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We study the nonequilibrium characteristics of superconducting tunnel structures in the case when one of the
superconductors is a small island confined between large superconductors. The state of this island can be
probed, for example, via the supercurrent flowing through it. We study both the far-from-equilibrium limit
when the rate of injection for the electrons into the island exceeds the energy relaxation inside it, and the
quasiequilibrium limit when the electrons equilibrate between themselves. We also address the crossover
between these limits by employing the collision integral derived for the superconducting case. The clearest
signatures of the nonequilibrium limit are the anomalous heating effects seen as a supercurrent suppression at
low voltages, and the hysteresis at voltages close to the gap edge 2 /e, resulting from the peculiar form of the
nonequilibrium distribution function.
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I. INTRODUCTION

New device concepts based on nonequilibrium effects in
superconducting mesoscopic tunnel structures have been
proposed in the last few years. These include Josephson
transistors, electron refrigerators, and thermometers.1,2 In
Josephson transistors the supercurrent flowing through a
superconductor–normal metal–superconductor �SNS� weak
link can be suppressed or even reversed in a � transition3–5

by driving the normal metal part out of equilibrium through
injection of charge carriers from additional terminals. When
the additional terminals are superconductors connected by
tunnel junctions, the supercurrent can also be enhanced.6

This transistorlike operation with large current and power
gain has also been experimentally demonstrated.7 Also, an
all-superconducting SISIS transistor �where I represents an
insulator� in the quasiequilibrium regime has been theoreti-
cally addressed.8 In the quasiequilibrium limit the electron-
phonon interaction is nearly absent and the sample can be
considered as detached from the phonon bath. The high fre-
quency of electron-electron collisions still serves as a
method of relaxation and the electrons assume a Fermi dis-
tribution but with a temperature that in general differs from
the temperature of the phonon bath. Here we study a similar
SISIS structure with arbitrary strength of the inelastic scat-
tering, seeking ways to characterize the degree of nonequi-
librium of the system. The paper is organized as follows. The
model of the SISIS structure is presented in Sec. II. All the
relevant equations and calculated results are presented in
Secs. III and IV, respectively. We finish with a summary and
a discussion in Sec. V, where we also address briefly the
feasibility of this structure as a transistor.

II. MODEL

The superconducting structure under study is schemati-
cally depicted in Fig. 1. We characterize the mean free path
that the electron travels before scattering by scattering
lengths lel for elastic scattering and le-ph and le-e for inelastic
electron-phonon and electron-electron scattering, respec-

tively. In mesoscopic systems typical orders of magnitude
are lel�10–100 nm and le-e�1–20 �m. The electron-
phonon scattering length depends strongly on temperature.
For a typical copper wire le-ph�21 �m at 1 K but at 100 mK
we already have le-ph�670 �m.1 In other metals these length
scales are of the same order of magnitude. The superconduct-
ing island in the middle is assumed to have small dimensions
so that L� le-e , le-ph, leading to weak energy relaxation via
inelastic scattering. As shown in the following, in this case it
is possible to drive the electron energy distribution of the
island out of equilibrium by quasiparticle injection from the
superconducting leads. The degree of nonequilibrium of the
island can then be probed, for instance, by measuring the
supercurrent driven through the island via an additional

FIG. 1. Scheme of the SISIS structure studied in this work. The
superconducting island �2� in the middle is connected with tunnel
contacts to four large superconducting leads �1, 3, 4, and 5�. The
control line is biased with voltage V, which controls the energy
distribution on the island. A supercurrent IS is driven across the
island from lead 4 to lead 5, and its magnitude depends on the
distribution function on the island. Each SIS junction is a tunnel
contact of resistance Ri.
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SISIS line. The leads are assumed to remain in thermal equi-
librium due to their large dimensions. We further assume that
the resistances of the tunnel contacts are large compared to
the normal-state resistance of the superconducting island.
This allows us to use the tunnel Hamiltonian approach, in
which each region has spatially constant, separate energy
distributions, independent of the directions of the momenta.

