students’ opinions can highlight the strengths and weaknesses of a pedagogical approach
and suggest improvements. Affective factors are important and affect students’ motivation. Even if
students liking a pedagogy does not guarantee effectiveness, or their disliking it mean the approach is a
failure, it is important to explore and reflect on the reasons behind students’ responses. Making everyone
have fun all the time as they learn is not possible, but unnecessary problems should be addressed.

In this chapter, we review feedback on UUhistle assignments from CS1 students in order to explore
the research question:

How do students react to the use of UUhistle in CS1 (and why)?

Beyond studying students’ emotional response to UUhistle, our review of course feedback serves a
triangulatory role as a supplement to the studies in the previous chapters.

The feedback review was conducted by the author of the thesis with the help of Lauri Malmi as a
critical discussant. The data comes from the course ‘CS1–Imp–Pyth’ described in Section 16.4.

The chapter consists of two sections: in Section 20.1, we present our review, and in Section 20.2 we
consider the implications of our findings.

20.1 CS1 students answered a feedback survey
Near the end of the spring term, CS1–Imp–Pyth students are invited to answer an extensive feedback
survey. Participation is voluntary, but students get a small number of assignment points for taking part.
Recently, the survey has featured several multiple-choice and open-ended questions about the UUhistle
assignments.

Three points concerning the survey need to be made. First, due to the timing of the survey, students
who have dropped out tend not to answer, which introduces a bias to the results. Second, the questions
in the survey were about the program-reading assignments in UUhistle in general, including both the
program animations and the VPS assignments. The results below are a response to the use of UUhistle
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in the course more generally, not only to VPS. Third, not all students answered all the questions in the
survey; the questions on UUhistle were probably only answered by those respondents who had done at
least some of the UUhistle assignments (most, but not all did; see Section 16.4). The opinions of those
students who chose not to do the UUhistle assignments at all (or perhaps failed to notice their existence)
are therefore probably not well represented in the results below.

20.1.1 The response to UUhistle was mixed, but more positive than negative
Figure 20.1 presents the distributions of students’ answers to six UUhistle-related multiple-choice
questions. These results are from the same spring 2010 offering as the studies in the previous chapters,
detailed in Section 16.4. (The answers to another survey in spring 2011 followed a similar pattern.)
The other CS1 offerings in which UUhistle’s VPS assignments have been used did not have a directly
comparable survey – more on those courses below.

Most students rated UUhistle’s usability positively (Figure 20.1a).
Students’ assessments of statements of the form “The UUhistle assignments helped me [with X]” (b

through e in Figure 20.1) were mixed. Many agreed with each statement, while many others disagreed
with it. Most students agreed at least somewhat that UUhistle helped them learn about the execution
order of programs (b). Students were somewhat less convinced that UUhistle had helped them learn
about computer behavior (c) or to understand program code outside the system (d). Less than half of
the students agreed with the claim that UUhistle helped them write programs of their own (e).

The survey asked students to choose a statement that corresponds to their idea of how suitable
UUhistle is for the course, in principle and in its present incarnation. The distribution of answers (f)
again indicates that there is a spread of opinions, with no single dominant view. The majority of students
thought UUhistle is useful, at least in principle. However, many felt that significant improvements to the
system or assignments would nevertheless be appropriate.

20.1.2 Open-ended feedback highlights strengths and weaknesses
We now review the answers from students’ answers to open-ended feedback questions in course-end
surveys. The quotes below come from the CS1–Imp–Pyth offerings in the springs of 2010 and 2011, and
from similar CS1s offered as self-study courses during the summer months of the same years. In the
surveys, students were asked to “describe, in a concrete way, something that you learned in UUhistle”,
to comment on the pros and cons of UUhistle, and to suggest improvements. Our data also incorporates
some open-ended feedback voluntarily sent by students as they were submitting an assignment.

Let us set the scene with a selection of quotes that illustrates the broad spread of opinions and
emotions within the student population. We will then comment on salient themes we identified within
the open-ended responses.

It was easy to use, the assignments were nice and since it was useful to do them (I learned
something new and started to understand coding a bit better), my motivation to spend time
on the assignments grew. I’d have liked to have assignments about every topic on the course.
I also did all the voluntary bonus assignments, because it was fun!
[I learned:] Everything! Sure, I learned a bit at the lectures, “a-ha, that’s how you read the
code”, but in UUhistle I SAW that “a-ha, this is how the code really works”! When you know
perfectly what order the computer reads your code in, it’s easy to write, too! Even though
many of my friends dissed UUhistle, for me it was the best thing in the course. Don’t drop it!
THAAANK YOOOU! I had never before been interested in programming, so I know next to
nothing about it. Now I have got the feeling that I too have been taken into consideration in
this course, and they’ve managed to make a proper beginner-friendly example so that I too will
understand.
With the help of UUhistle, you got to understand the logic of the coding language, which helped
you build your own programs. A concrete example is better than a hundred lectures about the
topic.

336



Figure 20.1: Students’ answers to multiple-choice questions in a feedback survey. Each of these questions
also had a “no comment” option; those answers – and blank answers – are not included.
The N values indicate the number of people who answered one of the other options shown.

337



Good both as an idea and in functionality. Definitely supports learning if you put thought into
doing the assignments. Occasionally there was too much repetition in the programs and the
programs weren’t always about meaningful/sensible topics.
Even though this wasn’t my first programming course, only through the UUhistle assignments
did I really understand how and why even the simple actions that you program work.
UUhistle is, for sure, useful to people with no experience of coding at all. Since this wasn’t
my first coding course, the UUhistle assignments were a bit annoying. Maybe make UUhistle
voluntary somehow, or something?
A bit unclear here and there, but nevertheless a nice way to get to know a new subject.
A good idea and would be a wonderful learning support, but often remained somehow distant
and didn’t manage to really clarify things all that much.
[I learned:] Nothing, really. An annoying clickfest and I usually got what a piece of code does
without its help.
It’s hard to comprehend something like this, where you do nothing sensible! No more of this!
I can’t think of any suggestions for improvement, but I thought that programming itself was
easier than using UUhistle, even though many of my friends said that UUhistle was really
useful. Sometimes I got stuck in a dead end in UUhistle and couldn’t figure what to do and the
instructions didn’t help. The only suggestion for improvement that I can think of is to improve
the instructions that you get, especially while the program is running; the instructions at the
beginnings of assignments were actually quite good.
You learn to code by writing code, not by dragging boxes across the screen.
[I learned:] How much something can get on your nerves.
Absolutely awful crap, I hope I never have to have anything more to do with the system in
question.
A good psychological exercise, doing the assignments tests your ability to tolerate something
that’s fucking maddening.

Learning about general topics: execution order and a new way of thinking

Dozens of students singled out the execution order of programs as something they had learned about in
UUhistle. Here are a couple of typical examples:

Especially the order in which different instructions are executed (for example in function calls)
was greatly clarified thanks to UUhistle.
The order that things get done in within the computer became more tangible.

Another popular theme was that UUhistle had helped bring about a new perspective on programs. Many
students attributed to UUhistle a newfound understanding of the computer’s ‘way of thinking’ and/or of
program execution. For instance:

[I learned:] The “way of thinking” of the computer or its logic.
[I learned:] Perhaps that everything really does advance only step by step and not predictively
somehow.
I learned to understand “the logic of Python”, I mean, what the program does and in what
order and so on.
UUhistle taught me how the computer “thinks”. My understanding at least was greatly increased
by seeing in a concrete way how a program works (how the machine interprets the code). For
instance, the calling of functions and object-oriented programming were much clarified through
UUhistle.
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It clarified the material that we had to learn about. It made you think “inside out”.
In UUhistle, I learned about how programs work. I learned how information flows within
“programs”. Concepts like "variable" and "function" got partially new meanings through
UUhistle.
[I learned:] Computer thinking doesn’t work like mine.

The prominence of these two kinds of answers in the survey results may have been influenced by the
presence of the multiple-choice questions of Figure 20.1 in the spring course questionnaires. However,
those questions were not present in the summer course surveys and the same kinds of answers were
nevertheless common there too.

Learning about specific topics: functions and objects

Students brought up various specific topics as ones that the UUhistle assignments had helped them learn
about. Two answers were markedly more common than the others: functions and objects. A few examples
for each topic are given below.

Only with the help of UUhistle did I get how to use functions.
[I learned:] The execution order and hierarchy of functions, because you don’t necessarily see
that when you execute the code.
Functions spring to mind first, starting values [parameters] and return values, and maybe loops.
The True function and the False function [sic] and the use of functions in general, because in
the assignments you had to jump backwards again and again.
[I learned:] What things require a new worktop [a new frame, presumably]. Where the stored
information is located and how it’s found.
The most help I got from UUhistle was when I was trying to figure out references in object-
oriented programming.
[I learned:] how to use objects. The lecture notes clarified this fairly well, too, but in practice
it was clarified best through UUhistle.
In object-oriented programming it was pretty good and gave concreteness to a topic that was
otherwise a bit abstract.
Programming objects would have been much harder without UUhistle. You don’t learn about
them only from using UUhistle, but UUhistle has a different perspective that was really useful
for me at least.
How objects work became clearer in UUhistle. It was far easier to do object-oriented
programming with the help of UUhistle than it would have been if I hadn’t done the UUhistle
assignments.

Other topics mentioned by smaller numbers of students included variables, conditionals, loops/�����,
lists, recursion, nested function calls, and references.

Some students reported that UUhistle had been particularly good for learning the basics during the
early rounds, but that the later UUhistle assignments had been too long, difficult or otherwise unrewarding.
Some other students felt the opposite and stated that the early assignments had been too trivial while
the later ones were useful.

Putting the lessons learned into practice

Many students reported that they had been able to take something from the UUhistle assignments and
apply it to program-writing, program-reading, or debugging tasks outside of the system.

Very easy to use. Demonstrates in many cases very precisely how the code works which makes
it easier to understand and write code.
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In many cases the UUhistle assignments taught me how to do all the assignments of a round
without having to read the lecture notes.
The demos in UUhistle were useful because you got a good initial understanding of how new
things work in Python, and you didn’t have to start programming all unprepared.
[I learned:] How the computer processes information and how I myself have to think and what
I have to do to make the computer behave correctly and the way I want.
[I learned:] In some things, the execution order of a program, which led me to figure out how
to write one of the [program-writing assignments].
I liked UUhistle because it sort of showed how the program thinks and that helped me understand
why I sometimes got the [program-writing] assignments wrong.
[I learned:] To notice and fix special cases that happen when programs are run.
I always did the UUhistle assignments last so that I wouldn’t make any mistakes in them. This
is sure to have made the regular [program-writing assignments] harder to do, but served as an
excellent recap of the new things that I had learned so they stuck in my mind better.

