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We propose a mesoscopic setup which exhibits strong and manifestly non-Gaussian fluctuations of

energy and temperature when suitably driven out of equilibrium. The setup consists of a normal metal

island (N) coupled by tunnel junctions (I) to two superconducting leads (S), forming a SINIS structure,

and is biased near the threshold voltage for quasiparticle tunneling, eV � 2�. The fluctuations can be

measured by monitoring the time-dependent electric current through the system. This makes the setup

suitable for the realization of feedback schemes which can be used to stabilize the temperature to the

desired value.
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In a (grand) canonical ensemble at temperature T, the
total internal energy of the system fluctuates, owing to the

fluctuating energy and particle flows between the system

and the thermal bath. It is a fundamental result of

equilibrium statistical mechanics that the variance of en-

ergy is given by VarðEÞ ¼ kBCðTÞT2, CðTÞ being the

(temperature-dependent) heat capacity of the system [1].

For a system with a large number of degrees of freedom,

the fluctuations are small and can be regarded as Gaussian.

In many systems, the internal relaxation rate is much

faster than the rate of energy exchange with the environ-

ment. In this quasiequilibrium case, the probability distri-

bution of the system is thermal with some effective

temperature T, which is unambiguously related to the

instantaneous total energy of the system E via dE=dT ¼
CðTÞ. The fluctuations of energy and effective temperature

are thus the same. In a driven system, the energy is not

necessarily Boltzmann-distributed, so that the correspond-

ing ensemble is non-Gibbsian. Moreover, the fluctuations

of energy or temperature are not generally Gaussian.

However, in systems with a large number of degrees of

freedom, these properties are usually nonaccessible: The

effective temperature is close to its average value, deter-

mined from the heat balance, and its fluctuations are small

and Gaussian. Recently, fluctuation statistics of effective

temperature have been studied in noninteracting electron

islands [2] and overheated single-electron transistors [3,4].

Typically, the non-Gaussian effects are noticeable only for

large and therefore exponentially improbable deviations

from average values.

In this Letter, we demonstrate the feasibility of strong

fluctuations of temperature and the manifestly non-

Gaussian distribution of these fluctuations in a mesoscopic

system with a large number of degrees of freedom. The

system is a SINIS structure, shown schematically in Fig. 1,

where a normal metallic island (N) is connected to two

superconducting leads (S) via tunnel junctions (I), and

biased close to the threshold for quasiparticle tunneling,

eV � 2�, � being the energy gap in the superconductors.

The cause of these fluctuations is the interplay of regular

quasiparticle tunneling and two-electron Andreev

tunneling.

In this setup, the temperature fluctuations can be easily

and quickly monitored by measuring the electric current—

no separate thermometers are necessary. This permits a

practical realization of a feedback scheme where the fluc-

tuations are coupled to certain control parameters of the

system, so-called Maxwell demons [5–7]. For example,

when the system fluctuates to a low temperature, the tunnel

junctions could be ‘‘switched off,’’ trapping the system at

this temperature [8]. In one parameter regime discussed

below, it is possible to reach an extremely low effective

temperature this way.

The basic physical mechanism responsible for the strong

non-Gaussian fluctuations predicted here is the competition

FIG. 1 (color online). (top) SINIS structure biased at voltage

eV � 2�. The normal metallic island is connected via tunnel

contacts to superconducting reservoirs. The effective tempera-

ture on the island, T, fluctuates due to fluctuations in the energy

flows to the leads. (bottom) Energy diagram of the system for

eV < 2�, showing the BCS density of states in the leads and the

Fermi distribution on the island. The first-order processes (single

red arrow) are thermally activated. The second-order processes

(two blue arrows) occur at all temperatures and correspond to

incoherent tunneling of Cooper pairs.
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of quasiparticle and Andreev tunneling. Below and up to

eV ¼ 2�, the quasiparticle tunneling processes cool the

island, each tunneling event extracting on average an energy

of kBT � �. This is the well-known cooling mechanism in

SINIS structures [9–11]. Andreev tunneling, a process

where a Cooper pair in the superconductor is converted

into two quasiparticles in the normalmetal [12,13], deposits

a relatively large amount of energy, 2�, on the island.

