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1. Introduction

The topic of this thesis lies at the crossroads of two broad research areas

in condensed matter physics. The first one is low temperature physics

studying matter at temperatures close to absolute zero. At those temper-

atures, the thermal noise always present at higher temperatures becomes

negligible and the true ground states of systems can be studied. The other

is physics at the mesoscopic level, popularly referred to as nanophysics.

Mesoscopic is a concept used for the middleground between macroscopic

(continuum) physics and microscopic (atomic) physics. It is loosely de-

fined as the length scale where structures are large enough so that many

concepts from continuum physics can be used to describe them but small

enough so that new effects not present at bulk level appear. In many

electric structures this happens when the dimensions of the structures

start to be of the order of ∼ 100 nm, this is what will be referred as the

nanoscale.

Electric phenomena in nanoscale structures have been studied exten-

sively in the last few decades (for evidence, one needs not to look further

than to statistics of the production of sub 100 nm transistors or scien-

tific publications mentioning nanoelectronics). The interest has been, of

course, for great part driven by the fact that the ever continuing minia-

turization of electronics and need for more computing power is reaching

the point where, in even commercial devices, the designers have to take

into account the peculiarities of the nanoscale emerging from quantum

phenomena. Hence, today the research area of nanoelectronics is very

mature and established.

The topic of this thesis, low temperature thermal phenomena at the

nanoscale [1] have been much less studied. This is partly because much

less commercial interest lies at very low temperature thermal phenom-

ena but partly also because thermal measurements are not generally as
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straightforward to perform as electric measurements. Whereas electronic

signals are easy to amplify and measure with commercial devices, ther-

mal signals always need a local thermometer, i.e., a device that trans-

forms the thermal signal into something measurable, in practice usually

an electric signal. For some rough comparison for the developments in the

two fields, one could note that quantized electric conductance was demon-

strated already at 1980s [2] whereas single quantum thermal conductance

was demonstrated only in 2000 [3].

Even the definition of temperature at the nanoscale can spark debates.

In classical thermodynamics temperature is defined at the thermodynamic

limit where the volume of the system approaches infinity (keeping density

of particles constant) [4]. Obviously this limit is very far away from the

nanoscale. In this thesis, we take a very experimentalist view on tem-

perature and always define it through the effective temperature entering

the occupation factors (Fermi-Dirac or Bose-Einstein) of a system. It will

become clear that this is an obvious choice for us as this is the quantity

that we can measure.

This definition also means that even a simple piece of a metal such as

copper does not have single temperature at low temperatures. The piece of

copper is actually composed of different subsystems which each then have

their own effective temperature. The subsystems considered in this thesis

are the lattice (phonons) and the electrons. (In addition e.g. the nuclear

system can have its own temperature but this is not considered here.)

These two systems are connected through a very non-linear coupling, the

electron-phonon coupling, which is an important topic in this work.

Another important concept for the thesis is superconductivity [5, 6]. Su-

perconductivity is a phase of state that appears in certain materials below

a material dependent transition temperature. Its hallmark is the absence

of electrical resistivity, a fact that has sparked a lot of material research

in hope of finding a material that would be superconducting at room tem-

perature. In this thesis, we are not primarily interested in the electric

resistivity but another feature appearing alongside the zero resistivity,

namely the energy gap in the density of states. Specifically this thesis

will deal with superconducting tunnel junctions and their use as coolers

and thermometers. It is the energy gap that enables both usages.

The thesis is organised as follows. In the next subsections in this chap-

ter we will give an introduction to the basic fabrication and measurement

methods used in the thesis. In Chapter 2 we will discuss the basic theory
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behind cooling with superconducting tunnel junctions. In Chapter 3 we

discuss experiments and modelling on using these junctions to cool lattice

systems where the dimensionality of phonons is effectively reduced. In

Chapter 4 the properties of the superconductor important for the cooling

applications (quasiparticle dynamics) are discussed in more detail and ex-

periments and modelling related to this are presented. And in Chapter 5

we discuss how the electron-phonon coupling in silicon can be modified by

inducing strain to the silicon layer.

1.1 Fabrication methods

The workhorse of nanofabrication is electron-beam-lithography (EBL). This

lithography method is based on scanning a suitable resist with a focused

electron beam. Typical spotsize of the beam is 1-2 nm. The resolution

of EBL, however, is limited by the resist. The resist used throughout

the work described in this thesis is called poly(methyl methacrylate) or

PMMA. With dedicated EBL systems using very high voltage (∼ 100 kV),

resolution of around 10 nm can be achieved with PMMA. For our 30 kV

system the resolution limit is around 50 nm.

The workflow of a typical fabrication process is as follows: spinning the

resist on a substrate, EBL, development in a suitable chemical, deposi-

tion of material through the resist mask and finally removal of resist and

extra material on top of it in lift-off. This is depicted in Fig. 1.1. In this

way, metallic structures with length scales below 100 nm can be routinely

produced.

Making tunnel junctions complicates the process somewhat. The method

used for the structures described in this thesis is the so-called shadow

evaporation. This requires a two-layer resist where PMMA is on top and

another resist with higher sensitivity lies below it. Most commonly used

one is copolymer P(MMA-MAA). After exposure to electron beam, during

development the underlayer is developed faster than the top layer, result-

ing in a cave like structure below the actual pattern in the top PMMA

layer (known as undercut). Then depositing in different angles will pro-

duce copies of the mask at different locations (see Fig. 1.1). With proper

mask design, this allows one to make structures where the two deposited

metal layers intersect at specific locations. Making tunnel junctions is

enabled by depositing some metal that can be oxidised first, letting some

oxygen into the chamber and depositing the second metal in a different
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Figure 1.1. The fabrication process. See text for details.

angle. Hence, one can create junctions where the two metal layers are

separated only by a thin oxide layer on a specified area.

The process described above obviously depends on a deposition done

only on the line-of-sight. The method we used is electron beam evapo-

ration which is a form of physical vapor deposition (PVD). In this method,

an electron beam is used to heat up the source material to high enough

temperatures so that it starts to evaporate. When this is done in high-

vacuum, the evaporated atoms will fly in straight lines and condense into

the cold surfaces that they land on. The substrate with the resist mask on

top is placed on the line-of-sight of the heated source material on a tiltable

plate, which enables the evaporation in different angles. A known amount

of oxygen can also be introduced to the chamber to allow the oxidization.

The final step of the basic fabrication process is lift-off. At this stage

the resist is dissolved and all the material deposited on top of the re-

sist mask goes away. What is left is a substrate with the materials de-

posited through the mask on top to form the desired patterns. The lift-off

of PMMA process is generally done in acetone heated slightly on a hot

plate (to about 60 degrees Celsius). For more information about fabrica-

tion methods, see [7].

1.2 Experimental methods

This thesis discusses topics of low temperature physics. All the exper-

iments are done at temperatures below 1 kelvin (-272.15 C), typically

around 0.3 kelvin and below. To reach these temperatures specialized

equipment is needed (one motivation for the topics of this thesis is to pro-

vide alternative methods for achieving low temperatures). The base plat-
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form for low-temperature experiments is liquid helium, which provides a

stable 4.2 K environment as the start point for the cooling. Liquid he-

lium is commercially available. By pumping a helium bath, temperatures

of around 1 K can be reached. To achieve lower temperatures one can

use the rarer (and much more expensive) isotope of helium 3He (the more

common variety is 4He). It has a boiling point of 3.2 K and by pumping it,

temperatures around 0.3 K can be reached. For even lower temperatures,

the chosen instrument in our laboratory is the dilution refrigerator. This

kind of a refrigerator is based on the quantum properties of two differ-

ent isotopes of helium mentioned above. Mixing the two isotopes is (in

suitable conditions) an endothermic process and can be used to refriger-

ate objects. In a dilution refrigerator there is a continuous flow of 3He

through a 4He phase resulting in continuous cooling power [8].

All the measurements discussed in this thesis are electronic. We mostly

deal with low-frequencies and weak signals where minimising noise in the

signal is of critical importance. This is taken into account at every step of

the wiring and measurement. First, all the input signals going to the sam-

ple are fed through a large resistor, which will reduce the voltage noise

from the voltage/current source. Secondly, all the wires to the sample

are so-called twisted pairs (to reduce external noise from electromagnetic

fields) and are thermalised carefully at several stages to reduce thermal

noise. At the sample end of the wiring we have additionally very efficient

low-pass filtering (below ∼ MHz) in the form of thermocoax cables. For

more filtering there are surface mounted resistors on the sample stage,

which form an RC filter with stray and wiring capacitance with cut-off

frequency at around 10 kHz. For the amplification of output signals, spe-

cialised low-noise amplifiers powered by battery sources are used. At the

backside of the amplifiers, opto-isolators are used to prevent any ground

loops. A schematic of the wiring between the room temperature parts of

the set-up and the sample at 50 mK is presented in Fig. 1.2.
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Figure 1.2. Schematic of the wiring in the cryostats.
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2. Cooling with tunnel junctions

2.1 Basic principles

Electronic cooling with tunnel junctions is based on energy selective tun-

nelling. If one can filter electric current so that only low energy elec-

trons are allowed to enter the structure and only high energy electrons

are allowed to exit, this will lead to lowering of the average energy i.e.,

cooling. In order to realise this kind of “cooling current” an energy filter

is required. In the low temperature experimental realisations of tunnel

junction coolers this filter has been either the superconducting energy gap

(first demonstration by [9] (NIS) and [10] (SINIS)) or a quantum dot [11].

In this thesis, we will focus on the coolers based on superconductors.

The appearance of the energy gap in a superconductor’s density of elec-

tronic states is explained by the BCS theory of superconductivity [6]. The

BCS theory states that when temperature becomes low enough, attrac-

tive interactions between the electrons due to their coupling to the lattice

phonons can overcome their repulsive Coulomb interaction and lead to the

formation of so-called Cooper pairs. These pairs are coherent quantum

states of coupled electrons and can therefore flow without dissipation, i.e.,

with zero resistivity. Because a certain energy is needed to break these

pairs, an energy gap (i.e. an energy region where no allowed states ex-

ist) appears into the density of electron (or more precisely quasiparticle)

states of a metal when it enters the superconducting state at a critical

temperature Tc. The width of this gap is defined by a material dependent

constant called Δ, which is the energy per electron required to break one

Cooper pair. On the borders of this energy gap the density of states (DOS)

diverges and far away from it, it reaches again the normal state value.
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Quantitatively this BCS DOS is expressed as

NS(E) = N0
|E|√

E2 −Δ2
Θ(|E| − |Δ|), (2.1)

where N0 is the DOS in the normal state, Δ is the energy gap of the su-

perconductor and Θ(x) is the Heaviside step function. This is plotted in

Fig. 2.1 (a). The gap parameter Δ is temperature dependent, reaching its

maximum value at zero temperature and vanishing at the critical tem-

perature.

The basic principle of cooling with a NIS (normal metal - insulator -

superconductor) tunnel junction can then be readily understood from an

energy diagram presented in Fig. 2.1 (b). In this so-called semiconduc-

tor picture, the occupation probability of electronic states is depicted as

a function of energy. The normal metal and the superconductor are as-

sumed to be separated from each other by a thin tunnel barrier and the

distribution of quasiparticles on both sides follows the Fermi-Dirac distri-

bution function

f(E, T ) = [exp(
E − Ef

kBT
) + 1]−1, (2.2)

where Ef is the Fermi energy and T the temperature. The DOS is as-

sumed to be constant in the normal metal (we neglect the weak energy

dependence because all relevant energies are close to the Fermi level) and

follow BCS DOS in the superconductor. At low temperatures, the Fermi-

Dirac function gets narrower and at temperatures kBT � Δ in the su-

perconductor all the states below the gap are filled and above it they are

empty.

When only a small bias voltage is applied over the junction, no current

can flow as the empty states above the gap are too high in energy for the

normal metal electrons to reach. If, however, a sufficient voltage bias is

applied over the junction so that the Fermi level of the normal metal is

shifted upwards by energy eV ≈ Δ, current can flow. If this bias voltage is

selected so that it is just below the gap, then electrons with high enough

energy are preferentially removed from the normal metal part. This is

the phenomenon of energy selective tunnelling, which enables cooling of

the electron gas.

2.2 Current and heat flow in a NIS junction

The current and heat flow through a NIS junction can be analyzed with

a perturbation theory calculation for a low transparency junction. Gener-
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Figure 2.1. (a) The BCS density of states (Eq. (2.1)) normalised to the normal state den-
sity of states as a function of energy. The energy axis is normalised to the Δ

parameter. (b) Energy diagram of a SINIS structure. The superconductors
have a density of states as in (a) whereas in the normal metal it is assumed
constant. Filled areas show the Fermi-Dirac distribution function (Eq. (2.2)).
With proper applied bias voltage (as in figure) only electrons above (below)
the Fermi energy can tunnel out from (into) the normal metal, leading to nar-
rowing of the Fermi-Dirac distribution, i.e., cooling. The cooling power of this
SINIS structure is double the cooling power of one NIS junction.

ally the first order calculation (Fermi’s Golden Rule) gives results which

are consistent with the experiments but when going to very high trans-

parencies of the junction, the higher order processes can start to play a

role. This issue is discussed in the next section. Calculating the exact

matrix element for the tunnelling current would require detailed knowl-

edge of the tunnel barrier but fortunately it can be related to an easily

measurable quantity, the normal state resistance of the junction.

Let us assume we have a NIS junction with a bias voltage applied across

the junction so that the Fermi levels of the quasiparticle systems on the

two sides of the junction are shifted by eV . Assume also that the aver-

age transmission probability for an electron to tunnel through the tunnel

barrier (i.e., the square of the tunnelling-matrix element) is M2. Fermi’s

golden rule tells us that the probability per unit time for tunnelling to

happen at a certain energy is proportional to the densities of states on

both sides and must obey the Pauli exclusion principle. In other words, the

state from which the tunnelling happens must be occupied and the state

to which the electron tunnels must be empty. The total current through

the tunnel barrier (current from left to right minus that from right to left)

from N to S can then be calculated by integrating over energy

INIS = eAM2
∫ ∞

−∞
dEN0(E + eV )Ns(E)

× −{f(E + eV, Tn)[1− f(E, Ts)]− f(E, Ts)[1− f(E + eV, Tn)]}
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Figure 2.2. (a) Normalised current ((eRT /Δ)INIS) of a NIS junction, plotted as function
of the normalised voltage (eV/Δ) calculated at different bath temperatures.
(b) Normalised cooling power ((e2RT /Δ

2)PNIS) of a NIS junction calculated
at different bath temperatures. In both plots it is assumed that Tn = Ts and
that Δ(0) = 200 μeV which corresponds to aluminium as a superconductor.
Insets show a close-up to the small bias regime.

