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Abstract 

In metallic structures at very low temperatures heat and energy are carried mostly
by electrons. When these structures are small, with dimensions of the order of
nanometers, many kinds of quantum phenomena become significant. The combi-
nation of heat transport with these effects, with a special focus on the random fluc-
tuations of temperature in these systems, is the topic of this Dissertation.

Using quantum transport theory, we have studied the flow of heat and charge in
some prototypical nanoelectronic systems, e.g., single-electron transistor and super-
conductor–normal metal tunnel structure. We have devised a powerful theoretical
method for the calculation of probability distributions of fluctuating quantities, es-
pecially temperature, and used it to find cases where the statistics of these fluctua-
tions becomes non-Gaussian. We have also shown how the fluctuations of tempera-
ture affect the fluctuations of the electric current. In some cases the temperature-
fluctuation induced current noise can be orders of magnitude larger than the intrinsic
shot noise of the system. We also address the possibility to detect these fluctuations
by monitoring the induced current noise.
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Tiivistelmä 

Hyvin matalaan lämpötilaan jäähdytetyissä metallirakenteissa lämpöä kuljettavat
pääasiassa elektronit. Kun nämä rakenteet ovat pieniä, nanometrien kokoluokkaa,
monenlaiset kvantti-ilmiöt ovat merkittäviä. Tämän väitöskirjan aiheena on näiden
kvantti-ilmiöiden vaikutus lämmön kuljetukseen ja erityisesti niiden vaikutus läm-
pötilan satunnaisvaihteluihin.

Olemme tutkineet lämmön ja varauksen kuljetusta kvanttikuljetusteoriaa käyt-
täen muutamissa tyypillisissä nanoelektroniikan rakenteissa, esimerkiksi yksielekt-
ronitransistorissa ja suprajohde–normaalimetalli tunneliliitoksessa. Olemme kehit-
täneet tehokkaan teoreettisen menetelmän lämpötilan ja muiden suureiden todennä-
köisyysjakaumien laskemiseen ja etsineet sen avulla tapauksia, joissa näiden suu-
reiden satunnaisvaihteluiden statistiikka ei noudata normaalijakaumaa. Olemme
myös näyttäneet miten lämpötilan satunnaisvaihtelut vaikuttavat sähkövirran ko-
hinaan. Joissain tapauksissa lämpötilan satunnaisvaihteluiden aikaansaama virta-
kohina voi olla kertaluokkia suurempi kuin johtimen normaali raekohina. Tutkim-
me myös miten lämpötilan satunnaisvaihtelut voitaisiin havaita seuraamalla niiden
aikaansaamaa sähkövirran kohinaa.
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1. Introduction

The theory of heat conduction dates back to the late 18th century, when

the French chemist Antoine Lavoisier was able to disentangle the concept

of heat from explanations of combustion. He explained heat with an in-

visible fluid called caloric, flowing spontaneously from hot objects to cold

objects, and the quantity of which is constant throughout the universe [1].

In modern thermodynamics heat is understood as a form of energy. De-

pending on the system, heat can manifest for example as kinetic energy

of molecules, vibrational energy of a lattice, or kinetic energy of electrons.

Nonetheless, it still flows from hot to cold on average, and the principle of

conservation of energy is one of the cornerstones of physics. In electronic

systems heat is carried mostly by electrons, and in metals at low temper-

atures the specific heat is dominated by the specific heat of electrons [2].

This is studied in heattronics.

Unlike position, momentum, or energy, temperature is not a physical

observable. It is a concept from equilibrium statistical mechanics which

describes the distribution of energy in a system composed of a large num-

ber of particles [3]. In a system driven out of equilibrium temperature is

not even well-defined. Still, temperature is routinely measured by various

kinds of thermometers, even in non-equilibrium systems. An interesting

question is then what actually is measured with a thermometer. The ob-

servable of choice is often the electric current, which depends on the dis-

tribution of electrons among states with different energies and momenta.

The study of non-equilibrium current response can give essential insight

to this problem.

The possibility to routinely make nanometer scale electronic structures

by the means of electron beam lithography has sparked interest in the

topic of nanoelectronics in the last couple of decades. Even the com-

mercially manufactured integrated circuits approach the limit of nano-

15



Introduction

electronics with their ever decreasing transistor channel lengths [4]. In

nanoelectronic devices the effects of quantum mechanics begin to play a

significant role, requiring the use of quantum transport theory in their

description. The quantum phenomena are especially prominent at low

temperatures, where they are not masked by thermal fluctuations. Many

nanoelectronic device applications are based on these effects, thus rely-

ing on cryogenic operating temperatures. In these systems a thorough

understanding of heat flows is of utmost importance.

The performance of many nanoelectronic devices is hampered by the

presence of fluctuations, i.e., noise. For example, low-temperature ther-

mometers are based on the measurement of electric current. Fluctuations

in the current reduce the accuracy of the thermometer. Moreover, fluc-

tuations in one quantity may induce even larger fluctuations in another

quantity. On the other hand, the fluctuations themselves can be used to

deduce information about the studied system: Noise in the electric cur-

rent can provide us information about the motion of electrons through the

conductor [5].

The research reported in this Dissertation concerns theoretical heat-

tronics in nanoscale structures. We have focused on the description of

some structures common in the basic research of nanoelectronics in the

framework of quantum transport, studied the flow of heat and charge

in these systems, and devised a theoretical method for the calculation

of probability distributions of fluctuating quantities, especially tempera-

ture. We have also studied how the fluctuations of temperature affect the

fluctuations of the electric current. It turns out that in systems with a

strongly non-linear temperature dependence of the current this effect can

be significant.

Organization of this overview

Chapter 2 introduces the theoretical foundations upon which this Disser-

tation is built. I discuss the basics of functional field integrals in quan-

tum mechanics, their extension to non-equilibrium situations, and their

application to a quantum transport setup — the single-electron transis-

tor, which is also the focus of Publications I and II. I have sought to start

from the basics and include intermediate steps that leave nothing im-

plicit. At some points I refer to a good textbook or review for parts that

are particularly well-explained in the literature. Chapter 3 focuses on

the formulation of the temperature fluctuation statistics in the language

16
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of functional field integrals. I also discuss the assumptions behind the

concept of temperature fluctuations and the limits of its applicability to

physical systems. I briefly review some of the main results of the publica-

tions included in this Dissertation. I also discuss the prospects to measure

these fluctuations in a realistic setup. Finally, in Chapter 4, I summarize

our findings and conclude with the possible future directions for this re-

search.

17
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2. Functional field integrals

Theoretical methods for the study of quantum field theory out of equilib-

rium were first developed in the 1960’s [6, 7]. These were based on Green

functions and their perturbation expansions, similar to the equilibrium

Green function methods. Later the Keldysh theory was formulated in

the language of Feynman diagrams [8, 9, 10], and it is still widely used in

theoretical condensed matter physics. The modern non-equilibrium quan-

tum field theory is based on functional field integrals [11, 12, 13] which

allow one to incorporate non-perturbative methods and handle topologi-

cally non-trivial structures. Moreover, the functional integration method

often leads to a significantly more transparent and simple way of treat-

ing interacting systems perturbatively compared to the classification and

evaluation of various Feynman diagrams and dealing with the tensorial

character of interaction vertices.

