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1. Introduction and background

1.1 Introduction

All life on Earth shares the same code for storing genetic information.

This hereditary code that holds the instructions to the organism’s devel-

opment and functions, is contained in a molecule called DNA (or RNA

for certain viruses). The DNA is a double-stranded polymer, each strand

composed of four different kinds of repeating units, nucleotides. When ar-

ranged in a sequence, the nucleotides form a genetic code that can be read

by biological organelles to produce various functions within the living cell,

or by technological means to obtain information about the organism. The

technological process of extracting the information contained in the DNA

is called DNA sequencing. The term covers a variety of different methods

developed since the 1970’s to understand the genetic makeup of living be-

ings, and even after 40 years, the field is growing at an increasing rate.

The reason is that unlocking the complete genetic code allows remark-

able advances in biotechnology, food production, medicine, forensics, and

beyond.

Although the first sequencing methods were developed already in the

beginning of the 1970’s, the initial progress was slow, especially in ob-

taining complete DNA sequences of organisms. While the complete DNA

genome of the bacteriophage φX174 was sequenced already in 1977 [1],

the first complete genome of a free-living bacterium was not obtained un-

til almost 20 years later [2]. The human genome was published six years

later in 2001, after ten years of work and a price tag of almost 3 billion

dollars [3, 4, 5]. The main reason for the slow initial progress and high

costs were the limitations of the early sequencing methods. The methods

consist of several steps, where the DNA is first split into smaller frag-
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ments, each of which is replicated to produce several copies that are then

analyzed to give the sequence of the given fragment. The same process is

repeated for all the fragments, and in post processing the fragment data

is combined by looking for overlaps in the subsequent fragments. Typi-

cally, the DNA has to be assembled from at least several million of such

fragments, which makes the task slow, expensive and computationally

challenging. Since 2007, the advent of the so-called second generation se-

quencing methods have made the process considerably faster and cheaper,

with the sequencing of the human genome taking less than a week and

costing roughly ten thousand dollars in 2010 [5, 6]. Although the second

generation methods allow for massively parallelized sequencing, the max-

imum size of the fragment is still very limited (even more strictly than in

the first generation devices), which means that the DNA sequencing time

and cost will eventually be limited by advances in computational algo-

rithms and hardware [5].

At present, in 2012, the third generation of DNA sequencers is begin-

ning to make its entrance to the market. Although several alternative

concepts are under development, one of the most promising is the so-

called nanopore sequencing. In this method, a single DNA polymer is

pulled through a nano-sized pore, which produces a measurable signal in,

e.g., the electric current that flows through the pore (see Figure 1.1). The

different nucleotides, because of their dissimilar physical and chemical

properties, give a characteristic disruption in the current, in principle al-

lowing identification of different sequences [7, 8]. If sufficient accuracy

is achieved with such a method, it will have several advantages over the

presently available technologies [5, 9]. Because the sequencing can be

done using a single molecule, instead of using numerous copies, many of

the preparatory steps necessary in conventional methods can be avoided.

This saves a significant amount of both time and money. In addition, con-

siderably longer fragments can be used compared to the present meth-

ods, which reduces the post processing requirements considerably, espe-

cially if the genome is sequenced de novo, without the necessity to refer to

archived sequencing data for the same organism. The process is also very

scalable, allowing massively parallel sequencing with nanopore arrays.

The overall potential with nanopore sequencing is enormous. Recently

(in February 2012), Oxford Nanopore Technologies, an Oxford based com-

pany, announced that they will bring a nanopore-based sequencer to the

market in 2012 [10]. According to the company, both the speed and the

10
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Figure 1.1. Schematic presentation of DNA sequencing by translocation of DNA through
a nanopore. When the pore is open, an electric current passes through the
pore from one side of the membrane to the other. When a polymer enters
the pore, part of the current is blocked, which gives a detectable signal. The
strength of the signal depends on the type of the DNA’s nucleotide, in prin-
ciple allowing sequencing of DNA by monitoring the current flowing through
the pore.

cost of the nanopore sequencer will be competitive with the presently

available technologies. By using several of their platforms in parallel,

they expect that it may be possible to sequence the human genome in

as little as 15 minutes, although this would result in a higher monetary

cost. In general, the target cost of 100 dollars for sequencing the human

genome is nowadays considered to be a reasonable goal [5]. This kind of

price combined with the sequencing time of hours (or even minutes,) in-

stead of days, could make DNA sequencing as commonplace as regular

blood tests are today. This kind of availability to the general practitioner

could potentially revolutionize modern medicine, allowing personalized

medical treatments tailored for the individual patient. In the future, ac-

curate and preventive diagnosis of, e.g., hereditary diseases and cancers

could be possible at modest cost.

However, the nanopore technology of DNA sequencing is still in its early

stages and far from realizing its full potential. At the moment, several al-

ternative technical solutions are explored. For example, some approaches

use an enzyme at the entrance of the nanopore to cleave the nucleotides

off the DNA strand. The nucleotides are then measured individually in-

side the pore. An alternative method is to sequence the DNA as an intact

strand as it translocates through the nanopore [9]. The former method is

less sensitive to measurement noise due to the lack of interference from

the neighboring nucleotides, while the latter has the advantage of higher

potential throughput.

Aside from the many technical details of nanopore sequencing, even
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some fundamental physical questions remain open. Until very recently,

even the correct physical description of polymer translocation under an

external driving force was unknown. This remained not only a serious

theoretical issue, but also a practical problem for the experimentalists

working on polymer translocation, since a thorough understanding and

preparation of experiments always requires solid theoretical knowledge

on the subject. As a part of this Thesis, a unifying theory of the physics

of driven polymer translocation is presented. The theory allows an ex-

tremely lucid description of the underlying physics and, hopefully, will

inspire further discoveries in polymer translocation, both experimental

and theoretical.

The rest of this Thesis is organized as follows. In Section 1.2 we discuss

the general class of physics problems known as thermally activated pro-

cesses, which include such processes as chemical reactions, surface diffu-

sion, polymer escape and, in some cases, polymer translocation. The poly-

mer translocation problem is introduced in Section 1.4, although more

detailed discussion about the theory of driven polymer translocation is

given later in the Thesis. In Chapter 2 we discuss the problem of ther-

mally activated escape of polymer from a metastable state, and a com-

putational method called Path Integral Hyperdynamics that can be used

to significantly accelerate simulations of such problems. In this context,

we also give an overview of the results of Publications I & II. Chap-

ter 3 presents the central results of Publications III, IV & V. Section 3.1

gives an overview of the current state-of-the-art theory of driven polymer

translocation, which is presented in Publications III & IV. Finally, in Sec-

tion 3.2, we discuss polymer translocation under time-dependent force in

the regime, where the theory discussed in the preceding Section is not

valid, and summarize the results of Publication V.

1.2 Thermally activated processes

1.2.1 The Langevin equation

Many problems in chemistry, physics, biology and engineering involve

transitions of the system from an initial state to some other state. Exam-

ples of such processes include protein folding, surface diffusion (hopping

of an adatom from one lattice site to the next), chemical reactions and

12
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electron transport in semiconductors [11, 12]. Within classical physics,

such processes are described by Brownian motion in an external poten-

tial, where the system escapes from the initial metastable state due to

thermal fluctuations. Mathematically, such processes can be described by,

e.g., the Fokker-Planck equation [13], or the Langevin equation,

mẍ = −mηẋ −∇U(x) + ζ(t). (1.1)

The Langevin equation in Eq. (1.1) is an equation of motion for one par-

ticle with mass m moving in an external potential given by U(x), subject

to coarse-grained interactions with the thermal environment. The inter-

actions are reduced to the frictional force −mηẋ and the random force

ζ(t). The random is typically taken to be Gaussian white noise with mean

〈ζ(t)〉 = 0 and correlations 〈ζ(t)ζ(t′) = 2kBTmηδ(t − t′). Here, the aver-

age 〈·〉 is taken over the different realizations of the random force, and kB

is the Boltzmann constant, T is the absolute temperature, η is the fric-

tion coefficient and δ(t) is the Dirac delta function. Together the friction

and the random force satisfy the fluctuation-dissipation theorem, acting

as a thermostat for the system. In many cases, the Langevin equation

is further approximated by considering the overdamped limit, where the

inertial term mẍ is neglected from Eq. (1.1). The Langevin equation will

be used extensively in this Thesis to describe coarse-grained dynamics of

particles and polymers.

1.2.2 Kramers’ escape rate

In the context of thermally activated processes, the central issue is to cal-

culate the escape rate k from the metastable state. Since the initial state

is metastable, its population (or the probability that the system is in the

initial state) is approximately constant only on time-scales that are short

compared to the escape rate. Therefore the escape rate, which depends on

the system’s probability distribution, is in general also a function of time.

For example, to calculate the reaction rate kA→B from the reactant state

A to the product state B, one has to calculate the time-dependent rate k(t)

defined as [15, 16]

k(t) =
d

dt

〈hA(0)hB(t)〉
〈hA(0)〉 ≈ kA→Be−t/trxn , (1.2)

where hA and hB are the characteristic functions defined as

hA,B(t) =

⎧⎪⎨
⎪⎩

1, if x(t) ∈ A, B

0, if x(t) /∈ A, B
, (1.3)
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Figure 1.2. Schematic illustration of the metastable potential typical of the Kramers
problem. The metastable minimum of the potential is located at x = 0 and
the local maximum (the barrier) at x = d. The difference in potential energy
between the local minimum and maximum (the barrier height) is VB .

and trxn = (kA→B + kB→A)−1 is the relaxation time related to the forward

(kA→B) and backward (kB→A) reaction rates. In this Thesis, unless oth-

erwise indicated, when discussing the escape rate from, say, state A to

state B, we refer to the time-independent rate kA→B, which is valid for

timescales shorter than trxn.

The separation of time scales between the equilibration time of the sys-

tem in the metastable state and the relaxation time trxn was first appre-

ciated in the context of mathematically formulated reaction rate theory

by Kramers in 1940 [14]. Kramers modeled the general chemical reac-

tion using a simplified model of one reaction coordinate, x, for which he

solved the escape rate in an external metastable potential. In the high

barrier limit, VB/kBT � 1, one can employ the saddle-point approxima-

tion to get the famous Kramers rate for thermally activated escape across

the barrier [13, 14],

k =
ω0ωB

2πη
e−βVB . (1.4)

In Eq. (1.4), β = 1/kBT is the inverse temperature, VB is the height of the

barrier (see Figure 1.2) and ω0 and ωB denote the square root of m−1 d2U(x)
dx2

evaluated at the bottom of the metastable well (x = 0) and at the bar-

rier top (x = d), respectively. The formula includes the exponential de-

pendence of the rate on the height of the activation barrier and inverse

temperature, which was postulated on experimental basis by Arrhenius

already in 1889. In addition, Kramers was able to derive the prefactor,

which includes the vibrational frequency of the stable mode at the bottom

of the well, ω0, and the corresponding frequency of the unstable mode at

the barrier top, ωB. The formula of Eq. (1.4) is valid in the high barrier
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(VB � kBT ) and high friction (η � ωB) regime. The former guarantees

that the intrawell relaxation time is much shorter than the escape time,

hence the probability distribution of the initial state is given by the Boltz-

mann distribution. The latter criterion ensures that the system’s time

evolution is stochastic rather than ballistic, and is required to write down

the equation of motion of the probability distribution in the Fokker-Planck

form [13, 17]. The rate can also be solved in the low-friction limit, by writ-

ing down the diffusion equation for the action [14, 17]. In a more complex

system, Kramers’ theory also neglects the recrossings due to a multidi-

mensional energy landscape, including only the recrossing due to thermal

fluctuations.

1.2.3 Hyperdynamics

Although the Kramers’ rate, Eq. (1.4), gives a very good approximation

of the reaction rate for many systems, in practice it is seldom possible

to apply it directly. In some cases of interest, all of its assumptions may

not be valid. Furthermore, in high-dimensional, many-particle systems,

obtaining the free energy along the reaction coordinate can be difficult,

and often even defining a suitable reaction coordinate is challenging, due

to the complex free energy landscape and several possible reaction path-

ways. Therefore, in many cases the reactions need to be calculated using,

e.g., numerical Monte Carlo or molecular dynamics (MD) simulations to

obtain the rates. The rates can be obtained by, e.g., calculating the corre-

lation function 〈hA(0)hB(t)〉 of Eq. (1.2), or by calculating the flux through

the dividing surface that separates the product state from the reactant

state. The latter method is the so-called transition state theory (TST) ap-

proximation, which gives an upper bound for the rate, although in many

cases it is very close to the true rate [15, 17].

A common limitation in numerical studies of physics or chemistry is

the availability of computer resources. This is especially true of escape

processes, where the reaction rates can be extremely low at the relevant

temperatures. The occasional crossing event occurs extremely rarely, re-

quiring very long simulation times to observe even a few of these events.

Obtaining reliable statistical accuracy is in such cases impossible with

conventional simulation techniques. To speed up the simulation of these

rare events, Voter introduced the so-called hyper-MD, or hyperdynamics,

method in 1997 [18]. The idea is similar to the various importance sam-

pling methods in Monte Carlo simulations, where the states of the system
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Figure 1.3. Illustration of the principle of the hyperdynamics method. The system’s
crossing dynamics is accelerated by addition of a bias potential Ub(X), which
lowers potential barrier and boosts the number of crossings per unit time.
The dynamics is afterwards corrected back to the original system.

are sampled under a modified external potential for better ergodicity, and

the statistical weight of the sampling is corrected afterwards [19]. In the

hyperdynamics method, the dynamics of the system is artificially acceler-

ated by modifying the external potential with a so-called bias potential so

that the crossings become more frequent (see Figure 1.3). In Voter’s orig-

inal method, the accelerated dynamics is afterwards mapped back to the

original system by making the simulation time a statistical quantity. Al-

though the simulation time in the biased system advances with constant

time steps, the corresponding time in the unbiased (original) system is

calculated as

tHD =
ntot∑

i

δtHD,i ; δtHD,i = δtMDeβUb[x(ti)], (1.5)

where δtMD is the MD time step, ntot is the total number of MD steps, and

ti indicates the time at the ith MD step.