=
1

eRTN0

∫ ∞

−∞
dENs(E)[f(E, Ts)− f(E + eV, Tn)], (2.3)

where e is the electron charge, A is the area of the junction, and Tn and Ts

are the temperatures of the normal metal and the superconductor, respec-

tively. N0 and Ns are the densities of states in the normal state (assumed

constant) and in the superconductor Eq. (2.1), respectively. The last form

comes from the fact that the normal state resistance (RT ) of the junction

is 1/(e2AM2N2
0 ).

The heat flow (i.e., energy current) is calculated similarly, except now

instead of the electron charge e we have to weigh the integral with the

energy the electron carries with it, E + eV ,

PNIS =
1

e2RTN0

∫ ∞

−∞
dE (E + eV )Ns(E)[f(E, Ts)− f(E + eV, Tn)]. (2.4)

This integral is negative near the gap (signifying heat flow out of the nor-

mal metal) and becomes positive with large bias voltages where the junc-

tion starts to behave as an ordinary resistor with the associated Joule

heating. Note that the equation is symmetric between positive and nega-

tive voltages and hence putting two NIS junctions in series (i.e. making

a SINIS structure) doubles the cooling power of the normal metal. The

current and heat flow through a NIS junction calculated with Eqs. (2.3)

and (2.4) are plotted in Fig. 2.2 (a) and (b), respectively.

An important detail to note is that (although it is not obvious from the

forms presented above) the current through the NIS junction depends

only on the temperature of the normal metal (ignoring the temperature

dependence of Δ) whereas the heat flow is also affected by the tempera-
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Figure 2.3. (a) A schematic diagram of how the heating of the superconductor (widening
of fs) affects the heat flow. Quasiparticles with energies above (below) the
gap can now tunnel into (out from) the normal metal. (b) Calculated PNIS at
optimum bias voltage as a function of Ts. Tn is assumed to be constant at 0.2
Tc. Dashed line calculated assuming constant Δ, solid line with temperature
dependent Δ from BCS theory.

ture of the superconductor. This is made more clear by writing Eqs. (2.3)

and (2.4) in a symmetrised form

INIS =
1

2eRTN0

∫ ∞

−∞
dENs(E)[fn(E − eV )− fn(E + eV )] (2.5)

PNIS =
1

2e2RTN0

∫ ∞

−∞
dENs(E){eV [fn(E − eV )− fn(E + eV )]

+ E[2fs(E)− fn(E + eV )− fn(E − eV )]}, (2.6)

where we have abbreviated fi(E) = f(E, Ti), i = n, s for normal metal and

superconductor, respectively. Comparing the two equations it is clear that

in Eq. (2.6) the first term is just INISV , i.e., the Joule heating, and the sec-

ond term (which depends also on fs) is responsible for the cooling effect.

Hence, although the electric current through the junction is unaffected by

fs, the cooling effect can be suppressed by the heating of the supercon-

ductor. This is because in addition to the filtered "cooling current" there

will be also "heating current" by electron-like (hole-like) quasiparticles

from the states that were empty (full) in the diagrammatic Fig. 2.1. A

schematic of this and calculation of PNIS as a function of Ts are presented

in Fig. 2.3.

From Eqs. (2.5) and (2.6) we can also see that

INIS(V = 0) = 0 (2.7)

PNIS(V = 0) =
1

e2RTN0

∫ ∞

−∞
dENs(E)E[fs(E)− fn(E)]. (2.8)

This means that although net electronic current is always zero at zero

voltage, there will be a net heat flow between S and N if there is a tem-

perature difference between them even without any applied voltage. This
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is quite natural as the two systems will try to equilibrate to the same tem-

perature at a rate determined by the transparency of the barrier between

them (R−1
T ). This will be important for the discussion of quasiparticle

traps in Chapter 4.

It is also possible to obtain analytical estimates of the current and cool-

ing power of a NIS junction for temperatures well below the critical tem-

perature of the superconductor kBT � kBTC � Δ/1.76 [12]. The cooling

power maximizes at bias voltages V = (Δ− 0.66kBT )/e where it reaches

Popt � Δ2

e2RT

[
0.59(

kBTN

Δ
)3/2 −

√
2πkBTS

Δ
e−Δ/kBTS

]
. (2.9)

At the optimal bias point, the current through the cooler junction is

I(Vopt) � 0.48
Δ

eRT

√
kBTN

Δ
. (2.10)

An important figure of merit of the cooler is its coefficient of performance

(“efficiency”) η, which we define as the cooling power at the optimum point

divided by the power consumed in the voltage source

η =
Popt

I(Vopt)V
� 0.7

T

TC
, (2.11)

where the last approximation applies again at T � TC .

2.3 The sub-gap current

In practice, the behaviour of NIS junctions deviates somewhat from the

ideal behaviour described above. Especially, at small bias voltages a leak-

age current exceeding that predicted by Eq. (2.3) is usually seen in exper-

iments. This effect has been successfully modelled by modifying the ideal

BCS DOS Eq. (2.1) by adding a so-called Dynes parameter γ [13]

Ns(E) = N0

∣∣∣∣∣Re(
E + iγΔ√

(E + iγΔ)2 −Δ2
)

∣∣∣∣∣ . (2.12)

In this form γ is a phenomenological parameter describing finite amount

of available states in the BCS gap. Experimentally γ is the ratio between

the resistivity of a NIS junction at V = 0 and the asymptotic resistance

at high bias voltages. In effect the Dynes model amounts to viewing the

subgap current of the NIS junction at very small voltages as if it were that

of a fully normal (NIN) junction with tunnel resistance RT /γ. Usually in

good tunnel junctions gamma is around 10−4 − 10−5. From the outset the

γ parameter would seem to describe non-idealities of the superconducting

26



Cooling with tunnel junctions

material which lead to a finite amount of states inside the BCS energy

gap. This, however, might not be the case as other phenomena can create

a sub-gap leakage current similar in form as one gets from Eq. (2.12) as

has been highlighted recently [14].

Another cause for excess sub-gap current is the possibility of higher or-

der processes, not taken into account when deriving Eq. (2.3). Although

the influence of multi-electron-current compared to the first order current

is usually small, a second order process called Andreev current [15] can

dominate over the single-particle tunnellings at voltages V � Δ/e. The

Andreev current is essentially a process where a Cooper pair in the su-

perconductor is transported into two quasiparticles in the normal metal

or vice versa. This process is especially important in the cooling applica-

tions as the Andreev current, unlike the regular single-electron current,

leads to dissipation in the N electrode at all bias voltages [16]. This can

be understood from a simple energy diagram picture: a Cooper pair on

the Fermi level in the superconductor creates two excitations in the nor-

mal conductor, whose average energy is eV , where V is the bias voltage

across the junction. Therefore all the power PAR dissipates in N and it

equals simply PAR = IARV , where IAR is the electrical current due to the

Andreev process.

The magnitude of the Andreev current depends on several parameters

of the tunnel junction and its electrodes. For small junctions at the ballis-

tic limit, meaning that the dimensions of the junctions are smaller than

the mean free path of electrons in the normal metal, it is proportional to

voltage such that IAR = (16NR2
T )

−1RKV , where N is the number of con-

duction channels, and RK = h/e2 is the quantum resistance [17]. This

ballistic description gives typically very small values for Andreev current

with the transparencies common in NIS junctions. However, for larger dif-

fusive junctions, typical for a NIS cooler, the Andreev current is not given

by this simple expression. This is basically because disorder in the metals

leads to quasiparticle confinement near the interface and they can experi-

ence multiple reflections before escaping the junction area. This can lead

to orders of magnitude higher values of the Andreev current because of

constructive interference between the consequent tunnelling amplitudes.

Also the diffusive case can be analysed theoretically [18, 19, 20] and re-

cent experimental results seem to agree with the predictions [21, 22].

According to [19] it can be written in a simple form at the limits where

the junction dimensions are much bigger or much smaller than the coher-
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ence length in the normal metal LE =
√
h̄Dn/max (eV, kBT ). At the small

junction limit the Andreev current is

IAR =
V

πR2
T

[
Rn ln

(
h̄

eV τ

)
+Rs ln

(
h̄

Δτ

)]
. (2.13)

Here Rn (Rs) is the square resistance of the normal metal (superconduc-

tor) defined as Ri = (e2NiDidi)
−1, where Ni is the density of states, Di

is the diffusion constant and di is the thickness of the metal film. The

time constant τ is roughly the time the quasiparticle spends at the junc-

tion area A/D, where A is the junction area. This formula was used in

[21] to explain experimental current-voltage characteristics in the sub-

gap regime. The other limit of a big junction, which is typically more

relevant to the NIS cooler case, yields [19]

IAR =
h̄

e3AR2
T

[
1

Nndn
tanh

(
eV

2kBT

)
+

1

Nsds

eV

2πΔ
√
1− eV/Δ

]
. (2.14)

This expression is applicable only at voltages V < Δ/e as the latter term

diverges when voltage equals the gap. This is the expression used in [22]

to fit experimental data.

In our experiments, the hallmark of Andreev current is the appearance

of a step at zero voltage in the I-V curve. This step can be understood

from equation Eq. (2.14) where at zero temperature the normal metal

part (first term) does not depend on the voltage and hence creates a jump

from negative to positive Andreev current at zero voltage. This jump is

then smoothened with temperature by the hyperbolic tangent term. In

Fig. 2.4 we plot both the Andreev current and the sub-gap single-particle

current (originating from γ). It can be seen that for a low leakage junction

Andreev current dominates at low bias voltages but with voltages greater

than 0.5Δ/e its contribution becomes negligible.

2.4 The heat balance: diffusion and electron-phonon coupling in
normal metals

A simple diagram of the relevant heat channels for NIS coolers is pre-

sented in Fig. 2.5. The external power PNIS is exchanged with the electron

system. Electron-electron (γe−e) interaction drives the electron subsystem

towards an quasi-equilibrium (Fermi-Dirac) distribution, electron-phonon

interaction (γe−p) couples it to the phonon bath at temperature Tp and it

is coupled via photons to the electromagnetic environment at Tenv. The

coupling to the electromagnetic environment might be responsible for the
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Figure 2.4. Andreev current (with step in the middle) and the single particle current
(INIS) with γ = 0 (solid line) and γ = 10−4 (dashed line) as well as their sum
at the low bias regime. Parameters R = 100 Ω, Δ = 200 μeV, A = 1 μm2,
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Figure 2.5. Simplified diagram of the relevant relaxation mechanisms.

excess sub-gap leakage current (see [14]) but otherwise its effects to cool-

ing are small and we will neglect it from now on. Hence, the heat balance

is determined by the equilibrium between PNIS and electron-phonon cou-

pling, meaning that temperature Tn is found by solving

PNIS(Tn, Ts) = Pe−p(Tn, Tp), (2.15)

self-consistently. Throughout we will assume γe−e to be fast enough so

that we can assume the electron distribution to follow the Fermi-Dirac

distribution Eq. (2.2) with an effective temperature. This is generally a

good assumption in systems that are only tunnel coupled to their environ-

ment such as SINIS structures [23, 24].

With NIS coolers it is often the case that the junction itself covers only

a small fraction of the normal metal part to be cooled. This is especially

true in the membrane cooling applications where large "cold fingers" are

needed (see Sec. 3.2). In these cases the whole electron gas will not be

at the same effective temperature but there will be a temperature profile

inside the normal metal. Making the assumptions outlined above, so that

29



Cooling with tunnel junctions

a position dependent temperature can be defined, then in normal met-

als, also at low temperatures, the thermal conductivity follows textbook

models of the electron gas. The heat current density is related to the tem-

perature gradient as Q = −κn∇T , where κn is the thermal conductivity

(in the normal state) and can be related to the electrical conductivity via

Wiedemann-Franz law κn = LσT , where L is the Lorentz number and σ

the electrical conductivity. With these assumptions a steady-state diffu-

sion equation can be written for a differential volume element

∇ · (−κn∇Te) = Pe−p + Pext, (2.16)

where we have used Pext as the power density from all possible exter-

nal heating sources and Pe−p = Pe−p/V, where V is the volume. Solving

this equation self-consistently and with boundary conditions will yield the

temperature profile of the conductor.

2.4.1 Electron-phonon coupling

As electron-phonon coupling will be an important concept throughout this

thesis, an overview of the related theory will be presented here. At low

temperatures the two separate systems, electrons and phonons, are cou-

pled through weak electron-phonon coupling. It is the main mechanism

for heat flux to the electron system from the surrounding environment

and hence an important conduction mechanism in electronic cooling appli-

cations. Because of the many-body nature of the electron wavefunctions in

solid state systems, the coupling, although conceptually simple, is gener-

ally not possible to calculate directly and approximations are needed. The

most used one, is the so-called deformation potential theorem [25, 26, 27].

Piezoelectric coupling plays no role in the materials discussed in the the-

sis and is neglected here.

Deformation potential coupling assumes first of all the Born - Oppen-

heimer approximation, i.e., that the electron system can respond instan-

taneously to changes in the ion configuration. The Hamiltonian of the

solid can then be divided into three parts

H(Ri, re) = Hi(Ri) +He(Ri0, re) +He−i(δRi, re). (2.17)

The position of ions Ri has been written as Ri = Ri0 + δRi, where Ri0 is

the equilibrium position and δRi the displacement. Here and in all that

follows we use bold symbols to denote vector quantities, their absolute

values will be denoted with the same symbol without boldfacing (i.e., |q| =
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q). The first part describes the lattice, the second part gives the electronic

band structure (assumed to depend only on the equilibrium position of

the ions) and the third part gives the coupling between the lattice and

the electron system (re is the electron coordinate). The displacements are

assumed to be small and we can linearise

He−i(δRi, re) ≈ ∂He

∂Ri

∣∣∣∣
Ri=Ri0

· δRi =
∂U(Ri, re)

∂Ri

∣∣∣∣
Ri=Ri0

· δRi, (2.18)

where in the last step we have assumed that the electronic Hamiltonian

can be written He = − h̄2

2m∇2 + U(Ri, re). The displacement of ions from

their equilibrium positions causes shifts to the effective potential that the

electrons feel. This shift includes both the changed position of the ions and

the accompanying change of position of all the other electrons. When con-

sidering metals (large number of electrons) the latter effect is the domi-

nant one, whereas in semiconductors and insulators the main effect comes

from the shifted ion potential.

