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1. Introduction

Huge amounts of information in the form of audio and video recordings

are produced, distributed, and stored every day. The video-sharing web-

site YouTube alone reports that more than 60 hours of video are uploaded

to the site every minute (YouTube, 2012). The Finnish National Audiovi-

sual Archive (KAVA) stores continuously 16 radio and 12 television chan-

nels and samples almost 100 channels, resulting in 104,000 hours of radio

and 92,000 hours of television recordings in the year 2010 (Mourujärvi,

2011). Clearly, there is a need for digital libraries that provide easy access

to this information. While searching for textual content is commonplace

for example in the form of Internet search engines, methods for searching

for multimedia are still lacking. Textual data can be easily represented

electronically. Typically all the words in the text are used to enable full-

text searches on collections such as a news paper archives. For multimedia

material, the electronic representation varies and digital collections have

relied heavily on human generated textual descriptions, metadata. How-

ever, generating the metadata is costly and even with metadata available,

locating specific parts within the described documents remains a time con-

suming task.

Speech carries a significant part of the information in multimedia con-

tent. The speech content can be accessed by combining automatic speech

recognition (ASR) techniques with information retrieval (IR). Automatic

speech recognition is used to create a textual representation of the speech

content, and then text-based information retrieval methods are applied.

The biggest complication in the process is that speech recognition accu-

racy is rarely perfect. Typically, at least 20% of the words in the tran-

scription are erroneous and for more difficult material such as sponta-

neous speech or speech with a lot of background noise, the error rate is

significantly higher.
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One source of errors in ASR is the limited vocabulary of the recognizer.

If a word that is spoken is not in the vocabulary of the recognizer it will

always be misrecognized. Typically, a number of most common words are

selected for the recognizer vocabulary. Unfortunately, from information

retrieval point of view, the rest, so-called out-of-vocabulary (OOV) words,

are often the most interesting ones. One method of countering this issue

is to use subword units for recognition. In theory, it is possible to use a

phoneme recognizer to transcribe any segment of speech as a sequence of

phonemes. Retrieval is then performed by matching the phonetic repre-

sentation of the query words to the phoneme transcriptions. The problem

with this approach is that the phoneme recognizer has poorer ability to

model language structure and thus the resulting error rate of a phoneme

recognizer is a lot higher than for a word-based recognizer.

A compromise is to use recognition units that are smaller than words

but larger than phonemes. If the units are properly selected, they will

provide low error rates while limiting the vocabulary as little as possi-

ble. One option is using morphemes – the smallest units of language that

carry a meaning. Morpheme-based approach is especially well suited for

agglutinative languages such as Finnish. An agglutinative language is a

language that forms words by joining together morphemes, and has thus

a high number of distinct word forms. This means that language model-

ing for speech recognition is a lot more challenging. A vocabulary of all

the possible word forms would grow too large for efficient recognition. Us-

ing subword units such as morphemes will allow a large coverage of the

language with moderate size vocabularies. Morphemes are an attractive

choice for subword language modeling since, unlike for example syllables,

morphemes are associated with a meaning and they encode semantics in

an intuitively appealing manner.

A speech recognizer will output the sequence of words that it considers

most likely given the speech input. When the recognizer makes an error,

it is possible that the correct word is among the candidates of words that

the recognizer considers for that location. Thus, expanding the search of

query terms to these alternative candidates has the potential to increase

the recall of a speech retrieval system. However, as several candidates

compete for the same location and only one of these candidates can be

correct, the alternative terms have to be weighted properly so that the

system does not return too many irrelevant results.

Since morphemes carry a meaning, they are an appealing choice of units
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for information retrieval as well, especially if content bearing morphemes

can be separated from affix morphemes. Traditionally, for information

retrieval of agglutinative languages, rule-based morphological analyzers

are used to transform each word to its base form in order to match the

words in the queries to the words in the documents irrespective of which

word forms are used. An alternative is to use unsupervised morphologi-

cal analyzers that can learn morphological rules from text data and can

therefore be used also for languages that have no rule-based analyzers

available. Recognition errors in the ASR transcriptions may also cause

the rule-based morphological analysis methods to produce spurious base

forms. Further, unlike rule-based analyzers, unsupervised methods are

not limited by a fixed lexicon of words.

Developing unsupervised morpheme analysis tools requires methods for

estimating their performance. The usefulness of the method is ultimately

decided on how well it performs in the target application task such as

speech recognition or information retrieval, but such evaluations are of-

ten too time consuming to be used during development. Morphological

analysis methods can be also evaluated by comparing the results to lin-

guistic reference analyses, but evaluations like this are complicated be-

cause the unsupervised methods can generate arbitrary labels for differ-

ent morpheme classes and not the same as the ones used in the linguistic

references. Further, it is not certain that the linguistic analyses are the

most optimal for all tasks. Thus, evaluation of morphological analysis is

a difficult problem in itself.

1.1 On Speech Recognition and Information Retrieval Research in
Finland

This work is a continuation of a long line of research in automatic speech

recognition at the Laboratory of Computer and Information Science at

Helsinki University of Technology. After organizational revisions within

the university, and across universities, the work is now continued at the

Department of Information and Computer Science at Aalto University

School of Science. In the 1970s, Prof. Teuvo Kohonen started the work by

applying neural network and other pattern recognition methods on speech

signals. For example, in their PhD theses, Jalanko (1980) used subspace

methods, and Torkkola (1991) neural networks for phonetic speech recog-

nition. More conventional hidden Markov model (HMM) based phonetic
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recognizer was presented by Kurimo (1997). Recognition performance was

improved by using self-organizing map (SOM) and learning vector quan-

tization (LVQ) for training the HMMs.

In the theses of Siivola (2006), Creutz (2007), and Hirsimäki (2009),

the research was moved into large vocabulary continuous speech recog-

nition (LVCSR). A research recognition system was developed, and spe-

cial focus was on language modeling for agglutinative languages such as

Finnish. Creutz developed data driven methods for morphological anal-

ysis of words that were also proven efficient for language modeling in

speech recognition. Recently, discriminative training (Pylkkönen, 2009)

and noise robust methods (Remes et al., 2011) for speech recognition have

been developed.

Information retrieval has also been studied in the department, and the

self-organizing map has been heavily used. SOM allows organizing docu-

ment into meaningful maps for exploration and searching, and it has been

applied to text (Kaski et al., 1998), spoken documents (Kurimo, 2000), im-

ages (Laaksonen et al., 2000) and videos (Sjöberg et al., 2011). Other IR

research include tracking eye movements (Puolamäki et al., 2005), and

accessing contextual information in an augmented reality setting (Ajanki

et al., 2010). IR has also been an evaluation task in the Morpho Chal-

lenge competitions organized by the department (see e.g. (Kurimo et al.,

2010a)).

At other departments in Aalto University, research related to informa-

tion retrieval has been performed in the Semantic Computing Research

Group (SeCo), focusing especially on machine processable semantics (see

e.g. Hyvönen et al., 2005). Elsewhere in Finland, DOREMI Research

Group at Helsinki University have research in e.g. IR, media monitoring,

and information extraction (see e.g. Lehtonen and Doucet, 2008). Most

notably, IR research in Finland has been advanced by the Finnish Infor-

mation Retrieval Expert Group (FIRE) at University of Tampere, in which

e.g. query expansion (Järvelin et al., 2001), cross-language IR (Pirkola

et al., 2001), and image retrieval (Markkula and Sormunen, 2000) have

been studied.

1.2 Scope of the Thesis

The topic of this thesis is speech retrieval, and as a related theme, evalu-

ation metrics of unsupervised learning of morphology. In speech retrieval,
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methods from speech recognition, story segmentation, and indexing and

retrieval are needed. The morphology of the language has an effect on

these parts of the system, and in this thesis, the use of morphs as units

for each of these components is studied. Of particular interest is to study

how well it is possible to retrieve “unseen” query words, words that have

not been observed in the training data. The experiments are performed

on Finnish data, and while Finnish has properties that make the use of

traditional word-based methods particularly problematic, the methods in

this thesis are likely to extend to other similar languages as well. The

presented methods are unsupervised, and unsupervised methods are of

special interest, because they are especially suited for less resourced lan-

guages. In development of unsupervised methods, performance metrics

that are readily computable are needed. Therefore, this thesis also stud-

ies correlation of metrics for unsupervised morphological analysis to ap-

plication tasks. The results will eventually benefit applications such as

text or speech retrieval.

A complete speech retrieval system has other parts as well. When index-

ing broadcast material, the input data will have segments of non-speech

material, such as music. Using audio segmentation and classification

methods, the audio can be labeled by content type for more efficient brows-

ing, and for detecting which parts of the audio to further process with a

speech recognizer. Speaker segmentation and clustering (diarization) will

also help browsing the contents. These topics are outside the scope of this

thesis.

1.3 Contributions of the Thesis

The main contributions of this thesis are:

• A morph-based method for speech retrieval is presented and compared

to traditional word-based approaches. Morphs are used as language

modeling units, as segmentation units and as retrieval units, and in

each step compared to using rule-based morphological analysis. It is

shown that the morph-based approach is superior, especially when re-

trieving unseen query words (Publications I–VI).

• A new retrieval evaluation corpus of unsegmented Finnish audio is de-

signed and constructed (Publication VI).
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• Methods for improving retrieval performance by extracting alternative

recognition candidates from confusion networks are compared (Publica-

tions IV and VI).

• The use of query expansion (Publication II), latent semantic indexing

(Publication III), and alternative query word segmentation (Publication

VI) for reducing the effect of allomorphy on the morph-based system is

studied.

• Evaluation metrics for morphological analysis are compared empirically

(Publication VII).

1.4 Structure of the Thesis

This thesis consists of an introduction and a collection of publications.

The introduction aims to give a coherent presentation of the topic and the

methods, as well as present the most central results from the publica-

tions. Full details of the experimental setups and results are given only

in the publications, and reading the individual publications is absolutely

necessary for full understanding.

In Chapter 2, commonly used speech retrieval tasks are defined, and a

short review of relevant information retrieval models and evaluation met-

rics is presented. Chapter 3 gives the necessary linguistic background for

understanding this thesis: morphological properties of languages are pre-

sented, as well as methods for morphological analysis of words. Speech

recognition methods are presented in Chapter 4. In Chapter 5, the morph-

based speech retrieval system is described, and experimental results are

given. In Chapter 6, the use of lattices and confusion networks for im-

proving retrieval performance is explored. In Chapter 7, the minor theme

of this thesis is presented: empirical comparison of metrics of morphologi-

cal analysis. Finally, in Chapter 8, the introductory part is concluded and

discussed.
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2. Speech Retrieval Tasks, Models and
Evaluations

2.1 Retrieval Tasks

Speech retrieval is the task of finding segments that match the user’s need

from a collection of speech data. A number of possible applications exist,

such as retrieval of voice and video mails (Brown et al., 1996) and access-

ing information from recordings of meetings (Morgan et al., 2001). An

important application that can benefit from speech retrieval technologies

is accessing broadcast material. Journalists need to search large archives

for possibly very specific segments that can be used in documentaries or

in news items. Archives of TV and radio material are also open for public

online, and users will want to find segments that match their information

need or are otherwise interesting or entertaining.

In information retrieval, the user’s information need is formulated in

a query and described in a query representation while the collection to

be searched is described in a document representation. The most appar-

ent choice for representing the query is using natural language. How-

ever, since digital audio is represented as a sequence of samples in its raw

form, there is representation mismatch that needs to be solved in order

to perform searches on a speech collection. The most common option is to

convert the document collection to text in natural language with the help

of an automatic speech recognition system.

For evaluation of speech retrieval methods, the problem has to be sim-

plified and for that purpose different tasks have been defined. In one of

the earliest approaches, keyword spotting (Foote et al., 1995), a small list

of keywords is defined before search. The documents in the corpus are

represented in terms of the spotted keywords. If a query requires a new

keyword, the entire corpus needs to be reprocessed, which means long
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delays in response time. Keyword spotting is a light-weight approach to

speech retrieval but due to its limitations it has been replaced by methods

that do not limit the search term to predefined words.

Spoken term detection (STD) (Fiscus et al., 2007) is the task of detect-

ing all of the occurrences of a term in a large audio corpus. Unlike in

keyword spotting, the search terms are not given beforehand. Response

times need to be small, which means the audio corpus needs to be in-

dexed before searching, without the knowledge of the search terms. The

search terms are words or short sequences of words spoken consecutively.

Transcriptions of the audio are used to define the reference occurrences

of the terms. The search term must exactly match the transcription –

substrings and different inflected forms are not considered occurrences.

Typical approaches to STD combine large vocabulary continuous speech

recognition (LVCSR) with phonetic representations of OOV terms (Mamou

et al., 2007).

In spoken document retrieval (SDR) (Garofolo et al., 2000), the task is to

find excerpts from archives of recordings of speech that are relevant to a

user specified text query. The system should return relevant documents

irrespective of which word forms, or which words, are used to describe

the contents of the documents and the queries. In comparison to STD

and keyword spotting, in SDR the queries are natural language descrip-

tions of the information need and tend to be a lot longer than the words

and phrases used in STD. STD and keyword spotting consider the task

of speech retrieval from a technology centric point of view, while SDR is

a user centric approach to the speech retrieval problem. It is the broad-

est and most challenging task and it is the one used in this thesis. On the

other hand, testing SDR systems requires more human resources, because

the relevance of each segment to each query needs to be assessed. How-

ever, in an SDR system, the techniques developed for STD and keyword

spotting can be utilized.

Spoken utterance retrieval (SUR) (Saraçlar and Sproat, 2004) is the task

of finding short snippets of speech (utterances) that contain the query

words or phrases from a collection of unstructured speech data such as

recordings of lectures, telephone conversations and meetings. Typically,

the task uses speech collections that are more diverse than the broad-

cast material that is usually used for SDR. The unstructured nature of

the data requires identifying more specific locations of the relevant por-

tions. Ranked utterance retrieval (RUR) (Olsson and Oard, 2009) is a sim-
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ilar task, but the utterances are returned in ranked order from the one

deemed most likely to contain the query terms.

2.2 Retrieval Corpora

To perform information retrieval experiments, a test corpus is needed. A

corpus consists of three things: (i) a collection of documents, (ii) a set of

queries, and (iii) a set of relevance judgements. The queries are natural

language expressions of information needs. Here, the word “document” is

used in broad meaning to cover also the case of speech, where a document

is any topically coherent segment of speech in a stream of audio. Each

document in the collection is classified either as relevant or non-relevant

with respect to each query. These so-called ground truth judgements of

relevance are done by human assessors.

In this thesis, two Finnish speech retrieval corpora are used. The first

one (Tampere), constructed at University of Tampere (Ekman, 2003), has

288 news stories read by single speaker in a quiet environment and is

used in Publications III, IV, and V. Each of the news stories matches ex-

actly one of the 17 queries. The transcription of the audio was available for

reference experiments and speech recognition error rate measurements.

The small size of the Tampere-corpus made the conclusions less reliable

than desired, thus another corpus (Podcast) was developed for Publication

VI. The corpus has 136 hours of Finnish radio programs from the Finnish

Broadcasting Company (YLE) downloaded as mp3 podcasts. Based on

the associated metadata, 25 topic descriptions were formulated. The au-

dio was not segmented into topical boundaries, and thus relevance was

judged in terms of replay points, that is, the points in time where the rele-

vant portion starts were located. Total of 451 relevant replay points were

located by human assessors.

In addition to the speech corpora, a text corpus was used for reference

text retrieval experiments in Publications VI and VII. The corpus (cour-

tesy of Cross-Language Evaluation Forum (CLEF) (Agirre et al., 2009))

consisted of 55,000 documents from Finnish newspapers with a total of

4.6 million words. The corpus was associated with 50 topics and 23,000

binary relevance assessments with 413 relevant documents.
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2.3 Information Retrieval Models

The goal of information retrieval is to return the documents that satisfy

the user’s information need. Usually, the system returns a set of docu-

ments in a ranked order starting from the document that best matches the

query. The information retrieval model determines the process of match-

ing documents to queries.

2.3.1 Vector Space Model

As the name suggests, in a vector space model (Salton et al., 1975) the

documents Di and the query Q are represented as vectors:

Di = (di1, di2, . . . , dim) (2.1)

Q = (q1, q2, . . . , qm) (2.2)

Each dimension of the vectors correspond to a term, and m is the number

of unique terms in the collection. The values of dij and qj are called term

weights and they receive a non-zero value if the corresponding term is

present in the document or in the query. The similarity score between

a query and a document is determined by their cosine similarity or the

cosine of the angle between their vectors (Salton, 1971):

score(Di, Q) = cos θ =
Di ·Q

‖Di‖‖Q‖ =

∑m
j=1 dijqj√∑m

j=1 d
2
ij

√∑m
j=1 q

2
ij

(2.3)

Cosine similarity varies between zero (completely dissimilar) to one (com-

pletely similar). In ranked retrieval, the documents are returned in order

of decreasing cosine similarity.