The original hyperdynamics method of Voter is based on the TST ap-

proximation of activated processes, and therefore has the same limita-

tions. Essentially, this means that the obtained rate is always an upper

bound, the quality of which is somewhat sensitive to the choice of the di-

viding surface. In addition, the bias potential Ub(x) has to go to zero at

the transition state. Since the original hyperdynamics method, other al-

ternative schemes have been developed for different purposes (see, e.g.,

Refs [20, 21] and references therein). In this Thesis, a novel formulation

of the hyperdynamics type methods is studied and further developed. The

method is based on the path integral formulation of Langevin dynamics

and was first published by Chen and Horing [21] in 2007. This Path Inte-
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gral Hyperdynamics (PIHD) method is described in detail in Section 2.2

and in Publications I & II. In this context, we merely mention that it

has several advantages over the previous hyperdynamics methods. The

method gives an exact correction to accelerated dynamics, and is not lim-

ited by the approximations of the transition state theory. It is also very

flexible, allowing virtually any kind of potential, even time dependent, to

be used as a bias.

1.2.4 Resonant activation

Because of the exponential dependence of the crossing rate on the barrier

height (cf. Eq. 1.4), the system can exhibit interesting behavior if the

barrier height is modulated in time. In 1992, Doering and Gadoua [22]

studied a somewhat similar system of two metastable states separated by

a triangular potential barrier, whose height changes dichotomically with

time. They found that the barrier crossing is most likely to occur when

the barrier is the lower state and that the barrier crossing rate can be

greatly enhanced by the non-equilibrium dichotomic noise at the resonant

flipping rate [22]. This phenomenon is called resonant activation. Since

its discovery, the resonant activation phenomenon has been studied and

analyzed by several authors (see, e.g., Refs [23, 24] for discussions of its

general properties).

The resonant activation phenomenon and the existence of a maximum

crossing rate can be understood as follows. Suppose the system is initially

in the metastable state at temperature kBT . The system’s activation bar-

rier changes dichotomically in time between the upper state of VB +A and

the lower state VB − A with mean flipping rate ω (see Figure 1.4). If the

temperature is sufficiently low, kBT � VB +A, the system is very unlikely

to cross the activation barrier if the barrier is in its upper state. For ex-

tremely low flipping rates of the dichotomic force, the system may have to

wait for a very long time until either the barrier flips to its lower state, or

sufficient thermal fluctuations activate the system across the barrier. In

the low flipping rate limit, the mean residence time τ (the time that the

system has to wait before the transition occurs) is given by the weighted

average τ = p+τ+ + p−τ−, where p+ (p−) is the probability that the bar-

rier is initially in the upper (lower) state and τ+ (τ−) is the residence time

with the barrier in the upper (lower) state. Since τ± ∼ e−β(VB±A), the

mean residence time τ is dominated by τ+, unless the probability p+ de-

creases exponentially with increasing A. Therefore, in the low flipping
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Figure 1.4. Left panel: The potential of Figure 1.2 with the height of the barrier modu-
lated in time between V+ = VB +A and V− = VB−A gives rise to the resonant
activation phenomenon (see text). Right panel: For a matching barrier cross-
ing rate and barrier flipping rate ω, the residence time τ in the metastable
well is minimized (schematic illustration). The mean residence time in the
absence of the time-dependent barrier modulation is τ0.

rate limit, the mean residence time is typically longer than the residence

time in the absence of the dichotomic fluctuations, τ > τ0 (see Figure 1.4).

In the opposite limit of very fast flipping (ω � 1/τ0), the dynamics of the

system is much slower than the barrier flipping rate. Hence, the cross-

ing event seldom occurs within a time period of constant barrier height.

Instead, the height of the barrier changes several times during the cross-

ing event. Because of this, the fast fluctuations are averaged out and the

residence time is approximately equal to the residence time in absence

of the dichotomic fluctuations, τ ≈ τ0. The equality is not exact, because

the effect is non-linear and in principle the dichotomic force acts as an

additional source of fluctuations in the system, increasing the system’s

temperature beyond that of the heat bath. However, in this Thesis we

consider cases where this effect is small, and the approximate relation

holds well.

In the intermediate regime between the high and low ω regimes, the

situation is considerably more interesting. In this regime, the time scale

of the barrier crossing dynamics is comparable to the dichotomic flipping

rate (ω ≈ 1/τ0). Thus, the effect of the dichotomic force is not averaged out

as in the fast flipping limit. In addition, in this regime, the flipping rate

is large compared to the crossing rate with the barrier in the upper state.

Therefore, even when the barrier is initially in the unfavorable state at

VB + A, the system rarely has to wait the time τ+ for the thermal fluc-

tuations to initiate the barrier crossing. Instead, the barrier flips to the

lower state of VB −A, and the system crosses the lower activation barrier.

Therefore, in the intermediate rate regime, the crossing typically occurs

when the barrier is in the lower position. This is in contrast to the low and
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high flipping regimes, where the moment of crossing is only very weakly

correlated with the barrier flipping dynamics. Because the crossing typi-

cally occurs when the barrier is in the lower position, the mean residence

time is dominated by the time τ−, and the overall residence time is shorter

than without the dichotomic fluctuations, τ < τ0. The flipping rate corre-

sponding to the minimum residence time is called the resonant flipping

rate. However, because the crossing may occur with finite probability also

when the barrier is in the upper state, the resonance is typically quite

broad, possibly even several orders of magnitude in the ω axis.

1.3 Polymer escape

Thermally activated processes are also important in polymer physics, and

they appear in many contexts, such as electrophoresis, transport through

nanochannels, various biological cell functions and in polymer transloca-

tion. Also for the polymer, the Kramers type escape process from a single

metastable well can be viewed as the simplest prototype of a thermally

activated process. In the case of the polymer, the flexibility and exten-

sibility of the chain makes the situation considerably more complicated.

Due to the freedom of the chain to assume different configurations, the

free energy of the system may contain a significant contribution from the

polymer’s configurational entropy, in addition to the external potential

such as shown in Figure 1.2.

The polymer escape problem has been analyzed analytically by several

authors, using the so-called ideal chain model, where the polymer con-

sists of dimensionless monomers interconnected with massless springs

that can freely intersect each other [25, 26, 28, 29]. Using such models,

it is been possible to formulate the Kramers escape problem for the ideal

polymer and derive analytical results for, e.g., the crossing rate of the

polymer. One quantity of interest is the escape rate as a function of chain

length. Due to the entropic part of the free energy, the escape rate can

be a non-monotonic function of chain length, which is important for, e.g.,

separation of polymers by their chain length (or molecular mass).

In many cases, however, important details may be overlooked by simpli-

fied models such as the ideal chain model. For example, in a real poly-

mer the monomers cannot overlap and the bonds cannot intersect: the

volume occupied by one monomer is excluded from the others. Polymer

models with such excluded volume interactions are called self-avoiding
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cis trans cis trans cis trans

Figure 1.5. An illustration of the polymer translocation process. The polymer is initially
on the cis side. The translocation event starts when a part of the polymer en-
ters the pore (left panel). The polymer then threads through the pore (middle
panel) until it is completely on the trans side, at which point the process ends
(right panel).

polymers [30]. While in many respects the self-avoiding polymer is simi-

lar to the ideal polymer, they can behave very differently in, e.g., confined

geometries. For the ideal polymer, it is possible to compress the polymer

into an almost point-like volume, while for the self-avoiding polymer, the

energy due to the excluded volume interactions quickly diverges under

compression. Similarly for the Kramers escape problem, where the poly-

mer is confined in the metastable well formed by the external potential,

one expects to find very different behavior for the ideal and self-avoiding

chains when the size of the well is comparable to the size of the poly-

mer. Unfortunately, the dynamics of self-avoiding polymers is extremely

difficult to study analytically due to the many-body excluded volume in-

teractions. Thus, in this Thesis, the polymer escape problem is studied by

numerical simulations, using the Path Integral Hyperdynamics method,

which is derived in Chapter 2 and whose properties are discussed in the

same Chapter and in Publication I. The results and their implications are

presented in Publication II and in Chapter 2.

1.4 Polymer translocation

The polymer translocation is a process, where the polymer, immersed in

a solvent, threads through a nano-size pore from one side of a wall (e.g.,

a cellular membrane or an artificial structure) to the other. In its initial

state, the polymer is in its entirety on the cis side of the wall, while in the

final state, it is completely on the trans side (see Figure 1.5). While the

problem shares many similarities with the escape problem, it has a few

important differences.

While in polymer escape, the external potential may be even the domi-

nant contribution to the free energy barrier, in the typical polymer translo-
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cation problem the barrier is almost entirely of entropic origin1. The

entropic barrier can be estimated by enumerating the possible configu-

rations the chain can adopt in free space, or when it is partly threaded

through the pore. For the ideal chain, the calculation results in the free

energy

F(s) =
1
2
kBT ln

[s

a

(
N − s

a

)]
+

s

a
Δμ, (1.6)

which is written as a function of the translocation coordinate, s, defined

as the length of the chain on the trans side. The coordinate s acts as the

reaction coordinate for the system. The remaining quantities in Eq. (1.6)

are a, the segment length of the polymer, and Δμ, which is the chemical

potential difference between the cis and trans sides (and is an energetic

contribution to the free energy). The most obvious difference between

the free energy of Eq. (1.6) and the Kramers potential (cf. Figure 1.2) is

that in the case of translocation, the free energy has no finite minima,

as shown in Figure 1.6. Consequently, the system also has no metastable

state. In practice, for the experimentally or theoretically relevant polymer

lengths N the translocation can only occur if there is a chemical potential

difference of Δμ < 0 that tilts the free energy towards the trans side, as

shown in Figure 1.6. Such a chemical potential difference may be caused,

e.g., by an electrical field at the pore, produced by placing electrodes in

the cis and trans chambers. This is also the method that is typically used

in experiments to drive polymer translocation [9, 31].

Because in the practical experiments the polymer has to be driven through

the pore by an external force, this driven translocation is the most inter-

esting from the point of view of applications, such as DNA sequencing.

The problem is also extremely interesting theoretically. Because the poly-

mer is driven through the pore by a force that is acting locally, the in-

fluence of the force on the polymer’s configuration is strong. Therefore,

driven translocation is fundamentally a problem of non-equilibrium sta-

tistical physics, as opposed to the escape problem, which is largely an

equilibrium process (remember that the assumption of the Kramers’ solu-

tion is the separation of time scales and the canonical equilibrium distri-

bution within the metastable state). The non-equilibrium theory of driven

polymer translocation is described in Section 3.1 of this Thesis. The Sec-

tion is an overview of Publications III & IV, where the theory is introduced

1The exception to this rule is the case where there are strong attractive interac-
tions between the pore and the polymer, which is discussed in Section 3.2 and in
Publication V.
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Figure 1.6. The free energy landscape of polymer translocation, displayed as a function
of the translocation coordinate s. For the unbiased translocation, the barrier
is completely entropic and symmetric. The maximum corresponds to the con-
figurations in which the polymer is half-way through the pore. For nonzero
chemical potential difference Δμ, the barrier is tilted either towards the cis
(Δμ > 0) or the trans side (Δμ < 0).

and compared to molecular dynamics simulations.

In some cases, the polymer translocation process can be described as

a thermally activated process such as discussed in Section 1.2. This is

the case for instance when there are sufficiently strong attractive inter-

actions between the pore and polymer, such that a metastable state is

formed. When this occurs, one encounters the phenomena typical of acti-

vated processes, such as resonant activation. Studying the resonant acti-

vation phenomenon of polymer translocation is the subject of Section 3.2

and Publication V, where it is shown that while the phenomenon shares

many similarities with its one-dimensional analogue, there are also im-

portant differences, characteristic of polymer translocation.
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2. Polymer escape

2.1 Langevin dynamics

As mentioned in Chapter 1, considering polymer models beyond the ideal

chain approximation is necessary in many situations. However, due to

complicated interactions, treating analytically the dynamics for, e.g., the

self-avoiding chain, is typically not possible. Because of this, numerical

methods such as molecular dynamics (MD) simulations are needed. In

MD simulations, the system’s equations of motion are discretized in time

and solved by an appropriate numerical integration algorithm [32]. In

such a method, the amount of required computation time grows quickly

with the number of simulated particles, due to both the increase in the

number of equations of motion and the more complicated force evalua-

tions. For a polymer that is typically immersed in a solvent, a full atom-

istic molecular dynamics simulation of the polymer and the surround-

ing solvent is often not feasible. This is especially true for the escape

problems, which are by nature statistical (random), and therefore sev-

eral independent simulations are required to measure observables with

good statistical accuracy. Therefore, in this Thesis, we make two impor-

tant approximations to make the problem computationally manageable.