A number of responses mentioned that simply seeing example code had been useful (but the visualization
perhaps less so). For instance:

[I learned:] Models (wholes) for the [program-writing] assignments
The left-hand side [where the program code is] sometimes had useful code structures for the
other assignments.
You could copy code and edit it into your own program.
I can’t remember anything specific, but with some topics I always had the UUhistle assignment
open as I was writing code for the other assignments of the same round. Sometimes the code
in UUhistle gave good pointers on what you should write yourself.

Irrelevance to course or programming in general

Many students also stated that UUhistle had not been useful, complaining that they had not learned
anything or had only learned to use UUhistle. For instance:

[I learned:] Nothing, a completely terrible system!
I learned what kind of program one should never create.
[I learned:] to try everything.
[I learned:] to use the UUhistle program.
[I learned:] To press buttons in the correct order.

Some students explicitly pointed out that they perceived little or no connection between what they did in
UUhistle and the goals of the course.

The UUhistle assignments were, with a few exceptions, only training in the use of UUhistle (i.e.,
mechanically clicking through the assignment) that had no connection to actual programming.
I learned the internal logic of UUhistle, but little about programming itself.
[I learned:] To press the forward button as quickly as possible. I didn’t see any connection
between UUhistle and the [program-writing] assignments or writing code.
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At first, I didn’t even understand what UUhistle had to do with the course. I don’t think that
it clarifies or helps you to program the course assignments.
I don’t know if it’s appropriate, in a basics of programming course, to cover in so much detail
what happens “behind the scenes”, so to speak.

Some students requested better integration of the UUhistle assignments into the rest of the course.

The idea is good, but UUhistle should be better related to coding itself. For instance, so that
it would be possible to see what the code looks like in its entirety.
It would be good to shed some more light on “UUhistle’s world” at the beginning of the course.
The lectures/labs should clarify – a little bit at least – what the point of the system is.
UUhistle was somehow really unclear as a whole. I might even suggest that the UUhistle
assignments confused some of the things I learned. I never discovered any logic in them. Also,
towards the end of the course I forgot to do many weeks of UUhistle assignments, [since] they
weren’t emphasized in the course at any point. I didn’t even get what they were, why we had
to drag boxes from one place to another.

Unfair demands regarding execution order

A few students commented negatively on the idea that UUhistle enforces a particular way of simulating
program behavior. One student was very upset about this:

I learned that you can solve them in precisely one way and in precisely the order that the
assignment creator has planned. This was the most frustrating thing about the whole course.
[. . . ] It was wretched how you could only do the operations in a specific order in one single
way. A good example of this was mathematical calculations (their order sometimes didn’t make
any sense). This gave a disgusting impression of what programming is.

The student’s comment suggests that he or she does not recognize a well-defined order for the evaluation
of arithmetical expressions is appropriate or necessary. The student appears to attribute the order to
UUhistle rather than to the Python language and runtime.

Trial and error

A number of students noted that it was possible to score points from the UUhistle assignments
mechanically without putting thought into the matter, and emphasized the responsibility of the students’
own mental involvement.

You can score points without thinking for a moment about what you are doing.
Only useful if you wanted it to be. Often I’d just click through it without caring one bit about
what it said.
UUhistle made you really think about what the code causes to happen, but sometimes you’d
just do the assignments in the hope of scoring points if they became too difficult.
The assignments could be solved by just trying things, even without understanding the principles
behind the assignment. On the other hand, the UUhistle assignments were clearer and more
meaningful to do than the [program-writing assignments] and I always found more motivation
to do the UUhistle assignments, and tried nevertheless to understand what I did in UUhistle as
best I could.
UUhistle helped to make sense of things. It still wasn’t especially useful, but that was due to
myself since it was pretty easy to score full points for the assignments without thinking at all,
and I just wanted to get the assignments done quickly.
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Boredom and excessive detail

A fairly common complaint about UUhistle was that the assignments were boring, too long, and too
detailed, and/or involved too many clicks of the mouse.

The UUhistle assignments were boring and you’d just try to do them as quickly as possible by
trying everything.
The UUhistle assignments were boring. You’d need to introduce some more creative element
to them.
Sometimes pretty boring to go through, I liked writing programs myself more.
Some assignments demanded that we grind through the same loop over and over again, which
was frustrating. I think less repetition of routine things would have been enough to make things
clear. Now the repetition led to frustration which ate away at the potential usefulness of the
other parts of the assignments.
If you already knew the subject, the assignments were painfully slow to do.
The bad thing was that all the moving of numbers to the right boxes in the right order was
done in too much detail, the long way.

In this matter, as in practically all the matters present in the feedback, contradictory opinions were also
given, with a student stating, for instance, that the UUhistle assignments “were nice and pretty quick to
do”.

Program animation vs. VPS

In many of the survey responses quoted above, it was unclear to what extent the complaints about
excessive length or tedium were about the program animations and to what extent they were about the
VPS assignments. Some of the complaints were clearly about the animations. Some students explicitly
contrasted the two usages of UUhistle, usually in favor of the VPS assignments.

Requires a great deal of motivation from the student. A motivated person will surely learn with
the help of the program, but the rest of us just keep hitting the forward button to score points.
The annoying thing was long programs where you only had to watch the next step for 10
minutes. . .
Long assignments where you just watch the computer execute the program encourage you to
just set it to full speed and click without thinking.
Remove all the “watch how this goes” assignments, they are boring and don’t teach anything.
Have more assignments where you make the program execute yourself, they are much better
for learning.
The automatized ones I couldn’t be bothered to think about at all.
I just fast-forwarded through the assignments where UUhistle did everything for me to get the
free points as quickly as I could. This didn’t support my learning, of course, but perhaps those
assignments shouldn’t be worth any points since that’s precisely the kind of behavior that it
leads to, I expect. The simulation assignments were excellent and very instructive.

The opposite opinion was also expressed, and a few students suggested that alternative uses of UUhistle
would be better than the VPS assignments.

UUhistle is unwieldy and doesn’t necessarily correspond at all to how many people perceive
programming-related topics. Only the automated examples were worth the time spent watching.
The simulation assignments on the other hand wasted time since it was too slow and unintuitive
to simulate simple processes in UUhistle by moving boxes and the like. Just learning to use
UUhistle took nearly as much time as doing the actual simulation assignments.
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A better way could be to simulate code partially automatically and occasionally ask the user
what the code returns or something like that.
[I learned:] Nothing. I literally don’t understand why such a system has been created. It
would be much better if they were just examined during the lectures instead of doing all this
drag-and-drop foolishness.

In fall 2010, the author of the thesis incorporated UUhistle’s program animations into another CS1 course
that used the Java programming language. Animations were used extensively in lectures and there were
some small program-reading assignments in which students would watch animations in UUhistle and
answer occasional popup questions. The course – let us call it CS1–OO–Java – used a ‘quick and dirty’
modified version of UUhistle that animated teacher-configured examples written in a subset of Java. VPS
was not used because the implementation did not support it for Java programs. Two of the students who
took CS1–Imp–Pyth in summer 2011 commented on the differences between their experiences of UUhistle
in CS1–OO–Java, which they had taken earlier, and the VPS assignments they now encountered for the
first time in CS1–Imp–Pyth. Both had a favorable opinion of VPS:

It was totally awesome that in this course you had to do something yourself in UUhistle, and
not just look at what happens or try to figure out what a function prints out (this was new
compared to the Java course).
In the UUhistle assignments, it was good how in some of them you had to know how to do
the next step yourself. In the basic course with Java, the UUhistle assignments were just
click-to-advance assignments, so you didn’t learn nearly as much from them.

Insufficient guidance

UUhistle’s user interface received both praise and criticism; students disagreed amongst themselves as
to whether the program was “easy to use”, “clear”, “in need of some fine-tuning”, “usually clear”,
“confusing”, “unclear”, or “unintuitive”. A recurring cause for complaint was lack of guidance when the
user made a misstep.1

If you got stuck, it was really hard to figure out how to go forward.
UUhistle could explain in more detail why a mistake happened and not just say that it was a
mistake.
A downside was that when you were stuck, nothing helped except trying a thousand things.
In some problematic situations it could give some hints about what has gone wrong, although
you can of course just find the answer by trying everything.

Some students were frustrated by the difficulty of figuring out what to do in UUhistle, even though they
felt they knew what was supposed to happen next in the program.

Sometimes it was hard to make progress, even though you knew what would happen next,
when the program expected me to click some other button instead, or to do things in a slightly
different order.
Sometimes I got stuck for a bit when I didn’t know where to click even though I more or less
knew how to proceed based on the code
I understood the code of the program, but it still took an eternity to figure out how to drag
those pieces, what a waste.

1Comments in this vein were more common in spring 2010 than in the most recent CS1–Imp–Pyth offerings. The issue
appears to have been somewhat alleviated by the introduction of the Info box and the gradually increasing amounts of guiding
material in later prototypes.
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A handful of students suggested that doing the VPS assignments was in fact more difficult than doing the
program-writing assignments, or was predicated on concepts that you only learn from writing programs.

I never really got the hang of how UUhistle works. Even though I easily knew how to do all the
programming assignments of a round, I’d still not get how UUhistle works.
UUhistle is quite okay in principle. But you often don’t really understand the things you do
there unless you can write the corresponding things into code. And if you already can, does
UUhistle serve a purpose any longer?

Assignment design

A few students complained about the inauthenticity of the program examples given in UUhistle.

The programs in UUhistle sometimes didn’t seem to have any connecting thought to them. I
mean, they would execute, but the reason and the purpose were left in the air.
The UUhistle assignments were good, with a few exceptions. Sometimes it remained unclear
what a program is supposed to do: I mean, not how it works but the logic of what it’s intended
for.
The UUhistle assignments mostly just made me even more confused. I didn’t feel that I got
anything out of them. I can’t really say how they could be improved; maybe making them
resemble real code more would help?

A few also regarded the assignments as too easy and suggested that more challenging assignments be
used instead or in addition to the UUhistle assignments used.

The assignments in UUhistle could be a bit harder. I mean, UUhistle could show more
complicated structures than those that were included now.
Most of the UUhistle assignments were laughably easy ‘for dummies’ exercises. On the other
hand, I suppose this may have been the idea, and may in fact have helped a bit with getting
started with the assignments, especially as one doesn’t have earlier experience of programming.

20.2 Student feedback has been consistent with the findings of the
previous chapters

We summarize below some of the main implications that our review of course feedback results suggests
to us.