Energy and effective temperature are related by E ¼
�2k2BT

2=ð6�Þ, � � � being the single-particle level spac-

ing on the island, inversely proportional to its volume. A

single Andreev event therefore heats the island to a tem-

perature of at least kBTt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
12��

p
=�. Owing to the heat

balance, the rate of Andreev processes �A should be by a

factor of kBT=� smaller than the rate of quasiparticle

tunneling. To this end, we may disregard the randomness

in the quasiparticle flow and characterize the deterministic

energy relaxation due to quasiparticles by a typical time �r.
The regime of manifestly non-Gaussian fluctuations

requires a low Andreev rate, �A�r & 1, implying [14]

that all transmission eigenvalues Tp of the junctions should

be small, F � P
pT

2
p=
P

pTp � 1 being a crucial parame-

ter. This requirement is experimentally feasible: The

Andreev events can be resolved in time [15], and F ’
10�5–10�6 for aluminum junctions [16]. Moreover, the

reservoirs should be kept at a low temperature and the

island should be small such that it can be cooled down to

temperatures of the order of Tt, bringing the average total

energy of the island down to the order of � [17]. In

addition, we need to avoid the Coulomb blockade regime,

so that the dimensionless conductance of the junctions

should satisfy g � G=GQ * 1, GQ ¼ e2=ð�@Þ. Finally,

the heat exchange processes not involving electron trans-

fers should be small enough not to disturb the competition

between Andreev and quasiparticle events.

Under these conditions, each Andreev tunneling sub-

stantially increases the temperature of the island. This

increase is followed by the deterministic cooling at the

time scale of �r, and the temperature remains low until the

next Andreev event (see an example time line in Fig. 2).

The distribution of temperature is mainly determined by

the deterministic cooling and is strongly non-Gaussian. At

an increased Andreev rate, �A�r 
 1, the deterministic

cooling is too slow to substantially decrease the tempera-

ture between the Andreev events and the energy or tem-

perature fluctuations become small and Gaussian.

With these assumptions, the time evolution of the proba-

bility distribution function for the total energy on the

island, P ðEÞ, satisfies a Fokker-Plank equation

@tP ðEÞ ¼ �@E½ _HqpðEÞP ðEÞ� þ �A½P ðE� 2�Þ � P ðEÞ�:
(1)

Here, the first term on the right-hand side describes the

deterministic relaxation due to quasiparticles, _HqpðEÞ
being the energy flow of the quasiparticles, while the

second term describes stochastic Andreev events with a

rate �A. We assume a symmetric setup [19] and a bias

voltage of eV � 2� 
 kBT. Under these assumptions, the

energy flow reads [18]

_Hqp ¼ �
ffiffiffi
2

p
g

@�
ðkBTÞ3=2�1=2F½ð�� eV=2Þ=ðkBTÞ�;

FðxÞ ¼ �
�
�

�
3

2

�
Li3=2ð�e�xÞ þ �

�
1

2

�
xLi1=2ð�e�xÞ

�
: (2)

FðxÞ is positive at x > 0, changing its sign at x � �0:72.
Correspondingly, the quasiparticles always cool the island

at eV < 2�. At eV > 2�, they fix the temperature of the

island to kBT � eV=2�� [11]. The Andreev rate is given

by [14,20]

�A ¼ gF
�

4�@
ln½2�=maxð�� eV=2; kBTÞ�: (3)

It exhibits a weak logarithmic dependence on voltage and

temperature that we disregard in the following.

Let us determine proper scales and corresponding di-

mensionless variables in the parameter region of interest.

The natural scale for the total energy is �, and we intro-

duce a dimensionless energy, 
 ¼ E=ð2�Þ. The island

temperature in these units is given by T ¼ Tt

ffiffiffi



p
, and

the natural scale for the bias voltage is correspondingly

FIG. 2 (color online). (top) Example time lines of energy

(solid blue lines) and electric current (dashed red lines) for eV ¼
2�. Deterministic energy relaxation due to quasiparticle tunnel-

ing is characterized by a time scale �r, relaxation time from E ¼
2� to E ¼ 0 being 4�r for eV ¼ 2�. Andreev tunneling happens
randomly at a rate �A. Current and energy are related by Eq. (8).