First, we describe the polymer on a coarse-grained level as a bead-spring

chain, where each bead represents several atoms of the real polymer. This

approach neglects the chemical differentiation between polymer species,

but is sufficient when one studies general properties, such as the depen-

dence of the escape rate on the chain length, which apply to entire classes

of polymers, instead of individual molecules. Second, we take the sol-

vent into account only in an implicit way, by including the viscosity as a

velocity-dependent frictional force, and the Brownian motion of the sol-
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vent molecules as a random force. Therefore, the equations of motion for

the system will be Langevin equations [cf. Eq. (1.1)] and the resulting

coarse-grained description of the full dynamics is called Langevin dynam-

ics.

For a polymer consisting of N beads of mass m, the Langevin dynamics

description of the system has N Langevin equations of the form

mẍi = −mηẋi −∇iUint −∇iUext + ζi(t), (2.1)

where ẋ indicates the derivative of x with respect to time and ∇i ≡ x̂ ∂
∂xi

+

ŷ ∂
∂yi

+ ẑ ∂
∂zi

gives the gradient w.r.t. the position of the ith monomer. The

monomer-monomer interactions are described by the potential Uint, while

Uext is the external potential. The different choices of the interaction po-

tentials Uint correspond to different polymer models, which will be dis-

cussed in more detail in Section 2.4. The random force ζi is Gaussian

white noise with zero mean, 〈 ζi(t)〉 = 0, and satisfies the correlations

〈 ζi(t) · ζj(t′)〉 = 6kBTmηδi,jδ(t − t′), where η is the friction coefficient,

kB is the Boltzmann constant, T the absolute temperature, δi,j is the Kro-

necker delta and δ(t) is the Dirac delta function.

In the numerical implementation of Langevin dynamics, Eqs. (2.1) are

discretized with time step δt and integrated numerically in time to find

the positions xi and the velocities vi ≡ ẋi of the particles as a function

of time. In practice, the integration consists of setting the initial values

xi(t0) and vi(t0) according to some distribution, numerically evaluating

the forces due to the potentials Uint and Uext, the friction and the random

force, and then finding the positions and velocities at time t = t0+δt using

an appropriate algorithm. The process is then repeated using xi(t0 + δt)

and vi(t0 + δt) as the starting values to find xi(t0 + 2δt) and vi(t0 + 2δt),

and so on.

In this Thesis, two different integration algorithms have been used. The

first one is the Ermak algorithm [33, 32], which employs the random force

ζi in a pre-integrated form as random displacement xR
i and random veloc-

ity vR
i . The algorithm reads

xi(t + δt) = xi(t) + c1δtvi(t) + c2δt
2Fi(t)

m
+ xR

i (2.2)

vi(t + δt) = c0vi(t) + c1δt
Fi(t)
m

+ vR
i , (2.3)

where the coefficients are c0 = e−ηδt, c1 = 1
ηδt(1−c0) and c2 = 1

ηδt(1−c1) and

Fi is the deterministic force Fi ≡ −∇i(Uint + Uext). The random variables
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xR
i and vR

i are defined as stochastic integrals

xR
i =

∫ t+δt

t
(mη)−1

(
1 − e−η(t+δt−t′)

)
ζi(t

′)dt′ (2.4)

vR
i =

∫ t+δt

t
m−1

(
1 − e−η(t+δt−t′)

)
ζi(t

′)dt′. (2.5)

Since xR
i and vR

i are Gaussian random variables, they can be sampled di-

rectly from a Gaussian distribution instead of first sampling ζi and then

computing the integrals in Eqs. (2.4) and (2.5). The algorithm for gener-

ating the correlated Gaussian variables is described, e.g., in Ref. [32].

The second algorithm used in this thesis is the BBK (after the authors

Brünger, Brooks and Karplus) algorithm, which is essentially a half-step

velocity Verlet algorithm for equations of motion with explicit velocity-

dependent friction [34, 35]. This algorithm updates the velocities in half

time steps, while using the full time step to update the positions:

vi (t + δt/2) =
vi(t)

1 − ηδt/2
+

δt

2
Fi(t) + ζi(t)

m
(2.6)

xi (t + δt) = xi(t) + δtvi (t + δt/2) (2.7)

vi(t + δt) =
vi(t + δt/2) + δt

2
Fi(t+δt)+ ζi(t+δt)

m

1 + ηδt/2
. (2.8)

Although both algorithms are fairly robust and widely used in Langevin

dynamics simulations, it turns out that implementing the Ermak algo-

rithm with the path integral hyperdynamics (PIHD) method is problem-

atic, while for the BBK algorithm the implementation is straightforward.

This will be discussed in more detail in the following Sections.

2.2 Path integral hyperdynamics

In thermally activated barrier crossing problems, such as the Kramers es-

cape and the corresponding problems for polymers, one typically encoun-

ters the challenge of simulating rare events. In the context of the Kramers

problem, the escape from the metastable well becomes a rare event when

the height of the barrier is large compared to the temperature, as we dis-

cussed in Chapter 1. In this case, the system mostly vibrates around the

local energy minimum, and the time it takes for a crossing event to oc-

cur can be prohibitively long. However, since in most cases the vibrations

around the energy minimum are of little interest, it would be advisable

to omit the computation of those vibrations by speeding up the barrier

crossing dynamics. To address this problem, the hyperdynamics method
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Figure 2.1. Left: a bistable potential, where the escape from the metastable initial state
can be accelerated by using a bias potential. The figure shows the potential
for the unbiased case and for three different biases that reduce the activation
barrier by a factor of b. Right: representative trajectories in the bistable
potential for different values of the bias, showing the exponential speed-up
of the escape dynamics due to the reduced activation barrier.

described in Section 1.2 was introduced by Voter in 1997 [18]. However, in

this Thesis, we employ a novel hyperdynamics method that is based on the

path integral formulation of Langevin dynamics. The Path Integral Hy-

perdynamics (PIHD) method was first published by Chen and Horing [21]

and subsequently also by Nummela and Andricioaei [36]. The concep-

tual idea of the PIHD method is similar to Voter’s hyperdynamics: the

residence time in the pretransition state is artificially decreased by modi-

fying the external potential so that the activation barrier is reduced (see.

Fig. 2.1). The method gives an exact correction to accelerated dynamics

and is very flexible, allowing virtually any kind of potential (even time

dependent) to be used as a bias. Next, before presenting a more detailed

analysis of its properties, we shall derive the PIHD method starting from

the path integral representation of the Langevin equation.

2.2.1 PIHD for one particle in 1D

A Brownian particle in one dimension can be approximately described

with the Langevin equation

mẍ(t) + mηẋ(t) − F = ζ(t), (2.9)

where F is the external force. The random force ζ is Gaussian with the

correlations 〈ζ(t)〉 = 0 and 〈ζ(t)ζ(t′)〉 = 2kBTmηδ(t− t′), and therefore has

the measure

P [ζ(t)] ∝ e
− β

4mη

R t
t0

dt′[ζ(t′)]2
, (2.10)

where β = 1/kBT is the inverse temperature. The path integral repre-

sentation of the Langevin equation is derived by discretizing Eqs. (2.9)
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and (2.10) in time, changing the variables from ζ to x, and finally going

back to the continuum limit [37, 38, 39]. The resulting probability of one

trajectory, or path, is, up to a normalization constant,

P [x(t)] = J [x]e−
β

4mη

R t
t0

dt′[mẍ(t′)+mηẋ(t′)−F ]2
, (2.11)

where J [x] is the Jacobian resulting from the change of variables. For the

pre-point (Itō) discretization the Jacobian can be shown to be constant

and, in particular, independent of F [38, 39].

The total transition probability from x0 ≡ x(t0) to xf ≡ x(t) is obtained

by taking the path integral over all possible paths connecting x0 to xf ,

with the probabilistic weight of each path given by Eq. (2.11). For a sin-

gle particle in one dimension (1D), the transition probability is then ex-

pressed as a path integral

P (xf , t|x0, t0) =

∫
R dx′

fδ(x′
f − xf )

∫ x′
f

x0
D[x]e−βI[x(t)]∫

R dx′
f

∫ x′
f

x0
D[x]e−βI[x(t)]

, (2.12)

where
∫ x′

f
x0

D[x] represents the path integral over all trajectories connect-

ing (x0, t0) to (x′
f , t). The denominator in Eq. (2.12) ensures that the tran-

sition probability is normalized. The effective action I[x(t)] is given by

I[x(t)] =
1

4mη

∫ t

t0

dt′[mẍ(t′) + mηẋ(t′) − F ]2. (2.13)

In the PIHD method, rare events such as barrier crossings are made more

frequent by introducing an additional bias force Fb(x, t), which is used

to guide the system towards the post-transition state. In the modified

system, the particle obeys the Langevin equation

mẍ(t) + mηṙ(t) − F − Fb(x, t) = ζ(t). (2.14)

By completing the square, the action of Eq. (2.13) can be rearranged in

the form I[x(t)] = Ib[x(t)] + Iζ [x(t)], where

Ib[x(t)] =
1

4mη

∫ t

t0

dt′[mẍ(t′) + mηẋ(t′) − F − Fb]2 (2.15)

is the action in the biased system, and

Iζ [x(t)] =
1

4mη

∫ t

t0

dt′F 2
b + 2Fb[mẍ(t′) + mηẋ(t′) − F − Fb] (2.16)

is the correction due to the bias. Using Eq. (2.14), Iζ [x(t)] can be written

in a convenient form

Iζ [x(t)] =
1

4mη

∫ t

t0

dt′Fb(x, t′)[Fb(x, t′) + 2ζ(t′)], (2.17)
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where ζ(t) is the sequence of random forces in the biased system. By sub-

stituting I[x(t)] = Ib[x(t)]+ Iζ [x(t)] in Eq. (2.12), the transition probability

in the original, unbiased system can then be expressed as

P (x0, t0|xf , t) =

∫
R dx′

fδ(x′
f − xf )

∫ x′
f

x0
D[x]e−βIζ [x(t)]e−βIb[x(t)]∫

R dx′
f

∫ x′
f

x0
D[x]e−βIζ [x(t)]e−βIb[x(t)]

=

∫
R dx′

fδ(x′
f − xf )

∫ x′
f

x0
D[x]e−βIζ [x(t)]e−βIb[x(t)]∫

R dx′
f

∫ x′
f

x0
D[x]e−βIb[x(t)]

×
⎡
⎣∫R dx′

f

∫ x′
f

x0
D[x]e−βIζ [x(t)]e−βIb[x(t)]∫

R dx′
f

∫ x′
f

x0
D[x]e−βIb[x(t)]

⎤
⎦
−1

.

(2.18)

According to Eq. (2.18), in order to obtain the transition probability in

the original, unbiased system, one may calculate the corresponding path

integral in the biased system, weighted by the functional e−βIζ [x(t)], which

we call the PIHD correction factor.

In the practical implementation, it is of course not necessary to explicitly

calculate the path integrals of Eq. (2.18). Since Eq. (2.14) is an equivalent

description of the (biased) system, the problem reduces to calculation of

weighted averages from Langevin dynamics simulations of Eq. (2.14), as

is discussed in Publication I. For example, to calculate the reaction rate

kA→B from the reactant state A to the product state B, one calculates

the expectation value 〈hA(0)hB(t)〉 [cf. Eq (1.2)], using the accelerated

dynamics of the biased system. The expectation value in the unbiased

system is then recovered as

〈hA(0)hB(t)〉 =
〈hA(0)hB(t)e−βIξ[x(t)]〉PIHD

〈e−βIξ[x(t)]〉PIHD

, (2.19)

where 〈·〉PIHD refers to the average computed in the biased system. Fur-

thermore, using the Itō discretization, the integral Iζ [x(t)] can be expressed

as a discrete sum

Iζ [x(t)] =
1

4mη

t/δt∑
i

Fb(x, ti) [Fb(x, ti) + 2ζ(ti)] δt, (2.20)

where δt is the simulation time step.

As a last detail, we take a closer look at the normalization factor in the

PIHD average, 〈e−βIζ [x(t)]〉PIHD. This normalization factor originates from

the denominator of Eq. (2.12), which is essentially the transition proba-

bility from a pre-defined initial state to any final state. If the functional

integral measure D[x] is properly normalized, this quantity is equal to 1.

This is simple to verify. Since the random force ζ(t) in Eq. (2.17) is Gaus-

sian with zero mean and variance given by 〈ζ(t)ζ(t′)〉 = 2kBTmηδ(t − t′),
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the functional integral Iζ [x(t)] is itself a Gaussian random variable with

mean value μ =
∫ t
0 dt′Fb(t′)2/4mη and variance σ2 =

∫ t
0 dt′Fb(t′)2/2mηβ.

The expectation value of the correction factor is then 〈e−βIζ[x(t)]〉PIHD =

e−βμ+β2σ2/2 = 1. However, the equality is exact only for an infinite number

of paths. For all practical purposes, the number of sampled trajectories is

finite, and therefore the relation can be only approximate,

〈e−βIζ [x(t)]〉PIHD ≈ 1. (2.21)

Therefore, for consistent numerical implementation of the PIHD method,

also the normalization factor should be included.