• Overall, UUhistle is usable enough to be useful, but there is room for improvement.

• Some students appear to have been greatly helped by UUhistle. Others appear not to have been
helped at all. Many others fall somewhere in between.

• VPS brings many students to focus on execution order. Further, it helps students develop a new
way of thinking about programs in terms of their execution by a computer.

• VPS in UUhistle is perhaps particularly useful for learning about function calls and objects.

• Some students failed to understand a purpose to UUhistle at all, or at least to connect what they
learned in UUhistle to other course content. On the other hand, others successfully and eagerly
transferred what they learned in UUhistle to their programming activities.

• Some students largely ignored the dynamic visualization aspect and used UUhistle primarily as a
repository of code examples.
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• Students get frustrated when they fail to make progress during VPS and sometimes resort to trial
and error. UUhistle’s in-built support in such situations is not yet satisfactory.

• A significant number of students found VPS to be tedious. A perhaps larger number of students
felt the same about program animations. Some of the stronger and more experienced students were
put off by the ‘trivial’ nature of the VPS assignments (which were identical for all students and not
open-ended).

• The above points appear to have contributed to many highly emotional responses to UUhistle, with
some students enthusiastic about the system and others very negative.

These points are consistent with the results of the studies from the preceding chapters. In particular,
students’ opinions of VPS and their descriptions of what they learned are compatible with the
categorization, in Chapter 17, of the distinct ways in which students understand what it means to learn
though VPS. The problem of some students not being able to relate the visualization to programming
concepts and the rest of the course content is prominent in the survey results, as in the previous chapters.

The survey results give additional evidence of the strong emotional responses students have to VPS
in UUhistle. As noted in the introduction to this chapter, such responses need interpretation. The fact
that some students do not ‘like’ UUhistle or that they find it troublesome or annoying to deal with is
not necessarily a problem in itself. To the extent that it is caused by the inherent troublesomeness of
being forced to deal with difficult subject material, not liking VPS is acceptable from an educational
perspective. However, the affective aspects of the approach must certainly not be ignored. We must
consider what reasons there are behind students’ comments and seek to address any outstanding issues.
In our case, it appears that several factors contribute to the unenthusiastic responses of some students.
Perhaps the most important are limited understandings of the purpose of VPS, the repetition of steps
within assignments, and the lack of sufficient guidance when ‘stuck’.

The results presented in this chapter further support the pedagogical strategies and directions for VPS
system design that were outlined in Chapters 17, 18, and 19. The integration of VPS with other materials
and teaching is crucial to encourage a rich learning experience and to give a positive impression of VPS.
Assignments that focus on a key section of the code could help reduce tedious repetition and highlight
key content. Careful selection of a rich array of examples can help demonstrate why expression evaluation
order is so important and why it plays such a key role in VPS. Allowing and helping students to visualize
and debug their own programs in a system such as UUhistle may guide them to perceive the meaning and
potential of the visualization and add to the value of VPS. Advice and hands-on guidance from teachers
and teaching assistants is needed to allow as many students as possible to benefit from VPS. Future VPS
systems could be increasingly intelligent, with ever more guidance built into them.

Finally, we note that in the course we investigated, all the students were encouraged equally to do
the UUhistle assignments, and the assignments contributed to all the students’ grades. Educational
research has shown that the effectiveness of many instructional strategies depends dramatically on the
prior knowledge of each learner (see Section 4.5). VPS may not be for everybody. In a more flexible
setting, especially in courses with fewer students, teachers might be able to suggest VPS assignments
specifically to those students who appear to need them most. Students who have no trouble with function
calls, expression evaluation, and the notional machine, for instance, might be better off spending their
time on other kinds of assignments.
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Part VI

Conclusions
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Introduction to Part VI

In Parts I, II, and III, I drew on the literature to identify challenges in introductory programming education,
explored these challenges in the light of several theories of learning, and reviewed approaches to teaching
introductory programming courses. From this review, the issue of program dynamics and the notional
machine stood out as one of the major challenges in the failure of introductory programming courses
around the world to work as well as intended. In Part IV, I suggested as a solution the pedagogical
approach of visual program simulation, which was subsequently evaluated in Part V. It is now time to
reflect on what has been accomplished, and what may be accomplished in the future.

Part VI consists of two chapters. Chapter 21 summarizes the main conclusions and contributions of
this thesis. Chapter 22 rounds up this book with a peek into the future.
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Chapter 21

Visual Program Simulation is a Feasible
Pedagogical Technique

In this thesis, I have investigated visual program simulation, a pedagogical technique for introductory
programming education. In VPS, a student takes on the role of the computer as executor of a given
program. The student uses a visualization of an abstract computer, a ‘notional machine’, as an aid to
illustrate what the computer does as it processes the program. The goal of the VPS activity is to help
the student learn about programming in general and about specific programming concepts.

The thesis contributes to VPS in several ways. First, I have formulated the idea of visual program
simulation and provided a theoretical framework for it. Second, I have presented a software system that
facilitates the use of VPS in practice. Third, I have described preliminary empirical evaluations of VPS
and the software. Fourth, I have made recommendations for pedagogy and VPS tool design that arise
from the empirical work. The following sections, 21.1 to 21.4, deal with these four aspects of our work.
In Section 21.5, I briefly consider the broader implications of my thesis.

21.1 VPS is a theoretically sound pedagogical approach to teaching
programming

VPS has a solid foundation in multiple learning theories. In Chapter 14, I related VPS to the various
learning theories and instructional approaches reviewed earlier in Part II.

Computer programs exist as static program code and as dynamic entities at runtime. This duality is
such an obvious part of practitioners’ tacit knowledge that it is often barely acknowledged as important;
nevertheless, the dynamic aspect is very challenging for some novice programmers to grasp. In cognitive
constructivist terms, students need to form a viable, robust mental model of the notional machine. In
Chapter 14, I argued that VPS can help learners discern the crucial dynamic aspect to programs and
programming, and to construct a better mental model of the mechanisms underlying program code. In
this way, VPS can help novice programmers across a key early threshold. Practice using VPS serves to
ingrain the mental model and make it a natural, efficient part of the learner’s thinking.

Computing education research suggests that learner interaction is an important factor in the
educational effectiveness of a visualization. VPS builds explicitly on this idea: the learner is not allowed
to be a passive consumer but must be an active user of the visualization. This increases the likelihood
of the learner cognitively engaging with the visualization and the underlying concepts. VPS as presented
essentially fuses together two ideas: the kind of program visualization that is commonly used in program
animation tools, and interaction in the form of direct manipulation of a visualization. In the context of
programming education, direct manipulation had previously mostly been used within higher-level algorithm
visualization and in visual programming.

Misconceptions and limited understandings of programming constructs are a common cause of
problems and frustration to novices. Feedback on an incorrect simulation step during VPS can engender
fruitful cognitive conflict and help learners develop rich, viable understandings of programming concepts.

Finally, VPS is a program-reading activity in which the student traces the execution of a given program
rather than creating a program of their own. Reading code is increasingly being recognized in the literature
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as an important component of introductory programming education, to be learned before or in parallel to
program writing. A program-reading task such as a VPS exercise can be used to provide an interactive
worked-out example of program writing; judicious use of examples helps manage learners’ cognitive load
during the learning process.

21.2 VPS can be made practical with a tool such as UUhistle
A software system empowers visual program simulation. Automation makes possible continuous availability
to large groups of students, instant feedback, and automatic grading. Moreover, it brings the convenience
of an already-implemented visualization which learners apply to simulate programs, and makes it easier
to gain practice from multiple VPS exercises.

This thesis contributes the conceptual design of a prototype software visualization system. The system,
UUhistle, supports VPS (among other modes of program visualization) on a particular notional machine
for the Python programming language. UUhistle visualizes the state of the notional machine as abstract
graphics, and allows the user – the learner – to directly manipulate the graphical elements so as to
demonstrate how the computer executes a given program. The system has been implemented and has
been made available to the computing education community at ��������������	
�������.

UUhistle is not a finished article. We have sought to critically evaluate our prototype to learn more
about what works and what does not, in UUhistle as well as in VPS more generally.

21.3 VPS helps students but there is room for improvement
Part V of this thesis contributes a preliminary empirical evaluation of VPS in the context of an introductory
programming course. The findings from this mixed-methods research project suggest that VPS is a
promising pedagogical approach that has helped many university students to learn programming. At
the same time, the evaluation highlights certain weaknesses in the approach that must be taken into
consideration when adopting VPS.

The phenomenographic study of Chapter 17 discovered several qualitatively different ways in which
programming students perceive what it means to learn through visual program simulation. A rich
understanding of VPS opens up rich possibilities for learning programming, in keeping with the goals
outlined for VPS in terms of learning theory. In such a rich understanding, VPS is understood as being
related to how computers execute programs, and that in turn is understood to relate to how one reads
and writes computer programs as a programmer. Other, more limited ways of understanding, in which
these crucial aspects of learning through VPS are not discerned, significantly limit the effectiveness of
VPS. In order for VPS to fulfill its potential, care must be taken in teaching to help learners develop a
rich understanding of what VPS is and how it can help them.

Another exploratory study in Chapter 18 contributes a concrete view into VPS sessions, illustrated
through quotes relating to significant episodes observed in actual practice. The study concretely
demonstrates instances of learning within our proof-of-concept VPS system. In addition, the study
concretizes how students use various kinds of information to find the correct execution steps during
VPS. Although, from a pedagogical point of view, students ideally reason about the conceptual content
of the visualization, trial-and-error tactics and guesswork based on superficial visual features also exist in
actual practice. Typically, students use a mix of tactics; the important question is perhaps not whether
superficial tactics ever feature in a student’s VPS work, but whether the work is characterized overall by a
deep approach to VPS that looks for meaning in the visualization and the selection of simulation steps. It
is such a deep approach that instruction should seek to foster. A preliminary analysis of student mistakes
in the same chapter serves as an example of how VPS can serve as an aid for teachers and researchers
who wish to understand what students think about programming concepts.

Chapter 19 reports an experimental study of the effects of a short VPS session. The findings suggest
that the short-term effectiveness of VPS is dependent, perhaps greatly, on precisely what students have to
reason about as they choose simulation steps. Our study highlighted in particular how a VPS treatment
was helpful in teaching about expression evaluation and function calls – which UUhistle’s VPS assignments
require the student to carry out in detail – but not about reference semantics – which were present in the
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assignments but not focal to user actions in the same way. This result shows that extreme care must be
taken in the design of VPS systems and specific assignments so that required user interactions are aligned
with intended learning goals.