(bottom) Voltage-Andreev rate ‘‘phase’’ diagram of the SINIS

structure [u ¼ ðeV=2��Þ=ðkBTtÞ, � ¼ �A�r]. Regions 1, 2,

and 3 exhibit non-Gaussian fluctuations.

PRL 108, 067002 (2012) P HY S I CA L R EV I EW LE T T ER S
week ending

10 FEBRUARY 2012

067002-2



u ¼ ðeV=2� �Þ=ðkBTtÞ. In these units, the quasiparticle

energy flow is

_Hqp ¼ � 2�

�r

3=4Fð�u=

ffiffiffi



p Þ;
@

�r
� g

�
ðkBTtÞ3=2=ð2�Þ1=2:

(4)

Dimensionless time is naturally expressed as � ¼ t=�r.
The condition for manifestly non-Gaussian fluctuations

discussed, �A�r � � & 1, can thus be expressed in terms

of the tunnel parameter F , F & ðkBTt=�Þ3=2 ’ ð�=�Þ3=4.
It is precisely the existence of this additional small pa-

rameter of the order of �=� which allows us to reach the

regime of non-Gaussian fluctuations.

The Fokker-Planck equation for the dimensionless var-

iables reads

@�P ð
Þ ¼ �@
½�
3=4Fð�u=
ffiffiffi



p ÞP ð
Þ�
þ �½P ð
� 1Þ � P ð
Þ�: (5)

Its stationary solution depends on two dimensionless pa-

rameters u and �. There are six qualitatively different

regimes, shown in Fig. 2, which we analyze briefly below.

If the stationary distribution is Gaussian, we can expand

the differenceP ð
� 1Þ � P ð
Þ in derivatives. In this case,
the average energy is determined from vð
Þ �

3=4Fð�u=

ffiffiffi



p Þ ¼ � and the variance can be estimated by

Varð
Þ � ½@
 lnvð
Þ��1, Varð
Þ 
 1 for a Gaussian distri-

bution. There is a lower bound for the energy of the island

where the cooling rate vanishes. It is given by the condition

vð
Þ ¼ 0 with the result 
min ¼ ð1:39uÞ2 for u > 0 and


min ¼ 0 for u < 0.
Let us first concentrate on the case juj & 1, allowing us

to approximate Fð�u=
ffiffiffi



p Þ � Fð0Þ � 0:68. In the

Gaussian case, we have h
i ¼ 3
4 Varð
Þ ¼ ½�=Fð0Þ�4=3. In

terms of temperature, hTi / �2=3�=kB, independent of �.
This is regime 6 in Fig. 2. The crossover to non-Gaussian

behavior, regime 2 in Fig. 2, happens when h
i � 1, i.e.,
� � Fð0Þ.

In the case of u 
 1, the minimum energy is already

larger than �. However, at sufficiently small �, the distri-
bution near this minimum energy is non-Gaussian. We can

approximate vð
Þ by expanding it near 
min. Introducing a

new variable ~
 � 
� 
min, we obtain a simpler equation

Cu�1=2@~
½~
P ð~
Þ� þ �½P ð~
� 1Þ � P ð~
Þ� ¼ 0; (6)

where C � 0:41. In the Gaussian case (regime 5 in Fig. 2),

we have h~
i ¼ Varð
Þ ¼ u1=2�=C, with the crossover to

the non-Gaussian regime (regime 3 in Fig. 2) taking place

at � � Cu�1=2, i.e., at a smaller value of � compared to the

case of juj & 1. Qualitatively new behavior takes place

when h~
i � 
min, that is, when � * u3=2. In this case, we

can approximate Fð�u=
ffiffiffi



p Þ � Fð0Þ and recover the same

behavior as in the case of juj & 1 (regime 6).

Finally, in the case of juj 
 1, u < 0, the quasiparticle
rate is exponentially suppressed at low energies,

ffiffiffi



p
< juj.