2.2.2 PIHD for a system of interacting particles

For a system of many particles, such as the polymer described by Eq. (2.1),

the PIHD method can be formulated in several ways. If the position of the

polymer’s center of mass, xcm ≡ 1
N

∑N
i xi, can be used as the reaction co-

ordinate, it is possible to calculate the correction factor from the center-of-

mass motion. In Publication II, where the Kramers problem for polymers

is studied, this version of the PIHD method is derived. The equation of

motion for the center-of-mass coordinate is

M ẍcm = −Mηẋcm −
N∑
i

∇i (Uint + Uext) +
N∑
i

ζi(t), (2.22)

where M = Nm is the total mass of the polymer. The correction factor is

then e−βIΣ[xcm(t)], with the correction functional

IΣ[xcm(t)] =

1
4Mη

∫ t

t0

dt′
N∑
i

[
Fb,i(xi, t

′)
] ·
{

N∑
i

[
Fb,i(xi, t

′) + 2ζi(t
′)
]}

,
(2.23)

where Fb,i is the bias force for the ith particle and
∑N

i Fb,i is the total

bias force on the center of mass. However, as discussed in Publication II,

the center-of-mass method only takes into account the energetic correc-

tion to the weight of the paths, being unable to correct for the entropic

change in the system’s free energy. Therefore, one can only apply bias

forces that do not change the entropic part of the free energy, i.e., satisfy

ΔF =
∑N

i Ub(xi), where ΔF is the free-energy difference between the bi-

ased and unbiased states, and Ub is the bias potential. It can be shown

that a constant-force bias Fb,i(xi, t) = Fb satisfies this criterion. However,

the restriction to constant-force biasing is very limiting, and therefore a
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different formulation of the PIHD method for polymer systems is desir-

able.

It turns out that the the center-of-mass method with the constant-force

bias is a special case of a more general formulation of PIHD. Similarly to

the one degree of freedom, the probability of a given trajectory for the 3N

degrees of freedom of the polymer is given by

P [ζ1(t), . . . , ζN (t)] = P [ζ1(t)] · · ·P [ζN (t)] ∝ e
− β

4mγ

R t
t0

dt′
PN

i [ζi(t
′)]2

, (2.24)

where we have used the fact that the random forces for the different de-

grees of freedom are uncorrelated. A change of variables gives, analo-

gously to Eq. (2.11),

P [x(t)1, . . . ,xN (t)] =

J [x1] · · ·J [xN ]e−
β

4mη

R t
t0

dt′
PN

i [mẍi(t
′)+mηẋi(t

′)+∇i(Uint+Uext)]2 .
(2.25)

As in the 1D case, the Jacobians J [xi] can be shown to be constant under

the Itō discretization. Henceforth, the derivation goes exactly as in the

1D case. In the biased system, the system obeys the equations of motion

mẍi = −mηẋi −∇i(Uint + Uext) −∇iUb + ζi(t). (2.26)

The 3N -dimensional correction functional is then, according to Eq. (2.25),

the sum of single particle 1D correction functionals:

IΣ[x1(t), . . . ,xN (t)] =

1
4mη

∫ t

t0

dt′
N∑
i

{
Fb,i(xi, t

′) · [Fb,i(xi, t
′) + 2ζi(t

′)]
}

.
(2.27)

The correction factor is then given as e−βIΣ[x1(t),...,xN (t)], similar to the sin-

gle particle in 1D.

If the bias force is independent of x and is the same for all monomers,

Fb,i(xi, t) = Fb(t), the expressions (2.23) and (2.27) are equal. Therefore,

in the center-of-mass description the correction factor is calculated cor-

rectly if the bias force is the same for each monomer, although it may

change in time. However, using the 3N -dimensional correction functional

of Eq. (2.27), the bias force can be position or time dependent, and may

even be different for different particles. Therefore, this latter form retains

the flexibility of the original one degree-of-freedom PIHD.

2.3 Efficiency of the PIHD method

The primary application of the path integral hyperdynamics method is the

acceleration of rare event computation by reducing the activation barrier.
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Therefore it is interesting to study the efficiency of the method compared

to unbiased molecular (Langevin) dynamics simulations. In Publication

I, we have studied the efficiency of the PIHD method by looking at the

benchmark example of monomer diffusion on a 1D periodic potential. The

system obeys the Langevin equation (2.9), with the external force given

by F (x) = πVB
λ sin

(
2π
λ x
)
, where VB is the barrier height and λ is the lat-

tice spacing. For sufficiently low temperatures (kBT � VB), the diffusion

occurs in discrete jumps between the neighboring minima, and the calcu-

lation of the diffusion coefficient reduces to finding the crossing rate from

one minimum to the next [40].

To quantify the efficiency of the PIHD method, in Publication I we have

studied the boost factor B, defined as the ratio of computational time of

conventional MD (Langevin) simulations over the computational time of

PIHD simulations required to give the same accuracy of the crossing rate.

In practice, since it is difficult to know the statistical error of the crossing

rate a priori, the boost factor is measured by running the same number

of trajectories in the biased and unbiased systems and determining the

mean squared error (MSE) separately for both cases. The boost factor is

then given as the ratio

B = MSEMD/MSEPIHD, (2.28)

with the smaller error from the PIHD simulations giving a boost factor

B > 1.

The boost factor was measured for two different types of bias forces with

several magnitudes to demonstrate the dependence of the PIHD efficiency

on the employed bias force. The two bias forces were the constant bias

force, defined as Fb(x) = fb for x < λ/2 and 0 for x ≥ λ/2, and the sinu-

soidal bias force, defined as Fb(x) = −πVb
λ sin(2πx/λ), for −λ/2 ≤ x ≤ λ/2,

and 0 otherwise. The crossing probabilities and the corresponding jump

rates (analogous to the forward crossing rates kA→B discussed earlier in

this Thesis) are shown in Figures 2.2 and 2.3. Due to the reduced bar-

rier, the number of successful crossings given by the PIHD simulations is

orders of magnitude larger than for the unbiased MD simulations, result-

ing in much smoother p(t) curves. The error estimate for the jump rate is

correspondingly improved. However, especially for the constant bias force

(Figure 2.2), large bias forces induce a significant systematic error, which

leads to underestimated jump rates. This systematic error is due to inef-

ficient sampling of the most relevant transition paths, which may occur

when the bias severely changes the original system.
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Figure 2.2. (a) The crossing probability p(t) vs. time t of a Brownian monomer in a si-
nusoidal potential well with VB/T = 20. The regular MD simulations yield
only four crossings out of 109 runs, while the PIHD simulations give several
orders of magnitude more. (b) The jump rate k = dp(t)

dt
for bias force values

fb = 0 (MD), 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5. The error bars indicate the standard
error of the mean value. The dashed horizontal line indicates the theoretical
value at the low temperature and high friction limit, k ≈ 3.0919 · 10−10. The
time is expressed in units of t0 = λ

p
m/kBT .
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Figure 2.3. The crossing probability (panel a) and jump rate (panel b) for the sinusoidal
bias force with Vb = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2. Conventions are the same as
in Fig. 2.2.
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Figure 2.4. The PIHD boost factor B as a function of equivalent constant bias force fequiv
b

for both the constant bias force (circles) and the sinusoidal force (squares).
For the constant bias force, fequiv

b = fb, while for the sinusoidal force,
fequiv

b = π√
2
Vb. The solid black curve indicates the theoretical gain in num-

ber of crossings, with the black markers being the corresponding values from
PIHD simulations. The red markers with error bars are the boost factors
measured from simulations. The blue markers show the corresponding val-
ues calculated with a theoretical model (see Publication I).

Inefficient sampling also reduces the boost factor B. As shown in Fig-

ure 2.4, the number of crossings increases roughly exponentially with in-

creasing bias force. Although the boost factor reaches a respectable value

of B ≈ 4000, it grows substantially slower than the number of crossings,

and even decreases for very large bias forces. This is because the PIHD

average, Eq. (2.19), is dominated by the trajectories that give small values

of the correction integral Iζ [x(t)], Eq. (2.17). Because Iζ [x(t)] is approxi-

mately a Gaussian random variable with mean μ =
∫ t
0 dt′Fb(t′)2/4mη and

variance σ2 =
∫ t
0 dt′Fb(t′)2/2mηβ, the probability to find small values of

Iζ [x(t)] decreases with increasing bias. This is illustrated in Figure 2.5,

where the probability distribution P (Iζ) for trajectories crossing the bar-

rier is given. Clearly, as the number of crossing paths increases, the rela-

tive number of paths with significant probabilistic weight decreases. The

boost factor B is therefore a product of two competing factors: the in-

creasing number of crossing paths, and the diminishing contribution of

those paths. This competition leads to the boost factor having a maxi-

mum at a finite bias. Thus, the efficiency of the PIHD method cannot be

increased without limit. Rather, there exists an optimal strength of the

bias, which gives the best performance. Qualitatively, the optimal bias

should be strong enough to significantly speed up the barrier crossing,

but also modest enough to preserve the essential features and symme-
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Figure 2.5. The distribution P (Iζ) of the correction integral Iζ at the moment of barrier
crossing for the sinusoidal bias potential with Vb = 0.4, 0.6, 0.8, 1.0. The dis-
tribution is calculated from crossing events occurring between 9 ≤ t/t0 ≤ 10.

tries of the system. For instance, the sinusoidal bias potential starts to

lose its effectiveness when the bias is so strong that the activation barrier

disappears altogether.

With the PIHD method, there is also an additional concern with respect

to the choice of the numerical integrator. The simulations in Publication

I were performed with both the Ermak algorithm and the BBK algorithm

described in Section 2.1. For similar accuracy, the Ermak integrator re-

quired an approximately ten times shorter time step for the PIHD simu-

lations, while with the BBK integrator the same time step could be used

for both MD and PIHD runs. The reason for this is that in the Ermak

integrator, the random force appears in the algorithm in a pre-integrated

form, which is not fully compatible with PIHD. The value of the correction

factor is extremely sensitive to the value of the random force in Iζ [x(t)],

and therefore the Ermak scheme introduces a subtle error in the estima-

tion of the correction factor. With the BBK integrator this problem does

not occur.

In Publication I, also a different way to implement PIHD for compu-

tational gain was studied. Since any external bias force can be used, it

is possible to resample the results from one PIHD run to several differ-

ent bias values, thereby obtaining the results for many different systems

at once. This parallel resampling was implemented for the problem of

a monomer diffusing in a 1D periodic potential with an additional time-

dependent sinusoidal driving force of the form A sin(2πνt), where ν is the

driving frequency and A is the amplitude. The PIHD simulation was run

with A = 0 and the results from that one simulation were resampled to

100 different combinations of (A, ν). Compared to MD simulations run
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separately for each combination of (A, ν), the PIHD attained a modest

boost of B ≈ 2 − 3. This is because the equation of motion was so simple

that most of the computation time was spent in calculating the correc-

tion integrals Iζ [x(t), A, ν] for the different A and ν. Arguably, for more

complicated system, the boost could be significantly higher, because the

computational complexity of Iζ [x(t)] does not necessarily increase with the

complexity of the equations of motion. Therefore, applied to a more com-

plicated system, also the parallel resampling has the potential to provide

a significant computational boost.

Finally, we take a look at the normalization factor 〈e−βIζ [x(t)]〉. As we dis-

cussed earlier, the normalization factor is in principle equal to 〈e−βI[x(t)]〉 =

1 for infinite number of paths. However, since the number of paths in a

simulation is never infinite, the normalization factor depends on the re-

alizations of the sampled paths and, through that, also on time. Because

the standard deviation of the correction integral grows with time, also the

normalization factor becomes noisier for large t. This behavior is shown in

Figs. 2.6 and 2.7, where the crossing probabilities and normalization fac-

tors are shown for the sinusoidal bias force (Vb = 1.0) and for the constant

bias force (fb = 2.0), respectively. For the sinusoidal force, although the

normalization factor starts to deviate from unity as time progresses, the

difference is less than 0.05 %. Correspondingly, the unnormalized cross-

ing probability (calculated with the assumption 〈e−βI[x(t)]〉 = 1) and the

normalized crossing probability (calculated with the time-dependent nor-

malization factor) are almost equal. On the other hand, for the constant

bias force, the normalization factor is significantly noisier, due to the in-

efficient sampling of the high-probability trajectories. Consequently, the

normalized crossing probability becomes extremely noisy for long simu-

lation times. The unnormalized curve remains very smooth, but bends

down due to the missing normalization of the probability.

In Publications I and II, the approximation of 〈e−βI[x(t)]〉 = 1 was used

for the normalization factor. Although this is strictly speaking valid only

for infinite number of trajectories, in practice it is a very good approxi-

mation for most cases. Typically, and also in Publications I and II, the

crossing rate is measured from the linear part of the p(t) curve. The un-

normalized probability curve is linear only when the normalization factor

is unity with good accuracy, and therefore, in practice, the unnormalized

p(t) is no different from the normalized one. However, keeping track of the

normalization factor and calculating the normalized quantities makes it

35



Polymer escape

0 5 10 15 20

t/t

0

1

2

3

4

5

6

10
  p

(t
)

Normalized
Unnormalized

9

0

2 4 6 8 10 12 14 16 18 20

t/t

-0.4

-0.2

0

0.2

0.4

10
  Δ

0

3

0 5 10 15 20

t/t

0.9996

0.9998

1.0000

1.0002

1.0004

〈
ex

p(
I  

[x
(t

)]
〉

ζ

0

Figure 2.6. Left: the normalized (pn) and unnormalized (pu) crossing probability as a
function of time for the sinusoidal bias force with Vb = 1.0. The inset shows
the normalized difference between the probabilities: Δ = (pn−pu)/pu. Right:
the normalization factor as a function of time.
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Figure 2.7. Left: the normalized and unnormalized crossing probability as a function of
time for the constant bias force with fb = 2.0. Right: the normalization factor
as a function of time.
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somewhat easier to recognize when the applied bias is inefficient. For

instance, the normalization factor for the linear bias becomes very noisy

even for moderate bias forces fb, while for the sinusoidal force the normal-

ization factor remains very close to 1 even for large values of Vb. This is

another indication towards the better efficiency of the sinusoidal bias.

2.4 Kramers escape problem for polymers

The essential difference between the one dimensional single particle prob-

lem considered originally by Kramers [14] and the corresponding problem

for polymers, is the internal degrees of freedom of the polymer chain. A

polymer chain can change its shape by coiling, swelling and stretching.

