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We also propose a new class of thermoelectric heat engines where electrons are transported
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Tiivistelma

Uusien tapojen kehittdminen lammonkuljetukseen jaliammon muuntamiseen hyotyenergiaksi
hyvin pienissa kiintedn olomuodon rakenteissa on olennainen teknologinen tavoite, etenkin
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1. Introduction

1.1 Thermal mesoscopics

Understanding how heat is transported and converted to other forms of
energy is an important scientific problem that is being studied in many
fields from theoretical physics to civil engineering. Mesoscopic structures,
being larger than atomic systems but still exhibiting some quantum phe-
nomena, are in many ways ideal testbeds for investigating thermal physics
[1]. Firstly, new mechanisms for controlling heat flow emerge when mat-
ter can be manipulated at the microscale, and unlike individual atoms or
molecules, mesoscopic systems can be readily engineered to given spec-
ifications. Secondly, the miniaturization trend in technology will result
in an ever increasing number of different microscopic devices, and it is
therefore imperative to have a thorough understanding of thermal man-
agement at these reduced length scales. Finally, the effective state space
of mesoscopic devices can be made small enough to facilitate the investi-
gation of fundamental limits of heat transport phenomena.

In solid-state systems heat can be transported by several types of excita-
tions. Lattice vibrations, or phonons, are very important carriers of heat
since they are always present in solid materials. However, devices with
some useful functionality essentially always require the possibility to con-
trol the system with external fields, and also a nonlinear response is often
needed. But these properties can be difficult to achieve with phonons since
they generally interact rather weakly with other phonons or with electro-
magnetic fields, and for this reason we do not consider phononic systems
in this thesis. On the other hand, in electrically conducting materials mo-
bile electrons provide an important contribution to thermal conductivity.

From the point of view of mesoscopics, charge transport by electrons is a
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well-established field and one can readily adapt these methods and ideas
also to heat transport. As an example of this, in Section 3.3 we introduce
a setup where heat flow between two reservoirs is controlled by Coulomb
blockade physics. Finally, heat can also be exchanged by thermal radia-
tion. This is usually not a relevant conduction channel in solid-state sys-
tems but in some cases it is possible for both electronic and phononic heat
flows to become suppressed and then the photonic channel will dominate
[2]. At low temperatures, around a few Kelvins or below, thermal radi-
ation is carried by microwave photons which can be controlled in a very

versatile manner by techniques familiar from microwave engineering.

1.2 Heat currents in low-dimensional systems

An outstanding feature of transport in mesoscopic physics is conductance
quantization: when propagating through systems with restricted dimen-
sions, particles can only have discrete values for their transverse momen-
tum, with each transverse mode corresponding to one conductance chan-
nel. It can then be shown that one channel can only carry a certain max-
imum current. For the transport of electrical charge this quantization is
well known and has been demonstrated already more than 20 years ago
[3, 4]. Similar quantization applies also for heat transport. The maxi-
mum heat current for a single channel can most conveniently be derived
by considering the Landauer formula [5, 6] for elastic transport between
two electron reservoirs, L and R, but with the electric charge replaced

with the electron energy:

I= [ LT - frte) @D

where f,(¢) = (e¢/#87> + 1)~ is the Fermi function for reservoir o = L, R,
and 7 is the transmission function. Note that the system is unbiased so
that no Joule heating is involved. We can also consider the corresponding
formula for bosons [7]:

J = /000 g—(:th(w)[nL(w) —np(w)] (1.2)

where n,(w) = (¢"/k8T> _ 1)~1 are the reservoir Bose functions. Notice
the different integration limits in the above two equations. If we now
assume full transmission by setting 7 = 1, in both cases integration gives
[7, 8]

7rk:]23

_ B2 g2
Jo = 15, (TL — Tg) (1.3)
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as the maximum heat current for one quantized channel. This result has
actually been shown to apply for heat carried by excitations of any statis-
tics [9], and it has also been experimentally demonstrated for electrons
[10], phonons [11], and photons [12, 13]. All the systems considered in
this thesis are single-channel conductors and therefore Eq. (1.3) gives an

upper limit for the achievable heat currents.

1.3 Outline

Chapter 2 forms the theoretical foundation of this Thesis. There we intro-
duce the transport methods that are used to study the devices introduced
in the later Chapters. We consider two methods that are appropriate for
interacting systems, namely nonequilibrium Green’s functions and mas-
ter equations with Fermi golden rule. We go through a simple pedagogical
example of transport through a harmonic oscillator, which allows a con-
venient comparison between the different approaches. We also consider
heat flow through a two-level system with a higher-order generalization
of the golden rule.

In Chapter 3 we investigate devices which are able to rectify heat cur-
rents. After introducing some metrics for evaluating the diode perfor-
mance, we consider two new device designs: a photonic rectifier trans-
porting heat with microwave radiation and a single-electron diode using
Coulomb blockade for heat transport. The latter system is shown to have
a particularly impressive rectification performance.

Chapter 4 discusses heat engines of the thermoelectric type. After re-
viewing the properties of a basic two-reservoir device, we introduce a
three-reservoir heat engine where work is performed by electrons but heat
is carried by photons. Similarities and differences between these two de-
vice types are examined.

In Chapter 5 we summarize our results and point out important open
problems.

For the rest of the Thesis we use natural units with kg = h = e = 1.
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2. Methods for heat transport

Transport in mesoscopic systems can be studied by a variety formalisms.
In the Introduction we already encountered the Landauer-type scattering
approach which, however, is directly applicable only for noninteracting
transport [6]. Interactions are essential for the devices we wish to study
and therefore we consider two widely-used methods capable of handling
interacting systems, namely nonequilibrium Green’s functions and mas-
ter equations with Fermi golden rule transition rates. In both of these
methods the system is conceptually divided into left (L) and right (R)
reservoirs which are taken to be noninteracting and in thermal equilib-
rium, and a central device (C') which can be interacting and out of equi-
librium. We will see that the Green’s function approach is best suited for
the case when the different system parts are strongly coupled while the
master equation method is suitable for weak coupling.

Both methods can equally well treat electronic and photonic transport
but in this chapter we introduce them by considering a simple photonic
system, depicted in Fig. 2.1. It is assumed that the wavelength of ther-
mal photons is much larger than the circuit dimensions so that we can
treat the different parts of the system as lumped elements. For exam-
ple, at 1 Kelvin the circuit must be smaller than 1 centimeter, which is
easily achieved. Then the linear reservoirs can be described with admit-
tances Y7, /r(w), while the central device is an LC oscillator with frequency
wo = 1/VLC. The reservoir circuits are coupled to the central oscilla-
tor via mutual inductances M, r, allowing electromagnetic fluctuations
to transmit heat between the thermal baths, held at temperatures 77, 5.
This fully linear circuit has the advantageous feature that heat transport
through the system can be solved exactly by using just classical circuit
theory supplemented with fluctuation—dissipation theorem. We perform

this calculation in Section 2.1, and the results are then used to bench-
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Figure 2.1. Example system used for presenting the different transport methods. It con-

sists of linear reservoirs with arbitrary admittances Yz, r(w), and a harmonic

LC oscillator as a central device. The reservoirs are coupled to the oscillator

through mutual inductances My r. Electromagnetic fluctuations transmit
heat through the system between the reservoirs which have different tem-

peratures T, g.

mark the other two methods, nonequilibrium Green’s functions in Section
2.2 and master equations with golden rule in Section 2.3. Finally in Sec-
tion 2.4 we consider another setup with a two-level system as the central
device and show how a generalization of the golden rule can be used to

treat higher-order tunneling effects.

2.1 Classical circuit theory

According to the fluctuation—dissipation theorem [14], a dissipative sys-
tem, like the reservoir « with admittance Y, in Fig. 2.1, always exhibits
spontaneous fluctuations. For present purposes it is useful to separate
these two aspects into two different circuit elements, namely a purely
passive admittance Y, in parallel with a fluctuating current source 41,.
The average current vanishes, (61,) = 0, while the noise is given by the

Johnson—Nyquist expression [14]:
(0Io(w)oI}(w)) = 4wRe[Yo (w)][na(w) + %] (2.1

which uses the (classical) convention that w is limited to positive values
and both emission and absorption noise are included for given w. A cur-
rent fluctuation 67, in the left reservoir propagates through the circuit
and in turn induces a voltage fluctuation AV between the terminals of
Yg. Since the system is linear and time-independent, these two fluctu-
ations are related simply by AVz(w) = Z(w)déI(w), and a circuit theory

calculation shows that

M, M pw?
Z(w) = e (2.2)
Ze(w) + Mjw?Yr(w) + Mpw?*Yr(w)
where the series impedance of the central oscillator is Z.(w) = —iL(w? —

w?)/w. The corresponding current fluctuation through the right reservoir
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is Alg(w) = Yg(w)AVg(w), and the absorbed average power at frequency
w is
Jjr—r(w) = Re (AVy(w)AIL(w)) (2.3)
= |Z(w)|PRe[Yr(w)|(811(w)d1} (w))

which can be interpreted as the spectral density of heat current flowing
from left to right. Because fluctuations in the two reservoirs are indepen-
dent, current in the other direction is obtained simply by swapping L and
R in Eq. (2.3). Collecting everything gives the total heat current as [15]

J= /0.oo %ULHR(W) — jr—r(W)]

_ [ dw 4wl (W) p(w)[nr(w) — nr(wW)] 2.4)
B 0 27(' wQ—w(z) F A 2 '
‘TO +il'(w) — Aw)
where we have introduced the functions
Fo(w) = M2Cwow®Re[Ye (w)] (2.5)
Ao(w) = M2Cwow®Im[Y,(w)] (2.6)

and ' =T; +Tr, A = A;, + Agr. Reason for this notation becomes clear in
the following sections when we compare the results from quantum trans-
port calculations to Eq. (2.4).