2.1 Generating functionals

Before going to the topic of temperature fluctuation statistics, it is in-

structive to go through the underlying theory in some detail. This section

follows loosely the treatment given in Ref. [11]. The state of a quantum

many-body system is characterized by its density matrix, ρ̂. Given the

Hamiltonian operator Ĥ corresponding to this system, the time evolution

of the density matrix is given by the von Neumann equation1

∂tρ̂ = −i[Ĥ, ρ̂]. (2.1)

This is formally solved by

ρ̂(t) = Û(t, t0)ρ̂(t0)Û
†(t, t0), (2.2)

1Throughout this overview I use units such that � = kB = 1.
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Functional field integrals

Figure 2.1. Forward–backward time contour along which the density matrix evolves.

where ρ̂(t0) is the density matrix at some initial time t0, and the time

evolution operator is given by the time-ordered exponent

Û(t, t0) = T exp

[
−i

∫ t

t0

dt′Ĥ(t′)
]
. (2.3)

Its Hermitian conjugate is equivalent to time evolution backwards in time,

Û†(t, t0) = Û(t0, t).

Often our goal is to calculate the expectation value of some observable,

represented by an operator X̂, at time t. This is given by

〈X(t)〉 =
tr
[
X̂ρ̂(t)

]
tr[ρ̂(t)]

=
tr
[
X̂Û(t, t0)ρ̂(t0)Û(t0, t)

]
tr
[
Û(t, t0)ρ̂(t0)Û(t0, t)

] =
tr
[
Û(t0, t)X̂Û(t, t0)ρ̂(t0)

]
tr[ρ̂(t0)]

,

(2.4)

where the trace is over the many-body Hilbert space. In the last equal-

ity I have used the cyclic invariance of the trace, and the identity 1̂ =

Û(t0, t)Û(t, t0). This form affords a pictorial interpretation in terms of a

time contour shown in Fig. 2.1: The density matrix first evolves in time

from t0 to t, the observable X is calculated, and finally the density matrix

evolves backwards in time to t0.

The expectation values can also be obtained from a generating func-

tional. The Hamiltonian is generalized to include a source term ĤX =

Ĥ ± η(t)X̂/2, where η(t) is a complex-valued function, and the plus (mi-

nus) sign corresponds to the forward (backward) part of the contour. The

expectation value is given by the functional derivative

〈X(t)〉 = i
δZ[η]

δη(t)

∣∣∣∣
η=0

, (2.5)

where

Z[η] =
tr
[
ÛC,X(t, t0)ρ̂(t0)

]
tr [ρ̂(t0)]

(2.6)

is the generating functional, and ÛC,X(t, t0) = ÛX(t0, t)ÛX(t, t0) is the con-

tour evolution operator including the source field. Since the source field

breaks the symmetry between the forward and backward branch, this

is not equal to the identity operator. The generating functional can be
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straightforwardly used to generate higher moments and correlators,2

〈X(t1)X(t2)〉 = − δ2Z[η]

δη(t1)δη(t2)

∣∣∣∣
η=0

, (2.7)

or even the complete probability distribution via the functional integral

P[X] =

∫
Dηei

∫
dτη(τ)X(τ)Z[η]. (2.8)

The Keldysh partition function is obtained by setting the source term to

zero

Z[0] =
tr
[
ÛC(t, t0)ρ̂(t0)

]
tr [ρ̂(t0)]

= 1, (2.9)

being equal to unity since the symmetry-breaking source term is absent.

2.2 Keldysh formalism

To use the functional formulation with a many-body quantum system, the

quantum fields have to be introduced to the theory. This is done in the

standard language of second quantization with creation and annihilation

operators acting in Fock space. The procedures for bosons and fermions

differ slightly from each other. Since we are interested in electronic sys-

tems, I only consider the fermion case here.

2.2.1 Coherent states

The functional field integrals are naturally represented in the coherent

state basis. The coherent fermion state |ψ〉 parameterized by a Grass-

mann number ψ is defined as the eigenstate of the annihilation opera-

tor, ĉ|ψ〉 = ψ|ψ〉. Similarly, 〈ψ|ĉ† = 〈ψ|ψ̄, where ψ̄ is another Grassmann

number, unrelated to ψ. The anti-commutativity of the fermion operators

imply that also the Grassmann numbers anti-commute. For this reason

Grassmann numbers obey a peculiar but well-defined algebra, details of

which can be found from Ref. [12]. For completeness, I list some of their

properties below.

The matrix elements of a normally ordered operator3 can be evaluated

with 〈ψ|Ô(ĉ†, ĉ)|ψ′〉 = O(ψ̄, ψ′)〈ψ|ψ′〉, where 〈ψ|ψ′〉 = exp
(
ψ̄ψ′). The trace

of an operator is

tr
(
Ô
)
=

∫
dψ̄dψe−ψ̄ψ〈−ψ|Ô(ĉ†, ĉ)|ψ〉, (2.10)

2The correct ordering of the operators is built-in to the functional field theory.
3In a normally ordered operator all the creation operators are to the left of all
the annihilation operators.
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where the integration over Grassmann variables is defined by∫
dψ = 0,

∫
dψψ = 1. (2.11)

The Gaussian integrals in the following can be calculated by using the

formula

Z[η̄, η] =

∫ ∏
j

dψ̄jdψj exp

⎧⎨
⎩−

∑
ij

ψ̄iAijψj +
∑
j

(
ψ̄jηj + η̄jψj

)⎫⎬⎭ ,

=det(A) exp

⎧⎨
⎩
∑
ij

η̄i(A
−1)ijηj

⎫⎬
⎭ , (2.12)

where A is any invertible complex matrix.

2.2.2 Action for free fermions

Consider a system of free electrons, described by the Hamiltonian

Ĥ =
∑
kσ

εkĉ
†
kσ ĉkσ. (2.13)

In terms of the coherent states the Keldysh partition function takes the

form

Z =

∫
Dψ̄Dψ exp

{
i

∫
C
dtdt′

∑
kk′

∑
σσ′

[
ψ̄kσ(t)G

−1
kk′σσ′(t, t

′)ψk′σ′(t′)
]}

,

≡
∫

Dψ̄Dψ exp
{
iS[ψ̄, ψ]

}
, (2.14)

where G−1
kk′σσ′(t, t′) = (i∂t − εk) δkk′δσσ′ is the inverse Green function, and

the time integration goes over the contour shown in Fig. 2.1. The last

equality defines the action S of the system. The initial density matrix

ρ̂(t0) is seemingly absent from the partition function [c.f. Eq. (2.9)]. It is

actually hidden in the boundary conditions for ψ and ψ̄ at t0.

It is somewhat inconvenient to carry along the integration contour. For

this reason, it is customary to split the contour into a forward branch

and a backward branch, and define the variables separately on the two

contours:

S[ψ̄, ψ] =

∫ ∞

−∞
dtdt′

∑
kk′

∑
σσ′

[
ψ̄+,kσ(t)G

−1
kk′σσ′(t, t

′)ψ+,k′σ′(t′)

−ψ̄−,kσ(t)G
−1
kk′σσ′(t, t

′)ψ−,k′σ′(t′)
]
, (2.15)

where ψ+ resides on the forward branch and ψ− on the backward branch.

Here we have also taken t0 → −∞ and extended the integration all the
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way to ∞, since the forward and backward branches cancel each other out

for times larger than t.

Next we perform a Keldysh rotation according to⎛
⎝ ψ1

ψ2

⎞
⎠ =

1√
2

⎛
⎝ 1 1

1 −1

⎞
⎠
⎛
⎝ ψ+

ψ−

⎞
⎠ , (2.16)

(
ψ̄1 ψ̄2

)
=
(

ψ̄+ ψ̄−
) 1√

2

⎛
⎝ 1 1

−1 1

⎞
⎠ , (2.17)

and the rotated Green function matrix obtains the form

G =

⎛
⎝ GR GK

0 GA

⎞
⎠ . (2.18)

The superscripts R, A, and K denote the retarded, advanced, and Keldysh

components of the Green’s function matrix, respectively. R- and A-compo-

nents contain information about the energies and lifetimes of the states of

the system, whereas the Keldysh component keeps track of their occupa-

tion. Collecting the wave vector, spin, and Keldysh indices into a matrix

structure, we can write

S[Ψ̄,Ψ] =

∫ ∞

−∞
dtdt′Ψ̄(t)G−1(t, t′)Ψ(t′). (2.19)

Sometimes it is convenient not to do the Keldysh rotation and instead

work in the {+,−}-basis. The advantage of the Keldysh formalism is the

simplicity of matrix operations by virtue of the triangular form of the

Green function matrix.

