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Abstract 
A widely employed strategy in current biomedical research is to study samples from patients 
using high-throughput measurement techniques, such as transcriptomics, proteomics, and 
metabolomics. In contrast to the static information obtained from the DNA sequence, these 
techniques deliver a ``dynamic fingerprint'' describing the phenotypic status of the patient in 
the form of absolute or relative concentrations of hundreds, or even tens of thousands of 
molecules: mRNA, proteins, metabolites and lipids. The huge number of variables measured 
opens up new possibilities for biomedical research; harnessing the information contained in 
such 'omics' data requires advanced data analysis methods. 

 
The standard setup in biomedical research is comparing case (diseased) and control (healthy) 

samples and determining differentially expressed molecules that are then considered potential 
bio-markers for disease. In modern biomedical experiments, more complicated research 
questions are common. For instance, diet or drug treatments, gender and age play central roles 
in many case-control experiments and the measurements are often in the form of a time-series. 
Due to these additional covariates, the experimental setting becomes a multi-way experimental 
design, but few tools for proper data-analysis of high-dimensional data with such a design exist. 
Moreover, the task of integrating multiple data sources with different variables is nowadays 
often encountered in two classes of biomedical experiments: (i) Multiple omics types or 
samples from several tissues are measured from each patient (paired samples), (ii) Translating 
biomarkers between human studies and model organisms (no paired samples). These data 
integration tasks usually additionally involve a multi-way experimental design. 

 
In this dissertation, a novel Bayesian machine learning model for multi-way modelling of data 

from such multi-way, single-source or multi-source setups is presented, covering the majority 
of situations commonly encountered in statistical analysis of omics data coming from current 
biomedical research. The problem of high dimensionality is solved by assuming that the data 
can be described as highly correlated groups of variables. The Bayesian modelling approach 
involves training a single, unified, interpretable model to explain all the data. This approach can 
overcome the main difficulties in omics analysis: small sample-size and high dimensionality, 
multicollinearity of data, and the problem of multiple testing. This approach also enables 
rigorous uncertainty estimation, dimensionality reduction and easy interpretability of results 
from a complex setup involving multiple covariates and multiple data sources. 
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This work was done in the Adaptive Informatics Research Centre of the
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work has been supported by the Graduate School of Computer Science and
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the MultiBio research consortium and the MASI program. Helsinki Doc-

toral Programme in Computer Science - Advanced Computing and Intelli-

gent Systems (Hecse) supported my participation to scientific conferences

and workshops abroad during the thesis work. I later switched to The

Graduate School in Computational Biology, Bioinformatics, and Biome-

try (ComBi), i.e., as of 2010 the Finnish Doctoral Programme in Compu-

tational Sciences (FICS) who also supported my participation to scien-

tific conferences and workshops and my research visit abroad. Tekniikan
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pleasure belonging to the Helsinki Institute for Information Technology

(HIIT).
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on my path of becoming a machine learning researcher. I joined the MI

group as a physics student with little background in machine learning or
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modelling problems, publish, give presentations and build collaborations.
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useful during my future career.
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an instructor. I could not have had a better person than docent Janne

Nikkilä to instruct me. He helped me to get started with my research,
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to solve the almost impossible data analysis task at hand. Finally, we got

on the right track on what kind of newmodelling would be required. When

the moment arrived, he took the role of a mentor, giving me the initiative,

which allowed me to take the responsibility of planning the details of our

methods. The model blueprint I one day plotted on the whiteboard of his

office became the essence of this dissertation.

During the years of collaboration with VTT, I attended numerous formal

and informal meetings with Matej Orešič and his collaborators. I want to

thank all the people I met in those meetings: I always felt I was playing

a small part in something big. In particular, the last paper of this thesis

was the real test for the validity of the model I had developed: application

to a completely new dataset not used in developing the model. I want to

thank professor Marja-Riitta Taskinen, docent Matti Jauhiainen and doc-

tor Laxman Yetukuri for having set up the interesting medical research

question that we managed to answer, and for the conversations we had

during our meetings.

Thanks for useful comments to the pre-examiners of the thesis: profes-

sor Antti Penttinen and doctor Simon Rogers.