III. FORMALISM

A. Green’s functions in SISIS structure

We use the quasiclassical Keldysh Green’s function
formalism together with the tunnel Hamiltonian model in
describing our system. It has previously been successfully
applied to hybrid structures with normal metal and super-
conducting islands.10,9 The quasiclassical Green’s functions
in Nambu space can be written in a matrix form as

ĝ = 	 g f

− f† ḡ

 , �1�

where ĝ is either the retarded �advanced�, ĝR�A�, or Keldysh,
ĝK, Green’s function. In the tunnel Hamiltonian model
Green’s functions are isotropic with respect to the directions
of the momenta. In this case the retarded �advanced� func-
tions satisfy the steady-state Usadel equations9,11 and
Kupriyanov-Lukichev12 boundary conditions with solutions

gR�A� = − ḡR�A� = ±
E ± i�

��E ± i��2 − ��� ± i��2
,

fR�A� = f†R�A� = ±
�� ± i�

��E ± i��2 − ��� ± i��2
. �2�

Here  is the superconducting order parameter, �
=� j� jgj

R�A�, and �=� j� j f j
R�A�. The index j runs over the other

parts of the structure that are connected with tunnel contacts
to the region in question. The characteristic tunneling rate �
between superconductors is defined as � j = �4�e2 Rj�

−1,
where � is the normal-state density of states at the Fermi
level and  is the volume of the island. In the tunneling limit
�� and we may neglect the exact forms of � and � and
instead use some constant � and � in the numerical simula-
tions. Below, we choose �=10−4 and �=10−5. This value of
� has been experimentally verified in Ref. 2. The Keldysh
Green’s function for the system can be written with the stan-
dard parametrization as

ĝK = ĝR�fL + �̂3fT� − �fL + �̂3fT�ĝA, �3�

where �̂3 is the third Pauli spin matrix. Here we have also
used the odd- and even-in-E parts of the distribution func-
tion:

fL�E� = − f�E� + f�− E� ,

fT�E� = 1 − f�− E� − f�E� .

The full distribution function can be recovered with 2f�E�
=1− fL�E�− fT�E�. We also define

g�−� = Re gR =
1

2
�gR − gA� ,

f �−� = Re fR =
1

2
�fR − fA� ,

f �+� = Im fR =
1

2i
�fR + fA� .

The functions f �+� and g�−� are even in E and f �−� is odd. The
density of states is given by g�−�. The odd and even parts of
the nonequilibrium distribution function can now be found
from the kinetic equations presented in Ref. 9. The resulting
equations are

− 4J1�2e2 2 = g2,E
�−�G1�g1,E+�1

�−� �fL2 + fT2 − fL1 − fT1�

+ g1,E−�1

�−� �fL2 − fT2 − fL1 + fT1��

+ g2,E
�−�G3�g3,E+�3

�−� �fL2 + fT2 − fL3 − fT3�

+ g3,E−�3

�−� �fL2 − fT2 − fL3 + fT3�� , �4�

�8�2�fT2f2
�+� − 4J2��2e2 2

= g2,E
�−�G1�g1,E+�1

�−� �fL2 + fT2 − fL1 − fT1�

+ g1,E−�1

�−� �− fL2 + fT2 + fL1 − fT1��

+ g2,E
�−�G3�g3,E+�3

�−� �fL2 + fT2 − fL3 − fT3�

+ g3,E−�3

�−� �− fL2 + fT2 + fL3 − fT3�� , �5�

where Gi=1/Ri are the conductances of the tunnel contacts,
�i are the chemical potentials of the regions i, and Ji are the
collision integrals for the energy relaxation.

B. Order parameter and currents

The pair potential in the central island must be solved
self-consistently from the equation

�2� =
&

2
�

−EC

EC

dE fL2fE
�−�, �6�

where EC is the BCS cutoff energy and & is the electron-
electron interaction parameter. When a SIS junction is not
biased with an external voltage, the supercurrent flowing
across the junction is given by

IS
2→4 = −

1

2eR4
�

−�

�

dE��fL2f2
�−�f4

�+� + fL4f4
�−�f2

�+��sin�	4 − 	2�

+ �fT2 − fT4�g2
�−�g4

�−� + f2
�+�f4

�+�cos�	4 − 	2��� . �7�

The first part of the equation multiplying the sine term rep-
resents the usual dc Josephson relation where 	2,4 are the
macroscopic phases of the respective superconductors. The
term f2

�−�f4
�+� is finite only when 2�E�4 whereas the term

f4
�−�f2

�+� is finite when 4�E�2. The second part in Eq. �7�
usually vanishes because fT=0 in quasiequilibrium. If a finite
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charge imbalance develops on the island, fT2 deviates from
zero, and the second part contributes to the current as well.