We also note that Eq. (2.4) can be written in the form of Eq. (1.2) with
T (w) € 4T (w)Tg(w)/[TL(w) +Tr(w)]?, where the upper bound is attained
in the limit I'(w) > (w? — w3)/wo — A(w). Then if the system is symmetric,
', =T'g, we have T (w) — 1. Therefore the value of Eq. (2.4) is limited by
the heat current quantum Jg of Eq. (1.3).

2.2 Nonequilibrium Green’s functions

For a quantum-mechanical treatment we need to write down the Hamil-
tonian corresponding to the system in Fig. 2.1. The central circuit is a
simple harmonic oscillator and the linear baths can also be described as

collections of oscillators with a linear coupling to the central part:

H = He+Hp+Hr+ Hr (2.7
1
Ho = jwo(X*+P?) (2.8)
1
Hy = Y iwj(zﬁ +p}), a=L.R (2.9)
JjEa
Hp = Y cuX (2.10)
jeL,R
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where (X, P) and (z;,p;) are the dimensionless canonical positions and
momenta of the central oscillator and the reservoir oscillators, obeying
[X, P] = [zj,p;] = i. In terms of the ladder operators they are given as
z; = (aj + a;)/ﬂ and p; = —i(a; — a})/\/?. Connection between the
parameters in Egs. (2.8)—(2.10) and the physical quantities in Fig. 2.1 is
made further below.

We now show how to calculate the heat current through the system
with nonequilibrium Green’s functions. This formalism is covered in de-
tail in the textbook by Haug and Jauho [16] and our derivation here will
roughly follow the book, with electrons replaced by harmonic oscillators.
The Green’s function method for circuit photons was first considered in
Ref. [17], and it has also been used for phononic heat transport [18].

Let us introduce the formalism by considering the equilibrium Green’s
functions for the reservoir oscillators. Equilibrium is achieved by setting
¢; = 0, and we indicate this with a subscript 0 in the relevant quantities.

First, the greater two-point Green’s function for z; is defined as
(xj,25)5 (t —t') = —i{z;(t)z;('))o (2.11)

In other words, it is the expectation value of the product of the x; op-
erators at two different times, and due to time-translation invariance it
only depends on the time difference ¢ — t’. For time evolution the Heisen-
berg picture in employed. Now using the fact that for an uncoupled reser-
voir the time dependence of the lowering operator is a;(t) = a;e*s!, and
the fact that in thermal equilibrium the density matrix is diagonal with

<a;r.aj)0 = n(wj), the Fourier transformed Green’s function is
(0,207 (@) = —imln(w) + oo - w) — 6w +wy)]  (2.12)
The lesser Green’s function is obtained by swapping the two operators:
(xj,25)5 (t — ') = —ifz;(t)a;(t))o (2.13)
Now a Fourier transform yields
(xj,2)5 (w) = —imn(w)[6(w — wj) — §(w + w;)] (2.14)

The retarded Green’s function is defined as the retarded part (¢ > ¢') of
the commutator of z;(¢) and x;(t'):

(et —1) = —i0(t — ) (s (1), ;) (2.15)
Yi_ (2.16)

i) = =G0 ) = et 4P
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where P denotes the Cauchy principal value. The advanced Green’s func-

tion is defined in a similar way but taking the advanced part:

()t 1) = B = ){(a; (0, 2,()]o (2.17)
(0 2)5(w) = G0 —w) = 5w tw)]+Pmr— (218)

J

Finally the time-ordered Green’s function is

(@ja)o(t —1') = —i(T{z;(t)z;(t")})o (2.19)
= 0t —¢)(aj, ;)5 (t =) + 0t — t){xj,25)5 (t = t)
(@) = 52 (2.20

where T is the time-ordering operator. We must emphasize that the time-
domain definitions are generic, that is, they apply also in nonequilibrium,
while the Fourier transforms given above are only applicable in equilib-
rium. By inspecting the definitions, one can come up with several relation-
ships connecting the different Green’s functions. These will be introduced
below when needed.

Now we are prepared to evaluate the heat current within the nonequi-
librium Green’s function framework, so the couplings in Hp are restored.
We start by noting that the heat flow from left to right is the negative

energy change of the left reservoir, that is,

J=—(Hp) = =) wjlasij +pipg) = ) ¢i(@;X) (2.21)
jeL JEL
where we have used the time derivatives &; = —i[z;, H] = w;p; and p; =

—w;zj — ¢;X. The last expectation value in Eq. (2.21) can be expressed in
terms of a mixed lesser Green’s function of ; and X:

(#(H)X (£)) = i lim 8t<zj,X><(t—t/):/oo ;—:w<xﬁx><(w) (2.22)

t'—t N

so that
J:/ dﬂwzcj<mj,x><(w) (2.23)
JjeL

oo 27

By differentiating the corresponding time-ordered Green’s function we get
(i0)*(aj, X)'(t — t') = wia;, X)'(t — ) +wjc; (X, X)'(t—t')  (2.24)

and then a Fourier transform gives
(x5, X)! (W) = ¢j(zj, 27)5(w)(X, X)"(w) (2.25)

where we have used Eq. (2.20). With analytic continuation methods on
the Keldysh contour one can obtain so-called Langreth rules giving rela-

tionships between different nonequilibrium Green’s functions [16]. One
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of these rules states that if three Green’s functions are related in the fre-
quency domain as A' = B!C!, then we have A< = B"C<+ B<(C*“. Applying
this to Eq. (2.25), we can write Eq. (2.23) as

/= /,oo %‘”Kﬁ( )TL(w) + G (w)EF ()] (2.26)

where we have defined the center oscillator Green’s function as G = (X, X))
and the self-energy for coupling to reservoir o as X = 3¢, ¢} (2, 7))o

Since heat current is a real quantity, the bracketed expression in Eq. (2.26)
must be equal to its real part. From the definitions of the different Green’s
functions one can see that [G"/*(w)]* = G*"(w), [G</>(w)]* = —G</>(w),

and G" — G = G~ — G<. Then we have
1 .
Re[G<X} +G'Sf] = JG°%} -G8 +G"Sf - OS]
1
~ 5l - o7xf)

Furthermore the definitions show that for a time-translation invariant
system G~ (w) = G<(—w), and therefore the integrand w|[G<(w)X7 (w) —

G~ (w)X7 (w)] is even. Combining these observations results in

J= /O ;Z—ww[G<() > (W) - G ()55 ()] (2.27)

m
This equation applies for an arbitrary central device since we have not
used any properties of Ho while deriving it. Next we note that from the

time-evolution equation for G one can obtain the Keldysh formula [16]
G</> = gru</>ge (2.28)

where ¥ = X + X g+ X, 1s the total self-energy of the central part. When
the system is non-interacting (or interactions are treated in a mean-field
approximation, which is formally the same thing), the interaction self-
energy vanishes, ¥;,; = 0. The bracketed term in Eq. (2.27) then becomes
G<%7 — G7%7 = |G"*(2755 — £72%). The different forms of the self-
energies can be obtained from Eqgs. (2.12), (2.14), and (2.16):

BS(w) = =2l (w)ne(w) (2.29)
Y2 (w) = —2ilg(w)[na(w) + 1] (2.30)
Yi(w) = —ilg(w)+ Ax(w) (2.31)
with

Ip(w) = = Z 0(w — wj) — 6(w + wy)] (2.32)

jea

_ 2
Ao(w) = jezac Pw2 — (2.33)

10
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We then have
J = /0 %4M‘G’"(w)|2I‘L(w)FR(w)[nL(w) —ng(w)] (2.34)

We must still calculate the expression for G". An equation-of-motion anal-
ysis, similar to Eq. (2.24), reveals that

(i00)*GT(t—t') = WG (t—t') +wo Y ¢j{ws, X) (t—t') +wod(t—t') (2.35)
JEL,R

We note that Eq. (2.25) applies also for retarded Green’s functions. Then

substituting that in Eq. (2.35) and Fourier transforming, we have the

Green’s function for a coupled harmonic oscillator:

-1
G (w) = (“2 —h S (w) — E%(w)) (2.36)

wo
The final expression for the heat current can now be obtained [17]:
J_ /'°° dw 4wl (W) IR (W) [nL(w) = nr(w)]
0 2m w2—w? . 2
‘Too +il'(w) — A(w)‘