Term weights measure how important the term is in the corpus, and

are most often determined using a term frequency - inverse document fre-

quency (TFIDF) model. Term frequency TF (t,Di) is the number of times

the term t appears in the document Di. The bigger the term frequency,

the better the term describes the contents of the document. Document

frequency DF (t) is the number of documents that contain the term t. The

bigger the document frequency, the less discriminative the term t is, that

is, the less important it is describing the contents of any document. With

a collection of N documents, the inverse document frequency is defined as

(Spärck Jones, 1972):

IDF (t) = log
N

DF (t)
(2.4)

Thus, the IDF of a rare term is high, whereas the IDF of a frequent
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term is low. Finally, term weight for the term t corresponding to the j:th

element in the vector of the i:th document is: dij = TF (t,Di) · IDF (t).

Several variants of the TFIDF model have been proposed (Salton and

Buckley, 1988). If a term occurs fifty times in a document, it is probably

not fifty times as significant as the term occurring only once. The effect of

high term frequency can be dampened using the logarithm by replacing

the raw term frequency TF (t,Di) by (Manning et al., 2008):

WF (t,Di) =

⎧⎪⎨
⎪⎩
1 + log(TF (t,Di)), if TF (t,Di) > 0

0, otherwise
(2.5)

The term weight is now calculated by: dij = WF (t,Di) · IDF (t).

Document length is another factor that has an effect. Long documents

have high term frequencies as well as more unique terms. In Equation

2.3, the information on the length of the document is removed by nor-

malizing the document vectors by their length. This way, long documents

are not favored simply because they have more terms. It is possible to

study the effect of document length empirically, and to plot the probabil-

ity of relevance as function of document length. Similar function can be

plotted for the relevance predicted by cosine similarity. It turns out that

longer documents actually have a higher probability of being relevant,

and that cosine similarity normalization unreasonably favors short docu-

ments (Singhal et al., 1996). In pivoted document length normalization,

the pivot point, where the predicted and actual probability of relevance

meet, is located and the cosine similarity curve is rotated about the point

so that long documents are given higher score than before (Singhal et al.,

1996).

2.3.2 Probabilistic Model

Another commonly used model for information retrieval is the probabilis-

tic model, where the idea is to rank the documents D by decreasing prob-

ability of relevance R given the query Q: P (R = 1|Q,D) (Robertson and

Spärck Jones, 1976). Document and query vectors are now assumed bi-

nary, that is, dt = 1, if the t:th term is present in the document, and dt = 0

otherwise. Starting from this probability, let us derive a ranking function.

The following derivation is based on (Robertson and Spärck Jones, 1976;

van Rijsbergen, 1979; Manning et al., 2008). Equivalent to ranking by the

probability is to rank by odds ratio P (R=1|Q,D)
P (R=0|Q,D) , since this transformation

31



Speech Retrieval Tasks, Models and Evaluations

is monotonic. Using the Bayes rule, the odds ratio becomes:

P (D|R = 1, Q)P (R = 1|Q)

P (D|R = 0, Q)P (R = 0|Q)
.

P (R = 1|Q) and P (R = 0|Q) are independent of the document vectors and

can be removed without changing the ranking. Assuming terms in the

document are mutually independent, the probabilities can be expressed

as a product over the terms in the document:

P (D|R = 1, Q)

P (D|R = 0, Q)
=

m∏
t=1

P (dt|R = 1, Q)

P (dt|R = 0, Q)

Let us denote pt = P (dt = 1|R = 1, Q) and ut = P (dt = 1|R = 0, Q). Then

P (dt = 0|R = 1, Q) = 1− pt and P (dt = 0|R = 0, Q) = 1− ut. By separating

based on dt, the ranking becomes:

∏
t,dt=1

pt
ut

·
∏

t,dt=0

1− pt
1− ut

=
∏

t,dt=qt=1

pt
ut

·
∏

t,dt=0,qt=1

1− pt
1− ut

.

In the right hand side, it was assumed that if qt = 0 then pt = ut, that is,

terms not occurring in the query are equally likely to appear in relevant

and non-relevant documents. Let us include the query terms that appear

in the document to the right product, but dividing them in the left product

so that the value is left unchanged:

∏
t,dt=qt=1

pt(1− ut)

ut(1− pt)
·
∏

t,qt=1

1− pt
1− ut

.

The right product is now constant over all documents, and can be ignored

in the ranking. By taking a logarithm of the product on the left, we are

left with a function called Retrieval Status Value (RSV) (Robertson and

Spärck Jones, 1976):

RSVD = log
∏

t,dt=qt=1

pt(1− ut)

ut(1− pt)
=

∑
t,dt=qt=1

log
pt(1− ut)

ut(1− pt)
=

∑
t,dt=qt=1

RW (t),

(2.6)

where RW (t), called relevance weight of the term t, is:

RW (t) = log
pt(1− ut)

ut(1− pt)
= log

pt
1− pt

+ log
1− ut
ut

. (2.7)

The relevance weight RW (t) will be positive if the term is more likely to

appear in relevant documents than in non-relevant.

pt and ut can be estimated based on statistics of the collection. Assum-

ing that the set of relevant documents is known, and s(t) is the number of

relevant documents that have the term present and S is the total number

of relevant documents, the maximum likelihood estimates are pt = s(t)/S
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and ut = (DF (t) − s(t))/(N − S). As before, DF (t) is the number of doc-

uments that contain the term and N is the total number of documents.

With these values,

RW (t) = log
s(t)/(S − s(t))

(DF (t)− s(t))/(N −DF (t)− (S − s(t)))
. (2.8)

To avoid the possibility of zeroes, it is common to apply smoothing by

adding 1
2 to each count:

RW (t) = log
(s(t) + 1

2)/(S − s(t) + 1
2)

(DF (t)− s(t) + 1
2)/(N −DF (t)− S + s(t) + 1

2)
. (2.9)

So far, term frequencies have been ignored in the ranking. Okapi BM25

is a related method, that uses term frequencies, and that has been proven

empirically especially successful (Robertson et al., 1995). The query Q

is now defined as containing terms t1 . . . tn. The BM25 score between a

document D and a query Q is given as:

score(D,Q) =
n∑

j=1

IDF (tj) · TF (tj , D) · (k1 + 1)

TF (tj , D) + k1

(
1− b+ bDL(D)

avgdl

) , (2.10)

where k1 ≥ 0 and 0 ≤ b ≤ 1 are parameters, DL(D) is the length of the

document D, and is avgdl the average document length. The k1 parameter

scales the term frequency. At large values of k1, the effect is the same

as when using raw term frequency, and at k1 = 0 the TF is ignored and

treated as a binary value. The b parameter determines how much the

score is scaled by document length: b = 0 means no scaling and b = 1 full

scaling. The IDF is given by Equation 2.9 by assuming that there is no

relevance information, that is, s(t) = S = 0:

IDF (t) = log
N −DF (t) + 1

2

DF (t) + 1
2

. (2.11)

Note that the IDF gets negative values if the term appears in more than

half of the documents. This can be avoided by the use of a stop list, or by

flooring the IDF to zero.

2.3.3 Language Model Based Retrieval

In the language modeling approach, a language model Md is estimated for

each document, and the documents are ranked based on the probability of

the model generating the query P (Q|Md) (Ponte and Croft, 1998). An ad-

vantage to the preceding models is that the language modeling approach

can take proximity information into account simply by using language
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models with order greater than one. That is, the estimated probabili-

ties for a word occurring are conditional on a number of preceding words.

The vector space and probabilistic models unrealistically assume that the

query terms are independent. This is of special concern for subword-based

retrieval, since the shorter the subword units used for retrieval are, the

stronger the dependency between neighboring units is.

2.3.4 Latent Semantic Indexing

The preceding information retrieval models match terms in the docu-

ments with those in the query. However, the fact that there are synonyms,

multiple words that have similar meanings, means that the terms in the

query may not match the terms in a relevant document. On the other

hand, a query including a polyseme, a word that has multiple different

meanings, may also return non-relevant documents. An information re-

trieval method developed to overcome these problems is latent semantic

indexing (LSI) (Deerwester et al., 1990), that is based on the idea of pro-

jecting the document vectors to a lower dimensional space, the dimensions

of which are hoped to correspond to the underlying, latent, meanings. The

latent dimensions are seen as the true representation, which was then

partially obscured by a generation process that used different words at

different locations.

LSI uses singular value decomposition (SVD) to find the least squares

fitting of the term-document association matrix X to a lower dimensional

space. The columns of X are the document vectors Di, thus for a collection

of N documents with m unique terms, X is an m×N matrix. The SVD is

defined as (Deerwester et al., 1990):

X
m×N = U

m×r
Σ
r×r

VT

r×N , (2.12)

where U and V are matrices of left and right singular vectors and have

orthonormal columns, Σ is a diagonal matrix of singular values of X, and

r is the rank of X. The matrices U and V represent the terms and the

documents in the new space. The matrix Σ has the singular values in

descending order, that means the first dimension of the new space is the

direction of greatest variance. The dimensionality reduction is achieved

by taking only the k first rows of the matrixes (Deerwester et al., 1990):

Xk
m×N = Uk

m×k
Σk
k×k

VT
k

k×N
, (2.13)

which gives the best rank-k approximation of X in the least squared sense.

34



Speech Retrieval Tasks, Models and Evaluations

For retrieval, the query must be projected to the same k-dimensional

space (Deerwester et al., 1990):

Q̂
T

1×k
= QT

1×m
Uk
m×k

Σ−1
k

k×k
(2.14)

Ranked retrieval is achieved by calculating the cosine similarity in the

reduced space between the query vector Q̂ and the document vectors (rows

of Vk). In the latent semantic space, a query and a document can have

high cosine similarity even if they do not share any terms.

LSI has been found to improve retrieval performance, but the experi-

ments have been performed on relatively small corpora of only thousands

or tens of thousands of documents, such as in the original work of Deer-

wester et al. (1990) that used a corpus of 1033 documents. A survey of

corpus sizes in LSI experiments can be found in (Bradford, 2008). The

computational complexity and memory requirements of the SVD calcu-

lation rise as the number of documents and terms increases. On larger

collections, it is possible to calculate the SVD on a subset of the docu-

ments and use the estimated matrix to project the rest of the documents

to the latent space. This strategy was found to produce modest improve-

ments in IR performance over standard vector-space model on a collection

of 752k documents (Dumais, 1995). Recent improvements in computa-

tional power and SVD algorithms have made possible to calculate full LSI

on larger collections. Using large collections, Atreya and Elkan (2011)

report no improvements over Okapi BM25 based retrieval.

2.3.5 Query Expansion

Another approach to deal with the problem of synonyms is query expan-

sion, where search terms are added to the user’s initial query by using a

thesaurus of related terms (Voorhees, 1994) or by inferring related terms

from a corpus. In the latter, a relevance feedback process is used: the

user’s query is performed, and the user marks in the initial set of re-

sults some documents as relevant or non-relevant. Based on the feedback,

terms are added to the query and the search is then repeated using the

expanded query. Since the feedback process is often undesired for users,

the set of relevant documents is usually not known. Instead, blind rele-

vance feedback is used, where the top S returned documents are simply

assumed relevant. Each term t in the top S documents is ranked using an

offer weight (OW (t)) (Robertson, 1990):

OW (t) = s(t)RW (t), (2.15)
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where RW (t) is the relevance weight for the term from Equation 2.9 and

s(t) is the number of documents in the S documents that are (pseudo)

relevant that contain the term t. The query is expanded with a number

of top ranked terms. The terms can be weighted uniformly, by their offer

weight, or by some other function such as 1/rank (Renals et al., 2000).

This query expansion method was also used in Publication II of this thesis.

Query expansion is particularly useful in speech retrieval, where OOVs

and recognition errors degrade the quality of the transcripts. If a query

word is not recognized correctly, a relevant document may be left unre-

trieved. Query expansion helps by adding query terms that have a simi-

lar meaning or a statistical relation to the original query terms. However,

using the recognized audio corpus itself for query expansion is dangerous,

because the expansion terms may then include recognition errors. There-

fore, query expansion is performed on a parallel text corpus (parallel blind

relevance feedback), and the expanded queries are then submitted to the

original speech corpus (Woodland et al., 2000). Experimental results show

that speech retrieval performance can be greatly improved by query ex-

pansion (Renals et al., 2000; Jourlin et al., 1999).

Another option is to use knowledge of word confusability by trying to

mimic the mistakes the speech recognizer might have made by expand-

ing OOV query words with similarly sounding IV (in-vocabulary) phrases

(Logan and Thong, 2002).

2.4 Story Segmentation

Unlike text, speech material is not typically organized into topically co-

herent segments. For example, a TV news show will contain multiple un-

related stories that are not specifically marked. Story segmentation is the

task of finding the points where the topic shifts from one story to another,

and is used as a preprocessing step to facilitate speech retrieval from un-

segmented material. The transitions between stories can be inferred from

changes in speaking style, speaker participation, word content, and, if

available, visual features in the associated video.

2.4.1 Lexical Segmentation Methods

The words that are used to describe the contents of the story are an obvi-

ous clue to determine where the story shifts. ASR can be used to access
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Figure 2.1. The lexical scores and the depth scores for a segment of audio. Vertical lines
indicate proposed story boundaries.

the lexical content of speech material. The lexical cohesion within a story

tends to be higher than the cohesion between stories. A popular method

based on this idea is TextTiling (Hearst, 1997). It uses cosine similarity

to determine the lexical similarity between two adjacent sliding windows

that are moved over the text. The similarity can be plotted as a curve,

and the valleys that are deep enough are assigned as story boundaries.

More precisely, the lexical score ls(g) of the left and right windows Wl

and Wr around a point g is defined as:

ls(g) = cos(Wl,Wr) =

∑
i=1wi,lwi,r√∑

i=1w
2
i,l

∑
i=1w

2
i,r

, (2.16)

where wi,l and wi,r are term weights for the term number i in the left

and right window respectively. Usually, ls(g) is smoothed with a moving

average filter. To determine the boundaries, each valley v in the lexical

score function is compared to the left and right neighboring peaks hl and

hr. Depth score (ds(v)) is defined as:

ds(v) = (ls(hl)− ls(v)) + (ls(hr)− ls(v)). (2.17)

If the depth score exceeds a threshold θ = μ− ασ at some point, the point

is assigned as a story boundary. μ and σ are the mean and standard devi-

ation of the depth score over the document and α is a parameter. Figure

2.1 shows the lexical score, the depth score, and the proposed story bound-

aries for a segment of audio.

Galley et al. (2003) use lexical chains to determine story boundaries. A

lexical chain consists of all the repetitions of a term in the text. Chains

are cut to parts at locations that have a long gap between terms. The more
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compact the chain is and the more frequent the term is, the stronger the

chain is, that is, the more weight it is given. Cosine distance is again

used to determine the lexical similarity between windows, but instead

of document vectors, lexical chains are used. Similarity is high if the

windows contain high number of common strong chains. Similarity is at

the lowest, and story boundaries are assigned, at locations that have a

high number of beginning and end points of strong chains.

Instead of calculating the similarity only between adjacent regions, the

similarity between every pair of regions can be used. Coherent segments

appear in the resulting similarity matrix as square regions along the di-

agonal. Reynar (1994) uses word repetition to construct the similarity

matrix, called dotplot in this case. If the word that appears at position i

appears also at position j, the element (i, j) of the dotplot receives value of

1. Choi (2000), on the other hand, uses cosine similarity between sentence

pairs and instead of pure similarity values, each element of the similarity

matrix receives a value that is based on the rank of the element com-

pared to neighboring elements. In both cases, the story boundaries are

determined from the similarity matrix by using a clustering method.

Certain words or phrases may indicate a change in topic. Passonneau

and Litman (1997) found a correlation between a manually selected list

of cue phrases and labeled topic boundaries. Because different domains

have different set of cue phrases, learning the set from data saves the

manual burden of defining the words. Beeferman et al. (1999) use an

exponential model to assign probabilities of the existence of a boundary

given the context. A training corpus is used to find a set of cue phrases

(and other features) with a greedy search algorithm that in each step se-

lects the most informative feature, that is, the feature that results in the

biggest increase in the likelihood of the training data.

In the generative approach to story segmentation, it is viewed that there

exists an underlying sequence of topics, from which the text is gener-

ated in a noisy process. Mulbregt et al. (1998) use hidden Markov models

(HMMs) that are estimated for each topic by clustering the training data

and estimating a language model for each cluster. The input text is split

to fixed length sequences and the language models are used to give the

emission probabilities, that is, for each sequence and each topic, the prob-

ability that the sequence is generated by the topic. The most likely se-

quence of topic states can be found using the Viterbi algorithm. Locations

where there is a state transition, are the resulting story boundaries.
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Term frequency based measures have the disadvantage that they do not

take into account synonyms and other topically related terms. A manu-

ally built thesaurus can be used to group related words when construct-

ing lexical chains (Morris and Hirst, 1991). Improvements in segmenta-

tion accuracy have been achieved by calculating the similarities of text

regions in latent semantic space (Choi et al., 2001; Olney and Cai, 2005).

Blei and Moreno (2001) use an aspect HMM that combines probabilistic

latent semantic analysis (PLSA) with HMMs. In this case, the topics are

latent variables, and a segment is not associated with a single topic, but

a probability distribution over topics.