If a voltage is applied across the junction the phase dif-
ference begins to evolve in time and the supercurrent aver-
ages to zero. In this case only the tunneling of quasiparticles
contributes to the current, so that we have

I1→2 = −
1

4eR1
�

−�

�

dE�g1,E+�
�−� g2,E

�−� �fL2 + fT2 − fL1 − fT1�

+ g1,E−�
�−� g2,E

�−� �− fL2 + fT2 + fL1 − fT1�� . �8�

The quasiparticles tunneling through the junction also carry
heat. The energy current is

IE
1→2 = −

1

4e2R1
�

−�

�

dE E�g1,E+�
�−� g2,E

�−� �fL2 + fT2 − fL1 − fT1�

+ g1,E−�
�−� g2,E

�−� �fL2 − fT2 − fL1 + fT1�� , �9�

which is used in determining the electron temperature in
quasiequilibrium.

C. Energy relaxation

In practice the inelastic scattering is never completely ab-
sent. At low temperatures the most relevant relaxation
mechanism is electron-electron scattering, which can be in-
cluded with e-e collision integrals. We may also study cases
where the dimensions of the island are no longer signifi-
cantly smaller than the electron-electron scattering length,
i.e., L� le-e� le-ph. The collision integral for a screened Cou-
lomb interaction in a diffusive wire is known13 and has been
used in the analysis of a SINIS system.6 It is strictly valid
only for a normal metal island, however. To get a qualitative
picture of the changes due to superconductivity in energy
relaxation, we apply instead a collision integral where the
structure of the Nambu space has been taken into account. In
the clean limit the potential of a distant electron is com-
pletely screened by all other electrons in the superconductor
and the electron-electron interaction can be approximated by
a point interaction. In this case the potential may be modeled
with a � function V�r�=�2&ee��r� and the collision integral
is14

J1
�ee��E3� = '��dE1dE2��gE1

�−�gE2

�−� − fE1

�−�fE2

�−���gE
�−�gE3

�−� + fE
�−�fE3

�−��

��1 − fE�fE1
fE2

fE3
− fE�1 − fE1

��1 − fE2
�

��1 − fE3
��� , �10�

where '=4&ee
2 � / pFvF, vF and pF are the Fermi velocity and

momentum, respectively, and the energies satisfy the conser-
vation law E=E1+E2+E3. The second collision integral J2

�ee�

vanishes in a left-right symmetric structure. We note that,
because the terms gE3

�−� and fE3

�−� in the kernel of the integral
assume very small values when �E3��, the collision inte-
gral has a very small effect on excitations inside the gap. On
the other hand, energy relaxation is strongest for excitations
at �E3�= due to sharp peaks at the edge of the gap in these
same terms.

IV. RESULTS

A. Full nonequilibrium

We begin by presenting the calculated distribution func-
tion along with the order parameter and electric currents for
the simplest, namely, left-right symmetric, case, where the
tunnel junction resistances are the same and reservoirs 1 and
3 are similar superconductors, i.e., R1=R3=R and �1�
= �3�= �L�. When the structure is biased with a voltage V,
the conservation of electric current forces the chemical po-
tentials of reservoirs 1 and 3 to �1=eV /2 and �3=−eV /2,
respectively.

1. Distribution function

The solution of the kinetic equations �4� and �5� in the
absence of energy relaxation �J1=J2=0� may be written in
terms of the full distribution functions as

f2 =
gE+�

�−� f1 + gE−�
�−� f3

gE+�
�−� + gE−�

�−� . �11�

This form is remarkably simple due to the symmetry of the
problem, and it can also be derived by considering the con-
servation of electric current.15 The distribution function is
plotted in Fig. 2 for various bias voltages at a bath tempera-
ture of 0.1TC. The critical temperature of the superconductor
is TC= �1.764kB�−10. With a small voltage bias fewer of the
states below the Fermi level are occupied whereas the occu-
pation is increased above the Fermi level. This increase in
excited quasiparticles can be interpreted as a heating of the
island. This anomalous heating effect stems from the as-
sumption of a finite � in Eq. �2�, i.e., from the presence of
quasiparticle states within the gap. In the absence of these
states, no anomalous heating is observed. Once the voltage is
increased above eV=L, the number of excited quasiparti-
cles on the island begins to decrease due to extraction to

FIG. 2. �Color online� Nonequilibrium distribution function for
the superconducting island at T=0.1TC. The cooling effect reducing
the number of excited quasiparticles as the voltage is increased is
evident. Here and below we denote 0=L�T=0� and TC is the
critical temperature of the leads.
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states right above the energy gap in the superconducting res-
ervoirs. This cooling effect is discussed in Refs. 1 and 2. In
Fig. 3 the distribution function is plotted at higher bath tem-
peratures for a bias voltage eV /0=3. At these temperatures
the reservoirs have more excited quasiparticles above and
below the gap, and the small notches at �E�=eV /2+L are a
result of their injection.