The review of course feedback in Chapter 20 is in agreement with the findings of the other studies. It
further highlights the strong emotional responses – both positive and negative – of some students to the
UUhistle system. The results suggest that the guidance students get after they make a mistake is decisive
and must be improved in UUhistle. This study affirms the conclusion that a concentrated teaching effort
is needed to make the purpose of VPS clear to students. Assignments must be carefully designed so that
they are not overly repetitive and consequently boring. According to student opinions, UUhistle works best
when it comes to learning function calls and object-oriented programming, two topics that are recognized
as difficult in introductory programming education. A minority of students complained about usability
issues but the majority found UUhistle to be sufficiently easy to use.

21.4 VPS needs to be designed and used thoughtfully
Visual program simulation is a tool for meticulous instructional design. It is a potentially useful weapon
in the CS1 teacher’s arsenal, but it is a weapon that needs to be sharpened and handled with care. The
empirical research presented in this thesis suggests that VPS must be used and developed in a considered
way for it to be as useful as possible to as many learners as possible.

A good introduction to VPS is important. VPS should be clearly introduced as an activity that is about
computer behavior and that serves the student as they participate in the course and learn programming.
If students get the point of VPS early and are motivated to learn from it, they avoid wasting time and
are in a position to make the most of VPS. A good introduction is unlikely to be enough, however.
The relationships between VPS and other aspects of the course – classroom instruction, program-writing
assignments, textual materials – are crucial. VPS is not going to be maximally effective as an isolated
component of a course that students are expected to connect to the rest of the material themselves. For
best results, VPS should be integrated into the learning process in a concrete and explicit way.

Our results suggest that it is important for teachers (and VPS systems) to observe how their students
make decisions regarding simulation steps and how (or whether) they reflect on what they do. Through
observation, the students can be led to use VPS effectively. Teachers and materials should encourage
students to think conceptually about the content of the visualization and to reflect on what they are
doing and what they have done. Strategies such as trial and error should be discouraged as pedagogically
ineffective; nevertheless, occasional use of such tactics is not a problem if instruction has fostered a
sufficiently deep overall approach to VPS, and students are likely to reflect on what they have accomplished
afterwards. The early adoption of a deep approach to VPS is crucial so that students’ subsequent VPS
activities (even when unguided by a human tutor) will be motivated by a search for meaning.

Both students and teachers can learn from students’ VPS mistakes – teachers may find VPS useful
as an analytical tool that helps them elicit students’ understandings and misconceptions and to address
them. This aspect of VPS may also turn out to be useful for research purposes.

Successful assignment design is key to unlocking the potential of VPS. Assignment design involves
many considerations, including program complexity and authenticity, required user interactions, degree
of repetition, level of abstraction, and of course the learning goals of the assignment. Our empirical
findings highlight the particular importance of the relationship between learning goals and the user–
system interactions required to find the correct simulation steps: VPS users are likely to learn about
the specific things that they consider when picking simulation steps (and perhaps not much else). A
judicious combination of different program visualization techniques and modes of interaction – VPS,
program animation, popup questions, info dialogs, etc. – may allow the best opportunities for aligning
learning goals with user interactions, and consequently produce the best results.

Some of these recommendations for teachers can be worked into future VPS systems, which would be
a significant boon in large-class courses where the availability of human guidance is limited. In Part V,
we have made recommendations for the design of VPS systems along these lines. In the spirit of action
research, we have already started to improve UUhistle in line with the results from our empirical work.

In Appendix D, I have concretized our main pedagogical advice regarding VPS in bullet point format.

351



21.5 The contribution of the thesis may extend beyond VPS
The work I have presented in this thesis may have implications beyond its focal point of visual program
simulation. For instance, the findings on the ways of experiencing learning through VPS (Chapter 17)
may well be applicable to other forms of educational program visualization in introductory programming
education, and to the educational use of visualizations in general. Just providing a visualization system
and saying a few words about it is unlikely to produce optimal results. Learners need to be helped to
perceive meaning in the tools they are given, and to link that meaning to the intended learning goals.
The importance of specific user interactions on the educational impact of VPS (Chapter 19) may also
have significance not only for VPS but for the designers of other interactive learning tools. Ultimately,
the portability of my research must be assessed by its readers.

The thesis contributes a fairly broad review of the literature on teaching and learning introductory
programming, and the challenges concerning program dynamics in particular. Among other things, this
review instructs the programming teacher that whether one adopts VPS or not, program dynamics and the
notional machine should be explicitly dealt with when setting learning goals for introductory programming
courses and when designing teaching and learning activities to match those goals.

A research-methodological contribution may be seen as another outcome of this thesis. Computing
education and computing education research continue to have a lot to learn from other fields, such as
psychology and education. While theories from those fields are increasingly being used within computing
education research, many research projects build – for reasons practical or parochial – on a single theory
or perspective. This thesis contributes to the computing education research community an example
of theoretically grounded pedagogical design that is informed by multiple complementary theories and
research traditions. The mixed-methods empirical evaluation of the resulting pedagogical approach is
similarly ecumenical. Irrespective of any particular merits and shortcomings of the present work, it would
be pleasing to see more multiparadigmatic studies in the computing education research of the future.
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Chapter 22

What is Next for Visual Program
Simulation?

In this chapter, I briefly sketch out some possible futures for visual program simulation. I list some ideas
on future research on the current incarnation of VPS (Section 22.1), on tool development (Section 22.2),
and on how VPS could be used in different ways and in different contexts (Section 22.3).

22.1 There is plenty to research in VPS as presented
The most obvious follow-up to the present work is ‘more of the same’. The effects of VPS on learning
programming could be qualitatively and quantitatively investigated in more course offerings and by other
researchers. Future work may critique and perhaps improve the warrants for our claims about VPS, and
expand on those claims. Long-term studies would be especially useful for evaluating the overall impact
of VPS on learning programming. The aspects of VPS that we have explored qualitatively could be
investigated quantitatively; follow-up studies could determine the frequencies of students’ approaches to
and notions of VPS, for instance.

A potentially very fruitful source of data is the mistakes students make during VPS. Students’ mistakes
could be categorized from automatically generated session logs and analyzed both qualitatively and
quantitatively to discover what kinds of mistakes are common and to explore the causes behind them.
The work we have initiated in mapping students mistakes to misconceptions (in Chapter 18) could be
extended. Such work could have implications not only for the use of VPS but for introductory programming
education more generally. We already have a sizable database of students’ VPS logs; a master’s thesis
that investigates this data is being written.

A future study could compare the impact of VPS to another form of visualization use such as controlled

viewing. Such studies could be structured in terms of the 2DET taxonomy, a side product of this thesis
from Section 11.2.3, and might contribute towards establishing a more generic framework of learner
engagement in software visualization.

In the course offerings we have investigated, all students were given the same VPS assignments to do,
irrespective of prior knowledge or other factors. Documented phenomena such as the expertise reversal
effect (Section 4.5) suggest that prior knowledge has a dramatic impact on the effectiveness of learning
activities. Further research is needed on the interactions between VPS, learners’ programming expertise,
and learning outcomes. This line of research is important in order to understand how to use VPS in
classes in which students’ prior knowledge is highly variable, and also in order to attend, in instructional
design, to the growth of expertise during learning.

Cognitive load theory (Section 4.5) suggests still more avenues for future research. Cognitive load
measurement is a very demanding but potentially very worthwhile endeavor (Paas et al., 2003; Plass et al.,
2010). The effects of VPS on different types of cognitive load are presently unknown. Knowing more
about them would further our understanding of the impact of VPS on learning, aid tool development,
and allow us to position VPS exercises more accurately in relation to more familiar types of learning tasks
such as worked-out examples and problem-solving assignments (cf. Section 14.2).

This thesis has grounded VPS in a number of relevant theories from different research traditions, but
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the picture is hardly complete. Future studies could examine VPS from perspectives yet different, such
as collaborative and social learning, process-to-object learning (Sfard, 1991), multimedia learning (Mayer,
2005, 2009), and the paradigm and language wars within the programming education community, to name
but a few. Studies could also explore the relationships between VPS and comparable simulation activities
in related fields such as engineering education.

Another possible research direction concerns the role of teaching staff in the use of VPS, and the ease
or difficulty of successfully adopting VPS as a pedagogical approach. The impact of training teaching
assistants to help students develop a rich view of VPS could be investigated, for instance.

22.2 There are tools to be developed
VPS relies on software. Continued constructive research on VPS systems is essential for the potential
success of VPS as a pedagogical approach. Such research can involve the development of existing systems
to support VPS better or the creation of new systems.

One obvious path for improving on the current version of UUhistle is to extend its support for the
Python language. Supporting a language fully or near-fully is useful in a program visualization tool
especially if it is to be given to students to animate and debug their own programs. Support for other
programming languages could also be added.

The ultimate VPS system of the future would adapt to each student’s needs. In Part V, I have
suggested specific ways in which a VPS system could be ‘smarter’ and more sensitive to the learner’s needs
and current context. Work is ongoing to continue beyond the tentative first steps we have taken towards
providing context-sensitive, misconception-aware feedback to the learner. Increased dialogue between
student and system about programming concepts and the reduction of trial and error are other goals for
the future. Moreover, VPS assignments – like other forms of example study – are not equally useful to
all students. One key issue is the learner’s growing (and prior) expertise. Rapid diagnostic methods (see
Plass et al., 2010; Kalyuga, 2009) might be incorporated into visualization systems to assess students’
knowledge online and to tailor the use of VPS and other materials in response to individual differences.

The usability of UUhistle is acceptable, but hardly perfect. Formal usability studies could be conducted
to evaluate the system and suggest improvements. One known concern is the need for the user to repeat
routine steps in more complex assignments; this issue should be addressed with a combination of usability
improvements, assignment design, and increased use of abstraction.

Future VPS systems (and program visualization systems in general) could visualize execution on
different notional machines and at different levels of abstraction than the current UUhistle does. An
intriguing but challenging challenge would be to develop support within the same system for multiple
different levels of abstraction between which the user can change, even during a single program run. A
system might provide, say, a high-level object-interaction view and a low-level bytecode view to a program
run in addition to an intermediate level such as the one now displayed by UUhistle. Such a system
could provide a very powerful way of illustrating, juxtaposing, and learning about different perspectives
on program dynamics.

Auditory presentation of some sort could be integrated into VPS in order to make better use of
learners’ dual-channel processing and to optimize the use of precious working memory capacity (Mayer,
2005, 2009).

The integration of VPS into a system that visualizes roles of variables and/or uses metaphorical
visualization elements (cf. pp. 164-166 above) might be worth exploring.

UUhistle is currently a stand-alone program; support for IDE integration could allow it to be used
more conveniently in some contexts.