The chain flexibility adds an important entropic contribution to the free

energy, and can significantly alter the effective free-energy barrier [25].

For the ideal chain, depending on the size of the polymer in relation to

the dimensions of the external potential, several different regimes can be

identified. When the contour length of the chain is small compared to

the width of the well and the barrier, one can analyze the problem with

a many-body generalization of the Kramers problem and use the saddle-

point approximation to calculate the crossing rate, e.g., as a function of

chain length [25]. In this regime, the flexibility of the chain enables the

so-called coil-to-stretch transition. Here the polymer, initially in a coiled

configuration at the bottom of the well, assumes a highly elongated con-

formation at the barrier top. Because of this, the free-energy barrier is

lower and the crossing rate significantly higher than in the globular limit

(k → ∞, l0 → 0). After a certain critical chain length, the rate even starts

to increase as a function of chain length.

In the opposite limit, where the contour length of the chain is much

larger than the width of the well, the chain is able to occupy both the well

and barrier regions at the same time. It has been suggested that in this

limit the motion of the chain is described by an excitation and motion of

a kink-antikink pair [28]. According to this description, the motion of the

kink occurs at constant velocity, leading to an inverse dependence of the

crossing rate on the chain length. In the intermediate regime, depending

on the exact parameters, the crossing rate may have a minimum at cer-

tain chain length due to the confinement of the chain in the well [25, 29],

although the rate eventually approaches the long chain limit.

For the realistic polymer, also the excluded volume interactions and fi-
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nite chain flexibility are expected to influence the crossing rate [27]. In

Publication II, we have studied the polymer escape dynamics with PIHD

simulations in the intermediate chain length regime, where the non-ideal

polymer interactions may cause significant differences between the poly-

mer models. In this numerical implementation, the polymer is described

by the Langevin Eqs. (2.1), with the interaction potential Uint depending

on the type of polymer. For the ideal polymer, one can use a simple poten-

tial with harmonic interactions between the consecutive monomers:

Uharm =
N−1∑
i=1

1
2
k (|xi − xi+1| − l0)

2 , (2.29)

where k is the spring constant and l0 is the zero-temperature equilibrium

separation. The finite flexibility of the polymer can be modeled by includ-

ing an additional bending energy term. Then, the interaction potential is

given by Uint = Uharm + Ubend, with the bending energy Ubend defined as

Ubend =
N−1∑
i=2

1
2
κ (xi−1 − 2xi + xi+1)

2 . (2.30)

Here κ is the bending stiffness of the semi-flexible polymer. The flexible

ideal chain limit is given by κ = 0.

For the self-avoiding polymer, one typically considers the bonds between

the consecutive monomers and the excluded volume interactions sepa-

rately. A widely used model is the self-avoiding FENE (finitely extensi-

ble nonlinear elastic) chain, where the interaction potential is given by a

combination of FENE springs and short-range repulsive Lennard-Jones

(LJ) interactions: Uint = UFENE + ULJ. The FENE potential is defined as

UFENE = −
N−1∑
i=1

1
2
kFR2

0 ln
(
1 − (xi − xi+1)

2 /R2
0

)
, (2.31)
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where kF is the FENE spring constant and R0 is the maximum allowed

separation between connected monomers. The LJ potential is

ULJ =
N∑

i<j

4ε
[
(σ/rij)

12 − (σ/rij)
6
]

+ ε, (2.32)

for rij ≤ 21/6σ and 0 for rij > 21/6σ. Here rij = |xi − xj | is the separation

of the monomers, σ is the diameter of the monomer and ε controls the

steepness of the potential.

The three chain models were studied in a metastable external poten-

tial similar to the original Kramers problem (see Figure 2.8). The study

was performed in two dimensions to contrast the differences between the

ideal and self-avoiding chains due to the excluded volume interactions.

The main results of the study are shown in Figure 2.9. For the flexible

ideal chain, the crossing rate k steadily decreases with chain length N ,

although the rate is consistently higher than in the globular limit. This

agrees with the theoretical prediction of Ref. [29]. Adding either the bend-

ing energy or the excluded volume interaction has a similar effect on the

dynamics. In both cases, the crossing rate for long chains is significantly

higher than for the flexible chain, and the self-avoiding chain even has a

minimum in the crossing rate, with long chain crossing faster than inter-

mediate chains. The fundamental reason for the higher crossing rate is

the same for both the semi-flexible and the self-avoiding chain. Because of

the additional interactions, the chains tends to swell and occupy a larger

volume. Due to the confining external potential, the swelling is partially

prohibited, leading to an increased free energy especially at the bottom of

the metastable well. In addition, due to the larger radius of gyration of

the polymer, also the states at the barrier top typically are more extended

than for the flexible chain, and therefore at lower energy. Consequently,

the free energy barrier for the semi-flexible and self-avoiding chains has

a maximum at certain chain length, whereas for the flexible chain this

does not occur (see Figure 2.10). This fact accentuates the importance of

considering more realistic chain models in addition to the theoretically

tractable ideal chain models. In addition, the results suggest interesting

possibilities for polymer separation with respect to, e.g., chain length and

bending stiffness.

As was discussed in Section 2.2, in Publication II the center-of-mass

PIHD was used to accelerate the crossing dynamics. The estimated speed-

up for the flexible ideal chain was of the order of 30. For the self-avoiding

chain the boost was slightly smaller due to the relatively high crossing
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Figure 2.9. The crossing rate k as a function of chain length N for the ideal (top panel),
semiflexible (middle panel) and self-avoiding polymer (bottom panel). For
the ideal chain, data is shown for two different spring constants, k = 15

and k = 30, while for the semi flexible chain, data is shown for the bending
stiffnesses κ = 1.2, κ = 6 and κ = 36.The solid line in the top panel shows
the crossing rate in the globular limit.
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Figure 2.10. The free-energy barrier height FB as a function of chain length for the
flexible and semi-flexible chain (left) and the self-avoiding chain (right).
The crossing rates shown in Figure 2.9 roughly correspond to k ∝
exp [−FB(N)/kBT ].

rate and weaker separation of barrier crossing and intrawell vibration

time scales. While the center-of-mass formulation of the method fits the

polymer escape problem very well, in principle it limits the available

choices of the bias potential. In a later work, the PIHD method was em-

ployed in the alternative form, where the correction factor is calculated

from all the 3N degrees of freedom [41]. In this form of PIHD, any form

of the bias potential can be used – even applying the bias force only on

some of the particles is possible. However, the study indicated that the

original way of applying the same bias force on all the particles was the

most efficient one among the tested biasing scenarios.

41



Polymer escape

42



3. Polymer translocation

3.1 Polymer translocation under static force

3.1.1 Review of theories of driven translocation

The first attempts to model polymer translocation theoretically were made

by Sung and Park [42] and later by Muthukumar [43]. In their approach,

driven translocation was viewed as a one-dimensional barrier crossing

problem of the translocation coordinate s (the length of the subchain on

the trans side), with the dynamics of the system determined by the sys-

tem’s free energy F . In this description, the chain starts from the cis side

with one end inside the pore (s = 0) and is considered as translocated

once s = aN , with a the segment length. The free-energy F due to chain

entropy and the chemical potential difference Δμ is

F(s) = (1 − γ′)kBT ln
[s

a

(
N − s

a

)]
+

s

a
Δμ, (3.1)

where γ′ is the surface exponent (γ′ = 0.5, ≈ 0.69, ≈ 0.95 for an ideal

chain, and a self-avoiding chain in 2D and 3D, respectively). The problem

can then be solved with standard methods by deriving, e.g., the corre-

sponding Langevin equation or the Fokker-Planck equation for s [42], or

by using nucleation theory [43]. The central result is the dependence of

the mean translocation time τ on the chain length N . This is typically

characterized by the scaling exponent α, defined as τ ∼ Nα. The barrier

crossing model predicts that τ ∼ ΓN , where Γ is the effective friction for

the system. Sung and Park considered the friction to be due to the Rouse

type dynamics of the whole chain, giving Γ ∼ N , while Muthukumar ar-

gued that the friction is due to the interactions between the polymer and

the pore, leading to Γ ∼ 1. Therefore, the barrier crossing model for poly-

43



Polymer translocation

mer translocation predicts the scaling between α = 1 and α = 2, depend-

ing on whether the dominant friction in the system is the polymer-pore

friction or the polymer-solvent friction. The polymer-pore friction domi-

nated case was also considered by Lubensky and Nelson, who described

the translocation of the polymer through the pore as diffusion in a tilted

one-dimensional periodic potential [44].

Several theoretical and simulation studies have shown, that within the

relevant range of driving forces, the polymer chain is in fact rarely in

equilibrium [45, 46, 47, 48, 49, 50, 51]. As argued by Chuang, Kantor and

Kardar [45, 46], an asymptotic lower bound for the scaling exponent α is

given by the transport of the polymer without the hindrance of the wall.

A polymer of length N occupies a volume comparable to its radius of gy-

ration, Rg ∼ Nν , where ν is the Flory exponent (ν = 0.5, ≈ 0.588, = 0.75

for an ideal chain, and a self-avoiding chain in 2D and 3D, respectively).

The distance the polymer has to traverse when crossing from the cis side

to the trans side is comparable to its size, and therefore the translocation

time is τ ∼ ΓNν ∼ N1+ν . Later, Vocks et al. suggested another scaling law,

τ ∼ N
1+2ν
1+ν , based on memory effects due to tension imbalance between the

cis and trans sides in the vicinity of the pore [52]. Also Dubbeldam et al.

derived a different value, τ ∼ N2ν+1−γ′ , using scaling arguments based

on the assumption of partial equilibrium of the chain [53]. Using the ob-

tained α, they further analyzed the dynamics with the fractional Fokker-

Planck formalism, first employed in the context of polymer translocation

by Metzler and Klafter [54].

Recently, Sakaue introduced a novel theoretical formalism, where the

non-equilibrium nature of the process is inherently taken into account [55,

56, 57, 58]. In this formalism, translocation is described as a two-stage

process, where the drag force due to the cis side subchain changes in time.

In the first stage, the drag force increases as the chain is gradually set in

motion by non-equilibrium tension propagation and, in the last stage, the

drag force decreases due to the cis side subchain getting shorter as it is

sucked into the pore by the driving force. This tension propagation mech-

anism leads to extremely nontrivial dynamics, which Sakaue analyzed in

the infinite chain length limit. For asymptotically long chains, Sakaue

derives the scaling of translocation time as τ ∼ N
1+ν+2ν2

1+ν for driving forces

between kBTN−ν � f � kBTNν , and τ ∼ N1+ν otherwise. Later it was

argued by Rowghanian & Grosberg [59], Dubbeldam et al. [60] and by the

author of this Thesis in Publication III, that the result in the intermediate

44



Polymer translocation

s=0R=0

t=0

~ ~

~

s>0R>0
~

t>0

~

~

R(t)
~ ~

n(t)
~

s>0R=R

t=t

eq

tp

~ ~ ~

~ ~

R(t)
~ ~n(t)=N

~

s>0R<R

t>t

eq

tp

~ ~ ~

~ ~

R(t)
~ ~

s=NR=0

t=τ

~ ~

~ ~

Figure 3.1. The time evolution of the polymer configuration during the translocation pro-
cess, with time advancing from left to right, top row preceding the bottom row.
The arc denotes the position of the tension front R̃, which separates the chain
into the moving and nonmoving domains. The last monomer inside the front
is denoted by N and the number of translocated monomers by s̃. The right-
most panel on the top row corresponds to the end of the tension propagation
stage.

regime is in fact caused by a violation of mass conservation, and that the

correct scaling behavior also in that regime is τ ∼ N1+ν . This result also

matches with the lower bound proposed by Kantor and Kardar [46].

Molecular dynamics simulations of polymer translocation have shown

that dynamical scaling exponents, such as α, depend on several system

parameters, including temperature, solvent friction, chain length, driving

force and pore size [61, 64, 63, 65, 49]. However, all previous theories

assume the universality of the scaling exponents, which in light of the nu-

merical simulations, is not true. As a result, previous theoretical endeav-

ors have succeeded in reproducing only some of the measured numerical

values of α, and typically not with very good accuracy. In particular, no

theory has been able to reproduce all the simulation results in different

regimes. In fact, even very recently some authors considered such a goal

unachievable [59]. However, as a part of this Thesis, a very general model

of driven translocation is presented. In Publication III, we show that the

tension propagation formalism can indeed explain all previous MD simu-

lation results, but only if finite chain length effects are taken into account.

Furthermore, in Publication IV, the role of these finite chain length effects

is examined in more detail.
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3.1.2 Tension propagation theory of polymer translocation

In Publications III & IV, the tension propagation formalism is employed

in a new context. The starting point is the free energy of Eq. (3.1), from

which the Brownian equation of motion for the translocation coordinate

s(t) can be derived,

Γ(t)
ds

dt
= (1 − γ′)kBT

[
1

aN − s
− 1

s

]
+ f + ζ(t) ≡ ftot. (3.2)

As discussed in the previous Section, Sung & Park considered the case

Γ ∼ N , while in Muthukumar’s theory, Γ ∼ 1. Notably, in both cases,

the effective friction Γ is independent of time. However, for the non-

equilibrium problem of driven translocation, neither of these choices is

realistic. Typically, for driven translocation the translocation time τ is

much smaller than the chain relaxation time. Therefore, for most of the

process, the chain is out of equilibrium and responds to the driving force

not as a whole, but by starting to move in stages. As will be argued be-

low, this leads to time-dependence of the effective friction, Γ = Γ(t). In

Publications III & IV, the Brownian equation is combined with a mod-

ified tension propagation formalism to give the so-called BDTP model of

driven polymer translocation. Within this model, the effective friction Γ(t)

is given by the tension propagation equations, while the Brownian equa-

tion of motion provides a framework for measuring various quantities of

the translocation process.