The deformation potential theorem is then a tool to evaluate ∂U/∂Ri. In

its most general form it is applicable to both metals and semiconductors

although, as mentioned above, the microscopic mechanisms behind the

shifts in the potential are different. In the deformation potential theorem

the lattice vibrations are described as waves of elastic strain and the shift

in the effective potential is written as

∂U(Ri, re)

∂Ri

∣∣∣∣
Ri=Ri0

· δRi ≡ Ξk · ε, (2.19)

where ε is the strain tensor and Ξk is a matrix of deformation potential

constants and have the dimension of energy. It is important to note that

in general Ξk is a function of the electron wavevector k, although we do

not write this explicitly below. Ξ can also depend on the band index.

The strain tensor can have a maximum of six independent components

and is defined as

ε =

⎛
⎜⎜⎜⎝

∂ux
∂x

1
2

(
∂ux
∂y +

∂uy

∂x

)
1
2

(
∂ux
∂z + ∂uz

∂x

)
1
2

(
∂ux
∂y +

∂uy

∂x

)
∂uy

∂y
1
2

(
∂uy

∂z + ∂uz
∂y

)
1
2

(
∂ux
∂z + ∂uz

∂x

)
1
2

(
∂uy

∂z + ∂uz
∂y

)
∂uz
∂z

⎞
⎟⎟⎟⎠ , (2.20)

where u is the displacement and x, y, z are the spatial coordinates. Here

we assume that displacement can be written in the standard second quan-

tised form for a 3D solid

u(r) =

√
h̄

2ρVωq
êq(aqe

iqr + a†qe
−iqr), (2.21)
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where aq (a†q) is the annihilation (creation) operator for phonon with wavevec-

tor q and ê is the polarisation vector.

In metals (especially at low temperatures considered here) it is com-

mon to consider only the coupling to the longitudinal modes because of

momentum conservation considerations [28]. For longitudinal modes the

off-diagonal elements of ε are zero. Assuming also isotropic material so

that the diagonal elements in deformation potential tensor are all equal

we are left with

He−i = Ξ · ε = Ξ∇ · u = iΞ

√
h̄

2ρVωq
q(aqe

iqr − a†qe
−iqr). (2.22)

The scattering rates are then calculated from the standard first order per-

turbation theory (Fermi golden rule)

Γe−p =
2π

h̄
|〈k′, nf

q|He−i|k, ni
q〉|2δ(Ek′ − Ek − (ni

q − nf
q)h̄ωq). (2.23)

As mentioned before, in general Ξ is a function of k and hence in order

to calculate the total scattering rate, we should know it at every point of

the Fermi sphere. We have neglected the effects of screening so far. It

can be shown that at the limit of good metal ,i.e. very efficient screening,

(q � λ, where λ is the screening vector, see for example [27]) Ξ is simply a

constant and has the value Ξ = 2
3EF . At his limit all the effects of screen-

ing can be included in Ξ, unlike in most calculations in Section 5.1. This

limit is sometimes called the scalar deformation potential approximation.

We can now put Eq. (2.22) into Eq. (2.23) and use standard Bose rela-

tions for the phonon operators, which leaves us with two answers

Γ+
e−p =

2π

h̄
|Mq|2 (nq + 1)

∣∣∣〈k′|e−iqr|k〉
∣∣∣2 δ(Ek′ − Ek + h̄ωq) (2.24)

Γ−
e−p =

2π

h̄
|Mq|2 nq

∣∣∣〈k′|eiqr|k〉
∣∣∣2 δ(Ek′ − Ek − h̄ωq) (2.25)

|Mq| = Ξ

√
h̄

2ρVωq
q =

2

3
EF

√
h̄q

2ρVcl , (2.26)

where we have also assumed linear dispersion relation ωq = clq (cl is the

longitudinal speed of sound). After inserting the second quantised wave-

functions for the electron states and integrating over r

Γ+
e−p = M2

0q (nq + 1) f(Ek)(1− f(Ek−q))δ(Ek−q − Ek + h̄ωq)(2.27)

Γ−
e−p = M2

0q nq f(Ek)(1− f(Ek+q))δ(Ek+q − Ek − h̄ωq) (2.28)

M2
0 =

(
2

3
EF

)2 π

ρVcl (2.29)

where f(E) is the occupation probability of electron with energy E. The
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total energy flow between phonon and electron systems can then be cal-

culated with

Pe−p =
∑
k,q

h̄ωq(Γ
+
e−p − Γ−

e−p), (2.30)

which can following [29] be divided into two parts

Pe−p = P0(Te)− P1(Tp) (2.31)

P0 =
∑
k,q

h̄ωqM2
0qf(Ek)(1− f(Ek−q)) δ(Ek−q − Ek + h̄ωq)

P1 =
∑
k,q

h̄ωqM2
0qf(Ek)nq[(1− f(Ek−q)) δ(Ek−q − Ek + h̄ωq)

−(1− f(Ek+q)) δ(Ek+q − Ek − h̄ωq)],

where P0 depends only on electron temperature and P1 only on phonon

temperature, although the latter is not obvious from the form.

In Eq. (2.31) the sums can then be replaced with integrals using the

densities of states as was done in [29]. However, we will instead re-write

it with the help of the electronic response function χ(q, ω) (also known

as polarization function in some contexts). This will be convenient for

the Section 5.1 where we want to introduce the effects of screening and

disorder into the calculation as χ(q, ω). It was shown in [30] (and will be

discussed in more detail in Sec. 5.1) that using χ the e− p energy flow can

be written as

Pe−p =
∑
q

h̄ωq

2π
− 2VIm{χ(q, ω)}M2

0q[n
Te
q − nTp

q ], (2.32)

where we have marked nT
q to represent Bose-Einstein distribution func-

tion with energy h̄clq and temperature T

nT
q = [exp(

h̄clq

kBT
)− 1]−1. (2.33)

Using the pure low temperature limit of χ(q, ω) (see Sec. 5.1) we will get

Pe−p =
∑
q

h̄ωqV clnF

2vF
M2

0q[n
Te
q − nTp

q ]

=
∑
q

V π

2

nF h̄cl
ρVvF

(
2

3
EF

)2

q2[nTe
q − nTp

q ]. (2.34)

Finally converting the sum to a spherical integration with density of states

(2π)−3 we will arrive at the result

Pe−p = ΣV(T 5
e − T 5

p ) (2.35)

Σ =
1

4π

NF h̄cl
ρVvF

(
2

3
EF

)2 Γ(5)ζ(5)k5B
(h̄cl)5

, (2.36)
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where vF , NF are the velocity and density of electron states at the Fermi

energy, respectively, and Γ is the gamma function and ζ is the Riemann-

Zeta function Γ(5)ζ(5) ≈ 24.89. This result is identical to the one in [29].

In practice, Σ is a material dependent constant determined experimen-

tally, for values in different materials see for example [1].
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3. Cooling and heat transport in
reduced dimensions

NIS junctions cool directly the electron system and can take advantage

of the fact that at low temperatures the coupling between the electron

system and the environment gets increasingly small allowing significant

temperature reductions even with modest cooling powers. However, when

considering applications in the fields of radiation detectors and/or super-

conducting electronics, this can also be a disadvantage. In many appli-

cations it would be desirable that the cooler would not be electronically

connected to the element to be cooled as this can produce noise and and it

restricts the design of the experimental circuitry.

In order to achieve electronic isolation one has to somehow thermally

couple the element to be cooled to the normal metal side of the NIS junc-

tion without electrically coupling it. In practice this means coupling through

a phonon system. However, in order to cool a phonon system with an elec-

tronic cooler one has to make the coupling from the phonon system to the

environment smaller than the electron-phonon coupling. As mentioned

before, e − p coupling gets very weak at low temperatures and hence this

is a very challenging condition. In practice, fulfilling this condition calls

for reducing the effective dimensions of the phonon system, i.e., making it

in a form of a beam or a membrane. In this Chapter we will discuss cool-

ing these low dimensional objects with NIS coolers. Experiments as well

as modelling with finite-element-method are discussed. This Chapter is

related to Publications I, II and IV.

The length scale on which the effective dimensions of some systems are

reduced is related to the dominant wavelength of the system. This dom-

inant wavelength in turn is related to the quantum statistical nature of

the system and is very different for bosons and fermions. For phonons

(bosons) it is roughly the wavelength of the dominant thermal mode λT =

h̄c/(kBT ) where c is the speed of sound. For electrons (fermions) it is the
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Fermi wavelength which for a free electron gas is λF = 1/kF = (V/(3π2N ))1/3

where N is the number of electrons and V is the volume. This quantity is

independent of temperature. The order of magnitude for speed of sound

for materials dealt with in this thesis is ∼ 5000 m/s. This gives a λT of

50/T nm whereas the Fermi wavelength in a typical metal (copper) is of

the order of 0.1 nm. For the structures in this Chapter with dimensions

around 100 nm, the electron system is always 3D but the phonon system

dimensionality gets reduced at the lowest temperatures.

3.1 Cooling nanomechanical modes

One system where the coupling between the (local) phonon system and the

environment can be made extremely small is nanomechanical oscillator.

The Q-values, describing the dissipation of the local mechanical vibrations

to the environment, can be as high as hundreds of thousands in single

crystal nanoscale beam oscillators [31]. Although integrating any other

cooled element into a nanosized beam is generally not very convenient,

cooling down the beam itself can be of fundamental interest.

For some time it has been appreciated that cooling down the mechanical

modes of high frequency mechanical resonators down to their quantum

ground state should be possible [32, 33, 34], and this objective has been

now recently achieved [35, 36, 37]. The quantum ground state of a me-

chanical vibration means that the vibration will then be quantized (i.e.,

consist of only one phonon mode). Such a system can then provide a test

bed for fundamental experiments on the limits of quantum mechanics as

well as enable high-precision sensors. The problem here is that in or-

der to demonstrate the quantization, these modes need to be very weakly

coupled to the phonon bath of the bulk substrate (i.e. the Q-value of the

resonator needs to be high). This condition makes the cooling mediated

by the bulk phonon bath difficult as there is inevitably some dissipated

power generated by the measurement of the vibrations. This difficulty

can be overcome to some extent by just using very high frequency oscil-

lators where the temperature needed to reach the ground state is high

(as in [35]) or by directly cooling the mechanical modes with e.g. radia-

tion pressure (as in [37]). Nevertheless, making the beam out of normal

metal connected to NIS junctions would also circumvent this problem as

the local modes would then be directly cooled through the (local) electron

system.
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In [38] it was suggested that NIS coolers could be used for cooling down

metallic nanosized beams. In addition to the connection of studies of the

quantum ground state of the mechanical oscillator, this kind of a system

should exhibit a different powerlaw for the electron-phonon coupling if

the transversal dimensions are made much smaller than λT , as then the

dimensionality of the phonon system would be reduced. It is straightfor-

ward to calculate the heat-flow from 3D electron system to a 1D phonon

system based on the equations presented in Sec. 2.4.1, if we assume the

continuum limit where the length of the beam L � λT . As the electron

system is still assumed three dimensional, we only need to replace r with

a scalar x in u and divergence with 1D partial derivation. The form will

stay the same (aside of normalisation factor V replaced with L) and we

then need to replace the spherical integration with a 1D integration in

Eq. (2.34). This will lead to

P 1D
e−p = Σ1DL(T

3
e − T 3

p ) (3.1)

Σ1D =
1

4

NF h̄cl
ρVvF

(
2

3
EF

)2 Γ(3)ζ(3)k3B
(h̄cl)3

.

As said in Sec. 2.4.1, Σ is often considered an experimental parameter.

Hence, it is important to note the Σ1D can be related to the bulk Σ with

Σ1D = π

(
h̄cl
kB

)2 Γ(3)ζ(3)

Γ(5)ζ(5)
Σ =

π

12

(
h̄cl
kB

)2 ζ(3)

ζ(5)
Σ. (3.2)

In Publication I a beam cooler was demonstrated (see also [39, 40]). The

fabrication process is the same as described in Section 1.1 except for an

additional etching step as the last processing phase. In our work, isotropic

reactive ion etching was used to etch the substrate underneath the struc-

ture. The etch was timed so that only the narrowest structure, i.e., the

beam will be released. However, difficulties were encountered with fail-

ure of tunnel junctions during the etching step. In most tested structures

the tunnel junctions were shorted. These failures were eventually traced

back to charge collection by the metallic structures from the ion etching.

As the area of the pads is much larger than the area of the beam, a signif-

icant voltage can develop over the oxide layers, assuming that each area

collects the same amount of excess charge. A simple calculation shows

that this voltage can be several volts. In order to prevent this voltage

build up, fabrication was moved to slightly doped substrates. In this way

when etching at room temperature the substrate provides a short over

the tunnel junction. The doping was chosen light enough so that at the

measurement temperatures below 1 K, the conductivity of the substrate
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(a) (b)

Figure 3.1. Suspended metallic beams connected to NIS junctions. Light material AuPd
(normal metal) and darker material Al (superconductor). The beam lengths
are 2 μm (a) and 4 μm (b). Width is roughly 100 nm. The bigger junctions at
the ends are designed for cooling and the smaller junctions in the middle for
thermometry. The gate is not used in the experiments.

was negligible (which was confirmed by the low sub-gap leakages of the

junctions). This approach lead to considerable improvement of yield in

fabrication. Representative beam cooler samples are presented in Fig. 3.1.