2.4.2 Prosodic Features for Segmentation

People often change the rhythm, stress or intonation of their speech to

signal moving to a new topic. Including these prosodic features will aid

in segmentation, especially since the lexical methods are affected by ASR

errors. Shriberg et al. (2000) extracted a number of prosodic features and

trained a decision tree for segmentation. It was found that long pauses

and low pitch at the end of segments were the most useful features for

predicting topic change in broadcast news data. However, the most in-

dicative features depend on the nature of the data. Tür et al. (2001) com-

bined prosodic and lexical cues using decision trees and HMMs. The best

performance was achieved using a system that uses a prosodic decision

tree to estimate topic change likelihoods, which were added to the HMM

alongside lexical features.

In meeting data, different speakers are more active when different top-

ics are discussed. While a speaker change in itself is not an indicator of a

change in topic, the pattern of speaker activity throughout the recording

can be used to infer topic changes (Galley et al., 2003; Renals and Ellis,

2003).

2.5 Evaluation metrics

2.5.1 Document Retrieval Metrics

Given a query, an information retrieval system returns a ranked list of

documents. To compare the performance of different systems, the ranked

list is compared against human assessed relevance information. Several
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different metrics are used for evaluating system performance, the most

fundamental of which are precision and recall (Manning et al., 2008).

Precision (p) is the proportion of retrieved documents that are relevant.

Recall (r) is the proportion of the relevant documents that are retrieved.

In the case of ranked lists, these metrics are best defined in terms of some

cut-off rank k. Thus, for precision at k (pk) and recall at k (rk) only the

topmost k returned documents are considered.

By calculating precision and recall values at every rank, precision can be

plotted as function of recall to give a precision-recall curve (p(r)) (Manning

et al., 2008). These curves tend to be jagged, because if the document

at some rank is relevant and the document at the following rank is not,

precision drops while recall stays the same. Similarly, the curve jumps

up and to the right, if the following document is relevant since then both

precision and recall increase. A smooth curve can be achieved by using

interpolated precision-recall curve, where precision at certain recall r is

defined as the maximum precision at recall levels greater than or equal

to r. For reliable estimates of precision-recall functions, the values need

to be calculated and averaged over a number of queries. To reduce the

number of data points, traditionally precision is calculated only at recall

levels of 0.0, 0.1, 0.2, . . . , 1.0. Precision values at each of these points are

calculated for each query and then averaged to form the so called 11-point

interpolated average precision used for example in the TREC evaluations

(Voorhees and Harman, 1998).

Precision-recall curves are informative, but sometimes it is necessary to

describe the performance of the system in terms of a single number. Mean

average precision (MAP) is the most often used for this purpose. Let S be

the total number of relevant documents for a query Q. If the document at

rank k (Dk) is relevant, the precision pk is calculated. Average Precision

(AP) is the average of these precision values (Manning et al., 2008):

AP =
1

S

∑
k,Dk is relevant

pk. (2.18)

MAP is the mean of APs over all queries. Geometric interpretation of

MAP is the area under the uninterpolated precision-recall curve.

2.5.2 Metrics for Unknown-boundary Condition

The preceding metrics assume that the material is organized into a set

of documents. The evaluation of spoken document retrieval in so-called

unknown-boundary condition, where there is no topical segments or other
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structure in the flow of audio, requires changing the metrics somewhat.

Instead of returning a ranked list of documents, the system would return

a ranked list of time pointers. In the TREC SDR (Garofolo et al., 2000)

evaluations, the time pointers were mapped to the documents they fell in.

Duplicate entries and pointers that fell between stories (commercials or

fillers) were scored as non-relevant. This means that all topic boundaries

in the evaluation corpus need to be known, which requires a lot of human

resources.

An alternative is to use a “one-sided” metric, where the system returns a

ranked list of replay points that should mark the onset of relevant content

(Liu and Oard, 2006). The relevance assessment process consists of only

finding the set of replay points that are relevant to the query. The closer

in time the returned time pointer is to the human assessed ground truth

point, the more score it is given. While knowing the end point of the

segment would be useful for some applications like browsing, the user

will notice when the topic changes and will know to stop listening.

A metric originally designed to be used with graded relevance judge-

ments, generalized average precision (GAP) (Kekäläinen and Järvelin,

2002; Liu and Oard, 2006), can be applied to the case of evaluating ranked

replay points. In this case, the relevance judgements are hard but the de-

gree of match is graded. The degree of the match is determined by defining

a relevance function R that takes maximum at the ground truth point g

and slopes off as the returned replay point t moves further from g in ei-

ther direction. The width w of the relevance function determines how far

from g t has to move until R is set at 0 and the replay point is considered

non-relevant.

For a ranked list of replay points, the precision at rank k is defined as:

pk =
1

k

k∑
i=1

Ri, (2.19)

where Ri is the value of R for the replay point at rank i. The generalized

average precision for a query with N ground truth points can then be

calculated as

GAP =
1

N

∑
Rk �=0

pk. (2.20)

Values for R are calculated in the order of the list and each ground truth

point is used only once. If a replay point is repeated nearby, it receives

score of zero. Thus, systems that over-generate replay points are severely

penalized. Figure 2.2 shows triangular relevance functions around two

ground truth points.
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1.0

g1 g2t1 t4 t2 t3

Figure 2.2. Relevance functions around two ground truth points, g1 and g2. Returned
replay points t1, . . . , t4 are processed in order: t1 gets a low score, t2 gets no
score, t3 gets a high score, and t4 gets no score, because g1 is already used by
t1.

Liu and Oard (2006) compare triangular, rectangular and Gaussian rel-

evance functions and found that triangular functions are the most stable

when different systems are ranked using GAP. Triangular functions re-

ceive the value of one at the ground truth point g and linearly decay until

zero is reached at some distance w from g. 90 second wide windows are

used for spontaneous Czech speech in the CLEF cross language speech

retrieval track (Pecina et al., 2008).
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Applications such as speech recognition, information retrieval and ma-

chine translation require that computers can process human languages.

An important part of natural language processing (NLP) is building lan-

guage models that capture the properties of the language. The complexity

of the task of modeling a language is in part dependent on its morphology,

that is, how words of the language are formed. For morphologically sim-

ple languages, such as English, it is often sufficient to use words as units

of modeling. Morphologically rich languages are characterized by high

degree of inflection, agglutination and compounding that may produce a

very large number of word forms for a given root form. As a result, the

language has a huge number of distinct word forms which makes using

words as units of modeling inefficient. Using morphemes instead of words

alleviates this problem significantly. In order to do so, we need a method

that can analyze the morphological structure of any given word.

One solution is to use experts to form the list of words and linguistic

rules needed to solve the morphology of word forms. These rule-based

morphological analyzers exist for many languages. However, since the

analyzer works on a limited set of words, some word forms can not be pro-

cessed, such as rare words, dialect words or foreign words or names that

enter the language. Another option is to learn morphological structure

by observing regularities in language data. For example, the data may

consist of example analyses for a subset of words, or it could merely be

a collection of unannotated text. Therefore, there is no need for expert

crafted labels or rules as long as there is data available for the language.

This is especially important for less resourced languages that have no

rule-based morphological analyzers available.
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3.1 Morphology and Morphological Processing

A few linguistic concepts regarding morphology should be defined. Mor-

pheme is the smallest meaning-bearing unit in language. A morpheme

refers to the abstract meaning of a concept, while the surface form of the

morpheme or morph is the realization of the morpheme in writing (or

speech). For example, the word “unhappy” is composed of the morphs “un”

and “happy” and the word “happier” is composed of the morphs “happi”

and “er”. The morphs “happy” and “happi” are allomorphs, different real-

izations of the same morpheme for the concept of happy. The reverse case,

where a single form has more than one function, is called syncretism. For

example, the suffix morpheme “s” can either mark plural of a noun or

third person singular of a verb.

Inflection is the alteration of a word to express different grammatical

categories, and derivation is the process of forming a new word on the ba-

sis of an existing word. Both can be achieved by joining affixes to stems.

The process of concatenating morphemes to form words is called aggluti-

nation. Stem is the part of the word that is common to all of its inflected

variants. The meaning of word root is related, but the difference is that

derivational affixes are part of the stem, but not part of the word root.

For example, “speaker” is a derivation from “speak”, while “speaks” is an

inflected form. The stems of the words are “speaker” and “speak”, respec-

tively, while both have the same root “speak”. Sometimes different forms

of a word have very different stems, for example the past tense of the

word “go” is “went”. However, both forms have the same dictionary form

or lemma: “to go”. Definitions of a vocabulary and lexicon vary, but in

this thesis, a vocabulary refers to the list of words in the language, in-

cluding all inflected forms, whereas a lexicon is a list of lemmas and other

morphemes.

In some languages, all words are composed of a single morpheme, where

in others words consist of several morphemes. The morpheme-per-word

ratio defines where the language lies in the isolating-synthetic scale, a

ratio of one meaning purely isolating language. A synthetic language is

purely agglutinative, if the boundaries between morphs are clear, and it

is fusional, if the morphs are overlaid in a way so that they are difficult to

segment. The degree of fusion determines where the language falls in the

agglutinative-fusional scale.

The desired output of morphological processing is different for differ-
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ent applications, and thus different tasks can be defined. Morphological

segmentation or word decomposition is the task of finding the boundaries

between morphemes in words. This is a sufficient approach in applica-

tions such as speech recognition, where we are interested in modeling the

sequences of surface forms of the morphemes. In information retrieval,

morphological analysis is typically used for lemmatization, returning each

word in text to its lemma. This is essentially a clustering task: the goal is

to cluster all inflected forms of the same lemma to the same class so that

documents are retrieved irrespective of which word forms are used to de-

scribe the contents. Stemming is a related approach that is especially

used for IR in morphologically simple languages. Stemming algorithms

use simple, heuristic rules to strip the ends of words so that different in-

flected forms are shortened to the same stem. While the Porter stemming

algorithm (Porter, 1980) has been proven very effective for IR in English,

simple stemming does not work as well for languages that are morpholog-

ically more complex. In full morphological analysis, all the morphemes

in the words are identified. This task is the most difficult, because com-

plex morphological phenomena such as allomorphy need to be taken into

account.

3.2 Properties of the Finnish Language

Speech retrieval experiments in the publications of this thesis use Finnish

as a test language. However, the results should extend to other languages

with similar properties. A short description of the properties of Finnish is

given in the following.

Finnish is a highly synthetic, agglutinative language. Suffixes are used

for both inflection and derivation, and they can be strung together one

after another. For example, the word “kirja” (a book) can take the in-

flected form “kirja+sta+ni+kin” (’from my book, too’). Derivatives of the

word include “kirjanen” (a leaflet), “kirjasto” (a library) and “kirjain” (a

letter). Finnish also frequently uses compounding for forming new words.

Unlike many languages, Finnish allows component internal inflection:

“kirja+n+lukija” (book+genitive+reader: ’reader of a book’). Some com-

pounds are transparent, their meaning is consistent with the meaning of

their components. For example, the words “sana” (a word) and “kirja”

(a book) form the compound “sanakirja” (a dictionary). A compound is

opaque, when its meaning can not be deduced by the meanings of the
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components: the words “poika” (a boy) and “mies” (a man) combine to

“poikamies” (a bachelor). For information retrieval, the amount of trans-

parent and opaque compounds in the language has an effect when decid-

ing whether compounds should be split to their components before index-

ing.

The complex morphological processes mean that Finnish has a very high

number of unique word forms. It has been estimated that more than 2,000

word forms are possible for a single Finnish noun (Karlsson and Kosken-

niemi, 1985). This fact has an effect when designing Finnish NLP appli-

cations such as speech recognition or information retrieval.

Finnish has also fusional properties. In certain cases, the word stem

changes when suffixes are attached. For example, the word “vesi” (water)

has the genitive “vede+n”, partitive “vet+tä” and illative “vete+en”. This

process complicates finding common stems of inflected forms for informa-

tional retrieval.

Homographs, words that share the same written form, but have a dif-

ferent meaning, is another consideration for IR. For Finnish, a special

case is inflectional homography that happens when two or more different

lemmas share an inflected form. For example, the word “alusta” can be

one of seven different forms of five different lemmas: “alku” (a beginning),

“alusta” (a base), “alustaa” (introduce), “alunen” (a coaster) or “alus” (a

ship).

3.3 Rule-based Morphological Analysis

The relationship between the abstract (deep-level or lexical-level) repre-

sentations of morphemes and the surface-level realizations can be ex-

pressed with a generative grammar that consists of an ordered sequence

of context sensitive rewrite rules (Chomsky and Halle, 1968). Follow-

ing the rules, an abstract representation is converted into a surface form

through a series of intermediate representations. This approach is not

well suited for analysis of surface forms to lexical-level, because while the

rules are unambiguous from lexical to surface-level, they are ambiguous

in the other direction, which means that one surface form can be gener-

ated in more than one way. For languages with a complex morphology, the

computational complexity rises sharply.

In two-level morphology (TWOL) (Koskenniemi, 1983), a set of rules is

applied in parallel (as opposed to sequentially) in the generative model.
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The rules are context dependent symbol-to-symbol constraints that can

refer to both lexical and surface-level representations at the same time.

However, there are no intermediate levels of representation, hence the

model is called “two-level”. A lexicon of morphemes and words is used

to restrict the search to allowed sequences of deep-level representations

thus avoiding the ambiguity problem. Each rule and the lexicon of TWOL

can be implemented as a finite state transducer (FST) and combined using

intersection operation of the finite state algebra. Efficient FST algorithms

can then be used for morphological analysis and generation.

3.4 Unsupervised Learning of Morphology

Designing the rules for the rule-based systems requires an amount of ef-

fort from people with linguistic training. An alternative is to observe sta-

tistical properties of text to learn a model of morphology. In unsupervised

learning, the input data is unlabeled i.e. the desired morpheme segmen-

tations or analyses are not available for any of the words. Unsupervised

learning has the advantage that the resulting methods are language inde-

pendent and models can be trained for any language with enough training

text data available.

3.4.1 Morfessor

In this work, the morph-based approach for speech retrieval uses an unsu-

pervised morphological segmentation algorithm called Morfessor (Creutz

and Lagus, 2002; Creutz, 2007). The algorithm takes as an input raw,

unlabeled text data and produces a model of morphology that can be used

to segment words to morphs. The algorithm has a few variants, the one

used in this thesis, Morfessor Baseline, is described in the following.

The first versions of Morfessor used minimum description length (MDL)

formalism (Creutz and Lagus, 2002; Hirsimäki et al., 2006). The model

can also be expressed in a Bayesian framework using a maximum a poste-

riori probability (MAP) estimation (Creutz and Lagus, 2005b, 2007). Both

approaches aim to find a balance between modeling accuracy and model

complexity, and produce equivalent results. The MDL formalism is used

here.
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Segmentation Model

Let us consider sending data x using an encoding model with parame-

ters θ using the smallest possible number of bits. According to the MDL-

principle (Rissanen, 1989), the optimal model is the one where the total

code length of the model parameters L(θ) and the code length of data en-

coded with the model L(x|θ) is the shortest:

argmin
θ

L(x, θ) = argmin
θ

[L(x|θ) + L(θ)]. (3.1)

In morph segmentation, the encoded data is a text corpus. The model is

the morph lexicon, a set of unique morphs. The morphs are strings of

characters that are associated with their probability of occurrence. Each

word in the corpus can be segmented using these morphs and the corpus

can be represented as a sequence of pointers to the morph lexicon.

The length of the model representation is proportional to the size of the

morph lexicon. The length of the corpus representation is proportional to

the number of morphs in the corpus. At one extreme, the words are left

unsegmented and the lexicon consists of all the individual words in the

corpus. This leads to a compact representation of the corpus (a low num-

ber of pointers), but to a large representation of the model (a high number

of unique morphs). At the other extreme, each word is segmented to in-

dividual letters. The model representation is compact, because the num-

ber of unique morphs is equal to the number of letters in the language.

However, the corpus representation is very large because the number of

pointers equals the number of letters in the whole corpus. Optimizing the

model with respect to Equation 3.1 gives us a compromise between these

extremes.

More formally, the code length for an individual character α is derived

according to information theory from its probability by L(α)=− log(P (α)).

Using base 2 logarithms, the code lengths are measured in bits. The prob-

ability distribution for the letters in the language is assumed to be known.

For a lexicon with M morphs μj , the code length of the lexicon is:

L(lexicon) =

M∑
j=1

length(μj)∑
k=1

− log(P (αjk)), (3.2)

where P (αjk) is the probability for the k:th character in the j:th morph.

The probability distribution of the morphs in the corpus needs to be en-

coded also. The probabilities are estimated from the segmented corpus by

counting the number of occurrences for each morph and the total number

of morphs N . The probabilities can thus be encoded as integer values.
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First, any positive integer N can be encoded using the following number

of bits (Rissanen, 1989, p. 34):

L(N) ≈ log c+ logN + log logN + log log logN + · · ·+, (3.3)

where c is a normalization constant (c ≈ 2.865). The morph frequencies

can be encoded more efficiently as there are
(
N−1
M−1

)
possibilities for choos-

ing M positive integers that sum up to N (Rissanen, 1989, pp. 35–37):

L(morph frequencies) = log

(
N − 1

M − 1

)
. (3.4)

The entire model has now been encoded using L(θ) = L(lexicon) + L(N) +

L(morph frequencies) bits.

Now each morph μ in the corpus is encoded using − log(P (μ|θ)) bits,

where P (μ|θ) is the probability of the morph. The length of the corpus

encoded using the morph lexicon is:

L(x|θ) =
N∑
i=1

− log(P (μi|θ)), (3.5)

where N is the number of morphs in the corpus, μi is the i:th morph.