(2.37)

whereI' =T +Tr and A = A+ Ag. This result is an exact consequence of
the Hamiltonian (2.7), no approximations have been made. Before it can
be compared to Eq. (2.4) we must find the connection between the I" and
A functions given by Egs. (2.5)—(2.6) and Egs. (2.32)—(2.33). We proceed
by writing the Hamiltonian (2.7) in terms of the physical circuit param-
eters. Since the central device is an LC resonator with wy = 1/ VLC, its
Hamiltonian can be written as

He = % % (2.38)
where (Q is the charge on the capacitor and ¢ the flux in the inductor.
In order to match this to Eq. (2.8) we should write @ and ¢ in terms of
X and P. If the Hamiltonian consisted only of the central oscillator, @
could be chosen to be any linear combination of X and P. However, in this
case we also have a coupling to the reservoir circuits given by Eq. (2.10),
and as shown below, the Kirchhoff rules are given correctly only if @ is

proportional to X. Then comparing Eq. (2.38) to Eq. (2.8) gives
Q = CUJOX
(2.39)
¢ = \/LuoP
Now the equations of motion for @ and ¢ are obtained from Eqs. (2.7)—
(2.10) and (2.39):

Q== (2.40)

b=-2 VIm Y e (2.41)

11
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The first equation gives the current conservation in the circuit loop. If @
had a nonvanishing P component this would be violated and thus Q must
be proportional to X. The second equation is the Kirchhoff voltage law,
with the last term giving the voltages produced by the inductive coupling
to the reservoir circuits. On the other hand, the flux ¢, induced in the
resonator by current I, in reservoir « is ¢, = M,I,, and we can write
b =V Lwo Y _ cjz; = 0(Mols) (2.42)
jea
This equation fixes the relationship between the formal coupling con-
stants ¢; and the physical parameters My g, L, and C.
Finally, the reservoir admittances are related to the retarded current—

current correlators via the Kubo formula [19]:

i{la, 1a)p(w)
w
Lw . -
T D ity )5 (w) (2.43)
@ JjEx
Do (w) 4+ iAq(w)
M2Cwow?
In the second equality we have used the Fourier transform of Eq. (2.42),
and in the last equality we have used Eqs. (2.16), (2.32), and (2.33). From

this we see that I",, and A,, from Eqs. (2.32) and (2.33), written in terms of

Yo (w)

the circuit parameters, match exactly those given in Egs. (2.5) and (2.6),
and therefore Eqgs. (2.4) and (2.37) can be directly compared. Since these
equations are identical, we can conclude that the Green’s function method
has produced an exact result which is to be expected since no approxima-
tions have been made.

The nonequilibrium Green’s function method is used in Section 3.2 and
in Publication II to study thermal rectification through a weakly nonlin-

ear oscillator.

2.3 Master equations with Fermi golden rule

A particularly simple description for the system dynamics can be obtained
in the weak-coupling limit when the density matrix of the central oscilla-
tor can be taken to be diagonal at all times. Then the state of the system
is uniquely determined by the probabilities Py to have an N-boson exci-
tation of the oscillator, and their time evolution is given by the master

equation

Py =, y+T4 NPy + TNy 1Pyv_1+ T ni1Pyir (2.44)

12



Methods for heat transport

where I'y()) v is the rate that the reservoirs excite (de-excite) the oscillator
with occupation N. Once the rates are known, the steady-state solution
(Py = 0) for Py follows immediately. Then the heat current from left to
right can then be calculated as the rate of energy emitted minus the rate
of energy absorbed by the left reservoir. If we operate in a regime where
higher-order tunneling processes, carrying heat between the reservoirs
without exciting the central oscillator, can be neglected, heat current can

be written as

[e o] o0
J=wy Y TrynPy—wo » Tp NPy (2.45)
N=0 N=1
where we have split the excitation rates between the two reservoirs as

I'yny = Trgn + Tgryv and used the fact that each oscillator excitation
carries energy wy.

The lowest-order tunneling rates required by Eqgs. (2.44) and (2.45) are
most simply calculated with the help of the Fermi golden rule [19]

Lissy = 2m|(f|Hrli) *0(E; — Ey) (2.46)

where Hy is the tunneling element connecting the initial and final states
|i) and |f), having energies E; and E;. Let us now see how this can be
applied to the oscillator system, Eq. (2.7), that we have been studying.
We start by considering the case where the central oscillator, with an ini-
tial occupation of N, absorbs one boson from reservoir «. Initially the
reservoir is in thermal equilibrium, being in state |R;) with probability
W;, while the central device is in state |N). Then one boson from reser-
voir oscillator j is absorbed, exciting the central system. The resulting
normalized final state is

aij

= ——|R; 2.47
1= e R 2.47)

where b and a; are annihilation operators for the central and reservoir
modes, and N;; is the occupation of oscillator j in state |R;). The rate
for the absorption process is now given by Eq. (2.46), summed over all

possible reservoir states and oscillators:

[(N|(Rilbal Hr| R;)|N)|?
Topn = 21 Y

Wi(S(UJO — w]')

i,jEQ JZ N+ 1)
NS NP (Rilajaj|Ri)?  «
_ K ]\H\1>| > Wi i — ;) (2.48)
i,jEQ It

Fa(wg)na(wo)(N + 1)

where in the last line we have used the fact that ), N;;W; = n,(w;) and
substituted I', from Eq. (2.32). Similar calculation shows that the rate for

13
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emitting one quantum from an N-occupied oscillator into reservoir « is
Fa,L,N =TI, ((UO) [na (wo) + ].]N (2.49)

In the following it is useful to split off the N-dependence, and we define
Lot = La(wo)na(wo), Tay = Talwo)[na(wo) + 1], and I'y = T'ry + I'gy. Equa-

tion (2.44) in steady state is now
0= 7(NF¢ + (N + I)FT)PN + NFTPN—I —+ (N -+ 1)F¢PN+1 (250)

Following Ref. [20], solution of this system can be attempted with the
ansatz Py = ay” which leads to y = I';/I'| with the normalization a =

1/(3C%-o¥Y) = (1—y). Heat current can then be calculated from Eq. (2.45):

J

oo oo
wo »_ Tr4(N+1)Py —wy » Ty NPy
N=0 N=1

= wolr —Try)(l—y) Y NyV!
N=1
FLFLT — FTFLi
I, Tt
where we have used > %_, NyV ! = (1 — y)~2. Final simplification with
Egs. (2.48) and (2.49) then yields [20]
FL(UJQ)FR(WQ)
J=wy—F——————
"T1(wo) + Tre(wo)

as the lowest-order, sequential tunneling heat current through a har-

[nL(wo) — np(wo)] (2.51)

monic oscillator. The same result is also obtained from the exact result
of Eq. (2.4) if transport only takes place at energy wy. This can be con-
firmed by writing Eq. (2.4) in the form
_ /°° dw 4wl (W) r(w)[nL (W) — nr(w)]
0

: A
T o e G () - AW)

’2 (2.52)

If we now assume that the couplings are weak, I',; A < wy, then the fact
that
w — wo — 0|72 — %é(w —wp) when [ —0 (2.53)

can be used to reduce Eq. (2.52) to Eq. (2.51). Thus for weakly coupled sys-
tems it is reasonable to use the technically simple golden-rule approach
but systems with stronger couplings require the nonequilibrium Green’s
function method.

The golden-rule master equation approach is employed in the next sec-
tion and in Publication I for heat transport through a two-level system.
Master equation for an electron system is used in Sections 3.3 and 4.2, and

in Publications IIT and IV for studying single-electron thermal devices.

14
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2.4 Generalized Fermi golden rule

The framework of master equations with golden rules rates can be ex-
tended to higher-order tunneling effects. The key ingredient here is the

generalized version of the Fermi golden rule [19]:
Loy = 2] (FIT(E:) i) Po(E: — Ey) (2.54)
where the scattering operator is
T(E) = Hr + HrGo(E)Hr + HrGo(E)HrGo(E)Hr + . .. (2.55)

Here G| is the retarded propagator for the uncoupled Hamiltonian Hy, =

H—HTi
1
" E—Hy+1in

where 7 is a positive infinitesimal.

Go(E) (2.56)

In contrast to the harmonic oscillator of the previous sections, we now
wish to examine a two-level system (TLS) as the central device. A TLS
coupled to a bosonic bath, known as the spin—-boson model, is one of the
most thoroughly studied model systems in physics due to its simplicity
and generality: a TLS is the smallest (in terms of Hilbert space size)
nontrivial quantum system, and in many cases nonlinear systems can be
truncated to the two lowest states, giving a TLS. However, a nonequilib-
rium spin—boson model, where the spin is coupled to two different bosonic
baths, has received much less attention [20, 21, 22, 23, 24, 25, 26, 27, 28].
Here and in Publication I we study heat transport through a TLS by using
the generalized golden rule of Eq. (2.54).