The heating and cooling properties of these structures were studied in

order to see the effects of phonon dimensionality to the electron-phonon

coupling. The measurement consists of heating/cooling the beam with

the tunnel junctions at the end and monitoring the temperature of the

beam. In effect we are then measuring the coupling from the electron sys-

tem of the beam to the environment (meaning bulk phonons). There are

two thermal bottlenecks on this heat conduction path: the e − p coupling

and the coupling between the local phonon modes and the bulk phonon

modes. The heat flux from the local modes to the bulk phonons can be

calculated assuming the bulk-beam interface to be a tunnel barrier with

transmissivity ω/Q [38] (for more detailed account about phonon trans-

mission through interfaces, see [41])

P1D−3D =
∑
q

h̄ωq
ωq

Qq
(nTq

q − nTbath
q )

=

∫ ∞

−∞
dq

L

2π

h̄c2l
Qq

q2(nTq
q − nTbath

q )

=
ζ(3)k3B
Qπh̄2cl

L(T 3
p − T 3

bath) ≡ KL(T 3
p − T 3

bath), (3.3)

where in the last forms we have again assumed the continuum limit. In

the integration we additionally assume that all the modes are at same

temperature Tq = Tp and have the same Q-value. At steady state the

energy flows in and out of a system are equal, i.e., P1D−3D = P 1D
e−p and we

can eliminate Tp (which is not probed in the experiment) in order to solve
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the heatflow from the electron system to the bath

P 1D
e−bath =

1

1 + Σ1D
K

Σ1DL(T
3
e − T 3

bath). (3.4)

The limits of this are quite obvious, if Σ1D � K then K becomes the

bottleneck and P 1D
e−bath = KL(T 3

e −T 3
bath) whereas at the other limit Σ1D �

K we recover Eq. (3.1).

Exprimental data is shown in Fig. 3.2. Both a bulk sample (without the

etching step) and a suspended sample were measured. In both cases the

normal island was made out of Au:Pd (3:1 by mass) alloy. This material

handled the etching step more reliably than copper. The results were not

in complete agreement with the theory. From Fig. 3.2 it can be seen that in

both samples the I-V curves can be fitted relatively well producing almost

same parameters, except for a slight difference in the junction resistance.

However, the cooling data of the bulk sample follows the calculated curve

only at the low bias regime whereas the cooling data from the suspended

sample seems to fit relatively well the calculated curve for bulk phonons.

These results would seem to indicate that the e−p coupling was surpris-

ingly not modified in the suspended beam. In fact, the suspended sample

follows the bulk prediction more precisely than the bulk sample. Because

of this, one would be tempted to speculate that in the bulk sample some

local phonon heating effect (which will be a recurring theme in the dis-

sertation) would be playing a role. This kind of a substrate related effect

would then intuitively play more minor role in the suspended case. How-

ever, as the bulk data indicates that the normal metal heats up slower

than expected in the high bias regime, this is very hard to reconcile with

the data presented later in the thesis on other systems.

A probable explanation is uncertainty in the applied voltage (x-axis of

the figure). In these measurements (unlike later ones in this thesis) the

voltage was not directly measured but only deduced from the applied volt-

age and known voltage division. However, the input resistance of the

current amplifier used can be of the same order of magnitude as the dy-

namical resistance of samples at the gap edge and this creates some un-

certainty to the calculated applied voltage around the gap edge. In effect

this would mean that the voltage over the sample was less than what was

deduced and hence push the bulk data to the correct direction. Suspended

sample data would also be pushed more towards the T 3 curves. Neverthe-

less, the amount of cooling achieved is not sensitive to this experimental

flaw and that clearly remains incompatible with the reduced e−p coupling
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Figure 3.2. Data from a bulk control sample (top) and the sample shown in Fig. 3.1 (a)
(bottom). Left panels show I-V curves and fits giving parameters mentioned
in the figures. Right panels show cooling data and calculated curves with
parameters from the I-V fit and Σ = 1.7×109 WK−5m−3. Dashed line in lower
panel is calculated with Eqs. (3.1) and (3.2), i.e., the highest coupling limit
at the 1D theory. Speed of sound is assumed to be 5000 m/s. The volumes of
the two samples are different as the bulk control sample is a 4 μm long wire.
This is taken into account in the calculations. The cooling curves have been
corrected for asymmetry in the thermometer voltage measurement, coming
from the resistance of the wires. The resistances were 350 Ω and 197 Ω

for the bulk and suspended sample, respectively. Joule heating from these
resistances is taken into account when calculating cooling curves.
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hypothesis.

3.2 Membrane cooling

The most straightforward way to achieve the needed isolation from the

environment and to enable integration of NIS coolers with applications

is to have the phonon system as a micromachined membrane, on top of

which the samples to be cooled are fabricated. This membrane can then

be cooled with so-called cold fingers, normal metal islands extending from

a NIS junction to the membrane. The junctions itself need to be located

on the bulk, in order to dissipate the excess heat on the "backside" of the

cooler.

This kind of a membrane cooler would be of considerable interest in

many applications of superconducting electronics, ranging from quantum

information technology to space borne radiation detectors. In principle,

all of the community utilizing aluminium as a superconductor are facing a

technological challenge in providing below 0.1 K temperatures where the

superconducting properties of Al are optimized. Current solutions, mainly

adiabatic demagnetization refrigerators and dilution refrigerators, are

complicated to use and, more importantly for space applications, heavy.

It would be enormously advantageous to replace these refrigerators with

a simple 3He refrigerator, or even better, a pumped 4He bath, combined

with a NIS cooler. The first applications to benefit would be the ones

where the fabrication onto a membrane is straightforward. This group in-

cludes especially radiation detectors, which are by default often fabricated

on a membrane.

The membrane cooling was first demonstrated in [42] and significantly

improved in [43] with a small membrane volume coupled to the bath

through four few hundred micrometer long and ∼5 μm wide bridges. A

considerable temperature decrease was achieved (from 200 mK to 100

mK), although the actual cooling power was modest (∼ pW). However, ac-

tual application demonstrations have been done recently by the group of

Ullom at NIST. They demonstrated first the cooling of a macroscopic size

Ge cube [44] and then an aluminium transition-edge detector, designed

for X-ray sensing [45]. In the latter experiment, an effective temperature

reduction from 300 mK to 190 mK was achieved in the noise properties of

the detector, presenting a significant technological advance. The authors

tested that inducing a 22 pW heating power to the membrane reduced the
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cooling by 7 mK, which would suggest an effective total cooling power of

few hundreds of picowatts.

3.2.1 Modelling and experiments on thermal conductivity

In order to test how much effective cooling power is needed for the plat-

form, a finite-element-method (FEM) model of the temperature profile of

the platform was devised [46]. In the model we assume that the edges of

the membrane stay always at bath temperature, and that the at one end

of the cold finger heat is removed with some fixed power (simulating a NIS

cooler biased at the optimum cooling point). The diffusion of heat in the

membrane and in the cold finger are modelled with three temperatures:

Tm for the membrane, Tp for the phonons in the cold fingers and Te for the

electrons in the cold finger. These are coupled through electron-phonon

coupling and a thermal boundary resistance K. Hence, in a 2D model we

have three coupled diffusion equations for the temperatures

∇ · (−dmκmTn
m)∇Tm = K(T 4

m − T 4
p ) (3.5)

∇ · (−dcfκmTn
p )∇Tp = K(T 4

p − T 4
m) + dcfΣ(T

5
p − T 5

e ) (3.6)

∇ · (−dcfκ0Te)∇Te = dcfΣ(T
5
e − T 5

p ), (3.7)

where dcf and dm are the thickness of the cold finger and the membrane,

respectively, and κm and κ0 are the thermal conductance prefactors of the

membrane and the metal. All the temperatures depend on the two spatial

variables but other parameters are constant. The thermal conductance of

the membrane is assumed to follow a powerlaw with exponent n whereas

the thermal conductance of the metal is from Wiedemann-Franz law. Here

we assume the standard 3D e−p coupling, which would seem logical based

on the results in the previous section. In any case, although some differ-

ence between the 2D and 3D case have been seen [47], the difference is

not huge and has only minor effect for this particular model. The ther-

mal boundary resistance K is assumed large enough not to play any role.

The phonons in the metal layer are assumed to behave similarly to the

phonons in the membrane. In Fig. 3.3, an example of the heat profiles

from FEM simulation is shown and in Fig. 3.4 the calculated temperature

of the membrane as a function of the resistance of the cooling arrays is

presented.

In order to make the model more precise, the exact thermal conduc-

tivities of the copper and the membrane should be known. The ther-

mal conductivity of copper is related to its electrical conductivity through
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(a) (b)Junctions

Junctions

Cold fingers

Figure 3.3. Finite-element-modelling of the membrane platform with commercial soft-
ware COMSOL. (a) The membrane temperature profile. (b) The electronic
temperature of the normal metal. Here we assume a bath temperature of
0.3 K and that each junction array shown in the edges have total cooling
power of a SINIS structure with asymptotic resistance of 20 Ω and is biased
at the optimum cooling point. Other parameters: dm = 100 nm, dcf = 40 nm,
κmTn = 8T 2.1 mWm−1K−1, κ0 = 1.03 mWm−1K−2 and Σ = 2 GWm−3K−5.
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Figure 3.4. Calculated temperature at the middle of the membrane as a function of the
resistance of one junction array. For solid line parameters and geometry are
the same as in Fig. 3.3. Dashed line calculated with otherwise same pa-
rameters except κm is divided by a factor of 20. This gives a rough idea of the
performance if the membrane would be perforated around the edges. Already
with quite high RT :s a significant temperature reduction can be achieved but
reaching very low temperatures requires highly transparent junctions and
reduction of the thermal heatload with, e.g. membrane perforations.
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Wiedemann-Franz law and so electrical measurements were carried out

at 4 K for copper wires deposited with the same evaporator, resulting to

measured square resistance of 1.8 Ω for 20 nm thick wires and 0.59 Ω for

40 nm thick wires at 4.2 K and a residual resistivity ratio (RRR) of around

2.

For the thermal conductivity of the membrane, various measurements

exist [48, 49, 50, 51]. Common for all these measurements is that the heat

conduction powerlaw has been consistently measured to be around 2 (i.e.,

κm ∝ T 2) which might indicate a 2 dimensional phonon system. However,

as silicon nitride is an amorphous material and the same powerlaw has

been measured also for bulk amorphous materials at low temperatures

[52], this is not totally clear. In any case, variations in material qual-

ity and stresses on the membrane might have big influence on the heat

conductance. Hence, we have measured the thermal conductance from

several silicon nitride membranes bought from the commercial supplier

[53], which were used in the membrane cooler samples.

The thermal conductivity measurement is done as a heating measure-

ment. Multiple SINIS structures are fabricated on the membrane (fab-

rication details are discussed in Sec. 3.2.3), to use one as a heater and

other ones as thermometers in order to extract the temperature profile.

For the full membranes, some approximations are usually done in order

to extract an analytical result. In practice, we assume a circular boundary

condition instead of a square. Assuming that at a distance of R from the

heater the temperature is at bath temperature and knowing the tempera-

ture at distance r as well as heating power P , we can extract the thermal

conductivity κm as [49]

κm =
ln(R/r)

2πd

(
ΔT

ΔP

)−1

, (3.8)

where d is the thickness of the membrane. In practice we heat up the

membrane from a known bath temperature and extract the linear re-

sponse part of T vs. P curve to deduce (ΔT/ΔP ). The circular approx-

imation was also checked against the results from the FEM simulations

with the full geometry and (assuming point heater and point thermome-

ter) works almost exactly as long as the thermometer is not too close to

the edge of the membrane.

The results from the measurements performed on full membranes are

shown in Fig. 3.5. We have measured κm on three different membranes of

2 different sizes and from two distances in one membrane. There is some
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Figure 3.5. Measured thermal conductivity from silicon nitride membranes provided by
commercial supplier [53]. The lowest data (circles) is measured from a
0.5 × 0.5 mm2 membrane, other measurements are from 1 × 1 mm2 mem-
branes. Triangles pointing to different direction are measured from the same
membrane with two different thermometers at different distances from the
heater. Dotted lines are from top to bottom: 14.5 T 2.1 (value measured in
[49]), 8 T 2.1 and 3.9 T 2.1 mWm−1K−1. The errorbars are about the size of the
symbols, see text for details.

variation in the results, which is much larger than the expected uncer-

tainty in the measurements. The 95 % confidence bounds of the linear fits

to the heating data are about the size of the symbols in Fig. 3.5. These

confidence bounds represent the uncertainty coming from the noise in the

voltage measurement of the SINIS thermometers, which is the dominant

error source here. The error coming from voltage to temperature conver-

sion is small at this temperature range and possible error in the absolute

temperature scale (estimated at around 1 %) plays no role in this mea-

surement. The reasons for the variation between measurements are not

known. One possibility is that during the fabrication process some im-

purities are introduced to the membrane surface and this then affects

the thermal properties. Nevertheless, although there is some variation

between measurements, they all are consistently showing lower thermal

conductivity than the membranes employed in the past experiments.

It has been also reported before [54] that thermal conductivity in bridges

with width of the order of the thermal wavelength of the phonons would be

even lower than in membranes. Intuitively this should be the case as then

the phonon system might be effectively one-dimensional instead of 2 di-

mensional as in the membrane. Related effect was also reported recently

in crystalline silicon, where the thermal conductivity of a silicon beam was

seen to depend on its shape on the scale of the thermal wavelength of the

phonons [55, 56]. We tested this phenomenon by measuring the thermal

conductivity in perforated geometries, where part of the membrane (con-
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Figure 3.6. A SEM image of one of the samples for the thermal conductivity measure-
ment in restricted geometries. In this sample the bridges are 10 μm wide
and 100 μm long. The four faint SINIS structures on the middle part are
marked with circles (only two are used in the measurement). The triangle
shaped part is the normal metal island.

taining heater and thermometer) was connected to the bulk of the mem-

brane only through four 100 μm long bridges (see Fig. 3.6). Bridges of

width ∼ 60μm, 25μm and 10μm were measured. The results are shown in

Fig. 3.7. The measurement reproducibility is much better than for the full

membranes. Because of fabrication issues a 20 nm thick layer of Al was

deposited on the membranes before perforation (see Sec. 3.2.3) and this

shows up as an increase of the thermal conductivity at temperature above

∼ 400 mK. At the lower temperatures the electronic contribution from Al

is frozen out. The thermal conductivities measured, however, follow al-

most exactly the conductivities measured for the full membrane. The rea-

son for this discrepancy to the previous measurements is not known but

one possible explanation is lattice thermal conductivity of the Al layer. As

the speed of sound of evaporated Al is probably lower than of that of the

SiN membrane, this might move the transition from 2D to 1D to smaller

dimensions. A sample with 5 μm bridges and no Al on the backside was

also measured but because of new fabrication process needed here the

thermometer leads had an unwanted copper shadow that dominated the

thermal conductivity (see Sec 3.2.3).
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Figure 3.7. Measured thermal conductivity from perforated silicon nitride membranes.
Different data sets are measured from samples with different width of
bridges (shown in legend) connecting heated part to the bulk of the mem-
brane. Dotted lines are the same as in Fig. 3.5. All samples except the 5 μm
sample have 20 nm thick Al layer on the backside of the membrane, dom-
inating the thermal conductivity above ∼ 400 mK. In the 5 μm sample, the
thermal conductivity is probably dominated by unintentional copper shadows
of the Al leads of the thermometers. The errorbars are about the size of the
symbols, see above for details.