The central idea of the tension propagation (TP) formalism is to divide

the subchain on the cis side into two distinct domains [55, 58, 56, 57].

The first domain, closer to the pore, consists of all the monomers that are

pulled towards the pore by the external driving force. The second domain

consists of the remaining monomers, which are at rest (on the average).

As the driving force is applied at the pore, the chain begins to move in

stages, with the segments closest to the pore being set into motion first.

A close analogue is a coil of rope pulled from one end, which first has to

uncoil and become tense before starting to move as a whole. To keep track

of the moving part of the chain, one defines a tension front, which divides

the chain into the moving and nonmoving domains. The front propagates

in time as parts of the chain further away from the pore are set in mo-

tion, as shown in Fig. 3.1. As the monomers enter the front and start to

move, the effective friction Γ increases due to the increased drag between

the polymer and the solvent. After a certain tension propagation time,

ttp, the front reaches the end of the chain and the tension propagation
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Figure 3.2. The different scaling regimes of driven polymer translocation. For extremely
small forces, the chain is in equilibrium, responding to the driving force as
a whole, while for very strong forces, the moving part of the cis side chain
is stretched almost completely straight. In the intermediate regimes, the
moving part of the chain follows the Pincus blob description, with the size of
the blobs increasing as one moves further away from the pore.

process stops. After this time, the chain as a whole is pulled towards the

pore. During this stage, the overall length of the subchain on the cis side

decreases, which reduces the effective friction Γ. This stage continues

until the last monomer reaches the pore and finally translocates at time

t = τ .

The effective friction Γ(t) actually consists of two contributions. The

first one is the drag force of the cis side subchain that is solved with the

TP formalism. The other one is the frictional interaction between the

pore and the polymer. Formally, we can write Γ as the sum of the cis side

subchain and pore frictions, Γ(t) = ηcis(t) + ηp. While for N → ∞ the

first term dominates, for finite N the pore friction can significantly affect

the translocation dynamics. Since the pore friction ηp characterizes the

totality of frictional interactions between the pore and the polymer, it de-

pends on several local and system-specific factors such as pore diameter

and length, cross-sectional shape, pore material, etc. Therefore, it seems

at present impossible to derive the exact value of ηp for each pore type

from microscopic theory. Instead, the pore friction can be measured from

experiments or simulations by comparing, e.g., the monomer waiting time

distribution. This quantity essentially tells the time it takes for the in-

dividual monomer to traverse from one end of the pore to the other. This

time of course depends on the friction between the pore and the monomer,

giving a convenient way to determine ηp. In Publication IV, the depen-

dence of ηp on the pore geometry is studied further.

The derivation of the tension propagation equations is presented in Pub-
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lication III and is not repeated here. We merely note that the TP formal-

ism can be used to derive an equation of motion for the tension front,

using either the location of the front R or the index of the last monomer

inside the front, n, as the dynamical variable. The choice of the vari-

able depends on the dynamical scaling regime that is determined by the

magnitude of the driving force. Before describing the different scaling

regimes, we introduce the dimensionless units denoted by the tilde sym-

bol as X̃ ≡ X/Xu, with the unit of length au ≡ a, force fu ≡ kBT/a, time

tu ≡ ηa2/kBT , velocity vu ≡ a/tu and friction ηu ≡ η, where η is the solvent

friction per monomer.

The simplest case is the strong stretching (SS) regime that is realized

when the driving force is very large compared to temperature and chain

length, f̃ � Nν (see Figure 3.2). In this regime, the moving part of the

chain is almost completely straight. The equation of motion is most con-

veniently derived for n, giving

dn

dt̃
=

f̃tot

Γ̃(t̃) (1 − νAνnν−1)
. (3.3)

Here, Γ̃(t̃) = n(t̃) − s̃(t̃) + η̃p, with n(t̃) − s̃(t̃) being the number of moving

monomers on the cis side. The Flory exponent ν and the prefactor Aν are

related to the end-to-end distance of the polymer, R̃ee = AνN
ν .

For slightly smaller driving forces, 1 � f̃ � Nν , the force is not sufficient

to completely straighten the chain. Due to thermal fluctuations, a flower-

shaped tail develops (see Fig. 3.1). In this stem-flower (SF) regime, the line

density and velocity of the monomers are not constant in space. Therefore,

one also has to solve the density σ̃R and the velocity ṽR near the tension

front. As a result, one gets a system of equations,

dR̃

dt̃
= ṽR

[
1
ν

A−1/ν
ν σ̃−1

R R̃1/ν−1

]−1

, (3.4)

σ̃
1/(ν−1)
R =

ṽ0R̃

νb tanh(b)
ln

[
cosh

(
b
σ̃

ν/(1−ν)
R

R̃

)]
, (3.5)

ṽR = ṽ0

tanh
(
bσ̃

ν/(1−ν)
R /R̃

)
tanh(b)

, (3.6)

ṽ0R̃
ln[cosh(b)]
b tanh(b)

=
[
f̃tot − η̃pṽ0

]
+ ν − 1, (3.7)

that can be solved numerically for ṽ0, the velocity at the pore entrance.

Here, b is a (fixed) dimensionless parameter related to the spatial depen-

dence of the velocity, and ensures global conservation of mass (see Pub-

lication III for details). In the SF regime, the line density at the pore
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entrance is σ̃0 = 1, since the stem close to the pore is in a single-file con-

figuration. The effective friction is then given by

Γ̃(t̃) =
f̃tot

σ̃0(t̃)ṽ0(t̃)
, (3.8)

Finally, in the regime where the force is insufficient to straighten even a

small part of the chain, f̃ � N−ν , the chain adopts a trumpet-like shape.

In this trumpet (TR) regime, the dynamics can be described by Eqs. (3.4)–

(3.6), with the velocity ṽ0 and density σ̃0 given by

ṽ0R̃
ln[cosh(b)]
b tanh(b)

= ν
[
f̃tot − η̃pṽ0

]1/ν
, (3.9)

σ̃0 =
[
f̃tot − η̃pṽ0

]1−1/ν
. (3.10)

Note that Eqs. (3.7) and (3.9) ensure a smooth cross-over between the

TR and SF regimes at
[
f̃tot − η̃pṽ0

]
= 1 and that the SF regime equations

approach the SS regime Eq. (3.3) when f̃ � 1 (as r̃ → R̃, ξ̃R → 1 and

b → ∞). In practice, the model consists of solving Eqs. (3.2) and (3.4)–

(3.10), with Eqs. (3.9) and (3.10) chosen over Eq. (3.7) if
[
f̃tot − η̃pṽ0

]
< 1,

and vice versa.

3.1.3 Physical basis of driven polymer translocation

In Publication III the BDTP model is compared against molecular dynam-

ics (MD) simulations found in the literature. The main goal of the com-

parison is to show that the non-equilibrium tension propagation on the cis

side subchain is the dictating physical process in driven polymer translo-

cation, and that the BDTP model reproduces MD simulation results in a

wide range of parameters and with quantitative accuracy. This goal has

not been achieved by any previous theoretical model of driven transloca-

tion, despite the large variety of different approaches. However, in Pub-

lication III it is shown that by considering the tension propagation along

the cis side subchain, it is possible to explain practically all available MD

simulation results.

The most important and sensitive measure of translocation dynamics is

the waiting time distribution. The waiting time distribution is defined as

the time that each individual monomer spends inside the pore, and gives

very detailed information about the translocation process. In Figure 3.3,

the waiting time distribution as given by the BDTP model is compared

with MD simulation results. As is shown, the match between BDTP and

MD is almost exact. This agreement tells that the translocation dynamics
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Figure 3.3. Comparison of waiting times w in both 2D and 3D for MD and the BDTP
model. The agreement of the BDTP model with MD simulations is excellent,
and reveals the two stages of translocation: the tension propagation stage
of increasing w(s̃) and the tail retraction stage characterized by decreasing
w(s̃). For direct comparison, the parameters used were the same for both
MD and BDTP (N = 128, f = 5, kBT = 1.2, η = 0.7), and the same num-
ber of statistical averages were used in both cases. The 3D MD results are
from [66].

is reproduced correctly at the most fundamental level, which is of course a

vital requirement for any theoretical model. The comparison also reveals

a lucid picture of the translocation process: first, as tension propagates

along the chain backbone, the effective friction increases and transloca-

tion slows down. In the second stage, the number of dragged monomers is

reduced as the tail retracts, and translocation speeds up.

While the agreement shown in Figure 3.3 is remarkable, the compari-

son represents only one specific set of parameters. Any truly useful theory

has to be able to cover a much larger regime of physical conditions. Since

in most simulation studies the focus has been on obtaining the transloca-

tion time exponent α, the most comprehensive comparison between theory

and existing simulations can be done by solving the translocation time as

a function of chain length and by extracting the exponent α from those

results. This comparison was done in Publication III, with the results re-

produced in Table 3.1. The parameter range has been chosen to span the

TR, SF and SS regimes, and to cover both short and long chain regimes

in both 2D and 3D. Despite the diversity of α in the different regimes,

the BDTP model gives an accurate estimate of α in all of them. This

fact clearly shows, that while the values of α depend on several param-

eters, they all share a common physical basis: non-equilibrium tension

propagation on the cis side subchain. The interesting question is then,

what is the source of the diversity of α. Why a universal description of
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Table 3.1. Values of α (τ ∼ Nα) from the BDTP model as compared to the corresponding
values from MD simulations.

α (BDTP) α (MD) Dimension and parameter values

2D, T = 1.2, Ref. [61]

1.51 ± 0.02 1.50 ± 0.01 f = 5.0, γ = 0.7, 20 ≤ N ≤ 70

1.71 ± 0.02 1.69 ± 0.04 f = 5.0, γ = 0.7, 500 ≤ N ≤ 800

1.52 ± 0.02 1.50 ± 0.02 f = 2.4, γ = 0.7, 20 ≤ N ≤ 70

1.71 ± 0.02 1.65 ± 0.04 f = 2.4, γ = 0.7, 500 ≤ N ≤ 800

1.66 ± 0.02 1.64 ± 0.01 f = 5.0, γ = 3.0, 20 ≤ N ≤ 70

1.71 ± 0.02 1.67 ± 0.03 f = 5.0, γ = 3.0, 500 ≤ N ≤ 800

3D, T = 1.2, Ref. [63]

1.59 ± 0.02 1.58 ± 0.03 f = 0.5, γ = 0.7, 16 ≤ N ≤ 128

1.35 ± 0.02 1.37 ± 0.05 f = 5.0, γ = 0.7, 16 ≤ N ≤ 256

1.34 ± 0.02 1.37 ± 0.02 f = 10.0, γ = 0.7, 16 ≤ N ≤ 256

3D, T = 1.2, Ref. [62]

1.41 ± 0.01 1.42 ± 0.01 f = 5.0, γ = 0.7, 40 ≤ N ≤ 800

1.39 ± 0.02 1.41 ± 0.01 f = 5.0, γ = 0.7, 64 ≤ N ≤ 256

3D, T = 1.0, Ref. [47]

1.46 ± 0.02 1.47 ± 0.05 f = 3.0, γ = 11.7, 70 ≤ N ≤ 200

1.49 ± 0.02 1.50 ± 0.01 f = 30.0, γ = 11.7, 200 ≤ N ≤ 800
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the physics gives clearly non-universal scaling exponents? The answer

lies in the chain length regimes studied both in experiments and simula-

tions. Typically, N � 103. However, this chain length is still far from the

asymptotic limit. For driven polymer translocation, significant finite size

effects persist for extremely long chains, even up to N ≈ 105. Next, we

will discuss the consequences of these finite size effects.

3.1.4 Non-universalities due to finite chain length effects

As was discussed in the previous Section, for relatively short chains the

translocation dynamics is significantly affected by the pore friction ηp. On

the other hand, for very long chains its contribution becomes negligible

compared to the drag force of the cis side subchain. In that limit, accord-

ing to Eqs. (3.7) and (3.9), the translocation velocity is ṽ0(t̃) ∝ R̃(t̃)−1.

The maximum waiting time, obtained when the tension front reaches the

last monomer, i.e., R̃(t̃tp) = R̃eq ∼ Nν , should therefore scale with chain

length as w̃max ∝ [
ṽ0(t̃tp)

]−1 ∝ Nν . In Publication IV this was found to

be the case, as shown in Fig. 3.4. The figure displays the collapse of the

waiting time distributions for different N onto a single master curve, im-

plying that the scaling relation holds for large N . Since the area under

the w(s̃) curve gives the average translocation time, one has τ ∼ Nα with

α ≈ 1 + ν. However, even for N = 105 , the location of wmax slowly mi-

grates to the right and the collapse to the master curve is not exact. This

shows that even the chain length N = 105 is still not in the asymptotic

limit! Consequently, for N = 105, the scaling of the average transloca-

tion time is also not exactly τ ∼ N1+ν . This is clearly seen in Figure 3.5,

where the effective exponent α(N) ≡ d ln τ
d ln N has been solved from the BDTP

model up to N ≈ 1010. Asymptotically, the effective exponent approaches

α(N → ∞) = 1 + ν in both 2D and 3D. However, the approach is exceed-

ingly slow: in 3D, the effective exponent α(N) changes gradually even for

N = 1010.