2.2.3 Effective action

In Eq. (2.19) the visible degrees of freedom are the microscopic electron

fields, described by the vectors Ψ̄ and Ψ. In many cases, the impor-

tant and interesting variables are macroscopic, e.g., total energy or total

charge. In other cases we are interested in the calculation of expectation

values or statistics of observables; in this case the important variable is

the source field. To make these facts visible, the microscopic fields should

be integrated out. We do this by first making the action quadratic in the

electron fields by using a Hubbard–Stratonovich transformation [14, 15]

exp
(∑

ij ρiAijρj

)
√
detA−1

=

∫ ∏
j

dφj√
π
exp

⎧⎨
⎩−

∑
ij

φi(A
−1)ijφj + 2

∑
j

φjρj

⎫⎬
⎭ ,

(2.20)

where ρ = ψ̄ψ, and then performing the Gaussian integration over these

fields. This transformation is of course not required, if the action already
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�
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Figure 2.2. Left: Schematic diagram of a single-electron transistor, biased with voltage
Vbias. The preferred charge on the island can be tuned with the gate volt-
age Vgate. Left and right leads are described by noninteracting electrons.
Electrons on the island feel a potential generated by all the other electrons
via Coulomb interaction. Electrons can tunnel through the insulating bar-
riers separating the island from the leads. Right: Temperature sensitivity
d(ln I)/d(lnT ) of the current through the transistor. The sensitivity is high-
est (bright yellow regions) at voltages where the simultaneous tunneling of
two electrons competes with sequential tunneling of single electrons.

is quadratic, like in the noninteracting theory. The cost of the Hubbard–

Stratonovich transformation is the appearance of a new (bosonic) field,

which has to be integrated over, but which usually represents the phys-

ically relevant variable. As a result, the generating functional is trans-

formed into the form

Z[η] =

∫
Dφ1 . . .DφN exp {iSeff [φi, η]} , (2.21)

where Seff [φi, η] is the effective action, depending on the source field η, and

the fields φi arising from N Hubbard–Stratonovich transformations. This

also makes the practical calculations more tractable, not having to worry

about the peculiar algebra of the Grassmann numbers.

2.3 Effective action for a single-electron transistor

Single-electron transistor [16] could be called the archetype of a nanoelec-

tronic device. It consists of a small metallic island with strong Coulomb

interaction contacted with tunnel junctions to two leads and coupled ca-

pacitively to a gate electrode (see Fig. 2.2). It has been thoroughly studied

both theoretically [17, 18, 19, 20] and experimentally [21, 22, 23], and is

also the focus of Publications I and II. Moreover, it serves as a nice exam-

ple for the application of functional field integrals [24, 25].

The Hamiltonian for the single-electron transistor is [26]

Ĥ = ĤL + ĤR + ĤI + ĤTL + ĤTR, (2.22)
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where the noninteracting leads (α ∈ {L,R}) are described by

Ĥα =
∑
ν

εν ĉ
†
αν ĉαν , (2.23)

and the island Hamiltonian is

ĤI =
∑
μ

εμd̂
†
μd̂μ + EC

(∑
μ

d̂†μd̂μ −N0

)2

. (2.24)

Here, EC = e2/(2C) is the charging energy of the island and N0 is the

electrostatically preferred charge, set by the gate voltage. The tunneling

between the leads and the island is described by

ĤTα =
∑
νμ

tανμĉ
†
αν d̂μ +H.c., (2.25)

where tνμ is the tunneling matrix element between states ν and μ.

The interaction part of the action, defined along the Keldysh contour, is

SC [ψ̄, ψ] =

∫
C
dt

(∑
μ

ψ̄μψμ −N0

)
EC

⎛
⎝∑

μ′
ψ̄μ′ψμ′ −N0

⎞
⎠ . (2.26)

Hubbard–Stratonovich decoupling of the interaction results in

SC [ψ̄, ψ, V ] =
1

4EC

∫
C
dtV 2 −

∫
C
dtV

(∑
μ

ψ̄μψμ −N0

)
,

=

∫
dt

(
1

2EC
VcVq + VqN0

)
−
∫

dtΨ̄

⎛
⎝ Vc

1
2Vq

1
2Vq Vc

⎞
⎠Ψ, (2.27)

where Vc = 1
2(V+ + V−) and Vq = V+ − V− are the two Keldysh-rotated

components of a real bosonic field, to be integrated over.

The total action can then be written as a sum of

Sα[Ψ̄α,Ψα] =

∫
dtdt′Ψ̄α(t)

⎛
⎝ i∂t + i0+− εα 2i0+Fα

0 i∂t − i0+− εα

⎞
⎠Ψα(t

′),

SI [Ψ̄I ,ΨI , V ] =

∫
dtdt′Ψ̄I(t)

⎛
⎝ i∂t+ i0+− εI −Vc −1

2Vq + 2i0+FI

−1
2Vq i∂t− i0+− εI −Vc

⎞
⎠ΨI(t

′),

STα[Ψ̄α,Ψα, Ψ̄I ,ΨI ] =

∫
dtdt′

⎡
⎣Ψ̄α(t)

⎛
⎝ Tα 0

0 Tα

⎞
⎠ΨI(t

′)

+Ψ̄I(t)

⎛
⎝ T†

α 0

0 T†
α

⎞
⎠Ψα(t

′)

⎤
⎦ ,

SC [V ] =

∫
dt

(
1

2EC
VcVq + VqN0

)
. (2.28)

The F matrices store the information about the initial distribution func-

tions, including possible biasing by a chemical potential or temperature
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difference. From here it is easy to see that the electrons on the island ef-

fectively feel a fluctuating potential Vc due to other electrons. Finally, for

the calculation of the statistics of energy on the island, we need a suitable

source term. It is given by

Ssource[ξ̇] =

∫
dtΨ̄I(t)

⎛
⎝ 0 ξ̇εI

ξ̇εI 0

⎞
⎠ΨI(t). (2.29)

We include the time derivative in the definition of the source field for

convenience, simplifying the next step.