Since the code length of each morph has an inverse relationship to its

probability, frequent morphs have shorter codes and rare morphs have

longer codes. Thus, the optimization has the tendency to select frequent

substrings as morphs and encode infrequent substrings as a sequence of

morphs.

Search Algorithm

Equation 3.1 is minimized and the optimal morph segmentation found

using a greedy search algorithm. At the beginning, all words are un-

segmented. Each word is then processed in a random order. All possi-

ble segmentations into two parts are tried. If the best segmentation de-

creases the cost function (code length) compared to no segmentation, it

is approved. The resulting two morphs are further segmented into parts

recursively until no further improvement is gained. Every time a segmen-

tation happens, it is applied to all words containing that morph. After all

the words are processed once, the process is started over, but in a different

random order. The algorithm stops when there is no significant reduction

to the code length. Consult (Hirsimäki et al., 2006) for a detailed descrip-

tion of the search algorithm.

Using Morfessor for ASR and IR

After training, the morph segmentations for the words in the training

corpus are known. However, these segmentations are not used as such.
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Instead, Viterbi search is used to find the most probable segmentation

for each word using the morph lexicon and the morph probabilities from

the trained segmentation model. This way, all words can be segmented,

including words that were not in the Morfessor training corpus. As will

be further studied in Chapter 5, this is important especially for speech

retrieval, because new words may be introduced at any time in queries.

When comparing the morphs produced by Morfessor to grammatical

morphemes, it has been noted that if the word frequencies in the training

corpus are ignored, and the model is trained on the word list rather than

the corpus, the morphs match grammatical morphemes better (Creutz

and Lagus, 2005b). If the word frequencies are used, and the training

corpus is large, common word forms start to dominate the optimization

and as a result the common words tend to be left undersegmented. Simi-

larly, filtering out rare words, that are often misspellings and other noise,

also improves the model.

Section 4.6 explains how Morfessor is used in speech recognition by

training the language model on a text corpus segmented with Morfessor.

In Finnish speech recognition experiments, the resulting morph-based

language models have been found to perform better than word-based,

syllable-based or models based on grammatical morpheme segmentations

produced by a rule based morphological analyzer (Hirsimäki et al., 2006;

Hirsimäki et al., 2009).

In text retrieval, Morfessor can be used instead of rule-based lemmatiza-

tion or stemming. The words in the text corpus are segmented to morphs

before indexing, as are the words in the queries. By matching morphs

instead of whole words, different inflected forms of the same words can be

matched if they share a common stem morph. In (Kurimo et al., 2010a),

the performance of Morfessor for Finnish, German and English text re-

trieval tasks is compared. For all languages, the performance is clearly

better than when using unsegmented words, but not as good as the best

rule-based methods. However, for languages with no rule-based analyzers

available, Morfessor could still provide advantages.

For speech retrieval, the morph-based approach has more advantages.

Morphs can be used both for speech recognition and for retrieval. Com-

pared to using word-based language models for Finnish speech retrieval,

the morph-based approach is significantly better (Publication V). Using

morphs for recognition, but traditional rule-based analyzers for indexing

is also an option. However, recognition errors in the speech recognition
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transcriptions may cause the analyzer to produce spurious results. The

results indicate that morph-based and word-based indexing for Finnish

speech retrieval produce about equal results, but combining the two ap-

proaches is better than either alone (Publication VI).

A small change to the Morfessor Baseline algorithm was made for Pub-

lication VI. The Viterbi search was modified so that instead of the most

likely segmentation of a word, a number of alternative segmentations can

be produced. The alternative segmentations are added to the query. This

will help match the morphs in the recognition transcriptions better, be-

cause a word in different inflected form may be recognized using slightly

different morphs.

Morfessor CatML and CatMAP

To reduce the over- and undersegmentation sometimes present in the

Morfessor Baseline model, more sophisticated variants have been devel-

oped. In Morfessor Categories-ML (CatML) (Creutz and Lagus, 2004), the

segmentation produced by the Baseline algorithm is reanalyzed using a

maximum likelihood (ML) optimization. Morph usage patterns are used

to tag each morph in the corpus as prefix, stem or suffix. Additional non-

morpheme (“noise”) category is used to tag morphs that do not fit to other

categories. They are usually short segments resulting from oversegmen-

tation of words. Heuristic rules are used to join together noise morphs to

reduce oversegmentation and to split redundant morphs that consist of

other morphs in the lexicon. A hidden Markov model, where categories

are represented by states that emit morphs with particular probabilities,

is used for assigning probabilities to each possible segmentation and tag-

ging of a word form.

In Morfessor Categories-MAP (CatMAP) (Creutz and Lagus, 2005a), the

heuristic join and split rules are replaced in favor of a hierarchical lexi-

con structure, where a morph can either consist of a string of letters or

of two submorphs, which in turn can consist of submorphs. Prefix, stem,

suffix and non-morpheme categories are again represented by HMMs and

the model is now expressed in a maximum a posteriori (MAP) framework.

The optimal level of segmentation is determined from the hierarchical

representation by selecting the finest resolution that does not contain

non-morphemes. In comparison to linguistic morphemes, CatMAP per-

forms much better than Baseline, but in text retrieval experiments the

performance of CatMAP is equal to Baseline for Finnish and German and
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slightly worse for English (Kurimo et al., 2010a). In speech recognition,

CatMAP has not been found to improve over Baseline (Creutz et al., 2007).

So far, CatMAP has not been tested for speech retrieval.
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An essential part of a speech retrieval system is speech recognition, the

task of transcribing human speech into text. In this thesis, a research

recognition system developed at Department of Information and Com-

puter Science at Aalto University School of Science is used. Research on

the subject has been ongoing for decades. Recent PhD theses on develop-

ment of the speech recognition system include (Hirsimäki, 2009; Creutz,

2007; Siivola, 2006). The modern large vocabulary continuous speech

recognition methods used by the system are described in this chapter.

The difficulty of a speech recognition task depends on the material that

is transcribed. Background noise is one factor that makes speech recog-

nition system performance degrade strongly. Also, the more the language

in the speech differs from the language used in training the system, the

more difficult the task is. Proper names and especially foreign names

are difficult for recognition. Spontaneous speech (as opposed to planned

speech) differs greatly both acoustically and linguistically from the speech

and language typically used to train the recognizer. Spontaneous speech

is characterized by non-grammatical sentences and disfluencies such as

repetitions, fillers (“uh”, “well”), and false starts.

One likely use of speech retrieval methods is to enable searching of

broadcast material. The range of speech types in broadcasts varies from

planned speech in noise-free studio environment to spontaneous speech in

noisy environments. There are applications that use even more difficult

material, for example retrieval on recordings of lectures, meetings or tele-

phone conversations. Therefore, it is to be expected that the recognition

performance is far from perfect. Further complication from retrieval point

of view is that even if the overall performance of the recognizer is good,

missing a word that is important for retrieval, such as a proper name, can

cause a relevant segment to be missed in retrieval.
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Figure 4.1. Overview of the speech recognition system.

4.1 Overview

In the probabilistic framework, speech recognition can be viewed as the

task of finding the most likely sequence of words Ŵ , given the observed

speech signal O:

Ŵ = argmax
W

P (W |O). (4.1)

Using the Bayes rule and noting that P (O) remains constant with respect

to W , the maximization can be written as:

Ŵ = argmax
W

P (W )P (O|W )

P (O)
= argmax

W
P (W )P (O|W ). (4.2)

The probabilities P (W ) are given by the language model (LM) and the

probabilities P (O|W ) by the acoustic model (AM). The observation O is

given as a sequence of feature vectors. In theory, the maximization pro-

cess would involve looking through all possible sequences of words and

choosing the most probable one. That is the task of the decoder. In prac-

tice, the search space will have to be limited. Figure 4.1 illustrates the

speech recognition process.

4.2 Feature Extraction

Digitized speech signal comprises of a sequence of numbers that represent

the amplitude of the signal measured at certain intervals. The sampling

rate defines the number of samples taken by second and the resolution

defines the number of bits used to store each sample. Typically, in speech

recognition, 16kHz (16,000 samples per second) 16-bit audio is used for

input. The signal at this form is largely redundant and the dimensionality

needs to be reduced before further processing. Feature extraction aims to

extract features that capture the information of the phonetic structure
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while discarding the rest.

The recognizer used in this thesis uses Mel-frequency cepstral coeffi-

cients (MFCC) (Davis and Mermelstein, 1980) for this purpose. First, the

signal is divided into frames by taking a 25ms Hamming window at 8ms

intervals. Fast Fourier transform (FFT) is used to calculate the short time

power spectrum of each frame. The power spectrum is divided into fil-

ter banks using triangular overlapping windows and the logarithm of the

energy in each filter is accumulated. Rather than using filters that are

spaced evenly in the frequency axis, the frequency is first transformed to

perceptually motivated frequency scale called the Mel-scale. On the linear

scale, this corresponds to narrow filters at low frequencies and wider fil-

ters at high frequencies. Finally, discrete cosine transform (DCT) is used

to produce the 12 dimensional MFCC feature vector. The feature vector

is extended with the average power of the frame. In cepstral mean sub-

traction (CMS) (Atal, 1974), the mean of the 150 surrounding frames is

subtracted from each vector to reduce the effects of convolutional distor-

tions in the channel. The feature vector is appended with so called delta

and delta-delta components, that is, the first and second time derivatives

of the 13 components resulting in a 39-dimensional vector. The mean and

variance are normalized globally with a linear transform. Finally, another

linear transform, maximum likelihood linear transform (MLLT) (Gales,

1998), is used to reduce the effect of speaker and environment variation.

4.3 Acoustic Modeling

The acoustic model likelihoods P (O|W ) are obtained using hidden Markov

models (HMMs). In monophone modeling, an HMM is trained for each

phoneme of the language. Phonemes are the smallest distinctive units of

sounds in speech. However, depending on the context, a phoneme may

be pronounced in different ways. The realizations of phonemes in speech

are called phones, and the variant phones that correspond to the same

phoneme are called allophones. In speech recognition, context-dependent

models are used for this reason. A different model is trained for each tri-

phone, that is, the phoneme and its neighboring phonemes. The HMMs

have a number of parameters Λ that need to be estimated from train-

ing data. Most important are the emission distributions, that are mod-

eled by Gaussian mixture models (GMMs) with diagonal covariance ma-

trixes. Since triphones can be similar to each other and since there is
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usually not enough training data to model every possible triphone, some

triphones are clustered together. Decision-tree based clustering was used

to merge HMM states with similar distributions (Young et al., 1994). The

HMM based approach for speech recognition is thoroughly explained in

(Rabiner, 1989).

A pronunciation dictionary is used to map the words in the language

model to the phonemes represented by the acoustic models. Finnish or-

thography (the relationship between phonemes and graphemes) is sim-

ple: each letter stands for one sound and each sound is represented by the

same letter. The exception is the sound /N/, which is written as n in the

short form (kenkä: [keNkæ]) and as ng in the long form (kengän: [keNNæn]).

Since the phoneme models are context dependent, /N/ is not modeled ex-

plicitly but as different variants of n and g. Letters that are not native to

Finnish but appear in loan words and foreign names (c, q, w, x, z, å) are

transformed to Finnish phoneme labels by the simple rules: ch → ts, c →
k, qu → kv, w → v, x → ks, z → ts, å → o.

In acoustic model training, an objective function that is dependent on

the training data is maximized. Maximum likelihood (ML) training uses

the likelihood of the observations in the training data given the HMM of

the reference transcription Sr as the objective:

FML(Λ) = P (O|Sr,Λ). (4.3)

In discriminative training, the objective function measures the recogni-

tion accuracy instead of likelihood of the data. Using minimum phone

frame error (MPFE) criterion, the objective function is (Zheng and Stol-

cke, 2005):

FMPFE(Λ) =
∑
S

Pk(S|O,Λ)A(S, Sr), (4.4)

where Pk(S|O,Λ) is the posterior probability of hypothesis S, k is an acous-

tic scaling parameter, and A(S, Sr) is a measure of number of frames hav-

ing the correct phone label.

In Finnish, phone duration is sometimes the only clue for discriminating

between certain words. Duration is marked orthographically by one ver-

sus two letters: “takka” (a fireplace), “taakka” (a burden), “takaa” (from

behind). Measured by difference in letters, an error in phone duration

may not seem significant, but for IR it can make a difference. HMMs

model phone durations rather poorly, therefore explicit phone duration

for Finnish speech recognition have been tested (Pylkkönen and Kurimo,

2004). A rescoring of recognition hypotheses according to a gamma dis-
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tribution that models the state durations was found to produce a good

accuracy while keeping the process efficient.

4.4 Language Modeling

The probability of the word sequence P (W ) in Equation 4.2 is assigned

by a language model. Also, the language model is used to restrict the

search space to sequences of phonemes that correspond to actual words

in the language. The recognition system used in this thesis, as almost

all modern speech recognition systems, uses n-gram models for statistical

language modeling. If W is a sequence of m words w1, . . . , wm, P (W ) can

be factored as:

P (W ) =
m∏
i=1

P (wi|w1, . . . wi−1). (4.5)

In an n-gram model, the conditional probability P (wi|w1, . . . wi−1) is ap-

proximated by taking the n:th order Markov assumption, that is, assum-

ing that the probability is only dependent on previous n− 1 words:

P (W ) ≈
m∏
i=1

P (wi|wi−(n−1), . . . wi−1). (4.6)

For example, a trigram model would only take into account the two pre-

vious words. A training corpus is used to estimate the probabilities by

counting the number of occurrences of every n-gram (the sequence of n

words) in the corpus:

P (wi|wi−(n−1), . . . wi−1) =
C(wi−(n−1), . . . wi−1, wi)

C(wi−(n−1), . . . wi−1)
, (4.7)

where C(x) is the number of times x appears in the training data. While

this is the optimal model in terms of maximum likelihood, in practice it

will work well only for the frequent n-grams, because it will over-learn

the training data and assign a zero probability to all n-grams that do not

appear in the training data.

Smoothing methods are used to modify the probability estimates so that

some of the probability mass is moved to the n-grams that are underes-

timated. Several smoothing methods have been proposed, and a compre-

hensive evaluation of methods is given in (Chen and Goodman, 1999). In

back-off methods, if an n-gram receives zero probability, lower order esti-

mates are used instead (Katz, 1987). In interpolation methods, lower or-

der estimates are also used, but in this case, by interpolating all estimates

with lower order estimates down to 1-grams (Jelinek and Mercer, 1980).
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The interpolation strategy means that some high-order n-grams can be

removed from the language model, if the low-order estimates are good

enough. This may be necessary in order to limit the language model size.

The language models in this thesis use Kneser-Ney smoothing (Kneser

and Ney, 1995) and are fixed length n-grams in Publications III and IV

and variable length n-grams built with a growing and pruning algorithm

(Siivola et al., 2007) in Publications V and VI.

4.5 Decoding

Given the observations O, acoustic model likelihoods P (O|W ), the pro-

nunciation dictionary and the language model probabilities P (W ), the

process of maximizing Equation 4.2 is called decoding. Due to the huge

number of combinations of vocabulary words, an exhaustive search of all

possible word sequences is intractable. The decoder must limit the search

to the word sequences that are deemed most probable. In this work, a

decoder (Pylkkönen, 2005) based on the token-passing paradigm (Young

et al., 1989) is used. The search is performed by moving tokens in a cyclic

search network containing the HMM state sequences for all the words in

the vocabulary. To restrict the search space, only transitions that corre-

spond to word sequences in the language model are allowed. Each token

corresponds to a hypothesis and it is updated at each frame:

1. The token is propagated through the transitions leaving from its cur-

rent state.

2. The acoustic probability is updated.

3. If the token arrives at a state that defines the next word, the LM prob-

ability is also updated.

4. Tokens that share the same state and LM history are merged so that

only the token with the highest probability is preserved.

After all tokens have been updated, low probability tokens are removed

to control the speed of the decoding. Beam pruning means keeping only

the tokens that have their probability higher than the highest probabil-

ity minus a constant beam value. In histogram pruning, only a constant
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number of tokens are retained after each step.

The decoder represents the search space of hypotheses it explores as a

lattice, that can also be extracted and saved for further use. A lattice is a

directed acyclic graph in which each node represents a point in time and

an arc between nodes indicates that a word occurs between the times of

the start and end node. Each arc is associated with acoustic and language

model likelihoods. The 1-best hypothesis is the path through the lattice

that has the highest probability. Less likely paths through the lattice can

also be found and represented as an N-best list, that contains the N most

likely paths through the lattice and their probabilities.

Lattices also enable multi-pass search strategies, where in the first pass,

a lattice is produced using simple acoustic and language models, and in

the subsequent passes, the resulting lattices are rescored using more com-

plex models (Richardson et al., 1995). This allows using models in the

later passes that would be too complex in the first pass. However, if the

right alternative is pruned in the first pass, it can never be recovered.

An alternative decoding approach is using weighted finite-state trans-

ducers (WFSTs), in which separate transducers are defined for all mod-

els (acoustic models, language models, pronunciation dictionary) (Mohri

et al., 2002) that are then combined to a single transducer. The approach

allows very fast decoding, but the transducer composition is memory in-

tensive.