During my studies, I was surrounded by a wonderful group of young

researchers: the MI group. Many thanks to all its current and former

members for help and friendship; especial thanks to Arto Klami for help,

and for Gayle Leen and my true peer Leo Lahti for many inspiring con-
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versations and time spent together. Thanks also to all the people at the

Department of Information and Computer Science. Nicolau Gonçalves
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also some sad and difficult ones. During the good and the bad moments, a

bunch of people were always there for me. Very special thanks to my mom

Maria, and my dad Olli who sadly passed away before he could see the

completion of my doctoral studies. They greatly supported all the different

phases of my education on my way to become a researcher, starting from

the childhood adventures exploring the chemistry set, microscope, tele-

scope and the books ‘Keksijän käsikirja’ and ‘Suomen Luonto’. Thanks

also to my siblings Markku and Anne, all my friends, and my relatives

in the Huopaniemi family. Alongside my parents, my godfather Timppa

always greatly encouraged me to do doctoral studies. I’m glad I did. Fi-

nally, the last phase of my studies, writing the thesis and simultaneously

preparing for and getting started with a new period of life abroad, was
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1. Introduction

“Multi-scale data integration, including genomic, expression, metabolite,

protein, and clinical information, will ultimately define the future of pa-

tient care” - (Eric Schadt, 2011)

Using machine learning to solve bioinformatics data analysis
problems

Mankind has a challenge: In most scientific fields, the amount of mea-

sured information has exploded due to rapid technological advances and

rapidly decreasing costs in measurement techniques. The question of how

to convert data into knowledge has become a central issue, increasing re-

markably the importance of novel scientific fields such as machine learn-

ing and data mining.

Modern biomedical research (alongside data coming from the Internet)

is perhaps the clearest example of this development. Advances in molecu-

lar profiling and DNA sequencing techniques have enabled high-through-

put measurements; simultaneous profiling of many or all of the genes or

molecules of a given type. As a result, the amount of data has increased

dramatically and measurement results can no longer be interpreted by

visual inspection alone but require advanced computational data analy-

sis methods. To tackle this challenge, the increasingly prominent field of

bioinformatics has become a necessary component of biomedical research.

Because of emerging biomedical research opportunities, new methodolog-

ical research questions appear rapidly, maintaining bioinformatics in a

state of constant change. In the analysis of biomedical data, one contin-

ually encounters situations where existing data-analysis methods are not

applicable to the novel problem to be solved, and novel methods need to

13



Introduction

be developed.

Machine learning is a scientific field that deals with developing algo-

rithms that allow computers to learn from observed data. Machine learn-

ing overlaps with statistics and computer science but is its own scien-

tific discipline with a large and active research community. Machine

learning is useful in solving difficult, very high-dimensional data anal-

ysis problems that require novel modelling approaches in order to provide

a meaningful dimensionality reduction and interpretation of the data.

Machine learning algorithms take advantage of computers and compu-

tational power, which has fortunately greatly increased simultaneously

with the amount of available data.

One of the widest and most important research questions common to

biomedical research, bioinformatics and other machine learning applica-

tion areas, is how to integrate information from multiple data sources

instead of using a single data source. Data integration is a very active

and interesting research question for methodological machine learning

research as well.

This dissertation falls in the areas of machine learning and bioinfor-

matics, more specifically in the areas of generative modelling and Bayes-

ian methods. In a part of this dissertation, I also deal with integration

of multiple data sources also known as multi-view learning. In this dis-

sertation, Bayesian machine learning is used to tackle one of the most

important questions in statistical data analysis, that is, multi-way mod-

elling; finding the effects of multiple covariates and their interactions in

the data. The focus is on high-dimensional, small sample-size single and

multi-source data.

1.1 Biomarker discovery

The traditional avenue of biomedical research, stemming from theMendel-

ian era, has been the study of associations of genome, particularly gene

alleles, to observable traits such as diseases. Whereas the genome rep-

resents a static blueprint of an individual, it has been long known that

human phenotype, the overall physiological state of an individual at a

given moment, results from both the genotype and environmental factors.

The range of environmental factors contributing to an individual’s phe-

notype is huge, consisting of the current state and the accumulation of

environmental influence over a lifetime. Examples of major accumulating
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factors in human phenotype are lifestyle, diet, smoking, drinking, aging,

and physical activity [1, 2, 3, 4, 5, 6]. On the other hand, factors that

characterize the current phenotypic state are: whether an individual is

suffering from a disease, whether he is using medication, Body Mass In-

dex (BMI), and age, for instance.