It is convenient to remove the fluctuating potential and the source field

by a gauge transformation

ΨI 	→ e−iΦ+iξ⊗εIΨI , Ψ̄I 	→ Ψ̄Ie
iΦ−iξ⊗εI , (2.30)

where Φ = φc + σ1φq/2, ξ = σ1ξ, ∂tφc,q = Vc,q, and σ1 is the first Pauli spin

matrix. As a result, V vanishes from SI ,4 and Ssource vanishes altogether,

but the tunneling matrices are modified according to⎛
⎝ Tα 0

0 Tα

⎞
⎠ 	→

⎛
⎝ Tα 0

0 Tα

⎞
⎠ e−iΦ+iξ⊗εI . (2.31)

To obtain the effective action we perform the Gaussian integrals over

the fermion fields Ψ̄ and Ψ. The result is

Seff [φ, ξ] = tr ln (1 +G0T) +

∫
dt

(
1

2EC
∂tφc∂tφq + ∂tφqN0

)
,

≡ST [φ, ξ] + SC [φ], (2.32)

where the trace includes integrations over time,

G0 =

⎛
⎜⎜⎝

G0,L 0 0

0 G0,I 0

0 0 G0,R

⎞
⎟⎟⎠ ,

T =

⎛
⎜⎜⎝

0 TLe
−iΦ+iξ⊗εI 0

T†
Le

iΦ−iξ⊗εI 0 T†
Re

iΦ−iξ⊗εI

0 TRe
−iΦ+iξ⊗εI 0

⎞
⎟⎟⎠ , (2.33)

and G0,L/I/R are the free Green functions of the left lead, island, and

right lead, respectively. Assuming weak coupling to the leads and that

the tunneling quasiparticles lose their phase coherence before reaching

4The gauge transformation also introduces terms proportional to i0+ due to the
Keldysh structure of SI . These can be safely neglected since the tunneling terms
dominate over them.
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the other tunnel barrier (in other words, the out-tunneling quasiparticle

is always different from the in-tunneling one), we can expand the trace of

the logarithm to leading order in tα:

ST [φ, ξ] =
∑
α

tr
(
G0,αTαe

−iΦ+iξ⊗εIG0,IT
†
αe

iΦ−iξ⊗εI
)
. (2.34)

It is possible to cast this into a form [12]

ST [φ, ξ] =
g

2

∫
dtdt′

(
e−iφ+(t) e−iφ−(t)

)
L(ξ)(t, t′)

⎛
⎝ eiφ+(t′)

eiφ−(t′)

⎞
⎠ , (2.35)

where we have transformed back to fields defined on the forward and

backward branch, and where the matrix L(ξ) depends on ξ but not φ. Fur-

thermore, gα = 4π2νIνα|tα|2 is the dimensionless conductance of contact

α, and ν is the density of states. We have also assumed tunneling matrix

elements t to be independent of the lead and island Hilbert space indices,

and a left–right symmetric structure, gL = gR = g.

In nearly isolated islands, g 
 1, the phases fluctuate rapidly, and no

longer represent suitable degrees of freedom. On the other hand, the

charge on the island fluctuates only a little. The charge degree of freedom

is brought in by another Hubbard–Stratonovich transformation. Using

Eq. (2.20) with φ = n and ρ = φ̇ brings the charging action to the form

SC [φ, n] =

∫
dt [nc∂tφq + nq∂tφc − 2ECnq(nc +N0)] ,

=

∫
dt
[
n+∂tφ+ − n−∂tφ− − EC(n

2
+ − n2

−)− 2ECN0(n+ − n−)
]
,

(2.36)

again at a cost of an additional functional integration over n.

Using the form of Eq. (2.35), the exponentiated action can be expanded

in a Taylor series

eiST [φ,ξ] =

∞∑
m=0

1

m!

(
ig

2

)m m∏
k=1

⎛
⎝∫ dtkdt

′
k

∑
σkσ

′
k

⎞
⎠ e

−i
∑

k

[
φσk

(tk)−φσ′
k
(t′k)

]

×
m∏
k=1

L
(ξ)
σkσ

′
k
(tk, t

′
k), (2.37)

where σ, σ′ ∈ {+,−}. Performing now the φ integral in the partition func-

tion gives a delta functional which fixes n to

nσ(t) = n(−∞)− σ
∑
k

θ(t− tk)δσσk
+ σ

∑
k

θ(t− t′k)δσσ′
k
, (2.38)

where the initial charge state n(−∞) ∈ Z. The charge on the island jumps

at t = t′k and t = tk in steps of one electron. By inserting this to the
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Figure 2.3. Example contributions to the expansion in Eq. (2.39). The two first diagrams
correspond to sequential events, i.e., the tunneling lines do not overlap. The
last two lines overlap, describing a cotunneling event.

charging action, the generating functional assumes the form

Z[ξ] =

∞∑
m=0

1

m!

(
ig

2

)m m∏
k=1

⎛
⎝∫ dtkdt

′
k

∑
σkσ

′
k

⎞
⎠e−iEC

∫
dt[n2

+(t)−n2
−(t)+2N0(n+(t)−n−(t))]

×
m∏
k=1

L
(ξ)
σkσ

′
k
(tk, t

′
k). (2.39)

The generating functional is expressed as a sum over quasiparticle in- and

out-tunneling events, connected by the elements of the kernel Lσkσ
′
k
(tk, t

′
k).

This is illustrated in Fig. 2.3. Elements of the type L+− and L−+ corre-

spond to actual tunneling processes which change the charge state of the

island. L++ and L−− describe virtual processes which leave the charge

state unchanged, but renormalize the dimensionless conductance of the

junctions and the energy gap of the adjacent charge states [27, 28].

The temporal extension of Lσkσ
′
k
(tk, t

′
k) is related to the typical duration

of the tunneling events, δt ∼ E−1
C . On the other hand, the typical time

between tunneling events is of the order of (gEC)
−1 [12]. Thus, for g 
 1

tunneling events happen mostly sequentially, not overlapping with each

other in time. In this limit the calculation of the generating functional is

a lot simpler. If we furthermore are only interested in the low-frequency

correlations, we can neglect the time dependence of the source field ξ, and

the generating functional reduces to [29]

Z[ξ] = exp {−Λmin(ξ)t0} , (2.40)

where t0 is the measurement time during which ξ has a non-zero value,

and Λmin(ξ) is the smallest eigenvalue of a matrix constructed from the

elements L
(ξ)
σkσ

′
k
. For the purposes of calculating the statistics of heat cur-

rents, it is necessary to include also processes where one quasiparticle

tunnels in and another quasiparticle tunnels out in a single inelastic co-

tunneling event [17], described by a diagram where two tunneling lines

overlap. This is done in Publications I and II for the case when the single-
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electron events always appear as back-to-back in- and out-tunneling pairs,

not interrupted by cotunneling events.
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3. Statistics of temperature fluctuations

The theory of full counting statistics (FCS) [30, 31] is a powerful tool for

the study of fluctuations of electric currents. The theory of temperature

fluctuation statistics formulated here is closely related to FCS. The source

term for the electric current, i.e., “counting field,” is accompanied by a cor-

responding source term for the heat current [c.f. Eq. (2.29)]. A calculation

along the lines of FCS produces a probability distribution for the trans-

ferred energy in some period of time. In order to obtain the probability

distribution for temperature or internal energy, additional steps have to

be taken. These steps are detailed below, after a rigorous definition of the

concept of temperature fluctuations.

3.1 Equilibrium fluctuations

In equilibrium statistical mechanics, open systems, i.e., systems which

can exchange energy and particles with their surroundings, have by def-

inition temperature and chemical potential which are fixed to those of

their surroundings, and which do not fluctuate [32]. These in turn de-

termine the expectation values for energy and particle number, which, on

the other hand, can fluctuate [3]. In equilibrium, however, these fluctua-

tions are small in the thermodynamic limit where the number of degrees

of freedom N tends to infinity:√
var(E)

〈E〉 ∝ N−1/2,

√
var(N)

〈N〉 ∝ N−1/2. (3.1)

Out of equilibrium these considerations do not necessarily apply: Temper-

ature and chemical potential may fluctuate,1 and these fluctuations may

be large.
1Strictly speaking, temperature and chemical potential are not even defined out
of equilibrium. Many observables still depend on some effective temperature
and chemical potential, which play an identical role to the real thermodynamic
variables. It is in this sense that I use these terms in the following.
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3.2 Quasi-equilibrium fluctuations

Theory of quantum transport always includes the concept of reservoirs,

large contacts with an infinite number of particles in local equilibrium.