4.6 Morph-based Speech Recognition

The preceding sections of this chapter assumed that the language model

is based on sequences of words. This is a suitable approach for languages

such as English for which a reasonable set of words can cover commonly

occurring usage of the language. For languages such as Finnish, Turkish

and Estonian, inflection and compounding causes the number of distinct

word forms to become huge. Many concepts that take several words in

English can be expressed by using a single word. For these languages,

using words as language modeling units becomes inefficient for two main

reasons. First, a large vocabulary expands the search space of the recog-

nizer and the time and memory requirements for the search process grow

large. Second, a large number of words leads to data sparsity problems,

because if the corpus does not contain enough instances of each word in

each context, the estimates of n-gram probabilities are not reliable.
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The recognizer vocabulary is typically limited to a number of most fre-

quent words in the language model training text corpus. The words not

in this set, the out-of-vocabulary (OOV) words, are replaced with a spe-

cial symbol and are thus not modeled. Using an independent test set, it

is possible to calculate the so called OOV-rate to measure the coverage

of the vocabulary. For English, a vocabulary of about 65,000 will result

in an OOV-rate of 0.31%–0.65% (Woodland et al., 1995). For Finnish,

a 69,000 word vocabulary will have 13.1%–19.9% OOV-rate (Hirsimäki

et al., 2006). Even increasing the vocabulary size to 500,000 words, the

OOV-rate will remain at 5.4% (Hirsimäki et al., 2009). A vocabulary of

this size will significantly increase recognition time and memory require-

ments. Any word in speech that is not in the vocabulary will be misrec-

ognized and substituted by a phonetically similar word. Further, for ev-

ery wrong word substituted or inserted, the language model probabilities

for the following words will be unreliable and the recognizer can produce

other errors. On average, every OOV word in speech will cause 1.46 erro-

neous words in English ASR (Hetherington, 1995).

An alternative is to use suitable subwords as language modeling units.

The shorter the subwords, the smaller the vocabulary needed to cover the

language, but on the other hand, the larger the number of subwords in the

corpus. The Morfessor algorithm (Section 3.4.1) can be used to segment

the words in a text corpus to morphs. The language model can then be

trained on the segmented corpus and the resulting n-gram will learn to

model the structure of words as well as the structure of sentences. Mor-

fessor can segment every word it encounters (in the extreme it will split

it to individual letters) and the resulting language model will be able to

model even the most infrequent words at least to some extent. Smoothing

the language model will ensure that every possible combination of morphs

will receive a positive probability and, at least in theory, it is possible to

recognize word forms that do not appear in the training corpus at all.

All language modeling methods presented in this chapter can be applied

to morph language models with minor changes. First, the pronunciation

of each morph needs to be defined. For Finnish this is easy since the

almost one-to-one mapping of graphemes and phonemes means that the

pronunciation of any subword string stays the same irrespective of its

context. For languages with more complex orthography such as English,

the different morph variants with different pronunciations can be made

unique by numbering (Creutz et al., 2007). Second, since we want to tran-
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scribe the speech in words, the recognizer will need to be able to assign

word breaks as well. This is achieved by introducing a special word break

symbol into the training text corpus. The symbol is processed like any

other token in text and the recognizer will learn to produce the symbol at

word boundaries. Third, the n-gram order needs to be extended. A fixed

number of units will span shorter amount of text, if the size of the unit

is reduced. The word break symbols further increase the number of units

to be modeled. Therefore, to use the same amount of information in the

linguistic context, the recognizer will need to use higher order n-grams

(Hirsimäki et al., 2009).

A review of speech recognition experiments for agglutinative languages

using morph and other subword-based approaches is given in (Hirsimäki

et al., 2009). An alternative to the statistical morphs produced by Mor-

fessor is to use rule-based morphological analyzers to segment the words

to grammatical morphemes. The drawback is that the morphological an-

alyzers work on a limited vocabulary and can not process all words. In

Finnish ASR, the statistical and grammatical approaches produce about

equal error rates, both performing significantly better than word-based

LMs, even with very large 500k word vocabularies (Hirsimäki et al., 2006;

Hirsimäki et al., 2009). Similar results have been achieved for Estonian

speech recognition (Puurula and Kurimo, 2007; Hirsimäki et al., 2009).

For Turkish, word-based approach has been reported better when using

2-gram models (Arisoy et al., 2006), but for longer, up to 6-grams models,

morphs perform better (Kurimo et al., 2006b). Arabic experiments show

that morph-based approach is better when compared to 64k word vocabu-

laries (Xiang et al., 2006; Choueiter et al., 2006), or 256k word vocabulary

(El-Desoky et al., 2009). If the size of the word vocabulary is increased

to 300k (Xiang et al., 2006) or to 800k (Choueiter et al., 2006), word and

morph-based LMs perform at equal level. El-Desoky Mousa et al. (2010,

2011) use Morfessor for German LVCSR and report improvements over

standard word-based models, and also over subword models based on su-

pervised decomposition.

4.7 Evaluation Metrics

To evaluate speech recognition performance, the transcription produced

by the recognizer is compared to ground truth reference transcriptions.

The minimum number of insertions (I), deletions (D) and substitutions
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(S) needed to transform the reference to the recognition output is counted.

The counts are used to compute the most commonly used metric for speech

recognition, the word error rate (WER):

WER =
I +D + S

W
· 100%, (4.8)

where W is the total number of words in the transcription.

WER is not comparable across languages, because the same informa-

tion can be expressed in one language using fewer words than in others.

If a word is composed of several morphemes, an error made with one mor-

pheme will cause the whole word as counted wrong. An alternative is to

calculate the phoneme error rate (PER) or letter error rate (LER), where

the phoneme or letter insertions, deletions and substitutions are counted.

For Finnish that has a simple orthography, PER and LER are very simi-

lar. The LER reflects the amount of labor needed to manually correct the

recognizer output and is more comparable across languages.

From speech retrieval point of view, not all errors are equally important.

Function words, such as “the”, “is”, “at”, “which”, etc. are usually filtered

out before indexing by using a stop list. Any recognition error made with

these words has no effect on the resulting IR performance. The effect of

inflection is removed from the recognizer output by using stemming or

morphological analysis methods (Section 5.2.2). Recognition errors that

change the inflection of a word are thus neutral from IR point of view.

Also irrelevant is the word order, because most IR models do not take it

into account. However, a substitution error causes the correct word to

be replaced by an incorrect one. For IR this may be twice as damaging

as deletion or insertion. For these reasons, another metric, term error

rate (TER), has been suggested for evaluating transcription errors based

on the number of errors that effect the IR performance (Johnson et al.,

1999):

TER =

∑
w|R(w)− T (w)|

W
· 100%, (4.9)

where R(w) and T (w) are the number of times word w appears in the

(stopped and stemmed or lemmatized) reference R and the transcription

T .

In a speech retrieval application, possibly thousands of hours of speech

need to be processed. It is therefore important to consider the processing

time the speech recognition takes. Usually, processing time is expressed

in terms of real-time factor (RT-factor), that is, how many times the length

of the audio the processing takes. Since the amount of spoken material is
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vastly expanding, at most RT-factor of one, that is, real-time processing,

is often desired. The processing time can be reduced by increasing prun-

ing in the decoder, but there is a trade-off between processing time and

recognition accuracy. When comparing different systems, their RT-factors

should be around the same for fair comparisons.
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5. Morph-based Speech Retrieval

Systems for retrieving spoken content typically consist of three parts.

First, the speech is transformed into textual form with a speech recog-

nizer. Second, the recognized text is indexed with an information retrieval

system. Third, the user inputs query terms that are matched to the terms

in the index and the portions of speech that best match the query are re-

turned. Each of these steps have potential sources of error that can cause

retrieval performance to suffer.

The first and the biggest source of errors is the ASR. On suitable ma-

terial, that is, planned speech recorded in clean conditions such as TV

news anchor reading aloud text, the word error rates can be less than

20%. At error levels this low, the retrieval performance is indistinguish-

able from retrieval using error free human transcriptions (Garofolo et al.,

2000). But if the speech is spontaneous or the recording conditions are

noisy, the error rates will sharply rise. Many errors are caused by the

limited vocabulary of the recognizer. From retrieval point of view, the

limited vocabulary is especially problematic. Query words are often low

frequency words, because they are selected to be discriminative. Thus it

is likely that a query word is an OOV word or a word with unreliable

language model estimates due to data sparseness. As seen in Chapter 4,

the morph-based approach for speech recognition can help with the OOV

problem especially for agglutinative languages. Any word in speech can

potentially be transcribed by recognizing its component morphs.

Another source of errors arises from the properties of the language of

the speech. Words at different locations will appear in different inflected

forms. Before indexing, the effect of inflection should be normalized. Tra-

ditional approach is to use stemming or lemmatization to transform in-

flected forms to a common base form. Using rule-based analyzers, the

OOV-problem is encountered again, since the analyzers also work on a
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limited lexicon. Recognition errors cause further complications for the

analyzers. However, if morphs are used as index terms as such, the need

for further morphological analysis is avoided.

A related problem is the difference in words that are used to describe the

same concept in the query and in the document. This synonymy problem

can be alleviated by adding words to the query that have similar meaning

to the original query words (query expansion) or by conflating words with

similar meaning before indexing. The methods can either use linguistic

knowledge, such as a thesaurus, or try to learn from data which words

have similar meanings by observing co-occurring words. In the morph-

based indexing, the stems of different inflected forms can be different due

to non-concatenative morphological processes. This is a problem that is

similar to synonymy. Section 5.2.3 explains how latent semantic indexing

and alternative morph segmentations are used in the morph-based sys-

tem to deal with the problem of unoptimal stem morphs as well as the

problem of synonyms.

5.1 Subword Units for Speech Retrieval

In addition to the morph-based approach presented in this thesis, a num-

ber of subword-based approaches have been proposed for speech retrieval.

In theory, it is possible to transcribe speech as a sequence of phonemes

and use the phonetic transcription as the basis of retrieval. Query words

are transformed to phoneme sequences as well using text-to-speech tech-

nology and the phoneme representation of the query is matched to the

phonetic transcriptions. Since any word in speech can be expressed in

phonemes, the OOV problem is completely avoided. However, since lan-

guage models based on phoneme strings are less capable of modeling the

structure of the language, the error rates of phonetic speech recognizers

are much worse than the error rates of word-based systems. The high

error rates severely degrade the possible retrieval performance as well.

Ng and Zue (2000) investigate extracting phone sequences from pho-

netic recognizer transcription and using them as indexing units for spo-

ken document retrieval in English. They compare phone n-grams of differ-

ent length, syllable-like units and multigrams, non-overlapping, variable-

length, phonetic sequences. The multigrams are discovered using an un-

supervised learning algorithm that finds the segmentation into phoneme

substrings that maximizes the likelihood of the data (Deligne and Bimbot,
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1997). Phone 3-grams are found to work best, but compared to retrieval

from error-free transcriptions, the performance falls by 60%. The errors

caused by the phonetic recognizer can be somewhat compensated by using

robust retrieval methods. For example, by estimating an error confusion

matrix of how probable it is that a certain phone is recognized as a certain

other phone, it is possible to expand the query with errorful variants of

the original terms with appropriate weights.

In this work, rather than extracting subwords from phonetic transcrip-

tions, subwords are used already at the recognition phase by using a

subword language model. Similar approach is adopted in Olsson (2008),

where phone multigrams, trained on the phonetic representation of a text

corpus, are used for language modeling. The performance for spoken ut-

terance retrieval in English was at approximately same level as using

a word-based system, but significantly improved compared to a phone-

based approach. Logan et al. (2002) also use phone strings, called par-

ticles, for language modeling and retrieval. Particles are syllable-like

phoneme strings that are determined by maximizing the leaving out like-

lihood of a particle 2-gram language model (Whittaker et al., 2001). Com-

pared to a word-based system for English speech retrieval, the particle-

based system yields better MAP for OOV queries, but the word-based sys-

tem performs better overall. Best results are achieved by combining word

and particle-based results.

Another data driven subword language modeling approach is based on

graphones (Bisani and Ney, 2005). Originally designed for grapheme-to-

phoneme conversion in text-to-speech systems, a graphone is a pair of

letter and phoneme sequences of possibly different length. Both the or-

thographic form and the pronunciation of a word are regarded as being

generated by a sequence of graphones. Graphones are learnt from a pro-

nunciation dictionary by a data driven algorithm. Akbacak et al. (2008)

use graphones for English STD. A flat hybrid word-graphone language

model is trained: words that would otherwise be left OOV are replaced by

their graphone decomposition in the language model training corpus. Af-

ter recognition, all graphone sequences in the transcripts are joined into

words. STD performance is improved for both IV and OOV words.

Syllables are a natural unit for language modeling and retrieval for

syllable-based languages and have been successfully used e.g. for Man-

darin Chinese (Chen et al., 2002). The approach is less intuitive for other

languages, but has still the potential to reduce the effect of OOV words.
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Figure 5.1. Overview of the morph-based retrieval system. First, Morfessor is trained
using a text corpus. The same Morfessor model is then used to segment both
the language modeling training corpus and the query.

Larson et al. (2007) test syllables as language modeling and indexing

units for German speech retrieval. Syllable 2-grams are found the most

effective as indexing features for both ASR transcriptions and for error-

free text, but transcriptions produced with word-based language models

work best. Fuzzy match based on the edit distance between query sylla-

bles and syllables in transcriptions are found to improve retrieval perfor-

mance. Compared to morphemes, syllables seem less intuitive as indexing

units, because they are not associated with a unique meaning. In Finnish

speech recognition experiments, syllable language models produce bigger

error rates than morph-based language models (Siivola et al., 2003).

5.2 Morph-based Retrieval

This thesis proposes a morph-based approach for speech retrieval in ag-

glutinative languages such as Finnish. In the morph-based system, sub-

words discovered with the unsupervised Morfessor algorithm are used

both as language modeling and information retrieval units. The morph-

based speech recognizer transcribes the speech as a sequence of morphs

with word boundaries marked with a special symbol. The most straight-

forward approach is to use morphs as index terms as such, but meth-

ods using words or combination of morphs and words are also possible.

Overview of the morph-based approach used in this thesis is given in Fig-

ure 5.1.

The resulting retrieval performance of the morph-based system is com-
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Table 5.1. Example recognition results of two unseen query words at two different loca-
tions each. With the morph LM, it is possible to recognize correctly at least
some of the morphs, which will match morphs in the segmented query. With
the word LM, the words are replaced by similarly sounding but unrelated
words. The name “Iliescu” was not in the morphological analyzer lexicon and
was thus left unprocessed for the word query.

Query word Iliescun Namibian

- Translation Iliescu’s Namibia’s

Morph query ili escu n na mi bi an

Morph LM rec. n ilja escu ili a s kun ami bi an na min pi an

Word query iliescun namibia

Word LM rec. lieskoja eli eskon anjan namin pian

Word lemmas lieska eli elää esko anja nami pian pia

- Translation flame or live Esko Anja candy soon Pia

pared to different baseline approaches. The baseline ASR uses a word-

based language model with a very large vocabulary (Publication V) and

the baseline information retrieval approach uses a rule-based morpholog-

ical analyzer for lemmatization (Publication VI). The effect of OOV query

words for the different approaches is studied further in a retrieval sce-

nario where the query OOV-rate is artificially increased (Publication V).

5.2.1 Selection of Language Modeling Units

In Publication V, morph-based and word-based language models were

compared in terms of resulting recognition and retrieval performance.

For the word language model, about 490,000 of the most common word

forms in the training corpus were included, leaving about 4.7% of the

words in the training set OOV, but still keeping the vocabulary compar-

atively large. The morph language model had only about 19,000 morphs

in the lexicon, but since any word can be generated by a concatenation

of morphs, the OOV-rate is effectively 0%. In the word-based approach,

a rule-based morphological analyzer (Koskenniemi, 1983) was used to

transform each word in the transcriptions and in the queries to its lemma

(base form). In the morph-based approach, morphs were used as index

terms as such and Morfessor was used to segment the words in queries to

morphs. The experiments were performed on the small Tampere-corpus.

Some of the least frequent words in the training corpus had to be ex-

cluded to limit the size of the resulting word LM. If an OOV query word

(Q-OOV) is used, the resulting retrieval performance will severely suffer.
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Table 5.2. Morph-based and word-based LMs compared for recognition and retrieval in
normal (N) and high Q-OOV (H) scenarios.

morph (N) morph (H) word (N) word (H)

WER (%) 26.01 29.62 28.63 34.74

LER (%) 7.50 8.50 8.30 10.10

RT-factor 1.23 1.27 2.17 2.34

MAP (%) 84.4 64.2 77.9 48.0

In the morph-based approach there are no OOVs, because any word can

be expressed as a sequence of morphs, but it is still possible that a query

word did not appear in the training corpus at all. Morfessor can segment

even these so-called “unseen” query words to morphs and it is possible to

recognize the same word in speech as a sequence of morphs (Hirsimäki

et al., 2009). To study the effect of unseen words, a few descriptive words

were selected from each query and an another version of the training cor-

pus was constructed so that any sentence with any of these words in any

inflected form was excluded. The difference in performance of word and

morph LMs were compared in this so-called “high Q-OOV” scenario. Ta-

ble 5.1 shows an example how unseen words are recognized with morph

and word language models and how the words are processed for queries

in each case.