The overall aim of medicine is to improve the health and well-being of

people and the purpose of biomedical research is to increase the possi-

bilities and efficiency of medical care. One current direction of medical

research is towards preventive health care. The phases of medical treat-

ment can be divided into three categories: (i) treat the symptoms, (ii) cure

the disease, and (iii) prevent the disease onset. One cornerstone of the

concept of personalized medicine [1, 7], meaning customized medical

care based on biological and other data, is to treat the disease risk [1, 8]

before the disease develops.

Although the evaluation of the patient is possible for a physician from

clinical examination and symptoms described by the patient, a standard

practice of clinical medicine has long been to use laboratory tests: col-

lect blood samples and measure the concentrations of certain molecules

known to be associated with the onset or activity of a suspected disease.

These known molecules, called biomarkers, can substantially help in

diagnosing the disease and deciding on a treatment. Widely known exam-

ples of biomarkers are elevated concentration of glucose as a consequence

of diabetes [9], C-reactive protein (CRP) [10] as a marker for inflammation

and cancer markers [11].

There is an ever-growing continuous effort in the biomedical scientific

community to find novel and more accurate biomarkers to characterize

disease status or disease activity. Biomarker discovery has been tradi-

tionally limited to testing the validity of one (or a few) suspected candi-

date biomarker(s) at a time due to constraints in laboratory techniques.

The advent of high-throughput profiling methods, such as transcriptomics

(gene expression), proteomics and metabolomics, has revolutionized the

potential for biomarker discovery. The word transcriptomics refers to the

messenger RNA (mRNA) molecules, proteomics to proteins, and metabol-

omics to metabolites. High-throughput profiling has enabled researchers

to move from targeted profiling of a few candidate molecules to simul-

taneous measurement of the concentrations of a very large number of

molecules of a given type. The number of metabolites (such as lipids)

detected can be hundreds, and the number of transcripts (mRNA) tens of

15



Introduction

thousands, representing the whole profile of activity of the chosen ‘omic’

molecule type in the organism. In this dissertation, I will use the word

omics to describe transcriptomics, proteomics andmetabolomics (lipidomics);

they all result in similar concentration-type, continuous-valued data. Any

omics profile, such as transcriptomic [11, 12], metabolic [13], or integrated

profile [2], is a fingerprint of the dynamical phenotypic status of an indi-

vidual at a given time, and it contains valuable information of the health

status of the individual. The large number of molecules and their concen-

trations, represented as activities of an omics profile, contain a potentially

unlimited supply of candidate biomarkers for detecting disease-related in-

formation.

An even more ambitious goal, compared to standard disease diagnos-

tics, is to search for early biomarkers for disease [8, 11, 14, 15]. Such

biomarkers could alert physicians to the possibly disease-causing mal-

function in the physiological state of a patient before the actual disease

onset. The promise of early biomarkers may ultimately make it possible

to design therapies that help prevent the onset of the disease.

A third field where biomarker discovery is active is pharmacogenomics

[7], where biomarkers are used to predict how well a patient will respond

to a drug treatment and whether the drug has adverse effects [7, 16, 17].

Although the main interest in pharmacogenomics has previously been in

using genotypic biomarkers for prediction [7, 11, 18], dynamic transcrip-

tomics [11, 19, 20, 21] and metabolomics [22] biomarkers are starting to

prove useful as well.

To test whether a candidate biomarker is associated with a disease,

one needs to design an experiment and do statistical testing on the col-

lected data. The standard approach is a comparative study: to collect a

population of diseased samples (case) and healthy samples (control) and

study differential concentration or expression of the molecules by statisti-

cal tests. Elevated concentrations in the case population compared to the

control population are called up-regulations, and lower concentrations in

the case population are called down-regulations. Another measure used

in biomarker discovery, not considered further in this dissertation, is the

ratio of concentrations of two molecules [11]. Any discovered statisti-

cally significant difference in the concentration of a molecule is a potential

biomarker for disease, although a plethora of problems exist [8, 11]. Care-

ful validation steps, including repeated experiments in other laboratories

and clinical validation, are usually required for a biomarker to be accepted
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[23] for clinical use.