When these particles are electrons, their energy distribution is described

by a Fermi–Dirac function with a well-defined chemical potential and tem-

perature,

f(E) =
1

e(E−μ)/T + 1
. (3.2)

The object of interest (island in the following), e.g., a quantum dot, a

metallic granule, a carbon nanotube, or a sheet of graphene, is usually

connected between two or more reservoirs biased at different chemical

potentials and/or temperatures. Given the Hamiltonian of the system the

occupation numbers of various quantum states on the island could in prin-

ciple be solved and the observable of interest, e.g., electric current, then

calculated with the methods described in Chapter 2. In the case of a non-

interacting island the occupation numbers are simply determined by the

injection and extraction rates to the specific state, and the distribution

function can deviate a lot from the Fermi function [33, 34]. This case

is studied in Publication VI in an all-superconducting tunnel structure,

where a small superconducting island is driven out of equilibrium by a

rapid injection of quasiparticles from superconducting reservoirs.

In contrast, in the case of a strong electron–electron and electron–phonon

interaction, the injection and extraction rates due to driving are small

compared to the electron–electron and electron–phonon relaxation rates,

and the island is in equilibrium. The electron energy distribution is de-

scribed with a Fermi function at the phonon temperature and with a

chemical potential determined by electrostatics.

In between these regimes lies quasi-equilibrium [35], where the inter-

action between electrons is strong enough for them to assume an energy

distribution of the Fermi form, but with a temperature and chemical po-

tential to be determined separately. The physical prescription is to impose

the conservation of energy current and electric current, giving two equa-

tions fixing the temperature and chemical potential. Depending on the

environment of the island and its contacts to the reservoirs, the electric

and thermal RC times can be large compared to other time scales of the

system, implying the possibility of charge and energy buildup or deple-

tion on the island. In this case the assumption of a fixed temperature

and chemical potential is, of course, wrong. The conserved quantities are
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Figure 3.1. Equilibrium Fermi–Dirac distribution function with T/E∗ = 0.1, E∗ being
some characteristic energy scale, and μ = 0 (black). Temperature fluctuates
up (down) when energy is deposited on (removed from) the island (dashed
blue lines). Chemical potential fluctuates up (down) when negative charge is
deposited on (removed from) the island (dashed red lines).

now charge and energy, with a possibility for them to accumulate on the

island [36]. In quasi-equilibrium the electron–electron relaxation time is

the shortest time scale and the energy distribution of electrons on the is-

land adapts quickly to the changes in the total energy and charge by a

change in the temperature or chemical potential. As a result, tempera-

ture and chemical potential fluctuate on the thermal and electric RC time

scales, respectively. This is exemplified in Fig. 3.1.

To determine whether a given system is in quasi-equilibrium, we have

to calculate the electron–electron relaxation rate and compare it with the

driving rate. For low-energy electrons the relaxation is mainly due to the

interaction of an electron with the potential fluctuations due to all other

electrons [37][see also the discussion below Eq. (2.28)], varying slowly

both in space and time. This interaction can be described by a collision

integral [37, 38]

∂f(E)

∂t
=

∫
dω [−SV (ω)f(E)(1− f(E + ω)) + SV (−ω)f(E + ω)(1− f(E))] ,

(3.3)

where SV (ω) is the spectral density of the potential fluctuations. First

term of the integrand describes scattering from energy E to energy E+ω,
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the second term describes the inverse process. In the case of only a few

excited electrons at energy E in an otherwise zero-temperature metal in

equilibrium, this can be solved explicitly. Putting f(E + ω) = θ(−E − ω)

and using the fluctuation–dissipation relation SV (ω) = 2χ(ω)θ(−ω) we

obtain

f(E, t) = f(E, 0) exp

(
−2t

∫ E

0
dωχ(ω)

)
, (3.4)

from which we identify

1

τe−e(E)
= 2

∫ E

0
dωχ(ω) (3.5)

as the relaxation rate. Here, χ(ω) is the electric susceptibility. For a

diffusive d-dimensional system it is given by [37]

2χ(ω) = GQ

∫
dq

(2π)d
Re(Zd(ω,q))

ωDq2

|Dq2 − iω|2 , (3.6)

where GQ = 2e2/h is the conductance quantum, D is the diffusion coeffi-

cient, and Zd(ω,q) is the impedance for a d-dimensional conductor:

Re(Zd(ω,q)) =

⎧⎨
⎩

ρ
q2 , d = 3,

q2/ρ

(q2/ρ)2+ω2C̃2
, d = 2 and 1.

(3.7)

Here, ρ is the d-dimensional resistivity and C̃ the capacitance per unit

area (2D) or length (1D). In three dimensions the impedance does not

depend on capacitance since the accumulation of surface charge can be

neglected. Performing the integrals we obtain

1

τe−e(E)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
6
√
2π
GQρE

3/2/D1/2, d = 3,

1
8GQ

ρ

1+ρC̃D
E, d = 2,

π√
2
GQ

ρ

(1+ρC̃D)(1+
√

ρC̃D)
E1/2D1/2, d = 1.

(3.8)

What should be used for E, and how do we determine the dimensional-

ity? Typical energy for the excited electrons is given by the bias voltage,

E = eV . The dimensionality is determined by comparing the distance the

electron travels during the relaxation, le−e =
√
Dτe−e, to the dimensions

of the island. If le−e is larger than, say, two of the dimensions of the island,

the island is effectively a 1D system.

The electron–electron relaxation time should be compared to the dwell

time, i.e., the time an electron spends traveling through the structure. It

is related to the Thouless energy

1

τd
= ETh =

G

GQ
δ, (3.9)

34



Statistics of temperature fluctuations

where G is the total conductance of the structure, including the contacts,

and δ is the single-particle level spacing on the island. Whether a given

structure is in quasi-equilibrium is then determined by the condition

τe−e

τd
=

G

GQ

G(L =
√

D/eV )

GQ

δ

eV

 1, (3.10)

where G(L =
√

D/eV ) is the conductance of a piece of island of size

(
√

D/eV )d. In tunnel structures this is typically very well satisfied. Struc-

tures with good contacts are easier to drive out of equilibrium: In Ref. [34]

τe−e/τd ≈ 35 for one of the measured wires.

Going beyond quasi-equilibrium, it is not so clear what is meant by tem-

perature fluctuations. As shown in Publication VI, the non-equilibrium

electron distribution functions in general cannot be characterized by a

simple temperature. Sometimes it is possible to unambiguously define

some effective temperature which fluctuates as a result of fluctuating en-

ergy flows. In the research on temperature fluctuations reported in this

Dissertation it is always assumed that the island is in quasi-equilibrium,

and thus the concept of temperature fluctuations is clearly defined.

3.2.1 Role of the electron–phonon interaction

Another source of relaxation, driving the electron system towards equilib-

rium, is the electron–phonon interaction. The electron–phonon scattering

rate is given by [37]
1

τe−ph(E)
� λE

(
E

ωD

)2

, (3.11)

where λ is a dimensionless electron–phonon coupling constant and ωD

the Debye frequency, i.e., maximum phonon energy, being of the order

of 100 K. Therefore, at cryogenic temperatures of the order of 1 K the

electron–phonon scattering rate is typically negligible compared to the

electron–electron scattering rate.