The configuration of VPS assignments in UUhistle currently involves the editing of raw XML files.
A better configuration interface should be provided for the benefit of teachers and developers. Teachers
could also be supported with other conveniences for creating assignments in UUhistle, such as a facility
for creating popup questions whose answers are determined automatically by the system (e.g., “What is
the highest number of frames simultaneously on the stack during this program run?”; cf. Rößling et al.,
2011).

Implementing these ideas into tools calls, of course, for further evaluative research.
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22.3 VPS can be taken to new users and new modes of use
Last but certainly not least, the future of VPS will be shaped by its future users, the contexts in which
they use it, and the new uses they may find for VPS.

Pedagogical practices, especially ones that require work from the teacher, are difficult to disseminate.
VPS can serve as a useful component of a carefully crafted CS1, but it does not offer a silver bullet
that effortlessly solves students’ or teachers’ problems. It would be unrealistic in the extreme to expect
VPS to be a likely ‘instant hit’ in the mainstream of CS1 education. A more realistic expectation is
that some programming teachers who are concerned about issues regarding program dynamics and the
notional machine – and who have enough time to follow computing education research and actively
develop their teaching – could work VPS into their courses. Some of those teachers may develop their
own assignments. Some may offer assignments for others to use. Scholars within the software visualization
community may implement VPS or something inspired by it into their program visualization systems (as
is already happening in the ViLLE system; see Section 11.3). Through new users and their input and
experiences, VPS may gradually grow and improve.

A broad selection of good ready-made assignments would be an excellent asset in the dissemination
of VPS to the community. I expect to develop and publish a set of assignments for UUhistle in the
not-too-distant future.

Many of the VPS assignments in our studies were unplanlike, which limits their usefulness as worked-
out examples of program writing (Section 14.2). The combination of VPS with more planlike programs
should be explored in the future. VPS could also benefit from what is known concerning the use of
examples in learning; training students in explaining VPS assignments to themselves is one potentially
rewarding strategy (see Section 18.4). Instructional design models such as 4C/ID (Section 4.5) have the
potential to inform the design of introductory programming courses and to clarify the role of VPS in such
designs.

In the future, VPS can be used in new combinations with other materials. Hybrid program visualization
assignments (featuring animation, VPS, and quizzes) are one such combination. The integration of
VPS and other modes of program visualization into hypertextbooks is another (cf. Shaffer et al., 2011).
Motivating new contexts for VPS might also be found, for instance by having students simulate buggy
programs.

VPS has been designed primarily to target CS1 courses, but could serve a purpose in some slightly
more advanced courses as well. At Aalto University, a data structures and algorithms course has already
taken the initiative to adopt VPS for a few assignments, with staff reporting largely positive experiences.

Again, all these ideas for the future provide ample opportunities for empirical research.

“Show, don’t tell” is the advice they give to aspiring fiction writers. What they mean is that you should
not directly describe a character’s feelings or thoughts. Instead, you should let the reader get involved
and work things out for themselves from how the character talks and behaves. “Show, don’t tell” also
reflects the thinking behind much of visualization-based education, although there the phrase tends to be
taken more literally: use pictures rather than words.

Why bring this up? Perhaps it is better, dear reader, that I do not tell you.
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Appendix A

Misconception Catalogue

On two occasions I have been asked, – “Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?” [. . . ] I am not able rightly to apprehend the
kind of confusion of ideas that could provoke such a question. (Babbage, 1864, p. 67)

This appendix lists, based on the literature, examples of novice programmers’ misconceptions about the
content of introductory programming courses. The misconception list is drawn from exploratory research,
most of which is qualitative. The appearance of a misconception in the list below is not a statement
on its commonness. Section 3.4 above presented a short review of the studies on which this appendix is
based.

“Misconceptions” or what?

Most of the novice understandings listed below explicitly go against the technical definitions and the
“accessible ontological reality” (see Section 6.7) of the computer. Some others are not so much
contradictory with reality as they are partial: the full extent of a concept definition is not grasped.
Yet other items in the list correspond to vague “difficulties” with topics that have been mentioned in the
misconceptions literature but whose exact character is unclear.

This is a list of not only apples and oranges, but also of tomatoes and the odd dried plum. I have
contrived to place side by side results from a theoretically, methodically, and terminologically disparate
set of studies that spans several decades. What I have lumped together as “misconceptions”, the original
researchers have variously called “misconceptions”, “partial understandings”, “incorrect understandings”,
“student-constructed rules”, “difficulties”, “mistakes”, “bugs”, and so forth. Some of these differences
in terminology are superficial, others are motivated by learning theory – some phenomenographers, for
instance, adopt a perspective in which poorer ways of understanding concepts can be seen as limited
(rather than mistaken) versions of richer understandings (see Chapter 7).

All of the items listed nevertheless have something in common: they describe difficulties with content
commonly covered in CS1 courses.

What is not listed?

I have left out issues that appear to be highly language-specific or tool-specific as well as trivial mistakes
concerning notation such as mistaking an operator for another. Some misconceptions do appear in the
list that are particular to a currently popular CS1 programming language or a group of similar languages.

I have excluded topics that are often not explicitly covered in CS1, such as concurrency and definitions
of program correctness.

Even though program design and domain modeling are central to numerous CS1 courses, I have left
out higher-level design issues and focused on coding and program execution, which relate more closely to
the topic of this book.
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On Table A.1

In Table A.1, topics of misconceptions are roughly grouped into one of General (the overall nature of
programs and program execution), VarAssign (variables, assignment and expression evaluation), Control
(flow of control, selection and interation), Calls (subprogram invocations and parameter passing), Rec
(recursion), Refs (references and pointers, reference assignment and object identity), ObjClass (the object–
class relationship and instantiation), ObjState (object state and attributes), Methods (issues specific to
methods and methods calls), OtherOOP (other topics specific to object-oriented programming), and
Misc (none of the above). The categories (like the misconceptions) are fuzzy and overlap, but I have
nevertheless only assigned a single topic to each misconception. This categorization is only meant to give
some structure to the list; the labels are not meant to be taken taxonomically.

The descriptions in Table A.1 have been paraphrased from the original sources; some are my
abstractions from multiple similar findings. I have included a few items marked “local”, which are based
only on my own casual observations or those of my teaching colleagues.

Table A.1: Novice misconceptions about introductory programming content

No. Topic Description Source

1 General The computer knows the intention of the program or of a
piece of code, and acts accordingly.

Pea (1986)

2 General The computer is able to deduce the intention of the
programmer.

Pea (1986)

3 General Values are updated automatically according to a logical
context.

Ragonis and Ben-Ari (2005a)

4 General The system does not allow unreasonable operations. Ragonis and Ben-Ari (2005a)

5 General Difficulties understanding the lifetime of values. du Boulay (1986)

6 General Difficulties with telling apart the static and dynamic aspects
of programs.

du Boulay (1986); Ragonis and
Ben-Ari (2005a)

7 General The machine understands English. du Boulay (1986)

8 General Magical parallelism: several lines of a (simple non-
concurrent) program can be simultanenously active or
known.

Pea (1986)

9 VarAssign A variable can hold multiple values at a time / ‘remembers’
old values.

du Boulay (1986); Soloway
et al. (1982); Putnam et al.
(1986); Sleeman et al. (1986);
Doukakis et al. (2007)

10 VarAssign Variables always receive a particular default value upon
creation.

du Boulay (1986); Samurçay
(1989)

11 VarAssign Primitive assignment works in opposite direction. du Boulay (1986); Ma (2007);
Putnam et al. (1986)

12 VarAssign Primitive assignment works both directions (swaps). Sleeman et al. (1986)

13 VarAssign Limited understanding of expressions which lacks the
concept of evaluation.

local

Continues on next page
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Table A.1 continued

No. Topic Description Source

14 VarAssign A variable is (merely) a pairing of a name to a changeable
value (with a type). It is not stored inside the computer.

Sorva (2008); Doukakis et al.
(2007)

15 VarAssign Primitive assignment stores equations or unresolved
expressions.

Bayman and Mayer (1983);
du Boulay (1986); Putnam
et al. (1986); Doukakis et al.
(2007); Sorva (2008)

16 VarAssign Assignment moves a value from a variable to another. du Boulay (1986)

17 VarAssign The natural-language semantics of variable names affects
which value gets assigned to which variable.

Putnam et al. (1986); Sleeman
et al. (1986); du Boulay (1986);
Kaczmarczyk et al. (2010)

18 VarAssign The order of declaration of variable names affects which
value gets assigned to which variable.

Sleeman et al. (1986)

19 VarAssign There is no size or precision limit to the values we can store
in a programming variable.

Doukakis et al. (2007)

20 VarAssign Incrementing a counter variable is an indivisible operation
(no separate evaluation of right-hand side).

Soloway et al. (1982)

21 VarAssign Primitive types (in Java) have no default value. Kaczmarczyk et al. (2010)

22 VarAssign Unassigned variables of primitive type (in Java) have no
memory allocated.

Kaczmarczyk et al. (2010)

23 Ctrl Difficulties in understanding the sequentiality of statements. du Boulay (1986); Simon
(2011)

24 Ctrl Code after �� statement is not executed if the ���� clause
is.

du Boulay (1986)

25 Ctrl �� statement gets executed as soon as its condition becomes
true.

Pea (1986)

26 Ctrl A false condition ends program if no ���� branch. Putnam et al. (1986); Sleeman
et al. (1986)

27 Ctrl Both ���� and ���� branches are executed. Sleeman et al. (1986)

28 Ctrl The ���� branch is always executed. Sleeman et al. (1986)

29 Ctrl Using ���� is optional (the next statement is always the
���� branch)

Sleeman et al. (1986)

30 Ctrl Adjacent code executes within loop. Putnam et al. (1986); Sleeman
et al. (1986)

31 Ctrl Control goes back to start when condition is false. Putnam et al. (1986); Sleeman
et al. (1986)

Continues on next page
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Table A.1 continued

No. Topic Description Source

32 Ctrl Difficulty in understanding automated changes to ��� loop
control variables.

du Boulay (1986)

33 Ctrl ����� loops terminate as soon as condition changes to false. Pea (1986); du Boulay (1986)

34 Ctrl ��� loop control variables do not have values inside the loop
or their values can be arbitrarily changed.

Putnam et al. (1986); Sleeman
et al. (1986)

35 Ctrl Print statements are always executed, irrespective of
branching statements.

Sleeman et al. (1986)

36 Ctrl All statements of a program get executed at least once. Sleeman et al. (1986)

37 Ctrl Subprogram code is executed according to the order in
which the subprograms are defined.

Ragonis and Ben-Ari (2005a);
Sleeman et al. (1986); Vainio
(2006)

38 Calls A return values does not need to be stored (even if one
needs it later).

Hristova et al. (2003)

39 Calls A method can be invoked only once. Ragonis and Ben-Ari (2005a)

40 Calls Numbers or numeric constants are the only appropriate
actual parameters corresponding to integer formal
parameters.