2. Order parameter

In order to measure the degree of nonequilibrium on the
island we must look for nonequilibrium-induced effects in
some measurable quantities, e.g., the supercurrent through
the island. First we calculate the magnitude of the order pa-
rameter with the self-consistency equation �6�. In general this
must be solved numerically. The magnitude of the order pa-
rameter of the island as a function of voltage at various bath
temperatures is shown in Fig. 4�a�. At T=0.1TC the odd-in-E
part of the distribution is effectively unchanged outside the
gap, giving the same result as for equilibrium. However,
once eV�2L the peculiar shape of the distribution makes it
possible to have a lower-value solution for the order param-
eter as well, giving rise to a hysteretic behavior with three
solutions. Once the voltage reaches eV=2�2+L� only the
smallest solution, namely, 2=0, is possible. This is due to
the fact that the order parameter can never exceed its zero-
temperature value. The multivalued behavior of the order
parameter can be interpreted as different minima and
maxima in the free energy.6,15 In this case the largest and
smallest values represent minima and the middle value rep-
resents a maximum. If we increase the voltage from zero, the
system stays in the free-energy minimum corresponding to a
superconducting state. Once we enter the hysteretic region,
thermal fluctuations may cause the system to jump to the
normal state, which is the other free-energy minimum. In the
absence of fluctuations, the system finally jumps to the nor-
mal state at eV=2�2+L�. If we now proceed by decreasing
the voltage, the jump to the superconducting state may again

occur somewhere in the hysteretic region. Once the voltage
is decreased enough, only the superconducting state is pos-
sible.

At higher bath temperatures the order parameter is ini-
tially in its equilibrium value, but increases along the voltage
as the island cools. In Fig. 4�b� the order parameter is shown
at T=0.7TC but for different zero-temperature ratios 2 /L
=TC2

/TC. For ratios 2 /L�0.7, the island is initially in the
normal state because the bath temperature is above its critical
temperature. Upon increasing the voltage, the island turns
superconducting once the electron distribution has features
sharp enough to support an energy gap.

3. Electric currents

Now we examine the effect that the magnitude of the
order parameter has on the electric current driven through the
island. In light of the results in the previous subsection the
measurements should be made at relatively high temperature
in order to fully bring out the variation in the energy gap.
Choosing a setup with a lower 2 /L ratio enables us to use
a lower absolute temperature and thereby also minimize the
electron-phonon relaxation, because the power injected into
the phonons depends on temperature as T5.16 The supercur-

FIG. 3. �Color online� Nonequilibrium distribution function for
the superconducting island at various bath temperatures for a volt-
age eV /0=3.

FIG. 4. �Color online� Order parameter as a function of bias
voltage at various bath temperatures �a� and ratios 2 /L �b�.
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rent through the island is calculated with Eq. �7� and it is
presented in Fig. 5 for various temperatures assuming a ratio
2 /L=0.3, which corresponds roughly to the Ti-Al combi-
nation. When the bath temperature is lower than the critical
temperature of the island, the initial heating effect with low
bias voltages is evident. In the cooling regime the bath tem-
perature has a negligible effect on the magnitude of the su-
percurrent. The hysteresis of the order parameter carries over
to the supercurrent but no � state is observed. It is illustra-
tive to compare these to the corresponding results in quasi-
equilibrium, where the high frequency of electron-electron
collisions forces the quasiparticles on the island to assume a
Fermi distribution. The electron temperature in quasiequilib-
rium can be obtained by demanding that the energy current
in Eq. �9� to the island vanishes �we also neglect the contri-
bution of electron-phonon interaction to the energy current�.
The supercurrent in quasiequilibrium is shown in Fig. 6. In
quasiequilibrium the heating effect is absent and the island
cools even with low voltages, resulting in an increase of the
supercurrent. Superconductivity is lost once the voltage ex-
ceeds eV=2�2+L�, just as in full nonequilibrium. The fall-
ing edge here is not hysteretic, however. A further means to
probe the degree of nonequilibrium is to voltage bias the
second SISIS line as well and measure the energy gap from
the I-V curve. The quasiparticle current flowing through the
probe junction in this case may be calculated with Eq. �8�.
The resulting I-V curve does not differ from its equilibrium
shape, in which the current has a discontinuous jump at eV
=2�2+L�.17 The value of 2 and its hysteresis change the
voltage at which the jump is observed, however.