The heat current from electrons to phonons may still be comparable to

the heat current to reservoirs. The electron–phonon heat current is pro-

portional to T 5 [39], diminishing quickly at very low temperatures. In

the case when the system can be considered completely decoupled from

phonons, it is said to be overheated. Temperature fluctuations are espe-

cially important in overheated systems.
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3.3 Effective action approach to fluctuation statistics

To describe the statistics of temperature fluctuations we start with the

generating functional for charge and heat currents from the island to

reservoirs j = 1, 2, 3 . . ..2 It is given by [40]

Z[{χj}, {ξj}] =
∫

DΨDΨ̄ exp

{
iS[Ψ, Ψ̄] + i

∑
i

∫
dtχiIi(Ψ, Ψ̄)

+i
∑
i

∫
dtξiḢi(Ψ, Ψ̄)

}
,

=exp

{
i
∑
i

Seff,i [χi, ξi]

}
, (3.12)

where S[Ψ, Ψ̄] is the action of the entire system (reservoirs and island),

and the rest of the terms in the exponent are source terms for electric

and energy currents. In the last line I have integrated over the micro-

scopic degrees of freedom Ψ, Ψ̄, to obtain the effective action for connector

i between the island and reservoir i, Seff,i. This separation between the

reservoirs is possible only when electrons arriving from one reservoir lose

all of their phase coherence before entering another reservoir. The con-

nector action depends only on the temperature and chemical potential of

the reservoir and the island, and the properties of the contact between

them. For electron reservoirs, it has the general form [41]

Seff,i =
1

2

∑
n

tr ln

[
1 + T i

n

{Gi(χi, ξi),GI} − 2

4

]
, (3.13)

where T i
n are the transmission eigenvalues of the contact [5] and G are

the quasiclassical Keldysh Green functions [42, 43] of the reservoir and

the island.

All moments of the currents can be calculated by functional differen-

tiation of the generating functional. For example, the electron–phonon

heat current noise in a proximity Josephson sensor is obtained from this

expression in Publication V. In the case of a separable effective action,

like above, the currents to different reservoirs are uncorrelated, and the

probability distribution for the realization of a certain set of currents

2Reservoirs are not limited to electron reservoirs. One of them could be, for
example, the phonon bath. In this case only energy transfer is possible.
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{Ij}, {Ḣj} factorizes to [44]∏
i

P [Ii, Ḣi] =

∫ ∏
i

DχiDξi

× exp

{∑
i

(
−i

∫
dtχiIi − i

∫
dtξiḢi + iSeff,i [χi, ξi]

)}
.

(3.14)

This expression describes an island where an arbitrary amount of heat

and charge can be deposited or extracted, i.e., it seems that they are not

conserved. In physical systems continuity equations connect the currents

in different reservoirs. These are incorporated into the probability distri-

bution as delta functionals, resulting in [44, 45]

P [{Ij}, {Ḣj}] =
∫

DQIDEIδ

(∑
i

Ii − Q̇I

)
δ

(∑
i

Ḣi − ĖI

)∏
i

P [Ii, Ḣi],

=

∫
DQIDEIDχIDξI exp

{
i

∫
dtχI

(∑
i

Ii − Q̇I

)}

× exp

{
i

∫
dtξI

(∑
i

Ḣi − ĖI

)}∏
i

P [Ii, Ḣi], (3.15)

where QI is the charge and EI the energy on the island.3 Integrating over

all the realizations of currents must yield a probability of one. Therefore

we get a representation for the Keldysh partition function in the form

Z =

∫ ∏
i

DIiDḢiP [{Ij}, {Ḣj}],

=

∫
DQIDEIDχIDξI exp

{
−i

∫
dtχIQ̇I − i

∫
dtξIĖI + i

∑
i

Seff,i [χI , ξI ]

}
,

(3.16)

which is a convenient starting point for further analysis.

Another interesting topic is the study of fluctuation theorems [46, 47],

which relate the probability to observe a certain realization of physical

process to the probability to observe its time-reversed counterpart. Fluc-

tuation relations for electric and heat currents can be obtained from the

generating functional in a relatively straightforward manner [48].

3.3.1 Dynamics of charge and energy

In Eq. (3.16) the dependence of Seff,i on QI and EI is left implicit. As

discussed above, these dictate the temperature and chemical potential in
3In some cases, e.g., single-electron transistor, the effective action already in-
cludes charge conservation, and the delta functional for currents is not needed.
In this case the dependence on QI and χI drops out of the expressions in this
section.
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the Fermi distribution function of the island. The model used to connect

these together is described by [44, 49]

EI =
π2T 2

I

6δ
+

1

2
Cμ2

I , QI = CμI , (3.17)

where C is the total capacitance of the island. Using these equations the

dependence on QI and EI is brought in to the Keldysh component of the

effective action.

We can compare the time scale for charge transport τc = C/G to the

time scale for energy transport τE = Ch/Gth = π2T/(3δGth), where Gth

is the thermal conductance. Using the Wiedemann–Franz law, Gth =

π2/(3e2)TG,4 we get τc/τE = δ/(2EC) 
 1. This implies that the rapid

potential fluctuations average out on the time scale of the energy and tem-

perature fluctuations and can be neglected. This also means that whereas

the fluctuations of charge have an essentially flat frequency spectrum up

to a frequency of 1/τc, the bandwidth of the temperature fluctuations only

extends up to a lower frequency of 1/τE . This can serve as a tell-tale signal

that the observed fluctuations are related to the temperature fluctuations.

3.3.2 Saddle point approximation

When the fluctuations of charge and energy on the island are small com-

pared to their average values, the functional integral in Eq. (3.16) can be

evaluated in the saddle point approximation. The total effective action

Seff [χI , ξI , QI , EI ] =
∑
i

Seff,i [χI , ξI ]−
∫

dtχIQ̇I −
∫

dtξIĖI , (3.18)

has four saddle point equations: [50]

δSeff

δχI
= 0,

δSeff

δξI
= 0,

δSeff

δQI
= 0,

δSeff

δEI
= 0. (3.19)

These have always a classical solution in which χI = ξI = 0, describing

the relaxation of QI and EI to their stationary configuration. The other

solution with finite χI and ξI describes “anti-relaxation,” i.e., fluctuations

where QI and/or EI deviate quickly from their stationary values.

Since we are mainly interested in the temperature fluctuations, we can

use the saddle point solutions for χI(t) and μI(t) in the limit of fast po-

tential fluctuations, τc 
 τE . In this limit there is no charge depletion

4This is not an exact law in the nanostructures considered here, but a good esti-
mate nonetheless.
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or accumulation on the island, and the chemical potential is given by the

current conservation law and appears static. The charge counting field

follows the energy counting field adiabatically, χI = −μIξI .

Using the saddle point solutions it is possible to calculate the classical

action corresponding to the fluctuation trajectories, and from that calcu-

late the probability density of finding the island at some temperature to

an exponential accuracy [50].

3.3.3 Fokker–Planck equation

In the saddle point approximation the mechanism with which the sys-

tem jumps between relaxation and anti-relaxation trajectories is left un-

defined. This is caused by fluctuations around the saddle point solu-

tions. To take these into account, we can convert the functional integral in

Eq. (3.16) to a Fokker–Planck equation. This method is outlined in Publi-

cation II. Neglecting the statistics of charge for now (in the limit τc 
 τE

we can just use the saddle point solutions from the previous section), the

connector part of the effective action,
∑

i Seff,i [ξI ], is converted into an op-

erator Ŝ by first ordering it so that all ξI are to the left of all EI , and then

replacing the fields ξI with energy derivatives, ξI 	→ −∂EI
. The probability

distribution for energy then obeys the Fokker–Planck equation5

∂tP(E, t) = ŜP(E, t). (3.20)

By setting the left hand side to zero, we obtain a differential equation for

the stationary probability distribution,

ŜPst(E) = 0, (3.21)

calculation of which is often our ultimate goal.