Another illustration of the the non-universalities occurring due to fi-

nite chain length is the dependence of α on various parameters such as

the driving force and pore diameter. Figure 3.6 shows α(N) solved for

different driving forces 0.75 ≤ f̃ ≤ 10. Although the different forces

trace out different curves for relatively small N , eventually they con-

verge to α(N → ∞) = 1 + ν. In the typical experimental or simulation

regime, the exponent α retains its dependence on f , with α decreasing

as f is increased. Similar dependence has been observed in MD simula-
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tions [63], although some authors report exactly opposite dependence of α

on f [47, 60]. However, as argued in Publication IV, the latter simulations

do not correspond to the canonical driven translocation problem, where

the polymer initially starts from the cis side and has a finite probability

to slip out of the pore back to cis side. Therefore, those results are not

directly comparable with the BDTP model, or any other theories of driven

translocation.

To show the effect of the pore size, the BDTP model was solved for dif-

ferent pore friction parameters, corresponding to various diameters of a

circular pore of length a. As shown in Figure 3.7, for short chains the pore

diameter has a large effect on the exponent α, while for long chains the

effect becomes negligible, finally vanishing in the asymptotic limit. The

correspondence between the pore diameter and pore friction is explained

in more detail in Publication IV. Essentially, the translocation time can

written as a sum of two terms, τ = AN1+ν + Bη̃pN . The first term cor-

responds to the drag force due to the cis side subchain, while the latter

is due to the pore polymer interactions, characterized by the pore friction

η̃p. For very small pore diameters, the pore friction is extremely large,

and one approaches the translocation time scaling τ ∼ N suggested by

Muthukumar [43]. However, with a fixed pore diameter, this scaling can-

not hold asymptotically due to the diminishing contribution of the sec-

ond term, and the scaling exponent gradually approaches the asymptotic

value 1 + ν, as was shown in Figure 3.5.

As one more example of the finite size effects, the scaling exponent β was

studied in Publication IV. The exponent β relates the mean value of the

translocation coordinate s to time as 〈s(t)〉 ∼ tβ . Since at the moment of
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translocation s(t = τ) = N , the exponents α and β are related as αβ = 1.

However, since the scaling 〈s(t)〉 ∼ tβ is never exact for finite chains, the

relation αβ = 1 can hold only asymptotically. Both the exponent β and

the product αβ approach the asymptotic limit extremely slowly, as shown

in Figure 3.8. In the regime, where MD simulation data is available, the

match between BDTP and MD is excellent (see Publication IV).

3.1.5 Limitations of the present theory

Although translocation dynamics has been shown in Publications III & IV

to be dominated by the pore friction and the tension propagation on the cis

subchain, the tension propagation theory also has some limitations. Ne-

glecting the trans side subchain, although a very good approximation in

the typical experimental and simulation regimes, may be an inadequate

approximation in some limits. For example, for very high forces and short

to intermediate chains when the system is well in the strong stretching

regime, the translocation velocity is larger than the diffusive motion on

the trans side. This leads to a build-up of monomer density near the pore

on the trans side. This monomer crowding may have a non-negligible ef-

fect on the translocation velocity, and in the high-force regime, there are

some indications that this may be the case. In Publication IV, the scaling

exponent δ, which relates the translocation time to the driving force by

τ ∼ f δ, was determined for both the theory and from MD simulations.

While the theory and simulations give excellent agreement in the low to

intermediate force regime, for high forces the exponent measured from

MD simulations was slightly larger (-0.9 vs. -1.0). This indicates that

in this regime, translocation occurs slightly slower than predicted by the

theory and may be caused by the a non-negligible friction from the trans

side subchain.

Another limitation of the present theory is related to the fluctuations of

the translocation coordinate s and the distribution of translocation times.

As discussed in Publication IV, the fluctuations are larger and the dis-

tribution correspondingly wider when obtained from MD simulations. At

least one obvious reason for the diminished fluctuations is the complete

absence of the trans side chain. Including the additional noise from the

translocated part of the chain could bring both the scaling of the fluctu-

ations of s and the distribution of translocation times closer to the MD

results. However, a proper implementation of the trans side fluctuations

would also require considering the out-of equilibrium effects of monomer
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crowding in front of the trans side pore entrance.

Finally, for semi-flexible polymers neglecting the trans side subchain

may not be a good approximation if the bending stiffness is very large. In

that case, the polymer behaves almost as a rigid rod, and the subchain

on the trans side contributes significantly to the overall friction. The ap-

proach to this limit from the flexible chain regime is not clear. A rigorous

description of the transition from the flexible chain regime to the rigid rod

regime would also require describing the non-equilibrium crowding near

the trans side pore entrance, since at intermediate bending rigidity the

friction due to the locally increased density may be important. However,

this study is not within the scope of this Thesis.

3.2 Polymer translocation under time-dependent force

Most of the experimental and theoretical studies of driven polymer translo-

cation have considered the process occurring under static, time-independent

forces. However, in the biological environment, the forces can be time de-

pendent due to fluctuations in the membrane potential, fluid density, ion

concentration, etc. Therefore, to understand processes in vivo, it is im-

portant to study the effect of time-dependent fluctuations of the driving

force on the translocation dynamics. Previously, the problem has been

studied theoretically by Park & Sung for a dichotomically flipping force,

whose time-dependent part changes its sign at certain average flipping

rate. It was found that the translocation time obtains a minimum at a

certain optimal flipping rate [67]. Notably, the translocation time can be

smaller than in the absence of the time-dependent force, even when the

mean of the time-dependent part of the force is zero. This is the resonant

activation phenomenon that was discussed in Section 1.2.

In Publication V, the resonant activation of polymer translocation is

studied with numerical Langevin dynamics simulations. The equations of

motion for the monomers are given by Eq. (2.1) in 2D, with the monomer-

monomer interactions given by the FENE and the repulsive Lennard-

Jones interactions discussed in Section 2.4. All monomer-wall particle

pairs have the same short-range repulsive LJ interaction. In addition,

two main types of interactions between the monomers and the pore par-

ticles are considered. In the first case, the pore particles are considered

to be identical with the wall particles, having a purely repulsive interac-

tion with the monomers. In the second case, the cut-off distance of the LJ
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Figure 3.9. A schematic representation of the system used in the translocation simula-
tions with time-dependent driving force. The polymer, placed initially on the
cis side, is driven through the pore of length L = 5 and width W = 3 by the
external force F + f(t). The interaction between the pore monomers (shaded
gray) and the polymer can be either repulsive or attractive (see text).

potential between monomer-pore particles is increased to 2.5σ (with ULJ

constant for r > 2.5σ), and the interaction strength is characterized by

εpm. The interaction can be either attractive or repulsive, depending on

the distance of the monomer from the pore particles. The pore with the

larger cut-off is called attractive, while the one with the shorter cut-off is

called repulsive.

In addition, when inside the pore, the monomers experience an external

driving force Fext = [F + f(t)]x̂, where F is the static force, f(t) is the

time-dependent force and x̂ is the unit vector along the direction of the

pore axis. In Publication V, we have studied two types of time-dependent

forces f(t). The first is the dichotomic noise, for which f(t) is either +Ad

or −Ad, and changes from one value to the other with flipping rate ω. The

dichotomic f(t) has zero mean and is exponentially correlated: 〈f(t)〉 = 0

and 〈f(t)f(0)〉 = A2
d exp(−2ωt). As a second example, we have considered

the sinusoidal force given by f(t) = A sin(ωt + φ), where A is the ampli-

tude, ω the angular frequency and φ is a constant phase. While the first

one may be more realistic description of non-equilibrium fluctuations in

biological system, the periodic sinusoidal force is easier to implement ex-

perimentally. Other simulation details can be found in Publication V.

It is shown in Publication V that the polymer translocation exhibits

the resonant activation phenomenon similar to the Kramers problem, but
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Figure 3.10. Illustration of the free energy of the polymer chain as a function of the num-
ber of translocated monomers s. The dotted line indicates the free energy
for the non-attractive pore, which has no well structure (cf. Figure 1.6). A
reflecting boundary condition at s = 0 forms a free-energy well (blue shaded
area). Attractive polymer-pore interactions can also create a free-energy
well (schematically shaded red).

only under certain conditions. As we mentioned in Section 1.2, the exis-

tence of the minimum residence time relies on the system’s initial state

having a significant proportion of states with the barrier in the upper

position. It turns out that for the polymer translocation problem, this

requirement is only satisfied if there is a sufficiently strong attraction be-

tween the pore and the polymer. This is because the free energy landscape

of the translocation problem is markedly different from the metastable

Kramers’ potential. Without the attractive interactions, the free energy

barrier of a translocating polymer has a maximum, but no finite minima

(see Figure 3.10). Consequently, for low flipping rates and when the bar-

rier is initially in the upper state, the system cannot simply wait in the

metastable well until the crossing occurs due to thermal fluctuations or

barrier flipping. Instead, the thermal fluctuations drive the polymer out

of the pore to the cis side, towards the free energy infimum. These failed

translocation events do not count towards the average of translocation

time, which is typically (in both experiments and simulations) calculated

over the ensemble of successful translocations. In this ensemble, the prob-

ability that the barrier is initially in the upper position becomes negligi-

ble for sufficiently high amplitudes of the dichotomic force. Therefore, the

conditions for the resonant activation are not met and the phenomenon

does not occur.

In the case of the theoretical study by Park & Sung [67], a reflecting

boundary condition was used, which essentially prevents the chain escape

to the cis side. As illustrated in Figure 3.10, this creates a free-energy
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Figure 3.11. The mean translocation time τ and the probabilities P0 and Pτ that the force
f(t) is positive for t = 0 and t = τ as a function of ω for the dichotomic f(t)

(left panel) and the sinusoidal f(t) (right panel). τ0 ≈ 750 is the translo-
cation time with f(t) ≡ 0. Simulations parameters are T = 1.2, η = 0.7,
F = 0.3, Ad = 0.2 (dichotomic force) and A = 0.3 (sinusoidal force).

landscape similar to the Kramers problem, for which resonant activation

exists. Similarly, the attractive interaction between the pore and the poly-

mer, if strong enough, prevents the escape to the cis side and the resonant

minimum in translocation time appears. However, in this case the rele-

vant barrier crossing process is not the translocation as a whole, but only

the very last stages, when the polymer is already almost completely on the

trans side. The attractive interaction makes also the escape to the trans

side an activated barrier crossing process (see Figure 3.10). However, be-

cause of the forward bias due to the external driving force, the escape to

the trans side is much probable than to the cis side.

Because of the qualitative differences of the translocation process with

the non-attractive and attractive pore-polymer interactions, the two are

discussed separately below.

3.2.1 Non-attractive pore

For the non-attractive pore, resonant activation does not exist. Instead,

the mean translocation time has a cross-over from a fast translocation

regime at low flipping rates (angular frequencies for the sinusoidal force)

to a slower translocation regime at high flipping rates (see Figure 3.11).

In the fast regime, mean translocation time τ is shorter than the translo-

cation time in the absence of the time-dependent force, τ0. The average

is dominated by the events where the time-dependent force is in the for-

ward direction, f(t) > 0, because the translocation probability increases

strongly with the driving force. This is also shown in Figure 3.11, where

the probabilities P0 ≡ P [f(0) > 0] and Pτ ≡ P [f(τ) > 0] that the force f(t)

is positive for t = 0 and t = τ , respectively, are plotted as a function of ω.
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In the high-ω regime, the effect of the time-dependent force is averaged

out, and τ ≈ τ0. Between the two limits, the system with dichotomic

f(t) has a smooth cross-over from one regime to the next. However, the

system with the sinusoidal f(t) shows much richer behavior. Instead of a

simple cross-over in τ(ω), one gets a series of local minima and maxima.

In addition, the probability Pτ has a local maximum in the vicinity of a

local minimum of τ . In many cases, these could be argued to indicate

resonant activation [22]. However, it is shown in Publication V that in

this case they have a purely deterministic origin. The results are in fact

nicely reproduced by a simple deterministic model for the translocation

coordinate s,

ηeff
d〈s(t)〉

dt
= F [1 + sin(ωt + φ)] . (3.11)

In Eq. (3.11) ηeff is the effective friction that sets the time scale of the

system1. Eq. (3.11) can be analytically solved to give the translocation

time as function of the phase,

τ(φ) = τ0 +
1
ω

[cos(ωτ + φ) − cos(φ)] . (3.12)

The average translocation time is then found by taking the average of τ(φ)

over the distribution of φ as

τ =
1
2π

∫ 2π

0
p(φ)τ(φ)dφ. (3.13)

The behavior of τ as a function of ω closely depends on the form of the

distribution p(φ). For the uniform distribution, τ(ω) displays a minimum

characteristic of resonant activation. Similar results have been reported

in several polymer systems that have been used as analogues of polymer

translocation [68, 69, 70]. However, this type of behavior is in sharp con-

trast with the simulation results of Publication V. This demonstrates the

shortcomings of the model systems with respect to polymer translocation

and underlines the importance of the realistic free-energy barrier. For the

non-attractive pore, the free-energy has no metastable state, and there-

fore the chain can escape to the cis side. Because of this, the initial states

corresponding to negative f(t) are mainly absent from the distribution

1As discussed earlier in the context of the tension propagation theory, the ef-
fective friction in driven translocation is not constant in time. However, for the
purposes of the model of Eq. (3.11), assuming constant ηeff , although a crude ap-
proximation, is sufficient. In addition, in the present case the time-dependent
driving force induces strong back-and-forth motions of the chain. Without also
considering the trans side non-equilibrium configurations, it is not possible to
take this into account within the tension propagation theory.
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Figure 3.12. Comparison between LD simulations and the theoretical model of
Eqs. (3.11) and (3.13). Dotted line: with uniformly distributed φ, solid line:
with non-uniformly distributed φ (see text and Publication V). The latter
shows good agreement with the Langevin dynamics results (circles).

p(φ). Taking this into account in Eq. (3.13) gives a very nice agreement

with the simulations, as shown in Figure 3.12. This shows that in the

case of the repulsive pore, there is no resonant activation for polymer

translocation, and that the main features can be explained by simple de-

terministic arguments.