B. Nonequilibrium with energy relaxation

When the energy relaxation due to inelastic electron-
electron scattering is taken into account, we are no longer

able to obtain an explicit expression for f2. In the left-right
symmetric case we must instead solve the resulting integral
equation

f2 =
gE+�

�−� f1 + gE−�
�−� f3 + �e2�2 2R1/g2,E

�−� �J1
�ee�f2�

gE+�
�−� + gE−�

�−� . �12�

The relaxation strength can be adjusted by varying the pa-
rameter Kcoll='e2�2 2R1. The distribution function calcu-
lated for various values of Kcoll is shown in Fig. 7. The
energy distribution gradually relaxes toward a Fermi distri-
bution upon increasing the strength of the relaxation. The
influence of inelastic scattering to the supercurrent is shown
in Fig. 8 for a structure consisting entirely of one type of a
superconductor. The enhancement of superconductivity is
suppressed as the electron-electron collisions drive the elec-
tron temperature of the central island toward quasiequilib-
rium. With the strongest relaxation the cooling effect is com-
pletely lost and the supercurrent drops smoothly to zero as
the voltage is increased. With the two largest strengths of

FIG. 5. �Color online� Supercurrent through the island in full
nonequilibrium as a function of bias voltage at various bath tem-
peratures with a ratio 2 /L=0.3. The arrows indicate the direction
the curve is traced when the bias voltage is varied. Thermal fluc-
tuations may cause the discontinuous jump to occur somewhere in
between the two extremes shown in the figure. The system is as-
sumed symmetric, i.e., R1=R3=R4=R5 and 4=5=L.

FIG. 6. �Color online� Supercurrent through the island in quasi-
equilibrium as a function of bias voltage with parameters identical
to those of the full nonequilibrium case presented in Fig. 5.

FIG. 7. �Color online� Distribution function for the supercon-
ducting island at eV /0=1.5 �left� and 3 �right� for various Kcoll

with T=0.7TC. Kcoll=� corresponds to quasiequilibrium.
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relaxation the hysteresis is lost as well. At larger voltages the
supercurrent is a nonmonotonic function of Kcoll, as the
supercurrent in quasiequilibrium �Kcoll=�� is significantly
larger than with moderate relaxation. This can also be seen in
the left part of Fig. 7, where the distribution function in
quasiequilibrium is sharper compared to the distribution with
Kcoll=10. This sharpness leads directly to a larger supercur-
rent. The curves with Kcoll=1 and Kcoll=2 show a small
jump in the supercurrent at voltages over eV=2. This corre-
sponds to a transition above which 4�2. By choosing a
setup where leads 4 and 5 have a different energy gap from
the rest of the system, this peak could be seen at different
voltages.

C. Asymmetric structure

Let us now examine an asymmetric situation, where R1
�R3 or 1�3. By solving the kinetic equations �4� and �5�
without relaxation we obtain quite lengthy expressions for
the odd and even parts of the distribution function

DfL2 = 4e2f2
�+��2 2�2��G1�fL1 − fT1�g1,E−�1

�−�

+ �fL1 + fT1�g1,E+�1

�−� � + G3�fL3 − fT3�g3,E−�3

�−�

+ �fL3 + fT3�g3,E+�3

�−� �� − g2,E
�−� �G12fL1G1g1,E−�1

�−�

+ �fL1 + fL3 + fT1 − fT3�G3g3,E−�3

�−� �g1,E+�1

�−�

+ G32fL3G3g3,E−�3

�−� + �fL1 + fL3 − fT1 + fT3�

�G1g1,E−�1

�−� �g3,E+�3

�−� � ,

DfT2 = − g2,E
�−� �G12fT1G1g1,E−�1

�−� + �fL1 − fL3 + fT1 + fT3�

�G3g3,E−�3

�−� �g1,E+�1

�−� + G32fT3G3g3,E−�3

�−�

+ �− fL1 + fL3 + fT1 + fT3�G1g1,E−�1

�−� �g3,E+�3

�−� � , �13�

where

D = 4e2f2
�+��2 2�2�G1�g1,E−�1

�−� + g1,E+�1

�−� �

+ G3�g3,E−�3

�−� + g3,E+�3

�−� �� − 2g2,E
�−� �G1g1,E−�1

�−� + G3g3,E−�3

�−� �

��G1g1,E+�1

�−� + G3g3,E+�3

�−� � .