The spin—boson Hamiltonian with two baths, L and R, is H = Hy + Hrp,

where
Hy = %woaer Z wj(a}aj +%), (2.57)
jeEL.R
Hr = o, Z cj(aj—l—a}) (2.58)
jEL,R

Next we must decide what kind tunneling processes we wish to study. For
example, to calculate the transmission rate for a process where one boson
is absorbed from the left and one emitted to the right, the initial and final
states are related as

1

= (Njpi +1)Nj, a;RajL‘i% (2.59)
Ry Lyt

where j;, and jp are oscillators in the left and right bath, while N;, ; and

Nj, i are their occupations in state |i). Equation (2.58) shows that each
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tunneling event flips the spin and therefore |i) and | /) must have the same
spin for a two-boson process. Note that here we consider energy transmis-
sion through the whole device whereas in Eq. (2.47) we only consider the
tunneling between a reservoir and the resonator. If we would like to cal-
culate the rate for the absorption and emission of two bosons between the
baths, we would have | f) ~ a}Rla;RQaleangﬁ), etc. Here we continue with
Eq. (2.59). It restricts us to processes with an even number of bosons and

therefore we can neglect the odd powers of Hy in Eq. (2.55), resulting in
T = Hr(Go + GoHrGoHrGo + ... )Hr = HrGHryp (2.60)
where we have defined
G = Go(1 + HrGoHrGo + ...) = Go(1 + HrGoHr Q) (2.61)

This can be solved for G as

1

A —S(E)

(2.62)

with the self-energy ¥(F) = HrGo(E)Hr. It is useful to compare Eq. (2.62)
to Eq. (2.36) since both describe retarded Green’s functions. However,
Eq. (2.36) is a Green’s function just for the central device with w being
the resonator energy, whereas Eq. (2.62) applies for the whole system,
including the reservoirs, and F is the corresponding total energy.

We now assume the weak-coupling limit so that the real part of 3, re-
sponsible for a shift in the resonance of G, is small enough to be neglected,
while the imaginary part is diagonal in the same basis as Hj and equal to
the inverse lifetime of the state. More explicitly, the matrix elements of G

are
1

ko|G(E)lko) = —————
(olGE) ko) = 5 —p

(2.63)

Here k and o refer to the state of the reservoirs and the spin, and Fj, is
the total energy of the system in state |ko). We have approximated the
inverse lifetime of the state |ko) with I',, the tunneling rate out of spin
state o (to be defined below). From now on we use the notation where |:)
and |f) refer only to the reservoir part of the initial and final states, the
full system states being given by |ioc) and |fo). State with a flipped spin
is denoted as |) = 0,|0). Then substituting Egs. (2.59), (2.60), and (2.63)
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in Eq. (2.54) yields

2
S(E; — Ey)

3 (fo|Hr|ko)(ko|Hrlio)
E; — Eys + 415

Fi(r%fa =27
k

= 27TC?LC?R (NJR7i + I)N]’L,i (2.64)

2

1 1
d(wj, — wip)

4 :
+wy + Wi, + %FE +wy — Wi + %Fa—

>< ‘

where the first term of the sum corresponds to the intermediate state

|kY = aj, |i) and the second term to |k) = a}Rm, and the upper signs apply
to the case when the initial state has spin up, that is, the excited state,
and lower signs apply to the spin-down ground state.

The rate of heat absorbed from the left bath and emitted to the right

bath, conditioned on the spin initially being in state o, is now given by

I k=" Wi TiessoaWi, (2.65)

LiL.JR
where the sum is over all reservoir initial states (with thermal weights
W;), and over all left and right reservoir oscillators j;, and jz. An exactly
similar formula applies for heat flow in the other direction, with left and
right oscillators swapped in Eq. (2.59), and the resulting net heat current

isJ@) =7 g’l R~ Jgﬂ ;, Which can be evaluated as

 duw 1 1 2
J("):/ = Wl (w)T S : ) -n
= L(W)TRr(w) T ils  wtwLil, [nL(w) —ngr(w)]

(2.66)
with upper signs for spin up and lower signs for spin down. The reservoir
coupling strengths have been defined as I'a(w) =273, 0?5 (w —wj).

We still must find an expression for the total heat current J in terms
of the conditional currents J(°), and for that we need the probabilities P,
to be in spin state o. It should be noted that the transitions in Eq. (2.64)
can be divided into two classes: those where the intermediate state has
(roughly) the same energy as the initial state, and those where the ener-
gies are different.! Using the terminology from electron transport, we call
these two processes sequential tunneling and cotunneling, and the cur-
rent can accordingly be divided into two contributions, J(*) = Jigg + Jégt) .
The intermediate state of a cotunneling process is virtual and does not
contribute to P,. Therefore the probabilities are determined by sequen-

tial processes which can be treated by the first order golden rule of the

IThis division is non-trivial; see Ref. [29] for a discussion.
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) PJY
time seq
- — & — -

B Js(go)l

Figure 2.2. Evolution of the spin state due to sequential tunneling events. The current
carried by these tunneling events can be calculated in two different ways. On
one hand, we can start with the TLS in ground state, and then one current-
carrying process flips the state twice, and the next process again starts from
the ground state. The average current transported by these processes is
Jseq = POJS(B(Z. On the other hand, we can describe the same sequence of
events by starting with the spin in the excited state, giving Jseq = P1 ﬂ;{
Thus the two expressions for sequential current are not additive but alterna-
tives to one another.

previous section. Denoting the spin-down and spin-up states by ¢ = 0 and

o =1, the golden rule transition rates out of state o are

Ty = I (wo)nr (wo) + Tr(wo)nr(wo) (2.67)

Iy =Tr(wo)[nr(wo) + 1] + T'r(wo)[nr(wo) + 1]
Note that these same rates are used in Eq. (2.66). The steady-state master
equation Py=—ToPy+ TP =0, together with Py + P, = 1, can now be

solved to
- T'o+14

Writing the final expression for the heat current requires some thought

(2.68)

Py

since the answer is not what one might initially think. For sequential
transport, one current-carrying process consists of two incoherent tunnel-
ing events, and if we start with, say, the spin down, then the intermediate
state has spin up. But this intermediate state can equally well be seen
as the initial state of another sequential process. Because of this overlap,
one must be careful to avoid double counting, and as further elucidated
in Fig. 2.2, the full sequential current is Jueq = PyJie) = P1JS). On the
other hand, cotunneling events are non-overlapping and therefore they

contribute additively, J.oi = PyJ, © + P J )

cot cot*

Total heat current through
the system, J = Jeeq + Jeot, is therefore

J=PoJO + PgW — Jq (2.69)
We propose that this can be further simplified to
J =Py JY (2.70)

This is rigorously true both in the pure sequential tunneling regime where

all the three terms in Eq. (2.69) have an equal magnitude, and also in
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the low-temperature cotunneling regime where both Jsq and P; vanish.
Simple expressions for J can also be derived in these two limits. At high
temperatures, resonant transfer dominates, and this contribution can be
extracted by taking the limit I';, s — 0. Then using Eq. (2.53) on Eq. (2.70)
yields [20]

' (wo)Lr(wo) [nL(wo) — nr(wo)]

= O ) [2n1(wo) + 1] + Dr(wo) 2na(wo) + 1]

(2.71)

as the high-temperature, sequential tunneling current in the spin—boson
model. This result can naturally be also derived just by using the lowest-
order approach of Section 2.3.

On the other hand, at low temperatures, 77, p < wp, the integral in
Eq. (2.66) is essentially limited to values of w much smaller than wy, and
the w dependence of the denominator can be neglected, simplifying the
integral to

J = /00 d—ww[nﬂw) — nR(w)} (2.72)
0

27 w?
Crossover between Eq. (2.71) and Eq. (2.72) can be studied numerically
from Eq. (2.70).

In contrast to nonequilibrium Green’s functions, the theoretical machin-
ery of higher-order golden rule is very simple. The price to be paid is
that all different tunneling processes (N, /r bosons absorbed/emitted from
left/right) must be separately considered. But this kind of separation does
not exist in the real physical system except for some special limits, and
this can lead to a complicated entwining of the different contributions, as
demonstrated in Fig. 2.2. Going to even higher orders would make the
situation quickly unmanageable.

In addition to Publication I, the generalized golden rule has also been

used in the supplement of Publication III.
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3. Heat rectification

A transport system is said to be rectifying if current flows preferentially
in one direction. Charge rectifiers, or diodes, are vital components in elec-
tronics, used, for example, in diode logic gates or AC-to-DC conversion. In
comparison, heat diodes, rectifying the flow of thermal energy, have been
studied very little so far, the primary reason being that they do not yet
have any real-life applications. However, heat diodes, especially meso-
scopic ones, are very interesting from a fundamental point of view since
they can be used to examine what are the different mechanisms for con-
trolling heat flow in small-scale systems.

To date there are two experiments demonstrating thermal rectification
in mesoscopic regime: Chang et al. [30] studied phononic heat flow through
a mass-loaded nanotube, while Scheibner et al. [31] investigated elec-
tronic heat transport through a quantum dot at high magnetic fields.
Theoretical literature has largely followed the seminal paper by Terra-
neo et al. [32] by concentrating on phonon rectification in one-dimensional
atomic chains (see Ref. [24] and references therein). A major problem
with 1D diodes is that there does not exist any experimental realization
for them, and also their performance is generally not very high. Here
we introduce two very different but realistic rectification schemes. The
single-electron diode in Section 3.3 is shown to have an especially good

performance.