Fleury (2000)

41 Calls Difficulties distinguishing between actual and formal
parameters. Confusion over where parameter values come
from.

Hristova et al. (2003); Ragonis
and Ben-Ari (2005a)

42 Calls Difficulties understanding the invocation of a method from
another method.

Ragonis and Ben-Ari (2005a)

43 Calls Confusion over where return values go. Ragonis and Ben-Ari (2005a)

44 Calls Parameter passing forms direct name-based procedure-to-
procedure links between variables with the same name (in
call and signature).

Madison and Gifford (1997)

45 Calls Parameter passing forms direct procedure-to-procedure
links between variables with different names (in call and
signature).

Madison and Gifford (1997)

46 Calls Parameter passing requires different variable names in call
and signature.

Madison and Gifford (1997)

47 Calls Subprograms can (routinely) use the variables of calling
subprograms.

Fleury (1991)

48 Calls Cannot use globals in subprograms when they have not been
passed as parameters.

Fleury (1991)

Continues on next page
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Table A.1 continued

No. Topic Description Source

49 Calls When the value of a global variable is changed in a
procedure, the new value will not be available to the main
program unless it is explicitly passed to it.

Fleury (1991)

50 Calls A function (always) changes its input variable to become
the output.

Paz and Leron (2009)

51 Calls Expressions (not their values) are passed as parameters. local

52 Calls Argument expressions cause changes in existing variables. George (2000a)

53 Calls Upon return, the value of a variable changes to correspond
to match a previously given parameter.

George (2000a)

54 Rec Null model of recursion: recursion is impossible. Kahney (1983)

55 Rec Active model: only the ‘active aspect’ of recursion
understood, not return values.

Götschi et al. (2003)

56 Rec Step model: single- or two-step recursion, but no more. Götschi et al. (2003)

57 Rec Return value model: each instantiation first produces a
value, before the next one is started; then all values are
combined to get the result

Götschi et al. (2003)

58 Rec Passive model: active part not understood, only the
combinatorics of the return values.

Sanders et al. (2006)

59 Rec Recursion is merely a programming construct used as a
template in certain kinds of programs; runtime behavior is
‘magic’.

Booth (1992); Kahney (1983);
Götschi et al. (2003)

60 Rec Recursion is perceived as an algebra problem. Götschi et al. (2003)

61 Rec Looping model of recursion (single-instantiation); recursion
is merely a construct for producing repetition, not
understood as self-reference.

Kahney (1983); Bhuiyan et al.
(1990); Götschi et al. (2003);
Booth (1992)

62 Refs Even primitive values (in Java) are handled through
references.

Sorva (2008)

63 Refs The variables for storing and assigning primitive values are
fundamentally different from the variables used for storing
objects (in Java).

Sorva (2008)

64 Refs A variable associated with an object is merely a name which
can be used to manipulate an object or ’thing’ in a program.

Sorva (2008); Ma (2007)

65 Refs A (non-primitive Java) variable does not hold a reference
but a set of object properties.

Sorva (2008); Ma (2007)

66 Refs Assigning an object means ‘sending’ an object (or a copy)
to a variable.

Ma (2007)

Continues on next page
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Table A.1 continued

No. Topic Description Source

67 Refs Assigning to an object causes it to become equal to the
assigned object.

Ma (2007)

68 Refs Assigning to an object means that (some) instance variables
get new values from the assigned object.

Ma (2007)

69 Refs Confusion between an instance variable such as “name” and
a variable referring to the object.

Holland et al. (1997)

70 Refs Two objects with the same value for a “name” attribute are
the same object.

Holland et al. (1997)

71 Refs A value of an instance variable such as “name” replaces
reference as a value of an attribute.

Sajaniemi et al. (2008);
Ragonis and Ben-Ari (2005a)

72 Refs An object is represented (in program state) by only the value
of a particular identifying instance variable such as “name”.

Sajaniemi et al. (2008)

73 Refs A variable that refers to an object uniquely specifies the
object for all time.

Holland et al. (1997)

74 Refs Once a variable references an object, it will always reference
that object.

Holland et al. (1997)

75 Refs Two different variables must refer to two different objects. Holland et al. (1997)

76 Refs Two objects of the same class with the same state are the
same object.

Holland et al. (1997)

77 Refs Two objects can have the same identifier if there is any
difference in the values of their attributes.

Ragonis and Ben-Ari (2005a)

78 Refs Objects know what refers to them. References point in
opposite direction (to referring object attribute, not from
there).

Holland
et al. (1997); Sajaniemi et al.
(2008)

79 ObjClass Confusion between a class and its instance. Holland et al. (1997)

80 ObjClass An object is a subset of a class. / A class is a collection of
objects.

Teif and Hazzan (2006); Ma
(2007); Détienne (1997);
Ragonis and Ben-Ari (2005a);
Teif and Hazzan (2006); Vainio
(2006)

81 ObjClass An object is a subtype of a class. Teif and Hazzan (2006)

82 ObjClass A set (such as “team” or “the species of birds”) cannot be
a class.

Teif and Hazzan (2006)

83 ObjClass Constructors can include only assignment statements to
initialize attributes.

Fleury (2000); Ragonis and
Ben-Ari (2005a)

Continues on next page
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Table A.1 continued

No. Topic Description Source

84 ObjClass Instantiation involves only the execution of the constructor
method body, not the allocation of memory.

Ragonis and Ben-Ari (2005a);
Kaczmarczyk et al. (2010)

85 ObjClass Difficulties understanding the empty constructor. Ragonis and Ben-Ari (2005a)

86 ObjClass Initializing an attribute with a constant as part of its
declaration causes confusion in distinguishing between a
class and an object.

Ragonis and Ben-Ari (2005a)

87 ObjClass Initializing an attribute with a constant within the
constructor declaration causes confusion in distinguishing
between a class and an object.

Ragonis and Ben-Ari (2005a)

88 ObjClass Invocation of the constructor method can replace its
definition.

Ragonis and Ben-Ari (2005a)

89 ObjClass Difficulties in understanding where objects of a simple class
are created before the creation of the object of a composed
class.

Ragonis and Ben-Ari (2005a)

90 ObjClass Difficulties understanding objects if their attributes are not
explicitly initialized.

Ragonis and Ben-Ari (2005a)

91 ObjClass Objects are created by themselves, without explicit
instructions to create them.

Détienne (1997); Ragonis and
Ben-Ari (2005a); Kaczmarczyk
et al. (2010)

92 ObjClass Declaring a variable also creates an object. Ma (2007)

93 ObjClass You can define a non-constructor (Java) method to create
a new object.

Ragonis and Ben-Ari (2005a)

94 ObjClass A textual representation of an object is a reference to the
object.

Holland et al. (1997)

95 ObjClass There is no need to invoke the constructor method, because
its definition is sufficient for object creation.

Ragonis and Ben-Ari (2005a)

96 ObjClass If objects of a simple class already exist, there is no need to
create the object of a composed class that builds on them.

Ragonis and Ben-Ari (2005a)

97 ObjClass If the object attributes are initialized in the class declaration,
there is no need to create objects.

Ragonis and Ben-Ari (2005a)

98 ObjClass The creation of an object of a composed class automatically
creates objects of the simple class that appear as attributes
of the composed class.

Ragonis and Ben-Ari (2005a)

99 ObjState During a method call, an object attribute is duplicated as a
local variable. Assignments update both.

Sajaniemi et al. (2008)

Continues on next page
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Table A.1 continued

No. Topic Description Source

100 ObjState During a method call, an object attribute is duplicated as
a local variable. The local variable is initialized from the
object, updated by the method, then returned to object at
end.

Sajaniemi et al. (2008)

101 ObjState During a method call, an object attributes is duplicated as
a local variable, which is initialized to a default value (e.g.,
zero). Assignments only affect the local variable, not the
object.

Sajaniemi et al. (2008)

102 ObjState Parameters belong to the called object. Sajaniemi et al. (2008)

103 ObjState Local variables belong to the called object. Sajaniemi et al. (2008)

104 ObjState A main method’s local variables belong to the called object. Sajaniemi et al. (2008)

105 ObjState An object can only hold instance variables of a single type. Holland et al. (1997)

106 ObjState No object attributes within objects; they only exist locally
during method calls.

Sajaniemi et al. (2008)

107 ObjState An object cannot be the value of an attribute. Ragonis and Ben-Ari (2005a)

108 ObjState Attributes of composed classes include object attributes
from the simple classes instead of the objects.

Ragonis and Ben-Ari (2005a)

109 ObjState Attributes of composed classes include object attributes
from the simple classes in addition to the objects.

Ragonis and Ben-Ari (2005a)

110 ObjState An object is a wrapper for a single variable. The object is
equated with the variable.

Holland et al. (1997); Vainio
(2006)

111 ObjState Attributes in a simple class are automatically replicated in
the composed class by transferring its meaning.

Ragonis and Ben-Ari (2005a)

112 ObjState To change the value of an attribute of an object of a simple
class that is the value of an attribute in an object of a
composed class, you need to construct a new object.

Ragonis and Ben-Ari (2005a)

113 ObjState Difficulty grasping what the properties are that represent an
object’s state.

Sorva (2007)

114 ObjState The name of the variable that the object was most recently
assigned to is a part of an object’s state.

Sorva (2007, 2008)

115 ObjState Storing an object in memory means storing a copy of the
program code of the object’s class.

Sorva (2007)

116 ObjState Storing an object means storing the constructor parameters
given upon object creation. These parameter values
unambiguously define the object. (Methods do not affect
state.).

Sorva (2007)

Continues on next page
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Table A.1 continued

No. Topic Description Source

117 ObjState You can define a (Java) method that adds an attribute to
the class.

Ragonis and Ben-Ari (2005a)

118 ObjState Objects of a simple class, used as values of the attributes
of a composed class, have to be identical.

Ragonis and Ben-Ari (2005a)

119 ObjState In a composed (Java) class, you can develop a method that
adds an attribute of a simple class to the composed class.

Ragonis and Ben-Ari (2005a)

120 ObjState In a composed (Java) class, you can develop a method that
removes an attribute of a simple class from the composed
class.

Ragonis and Ben-Ari (2005a)

121 ObjState Objects of the same class cannot have equal attribute
values.

Ragonis and Ben-Ari (2005a)

122 ObjState Attributes of the simple class must be directly accessed from
the composed class instead of through an interface.