The distribution functions depend on the volume, energy
gap, and normal-state density of states at the Fermi level, but
these can be included in dimensionless constants of the type
G / ��� e2. In the asymmetric case the potentials �1 and �3
must be chosen such that the electrical current is conserved.
This implies the vanishing of the total net current into the
island, i.e., I1→2= I2→3 calculated with Eq. �8�.

The supercurrent for 	4−	2=� /2 and different ratios
R1 /R3 is shown in Fig. 9. In an asymmetric structure the
magnitude of the order parameter seems to be close to its
value in the symmetric case with a voltage of eV
=2 max���1� , ��3��. This is reasonable because the distribu-
tion function in the region �E��max�1+ ��1� ,3+ ��3�� is
similar to the distribution in the symmetric structure as
shown in the inset. Superconductivity is lost once ��1��2
+1 or ��3��2+3. With high asymmetry ratios the poten-
tials differ very much from ±eV /2 and superconductivity is
lost at a lower bias voltage compared to the symmetric struc-
ture. Also the hysteretic region is evident.

Because the charge imbalance function fT is finite in an
asymmetric system, also the latter part of Eq. �7� may con-
tribute, depending on the phase difference between the su-
perconductors. Its magnitude can be investigated by setting
the phase difference to zero. In this case the electric current
is significantly smaller, of the order of 10−3eR4I /0, and
mostly due to quasiparticle current induced by the charge
imbalance. The charge imbalance leads to a difference in the

FIG. 8. �Color online� Supercurrent through the island as a func-
tion of voltage for various Kcoll with T=0.7TC. For the hysteretic
curves the arrows indicate the direction the curve is traced when the
bias voltage is varied.

FIG. 9. �Color online� Supercurrent through the island as a func-
tion of voltage for different degrees of asymmetry in the SISIS
control line. The arrows indicate the direction the curve is traced
when the bias voltage is varied. The inset shows the distribution
function on the island for a ratio R1 /R3=2 at eV /0=1.5. The dis-
tribution function exhibits small asymmetry due to finite fT as can
be seen by the additional notch at negative energies.
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chemical potentials between quasiparticles and the conden-
sate. The potential difference is given by9

e( = − �
−�

� dE

2
fT2g2

�−�. �14�

This quantity is shown in Fig. 10 for the superconducting
regime. The quasiparticle current depends linearly on this
potential difference. The equation for the supercurrent also
seems to imply a cos�	� dependence in the supercurrent.
This deviation from the dc Josephson relation is negligible,
however, because the integral over the supercurrent term
f2

�+�f4
�+� is three orders of magnitude smaller than over the

quasiparticle current term g2
�−�g4

�−�.

V. DISCUSSION

According to our results there are several measurable fea-
tures present in a nonequilibrium, all-superconducting, tun-

nel structure. The initial electron heating is seen as a strong
suppression in superconductivity of the central island when
the tunnel structure is biased with a low voltage. This is
observable when the bath temperature is slightly below the
critical temperature of the central island but well below the
critical temperature of the superconducting leads. The non-
equilibrium cooling effect together with the destruction of
superconductivity at eV=2�2+L� should be observable
with a wide range of configurations. The accompanying hys-
teresis with low or nonexistent relaxation can be seen in the
supercurrent as well. The magnitude of the energy gap could
be directly measured with a quasiparticle current probe,
where the jump in the current happens at a probe voltage of
eV=2�2+L�.

Due to hysteresis the application of this structure as a
transistor is unfeasible in states far from equilibrium. With
moderate to strong relaxation the hysteresis is absent and
does not hamper transistorlike operation. The sharp current-
voltage characteristics giving rise to high differential current
gain are lost with the strongest relaxation, however. If actual
power gain were to be achieved, the Josephson junctions
have to be operated in the dissipative regime and coupling to
the environment should be taken into account in the calcula-
tions.

Small asymmetries of the order of 10% in the system do
not give rise to qualitatively different behavior. Asymmetries
larger than that begin to develop charge imbalance in the
central island, leading to different chemical potentials for the
superconducting condensate and quasiparticle excitations.
This potential difference can be observed in the quasiparticle
current flowing to the island from both reservoirs 4 and 5,
when the phase difference across the Josephson junctions
vanishes.
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