A summary of the results is presented in Table 5.2. The morph-based

approach is better than the word-based both in terms of transcription

error-rates and the resulting retrieval performance. Especially in the high

Q-OOV case, the performance of the word-based system is severely de-

graded, as hypothesised, even though the RT-factor of the morph-based

system is significantly better. See Publication V for details of the experi-

mental setup and results.

5.2.2 Selection of Indexing Units

The preceding section confirms that morphs are superior to words as lan-

guage modeling units for Finnish SDR, but whether it is best to use them

as indexing units as well requires further comparisons. The rest of the ex-

periments all use morph LMs for speech recognition, but vary in the way

the resulting transcriptions are used for indexing. The options include:

1. Use morphs as index terms and use Morfessor to segment the query

words.
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2. Join morphs to words and use a morphological analyzer to transform

each word in the transcriptions and in the queries to its base form.

3. Combine the morph and base form transcriptions, and use both forms

in the index and in the queries.

4. Query the morph and base form indexes separately, and combine the

ranked lists.

The first choice is attractive because the need for a morphological ana-

lyzer is avoided. The drawback is that sometimes the morphs produced

by Morfessor are different for different inflected forms due to non-optimal

segmentation or due to the fact that the word root may change for differ-

ent inflected forms.

The standard in IR of agglutinative languages is to use a morphological

analyzer for finding base forms. A disadvantage of this approach is that

the analyzer works on a limited lexicon and any word not in the lexicon

will have to be left unprocessed. Interesting words from IR point of view,

such as names of people, may not be returned to their base form. In the

case of transcriptions produced by the morph recognizer, there is another

downside. If one of the morphs in the word is misrecognized, the word may

change into an ungrammatical form not recognized by the analyzer or into

a form of an unrelated lemma. For example, the name “Eero Heinäluoma”

was in one instance recognized as morphs “vir heinä <w> luoma”, which

roughly translates to “created as mistakes”. The words are normalized

by the morphological analyzer to base forms “virhe” (mistake) and “luoda”

(to create). Using morphs as index terms, the query morphs “heinä”’ and

“luoma” could still be matched in the transcriptions.

Combining the preceding two approaches has obvious advantages. The

word forms that the morphological analyzer can successfully process are

returned to a common base form and the partially correct words can still

be matched by their component morphs. In the simplest, the morph and

base form transcriptions are concatenated into a single transcription and

then indexed. However, since the resulting transcription has both base

form and morph terms, that sometimes share the same form and some-

times not, it is possible that the resulting term weights will be unoptimal.

Another option is to construct and query the morph and base form indexes

separately and combine the resulting ranked lists. A simple approach of
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Table 5.3. Retrieval results comparing different indexing units. Results on the Tampere-
corpus (Tam.) and the text corpus are mean average precisions (MAP) and
results on the Podcast-corpus (Pod.) are mean generalized average precisions
(MGAP). The Podcast corpus has been tested using long and short versions of
the queries. Podcast corpus has been tested on normal (N) and high Q-OOV
scenarios (H). The results on the latter scenario are previously unpublished.

Corpus Tam. Tam. Pod. (N) Pod. (H)

Ref. (PII) (PIII) (PVI) -

WER 30.4 34.0 - -

LER 7.1 11.2 - -

num. morphs 65k 26k 19k 19k

Query long long long short long short

morph 79.2 77.7 43.0 30.4 34.2 19.0

base form 78.0 75.7 43.8 34.7 36.9 21.3

comb. 87.51 - 46.0 37.3 40.3 26.1

interl. - - 46.6 35.1 38.9 22.6

interleaving was adopted here: the final ranked list was constructed by

picking items in order, alternating between the two lists, and removing

duplicates. The former approach is called the combined method and the

latter the interleaved method.

The choice of indexing units for speech retrieval has been tested in Pub-

lications III and VI of this thesis, and also previously in (Kurimo et al.,

2005). Selected results have been collected in Table 5.3. There have been

some changes in the recognizer and retrieval system setups between pub-

lications, which makes comparisons slightly more difficult and the results

are indeed somewhat mixed. One factor that has changed is the Morfes-

sor and language model training corpus and the resulting morph lexicon

size, which can cause variance in the morph-based results. Also the mor-

phological analyzer was updated over the years, and its use perfected,

improving the quality of the base form index.

On the Podcast corpus, experiments were run using two different ver-

sions of the queries: long and short. The results indicate, that for the

speech corpora, morph and base form indexes yield about equal perfor-

mance when using long queries. If the query is short, the base form index

is somewhat better. This is explained by the fact that if a query word

gets segmented to morphs in an unoptimal way, the performance suffers.

For short queries, unoptimal segmentation of just one word can be detri-

mental, but for long queries, there are other words that can compensate.

1(Kurimo et al., 2005)
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However, combining morph and base form methods always leads to a level

of performance that is better than either approaches alone.

In retrieval experiments on a text corpus (Kurimo et al., 2010a), base

forms perform better than morphs, which indicates that, in the absence of

recognition errors, the morphological analyzer can find good index terms

more reliably. However, if the Q-OOV-rate is increased for the Podcast-

corpus, the amount of errors increase, and the base form approach gets

comparatively better for long queries and comparatively worse for short

queries. The long queries have more words that are not ’unseen’, and if

these words can be reliably recognized and turned into base forms, they

work well and can have a large effect in retrieval. However, in the short

queries, a much larger proportion of words are previously unseen. For

these words, it seems that morphs work better as index terms, and the dif-

ference in performance decreases. Finally, when combining the indexes,

the increase in MAP in the high Q-OOV scenario is greater than in any

other case, clearly indicating that morphs as index terms do provide addi-

tional useful information.

5.2.3 Reducing the Effect of Allomorphy on Speech Retrieval

The morph-based indexing approach suffers from the fact that the statis-

tically determined morphs boundaries do not always fall on optimal loca-

tions. The Morfessor algorithm will choose frequent substrings as morphs

and split infrequent substrings into smaller units. This may cause com-

mon inflected forms of a word to become undersegmented and rare forms

to become oversegmented. Further, the same morpheme may be realized

in different surface forms. Most importantly, due to linguistic phenomena

such as consonant gradation, the spelling of the word root may change

when a suffix is added. Thus, the different inflected forms may not share

a common stem that other words do not also share.

The problem of differing word stems resembles the problems of syn-

onymy. An information retrieval method developed to solve the problem

of synonymy is latent semantic indexing (LSI) (Section 2.3.4). Applied to

morph-based indexing, LSI can potentially project different morphs with

the same meaning to the same dimension. Words that are important to

the topic will appear in the document many times and often in different

inflected forms. If the different inflected forms produce different stem

morphs, LSI can infer by co-occurrence statistics that the morphs have

related meaning.
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LSI was applied to morph-based indexing in Publication III using 150

latent dimensions. The MAP was improved from 77.7% to 82.7% for the

morph index and from 75.7% to 82.9% for the base form index. Thus, rel-

ative improvements were bigger for the base form index, which however

started at a lower level. With LSI, both indexes performed at equal lev-

els, and it is difficult to say what part of the improvement for the morph

index was due to projecting allomorphs to the same dimension and which

was due to projecting all related terms. Since the corpus was small, LSI

is expected to perform well. However, the queries were long TREC-like

sentences and contained many of the words in different inflected forms.

This fact makes the best possible improvements smaller.

Query expansion (Section 2.3.5) can also help with the problem of hav-

ing inconsistent stem morphs. If different inflected forms produce differ-

ent stem morphs, by adding the alternative stem morphs to the query,

recall can be increased. With pseudo relevance feedback, the end result is

similar to using LSI, in the sense that co-occurrence of different morphs is

the criterion for determining semantic relatedness. In addition to the al-

ternative morphs, the query will be expanded with other terms that have

meanings related to the original query terms.

Query expansion for morph-based indexing was tested in Publication II.

A parallel blind relevance feedback process was used on a collection of

newspaper articles to select the expansion terms. The terms were ranked

using Equation 2.15 and a number of best ranked terms were used to

expand the queries. It indeed turned out that the expansion terms were

often alternative forms of the query stem morphs from different inflected

forms. The improvements were much larger than with using LSI: the

MAP was rose from 77.7% to 91.8% for the morph index and from 75.7%

to 86.6% for the base form index. The additional information provided

by the parallel corpus may explain why query expansion works so much

better than LSI.

The over- and undersegmentation issue can also be alleviated by deter-

mining alternative morph segmentations directly, and using them to ex-

pand the query. Since Morfessor uses Viterbi search to find the morpheme

segmentation of the query word that is most likely according to the morph

frequencies, it is possible to find the n most likely segmentations as well.

Adding these alternative segmentations to the query increases the proba-

bility that one of them matches the morphs in the recognizer transcripts.

In Publication VI, the use of alternative morph segmentation was studied
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and the performance of the morph and combined indexes was improved by

using 2-best segmentations of query words. At best, for the morph index

using short queries, the relative improvement of MGAP was 4.69%.

5.2.4 Selection of Segmentation Units

In Publication VI of this thesis, a TextTiling-based approach for story seg-

mentation of podcasts of Finnish broadcast material was adopted. The

method was applied on the ASR transcription using windows of fixed

length in time. The level of segmentation can be controlled by varying the

parameter α (Section 2.4.1). A text retrieval corpus was used for initial

testing by removing all document and sentence structure and placing the

documents in random order. The parameter was optimized with respect

to resulting retrieval performance, measured by MGAP. It was found that

it is best to oversegment the corpus, at optimal level, there were about

50% more segment boundaries than documents in the corpus.

Similarly to retrieval, in segmentation there is a choice of units between

morphs, base forms and the combination of the two. For the speech corpus,

there were no ground truth story boundaries for training or evaluation.

The performance was again measured in terms of resulting MGAP. How-

ever, since the indexing units are an other factor that affects the retrieval

performance as well, the performance was cross-tested by varying both in-

dexing and segmentation units. The results are summarized in Table 5.4.

The selection of segmentation units has a smaller effect than the selection

of indexing units. There were statistically significant differences only in

one case: when using morph index, the base form segmentation performs

significantly worse than morph segmentation. However, on the text cor-

pus, base form segmentation results in better retrieval performance (see

Publication VI). This can be explained by the effect on recognition errors.

On error free text, the morphological analyzer can find reliable segmen-

tation units, but on the ASR transcripts, the morphs work equally good or

better.

It is to be noted that segmentation algorithms behave differently on dif-

ferent data types and some methods may be affected more by recognition

errors (Malioutov and Barzilay, 2006). Thus, the tests on the text corpus

may not be indicative on how the algorithm performs on a speech cor-

pus. In Publication VI, TextTiling was found to work better in terms of

MGAP than segmentation using sliding windows of fixed length in time.

On different corpora, sliding windows have been found to give better re-
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Table 5.4. Results (MGAP) for cross testing the segmentation and indexing units for the
Podcast corpus.

segmentation

index morph base form combined

morph 43.8 40.9 42.1

base form 44.7 43.8 45.4

combined 47.0 45.7 46.2

trieval performance (Eskevich et al., 2012). Further analysis on this topic

is needed, but differences in the corpora used, e.g. in the granularity of

the assigned replay points, are likely explanations of the differences of the

results.
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6. Lattices and Confusion Networks

Traditionally, speech recognition aims to minimize the errors in the so-

called 1-best transcription, the most likely hypothesis of the words spoken.

However, in speech retrieval, the less likely hypotheses are also a useful

source of information. When there is an error in the 1-best transcription,

it is possible that the correct word is among the candidates considered

by the recognizer. Including these alternative results to the index should

improve recall, but the terms will have to be weighted carefully in order

not to decrease precision too much.

The alternative candidates that the ASR considers can be extracted in

the form of a lattice. When using lattices for speech recognition, one con-

sideration is the level of pruning in the decoder, since it has an effect on

the size of the resulting lattices. With a lot of pruning, the resulting lat-

tices are small and easy to process, and there are less spurious results, but

some of the correct results may also be pruned. With less pruning, the

correct word has a bigger chance of appearing, but there are also more

incorrect results, and large lattices are harder to process. The effect of

pruning is studied in Publication IV of this thesis.

Lattices tend to be complex structures. The same instance of a word may

be represented by multiple arcs that have slightly different time align-

ments and contexts. An approximation of the lattice that has a simpler

form is the confusion network (CN) (Mangu et al., 2000). In a confusion

network, words that compete around the same time period are clustered

together to form a confusion set. The words in a confusion set are mu-

tually exclusive and are associated with their posterior probability. The

confusion network consists of a non-overlapping series of confusion sets.

Sentence hypotheses are obtained by joining word hypotheses selected

from each confusion set. The 1-best hypothesis is the one where the word

with highest probability is picked from each set. While originally designed
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Start End

m1

m2

m3

m4

m6 m8

m9

m5

m5

m7

m10

m1m5m7m10, m2m5m7m10, m3m6m8, m4m9

Paths:

m1, p1
m2, p2

m3, p3

m4, p4

m5, p5

m6, p6

m7, p7

m8, p8

m9, p9

m10, p10

Confusion network:

a)

b)

c)

Figure 6.1. a) An ASR lattice. b) All the paths in the lattice. c) The corresponding con-
fusion network. Every morph mi is associated with its posterior probability
pi.

to minimize the expected WER for ASR, CN also provides a convenient

representation of alternative recognition candidates for speech retrieval.

Figure 6.1 shows an example of an ASR lattice and the corresponding CN.

The algorithm to generate a confusion network from a lattice has these

approximate steps (Mangu et al., 2000):

1. Pruning: The posterior probability for each arc in the lattice is calcu-

lated and arcs with very low posterior probability are removed.

2. Intra-word clustering: Arcs that correspond to the same word instance

are merged and their probabilities summed.

3. Inter-word clustering: Words that compete around the same time in-

terval are grouped to form confusion sets.

Pruning is needed in order to remove constraining paths from the lattice

that would prevent proper alignment of arcs.

In Publications IV, V, and VI of this thesis, using confusion networks is

shown to improve Finnish speech retrieval performance. Instead of words,

the confusion networks consist of sets of competing morphs that are added

to the index weighted based on their posterior probability or rank.
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6.1 Using Lattices for Speech Retrieval

Different approaches have been proposed to improve speech retrieval per-

formance by using alternative recognition candidates contained in lat-

tices. In the earliest approaches, a phone recognizer is used to create

phone lattices, in which lattice arcs are labeled with phones and associ-

ated with their likelihoods (James and Young, 1994; James, 1995; Foote

et al., 1997). Keywords are searched from the phone lattices by finding the

paths through the lattice that best match the keyword’s phonetic repre-

sentation in a fuzzy comparison. Combining phone lattice-based methods

and 1-best word transcripts has been found to perform better than either

alone (Jones et al., 1996).

Matching query words in phone lattices requires processing the lattices

for the entire collection for each query and is computationally expensive

for large collections. For efficient search of speech, an index is first built

by counting the frequencies for the terms that appear in the transcrip-

tions. Including alternative recognition candidates requires estimating

expected term frequencies (ETFs) (also known as expected counts) from the

speech recognition lattices either beforehand for all possible terms or for

each query word at search time. Saraçlar and Sproat (2004) index phone

and word lattices by storing each individual arc, estimate ETFs for query

words based on their posterior probability, and return instances where

the ETF is above some threshold. However, when using phones, the index

is still inefficient, because only the first phone of the query word is located

from the index and the subsequent phones are matched by traversing the

lattice. Allauzen et al. (2004) index the ETFs of phone strings instead of

individual arcs, and estimate the ETF of a query as the minimum ETF of

all of its substrings. Yu et al. (2005) extend this approach by estimating

the ETFs using m-gram phoneme language models estimated on lattices

of segments of audio. A two-stage approach is used: the ETFs are used

to select a subset of candidate lattices, and a detailed lattice search is

performed on the selected lattices to determine the exact locations. They

also use language models for speech recognition that are based on au-

tomatically determined phoneme strings. Olsson (2008) uses word and

multigram LMs for recognition, converts the resulting lattices to phone

lattices, and estimates and indexes ETFs for each phone n-gram sequence

n ≤ 5. Similarly, ETFs can also be estimated for the terms in word lattices

as in (Chia et al., 2010), where ETFs are used in a language model based
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retrieval that is found to outperform TFIDF and Okapi BM25 in SDR.

Instead of estimating ETFs directly from lattices, the lattices can first

be transformed to a simpler form, which will also lead to reduction of re-

quired storage space. Siegler (1999) compared using word lattices and

n-best list to predict term presence in reference transcripts, and uses the

probability of term occurrence as ETF in retrieval. Rank of locally compet-

ing terms in lattices was found to correlate better to term presence than

the posterior probability of the terms. However, using an ETF based on

the fraction of n-best lists that contain the term resulted in overall best

performance. Word confusion networks are used for speech retrieval in

(Mamou et al., 2006). The posterior probability of the term in the CN is

used as the ETF, but for best performance the ETFs are weighted so that

more weight is given to terms that have a high rank in the confusion set.

Hori et al. (2007) combine word and phone confusion networks. A compo-

sition operation for weighted finite-state transducers (WFSTs) is used to

align the two networks, and automata intersection is used to match the

automaton representation of the query to the confusion networks.

Position specific posterior lattice (PSPL) (Chelba and Acero, 2005; Chelba

et al., 2007) is a structure similar to CN, but unlike CNs, it retains the po-

sitions of words and can therefore use proximity information for retrieval.