3.1 General considerations

A heat rectifier is defined as a two-reservoir thermal conductor where the
magnitude of the heat current, and not just the direction, is changed when
the reservoir temperatures are swapped. Thus we have two temperatures,

a hot T and a cold T, and we consider two cases: first the left reservoir
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is hot (T}, = Ty) and the right reservoir is cold (T = T¢), and then the
temperatures are interchanged, 7;, = T and Ty = Ty. The magnitude
of the larger heat current in these two cases is J, and the smaller one is
J_. We then define (relative) rectification as

e

R
Jy

(3.1

Thus a conductor with symmetric heat flow has R = 0 while a maximally
asymmetric diode would have R = 1. Of course R depends on the tem-
peratures T4 ¢, and in particular, in the linear response limit the heat
current is proportional to 77, — T, so that exchanging 7}, and T, only flips
the sign. Therefore R — 0 when the temperature difference is vanishing.

Can either of the devices studied in the previous chapter, a harmonic
oscillator or a two-level system, act as a rectifier? Since swapping of the
temperatures amounts to the interchange n;, < ng in the current formu-
las, we see that neither a harmonic oscillator [Eq. (2.4)] nor a two-level
system at low temperatures [Eq. (2.72)] can rectify heat. However, a two-
level system at high temperatures [Eq. (2.71)] has Bose functions nontriv-
ially in the denominator, and if I';, # ', heat flow is asymmetric. This
spin—-boson thermal rectifier, first studied by Segal and Nitzan [20], is one
of the simplest systems for asymmetric heat transport, and we will use it
to demonstrate some general features of thermal rectification.

The heat transport literature often concentrates on finding devices with
large R. However, simply maximizing R is not a very useful goal, as
we now show. Consider Eq. (2.71) with I';, < I'p, where T', = T',(wp),
and let the Bose functions for the hot and cold reservoir be ny and ng,
evaluated at wy. Then we have I'yng +T'grnc < I'pyne +T'rny, and looking
at Eq. (2.71) we see that the larger current J, is obtained when the left
reservoir is hot and the smaller current J_ is obtained in the opposite

case. Then the rectification is

FL(l + QRH) + FR(l + 2nc)
R = 1- 3.2
FL(1+27LC)+FR(1+2TLH) ( )
U1 Ty +TrTc Tc

e —— < —_ e
I'pTe +TrTH T

RIII&X

The difference of the Bose functions is maximized in the limit wy < T¢ ,
when we have nc g ~ T, g/wo. This yields the second expression on the
right hand side, which in turn is maximized when I';, < T'g, giving the
third expression as the ultimate upper limit for R in the spin—boson rec-
tifier. This is the maximum rectification Ry, for the device at the given

temperatures Ty . Because the validity of Eq. (2.71) requires that we
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Figure 3.1. Three performance measures for the spin—boson rectifier: (A) Maximum rec-
tification Rumax, (B) rectification at maximum current R, , and (C) max-
imum absolute rectification Q,.x. The temperature difference is AT =
Ty — Tc and the average temperature is To = 1(Ty + Tc).

are in the weak-coupling limit with I'; p smaller than w, the set of con-
ditions for maximal R can be written as I';, < I'p S wo < T¢,p. But
this implies that the heat currents, also the larger current .J,, become
vanishingly small compared to the maximum value of Eq. (1.3). Based on
the available literature we hypothesize that this is a generic feature for
rectifiers: maximizing R results in a vanishing J,. This does not mean,
however, that R,,.x would be a useless measure; quite on the contrary, if
we have two devices, one with larger R..x, then this device is also likely
to have larger R at finite current levels.

We clearly also need other ways the characterize heat diodes than R,
and one obvious strategy is to first maximize the current J; and then ex-
amine the resulting R. This gives us a new performance measure, rectifi-
cation at maximum current, R, ... For the spin—boson rectifier we can cal-
culate this quantity for given temperatures Ty ¢ by writing the coupling
strengths as I';, = (1 — x)I" and I' = (1 + x)I', maximizing J in Eq. (2.71)
with respect to y and wy, and then using these values in Eq. (3.2). The
results of this numerical calculation are plotted in Fig. 3.1. We see that
R J.... 1s roughly an order of magnitude smaller than R,,.., and in fact,
the both diodes presented in the following sections have a vanishing R
under maximum current conditions. Thus R ;.. is also problematic as an
efficiency indicator.

What we would like to have is a rectifier with both a large R and a large
J+. As we already noted above, a reasonable way to measure the largeness
of current in a device with a single heat conductance channel is to compare
it to the current quantum Jg; of Eq. (1.3). Then maximizing both R and

J+/Jgq is most simply achieved by maximizing their product, and therefore
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we introduce another performance metric, the absolute rectification

Q0= R£ — g (3.3)
Jq Jo

The current asymmetry J, — J_ is now compared to the maximal possible
current Jg. If in one direction the heat flow is ballistic, J,. = Jg, and
in the other direction it is fully suppressed, J_ = 0, we have Q@ = 1. It
is difficult to imagine how this kind of device could be constructed, and
producing diodes with large 2 is therefore an extremely challenging task.
It is an open problem whether there is an upper bound for  below the
absolute limit of unity. Here we should emphasize the fact that the diodes
we are considering must be genuinely two-terminal devices; there can-
not be any other energy sources than the two heat baths since otherwise
one could have some externally-powered observer who measures the bath
temperatures and opens or closes a transmission gate depending on which
side is hotter, giving trivially Q ~ 1.

We can now calculate the maximum absolute rectification, Qu.x, in a
similar way as R.x and R s, above, and the results are shown in Fig. 3.1.
There is one important caveat, however: now the magnitudes of the cou-
pling strengths I';, » are not cancelled in Eq. (3.3) like they are in Eq. (3.1),
and therefore they must be fixed manually. Since Eq. (2.71) is a weak-
coupling result, I';, r must be smaller than wy. For Fig. 3.1 we have taken
I'r = wo, and then the maximization procedure gives I';, ~ 0.25wy. Thus
the plot should be considered an upper limit for €,,,, in the spin—-boson
diode, and we can conclude that in this system the maximum absolute
rectifications are below ten percent.

In summary, we have presented three new performance measures for
heat diodes: maximum rectification R .y, rectification at maximum power
R Jpax» and maximum absolute rectification Q.. To the best of our knowl-
edge these quantities have not been considered in the literature before.
Interesting open problems include finding the ways these quantities can

be maximized and discovering possible relationships between them.

3.2 Weakly nonlinear oscillator

As noted in the previous section, a fully harmonic oscillator is not able
to rectify heat flow but the situation is changed if the oscillator is made
slightly nonlinear. In Publication IT we study exactly that kind of sys-
tem, described by the Hamiltonian (2.7) but with the addition of a quartic
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nonlinearity H/, = 2¢X* in the central oscillator. We assume that ¢ is
small enough that the interaction can be treated at the mean-field level.
Since there are six ways two operators can be picked from a set of four,
a diagrammatic expansion of the Green’s function for the oscillator, G =
(X, X), shows that in a Hartree approximation we have X* ~ 6(X?2)X2,
We can then write the new H¢ also as a harmonic Hamiltonian:

1 1 1. oo =
He = (éwo +12¢(X?) X2+ éwOPQ = 5a;O(X2 + P?) (3.4)

The requirement that the rescaled operators obey the commutation rela-
tion [X, P] = i results in &y = woy/1 + 24¢(X2)/wo, X = /@0/woX, and
P = \/wy/@P. The Hartree approximation is assumed to be valid if the
change in the oscillator frequency is small, that is, 24¢(X?) < wy.

The heat transport problem can now in principle be solved just like in
Section 2.2 though in this case the frequency @ is not a fixed constant but
a function of (X?) which can be expressed as

(X2>:(X(t)X(t)):ilim<X7X><(t—t’):/oo X X)) (3.5

-t oo o
The lesser Green’s function is obtained from the retarded Green’s func-
tion using Eq. (2.28), which in turn is calculated from Eq. (2.36) with &
replacing wg. This yields
ety =z [ o Daleinafe) + Tntelnnte) 56
o BT i) - Aw)

Since @y contains (X?), this integral must be evaluated self-consistently.
Heat current is then given by Eq. (2.37) with & replacing wy. Rectification
in this system is due to the fact that for a spatially asymmetric device
different current directions have a different effective resonance &y.

The rectification performance of the nonlinear oscillator can now be
examined using the efficiency measures introduced in the previous sec-
tion. Simplest one is the rectification at maximum current, R, : just
like at the end of Section 2.1 we can conclude that J is maximized when
'y, =T r — oo, but in this case the transport system is symmetric with no
diode behavior, and thus R ;.. = 0.