3.2.2 Attractive pore

If the interactions between the pore and the polymer are attractive, the

translocation dynamics change in several ways. First, the mean translo-

cation time τ(ω) now has a global minimum, characteristic of resonant ac-

tivation (see Figure 3.13). The resonance is due to the qualitative change

in the free energy, shown in Figure 3.10, that is promoted by the attractive

interactions. For sufficiently strong attraction, the escape of the chain to

the cis side becomes extremely rare and, correspondingly, the transloca-

tion to the trans side becomes an activated process. Because of the lack

of escapes to the cis side, for small ω the mean translocation time is dom-

inated by the events occurring with negative f(t) (but positive F + f(t)).

Since, for the attractive pore, the final escape to the trans side is a ther-

mally activated event, the corresponding escape time depends exponen-

tially on the value of f(t), similarly to the Kramers’ problem. Therefore,

the translocation time in the ω → 0 limit is larger than τ0. This is in

sharp contrast to the results of the repulsive pore, where τ(ω → 0) < τ0.

For the high-ω regime, on the other hand, the behavior is similar to the

non-attractive case. Here, the fast fluctuations in f(t) are averaged out,
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Figure 3.13. The mean translocation time τ and the probabilities P0 and Pτ for the di-
chotomic force and attractive pore. The simulation parameters are N = 32,
F = 0.5, Ad = 0.2, εpm = 2.5, and τ0 ≈ 2202 ± 29.

and one has τ ≈ τ0. Between the high and low flipping rate limits is

the region of fast translocation with τ < τ0, with the resonant minimum

located approximately at ωτ0 ≈ 1.

The probabilities P0 and Pτ also show the qualitative change in the dy-

namics. For the non-attractive pore and dichotomic driving force, both

probabilities monotonically decrease from P0(ω → 0) = Pτ (ω → 0) ≈ 1

to P0(ω → ∞) = Pτ (ω → ∞) ≈ 0.5 as ω is increased. This is because of

the increasing number of failed translocations (escapes to the cis side) for

low ω. However, for sufficiently strong attractive interactions, most of the

translocation events result in a success. Therefore, the probability P0(ω)

to have initially f(0) > 0 is roughly 0.5 and independent of ω, i.e., there is

almost no selection with respect to the initial state of the time-dependent

force. The probability Pτ , on the other hand, depends strongly on ω, hav-

ing a maximum near the resonant flipping rate. This is a characteristic

sign of resonant activation. At this value of ω, the flipping rate synchro-

nizes with the barrier crossing rate, and most of the successful transloca-

tions occur when f(τ) > 0, i.e., when the barrier is in the lower position.

This kind of behavior defines the resonant activation phenomenon, as we

discussed in the context of the Kramers’ problem in Section 1.2.

What distinguishes the resonant activation in polymer translocation

from other typical resonant activation phenomena, is that in polymer

translocation, only part of the process responds to the time-dependent

force to produce the resonance. To see this, we divide the translocation

process into three subprocesses: 1) the initial filling of the pore, 2) trans-

fer of the polymer from the cis side to the trans side and 3) the final emp-
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Figure 3.14. The translocation process divided into three stages: 1) initial filling of the
pore, 2) transfer of the polymer from the cis side to the trans side, 3) the
final emptying of the pore. The corresponding times of the subprocesses are
τ1, τ2 and τ3, with the total translocation time τ = τ1 + τ2 + τ3.
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Figure 3.15. The mean translocation time τ , the pore emptying time τ3 and the time
τ1,2 = τ1 + τ2 (= τ − τ3) for the dichotomic force and attractive pore. Param-
eters are the same as in Figure 3.13.
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tying of the pore. (see Figure 3.14)2. The times corresponding to these

subprocesses are τ1, τ2 and τ3, respectively. The total translocation time is

then given by τ = τ1 + τ2 + τ3. For the attractive pore with εpm = 2.5, the

translocation time τ and the times τ1,2 ≡ τ1 + τ2 and τ3 are shown in Fig-

ure 3.15. Remarkably, the time τ1,2 is almost independent of the flipping

rate, only slightly decreasing with ω. The pore-emptying time τ3, on the

other hand, depends strongly on ω, having a minimum close to ωτ0 = 1.

This shows that for the resonant activation, the relevant process is not

the whole translocation, but only the last pore emptying process. This is

of course natural, since the activation barrier introduced by the attractive

polymer-pore interactions corresponds to this last stage of translocation

(see Figure 3.10).

Since the relevant process for the resonant activation is the pore empty-

ing process, the resonant flipping rate depends only weakly on the chain

length. This is because the chain length influences the barrier height only

through the chain’s entropy, which is typically small compared to the at-

tractive interaction. However, because the time τ1,2 increases with chain

length roughly as τ1,2 ∼ N1.5 [74], the relative contribution of τ3 to the

total translocation time τ gets smaller for long chains. Therefore, the res-

onance is strongest for short chains, as is shown in Figure 3.16, where

τ(ω) is computed for 16 ≤ N ≤ 128. On the other hand, increasing the

static driving force F has a big effect on both the resonant flipping rate

and the depth of the resonant minimum. For large forces, the barrier be-

comes very small, which leads to larger crossing rate and the resonance

appearing at a higher flipping rate. In addition, the minimum becomes

shallower, because the relative importance of τ3 is smaller. Finally, when

the barrier becomes small enough, the resonance practically vanishes (see

Figure 3.17). Similarly, for very large amplitudes of the dichotomic force,

the resonance vanishes (see Figure 3.18). In this case the reason is, how-

ever, different. As the amplitude gets larger than the static force, Ad > F ,

the number of failed translocations, especially for small ω, starts to in-

crease. For sufficiently large Ad, most translocation attempts in the low-ω

regime starting with f(0) = −Ad fail, and the system effectively goes back

to the non-attractive limit.

Under the sinusoidal driving force, the general behavior of the system

is similar to the dichotomic force. The main features are governed by the

2Same kind of division has been used in Refs. [71, 72, 73, 74, 75] to analyze
translocation through an attractive pore with a static driving force.
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force and attractive pore. F = 0.5, Ad = 0.2 and εpm = 2.5. While the
optimal rescaled flipping rate (ωτ0) shows a slight dependence on N (main
figure), the unnormalized flipping rate (ω) is independent of N (inset).
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Figure 3.17. Translocation times for driving forces 0.5 ≤ F ≤ 4 for the dichotomic force
and attractive pore. Ad = 0.4F , εpm = 2.5. In this case, the optimal rescaled
flipping rate (ωτ0) is roughly independent of F (main figure), while the un-
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Figure 3.18. Translocation times for the dichotomic force and attractive pore for ampli-
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Figure 3.20. Translocation time τ as a function of frequency ω for the pe-
riodic driving force f(t) = A sin(ωt + φ) for amplitudes A ∈
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2.0 and N = 32. The inset shows the dependence of the frequency ωmin of the
global minimum translocation time on the amplitude A. Here τ0 ≈ 500± 6.
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pore emptying process, leading to very similar behavior of τ(ω) as a func-

tion of chain length, driving force and attraction strength. However, the

periodic force also weakly couples to the overall motion of the chain, pro-

ducing a set of local minima and maxima, similar to the non-attractive

pore. Since the source of these extrema is the overall back-and-forth mo-

tion of the chain, they are visible in the time τ1,2 rather than in τ3, as

shown in Figure 3.19. Because of this additional coupling of f(t) to the

time τ1,2, a rather complicated behavior arises as the amplitude A of the

sinusoidal force is increased. Figure 3.20 summarizes the behavior for

different A. As the amplitude A is increased, the resonant minimum be-

comes deeper and slowly moves toward higher frequencies, similar to the

dichotomic f(t). However, in addition to the original one, another (local)

minimum appears at the low-frequency end of the spectrum and travels

down the τ(ω) curve as A is increased. Eventually, the new minimum be-

comes a global one. This produces a sudden transition in the frequency

of minimum translocation time, ωmin, as shown in the inset of Fig. 3.20.

Finally, at sufficiently large A, the new minimum merges with the origi-

nal one. This behavior is analyzed in detail in Publication V, but essen-

tially it arises because of two factors: the periodicity of the driving force,

and the dependence of the distribution p(φ) on the frequency ω and the

amplitude A. Thus, the cause is very similar to the oscillations of τ(ω)

for the non-attractive pore, although because of the attractive interaction

and the resulting free-energy barrier the system cannot be analyzed by

deterministic models such as Eq. (3.11).

68



4. Summary and outlook

The main results of this Thesis are related to the theoretical understand-

ing of polymer translocation, a process which is of both theoretical and

practical interest due to its applications in DNA sequencing and biotech-

nology. In this Thesis, we show that the driven polymer translocation

problem can be accurately described by the so-called tension propagation

theory, and that finite size effects due to pore-polymer interactions prevail

well beyond the experimentally and numerically relevant chain length

regimes. We have also considered the translocation of a polymer under a

time-dependent force by Langevin dynamics simulations, and show that

also in this case the pore-polymer interactions can even change the qual-

itative nature of the process. In addition to the polymer translocation,

we have studied a related problem, namely the escape of a polymer chain

from a metastable state. In this context, we have employed and further

developed the Path Integral Hyperdynamics method, which we showed to

give significant speed-up in computations of rare event problems.

The importance of the polymer escape study presented in Publications

I & II is twofold. First, in Publication I, the PIHD method is studied

and it’s computational speed-up is measured and quantitatively analyzed.

While the speed-up can be several orders of magnitude, the inefficiency of

transition path sampling at large bias forces reduces the speed-up sig-

nificantly. In addition, the dramatic difference in the efficiency of the

different biasing schemes – and especially in the noisiness of the normal-

ization factor – suggests the existence of an optimal bias potential. While

the non-monotonic dependence of the boost factor on the bias amplitude

was demonstrated in Publication I, the existence of a bias function that

gives the globally optimal computational boost remains an open question.

Because of both theoretical and practical implications, it would be an in-

teresting topic for future research. The polymer escape problem studied
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in Publication II showed not only the PIHD method’s applicability to more

complex systems, but also provided interesting details about the model-

ing and physics of polymer chains. According to the study, the widely used

ideal chain approximation, although more amenable to analytical calcula-

tions, may be an inadequate description of the polymer’s properties when

the size of the polymer is comparable to the system’s characteristic length

scale. Here, the excluded volume interactions and finite flexibility can

have a large effect on the polymer’s dynamics. The study also suggests

that sorting polymers according to length and bending rigidity should be

possible with an external force field, due to the non-monotonic dependence

of the escape rate on the chain length and bending rigidity.

In Publications III & IV, the theory of driven polymer translocation is

studied. Until very recently, several competing theories of the process ex-

isted, none of them able to claim very good agreement with simulations

or experiments. The major achievement of Publication III is to show that

the accurate physical description of driven polymer translocation is given

by the tension propagation theory. The theory is further investigated in

Publication IV, where the nature of finite size effects is studied. This

work reveals the importance of polymer-pore interactions and the post-

propagation stage for finite chain lengths, and shows that the finite size

effects can persist for extremely long chains, well beyond the regime avail-

able to experiments and simulations. Despite the significant advances,

several interesting details remain to be studied. For example, the inclu-

sion of hydrodynamic (Zimm) friction to the theoretical model is possible,

and it would be interesting to see what the effect of hydrodynamic in-

teractions is, when the finite chain length effects are properly taken into

account. This work is planned for the near future, and should help bridge

the gap between the simulations and experiments.

The influence of the pore-polymer interactions on the translocation dy-

namics is further studied in Publication V. This time, a time-dependent

driving force is considered, motivated by the non-equilibrium fluctuations

encountered in biological systems, and by the possibility to use a time-

dependent driving force in experimental setups for polymer separation or

identification. It is shown that the non-equilibrium fluctuations can sig-

nificantly speed up polymer translocation, and, provided that there is a

strong enough attraction between the pore and the polymer, may induce

a resonant activation in the system, where the translocation time attains

a minimum at finite frequency of the non-equilibrium noise. In this spe-
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cial case of polymer translocation, one has a thermally activated process

similar to the polymer escape problem.

Finally, there is a class of polymer translocation problems that is out-

side the scope of this Thesis, namely the unbiased polymer translocation.

In this case, there is no net external driving force on the polymer, and

translocation is governed by thermal fluctuations arising from the sur-

rounding solvent. Although the problem has been studied extensively in

the literature, both with theory and simulations (cf. Ref. [76] for a review),

the results presented in this Thesis cast these previous studies in a new

light. For the driven translocation, the finite chain length effects due to

the pore may persist even for chain lengths up to N = 105. It is therefore

conceivable that the previous studies of unbiased translocation may be

subject to similar finite size effects. Therefore, also the unbiased translo-

cation problem deserves to be revisited from a new perspective, where the

finite size effects are taken into account. A first step towards such an at-

tempt was made by de Haan and Slater [77] in a simulation study, but

the question of finite size effects in this case remains largely unanswered.

The main obstacle in a simulation study is the enormous computational

effort required to study long chains. It is possible that the PIHD method

could be used to speed up the unbiased translocation by introducing a

small hyperdynamics bias. This endeavor, however, is a subject of future

research.
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