For each arc in the lattice, only the position in the lattice (the number of

words since the beginning) and the posterior probability for the word in

the position are retained. A variation of the standard forward-backward

algorithm is used to construct the PSPL (Chelba and Acero, 2005). It is

guaranteed that every n-gram present in the lattice is also present in the

PSPL. Comparisons of CNs and PSPLs for SDR are performed in (Pan

et al., 2007; Pan and Lee, 2010). PSPLs were found to yield better MAP

whereas CNs required less storage space.

Using word lattices for retrieval does not help with the OOV-problem,

since the lattice will only contain words that are in the vocabulary. Meth-

ods based on phone-lattices suffer from the computationally expensive

matching of query words to the lattice. In this work, morph lattices, trans-

formed to morph CNs, are used for retrieval. Morph CNs provide a com-

pact representation of alternative recognition candidates, while making

possible to match OOV queries by matching the component morphs of the

query terms to the morphs in the CN. Matching morphs instead of phones

or words also allows taking into account the inflectional properties of the

language.
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Subwords larger than phonemes are also used in (Mertens and Schnei-

der, 2009), where a fuzzy match between query terms and syllable lat-

tices is used to improve performance of German STD. Parlak and Saraclar

(2008) used morphs for Turkish STD by applying the ETF estimation from

(Saraçlar and Sproat, 2004) to morph and word lattices. Best performance

was achieved when using the morph and word-based methods in cascade:

if the word lattices returned no results, the morph lattices were searched.

Confusion networks were also tested, and they yielded equal performance

to full lattices, but required less storage space. Pan and Lee (2010) recog-

nize speech into standard word lattices, but transform them into subword

CNs and PSPLs. Unlike lattices, subword CNs and PSPLs allow combin-

ing subword strings into strings that are not substrings of any original

IV word. MAP was improved with subword-based indexing for both OOV

and IV queries.

6.2 Indexing and Ranking Confusion Networks

In this work, morph and word confusion networks are used for speech

retrieval in Finnish (Publications IV, V, and VI). For each spoken docu-

ment Di, a lattice is produced with the ASR and then transformed to a

CN. Two pieces of information are extracted for each term t at cluster c

in the CN: its posterior probability P (t|c,Di) and its rank in the confu-

sion set rank(t|c,Di). Two methods for estimating term frequencies are

compared. The first method is called confidence level or CL-method, and

it uses the sum of posterior probabilities of all occurrences of the term in

the CN:

TF (t,Di) =

|occ(t,Di)|∑
j=1

P (t|cj , Di), (6.1)

where occ(t,Di) = (c1, c2, . . . , cs) is the list of all occurrences of t. Thus, the

more confident the recognizer is for the term occurring, the more weight

the term is given. The formula is the same as used by Mamou et al.

(2006), with the exception of a boosting vector that they used to assign

more weight to high ranked terms, but which is omitted here.

In the second method, called rank method, the term frequency is esti-

mated as the sum of reciprocal ranks of the term in each location:

TF (t,Di) =

|occ(t,Di)|∑
j=1

1

rank(t|cj , Di)
. (6.2)

Thus, the term deemed most probable is given the full weight of one, and
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the subsequent terms in the confusion set are given less and less weight

as their rank increases. In addition to experimental evidence discussed

in the following sections, the formula can be motivated by the observation

in (Siegler, 1999), where the ranks of locally competing terms in a lattice

were found to better correlate with term presence than their posterior

probability.

For each term, the inverse document frequency needs also to be esti-

mated. The TFIDF estimates are then used in a vector space model to

rank documents using cosine similarity. In Publications IV, and V, IDF

based on the number of occurrences of the term in the CN was used. A

binary indicator o for term occurrence is estimated by:

o(t,Di) =

⎧⎪⎨
⎪⎩
1, if TF (t,Di) > 0

0, otherwise
(6.3)

The inverse document frequency for a term t is

IDF (t) = log
N∑

i o(t,Di)
, (6.4)

where N is the number of documents in the collection. However, in Publi-

cation VI the IDF was changed to:

IDF (t) = log
O

Ot
, (6.5)

where Ot is the sum of estimated TFs for the term t over the entire collec-

tion: Ot =
∑

i TF (t,Di) and O =
∑

tOt. This IDF estimation is the same

as used in (Mamou et al., 2006) and was found to perform better on the

larger Podcast-corpus.

6.3 Confusion Networks for Morph-based Retrieval

A summary of results for using confusion networks for Finnish speech

retrieval is presented in Table 6.1. Expanding the 1-best transcriptions

with alternative results from CNs requires weighting the candidates in

order not to degrade precision. On both corpora, and for all indexing types,

weighting based on the reciprocal rank of the competing terms produces

best results. However, the most appropriate weighting is likely dependent

on the corpus, the language, and the selection of indexing units.

Two different types of base form CNs have been tested. In Publication

V, the lattices were produced with an ASR using traditional word lan-

guage models. In Publication VI, the lattices were produced with a morph
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Table 6.1. Retrieval results comparing 1-best and confusion network indexing using con-
fidence level (CL) or rank based weighting. Morph (m.), base form (b.), com-
bined (c.), and interleaved (i.) indexes were tested (see Section 5.2.2). Results
on the Tampere-corpus (Tam.) and the text corpus are mean average preci-
sions (MAP) and results on the Podcast-corpus (Pod.) are mean generalized
average precisions (MGAP). The corpora have been tested on normal (N) and
high Q-OOV scenarios (H). The results on the latter scenario on the Podcast
corpus are previously unpublished. Base form results marked with 1 are pro-
duced using a word LM and a word CN. Other base form results are produced
using a morph LM, and the resulting morph lattice is transformed into word
lattice and further into a word CN.

Corp. Tam. (N) Tam. (N) Tam. (H) Pod. (N) Pod. (H)

Ref. (PIV) (PV) (PV) (PVI) -

Query long long long long short long short

m.

1-best 76.8 84.4 64.2 43.8 31.8 34.2 19.0

CL 82.3 - - 43.7 32.7 36.1 20.9

rank 85.2 86.9 70.6 46.0 34.6 41.3 26.9

b.

1-best - 77.91 48.01 43.8 34.7 36.9 21.3

CL - - - 40.3 32.2 37.8 22.7

rank - 80.01 49.81 44.3 35.4 38.5 23.5

c.

1-best - - - 46.2 37.9 40.3 26.1

CL - - - 45.2 36.1 41.4 26.5

rank - - - 46.1 37.9 43.8 29.0

i.

1-best - - - 46.8 36.1 38.9 22.6

CL - - - 46.2 36.1 40.1 23.4

rank - - - 49.2 37.3 42.4 27.4
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language model, and were then transformed into a word lattice. In both

cases, the resulting word lattices were transformed into CNs and all the

words in the CNs were lemmatized using a morphological analyzer. In

both cases, the improvements when using base form CNs are small com-

pared to when using morphs as indexing units. Partly this is due to the

fact that, in the morph CNs, different morph segmentations of the same

word may appear in the CN. The alternative segmentations increase the

likelihood that the query morph matches a morph in the CN. For the word

CNs, the alternative segmentations are merged to a single word.

Tampere corpus was used both in Publication IV and V, but changes in

recognizer setup (especially acoustic models and pruning parameters) re-

sulted in different recognition results. The recognition error rate and the

resulting 1-best retrieval performance were worse in the earlier Publica-

tion IV, but relative improvements when using CNs were bigger.

The improvements of using CNs are especially large when the Q-OOV-

rate is high. Both morph and base form CN approaches have bigger level

of increase in performance than in the normal scenario, but again for the

morph index, the improvements are bigger. This shows that even for pre-

viously unseen words, the morph recognizer is able to produce morphs

that match the query morphs, if not as the most likely candidate, some-

where among the candidate morphs in the CN.

Not surprisingly, the improvements are also higher for short queries

than for long queries. This holds for both morph and base form indexes.

For long queries, even if a query term is not in the 1-best transcription,

there are other query terms that can compensate. For short queries, there

are less other terms, and finding the query term in the CN has a big-

ger significance. Particularly impressive is the 41.6% relative increase in

MGAP from 19.0 to 26.9 for the morph index when using short queries in

the high Q-OOV scenario.

6.3.1 Effect of Term Weighting

In the Publications of this thesis, speech retrieval experiments were per-

formed using simple cosine similarity ranking with raw term frequencies

in the TF component. In initial testing using the small Tampere corpus,

raw TF was found to work better than e.g. log(TF ) or (1 + log(TF )) and

therefore chosen as the TF method for subsequent experiments. However,

it is possible that a more sophisticated model would yield higher baseline

results, and that the simple retrieval model could explain also the im-
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provements obtained by using confusion networks. Therefore, some of the

experiments were repeated using the more modern Okapi BM25 ranking

function (Equation 2.10) with parameter values b = 0.75 and k1 = 1.2.

The results are listed in Table 6.2. Also reported are the previously un-

published results for different IDF s that resulted in changing the IDF

method for the Podcast corpus.

For the Podcast corpus, it can be seen that the BM25 weighting does im-

prove the 1-best baseline results. However, confusion networks still offer

improvements in MGAP, from 45.5% to 47.4% with long queries and from

33.0% to 34.2% with short queries (morph index, the best 1-best result is

used as a baseline). The former improvement is statistically significant.

Using the IDF in Equation 6.5 gives better results than the BM25 IDF

(Equation 2.11) both for the CN and for the 1-best results, but for the 1-

best results the difference is very small. Using base forms, raw TFs give

better results for long queries, but for short queries the BM25 scoring is

better. However, in both cases, the differences are small.

For the Tampere corpus, the results are somewhat different. Using the

IDF in Equation 6.4 is significantly better than either the one in Equation

6.5 or BM25 scoring for the morph index, but for the base form index

BM25 is slightly better.

It can be concluded that both the corpus and the selection of index terms

have an effect on what is the most appropriate weighting of index terms.

The very small size and artificial nature of the Tampere corpus most likely

explains some of the differences in results. In addition, the corpus con-

tains only planned speech in noise free conditions, making it relatively

easy as a recognition task. As a result, there are fewer alternative candi-

dates in the confusion networks.

The full effect of the ranking function, its parameters, and the IDF

function is a question that still warrants further research.
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Table 6.2. Retrieval results (MAP/MGAP) comparing different TF and IDF weightings.
Results for the Tampere corpus (Tam.) are comparable to those of Publication
V and results for the Podcast corpus (Pod.) to Publication VI. Cosine ranking
(Equation 2.3) with raw term frequencies, and Okapi BM25 scoring (Equation
2.10) were tested. The two CN IDF weightings were tested: Equation 6.4 and
Equation 6.5. With BM25 scoring, the commonly used IDF for Okapi BM25
in Equation 2.11 was used. The BM25 IDF was floored to zero.

Morph
TF IDF index Tam. Pod. (long) Pod. (short)

raw Eq. 6.4 1-best 84.4 43.4 31.6

raw Eq. 6.4 CL 86.9 40.1 32.7

raw Eq. 6.4 rank 86.9 43.1 30.9

raw Eq. 6.5 1-best 75.4 43.8 31.8

raw Eq. 6.5 CL 76.3 43.7 32.7

raw Eq. 6.5 rank 77.9 46.0 34.6

BM25 Eq. 2.11 1-best 81.7 45.0 33.0

BM25 Eq. 2.11 CL 85.5 44.6 31.2

BM25 Eq. 2.11 rank 84.5 46.5 33.0

BM25 Eq. 6.5 1-best 76.3 45.5 32.7

BM25 Eq. 6.5 CL 76.7 46.4 33.4

BM25 Eq. 6.5 rank 78.5 47.4 34.2

Base form
TF IDF index Tam. Pod. (long) Pod. (short)

raw Eq. 6.4 1-best 77.9 41.3 31.7

raw Eq. 6.4 CL 78.7 34.1 23.9

raw Eq. 6.4 rank 80.0 38.1 27.0

raw Eq. 6.5 1-best 72.1 43.8 34.7

raw Eq. 6.5 CL 73.6 40.3 32.2

raw Eq. 6.5 rank 73.8 44.3 35.4

BM25 Eq. 2.11 1-best 78.8 43.4 35.1

BM25 Eq. 2.11 CL 80.3 39.0 29.2

BM25 Eq. 2.11 rank 80.3 41.9 32.0

BM25 Eq. 6.5 1-best 75.7 42.9 36.3

BM25 Eq. 6.5 CL 76.4 41.7 35.2

BM25 Eq. 6.5 rank 77.0 44.2 37.4
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7. Evaluation Metrics for Unsupervised
Morphological Analysis

Speech retrieval and other natural language processing applications need

morphological analysis methods for processing inflected word forms. As

seen in preceding chapters, using inflected word forms as language mod-

eling or information retrieval units does not work well for morphologically

rich languages such as Finnish. Unsupervised morphological analysis

methods such as Morfessor can be used for languages for which rule-based

analyzers do not exist, and they also provide improvements for languages

that do have them, for example by not limiting the lexicon of the ana-

lyzer. While usefulness of a morphological analysis method is ultimately

decided by the application where it is used, application evaluations tend

to be time-consuming and can not be used during method development.

Another option is to compare the analyses provided by the method with

manually created reference analyses. In full morphological analysis, all

morphemes in each word should be listed. For example, the linguistic

reference of the word “giving” can be given as “give_V +PCP1”. How-

ever, for unsupervised methods, the method has no way of knowing which

sort of morpheme labels are used in the references, and should not be ex-

pected to produce labels that are the same as the ones created by linguists.

Thus, the evaluation of morphological analysis methods is a challenging

research problem in itself.

One criterion for an evaluation metric is that it should correlate with

the performance of target applications that use morphological analysis.

The Morpho Challenge (Kurimo et al., 2006a, 2008, 2009a,b, 2010a,b) is a

series of competitions that aims to evaluate and design unsupervised (or

semi-supervised) and language independent methods for learning mor-

phology from large collection of text data. Participants have provided mor-

phological analyses for given word lists, which have then been evaluated

in linguistic and application tasks. Speech recognition, information re-
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trieval and machine translation have been tested over the years. In Pub-

lication VII, the results over the years are collected and used in a large

meta-analysis covering a large number of analysis methods and different

languages and tasks. The results are used to empirically compare differ-

ent linguistic evaluation methods of morphological analysis. Particularly,

the correlation of the metrics to application performance is examined.

7.1 Evaluation by Linguistic Comparison

In direct evaluations of morphological analysis methods, the proposed

word analyses are examined manually by experts, or more typically, com-

pared to linguistic “gold standard” references by automatic means. The

simplest evaluations only consider the boundaries in segmented word

forms (Hafer and Weiss, 1974; Kurimo et al., 2006a), but in general, eval-

uations of full morphological analysis is desired (Kurimo et al., 2008;

Spiegler and Monson, 2010). In both cases, the evaluation involves calcu-

lating the precision (p, the proportion of predicted morphemes/boundaries

that were also in the reference) and the recall (r, the proportion of the ref-

erence morphemes/boundaries that were predicted) of the method. Meth-

ods that tend to oversegment will have high recall but low precision, and

methods that tend to undersegment will have high precision but low re-

call. A commonly used measure that captures both precision and recall is

the Fβ-score:

Fβ =
(1 + β2)pr

β2p+ r
, (7.1)

where β > 1 gives more weight to recall and β < 1 gives more weight to

precision. When β = 1, the measure is called simply the F-score.

Since the predicted morphemes can be arbitrary, simply examining the

sets of morphemes is not possible. Instead, co-occurrence analysis is used,

where it is examined how morphemes are shared between words. The ap-

proach can also be called isomorphic analysis (Spiegler and Monson, 2010)

since the problem is related to solving graph isomorphism: the analyses

for a set of words can be represented as bipartite graph G = (M,W ;E),

which has two disjoint sets of vertices, morphemes M = {m1, . . . ,mn} and

words W = {w1, . . . , wm}, as well as edges e(mi, wj) that connect vertices

in M to vertices in W . If two graphs are isomorphic, that is, there ex-

ists a bijection between their vertices, the corresponding sets of analyses

are equivalent. Word graph is another representation of the analyses,
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in which the morpheme vertices are disregarded and each pair of edges

e(mi, wj), e(mi, wk) is replaced by edge e(wj , wk) so that two words are con-

nected if they share a morpheme.

Comparing the word graphs of the reference analyses and the predicted

analyses, recall can be calculated as the proportion of edges that are in the

reference graph but not in the predicted graph and precision as the pro-

portion of edges that are in the predicted graph but not in the reference

graph. However, comparing large graphs as a whole can be computation-

ally inefficient, and some form of approximation may have to be applied.

7.1.1 MC-metric

For Morpho Challenge 2007 (Kurimo et al., 2008), an evaluation metric

(MC-metric) for full morphological analysis was developed, and in 2009 it

was slightly revised (Kurimo et al., 2010b). In the evaluation, a set of ran-

dom word pairs that have at least one morpheme in common is sampled:

first a number of focus words are sampled, and then for each predicted

morpheme from each focus word, another word that has the same mor-

pheme is sampled. This corresponds to sampling edges from the word

graph. For each focus word, the precision is the proportion of its word

pairs that also have a common morpheme in the reference analyses. Re-

call is calculated similarly by sampling focus words and their pairs from

the reference. Overall precision and recall scores are the average over fo-

cus words. Alternative analyses for possibly ambiguous word forms are

allowed. If there are multiple analyses for a word, the precision is the

average of precisions of different alternatives. If there are multiple ref-

erences, the precision is the maximum of precisions. The same holds for

recall, but in a mirror fashion.