In order to study finite rectification we need a model for the reservoirs.
Here we assume that they are RLC circuits with admittances Y, (w) =
RIY1-iQu(w/we —wa/w)] 71, where R, is the resistance, w, the resonance
frequency and @, the quality factor. Note here one significant advantage
of microwave heat transport: for electron or phonon transport tailoring

the reservoir density of states is very difficult but in the photonic case
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Figure 3.2. Rectification R and corresponding heat current J; in transport through a
weakly nonlinear oscillator. Both reservoirs have reactive components with
quality factors Q = 0.1 and Qr = 1.0. The resonance frequency of the right
reservoir is wg = wo, while the different curves correspond to different values
for the left-reservoir frequency: wy, /wo = 0.1 (red), 0.2 (blue), and 1.0 (black).
The hot temperature is Ty = 2Tc. Other parameters: M7woL 'R;" = 0.1,
MzwoL 'Ry = 0.8, €/wo = 0.005.

it can be readily accomplished by circuit engineering, providing a large
amount of flexibility in tuning the device behavior.

Figure 3.2 shows rectification and current for a setup where both reser-
voirs have a finite quality factor. We see that it is possible to have rec-
tification up to R ~ 40% for currents J,/Jgy ~ 0.3. We have not found
any operating regime with an essentially higher performance, and thus
we conclude that the maximum absolute rectification Q.. can be up to
about 10% for Ty /T = 2. The maximum rectification R, has not been
rigorously studied but our calculations suggest that R > 50% cannot be
achieved with any reasonable parameters values.

We remark that Publication IT uses a slightly incorrect Hamiltonian
for the circuit and therefore the figures are not quantitatively accurate.
However, this does not affect the qualitative conclusions of the paper.

Finally we note that the nonlinear oscillator can be experimentally re-
alized with an rf-SQUID loop containing one Josephson junction. As an
extra convenience, in this setup the size of the nonlinearity ¢ can be con-

trolled during the experiment with an external magnetic field.

3.3 Single-electron heat diode

In ITI we have studied another type of heat rectifier, depicted in Fig. 3.3. It

consists of two small dots between two electronic reservoirs held at differ-
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Figure 3.3. (a) Schematic of the single-electron heat diode. Electrons hop in and out of
the dots and exchange energy through Coulomb interaction U. (b) Energy-
level diagram of the double-dot system.

ent temperatures, and electrons are able to tunnel between the reservoir
and the adjoining dot but interdot tunneling is suppressed. Thus there is
no electron transport through the device but it is assumed that Coulomb
coupling between the dots is strong enough so that energy can be trans-
ported from one dot to another. Consider now the following cycle: First
an electron tunnels into the left dot, then another electron tunnels into
the right dot. Because of the Coulomb interaction between the dots, the
electron in the left dot forces the second electron to take an extra energy
U from the right reservoir. Next the first electron tunnels out of the left
dot carrying the interaction energy U with it, and finally the second elec-
tron also tunnels back to the right reservoir. Now the electron balance
is the same as in the initial state but one energy quantum U has been
transported from right to left. This type of heat transport mechanism was
first introduced in Ref. [33] but the authors there did not consider recti-
fication. It is important to note that this four-step tunneling cycle (and
its time-reverse) is the only way to transport heat between the reservoirs.
The diode behavior stems from the fact that one step of this cycle can be
efficiently suppressed when the temperature bias is in one direction but
all steps are available when the bias is in the other direction. The idea
is simply that the energy levels in one dot, say right, are high compared
to the other dot. Then if the right reservoir is cold, electrons there do not
have enough energy to tunnel into the dot and heat flow is suppressed.
If, on the other hand, the right reservoir is hot, all steps of the transport
cycle work as described above, carrying heat from right to left.

A minimal model for this type of device is obtained if we assume that
the double dot can only be in four different states: empty (energy 0), left
dot occupied (energy E;), right dot occupied (energy Frg), and both dots

occupied (energy Ero+ Ero+ U). The spectrum of single-electron states in
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the dots is irrelevant for the diode mechanism, and in IIT we consider two
explicit examples, a quantum dot with a single sharp level and a metallic
dot with a constant density of states. The heat current is then calculated
with a master equation and Fermi golden rule, similarly to Section 2.3,

and the result for a quantum dot system is
J=A"UT[n,(U) —np(U)) (3.7

where the prefactor, responsible for the transport asymmetry, is

Ao 2[1 +ng(U)][1 4+ ng(U)]

fro(1 = fr1)fro(1 = fr1)
with fon = fo(Ean) and E,1 = Eqo+U; see Fig. 3.3. Equation (3.7) applies
for the case where the two tunnel junctions have equal coupling strengths

FEFL:FR.

-2 (3.8)

Let us first consider the maximum rectification. As was shown in Eq. (3.2),
for the spin—boson rectifier the current ratio is limited by J /J_ < T¢/Th.
For the present systems we see that when the energies F;y, Ero and U

are all larger than the temperatures, Eq. (3.7) implies
Jy)J_ ~ eTc =T ") (Ero=Evo) 3.9)

Thus by increasing the large energy Fry it is possible to have arbitrarily
large J/J_ at any temperatures. In other words, the single-electron heat
diode has Ryax = 1, independent of temperatures.! This shows that the
device is a particularly efficient diode. Of course in the limit when R — 1
the currents become vanishingly small but the important fact is that large
rectification is available at finite currents. As an example, the analysis in
ITI shows that R above 0.9 is possible with J; in the femtowatt regime.

Next we examine the rectification at maximum current. Numerical cal-
culation shows when J; is maximized we have Ery = Egg, implying that
the system is spatially symmetric, so that there cannot be any rectifica-
tion. Therefore we conclude that R, = 0 at all temperatures. Note,
however, that we have assumed symmetric coupling, I';, = I'y. Relaxing
this assumption is likely to yield a finite R ;.

Another numerical calculation reveals that the maximum absolute rec-
tification, assuming coupling strength I' = T}, gives a result very similar
to curve C of Fig. 3.1, with a maximum value of about 0.1. The same warn-
ing applies as in the spin—boson case: the value of I" has been pushed to

the upper limits and the actually attainable value of (2, is likely to be up

1Naturally in a real physical system Ego cannot be increased indefinitely.
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to an order of magnitude lower. Nevertheless, both the spin—boson recti-
fier and the single-electron diode have quite similar values for .y, even
though the latter device is superior in terms of R,.x. The reason is that
both system operate in the weak-coupling limit while large absolute rec-
tification requires large currents which are not possible in that limit. It is
interesting to speculate whether there exists any systems with 2 clearly
above 10%. Apparently such systems must have strong couplings and
strong interactions since both the weakly coupled, strongly interacting
devices of Sections 3.1 and 3.3, and the strongly coupled, weakly interact-

ing device of Section 3.2 perform poorly in terms of Q.
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4. Particle-exchange heat engines

Heat engines can be divided into two main classes, cyclic and particle-
exchange heat engines [34]. Thermodynamics textbooks usually present
the cyclic type, where heat is carried by a working gas which is alternat-
ingly coupled to the hot and cold reservoirs and work is extracted by an ex-
ternal manipulation of the gas. In contrast, in a particle-exchange device
heat is carried by particles propagating between hot and cold reservoirs
and work is done by (the same or different) particles being transported
up a potential gradient. A thermoelectric power generator is a typical
example of the latter type of device.

In this thesis we consider mesoscopic thermoelectric! particle-exchange
heat engines; a recent review is given in Ref. [35]. Thermoelectric heat
engines are particularly well suited for solid-state operation; the periodic
coupling between the two heat baths, required by cyclic devices, can be
difficult to implement with a non-moving working gas. Furthermore, a
particle-exchange device works autonomously, without any time-dependent
external control. These kinds of engines are readily incorporated on a mi-
crochip, and could be used to recover part of the waste heat produced by

electronic components.

4.1 General considerations

A paradigmatic example of a mesoscopic particle-exchange heat engine
consists of two electron reservoirs at different temperatures connected by
an elastic scatterer. The electric current through the system is given by

the Landauer formula of Eq. (1.1), with the electron energy ¢ replaced by

I1t is customary to distinguish between thermoelectric and thermionic devices,
depending on whether the electron transport is diffusive or ballistic [35]. For our
purposes this distinction is unnecessary.
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the electron charge e (remember that we use kg = h=¢ = 1):

1= [~ ETEUE) - fale - V) .

J_oo 2m

where a voltage bias V has been applied between the leads. Note that
this applies for a single channel, which also means a single spin species,
and therefore I should be multiplied by 2 to take into account both spin
directions. If an electron with energy ¢ is removed from the left lead, the
entropy of the system is decreased by /7;. Since the elastic scatterer
does not change the energy of the electron, it will arrive to the right lead
with an energy ¢ — V' above the chemical potential, corresponding to an
entropy increase of (¢ — V') /Tx. At the special energy £*, obeying

i*E*_VﬁE** VTL
T, Tr T T, —Tg

(4.2)

the entropy of the system remains unchanged, that is, transport is re-
versible. If we assume that V' > 0 and T, > Tk, then the heat taken
from the hot left reservoir is ¢* and the work done is V, and the energy

conversion efficiency from Eq. (4.2) is
n=—=1-—= 4.3)

which is equal to the Carnot efficiency. If we are able to shape the trans-
mission function so that only electrons at c* are allowed to pass through,
we have a heat engine with Carnot efficiency. Indeed a quantum dot with
a single level at ¢* can approach this ideal limit [36]. There is, however,
one major problem: in that case f(¢*) — fr(e* — V) = 0, implying that cur-
rent I vanishes. We are now facing a very similar situation as we had in
the previous chapter. There we noticed that maximum rectification occurs
at vanishing current, and now we see that heat engines have maximum
efficiency nn.x at vanishing output power. Of course we can analogously
conclude that devices with a large 7.« Will also have a large n at finite
power.