3.3.4 Langevin equation

A complementary approach is to convert the Fokker–Planck equation for

the stationary probability distribution of energy into a stochastic time

evolution equation, i.e., Langevin equation, for energy. Let us assume that

the total effective action in Eq. (3.18) is quadratic in ξI (again, neglecting

5Traditionally, the nomenclature Fokker–Planck is reserved for equations which
are of second order in derivatives ∂EI

. This is also the case in Publication II. In
Publications III and IV the relevant equation is of infinite order in ∂EI

, but we
have decided to use the term Fokker–Planck equation also in this case.
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statistics of charge):

Seff [ξI , EI ] =

∫
dt

{
ξIḢI(EI) +

1

2
ξ2ISḢI

(EI)− ξIĖI

}
. (3.22)

The notation here suggests that the coefficients of the first and second or-

der terms are given by the heat current and its noise, respectively. Making

a Hubbard–Stratonovich transformation we transform the action into the

form

Seff [η, ξI , EI ] =

∫
dt

{
ξI

[
ḢI(EI)− ĖI + η

]
− 1

2
η2S−1

ḢI
(EI)

}
, (3.23)

with an additional functional integration over η. The action is now linear

in ξI , and performing the functional integral over ξI gives a delta func-

tional of the quantity in square brackets. This means that only paths

which satisfy the Langevin equation

∂tEI(t) = ḢI(EI(t)) + η(t), (3.24)

contribute to the partition function. Here, η(t) is a random fluctuating

“force” with statistics given by the weight factor in Eq. (3.23).

When the action is not quadratic in ξI , the derivation of the correspond-

ing Langevin equation is not as straightforward as in the quadratic case.

Indeed, it might not even be possible. For an action with only even orders

of ξI one can make multiple Hubbard–Stratonovich transformations, each

one bringing about an additional random force. For an action with an ex-

ponential dependence on ξI it can be done by expanding the exponentiated

action in a Taylor series, as shown in Publication IV.

Using the Langevin equation we can simulate timelines of energy, or

some other observable, which sometimes are more informative than the

full distributions obtained from the Fokker–Planck equation.

3.4 Non-Gaussian fluctuations

As discussed in Sec. 3.1, fluctuations of energy (and thus, temperature)

are small in equilibrium in the limit of a large number of degrees of free-

dom. This includes, for example, systems with nanometer-size metallic

islands described above. Since the relative variance of the temperature

∝ δ/〈T 〉 is small, the distribution can be regarded as Gaussian. For tem-

perature [50]

P (T ) ∝ exp

[
−π2(T − 〈T 〉)2

6〈T 〉δ
]
. (3.25)
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It is not enough to just drive the system out of equilibrium in order

to make the fluctuations non-Gaussian. In the simplest example of a

noninteracting island coupled to two reservoirs and driven by a potential

or temperature difference the probability distribution for temperature is

close to Gaussian [50]. The weight in the non-Gaussian tails of the distri-

bution is so small that the observation of these rare non-Gaussian events

is well nigh impossible.

The single-electron transistor (SET) studied in Publications I and II and

in Section 2.3 has the interesting property that below a certain bias volt-

age VC the single-electron tunneling processes can only cool the island

regardless of the island temperature, whereas above VC also heating is

possible. Up to VC the second order co-tunneling processes stabilize the

temperature of the island to a very small value. This suggests that small

fluctuations in the heat current can give rise to large relative fluctua-

tions in the temperature. In Publication II we show that the probabil-

ity distribution near VC is indeed non-Gaussian, provided that the tran-

sistor island is not too large, the single particle level spacing satisfying

δ � (TC/VC)
5VC , where

TC

VC
≈ 1√

2 ln(1/g)

 1. (3.26)

The magnitude of the fluctuations remain small, though: δT/TC ≈ TC/VC .

This combined with the requirement g � 10−3 for ultra high resistance

tunnel barriers of the order of 1 MΩ makes the experimental detection of

these fluctuations challenging.

A somewhat similar property is found in a superconductor–insulator–

normal metal–insulator–superconductor (SINIS) tunnel structure studied

in Publications III and IV. The single-particle tunneling processes below

a bias voltage of 2Δ, Δ being the energy gap in the superconducting leads,

can only cool the island. In contrast to SET the second order processes

deposit energy on the island in discrete units of 2Δ. The average energy

on the island biased close to 2Δ depends on the rate γ of these second order

processes, 〈E〉 � 2Δγ4/3. When γ 
 1 the relative fluctuations become

extremely large: δE/〈E〉 � γ−4/3. This leads to a strongly non-Gaussian

distribution of energy (and hence, temperature) when the second order

tunneling rate is small, but still well within reach of the state-of-the-art

experiments.
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3.5 Induced fluctuations in other observables

When temperature fluctuations are not taken into account, the tempera-

ture of the island is reduced into a parameter of the theory just like the

temperature of the reservoirs. When observables are calculated, they usu-

ally depend on these parameters. For example, the expectation value of

the electric current is given by some function of temperature,

〈I〉 ≡ I(T ). (3.27)

In the presence of temperature fluctuations, to lowest order in the tem-

perature dependence of the current, this is modified to

〈I〉 = I(〈T 〉). (3.28)

Let us next consider current noise:

〈I2〉 − 〈I〉2 ≡ SI(T ), (3.29)

which is modified by the temperature fluctuations to

〈I2〉 − 〈I〉2 = SI(〈T 〉) + [∂T I(〈T 〉)]2 var(T ). (3.30)

If the temperature fluctuations are appreciable, and if the temperature

sensitivity of the current is high, the intrinsic current noise can be dom-

inated by the noise induced by the temperature fluctuations. This is

the case, for example, in SET, where the electric current depends ex-

ponentially on temperature. Characterized with the Fano factor, F =

SI/(2eI), the temperature-fluctuation induced noise figure is given by

F = 1/48(VC/TC)
4 ∝ ln4(1/g), which exceeds 100 for g = 10−3, as shown

in Publication I. In comparison, the Fano factor for the intrinsic noise

is F = 1, the induced noise being possibly several orders of magnitude

larger. In Publication II we also show that the statistics of these huge

current fluctuations are strongly non-Gaussian, and that the noise is dom-

inated by large current spikes at low frequency.

Maxwell’s demon [51] is a thought experiment of an entity which is able

to open and close a door between two containers of gas, allowing molecules

moving faster than average to pass only in one direction and molecules

moving slower than average to pass only in the other direction. As a re-

sult, one container cools down and the other heats up, and entropy seems

to decrease without doing any work. A more diligent analysis shows that

the demon generates entropy in the process and the second law of ther-

modynamics is not violated. Still, devices which mimic this concept are

called Maxwell’s demons [52, 53, 54].
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In Publication III we also describe how the measurement of current fluc-

tuations could allow us to trap the device in a low-temperature state, sim-

ilar to the idea of a Maxwell’s demon. When the current measurement

shows that the device has fluctuated to a very low temperature, the cur-

rent through the device is switched off. The system then stays at this tem-

perature for the duration of the electron–phonon scattering time, which

is typically long compared to the other time scales.

3.6 Detection of temperature fluctuations

Induced fluctuations can also provide a way to detect the temperature

fluctuations indirectly by detecting the induced fluctuations in some other

observable. As shown in Publication III, the statistics of temperature fluc-

tuations can be gathered by monitoring the current through the device in

real time, provided that the intrinsic shot noise of the device is small com-

pared to the temperature-fluctuation induced current fluctuations. The

measurement scheme for a generic nanostructure is shown in Fig. 3.2.

The temperature dependent current through the device, I(T ), generates a

fluctuating voltage Vx across a shunt resistor Rsh, which is then amplified

and detected with a fast oscilloscope.