The MC-metric is efficient to calculate, but it has a few limitations.

Since the sampled word pairs are dependent on the predicted analyses,

different algorithms will have different evaluation sets. Also, not all in-

formation in the known analyses are used, which will lead to inefficient

estimates if the reference set is small. The MC-metric is also suscepti-

ble to different types of gaming as demonstrated by Spiegler and Monson

(2010). In ambiguity hijacking, unreasonable amount of alternative seg-

mentations are given as if there was great ambiguity in all words. The

MC-metric will give a high F-score to these systems. In shared morpheme

padding, the same bogus morpheme is added to analysis of every word.

This will greatly increase recall scores. Precision will drop, but the result-
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ing F-score can still be unreasonably high.

7.1.2 EMMA

MC-metric can be called a soft isomorphic measure, as it does not map

morphemes in the reference and predicted analyses to each other. Spiegler

and Monson (2010) proposed a hard isomorphic measure called EMMA

(evaluation metric for morphological analysis), which seeks one-to-one

mapping between the predicted and reference morphemes. After the op-

timal mapping is found, precision and recall can be directly calculated

based on the number of shared morphemes.

The mapping is found using bipartite graphs, where one set of vertices

correspond to the reference morphemes and another set to the predicted

ones. If there is a word that has in its reference analysis the morpheme

mi and in the predicted analysis the morpheme mj , an edge e(mi,mj)

exists between the morphemes. The weight cij of the edge is the number

of such words. The more weight the edge has, the bigger the resulting

precision and recall is, if the edge is selected in the final mapping. Thus,

the task is to select the edges in the bipartite graph, so that a one-to-one

mapping is realized and that the sum of the weights of the selected edges

is maximized. The maximization can be achieved using integral linear

programming techniques by defining a binary matrix B where bij = 1

indicates that there is an edge from mi to mj in the optimal solution. The

problem can be then defined as:

argmax
B

∑
i,j

(cij × bij) s.t.
∑
i

bij ≤ 1,
∑
j

bij ≤ 1, bij ∈ {0, 1}. (7.2)

Alternative analyses are allowed in EMMA by normalizing the weight of

morpheme pairs by the number of possible pairings between proposed and

reference analysis alternatives. After finding the one-to-one morpheme

mapping, bipartite graphs are used again, this time to match full pro-

posed and reference analysis alternatives so that the number of correctly

predicted morphemes is maximized across all alternatives.

The one-to-one matching of EMMA means that the metric accounts for

allomorphy and syncretism by penalizing analyses that do not map al-

lomorphs to the same morpheme or differentiate between syncretic mor-

phemes that have identical forms but different meanings. The provided

mappings allow to examine the performance of different algorithms qual-

itatively. Experiments also show that EMMA is not vulnerable to gaming

like the MC-metric (Spiegler and Monson, 2010).
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However, the computational cost of solving the bipartite graphs grows

rapidly when the size of the linguistic reference is increased. In Pub-

lication VII of this thesis, a modified version of EMMA (EMMA-2) was

proposed that reduces the computational complexity by replacing the one-

to-one mapping by two many-to-one assignments. The idea is that if two

allomorphs are not joined, it affects recall but not precision, and if two

syncretic morphemes are not distinguished, it affects precision but not

recall. Thus, when calculating precision, a many-to-one mapping is used

where several predicted morphemes may be assigned to the same refer-

ence morpheme. Similarly, when calculating recall, a one-to-many map-

ping is used. In EMMA-2, the matching equations are

Bp = argmax
B

∑
i,j

(cij × bij) s.t.
∑
j

bij ≤ 1, bij ∈ {0, 1}, (7.3)

for precision and

Br = argmax
B

∑
i,j

(cij × bij) s.t.
∑
i

bij ≤ 1, bij ∈ {0, 1}, (7.4)

for recall. In both cases, the best match for each morpheme can be se-

lected independently from others, reducing the computational complexity

significantly. However, the possibility for gaming is increased.

7.1.3 CoMMA

Another new metric (CoMMA, co-occurrence-based metric for morpholog-

ical analysis) was proposed in Publication VII. It is based on the MC-

metric and aims to deal with some of the limitations of the MC-metric.

Namely, that MC-metric uses different word pairs for different algorithms,

and that not all references are used in the calculation. Co-occurrence be-

tween morphemes in the reference answers are counted in a matrix A,

and in the suggested analyses in a matrix S. First, the case where there

are no alternative analyses for words is considered. The matrix elements

aij and sij are the number of morphemes that are shared between words

i and j in the reference and in the suggested analyses, respectively. The

difference between the matrixes tells us about the quality of the analysis.

Let the numbers of words that share at least one morpheme with the word

i be ni = |{j : sij > 0}| and mi = |{j : aij > 0}|. The numbers of words that

have at least one common morpheme with any word is vs = |{i : ni > 0}|
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and va = |{i : mi > 0}|. The precision and recall can be given as:

p =
1

vs

∑
i:ni>0

1

ni

∑
j:sij>0

min(sij , aij)

sij
; (7.5)

r =
1

va

∑
i:mi>0

1

mi

∑
j:aij>0

min(aij , sij)

aij
. (7.6)

Two methods were tested for extending the metric to the case where sev-

eral alternative analyses are allowed. In the first (CoMMA-B) the maxi-

mal co-occurrence count is taken for each word. Adding more alternatives

will generally increase recall but degrade precision. In the second ap-

proach (CoMMA-S), wrong number of alternatives is directly penalized.

The alternatives are added to the rows of the matrixes S and A. Cal-

culating precision and recall now involve solving an assignment between

predicted and reference alternatives that optimizes the F-score. See Pub-

lication VII for details.

It was also tested whether isolated words that do not share morphemes

with any other word should be excluded from evaluation. The exclusion is

done by setting the diagonals of matrixes A and S to zero. “0” in the algo-

rithm name is used to mark exclusion and “1” inclusion. The tested alter-

natives were thus: CoMMA-B0, CoMMA-B1, CoMMA-S0, and CoMMA-

S1.

7.2 Application Evaluations

In indirect evaluations, the morphological analysis methods are compared

on the basis of how well they perform in a real NLP task. In Morpho Chal-

lenge, multiple tasks in multiple languages have been used to evaluate

morphological analysis algorithms.

7.2.1 Information Retrieval

The information retrieval task is similar to the morph-based approach for

speech retrieval used in this thesis. All the words in the corpus and in the

queries are replaced by their suggested analyses, and thus queries are

matched to documents based on morphemes instead of words. A number

of reference methods were also tested: words without any analysis, base

forms by a rule-based analyzer, and stemming. In information retrieval,

finding stem morphemes is most important, since all the documents that

contain the query word in any inflected word should be returned. If the

evaluated algorithm uses special markings for affixes they would be easy
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to exclude. However, another approach was used, where an automatic

stop list is constructed by excluding morphemes that have more occur-

rences than a certain threshold. The generated stop lists contained mostly

affix morphemes. This way, all algorithms can be treated equally. Using

Okapi BM25 for ranking, the performance without a stop list was severely

degraded. By looking at Equation 2.11, it is apparent why: if a morpheme

is present in more than half of the documents, the IDF for the morpheme

is negative and almost any other document will be ranked higher than a

document with the morpheme. Another option would be to limit the IDF

to always be higher than zero or a constant near zero.

The experiments were performed on Finnish, English and German cor-

pora. In all languages, the best MAP was achieved by one of the language-

specific reference algorithms. For German and Finnish, the two-level mor-

phological analyzer gave the best results, and for English the traditional

Porter stemmer (Kurimo et al., 2010a). The performance of the best unsu-

pervised methods were very close to the reference methods, and a number

of algorithms achieved a level of performance that was not significantly

worse than the reference methods. Achieving statistically significant dif-

ferences is in fact difficult with the limited number of queries, and the

results should be interpreted with care.

Some conclusions can be drawn, however. The Morfessor Baseline algo-

rithm performed reasonably well in all languages. Also, combining results

from two different algorithms is a good strategy for maximal IR perfor-

mance. The ParaMor method by Monson et al. (2008) uses an unsuper-

vised model for building linguistically motivated paradigms. Combined

with the results of Morfessor CatMAP, very good IR results are achieved.

An extension of Morfessor Baseline, Allomorfessor (Kohonen et al., 2009),

models allomorphy by allowing strings mutations, and improves the IR

results for Finnish over Morfessor Baseline. Perhaps disappointingly for

developers of morphological analysis, using simple letter n-grams (Mc-

Namee and Mayfield, 2007) gives excellent IR results, even for the mor-

phologically very complex Finnish language.

7.2.2 Speech Recognition

In speech recognition, morpheme segmentation is needed to build efficient

language models for morphologically rich languages. In (Kurimo et al.,

2006a), n-gram language models for Finnish and Turkish were built us-

ing corpora segmented with different algorithms and the resulting speech
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recognition error rates were compared. It was noted that it is hard to

achieve significant differences between methods. The experiments were

also very labor intensive, and they were not repeated in later challenges.

7.2.3 Machine Translation

In statistical machine translation (SMT), statistical models are estimated

from bilingual text corpora, and used to translate sentences from a source

language to a target language. By incorporating morphological analy-

sis in SMT, potentially better translation models can be built, since data

sparsity in training data is reduced, for example by taking into account

dependencies between inflected word forms (Nießen and Ney, 2004). Ger-

man to English and Finnish to English translation systems were trained

(Kurimo et al., 2010b). Morphological analyses were applied to the words

in the source languages but not in the target language. The results show

that using morphological analysis does not improve the results over a

word-based baseline. However, combining morpheme-based and word-

based approaches, the best algorithms perform significantly better than

the word-based method alone.

7.3 Metric Correlations

In Publication VII, the correlations of different linguistic evaluation met-

rics with respect to IR and SMT performance were examined. Morpholog-

ical analysis results of about 20 different methods or their variants were

available. The performance of the analysis methods were evaluated using

different linguistic metrics, as well as in IR and SMT application tasks.

Further, the evaluation metrics were evaluated in terms of susceptibility

to gaming, computational complexity and stability to changes in the eval-

uation set. Selected results concentrating on the IR aspects are reviewed

here.

Figure 7.1 shows the correlation of F-score from different linguistic met-

rics to MAP in IR using Spearman’s rank correlation. EMMA correlates

highly in English and Finnish, and moderately in German. The EMMA-2

metric gives very close results. The MC-metric performs poorly in English

and Finnish, but surprisingly the correlation is the highest in German.

The CoMMA metrics perform well for English, the S1-variant is almost at

par with EMMA, but for Finnish their performance is poor and for Ger-
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Figure 7.1. Correlations between the F-scores of different linguistic evaluation methods
and the scores of IR and SMT evaluations. Figure lifted from Publication VII.

man moderate.

The F-score weighs precision and recall equally. However, it is not cer-

tain that in information retrieval precision and recall in morphological

analysis have equal importance in the resulting MAP. The tradeoff be-

tween precision and recall is related to how aggressively the algorithm

segments the words. If the algorithm undersegments, the precision will

be high but recall low. In IR, the effect is similar: recall will drop if related

word forms are not conflated. The reverse holds for oversegmentation: re-

call will rise and precision will drop. Figure 7.2 plots how Fβ correlates

to MAP in IR with different values of β. For the co-occurrence based MC

and CoMMA-metrics, precision plays more important role than recall as

the maximum values are achieved with β < 1. For EMMA and EMMA-

2, the maximum values are reached when recall is weighted more, but

the balanced F-score at β = 0 is also very good. Overall, with the opti-

mally weighted versions, the performance of MC and CoMMA metrics is

brought much closer to EMMA and EMMA-2. The graph for German is

slightly strange, since very good correlations are achieved also when only

precision is taken into account.

The results show that EMMA has a very good overall performance. It

has a high correlation with application performance, it is hard to game,

and the one-to-one mapping of morphemes provides opportunity to inter-

pret the results qualitatively. Its weakness is the computational complex-

ity. EMMA-2 solves the computational complexity problem, while main-

taining the good correlation and robustness of EMMA. The drawback of

EMMA-2 is that it does not provide as clear mapping of morphemes. How-

ever, it provides more interpretable view of precision and recall in cases

where the number of predicted morphemes is wrong. The CoMMA meth-
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Fβ vs. IR/MAP, English
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Fβ vs. IR/MAP, Finnish
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Fβ vs. IR/MAP, German
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Figure 7.2. Correlations between the results of the application evaluations and weighted
Fβ-scores as a function of β. Figure lifted from Publication VII.
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ods improve over the MC-metric, but lose to the EMMA metrics in terms

of correlation to application performance. However, for English the met-

rics work as well as EMMA.
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8. Conclusions

This thesis proposes to use morph-based methods for speech retrieval.

Morpheme-like units are discovered statistically from unlabeled text and

used for language modeling, story segmentation and retrieval. The speech

retrieval experiments are performed on Finnish, a highly agglutinative

language. While Finnish is likely to benefit more from the methods pro-

posed in this thesis, other languages, even morphologically simple ones,

could benefit from the improved ability to recognize OOV-words. Com-

pared to many other OOV robust retrieval methods, the biggest advan-

tage of the morph-based approach is its simplicity: there is no need for

traversing lattices at query time, instead any text retrieval method can be

applied to the morph frequency estimates from transcripts or from confu-

sion networks. However, morph-based retrieval on other languages still

warrants further research.

The results show that using a morph-based language model greatly im-

proves speech retrieval performance, even when compared to a very large

word language model. Further, even on high quality speech transcripts,

using morphs as index terms works as well as the traditional method

of using base forms provided by a rule-based morphological analyzer. If

an analyzer is available, combining the morph and base form based ap-

proaches is the recommended method. The results on the scenarios where

the Q-OOV-rate is high, are particularly illustrative of the benefits of the

combined approach. Morphs and base forms both capture different fea-

tures that neither of them can capture alone.

In story segmentation, morphs and base forms perform at about equal

levels. However, comparing the performance between segmenting error-

free text and ASR transcripts, it seems that morphs are somewhat more

resilient to recognition errors than base forms.

Extracting alternative recognition candidates from confusion networks
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further improves retrieval results. The increase is larger for morph-based

indexing. Partly this is because it compensates for a weakness of the

morph-based approach: in some cases there are multiple possible morph

boundaries for a word, and one of them will appear in the transcription,

and the other in the query. Using confusion networks, some of the alterna-

tives can appear in the confusion set. However, in the word-based index-

ing there are also improvements, especially in the high Q-OOV scenario,

showing that some of the candidates in the confusion network are legit-

imate alternative results, and including them in the index improves re-

trieval performance. Further, confusion networks provided improvements

also when the queries were directly expanded with alternative morph seg-

mentations. Weighting the results based on the reciprocal rank of the

term was found more effective than based on the probability. However,

it was also discovered that the corpus size has an effect on the proper

weighting.

In this thesis, speech recognition, story segmentation, indexing and re-

trieval parts of a speech retrieval system are considered. There are still

points of improvement and research in all those areas. In segmentation,

incorporating acoustic cues would likely improve the results, and using al-

ternative lexical methods could also be tested. In speech recognition, the

language model tries to capture sequences of morphs, while in retrieval,

the interest lies in lemmas that capture the content of the speech. In this

work, the same set of morphs are used for both, but the set of morphs

that works best for the former, will not necessarily work best for the lat-

ter. Using the same set of morphs for both recognition and retrieval is

justified, however, by the fact how unseen words are recognized. Some

of the morphs in the word can be recognized correctly, but usually not

the entire word, thus it is important to segment the query word using the

same morphs. There is a tradeoff between accurate recognition of common

words, and being able to include also rare and unseen words. For example,

shorter morphs would give a better chance of recognizing unseen or rare

words, but shorter morphs would also degrade the recognition of common

words, which would have a negative effect on retrieval performance as

well. Thus, the selection of language modeling units that provides best

retrieval results also warrants some further research.

In the morph-based system, because the units are shorter, the depen-

dency between adjacent units in the transcript is larger than in a word-

based system. However, the vector space model used in this thesis ignores
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the proximity information completely. A possibly better alternative would

be using a retrieval method based on the language modeling approach.

Estimating the models from confusion networks would allow a natural

way of incorporating alternative recognition candidates as well.

For text retrieval, the morph-based approach is viable as well, and while

improvements in statistical machine translation are harder to achieve,

they are also possible. While the advantages over rule-based methods may

not be as clear as in the case of retrieving OOV-words from speech, the re-

sults show that Morfessor and other unsupervised methods can provide

good performance. Especially less resourced languages, and dialectal or

colloquial language material can benefit from unsupervised methods. The

morph-based approach has potential in other natural language process-

ing applications as well. In future work, using morphs for part-of-speech

tagging, speech synthesis and word sense disambiguation will be tested.

In this thesis, methods for evaluation of unsupervised learning of mor-

phology are compared empirically. An evaluation method that correlates

well with real application performance, and that is readily computable,

will help in development of unsupervised morphological analysis meth-

ods. Those, in turn, will help improve performance of applications such as

text or speech retrieval.
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