Next we consider the case of maximum power and the corresponding ef-
ficiency at maximum power, np, ... In the previous chapter we saw that
even high-performance diodes can have R, = 0 which makes the rele-
vance of this quantity questionable. In contrast, for heat engines the anal-
ogous quantity np,_, cannot be vanishing since = 0 implies zero power,
and for this reason 7np, . turns out to be a very useful performance indi-
cator which has been studied for decades. Using a particular heat engine

model, one can show that np_, has an upper limit of ncy =1 — /T¢/Th.
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This result is usually credited to Curzon and Ahlborn [37], although it
has been also discovered by others [38, 39]. However, lately it has been
shown that the Curzon—Ahlborn result does not apply generally [40] but
values of np, .. above the purported limit are possible. Despite of this, 7c4
can act as a convenient yardstick when discussing efficiency at maximum
power.

In addition, one could of course introduce yet another efficiency indica-
tor, the product of efficiency  and power P, in analogy to the absolute
rectification 2 for heat diodes, but we shall not consider this quantity.

One question still remains. Above we considered efficiency under max-
imum power conditions. But what is the upper limit for this maximum
power in a single-channel device? Although Ref. [41] discusses the condi-
tions for maximum power, an explicit expression has not been derived in
the literature. Therefore we present the calculation here. We work under
the assumption that Eq. (4.1) is an appropriate starting point. As above,
we take T;, > Tg, and consider first the unbiased case V' = 0. The Fermi
function difference in Eq. (4.1) shows that at energies ¢ > 0 the average
electron current is from left to right, and in the other direction for ¢ < 0.
If we wish to have maximal current to the right the left-moving part of
the transmission spectrum must be suppressed, so that 7 must be a step
function, 7 (¢) = 6(¢). This implies that the maximal single-channel ther-

moelectric current is

o = [ 52 U72(0) = fae)

0 2

_ log2 \ (4.4)

where AT = T, — Tg. However, power production is zero since the system
is unbiased. At finite bias V' > 0 the electron flow changes direction at £*

given by Eq. (4.2), and the corresponding maximum current is

> de log(1 + e~ aT)
Inax(V > 0) = — - —-V)]=———">AT 4.5
V>0 = [ 1) — fale — V)] = 4.5)
Then the maximum single-channel thermoelectric power is
Prax = max ijax(v) = l(AT)Z (4.6)
V>0 27

where v =~ 0.3164 is the maximum value of x log(1+ e~ *) which is obtained
when © = V/AT ~ 1.145.

It should be pointed out that if the intended application of the heat en-
gine is the recovery of waste heat, then the input energy can be considered
abundant and available at no cost. In this case efficiency becomes an irrel-
evant quantity and one should only concentrate on maximizing the output

power.
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Figure 4.1. (a) Schematic of a single-electron heat engine coupled to an external envi-
ronment with impedance Z(w). Electrons tunneling through the left junction
exchange energy with the heat bath, enabling net current against the voltage
bias. (b), (¢c) Energy-level diagrams of junction systems with one or two dots
between the leads. One of the junctions, marked with a photon symbol, is
coupled to the external bath. The photon-assisted tunneling rates are I'..

4.2 Three-reservoir photonic heat engine

In the two-terminal heat engine of the previous section the same electrons
were carrying the heat and performing the work. More flexible configura-
tions would be possible if the heat and work flows could be separated to
different pathways. This can indeed be achieved in a three-reservoir setup
where work is done by transporting electrons from the first to the second
reservoir and heat is exchanged between these work electrons and the
third reservoir by electromagnetic fields. This type of device was first pro-
posed by Biittiker and coworkers [33, 42]. In their scheme heat is trans-
mitted by local Coulomb interaction just like in the heat diode of Section
3.3. We introduce a more generic setup, depicted in Fig. 4.1, where heat
is transported by microwave photons. The device consists of two electron
reservoirs which are assumed to be at the same temperature 7' and a third
environment reservoir, modelled by an electromagnetic impedance Z(w),
at temperature Tg. The electron reservoirs are wired to the impedance,
allowing microwaves to propagate through the system. There are also one
or two dots between the electron reservoirs, and photon-assisted tunnel-
ing through the weakly-coupled junctions can be used to push electrons
up against a potential gradient, thereby enabling thermoelectric power
generation. We remark that this system bears a close conceptual similar-
ity to a photovoltaic cell where photons from sun enable the transport of
electrons against a voltage bias over a p-n junction.

The theoretical method used in the transport calculation is a master

equation together with an extension of the Fermi golden rule known as
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P(E) theory. That formalism takes in account the coupling to the elec-
tromagnetic environment by replacing the energy-conserving §(E; — Ef)
in Eq. (2.46) with P(E; — Ef), the probability density that an energy
E = E; — Ey is emitted (E > 0) or absorbed (E < 0) by the tunneling
electron. Otherwise the calculation proceeds essentially as outlined in
Section 2.3. Full account of P(E) theory is given in Ref. [43].

Our basic heat engine idea does not depend on the energy spectrum of
the dots, and we exemplify the mechanism both with single-level quan-
tum dots and with metallic dots having constant densities of states. We
consider the cases of one or two dots between the reservoirs, which can
also be considered as arrays of two or three tunnel junctions in series. We
concentrate on the simplest model where intradot Coulomb interaction is
large enough so that each dot can only be empty or singly occupied. Then
the analysis in IV shows that the thermoelectric current is maximized if
one of the junctions has weaker tunnel coupling but stronger environment
coupling than the other junctions. This requirement is physically well
motivated since junctions with weaker tunneling generally have smaller
a capacitance C, implying a larger electromagnetic coupling through the
charging energy ¢?/2C. When the environment-coupled junction domi-
nates the dynamics, charge current through the system can be written

with very compact formula:
I=fV-ET,—f(E-V)_ 4.7)

where f(¢) is the Fermi function for the electron system, V is the bias,
I, /_ are the photon-assisted tunneling rates to the right/left through the
environment-coupled junction, and F is the level difference over the junc-
tion; see also Fig. 4.1. To be more precise, we now have three possible
junction types: (i) junction between a metallic lead and a metallic dot,
where F is the difference of the Fermi levels; (ii) junction between a metal
and a quantum dot, where E is the difference between the metal Fermi
level and the single level of the dot; and (iii) junction between two quan-
tum dots, where F is the dot level difference. Coulomb charging energies
of the dots are also included in E.

We use a convention where I > 0 means current from left to right, V' > 0
means that the right lead has a higher potential and £ > 0 means that
the right side of the junction is at a higher energy. We fix £ > 0 and
consider first an unbiased system (V' = 0). If the environment is hotter
than the electron system, then I > 0 because electrons are, on the aver-

age, absorbing heat from the hot bath by going up the level difference E.
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Figure 4.2. Comparison of transport processes in (a) two-reservoir and (b) three-reservoir
heat engines. The electron is taken from the left lead to the right and work
V is produced. Heat extracted from the hot bath is ey and heat deposited
in the cold bath is ec. In the three-reservoir case ¢y is absorbed from the
environment and ec = ecy, + ecr is divided between between the two leads.
Energy conservation implies ey = V + ec. In (b) the central element is a
single-level quantum dot.

The opposite conclusion applies for a cold environment and hot electrons.
Power can be now generated by applying a finite bias. The direction of the
bias must be chosen so that the thermally driven electrons are pushed up
against the voltage, that is, if the zero-bias current is I > 0, bias must be
V > 0. When the magnitude of the voltage is large enough, the current
vanishes and then changes direction. From Eq. (4.7) this stopping voltage
is
Vo=F —Tlog F—_ (4.8)
Iy
The device operates as a heat engine for voltages between zero and V.
We now compare the energy transport processes in the two and three-
reservoir heat engines; see Fig. 4.2. For the two-reservoir system we as-
sume that the left lead is hot, for the three-reservoir case the environment
is hot. When an electron is transported from left to right, heat ¢y is ex-
tracted from the hot bath, work V' is performed against the voltage bias,
and the remaining energy is expelled as heat ¢ into the cold bath. In the
three-reservoir case the whole electron transport system constitutes the
cold bath and in general - gets divided between the different parts. It is
important to notice that when the central element in the three-reservoir
device is a single-level quantum dot there is a one-to-one mapping be-
tween the processes in the two devices. This is most easily demonstrated
by an example. Let us add a single-level quantum dot between the two
reservoirs in Fig. 4.2(a), so that the dot level is an energy E above the left
lead Fermi level. Then transport can only take place with ey = E. But
for the three-reservoir case the same result can be obtained by adding an-
other quantum dot between the left reservoir and the first dot, so that the

level of the new dot is an energy F below the other dot’s level. Also in
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this case we have transport only with e = E. Therefore it is possible to
filter the energy spectrum exactly in the same way in both cases, and in
particular, choosing E = ¢* from Eq. (4.2) yields Carnot efficiency for both
device types.