From a wider viewpoint beyond clinical biomarker discovery, the key

interest of biomedical research is understanding how biological systems

function. The same statistical principles of comparative experimental

designs are commonly used in many biomedical studies. A common ap-

proach is perturbing a system by an intervention or by knocking out a

particular gene [4, 24], and examining how the behavior of the system

is altered compared to a normal, healthy system. The observed differ-

ences in the behavior can help to gain insight into the physiology of the

system. These studies usually lead to experimental designs and need for

data analysis similar to the ones in biomarker discovery.

The most serious fundamental difficulty in the data analysis of modern

biomedical studies is that, whereas the number of variables (molecules)

is large, the number of samples (patients) is often small. This may be due

to economical or ethical reasons or simply because of a small number of

patients with a given condition being available. Whereas the large num-

ber of profiled molecules offers a huge potential for discovering biomark-

ers and studying biological systems, the small number of samples repre-

sents fundamental problems [25, 26] for the statistical methodology used

in simultaneously testing a large number of variables for disease associ-

ations. The scientific community is currently in the process of searching

for feasible computational approaches to deal with the “small n, large p”-

conditions: conditions where the assumptions, into which a century of

work in traditional multivariate statistics has leaned, do not hold.

There are often two additional key problems that need to be addressed

in the analysis of biomedical data: multi-way experimental designs, stem-

ming from there usually being multiple covariates in the experiment in

addition to the case-control comparison; and data integration, that is,

analysis of measurements of multiple types. There exist no standard,

widely accepted data analysis methodologies for multivariate analysis of

high-dimensional data in the case of multiple covariates, especially when

the data come from multiple data sources.

1.2 Multi-way experimental designs

The conceptualization of an experiment that looks for disease biomarkers

by comparing case and control populations is, in many cases, an over-

simplification. There are two reasons that may account for this: (i) in
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biomedical experiments, there are usually confounding factors that may

bias the results unless dealt with properly, and (ii), in many experiments,

the effects of multiple covariates in the data, and the effects of their in-

teractions, are often of particular interest to study.

In statistics, a covariate is a variable that is potentially predictive of the

response variable(s). In this dissertation, variables that annotate individ-

uals (disease status, gender, treatment) are covariates and the omics data

are the response variables.

In some multi-way experimental designs, there is a clear distinction be-

tween the covariates of interest (such as disease status) and confounding

factors. Confounding factors are covariates that are correlated both with

the covariate of interest and the response variables. In human studies

looking for disease associations, for instance, gender, age, BMI, drug treat-

ment, or race can have large effects on the concentrations of molecules. In

the analysis of omics data, it is important to try to take into account all

such potential confounding factors in order to obtain unbiased disease as-

sociations. A basic approach is to stratify the data analysis problem into

smaller parts, such as comparing healthy and diseased males and females

in different age groups separately (as an example, see [9, 27]). The side

effect of stratifying the analysis is that it leads to an even smaller num-

ber of samples available in each sub-population [28], worsening the “small

n, large p”-problem. Additionally, interpreting the results from multiple

separate analyses is more tedious. Instead, it would be advantageous to

formulate the data analysis problem as a multi-way experimental design

to be able to estimate the effects of all the covariates and their interac-

tions in the data jointly.

In many experiments, the main research question is to study the effects

of all the relevant covariates and their interactions. One of the most com-

mon biomedical experiment types is studying the effects of drug, diet, or

other interventions [9, 29, 30, 31, 32]. Other examples are studying the

effects of a gene knock-out [29] or the effects of gender and age as addi-

tional risk factors [29]. Treatment groups and other relevant descriptors

are common covariates in experimental designs. For instance, in the de-

signed diseased-healthy drug intervention multi-way experiment of Pub-

lication II, a drug effect may be interpreted as a direct drug side effect;

the interaction of drug and disease is actually the effect of interest, indi-

cating whether the drug cures the disease. As another example, patients

of different genders have been shown to have differential omics profiles
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[27, 33]. The interaction effect of disease and gender may be interest-

ing for determining whether different genders have differential disease

effects or differential responses to drugs.

One aim of personalized medicine is to move away from the broad defi-

nitions of a disease in a large population to defining disease subtypes on

groups of similar patients. The aim is personalized treatment instead of

the model that “one treatment fits all patients equally”. Patient popu-

lations will therefore be increasingly looked at as subgroups defined by

multiple covariates.