Ragonis and Ben-Ari (2005a)

123 ObjState Objects are allocated the same amount of memory
regardless of definition and instantiation.

Kaczmarczyk et al. (2010)

124 Methods Objects ‘know’ which methods are operating on them
(rather than method calls ‘knowing’ which object they
operate on).

Sajaniemi et al. (2008)

125 Methods Cannot have methods with the same name in different
classes.

Fleury (2000); Ragonis and
Ben-Ari (2005a)

126 Methods The dot operator can only be applied to methods. Fleury (2000)

127 Methods You can define a method that replaces the object itself. Ragonis and Ben-Ari (2005a)

128 Methods You can define a method that destroys the object itself. Ragonis and Ben-Ari (2005a)

129 Methods You can define a method that divides the object into two
different objects.

Ragonis and Ben-Ari (2005a)

130 Methods Methods can only do assignment. Holland et al. (1997)

131 Methods Methods from the simple class are not used; instead,
new equivalent methods are defined and duplicated in the
composed class.

Ragonis and Ben-Ari (2005a)

132 Methods You can invoke a method on an object only once. Ragonis and Ben-Ari (2005a)

133 Methods Difficulties in understanding that a method can be invoked
on any object of the class.

Ragonis and Ben-Ari (2005a)

134 Methods Methods can only be invoked on objects of the composed
class, not on objects of the simple class defined as values in
its attributes.

Ragonis and Ben-Ari (2005a)

Continues on next page
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Table A.1 continued

No. Topic Description Source

135 Methods After a composed class is defined, new methods cannot be
defined in the simple class.

Ragonis and Ben-Ari (2005a)

136 Methods A (Java) method must always be invoked on an explicit
object.

Ragonis and Ben-Ari (2005a);
Hristova et al. (2003)

137 Methods Static and dynamic existence of methods mixed up. Sajaniemi et al. (2008)

138 Methods Methods that are declared in a simple class have to be
declared again in a composed class for each of the simple
objects.

Ragonis and Ben-Ari (2005a)

139 OtherOOP There is no need for mutators and accessors for attributes
that are of a simple class within a composed class.

Ragonis and Ben-Ari (2005a)

140 OtherOOP Object lookup involves searching through each object in
memory for a suitable ID.

local

141 OtherOOP Objects are stored in folders on the hard drive and lookup
means searching through them.

local

142 OtherOOP An object is just a piece of code (and not a dynamic actor
at runtime).

Eckerdal and Thuné (2005)

143 OtherOOP An object is just a record. Holland et al. (1997)

144 OtherOOP An object is a ‘way of working’ consisting of action:
expressions, return expressions etc. It has a control flow.
No concept of state.

Vainio (2006)

145 OtherOOP Difficulties in understanding how one class recognizes
another.

Ragonis and Ben-Ari (2005a)

146 OtherOOP Difficulties in understanding inheriting functionality
(methods).

Détienne (1997)

147 OtherOOP Difficulties in understanding how the computer knows what
class attributes and methods are.

Ragonis and Ben-Ari (2005a)

148 OtherOOP Assignment confused with subclassing. Ma (2007)

149 OtherOOP Inheritance hierarchies express the parts of composite
classes.

Détienne (1997)

150 Misc Difficulties understanding the effect of input function calls
on execution.

Bayman and Mayer (1983);
du Boulay (1986); Putnam
et al. (1986)

151 Misc Confusion between an array and its cell. du Boulay (1986)

152 Misc Difficulties with dealing with 2D array subscripts and
dimensions.

du Boulay (1986)

Continues on next page
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Table A.1 continued

No. Topic Description Source

153 Misc Difficulties with arrays containing indices as data. du Boulay (1986)

154 Misc Values of conditional expressions get printed out. Putnam et al. (1986)

155 Misc Numbers are just numbers. (Why have ��� and �����

separately?)
Hristova et al. (2003)

156 Misc A type is a set of constraints on values. Vainio (2006)

157 Misc Types can change on the fly (in Java). Vainio (2006)

158 Misc Confusion between data in memory and data on screen. Bayman and Mayer (1983)

159 Misc The computer keeps what has been printed in memory (as
part of state?).

Bayman and Mayer (1983)

160 Misc Confusing textual representations with each other, e.g., the
string “456” with the number.

du Boulay (1986)

161 Misc Boolean values are just something used in conditionals and
not data comparable to numbers or strings.

local

162 Misc A ��� loop control variable constrains the values that can
be input within the loop.

Putnam et al. (1986); Sleeman
et al. (1986)
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Appendix B

Example Programs from Course
Assignments

Below is the program code used within UUhistle in the program-reading assignments of the CS1–Imp–Pyth
course in spring 2010 (see Section 16.4). This includes both animations and visual program simulation
exercises.

The identifiers and string literals used below roughly correspond to the original Finnish ones seen by
the students.

Assignment 1.1 (animation)

����� � ��� 	 �
�

���� � ����� � 
���
��

Assignment 1.2 (VPS)

������� � ���

���������� � ��� � ������� 	 ��

Assignment 1.3 (VPS)

����� � ��

����� � ���

��� � �����

����� � �����

����� � ��� 

Assignment 1.4 (VPS)

����� � �

����� � ����� 	 �

����� � � 	 �����

����� � ����� 	 �����

Assignment 1.5 (animation)

���� � ��!"�� ��#$%��� �� &�� ����'$(

 ���� $)���*����� ����+$+ ����

Assignment 1.6 (VPS)

������� � ��!"�� ��#$,���� ��� ������� �� �������-$(

���������� � ��� � ����#�������( 	 ��

 ���� ����������
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Assignment 1.7 (VPS)

����� � ��	�
��������
����
�� � ����� �� ������� ���������

����
 ����
 ���� ����� � ��� �!"� ����	���

Assignment 2.1 (animation)

���� � �������
����
�� � ���#�����

���#�� � ��	�
������

�� ���#�� $ �%%%�

����
 �&�' ( ��	��' ��)� ���� 
�� 	�� 
��
 *	
 ���+,�

�����

����
 ����
 �� ��� +	� *	
,�

����
 ���� ��'��

Assignment 2.2 (VPS)

'��	����
	� �  

�� '��	����
	� �� %�

����
 �-���� .	���� '�)�'�� #+ /��	� +	� '	 �	
��

�����

����
 0%%% � '��	����
	�

Assignment 2.3 (VPS)

�*� � 1�

�� �*� $� %�

�'��
 � �*� $� 0!

�� �'��
�

����
 �&'��
� �� �*� 2 03

�����

����
 �4�
 � ����'� �� 03 2 �*�

����
 �'��


�����

����
 �5�� �	� 
�� ��
�����

����
 )�	'�


Assignment 3.1 (animation)

6578&.4 � "

� � %

��� � %

����� � 9 6578&.4�

���� � �������
����
�� ����������
���

��� � ��� : ��	�
������

� � � : 0

����
 �&)���*���� ��� � 6578&.4

Assignment 3.2 (VPS)

� � %

����� � 9 !�

� � � : 1

����
 �

� � � : 0

����
 �
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Assignment 4.1 (animation)

��� �������	
�� 
	�����
�����

����� ������ �	
�

������ 
	�����
��� � �

������ � ���������	 ��� ���������� ��

����� ������ � �

����� ������� ��	�!"���� ###�

Assignment 4.2 (VPS)

��� �������$����

���� � �	%������������� 	 ���� �� ���$����

������ �$%

����� � �������$���

����� ��$	��������

Assignment 4.3 (VPS)

��� 	���	��������� ��$����

������ ��$�� � & � �����

������ � 	���	���'� &�

������ � 	���	���������� ������ � ��

Assignment 4.4 (VPS)

��� 	���	��������� ��$����

�����
���	�� � ����� ! ��$��

������ �����
���	�� � �����
���	��

��� 
	�����

��
���� � �����	%������������� 	� �����������

��
���& � �(

�����
���	�� � 	���	�����
����� ��
���&�

����� �����
���	�� � &


	����

Assignment 5.1 (animation)

��� ��)����$��	
�� 	����

������ �����	
�� *� ( 	�� 	�� *� (

��� ���������$��	
�� 	����

�� �$� ��)����$��	
�� 	����

������ +	���

����� �+���� �	
���� �	
�

����� �"�� �,�	������ 	��

������ -���

�� ���������$��.$�	��� ����

����� ���������$��/��%���� !�(((�
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�����

����	 
��		�� ��� ���	 	����


Assignment 5.2 (animation)

��� �����	������	� �������

��	��� ����� � � � ����	

��� ���������������

��	��� ������ � �

����	 �����������������

����	 �����	������������ � � �����	���� ���

Assignment 8.1 (animation)

��� ���	 �������� ���	��

�� ���	 ! "�

��#��	 $ ����	���# ����	�
%�	�� � �������
��

��	��� ���	 ������� � ��#��	� ���	 & ��

�����

��	��� ���

����	 
'(� ��� �� 	(� ������� ���
� ���	 ����"� ��

Assignment 8.2 (VPS)

) *�	������� 	(� ��	����� �� � ����	�+� ��	�,���

��� ��	����

�� � - ��

��	��� �

�����

��	��� ��	��&�� � �

����	 
�����	�
� ��	���

Assignment 9.1 (animation)

���� $ .����"�

������������/"�

����� $ ������������0"�

����	 �����

��������+�����

����	 �����,�	 ������

����� �� $ .���0"�

����� �����������"�

The execution of the above code was animated. In addition, the following class was built into the
assignment as ‘hidden code’ (see Section 13.3), and worked as a black box.

���� .���

��� ���	������ 	��� ����	1��

�����  	��� ����	1 $ 	��� ����	1

�����  ,�� $ "
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��� �����������	 �
�����

�������������� � �
���
����	 �����������������
�� � �����������

���������� � ���������� � ��������������

������ ��������������

��� ��
�������	 ��������
���


� ���������� � ��������
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������ �����

���������� � ���������� � ��������
��

������ ����

��� ��������������

������ ����������

Assignment 9.2 (VPS)

�
�� �  ���!"�

�
����������#"�

$%���� �  ���&'�

$������� � �
��

$���������������('�

��
�� �
�������������

��
�� $������������������

$������� � $%����

��
�� $������������������

This VPS assignment used the same (hidden) car class as the previous animation.