To investigate the generated power one must consider also the tunnel-
ing rates, not just the sizes of the energy packets. In this case the two
and three-reservoir engines are very different. The best way to facilitate
the comparison is to write the current as an integral over the energy ¢y
taken from the hot bath. For the two-reservoir case we have trivially from
Eq. (4.1)

1= [ ST emnten) — folen— V)] (4.9)

oo 2T
where [y c are Fermi functions at the hot and cold temperatures 7T .
Then writing out Eq. (4.7) gives for the three-reservoir case
o _fH _eu=V

j r/ et fo(V — E)fo(E —ep)Plen)e T — ¢ To ] (4.10)
where the environment spectrum P(cj7) also depends on 777. We see that
the functional dependence of I on the energies ey and V and the tempera-
tures Ty ¢ is clearly different in these two cases, so that there is no simple
correspondence between the systems when power generation is consid-
ered. More detailed investigation requires some explicit form for the en-
vironment spectrum. In IV we have studied an impedance Z(w) describ-
ing either an ohmic resistor or a harmonic oscillator. Here we summarize
the results very briefly by noting that the maximum achievable power is
at least an order of magnitude smaller than the limit given in Eq. (4.6).
This result is quite expected since the three-reservoir device is based on
Coulomb blockade and it is therefore weakly coupled. One might consider
boosting the electron transport by increasing the tunnel coupling, but this
will usually decrease the environment coupling which is necessary for the
thermoelectric effect. Whether it is possible to overcome this obstacle is

an interesting question for future work.
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5. Conclusions

In this Thesis we have investigated heat transport in interacting meso-
scopic devices. In the systems under study heat flow is determined by
the dynamics of electrons or photons or both, and we have treated them
with theoretical methods based on perturbation theory: master equa-
tions with Fermi golden rule for weakly coupled systems, and nonequilib-
rium Green’s functions for systems with arbitrary couplings. Transport
through a nonequilibrium spin-boson model has been examined in detail.

Two new types of heat rectifiers were introduced, namely a nonlinear
electromagnetic oscillator and a single-electron heat diode. The oscilla-
tor system is able to produce large currents but rectification performance
is not very high. In the single-electron diode currents are limited by the
requirement to operate in the weak-coupling limit, but very high rectifica-
tion is available. It is an open problem how to produce both large currents
and large rectification.

We also propose a new class of particle-exchange heat engines where
work is done by electrons transported between two reservoirs but heat
is exchanged between the transport system and a third reservoir by mi-
crowave photons. Heat and charge flows are therefore separated, offering
much greater flexibility than usual thermoelectrics; for example, the two
heat baths can be separated by a large distance. We have shown that the
structure of the energy transport processes is similar to the more usual
two-reservoir devices, and therefore same efficiencies, up to the Carnot
efficiency, are available. However, since the scheme is based on Coulomb
blockade, the generated power is limited to weak-coupling values. It is
an open problem how to produce a three-reservoir heat engine with large

maximum power.

39



Conclusions

40



Bibliography

[1] F. Giazotto, T. T. Heikkild, A. Luukanen, A. M. Savin, and J. P.
Pekola, Rev. Mod. Phys. 78, 217 (2006).

[2] D. R. Schmidt, R. J. Schoelkopf, and A. N. Cleland, Phys. Rev. Lett.
93, 045901 (2004).

[3] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson,
L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev.
Lett. 60, 848 (1988).

[4] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.
E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C.
Jones, J. Phys. C 21, L.209 (1988).

[5] R. Landauer, IBM J. Res. Dev. 1, 223 (1957).

[6] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge
University Press, Cambridge, 1997).

[7] L. G. C. Rego and G. Kirczenow, Phys. Rev. Lett. 81, 232 (1998).
[8] J. B. Pendry, J. Phys. A: Math. Gen. 16, 2161 (1983).
[9] L. G. C. Rego and G. Kirczenow, Phys. Rev. B 59, 13080 (1999).

[10] O. Chiatti, J. T. Nicholls, Y. Y. Proskuryakov, N. Lumpkin, I. Farrer,
and D. A. Ritchie, Phys. Rev. Lett. 97, 056601 (2006).

[11] K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, Nature
(London) 404, 974 (2000).

[12] M. Meschke, W. Guichard, and J. P. Pekola, Nature 444, 187 (2006).
[13] A. V. Timofeev, M. Helle, M. Meschke, M. Mottonen, and J. P. Pekola,

Phys. Rev. Lett. 102, 200801 (2009).

41



Bibliography
[14] H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).

[15] L. M. A. Pascal, H. Courtois, and F. W. J. Hekking, Phys. Rev. B 83,
125113 (2011).

[16] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics
of Semiconductors (Springer-Verlag, Berlin, 2008).

[17] T. Ojanen and A.-P Jauho, Phys. Rev. Lett. 100, 155902 (2008).
[18] J.-S. Wang, J. Wang, and J.T. Lii, Eur. Phys. J. B 62, 381 (2008).

[19] H. Bruus and K. Flensberg, Many-Body Quantum Theory in Con-
densed Matter Physics (Oxfo rd University Press, Oxford, 2004).

[20] D. Segal and A. Nitzan, Phys. Rev. Lett. 94, 034301 (2005).
[21] D. Segal, Phys. Rev. B 73, 205415 (2006).
[22] D. Segal and A. Nitzan, Phys. Rev. E 73, 026109 (2006).

[23] D. Segal, Phys. Rev. Lett. 101, 260601 (2008); J. Chem. Phys. 130,
134510 (2009).

[24] L.-A. Wu and D. Segal, Phys. Rev. Lett. 102, 095503 (2009); L.-A. Wu,
C. X. Yu, and D. Segal, Phys. Rev. E 80, 041103 (2009).

[25] L.-A. Wu and D. Segal, Phys. Rev. E 83, 051114 (2011).
[26] C.X. Yu, L.-A. Wu, and D. Segal, J. Chem. Phys. 135, 234508 (2011).

[27] K. A. Velizhanin, H. Wang, and M. Thoss, Chem. Phys. Lett. 460, 325
(2008).

[28] K. A. Velizhanin, M. Thoss, and H. Wang, J. Chem. Phys. 133, 084503
(2010).

[29] Yu. V. Nazarov and Ya. M. Blanter, Quantum Transport (Cambridge
University Press, Cambridge, 2009).

[30] C.W. Chang, D. Okawa, A. Majumdar and A. Zettl, Science 314, 1121
(2006).

[31] R. Scheibner, M. Konig, D. Reuter, A. D. Wieck, C. Gould, H. Buh-
mann, and L. W. Molenkamp, New J. Phys. 10, 083016 (2008).

[32] M. Terraneo, M. Peyrard and G. Casati, Phys. Rev. Lett. 88, 094302
(2002).

42



Bibliography
[33] R. Sanchez and M. Biittiker, Phys. Rev. B 83, 085428 (2011).
[34] T. E. Humphrey and H. Linke, Physica E 29, 390 (2005).
[35] A. Shakouri, Annu. Rev. Mater. Res. 41, 399 (2011).

[36] T. E. Humphrey, R. Newbury, R. P. Taylor, and H. Linke, Phys. Rev.
Lett. 89, 116801 (2002).

[37] F. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975).

[38] I.I. Novikov, J. Nuclear Energy I1 7, 125 (1958) [Atomnaya Energiya
3, 409 (1957)].

[39] P. Chambadal, Les Centrales Nucléaires (Armand Colin, 1957).

[40] M. Esposito, K. Lindenberg, and C. Van den Broeck, Phys. Rev. Lett.
102, 130602 (2009).

[41] T. E. Humphrey and H. Linke, J. Phys. D 38, 2051 (2005).

[42] B. Sothmann, R. Sanchez, A. N. Jordan, and M. Biittiker,
arXiv:1201.2796.

[43] G. L. Ingold and Yu.V. Nazarov, in Single Charge Tunneling, edited
by H. Grabert and M. H. Devoret, NATO ASI Series B Vol. 294
(Plenum Press, New York, 1992), pp. 21-107.

43



Bibliography

44



Errata

Publication Il

Equation (10) should read

72,3
_iljw

2

huwg

(W) = [MEYL (@) + MEYi(w)].

and Eq. (11) should read

2iI3w?

Y (w) = T
0

[Mgaem (W)]nr(w) + M}%Re[YR(w)}nR(w)} ,
which imply that the function F(w) in Eq. (13) is
F(w) = hwo(w? — wi — 12wpe®) / (2I3W%).

Figures with R and J, are therefore quantitatively inaccurate but the
qualitative conclusions are unaffected.
There is also a typographical error in the second column of page 3: the
i

. . . _ 9 2
single-channel maximum heat current is Ji.x = 15 (Thigh - Tz
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