Experimental designs are often categorized into designed and observa-

tional studies. Designed study refers to a highly controlled study, for ex-

ample a laboratory study, where patients are randomized into treatment

groups. Observational study refers to studies where the assignment of

patients into treatment groups is outside the control of the investigator;

an example is human data accumulating from everyday clinical practice.

In summary, many clinical and biomedical settings have multiple covari-

ates that are either confounding or interesting and coming from either a

designed or an observational study. This type of data analysis problem

can be formulated as having a multi-way experimental design, where ob-

servations (samples or individuals) have been divided into populations of

measurements according to multiple covariates. The data analysis can

then be done by multi-way modelling, which is the topic of this disserta-

tion.

1.3 Measuring and integrating multiple data sources

There is a growing trend in biomedical research to measure multiple omics

data sources from each individual, because different data sources are bio-

logically complementary and the cost of the experiments are becoming in-

creasingly tolerable. Such multi-source omics data come from two types of

experiments: 1) measuring multiple different omics types and 2) collect-

ing measurements from multiple tissues. Doing the multi-source mea-

surements is relatively cheap and easy, whereas analyzing the data is

more challenging. There are no widely accepted methods for integrating

multiple data sources if the analysis is to be taken beyond a standard

study of association between variables and a disease outcome.

It is widely believed [34, 35, 36] that the future of medicine is in the in-

tegration of genomic, transcriptomic, proteomic, and metabolic data with
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clinical data. It is therefore increasingly common to measure multiple or

all the omics data types: gene expression, proteomics and metabolomics

from each individual [2]. It has been realized that more relevant informa-

tion of biological phenomena can be gained from a combination of all the

data types than from a single data type and that different omics types are

biologically complementary. These types of datasets are often accompa-

nied by high-throughput genetic sequence data and a varying amount of

clinical information.

Another line of biomedical research leading to multiple data sources

from each individual, is takingmeasurements frommultiple tissues. There

are two types of applications for multi-tissue experiments: 1) the practi-

cal application of predicting the state of a disease tissue from an easily

collectible tissue, such as blood plasma, and 2) a more general physiolog-

ical interest of studying disease-related relationships between multiple

tissues.

In the center of most studies of diseases, there is a disease tissue of inter-

est, such as pancreas in diabetes, kidney in chronic kidney disease, lung

in lung cancer [29], or in general any cancer tissue [11, 36, 37]. The con-

centrations of molecules in target tissues and organs usually contain the

most relevant information concerning the disease. However, taking tis-

sue biopsies is difficult due to their invasive nature and it is doubtful that

they could be brought into standard clinical practice [11, 31]. As discussed

earlier, the aim of medical practice is to use the least invasive methods [2]

such as blood, urine [9], fecal samples, even breath [38] for biomarker de-

tection. Although the question of molecules of an easily collectible body

fluid (blood) being associated with a disease is relevant for diagnostic pur-

poses [39], the deeper underlying question is whether the blood molecules

carry information of the target disease tissue [8, 40, 41]. The relevant

research question is whether there are shared disease-related effects be-

tween blood and tissue molecules [41]. It would be of great diagnostic and

scientific interest to determine reliably which blood plasma molecules are

correlated with target tissue molecules and whether these associations

carry disease-related information.

Another aim of multi-tissue experiments is to obtain information from

multiple tissues in order to have a more holistic view [42] of the physio-

logical or biological state of the individual. Such experiments can be used

to find out which tissues [4, 24, 43] show disease-dependent changes and

which do not, or whether there are disease-related dependencies between

20



Introduction

the tissues. These types of experiments also include studying relation-

ships between different omics and other data sources from multiple easily

accessible sample types, such as between blood and gut microbiota mea-

sured from fecal samples [43, 44, 45, 46, 47] or between blood lipidomics

and lipoprotein compositions [48].