3.2.2 Cooler experiments

Based on the FEM modelling presented before, a NIS cooler with mod-

erately low cooling powers should be enough to demonstrate significant

cooling of the membrane. This was tested experimentally with various

membrane coolers in the course of the work described in this thesis, but

invariably the results have been much worse than what the initial mod-

elling suggested. The reasons are suspected to lie in local phonon heating

induced by the heat load dissipated on the superconducting side of the NIS

cooler. This same effect will be described in Section 4.3. In essence, the

local phonon heating couples to the cold finger through electron-phonon

coupling and creates parasitic heating power that compensates the cool-

ing power of the junction.

Images of the first prototype are shown in Fig. 3.8. The four junction

arrays were biased pairwise, each junction array had an asymptotic resis-

tance of 100 Ω, corresponding to junction resistivity of 400 Ωμm2. Accord-

ing to the FEM simulations these kind of coolers (even allowing for higher

thermal conductivity of the membrane) should be able to refrigerate the

membrane by 20 mK starting from 0.25 K (or 15 mK from 0.3 K). In the ex-

periment, cooling of only 2-3 millikelvins was seen on temperature range

0.2 K - 0.3 K.

To diagnose the reasons for this discrepancy, cooler samples with extra
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(a) (b) (c)

(d) (e) (f)

Figure 3.8. SEM images of the membrane cooler. (a) Overview of the sample. Junction
arrays are located on the sides of the membrane and L-shaped cold fingers
extend from them to the membrane. Two thermometers are located in the
center of the membrane. (b) Close up on the membrane thermometer. (c-f)
The cold finger and the junction array in progressively more detail. With this
sample a temperature drop of around 2-3 mK starting from 0.2 - 0.3 K was
seen with the thermometers in the middle, when all junction arrays were in
use. Each junction array had asymptotic resistance of 100 Ω.

thermometers attached to the cold fingers were fabricated. Measuring the

temperature of the cold finger close to the cooler array and at the far end

showed that the problem was two-fold: we both had lower cooling than

expected close to the junction array and we had an unexpected thermal

gradient over the cold finger so that at the membrane almost no cooling

was seen (see Fig. 3.9). Experiments after this were focused on improving

the thermal conductivity of the cold fingers. Thicker and wider copper

fingers were tried but no real improvement on the membrane cooling was

achieved although some effects were seen, see Fig. 3.10.

One possibility considered was that we had a parasitic heat conduction

channel through the Al layer located underneath the copper layer in the

cold finger. This extra layer is unavoidable with the shadow evaporation

process if only one lithography step is used. Hence, we moved to using

two-step lithography where the Al layer could be avoided. In two-step

lithography, additional problems arise not only from the obvious need for

alignment between the two lithography steps but also from having a con-

tact resistance between the copper deposited in the first step to form the

NIS coolers and the cold finger deposited on the second step. To avoid

this, cleaning in situ is needed before deposition of the cold finger. A sam-

ple was fabricated and measured where a cold finger made of Au was

deposited in the second lithography step. The temperatures in the cold
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Figure 3.9. (a) SEM image of the sample. Two extra thermometer junction pairs are in-
tegrated to the cold finger, one close to the cooling junctions, the other one at
the far end. (b) Data from sample presented in (a) at four different bath tem-
peratures. Squares show the measured temperature from the thermometer
junctions close to the cooling array and circles at the other end. Asymptotic
resistance of each cooling array was 65 Ω. From FEM simulations the closer
thermometer would be expected to reach 0.21 K and the farther thermometer
0.22 K starting from 0.25 K. The possible errors in the absolute temperature
scale are of the order of 1 %, coming from the uncertainty in the calibration of
the cryostat thermometer. The biggest source of error in the amount of cool-
ing (relative temperature drop), is noise in the voltage measurement seen as
point-to-point scatter in the plots.
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Figure 3.10. Effects of thicker and wider Cu layer. (a) Squares and circles show part of
the same data which is presented in Fig. 3.9 (b), crosses and plusses show
data of a similar sample with a 60 nm thick (instead of 30 nm) copper layer
in the cold fingers. In the sample with thicker copper layer, the thermal gra-
dient over the cold finger is reduced, but at the same time the overall cooling
effect decreases due to the extra heatload. The cooling effect is again much
smaller than expected. (b) Data from a sample with 50 nm thick cold finger
with a geometry where the narrowest part of the cold finger was widened.
The two lowest curves correspond to similarly placed thermometers as in
Fig. 3.9 and diamonds correspond to a membrane thermometer (faintly vis-
ible in the centre of Fig. 3.9 (a)). This cooler had lower resistance (RT = 40

Ω for the junction array) so that the cooling at the nearest thermometer
is roughly the same as in Fig. 3.9 (b). The thermal gradient over the cold
finger is reduced but membrane cooling is not enhanced. Expected mini-
mum temperature from the simulations would be 200 mK, 198 mK and 190
mK for the three thermometers. Assuming only fifth of the expected cooling
power would produce the measured cooling for the thermometer nearest to
the cooling junctions, but the membrane would still be expected to cool to
0.23 K. Error assessment same as in Fig. 3.9.
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Figure 3.11. (a) SEM image of the other cooler array design, inset shows a close-up to
the junction area. The superconducting leads are now designed so that they
are fully covered with the normal metal. This sample was measured with
and without the cold finger, this image was taken before the cold finger is
in place. (b) Cooling performance of the sample in (a). The circles (lowest)
points show the performance before the integration of the cold finger. The
squares and diamonds show the cooling performance after the fabrication
of the cold finger at two thermometers, the one near the junctions (same as
circles) and the one at the end of the cold finger, respectively. The RT of the
junction array was 70 Ω. Error assessment same as in Fig. 3.9.

finger could not be probed here as tunnel junction fabrication with gold

was not successful. The membrane temperature was probed and cooling

effect was very similar to the previous measurements, i.e., of the order of

few millikelvins.

All the data collected from the measurements seem to indicate that the

real problem did not lie in the properties of the cold finger. Rather it

seemed probable that we had an unexpected heatload coupling to the cold

finger and this combined with the fact that our coolers were performing

below expectations caused the effective cooling power to be reduced dra-

matically. The most likely cause for this extra heatload is thought to be

local phonon heating created by heatload to the superconducting side of

the NIS cooler. Before any real modelling, we tried to minimize the effects

of this heatload by maximising the cross-sectional area of the supercon-

ducting lead close to the junction and optimising the contact area between

the superconducting lead and the normal metal layer on top of it (acting

as a quasiparticle trap, see Chapter 4). These coolers were fabricated with

two-step lithography and measured both without the cold finger part and

with it. However, the cooling performance was not considerably improved,

see Fig. 3.11.

The discrepancy between FEM simulations and the experimental re-

sults highlighted the need for more accurate modelling and experiments

on the heat dissipation on the superconducting side, this is the topic of the
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next Chapter. The effects of local phonon heating should be minimised in

the final design by separating the heated phonon system from the cold fin-

ger more effectively. In practice this will mean perforating the membrane

around the edges.

3.2.3 Fabrication issues

There are many aspects on the fabrication process on the 100 nm thick

silicon nitride process that need not to be generally considered when fab-

ricating on a bulk substrate (the basics of which are described in Sec-

tion 1.1). The first issue is the amount of undercut achieved in the ba-

sic copolymer-PMMA process. When fabricating on a bulk substrate, the

largest part of the dose for the underlayer (copolymer) comes from backscat-

tering of the electrons from the substrate. This backscattering is not very

localized and hence produces a dose pattern that extends on all sides of

the primary beam. Combined with a proper developer, this is the phe-

nomenon that enables the undercut in copolymer and is essential for the

shadow evaporation process. When fabricating on a thin membrane, most

of this backscattering is lost as the majority of electrons can pass through

the thin membrane without any scattering. This means that not only

making EBL on a membrane requires doses many times higher than on a

bulk substrate but in addition achieving a nice undercut profile becomes

exceedingly difficult with just MIBK development. Moving to an extra

developer that develops the copolymer much faster than the PMMA en-

ables making large undercuts without the extra dose from backscattered

electrons. The developer for this purpose has been discussed before in

another PhD dissertation [57], and is called methylglycol. An example of

the effect of this developer to tunnel junction fabrication on a membrane

is presented in Fig. 3.12.

For the thermal conductivity measurements, additional requirements

for the undercut arise. To measure the small thermal conductivity of the

thin dielectric membrane precisely, one has to be careful not to introduce

any parallel conduction channels. A long copper wire (the shadow of the

superconducting Al lead of the thermometer) can conduct heat better than

the perforated membrane even if made relatively thin. Hence, getting rid

off this shadow was very important for those measurements. This can be

done if the undercut is small enough so that evaporating in a large angle

will produce copper only on the junction area (with higher dose) but not

on the leads.
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Figure 3.12. Effects of methylglycol to sample fabrication on the membrane. The sample
on the left is done with just MIBK development, not enough undercut is
achieved to produce tunnel junctions. On the example on right, methylglycol
is used to extend the undercut.

For the perforation of the membranes in the thermal conductivity mea-

surements with the bridge geometries, a dual-beam system from FEI (He-

lios 2000) was used [58]. Dual-beam refers to a machine having both elec-

tron beam (for imaging and possibly lithography) and an ion-beam (for

milling, induced deposition and lithography). Perforating the membrane

with the focused ion-beam (FIB) offers the maximum flexibility for the

process as the cutting profile can be adjusted "on-the-fly" and imaging can

be done simultaneously with milling. The downside is that the process is

relatively slow for large areas and at the moment cannot be automated

easily.

For our silicon nitride membranes the yield of the perforations was in

the beginning of the process eminently low. The membranes tended to

crack from the edges of the perforations and sometimes just flew away

completely. The origin of these problems was ultimately traced to charg-

ing of the membrane. Our perforation process was to mill small lines into

the membrane in the form of a square or circle so that the middle of the

pattern will then "fall" away. However, when milling this kind of small

lines, both sides of the line tend to gather some amount of the Ga+ ions

used in the milling and hence charge up. These sides then start to re-

pel one another and once the line is deep enough this force can be strong

enough to cause the pattern to tear off violently causing damage to the

rest of the membrane.

Charging of the substrate is known to be a problem in FIB processing

and the conventional method is to scan the working area with the elec-

tron beam sequentially with the milling in order to neutralise the ion

charges with the electron charges. This approach was tested without con-
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Figure 3.13. SEM image slide show taken after ion milling. The time order of the figures
is from left to right and from top to bottom. The charge polarisation is seen
as "flames" around the edges of the metallic structures after milling and it
then fades away with time. The arrows point to locations where this can be
most clearly seen.

siderable improvement. A working solution (visible in the thermal con-

ductivity measurements above) was to cover one side of the membrane

with aluminium layer before the milling. The aluminium layer is a good

conductor and prevents charge build-up in the vicinity of the milled area.

As a superconductor, Al has a very small effect to the thermal conductiv-

ity at the lowest temperatures (at least electronically), enabling the ther-

mal conductivity measurements to be made. Nevertheless, for achieving

the smallest possible thermal conductivity in the narrow bridge geome-

tries, one needs to abandon the Al layer. For this purpose a metallic pat-

tern on top of the membrane but away from the "active" area was tested.

This kind of "lightning rod" can be introduced to the areas where the

milling is made as long as care is taken that no metal is left on the bridges.

In Fig. 3.13 some SEM images of this kind of a structure during milling is

shown. The charging can be seen as flame-like pattern around the metal

and the milled shape. The charge is seen escaping via the metallic wires.

A narrow bridge structure without the Al layer was realized using these

lightning rods. Unfortunately, in this structure the copper shadows of the

thermometer leads were not completely eliminated and they dominated

the thermal conductivity.
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4. Quasiparticle dynamics in a
superconductor

For the practical applications of NIS cooling, understanding the thermal

dynamics of the quasiparticle excitations in the superconductor is of cru-

cial importance in order to know how much power can be dissipated into

the superconducting lead without critically increasing the quasiparticle

population (see Chap. 2). In this Chapter we will go through the relevant

theory, modelling and experiments, relating to the behaviour of quasipar-

ticles in the superconducting side of a NIS cooler. This Chapter is related

to Publications V and VII.

4.1 Thermal properties of a BCS superconductor

In a BCS superconductor, the thermal properties of the electron system

are modelled with quasiparticle excitations. The Cooper pair condensate

itself carries no entropy and has no explicit role in the thermal proper-

ties. The dominant relaxation mechanisms are analogous to the normal

metal case: there are the quasiparticle heat conductivity along the super-

conductor, and quasiparticle-phonon relaxation, which in a superconduc-

tor is determined predominantly by the recombination of quasiparticles

into Cooper pairs. The most obvious differences to the normal metal case

are: (i) the exponentially small amount of quasiparticles at temperatures

T � TC and (ii) the fact that the quasiparticles need to absorb or emit en-

ergy larger than the superconducting gap Δ. Combined, these effects lead

to exponentially suppressed heat conductivity and coupling to the phonon

system at low temperatures [κ,Σ ∝ exp(−Δ/(kBT ))].