What should be the value of the shunt resistor? In order for the tem-

perature-fluctuation induced noise to be detectable, the additional noise

generated by the resistor and the amplifier must be smaller than the ac-

tual signal to be measured. This implies that
√
var(V̄x) 
 〈V̄x〉, where the

overbar denotes a time average [see Eq. (3.31) below]. To make further

progress we decompose the fluctuating voltage into a signal part and a

noise part, Vx = V + δV , and average over a short measurement period

τ 
 τE during which the signal stays constant so that

〈V̄x〉 = 1

τ

∫ τ

0
dt〈Vx(t)〉 = V. (3.31)

Variance of the measured signal is given by

〈V̄ 2
x 〉 − 〈V̄x〉2 = 1

τ2

∫ τ

0

∫ τ

0
dtdt′〈δV (t)δV (t′)〉,

=
1

τ2

∫ τ

0

∫ τ

0
dtdt′

∫
dω

2π
e−iω(t−t′)SVx(ω), (3.32)

where SVx(ω) is the spectral noise power. In the case of thermal noise due

to the shunt resistor, SVx is independent of frequency [5] and the variance

becomes

var(V̄x) =
SVx

τ
=

2TRshR
2
dyn

τ(Rsh +Rdyn)2
, (3.33)
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Figure 3.2. Example measurement scheme for the detection of temperature fluctuations
via current fluctuations. The current through the nanostructure at a fluctu-
ating temperature T , I(T ), generates voltage fluctuations across the shunt
resistance Rsh. These are amplified and recorded with an oscilloscope.
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where Rdyn ≡ (Vbias − V )/Ī is the dynamical resistance of the nanostruc-

ture.

For quantum fluctuations in the shunt resistor we have [5]

SVx(ω) =
RshR

2
dyn

(Rsh +Rdyn)2
ωθ(ω),

var(V̄x) =
RshR

2
dyn

τ2(Rsh +Rdyn)2
γ − Ci(ωcτ) + ln(ωcτ)

2π
,

≈0.04
RshR

2
dyn

τ2(Rsh +Rdyn)2
, (3.34)

where γ is the Euler–Mascheroni constant, Ci(z) the cosine integral, and

ωc ≈ 1/τ a high-frequency cutoff for the fluctuation spectrum. Ampli-

fier noise spectrum has the same form as the quantum fluctuations in

the shunt resistor, but with a prefactor n, which depends on the num-

ber of noise quanta added by the amplifier. The lower limit n = 1/2 can

be achieved with a quantum limited amplifier, adding half a quantum of

noise [55].

The signal-to-noise ratio becomes

〈V̄x〉√
var(V̄x)

=
√
rsh

√(
Vbias

eRdyn
τ

)(
eVbias

max (2T, 0.04/τ)

)
, (3.35)

where rsh = Rsh/Rdyn. It is high when the number of particles transmit-

ted through the structure during the measurement period is large, and

when the bias voltage is large compared to the temperature and the mea-

surement bandwidth. The signal-to-noise ratio is maximized when the

value of the shunt resistor is maximized. However, for a large Rsh the

current fluctuations in the nanostructure cause large fluctuations in the

bias voltage across the nanostructure. This is not consistent with the as-

sumption of pure voltage bias in the theory. Pure voltage bias is reached

in the opposite limit, Rsh → 0. Therefore, it is necessary to make a com-

promise between the “purity” of voltage bias and the signal-to-noise ratio

on a case-by-case basis.

As an example, using the numbers from Publication III we can check

what value for the shunt resistor in series with the SINIS structure would

give a signal-to-noise ratio of, say, 10. Taking T = 10 mK, Vbias = 2Δ/e =

2 K× kB/e, Rdyn = 110 kΩ, τ = 1 ns, and a quantum limited amplifier, we

get
Vbias

eRdyn
τ = 9.8,

eVbias

max (2T, 0.04/τ)
= 100, and Rsh = 11 kΩ.

Comparing this value to the dynamical resistance implies that the struc-

ture is quite well voltage biased. By halving the shunt resistance the bi-
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asing can be improved further with the signal-to-noise ratio still staying

above 7 due to the square root dependence on Rsh.

For an overheated single-electron transistor the numbers from Publi-

cation II are more favorable. Taking T = 10 mK, Vbias = VC = 1 mV,

Rdyn = 1.6× 109 Ω, τ = 3.8× 10−2 s, we get

Vbias

eRdyn
τ = 1.5× 105,

eVbias

max (2T, 0.04/τ)
= 0.6× 103, and Rsh = 1.8 kΩ.

Here the challenge is the ultra-high resistance of the order of 1 MΩ of the

tunnel barriers.
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4. Summary and conclusions

In this Dissertation I study the theory of electronic heat transport in

nanometer scale metallic structures using non-equilibrium quantum trans-

port theory. The main focus is on the random fluctuations of heat currents

between the nanoelectronic system and its surroundings, and the associ-

ated fluctuations in the internal energy and temperature of the system.

Fluctuations in general play an important role in nanoelectronics. In ad-

dition to their detrimental effect on the accuracy of measurement instru-

ments and other devices, they can also be used to extract information

about the nature of the physical processes in the system.

Typically, temperature fluctuations are relevant in small systems where

the single-particle level spacing is relatively large compared to some other

energy scale of the system. Moreover, the fluctuations are large when

energy is mostly transported by processes which are sensitive to temper-

ature. Examples of these are the heat currents carried by electrons in

single-electron transistors and superconductor–insulator–normal metal

structures — two common devices in the field of nanoelectronics. In these

systems the temperature dependence of the heat current is exponential in

certain bias voltage regimes. Significant electron–phonon coupling tends

to diminish these effects.

The temperature-fluctuation induced effects on other observables can

be significant, sometimes even dominating. Again, the relevance of this is

determined by the temperature sensitivity of the other observable. Espe-

cially the current noise in a single-electron transistor with highly resistive

tunnel barriers is strongly affected by the temperature fluctuations. In

many systems it should be possible to detect the temperature fluctuations

in this way: By measuring the fluctuations of some other observable it

is possible to infer the statistics of temperature fluctuations. Experimen-

tal realization is certainly challenging, but it should not be impossible.
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Better understanding of the measurement process and its limitations re-

quires the description of the measurement circuit (or at least part of it)

in the same effective action formalism together with the nanostructure.

By virtue of the flexibility of the theory this should not be too difficult to

achieve in the near future.

The functional integral approach to Keldysh formalism is a solid founda-

tion upon which the theory of temperature fluctuation statistics is built.

Its formulation in terms of the Fokker–Planck and Langevin equations is

developed and used in the majority of publications constituting this Dis-

sertation. These formulations can be used to study the fluctuations of

temperature and other relevant quantities in a wide variety of systems,

not limited to those mentioned in this overview. Examples of such systems

are diffusive wires, nanoelectromechanical systems (NEMS), circuit quan-

tum electrodynamics, and even some chemical or biological systems. Some

of the most interesting phenomena appear in systems driven strongly out

of equilibrium, possibly not admitting a definition of any kind for an effec-

tive temperature. One such example is the supercurrent enhancement or

reversal in non-equilibrium superconducting structures, which strongly

depend on the shape of the electron distribution function. Statistics of en-

ergy fluctuations in these systems could be one of the near-term directions

for the development of this formalism.

It is difficult to imagine applications for temperature fluctuations. Their

observation, however, might present the chance to drive a system into a

state of exceptionally low (or high) temperature by using the feedback

from the detector to control the physical mechanism causing the fluctua-

tions. Similarly, it could be possible to “engineer” rare states of some other

fluctuating quantities.

In the field of nanoelectronics temperature fluctuations should in gen-

eral be viewed as a harmful source of noise accompanying the inevitable

miniaturization of electronics. It is my hope that the methods and results

presented in this Dissertation enable a critical evaluation of the relevance

of temperature fluctuations in other fields of physics — even other fields of

science — and provide ideas for the minimization of their harmful effects.
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