Let us assume that the distribution is concentrated near

some value of energy 

 � u2. Using the approximation

FðxÞ � ffiffiffiffi
�

p
xe�x for x ! 1, we have near 
 � 



ffiffiffiffi
�

p juj
1=4
 e�juj= ffiffiffiffi




p
@~
½ejuj~
=ð2


3=2

 ÞP ð~
Þ� þ �½P ð~
� 1Þ

� P ð~
Þ� ¼ 0; (7)

where ~
 is the deviation from 

. In the Gaussian case, we

can estimate the variance as Varð
Þ � 2
3=2
 =juj.
Comparing this with unity, we conclude that the

Gaussian distribution is realized if 

 > ju=2j2=3 � juj,
i.e., if � * juj7=6 expð�21=3juj2=3Þ (regime 4 in Fig. 2).

For smaller �, the distribution is non-Gaussian (regime 1 in

Fig. 2). Upon further increase of �, 

 grows, allowing us

to again approximate Fð�u=
ffiffiffi



p Þ � Fð0Þ. It reaches u2 at

� � juj3=2, taking us back to regime 6. This is similar to

the situation with u 
 1.
The probability distributions for energy, calculated nu-

merically from Eq. (5), are shown in Fig. 3. We choose

three different values of u corresponding to the three non-

Gaussian regimes and vary � to observe the crossover to

Gaussian behavior.

The topmost figure shows the probabilities for u ¼ 0.
The distributions for the two smallest values of � are

strongly non-Gaussian, belonging to regime 2 in Fig. 2.

For larger �, the average energy grows, being proportional

to �4=3. The inset in the figure shows some realizations of

energy time lines corresponding to the distributions. For

small�, one can clearly see the difference betweenAndreev
events, which are Poisson-distributed and increase the en-

ergy by 2�, and quasiparticle processes, which steadily

cool down the island. For large �, the energy-increasing

and energy-decreasing processes look the same, character-

istic of a Gaussian distribution. As seen from the time line,

the energy on the island can reach zero and stay there for a

finite time, implying that the temperature goes to absolute

zero. In reality, the temperature would be about �=kB � Tt

when only a few particles are excited on the island, a

situation outside the scope of the present model.

The middle figure corresponds to u ¼ 1. Since u > 0,
the minimum energy is finite, 
min � 1:93. The distribution
for the smallest value of � is clearly non-Gaussian, belong-

ing to regime 3 in Fig. 2. For larger �, the average energy
grows linearly.

The last figure shows the probabilities for u ¼ �2.
Again, the distribution for the smallest value of � is non-

Gaussian, belonging to regime 1 in Fig. 2. Upon an in-

crease of �, the main body of the distribution transforms

into a Gaussian one and the average energy grows. The

tails of the distribution deviate from Gaussian even for the

largest � shown.

Since the electric current through the SINIS structure is

sensitive to the instantaneous temperature on the island, the
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statistics of internal energy and temperature can be gath-

ered by monitoring the instantaneous electric current. The

necessary relation is given by

I ¼ � e

�r

�

kBTt


1=4�

�
1

2

�
Li1=2ð�eu=

ffiffi



p
Þ; (8)

which can be numerically inverted. The time scale of

the fluctuations, �r, is of the order of 10 ns, and

the corresponding current scale, e�=ð�rkBTtÞ, is of the

order of 1 nA for � ¼ 10�4 K� kB, � ¼ 1 K� kB, Tt ¼
10 mK, and g ¼ 3, corresponding to a copper island of

volume V ¼ 0:01 ð	mÞ3 connected to aluminum

leads.

In summary, we suggest a prototypical setup utilizing

a voltage biased SINIS tunnel structure for the detection

of energy and temperature fluctuations out of equilibrium.

We have identified parameter regimes which exhibit

fluctuations that are both strong and non-Gaussian,

and we suggest that the measurement of instantaneous

electric current could be used to gather the statistics of

these fluctuating quantities. We have also described a

possibility to realize Maxwell–demon-like feedback

schemes.
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