The BCS-theory predicts the quasiparticle density nqp in thermal equi-

librium to be

nqp =

∫ ∞

−∞
dENS(E)f(E) = 2N0

∫ ∞

Δ
dE

E√
E2 −Δ2

f(E)
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≈ N0

√
2πkBTΔ e−Δ/kBT . (4.1)

The last step is an approximation that applies when Δ � kBT . For il-

lustration, one can apply the parameters of aluminium in Eq. (4.1). As-

suming Δ/kB = 2.4 K and a temperature of T = 100 mK the quasiparticle

density is very low nqp ∼ 10−5 (μm)−3. However, invariably experiments

have shown quasiparticle densities above what is predicted by Eq. (4.1) at

the lowest bath temperatures. The lowest ever observed density is about

3 · 10−2 μm−3 and the source of excess quasiparticles has been demon-

strated to be noise radiated from the environment [59].

The reduction in thermal conductivity at the superconducting state has

been calculated theoretically soon after the BCS theory appeared [60].

Assuming that the thermal conductivity is limited by impurities, in the

superconducting state it can be written as κs = γ(T )κn, where the sup-

pression ratio γ(T ) is given by

γ(T ) =
3

2π2

∫ ∞

Δ/kBT

x2

cosh2(x/2)
dx � 6

π2
(

Δ

kBT
)2e−Δ/kBT , (4.2)

where the approximation shown on the right applies again for kBT �
Δ. The suppression factor γ(T ) is plotted in Fig. 4.1 (a). Note that we

assume everywhere that the superconducting gap Δ has the temperature

dependence given by BCS theory. Experimental evidence for Eq. (4.2) was

added recently in [61].

The coupling between the quasiparticle system and the phonon system

is mainly mediated by the quasiparticle recombination, which is a process

where two quasiparticles of opposite momenta (k and −k where h̄vfk ≈ Δ)

recombine to form a Cooper pair and emit a phonon with energy equal to

2Δ. The recombination rate was studied several decades ago [62] but the

associated heat flux from quasiparticles to the phonon system has been

experimentally determined only very recently [63]. From quasiclassical

theory the heatflux reads

P s
qp−p = − ΣV

2Γ(5)ζ(5)k5
B

∫ ∞

−∞
dE E

∫ ∞

−∞
dε ε2sqn(ε)NS(E)NS(E + ε)

(
1− Δ2

E(E + ε)

)

×
{
coth

(
ε

kBTp

)
[f(E + ε)− f(E)] + f(E) + f(E + ε)− 2f(E)f(E + ε)

}
. (4.3)

Which at the limit Tp = 0 gives

P s
qp−p = − ΣV

Γ(5)ζ(5)k5
B

∫ ∞

−∞
dE E

∫ ∞

−∞
dε ε2NS(E)NS(E + ε)

(
1− Δ2

E(E + ε)

)

×
{

f(E + ε)(1− f(E)) if ε > 0

f(E)(f(E + ε)− 1) if ε < 0
. (4.4)
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Figure 4.1. (a) The reduction factor of thermal conductivity Eq. (4.2) plotted as a function
of temperature. Inset shows a close-up to the low temperature regime on
logarithmic scale. (b) Quasiparticle-phonon coupling. Symbols showing the
experimental data from [63], dashed line the normal state e−p coupling (with
Σ = 2×108 WK−5m−3), solid line is from Eq. (4.4) and dotted line is analytical
approximation valid at low temperatures P s

qp−p = 0.98e−Δ/kBTPe−p. In both
(a) and (b), Tc of 1.3 K is assumed for the calculations.

The experimental data from [63] is shown in Fig. 4.1 (b) along with a cal-

culated curve from Eq. (4.4), demonstrating orders of magnitude weaker

coupling in the superconducting state as compared to the normal state

already at temperatures of the order 0.3Tc (0.4 K).

A diffusion relation for the temperature profile in the superconductor

can be constructed by inserting Eq. (4.4) and Eq. (4.2) to a conventional

diffusion equation

∇ · [−κs(x, Tqp)∇Tqp(x)] = Ps
qp−p(x, Tqp, Tp) + Pext(x), (4.5)

where Pext is the power density from possible external sources, Ps
qp−p =

P s
qp−p/V is the power density and x describes the spatial coordinate.

4.2 Thermal model of the quasiparticles for NIS cooling
applications

As mentioned in Chapter 2, the efficiency of a NIS cooler (the ratio of the

cooling power over the input power) is roughly 0.7 T/TC . At 0.3 K this

corresponds to 15 % (assuming TC of 1.3 K, common to thin Al films).

Put another way, the power dissipated into the superconducting leads is

an order of magnitude larger than the cooling power. In any practical

cooler, this can be a significant power. As both the quasiparticle-phonon

(qp − p) relaxation rate and the diffusion of quasiparticles are addition-

ally exponentially suppressed, as mentioned above, the dissipated power

can create a high density of non-equilibrium quasiparticles on the super-
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conducting side of the cooler, i.e. heat it up. This tends to suppress the

cooling power of a NIS junction.

In many instances [64, 65],III the degradation of the cooling power of a

NIS junction due to the overheating of the superconductor has been suc-

cessfully modelled as a backflow parameter of heat, where a constant por-

tion of the whole input power IV is assumed to “flow back” to the normal

metal and induce a parasitic heating power Pbf = β(INISV − PNIS). Typi-

cally β found experimentally lies between 1 and 10 %. Although this kind

of a model has had some success in fitting the experimental data, it does

not really address the mechanisms behind the backflow. Recently, there

has been considerable interest to model this effect more precisely, based

on diffusion equations [66, 67, 68, 69]. Assuming a diffusion of quasipar-

ticles away from the junction area as well as their relaxation, one can

self-consistently calculate the quasiparticle distribution of the supercon-

ductor and hence the cooling power of the junction.

Since the 70s [70, 71], there has been a discussion if the non-thermal

quasiparticles can be most accurately described with an effective temper-

ature (T ∗) or with an effective chemical potential (μ∗) and this issue has

also been revisited in recent paper [72]. In all models discussed in this dis-

sertation the quasiparticle distribution is described by a Fermi function

with a position dependent effective temperature. This is a convenient

choice as it allows a straightforward calculation of the tunnelling rates

based on the extracted effective temperature.

On the other hand, an argument can be made that the quasiparticle

distribution will not follow a Fermi distribution at all and then the cor-

rect way forward is to model the diffusion of the quasiparticle number n

directly by using an equation [66, 67]

Ds
∂2n(x)

∂x2
= Γqp−p + Γext, (4.6)

where Γqp−p+Γext are now the relaxation (scattering) rates to phonons and

external environment, respectively, and can be converted to power by mul-

tiplying with the energy exchanged in each scattering event. Ds can be re-

lated to the normal state diffusion constant Dn by Ds =
√
1− (Δ/E)2Dn,

where E is the energy of the quasiparticle and Dn is related to normal

state heat conductivity through κn = LDnNF e
2T (L is the Lorentz num-

ber). In this way, one does not need to make the assumption of a thermal

distribution but one now needs to consider explicitly the energies of the

quasiparticles. In practice, one of two assumptions is then needed. One

can either assume that the quasiparticles follow a thermal distribution
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and, in fact, it is straightforward to show that with this assumption the

left-hand-side (LHS) of Eq. (4.6) will be equivalent to LHS of Eq. (4.5) (the

connection between n and Ts is from Eq. (4.1)). The other option (adapted

in [66] and [67]) is to replace the E in Eq. (4.6) with an approximate aver-

age energy of quasiparticles in the sample 〈E〉. In the previous examples

it was assumed that 〈E〉 = Δ. However, in those articles, in order to cal-

culate the effects on the NIS junction, an effective temperature Ts is still

assumed at the junction area and calculated from the solved n. Because

of this, the difference between the two approaches is small.

To make some simple estimates with the effective temperature diffusion

model, let us consider a 1D temperature profile and make the assumptions

Tp � Tqp � Δ/kB. Then we can write the diffusion equation for a super-

conductor in an analytically solvable form (we neglect the Pext term and

the prefactor of the order of unity in Eq. (4.4))

∂

∂x
[
6

π2
(

Δ

kBT
)2e−Δ/(kBT )κn

∂T

∂x
] = e−Δ/(kBT )Σ(T 5 − T 5

p ), (4.7)

where we have written T = Tqp for clarity. Linearising Eq. (4.7) for small

temperature differences δT (x) = T (x) − Tp, one obtains a simple expres-

sion for the temperature profile in a uniform one-dimensional wire. For

a wire extending to positive x, we have then δT (x) = δT (0)e−x/�0 , where

δT (0) is determined by the heat input at the end of the wire and the re-

laxation length is given by

�0 =
Δ

πkB

√
6Lσ
5Σ

T−5/2
p . (4.8)

Putting the parameters of aluminium in Eq. (4.8), we find that �0T 5/2 � 50

μm·K5/2. This means that at typical sub-kelvin temperatures, the quasi-

particle distribution relaxes over millimetre distances. The magnitude of

the temperature rise can be obtained in the same linearised approxima-

tion by employing the boundary condition P = −κsA
dδT (x)

dx |x=0, where A

is the cross-sectional area of the wire. Inverting this for the temperature

rise for a given heat input, we find

δT (0) =
�0
κs

P

A
=

πkB

Δ
√
30LσΣeΔ/(kBT )T−3/2P

A
. (4.9)

Inserting numbers for a A = 100 nm × 100 nm wire at T = 200 mK, yields

δT (0) � 20P/A � (2 · 1015 K·W−1)P . This means that in order to keep

δT (0) � T , one needs to have P � 10−16 W, i.e. a very small power input

indeed. Assuming each quasiparticle brings energy Δ to the supercon-

ductor, this implies a tunnelling rate of Γ = P/Δ � 3 × 106 s−1. This

59



Quasiparticle dynamics in a superconductor

corresponds to a bias current of only 0.5 pA. This example demonstrates

that a bare superconducting wire is driven out of equilibrium even with a

very small current injection.

Fortunately, the situation is usually not as bad as this result would seem

to suggest, as the effects of so-called quasiparticle traps [73, 74, 75, 76]

have been neglected so far. These are usually normal metal (or lower gap

superconductor), films which are in contact with the superconductor and

act as heat sinks where the quasiparticles can be absorbed. The effect is

based on the fact that the normal metal has exponentially stronger elec-

tronic heat diffusion and electron-phonon coupling than the superconduc-

tor and hence the excess heat is quickly absorbed to the bath. A safe way

of introducing moderately efficient traps comes for free in junctions fab-

ricated by shadow angle deposition if some care is taken in designing the

leads in the vicinity of the junctions. As explained in Sec. 1.1 this fabrica-

tion procedure produces first the superconducting (e.g. aluminium) lead,

which is subsequently oxidized, and thereafter a metal layer (e.g. copper)

is deposited at another angle, forming the NIS junction. In the process,

this kind of overlap structure is also created outside the junctions and

with proper mask design can be used to cover the superconducting leads.

The mechanism of the quasiparticle thermalization in this structure is via

tunnelling of hot quasiparticles into the normal metal, i.e., a NIS junction

with zero voltage (see Eq. (2.8)). A metal layer in direct contact with

the superconductor would be more efficient trap but a normal metal is-

land very close to the junction can severely decrease the performance of

the cooler as the energy gap of the superconductor is smeared due to the

proximity effect. Hence, optimising the distance of these kinds of direct

traps needs care.

By similar arguments used in obtaining Eq. (4.8), we can obtain a ther-

mal relaxation length in a structure with a trap separated by an insulat-

ing layer,

�1 =

(
2
√
2dρTσ√
π

)1/2 (
kBT

Δ

)1/4

(4.10)

and for the temperature rise for a given heat input

δT (0) =
�1
κs

P

A
=

√√
2dρTπ4

18
√
πL2σ

(
kB
Δ

)9/4

eΔ/(kBT )T 5/4P

A
. (4.11)

Here d is the thickness of the superconducting lead and ρT is the specific

resistivity of the trap barrier. For a relatively resistive barrier ρT = 1

kΩμm2 with d = 30 nm and T = 200 mK, we obtain �1 ≈ 20 μm, which
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is about two orders of magnitude shorter than in a bare superconducting

wire. Both this value and the relaxation length for bare Al wire are in

accordance with the values obtained in [77]. Similarly the heating power

required for certain temperature rise is two orders of magnitude larger

than for a bare wire δT (0) � 0.15P/A � (1.5 · 1013 K·W−1)P .

Some numerical results in 1D with the full equation are shown in Fig. 4.2.

They have been calculated solving Eq. (4.5) using Matlab PDE solver

pdepe. A fixed temperature boundary condition is assumed at one end

of the wire (x = 0) and at the other end (x = 0.5 mm) a fixed power in-

put (a-c) or a NIS junction (d) is applied. Pext is now the heat flow to the

trap. The numerical results show that effective (transparent) quasiparti-

cle traps are needed for a NIS cooler to work at all. Also notable is that

the effectiveness of the trap is not very dependent on the distance of the

trap from the junction, as long as the separation is of the order of few

micrometers. The fact that the transparent trap case seems to be more

efficient at high powers than a normal state wire is partly a by-product of

our assumption of an idealised trap fixed at temperature 0.2 K. At high

enough transparencies the trap will also heat-up as the e − p coupling in

the trap will become the thermal bottleneck. However, it should be noted

that as Cu has an order of magnitude higher Σ, a transparent trap might

be even more efficient in heat removal than normal state Al. This would

be emphasized if the trap would be thicker than the Al wire.

4.3 Experimental results and comparison to 2D simulations

In order to experimentally test the effects of excess quasiparticles to NIS

cooling, a set of samples with differing geometries (different cross-sectional

area A) and trap transparencies (parameter ρ) was fabricated [78]. The

properties of these are summarised in Table 4.1. The sample geometry

and their cooling characteristics are shown in Fig. 4.3. Because of the

differing junction resistances RT , this "raw data" of the normal metal

temperature cannot, however, be compared directly. In order to extract

the effects of different dimensions and ρ we have to normalise the data.