Assignment 9.3 (animation)

�����  ��

��� ��
�
��������	 ����������
���

�����������������
�� � ����������
��

���������� � '
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���
����	 �����������������
�� � �����������
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���������� � ���������� � ��������
��

������ ����

��� ��������������

������ ����������

�
�� �  ���"'�

�
����������!'�

����� � �
����������&'�
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�� �����
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Assignment 9.4 (VPS)

����� �������

��� ������������� ���������� ����������
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����������� � ���������
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Appendix C

Example Programs from Experiment

These programs were used in the experiment from Chapter 19.
The identifiers and string literals used below roughly correspond to the original Finnish ones seen by

the students.

Initial example

This code was shown to the treatment group as a UUhistle v0.2 animation and explained to the control
group textually, line by line.

����� � � �	
 �
 �	
 � 

����� �������

������ � � �
 �
 �� 

����� ������

�������� � �������� � �

����� ��������

First VPS task

This code was given to the treatment group as a VPS exercise. The control group was also provided the
correct output and asked to figure out and explain why the program worked as it did.

����� � � �	
 �
 	 

������� � ��

����� � �������

����� �����

������ � � �
 �
 �
 ����� 

����� ������������

����� � ������

�������� � �		

����� ������

����� �����

������ � �����

����� ������

Second VPS task

��� ����������
 ����� !

���� � ����

���� � ��
 �����	

���������� � �����	

������ ������
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��� �����	
���	 ������	��

���	��� � ������	

��	��� ���	

���	 � �������� ���	���� ��������

����	 �����
���	 ��

������ � �����	
�������� ��������� �������� ����������

	���� � �����	
������ �������

����	 ���	

����	 ������

����	 	����

Q1 (pretest and post-test)

The pre- and post-test questions required the students to produce the correct output of the program.

� � �   ! " �  �

����	 ����

������ � #

� � � � ! ������ �

����	 ��#�

��#� � ��

� � �

��������� � #�

����	 �

����	 �

����	 �

Q2 (pretest and post-test)

��� ������	
���

����	 ����

��� ���$��
� ���

����	 ����

��	��� �

� � � # !   ! �

� � � ! % � �

������	
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���$��
� ��

���$��
� ���$��
� ������

Q3 (pretest and post-test)

��� �����&��
���	 ���	�����
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���	��� � 	���
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Q4 (pretest and post-test)
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Appendix D

3×10 Bullet Points for the CS1 Teacher

Why should I use VPS in my introductory programming course?

• VPS can help students learn to read program code.

• VPS addresses something important: what happens behind the scenes as programs get executed.
That is, the hidden stuff that causes problems for novices (perhaps especially in OOP).

• VPS makes what is often left tacit or glossed over not only visible but manipulable.

• VPS can help prevent misconceptions about programming concepts and constructs, and to improve
on existing ones.

• Students who fail to develop a dynamic perspective on programs and the ‘notional machine’ that
runs them can get badly stuck, unable to learn about further concepts.

• VPS is a cognitively engaging form of visualization use; the learner can’t just ‘press play’ and switch
off.

• VPS can illustrate to novices what to keep track of when tracing programs, and can serve as a
stepping stone towards the use of regular debuggers.

• Tool-supported VPS provides a form of deliberate practice that can help a principled mental model
of program execution become ingrained.

• A VPS system can automatically assess students’ solutions and give automatic feedback, saving
staff resources.

• A tool-supported VPS exercise only takes a few minutes of student time, and even a bunch of them
doesn’t take that much time.

I’m not convinced. . .

• You learn to program by programming! Answer: I agree that you don’t learn to program without
programming. However, other learning activities can help, too. In fact, there is plenty of evidence
that shows novices don’t learn to solve problems best by only solving problems. (See Section 4.5.)
Studying existing programs is also useful.

• Too much hand-holding. Many people just don’t have what it takes to program. You’re perpetuating
your storm-in-a-teacup field of research. Answer: VPS and this thesis are indeed useless for the
purpose of building a panning-for-gold CS1 that seeks to get rid of the ones that “aren’t good
enough to be programmers”. Lister (2011a) has recently discussed how we might transcend the old
“Is programming an innate ability?” debate through a neo-Piagetian perspective, which recognizes
that the ability to reason in abstract conceptual terms about programs comes spontaneously to
some people, but that many others can also be taught this (domain-specific) form of reasoning.

378



Already now, and especially in the future, a lot of people will need to learn at least the basics of
programming. Some hand-holding is needed.1

• The basics are really not that hard. The students are just not putting in the effort, that’s why they
struggle with CS1. Answer: That is a problem in some cases (and good pedagogy can help with
that, too!), but there definitely are many CS1 students at many institutions who are working hard
but failing (see, e.g., Mason and Cooper, 2012).

• My students are already overloaded with content. I can’t fit in the ‘notional machine’, too.
Answer: It’s already in. Your students deal with a notional machine, anyway – it is implied by
the programming language whether it is made explicit in teaching or not. VPS makes the machine
tangible.

• VPS doesn’t address the big problem of CS1: even when students get how the individual statements
work, they don’t know how to put them together. Answer: That is one of the big problems of CS1.
There are other significant ones. (See, e.g., Section 5.6.) VPS doesn’t directly address that problem,
but practice with lower-level issues can alleviate the cognitive load inherent in program authoring.

• VPS is a really artificial activity. Also, students just reproduce what the system wants them to
‘know’. To develop authentic professional skills, we need authentic activities. Answer: Authenticity
is important, too, but not all useful learning requires it. Cognitive overload from authentic complexity
is a big concern in what comes to beginners. We need to find a balance through a combination of
learning activities. (See, e.g., Section 10.1.)

• The visualization and the VPS controls are too much work for students to learn. Answer: There is
an overhead, and it is true that he usability and cognitive demands of VPS interfaces must be further
investigated. Embedding a single VPS assignment in a course is probably not worth it. Still, in our
studies, many students had no great trouble with the GUI and the usability of our proof-of-concept
prototype received generally positive reviews.

• It’s easier to just stick to explaining how programs work and/or having students view program
animations. Answer: Those techniques can also be useful, but have a potential weakness in learner
engagement. Future research can tell us more about the relationship between program animation
and VPS, but the overall message from educational software visualization research is that it is
a good idea to require students to actively do things with visualizations. In our experiment (in
Chapter 19), for certain content, VPS was more effective than having students read explanations
and analyze code without a visualization. Future VPS systems may be increasingly efficient in giving
personalized feedback and directly addressing students’ misconceptions in ways that less interactive
presentations cannot (cf. Section 15.3).

• I prefer to have my students draw program state diagrams themselves and/or role-play program
execution in the classroom. Answer: Those techniques can also be useful, but are somewhat
cumbersome. Tool-supported VPS enables convenient practice on many programs at the learner’s
own pace, and automatic assessment and feedback. It is compatible with large-class scenarios and
distance education.

• You sound awfully positive, considering your thesis has demonstrated that many students didn’t
get VPS and used mechanical trial and error to get past assignments. Answer: Many did get it
and did learn from it, too. VPS encourages cognitive engagement with a visualization, but doesn’t
guarantee engagement. It can be useful, even if it isn’t useful all the time and for everyone. Our
research has also suggested how to improve the impact of VPS. . .

1I hope nobody interprets me as saying that VPS is meant for the untalented. There is evidence within this very book
that it is possible for smart and experienced students, too, to learn from VPS.
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Okay, what should I take into consideration as I adopt VPS?

• Don’t assume students will just get the point of VPS on their own. A good introduction to the
visualization and VPS is essential. First impressions matter. It is important that students get the
idea early that VPS can help them. A learning tool is only as good as what the learner makes of it.

• Integrate the visualization into the rest of the learning and teaching environment. Use program
animation in class to explore puzzling questions on program behavior (e.g., to explain new
constructs and to explore bugs). Use the visualization to demonstrate the non-viability of common
misconceptions. Link animations and VPS assignments to other assignments and make explicit how
they are connected (e.g., a VPS assignment prepares for a program-writing assignment).

• Use the visualization and VPS throughout CS1.

• Example selection is key. Program examples must illustrate how underlying principles – of evaluation
order, reference semantics, etc. – make a real difference to program behavior. Misconception
catalogues (e.g., Appendix A) can inspire the design of examples.

• Students will learn about what they think about. They think about what the visualization system
makes relevant for them. Carefully consider the learning goals of each VPS assignment and the
expected user interactions within the VPS system, and make sure they are well aligned. Use
hybrid forms of program visualization: VPS combined with popup dialogs, multiple-choice questions,
program animation – anything to draw students’ attention to the important things.

• Instructions and program animations help students learn to do VPS, but students often don’t pay
much attention to them. Provide incentives to pay attention. If possible, have students work on
VPS during supervised sessions or provide initial training (with personal feedback from tutor) in
how to make the most of VPS. Make sure you don’t only provide instructions and feedback on the
operational level; also address the underlying concepts.

• Listen to how your students reason as they do VPS. Engage them in dialogue. Guide them towards
the intended object of learning. Have students explain program behavior to themselves, to you, or
to a partner. When students get stuck, encourage them to focus not on GUI operations but on
what the next step in the program’s execution is. Discourage superficial VPSing tactics by showing
how conceptual reasoning leads to the right answers.

• Analyze students’ mistakes. VPS can help discover how students think. Encourage students to
analyze their own mistakes, too.

• Be sensitive to the weaknesses of VPS. Some students rely on trial and error tactics or guessing based
on superficial resemblances between code and graphical elements. Some students don’t associate
the visualization with computer behavior, and some don’t see the connection between computer
behavior as presented in VPS and authentic programming skills. Tedium and a lack of focus on key
concepts are genuine threats to the success of VPS that must be fought through careful assignment
and system design. Accept that not everybody will enjoy VPS.

• Explore the variation in your students. Some of them might benefit more from VPS than others
(who have more programming experience, perhaps, and less trouble with program dynamics). VPS
could be targeted at only some of the students while others work on other assignments.
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Appendix E

Statement of the Author’s Contribution

• The review of program visualization systems that appears in Chapter 11 was conducted by the
author of the thesis in collaboration with Ville Karavirta and Lauri Malmi. The author had a leading
role in this work.

• The software system introduced in Chapter 13 is joint work by the author of the thesis and Teemu
Sirkiä as described at the beginning of the chapter. Parts of Chapters 13 and 15 are based on joint
publications with Teemu Sirkiä, in which the author of the thesis was the primary author.

• Part V describes empirical studies which were conducted by the the author of the thesis in
collaboration with Lauri Malmi, who participated in research design and the analysis of data. Kimmo
Kiiski and Teemu Koskinen aided with data collection, as did Jan Lönnberg, who also participated
in the analysis described in Chapter 17. Some more details on the researcher roles in each study
can be found in the corresponding chapters. The author of the thesis had a leading role in all the
empirical work described.

• Except as noted above, the work is that of the author. He has written all the chapters of this book.
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