The normalisation is achieved by comparing the measured temperature

reduction of the normal metal δT to the optimal temperature reduction

δTopt calculated by solving the heat balance equation Eq. (2.15) with the

parameters (RT ,Δ, γ,V) of the corresponding sample. Note that the ef-

fects of sub-gap leakage are included in δTopt as a finite γ and hence these
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Figure 4.2. Results from the 1D effective temperature diffusion model.
(a) Temperature profile of a superconducting wire, with a power input of
P/A = 10 W/m2 at the x = 0.5 mm and a fixed temperature of 0.2 K at x = 0.
A is the cross-sectional area of the wire, thickness is 35 nm (required for the
calculations with trap). Phonons and trap temperature are assumed to be
fixed at 0.2 K. Solid curve is a pure superconducting wire, dashed and dot-
ted curve with a quasiparticle trap assuming oxide resistivity of 10 and 0.1
kΩμm2, respectively. Dash-dotted curve assumes a normal Al wire.
(b) Temperature of the wire at x = 0.5 mm as a function of the power input
with same assumptions as in (a). Curve legends same as in (a).
(c) Temperature of the wire at x = 0.5 mm as a function of trap distance,
with power input P/A = 10 W/m2. Trap distance of 10 μm means that the
trap is assumed to be located at the interval 0 ≤ x ≤ 0.49 mm. Upper and
lower curve with oxide resistivity of 10 and 0.1 kΩμm2, respectively. Note,
that in other plots the trap distance is assumed to be zero.
(d) Illustration of the effects of superconductor heating to NIS cooling. As-
sumptions and curves same as in (a) but now the power input is from a NIS
junction with RT of 500 Ω and Δ = 200 μeV. The plot represents the power to
the normal metal part, calculated self-consistently. In this case we also have
to fix the width of the wire, assumed to be 2 μm. Tn is fixed at 0.2 K. Lowest
solid curve is with Ts also fixed at 0.2 K.
In all plots we assume that κn = 0.9 WK−1m−2 and Σ = 2 × 108 WK−5m−3

(in normal state).
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Figure 4.3. (a) A schematic of the geometry of samples and a scanning electron micro-
graph of one representative sample. The thermometer junctions in the mid-
dle of the island are not shown in the schematic. Lighter material is Cu and
darker Al. (b) The ratio of achieved minimum temperature of normal metal
Tmin and bath temperature Tbath as a function of Tbath in samples A-H. The
same labelling will be used throughout so that the symbol will refer to di-
mension A (circle = 2.5, diamond = 5 and square = 10 μm) and line to the
dimension B (dashed red = 2.5, dotted green = 5 and solid blue = 10 μm).

do not contribute to the difference of the calculated and measured case.

The influence of Andreev current is not included in the calculation but

as shown in Sec. 2.3, its contribution is expected to be negligible at the

optimum cooling voltage.

In all the samples the variations in Δ and γ are very small. This can be

seen in Fig. 4.4 where the current-voltage (I-V) curves measured at ∼ 50

mK of samples A-H are plotted at low bias voltages with I-V curves cal-

culated with the extreme parameters. The variations in Δ are in between

194-200 μeV and γ values are in the range 2-3 ×10−4. These changes have

very little effect to the calculated δTopt and hence we will assume that all

the samples have Δ = 200 μeV and γ = 2×10−4. The δT/δTopt ratio is pre-

sented in Fig. 4.5 for samples A-H as a function of the bath temperature.

The data presented in Fig. 4.5 demonstrates that the results are in qual-

itative agreement with the results from 1D diffusion model. If we reject

the samples where A>B, the coolers get more efficient as the lead is made

wider although the differences between different samples are small. To

make more accurate comparisons between the effective temperature dif-

fusion model of quasiparticles and our experiments, we have done 2D

finite-element-method (FEM) simulations of the temperature profiles of

our structures. The meshing and solving of the differential equations were

done with the commercial program COMSOL (numerical values for the

NIS heatflow integrals and the thermal conductivity of the superconduc-

tor were evaluated in Matlab). In the 2D model, we had three effective,
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Table 4.1. Sample parameters. A and B refer to the dimensions in Fig. 4.3 (a), dAl is the
thickness of the Al layer, dtrap is the thickness of the Cu layer on top of Al,
V is the volume of the normal metal island, RT is the total resistance of the
sample (i.e., 2 times the RT of a single junction), and ρ is the resistivity of
the oxide between the Al layer and the trap (calculated from the measured RT

and junction area). OGP refers to "on the ground plane", NGP to "not on the
ground plane" and DT to direct trap, see text.

Sample A (μm) B (μm) dAl (nm) dtrap (nm) V (10−19m3) RT (Ω) ρ (Ωμm2)

A 2.5 5 18 27 3.08 277 139

B 2.5 10 18 27 3.08 232 116

C 5 2.5 18 27 3.08 452 226

D 5 5 18 27 3.08 350 175

E 5 10 18 27 3.08 320 160

F 10 2.5 18 27 3.08 370 185

G 10 5 18 27 3.08 260 130

H 10 10 18 27 3.08 294 147

J (OGP) 5 2.5 18 27 3.08 230 115

K (NGP) 5 2.5 18 27 3.08 230 115

L (OGP) 10 10 30 30 1.96 650 285

M (NGP) 10 10 30 30 1.96 600 255

O (DT) 10 10 25 20 3.44 165 0

P (DT) 10 10 25 20 3.44 186 0

Q (DT) 10 10 50 50 3.44 182 0

R (DT) 10 10 50 50 3.44 203 0
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Figure 4.4. Measured current-voltate characteristics of samples A-H (thin lines) and two
calculated I-V curves (solid lines) with parameters RT = 250 Ω, γ = 3× 10−4,
Δ = 194 μeV for one and RT = 450 Ω, γ = 2 × 10−4, Δ = 200 μeV for the
other. At this low bias regime, we can neglect the thermal effects, as well as
series resistance of our experimental wiring in this 2-point measurement. All
the data falls in between the two calculated curves demonstrating that the
variation in Δ and γ is small between samples.
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Figure 4.5. The δT/δTopt ratio for samples A-H. Inset shows the data on larger range.
The table shows the dimensions of samples from best to worst according to (a)
at Tbath = 0.3 K. The samples where dimension A was larger than dimension
B perform worst. Otherwise the trend follows first dimension A and then
dimension B. The differences are however small.

position dependent temperatures: the temperature of the cooled normal

metal volume Tn, the effective temperature of the quasiparticle distri-

bution in superconductor Ts and the temperature of the normal metal

acting as a quasiparticle trap Ttrap. In the normal metals relaxation

was assumed to be from the electron system to the phonon system (see

Eq. (2.36)) and in the superconductor the quasiparticle relaxation to the

trap. Calculations were done to compare the relaxation to the trap to the

quasiparticle-phonon coupling (recombination), showing the latter to be

negligible with any tunnelling barrier resistivity and/or thickness of the

superconducting film relevant to our experimental conditions.

In Fig. 4.6 (a) the resulting cooling curves from the 2D FEM simula-

tions are shown. On the first sight there seems to be a large discrepancy

between the simulations and experiments, the experiment being consid-

erably worse than simulations would predict. We speculate this discrep-

ancy to be due to local phonon heating. In the simulations it is assumed

that the phonons stay all the time at the same temperature as the cryo-

stat. As our insulating substrate is not a good heat conductor, this as-

sumptions might not be a good one, especially with the relatively trans-

parent junctions used in the experiment. We account this in our model

phenomenologically by letting the phonon temperature Tp at the normal

metals (cooled volume and quasiparticle trap) to be a free (fitting) param-

eter. In Fig. 4.6 (b) the phonon temperatures required to reproduce the

experiment are shown as a function of bath temperature. The required

phonon temperatures are remarkably similar for all samples.
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Figure 4.6. Experiment compared with 2D FEM simulations. (a) The lower lines show
the result of simulations assuming Tp = Tbath, upper lines show the fit to the
experimental results with varying Tp. (b) Phonon temperatures Tp required
to reproduce experimental results with the simulations.

In Fig. 4.6 the achieved cooling points are fitted without considering

whether the optimal cooling voltages match in the simulations and the

experiments. In most cases they do not. Another, maybe more appropri-

ate way is to match the whole V −Te curve by letting the Tp to be a voltage

dependent fitting parameter. This was also done for the same dataset at

one bath temperature around 0.3 K (the exact temperature varied a bit

between measurements). In Fig. 4.7 we show the resulting Tp from this

kind of fitting procedure as a function of the input power to the supercon-

ductor. It is notable that they all seem to follow quite the same curve as

would be expected on a similar substrate.

The results shown in Fig. 4.7 suggest also a physical explanation for

the phenomenological β parameter described in Sec. 4.2. Our results in-

dicate that the β generally observed (1-10 %) cannot be explained with

just the excess quasiparticle population in the superconductor. This over-

heating of the superconductor would lead to only very small corrections to

the cooling power with our relatively transparent (ρ ≈ 100 Ωμm2) quasi-

particle traps. Local phonon heating resulting from quasiparticle energy

dissipation in the trap, however, provides a straightforward explanation

for the large β.

We tested the local phonon heating hypothesis experimentally by vary-

ing the heat conductivity of our substrate. If the assumption is correct,

then changing the heat conductivity of the substrate should have an ef-

fect to the performance of the coolers. To vary the heat conductivity of

the substrate we introduce a so-called "ground plane" (GP). By this we

mean a copper layer deposited first onto the substrate and then covered
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Figure 4.7. Experiment compared with 2D FEM simulations. The cooling curve on whole
voltage bias range is fitted to experiment by allowing Tp to vary with voltage.
The plot shows the Tp − Tbath that reproduced the experimental curves as a
function of the power into the superconducting lead. The two bunches are a
result of slightly differing bath temperatures (295 mK vs. 315 mK) between
the experiments. Otherwise the data seem to be following one curve, as would
be expected on a similar substrate.

with relatively thin insulating layer (few tens of nanometers) before the

depositions of the actual cooler sample. The copper layer is a good heat

conductor and hence increases the heat conductivity of the substrate. In

Fig. 4.8, we present the same figure as in Fig. 4.5 from samples C,H and

now including also samples J,K from Table 4.1 (which is the same geome-

try as sample C but on a ground plane chip) and L,M (which is the same

geometry as sample H but on a ground plane chip). The ground plane was

not made continuous but copper was deposited as stripes. The samples

J,L lie directly on top of the ground plane copper layer but samples K,M

are in between the stripes few hundred micrometers off the copper layer.

The improvement in samples made on the ground plane chip is readily

observed. It is notable that the improvement is considerably larger than

the differences between the samples A-H, showing that properties of the

substrate are indeed playing a role in NIS cooling. As it was recently

reported [79] the substrate properties do not affect the e − p coupling in

metals. The remaining explanation is then heat conductivity through the

substrate. Explanation for the fact that the samples that do not lie di-

rectly on the ground plane would seem to perform better is not totally

clear. Our FEM modelling suggests there is an optimum thermal conduc-

tivity (compromise between removing excess heat efficiently and coupling

it too strongly to the island) and this might play a role here.

Although introducing the ground plane improved the performance, the

δT/δTopt ratio is still nevertheless considerably below 1, even below 0.5.
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Figure 4.8. (a) The δT/δTopt ratio of samples C,J,K (5-2.5 geometry on different sub-
strates) and H,L,M (10-10 geometry on different substrates). The samples
on ground plane chip perform significantly better than the similar samples
without ground plane demonstrating that substrate properties play a crucial
role in the efficiency of NIS coolers. (b) The δT/δTopt ratio of samples H,L,M
(same as in (a)) and samples O-R (with direct trap). In the direct trap sam-
ples performance is enhanced, although there is some variance in results.

To get closer to unity we have to still improve the thermalisation. One op-

tion for this is to use an additional normal metal layer, directly in contact

with the Al layer to act as direct quasiparticle trap and heat conductor. We

will call this kind of structure a "direct trap" (DT) structure. As now there

is no tunnel barrier but only a highly transparent superconductor-normal

metal (SN) interface, the thermalisation of quasiparticles to the normal

metal temperature should be orders of magnitude faster. In Fig. 4.8 also

the δT/δTopt ratio of the direct trap samples (O-R) is presented. Here the

geometry is the same as in H and the other curves from H geometry sam-

ples are also presented for comparison. The improvement is again very

clear.

4.3.1 Enhancement of quasiparticle relaxation in small
magnetic fields

In a type I superconductor, such as bulk Al, there exists a single well de-

fined critical field above which the superconductivity is totally suppressed

and below which the Meissner effect prevents magnetic field from enter-

ing the bulk of the superconductor. The situation changes, however, when

the dimensions of the metal film become comparable to the penetration

depth. In this thin wire or film form all superconductors display type II

behaviour, having two critical fields. At the lower critical field Bc1, mag-

netic vortices start to penetrate the material, creating areas where the

superconducting energy gap is locally suppressed but the overall super-

conducting behaviour is retained. The superconductivity is suppressed

only at the higher critical field Bc2. In addition, the lower critical field is
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Figure 4.9. (a) The δT/δTopt ratio of samples C,J,K (5-2.5 geometry on different sub-
strates) and H,L,M (10-10 geometry on different substrates) at the optimum
magnetic field. (b) The δT/δTopt ratio of samples H,L,M (same as in (a)) and
samples O-R (with direct trap) at the optimum magnetic field.

not determined by the material but by the geometry of the wire. It has a

universal characteristic value Bc1 ∼ Φ0/W
2, where Φ0 = h/2e is the flux

quantum and W is the width of the wire (assuming a wire with thickness

� W and a magnetic field perpendicular to the wire) [80].

It was reported in Publication V that small magnetic fields can enhance

performance of NIS junction coolers. This was attributed to vortices en-

tering the superconducting lead acting as quasiparticle traps [81]. The

vortices create areas where the superconducting gap is locally suppressed.

Because of this suppression, the coupling between the quasiparticle sys-

tem and the phonon system is enhanced. This leads to enhancement of

the cooling effect as long as the vortices are not created in close proximity

to the junction. When, at large enough magnetic field, vortices start to be

created also in the junction area the cooler performance degrades.

This effect was also tested in our batch of samples. Improvement in cool-

ing was invariably seen in small enough magnetic fields but the optimum

field depended on the lead geometry as would be expected from the theory

presented in V. Figure 4.9 presents the same plots as in Fig. 4.8 but now

measured in the optimal magnetic field for each sample (this field is differ-

ent for different samples but is always less than 5 G). The performance is

enhanced in all samples but the amount of enhancement varies between

samples. It is notable from Fig. 4.9 (b) that at the optimum field all the

direct trap and ground plane samples seem to be bunching together. This

might indicate the extreme limit that can be reached just by improving

the quasiparticle thermalisation in our samples.

In summary, the experiments performed verify that the dissipation of

the extracted heat is the main cause for sub-optimal performance of high

power NIS coolers. This is not, however, only because increasing quasi-
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particle population in the superconductor, as this effect can be largely

alleviated by quasiparticle traps. Another crucial factor is heating of the

phonon system which can then couple back to the cooled electron system.

This gives a natural explanation to the often used backflow parameter β.

We verified that by varying the heat conductivity of the substrate we could

improve the cooling performance, showing that the substrate phonons are

playing a role. The performance of the coolers can be enhanced further by

introducing quasiparticle traps in a transparent contact with the super-

conducting layer, and with small magnetic fields.
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5. Electron-phonon coupling and tunnel
junction cooling in silicon

The basic principles of NIS cooling (presented in Chap. 2) apply also if

the normal metal island is replaced by a heavily doped semiconductor.

The superconductor - semiconductor (S-Sm) cooler presents some bene-

fits compared to NIS cooler: (i) The electron-phonon coupling strength is

generally weaker in semiconductors than in metals (at 100 mK, Si, de-

pending on the doping level, has roughly 1-2 orders of magnitude smaller

e − p coupling than Cu) and (ii) the Schottky barrier can play the role of

the tunnelling barrier and hence no oxide layer is needed between the su-

perconductor and the semiconductor. This makes fabrication of especially

large area junctions more straightforward than with the standard shadow

evaporation techniques. In addition, both the Schottky barrier resistance

and the electron-phonon coupling can be tuned by varying the doping level

of the semiconducting island. The most obvious drawbacks are that even

highly doped semiconductors have a higher resistivity than metals and

hence more parasitic Joule heating is generated. Furthermore, relatively

large subgap currents are typically observed in S-Sm junctions leading to

non-ideal cooler performance. Also typical junction resistivities are high

leading to modest cooling powers.

The cooling effect in S-Sm structures was first presented in [82] and ex-

tended in [83, 84]. In [82], a cooling power of roughly 0.5 pW was achieved

with two 5x18 μm2 junctions having RT of 800 Ω (total for the two junc-

tions in series). This lead to 30 % drop in temperature from 175 mK

because of the small e− p coupling. The doping level of the n+ silicon was

4×1019 cm−3. In [83, 84], the work was extended to multiple n+ doping lev-

els of the semiconducting island. It was found that, in agreement with the

theory, the contact resistance RT of Al-Si interface scaled as exp(N−1/2)

where N is the doping level. For the cooling effect, this is partly compen-

sated by the increase in the e − p coupling due to higher doping. How-
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ever, the latter effect was found to be only linearly proportional to doping

and hence larger doping should lead to increase in cooling power. Yet the

larger cooling effect was seen only at higher temperatures (above ∼300

mK) and increasing doping to above 1 × 1020 cm−3 made the cooling ef-

fect smaller. This was attributed to large ohmic leakage currents through

the barrier at lower transparencies, i.e. effectively the γ parameter in

Eq. (2.12). The γ generally found in Al-Si junctions has been 10−2 − 10−1,

which is a few orders of magnitude worse than in Al-Al2O3-Cu junctions.

In this Chapter we discuss the electron-phonon coupling in silicon and

how the coupling can be modified by inducing strain to the silicon film.

This can then be used to enhance the cooling effect in S-Sm coolers. This

Chapter is related to publications III and VI.

5.1 Electron-phonon coupling in Si and effects of strain

The correct form of electron-phonon coupling in silicon has been a topi-

cal question recently [85, 86, 30]. In highly doped silicon the effects of

disorder and screening are important and the many-valley character of

the electron system can play a crucial role. However, for clarity we will

discuss first the pure, weak screening limit as in this limit in direct gap

semiconductors the form of electron-phonon coupling is the same as for

metals (Eq. (2.22)) with a different deformation potential constant Ξ. In

semiconductors Ξ is a separately measurable quantity as it describes sim-

ply how much the bottom of the conduction band and the top of the va-

lence band will move in response to applied stress. This can be measured,

for example, with photon absorption/emission experiments while applying

mechanical stress. Generally in semiconductors only a small part of the

k-space is occupied and it is a good approximation to assume that all im-

portant electronic states are very close to the minimum of the conduction

band. Then the k dependency of Ξ can be neglected from the outset and

as extensive approximations as in the metal case are not needed.

In silicon, however, the situation is more complicated as it is a indi-

rect gap semiconductor and the bottom of the conduction band does not

lie at the center of the Brilloun zone (k = 0). Using the notations from

crystallography, the bottom is instead located at a point (0.83 times the

distance to the zone edge) at the [1 0 0] axis or equivalently on [0 1 0],

[0 0 1] and the corresponding negative axes, making it six-fold degen-

erate. For describing the coupling between stress and the movement of
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these band edges two coupling constants are needed: one describing the

dilatational (uniform) stress (commonly notated Ξd) and other describing

uniaxial stress that will affect two of the band edges (commonly referred

as valleys) differently than the other two (Ξu). The deformation potential

Hamiltonian will the be written

He−i = Ξd(εxx + εyy + εzz) + Ξuεxx = Ξd(∇ · u) + Ξu
∂ux

∂x
, (5.1)

for the valley at [1 0 0] and similarly for other valleys. We have marked εii

to describe the diagonal terms in the stress tensor Eq. (2.20). To calculate

the total effective coupling constant one has to take the average of this

over the solid angle (the analytical results were first calculated in [26]).

Everything discussed so far would have effect only in the Ξ entering the

e − p calculation as compared to the calculation done for metals. Differ-

ences in the temperature dependence however arise when the effects of

disorder, screening and the valley degeneracy are included. In order to

include these to the e− p calculation we introduce the electronic response

function χ(k, ω), also known as polarization function. We use the version

derived with random phase approximation (RPA) (for details see for ex-

ample [87]). Within RPA a perturbing potential U(q) will induce a change

in the electron density �

δ�(q, ω) =
∑
p

c†p+qcp = U(q)χ(q, ω) (5.2)

χ(q, ω) =
1

V lim
α→0

∑
p

f(Ep)− f(Ep+q)

Ep − Ep+q − h̄ω + ih̄α
, (5.3)

where f is the fermi-dirac distribution function and Ep the energy of an

electron with wavevector p. At zero temperature in 3 dimensions χ can be

evaluated analytically (for pure systems) and gives [87]

χ0(q, ω) =
−NFkF

4q

[
H(

ω

qvF
+

q

2kF
)−H(

ω

qvF
− q

2kF
)

]
(5.4)

H(x) = 2x+ (x2 − 1) ln

(
x− 1

x+ 1

)
, (5.5)

which at the limit q � kF becomes

χ0(q, ω) ≈ −NF

[
1 + i

ω

qvF

]
. (5.6)

This is the form used in Sec. 2.4.1.

With the help of the response function, the effects of screening can also

be straightforwardly included. The effective dielectric constant is

ε(q, ω) = ε0

(
1 +

e2

ε0q2
χ(q, ω)

)
. (5.7)
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At the q � kF , zero temperature and zero frequency ω = 0 limit, this re-

duces to the familiar Thomas-Fermi screening. When screening is impor-

tant (see below) this has to be included into the calculation by replacing χ

with χ/ε.

In highly doped semiconductors also the effects of disorder must be

taken into account as the electrons mean free path is typically very short.

This dirty or diffusive limit (as opposed to the pure limit discussed above),

is defined by the product of the (thermal) phonon wavelength q and the

mean free path of electrons in the material l. Material is said to be dirty

when ql � 1. In order to include the effects of disorder, a phenomeno-

logical relaxation time τ has to be introduced and with this the response

function will be modified to [88]

χτ (q, ω) =
χ0(q, ω + iτ−1)

1− iτ−1

ω+iτ−1 [1− χ0(q, ω + iτ−1)/χ0(q, 0)]
, (5.8)

which at the diffusive limit (ωτ , qvF τ � 1) will fortunately reduce to a

simple form

χτ (q, ω) = −NF
iD0q

2

ω + iD0q2
, (5.9)

where D0 = v2F τ/3 is the diffusion constant.

As shown in [30], using then the form

Pe−p =
∑
q

h̄ωq

2π
− 2VIm{χ(q, ω)}M2

0q[n
Te
q − nTp

q ], (5.10)

with the pure or diffusive response function and including or excluding

the dielectric function we can derive the e−p coupling at the pure/diffusive

strong/weak screening limit, respectively. The results have been pre-

sented in [30] and are exactly the same as the ones calculated with Green’s

function methods in [85]. As mentioned before, at the pure weak screen-

ing limit both also reproduce the results from [29]. The resulting pow-

erlaws without screening are T 5 and T 4 at the pure and diffusive limit,

respectively, and T 9 and T 8 when including screening.

The role of valley degeneracy in e − p coupling has been also studied

recently [86, 30]. It was shown that as the (uniaxial) phonons can lift

the degeneracy of the valleys one should not use one but two different re-

laxation times in the calculation at the diffusive limit, one for scattering

between the valleys on different axes (τ1) and other inside one valley (or

between the valleys on the same axis) (τ0), i.e., τ−1 = τ−1
0 + (L − 1)τ−1

1 ,

where L is the number of valleys (see Fig. 5.1). This then leads to a re-

sponse function of the form [30]

Im(χA) = −NF
(Γiv +D0q

2)ω

(Γiv +D0q2)2 + ω2
, (5.11)
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Figure 5.1. Schematic of the energy valleys in silicon in momentum space. Also shown
are the two different relaxation times for e − e scattering assumed in
Eq. (5.11)

.

where D0 is the diffusion constant and Γiv is the total intervalley scat-

tering rate ((L/2)τ−1
1 ). Note that cases where an electron would be di-

rectly transferred by a phonon to a different valley are not considered

here as this would require a large momentum phonon. Rather the effects

of phonon lifting the degeneracy of valleys (to a singlet and doublet) are

considered by assuming different e − e scattering rates between the val-

leys that are not degenerate. The single-valley diffusive response function

can be restored by simply setting Γiv = 0 above. The limit of interest here

is ω � D0q
2 � Γiv. The first limit is quite general [85] and the second

should apply if the intervalley scattering rate is comparable to intraval-

ley scattering [86]. Then

Im(χA) = −NF
ω

Γiv
. (5.12)

Putting this to Eq. (5.10)

Pe−p =
∑
q

VNF h̄cl
ρVΓiv

Ξ2q3[nTe
q − nTp

q ], (5.13)

which after integration results in

Pe−p =
4π4

63

NFk
6
B

ρVΓivh̄
5c5l

Ξ2V(T 6
e − T 6

p ). (5.14)

To get the total heat flow one still has to sum this over the phonon modes

(longitudinal and two transversal) using correct speed of sound and the

deformation potential constants. This is the same result presented in

[86], where it was calculated using Boltzmann transport equations and

was shown to fit experimental data very well. It is worth noting that

none of the limits without the intervalley scattering produce the correct

T 6 powerlaw at 3D. In 2D the diffusive strongly screened limit produces

T 6 powerlaw and this was argued in [85] to be the correct limit of experi-

ments performed before [89]. However, the prefactor of that term is orders

of magnitude smaller than the one found in experiments.
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The above discussed intervalley scattering should exist in silicon along-

side the intravalley component. However, in [30] it was argued that the

intravalley scattering is at highly doped low temperature limit strongly

screened and this is the reason that the intervalley case dominates in

our experiments. (If both would be unscreened the intravalley scattering

would be stronger with powerlaw T 4.) The screening is included into the

calculations with the dielectric function ε(q, ω) as described above. We re-

place Im{χ(q, ω)} with Im{χ(q, ω)/ε(q, ω)} in Eq. (5.10) and set Γiv = 0.

This leads to

Pe−p =
∑
q

V NF h̄cl
ρVD0q2

1

(1 + κ2/q2)2
Ξ2q3[nTe

q − nTp
q ], (5.15)

where κ2 = e2NF /ε0 is the screening wavevector. At the strong screening

limit κ � qT and we can keep only the highest power of the screening

term

Pe−p =
∑
q

V NF h̄cl
ρVD0κ4

Ξ2q5[nTe
q − nTp

q ]

=
4π6

5

NFk
8
B

ρVvf lκ4h̄7c7l
Ξ2V(T 8

e − T 8
p ), (5.16)

where we have used D0 = vF l/3. This is by a factor of T 2

lκ4
Γiv
τ−1 smaller than

Eq. (5.14). Assuming the intervalley scattering rate is the same order of

magnitude with the intravalley rate, this component is negligible for the

total e− p coupling.

In Publication III the effects of lattice mismatch induced strain to the

e−p coupling were experimentally studied. As was argued already above,

strain is known to lift the degeneracy of the valleys along the axis the

strain is applied. When a thin layer of Si is grown on a lattice mismatched

substrate there will be biaxial permanent stress applied on the layer, see

Fig. 5.2 (a). If this stress is strong enough the valleys on two of the axes

become depopulated (Fig. 5.2 (b)). This will then eliminate the unscreened

heat conduction channel (between valleys whose degeneracy the phonon

could lift) and the single-valley strongly screened result should be recov-

ered Eq. (5.16). In the experiment, it was found that the e − p coupling

was indeed reduced in the strained sample but not as much as would be

predicted according to Eqs. (5.14) and (5.16). The reasons for this discrep-

ancy are unclear. Nevertheless, the reduced e − p coupling in strained Si

was used to demonstrate enhanced cooling effect in Si in Publication VI.
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strain

[0 0 1]

[0 1 0]

[1 0 0]

(a) (b)“Strained” silicon

Silicon
germanium

Figure 5.2. (a) Diagram showing how the lattice mismatch between the underlying sub-
strate (silicon germanium) and silicon produces stress to the silicon layer. (b)
Schematic of how the stress should affect the population of the energy val-
leys. The valleys on the strain axes become depopulated as they are lifted
higher in energy.
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