From a statistical perspective, all the presented data integration tasks

involving multiple omics data types, multiple tissues, multiple non-invasi-

ve sources, or any of their combination, are identical. They can all be

formulated as data integration of multiple data sources with paired sam-

ples and different variables in different data sources. The pairing here

means that multiple data sources have been measured from the same

patient. Different omics types clearly have different variables (mRNA,

proteins, metabolites) and we also assume that different tissues, in gen-

eral, have different variables even if the omics type is the same. Some

of the molecules in different tissues may be chemically identical to each

other, but they may have different roles in different tissues. Because

of the widespread use and great number of applications of this type of

data integration, there is an endless demand for suitable computational

methodologies. A practical point of view is that, as the number of data

sources and relevant covariates grows, combined with the already over-

whelming dimensionality of the data, there will be an increasing demand

for more compact representations of the relevant findings in the data.

In this thesis, a novel computational approach for data integration is

presented: integration of multiple data sources with paired samples in the

context of an underlying multi-way experimental design. The underlying

assumption to be studied is whether there is a dependence between the

data sources that is associated with one or multiple covariates and their

interactions.

1.4 Importance of model organisms and translation

Since improving the health of individuals is the ultimate goal of biomedi-

cal research, the information gained from clinical studies done on human

patients is of primary importance. However, model organisms are often

used in biomedical research as disease models [9, 49] and the effects of

drugs are often tested on model organisms in pre-clinical phases [50] be-

fore proceeding to human studies. Furthermore, since biopsies are usually

difficult or impossible to obtain from humans [31], multi-tissue studies are

21



Introduction

mostly limited to model organisms. Most of the data used in this thesis

are from human studies, but the multi-tissue dataset in Publications II

and III is from a mouse study.

A particularly relevant research question is whether disease and treat-

ment related findings found in a model organism actually have a corre-

spondence in human clinical studies [9, 29, 49]. As different species do

not, in general, fully share the same lipids and proteins, and chemically

similar biomolecules may have different roles in different species [51],

a new statistical modelling problem emerges: how to translate findings

made in a model organism into human clinical studies. The task is to

find whether there are molecules that behave similarly in response to dis-

ease and other covariates and their interactions in multiple species, for

instance, human and mouse [49].

The possibilities of studying omics data are not limited to humans and

mammals, but experiments are often done in vitro in cultured cells or cell

lines [32], stem cells [52], plants [53] and yeast [54].

The methodology developed in this thesis covers the modelling problem

of how to translate biomarker discovery results between model organisms

and human studies. From a statistical perspective, the data analysis prob-

lem is to integrate multiple data sources when the samples have not been

paired. This data integration task is also solved in the context of both

datasets (species) having a similar multi-way experimental design. For

instance, the datasets from both species can consist of healthy controls

and individuals with the same disease [9], a similar drug treatment de-

sign or a time-series.

1.5 Problem definition and contributions of this dissertation

The contribution of this dissertation is to present a novel, computational,

Bayesianmodel for multivariate multi-way ANOVA-type modelling of conti-

nuous-valued, high-dimensional, single-source andmulti-source data. This

model can be used even when the number of samples is small.

1.5.1 Problem setting: ANOVA-type modelling

The omics data are continuous-valued, high-dimensional data where vari-

ables represent absolute or relative concentrations of the molecules. Each

sample is associated with multiple discrete covariates, such as disease
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status and gender. Multi-way experimental design here means that the

samples can be organized to populations according to the levels of the

multiple covariates: for instance, diseased males are one population.

Multi-way ANOVA-type analysis is a well-established task in classical

statistics for continuous-valued, univariate data, in order to model the ef-

fects of multiple covariates and their interactions in the data. The task

has been traditionally solved by multi-way Analysis of Variance (ANOVA).

ANOVA is a statistical test for determining whether the mean value of

a variable is different in multiple populations of measurements. The

multi-way modelling problem becomes much more complicated for high-

dimensional, small sample-size data, and there are few previous approac-

hes in these conditions. In particular, ANOVA -type modelling has not

been previously studied in the context of multiple data sources.

1.5.2 Contributions of the dissertation in multi-way,
multi-source modelling

A solution for multi-way modelling of high-dimensional, small sample-

size data in the case of a single data source is provided in Publication I.

This is followed by defining and solving how to do multi-way ANOVA-type

analysis for multi-source data, when different data sources have different

variables. The presented methodology covers both the case of multiple

data sources with paired samples (that is, measurements of different data

sources taken from the same individual) and the case without paired sam-

ples that arises from translating potential multi-way biomarkers between

species. The case of paired samples is introduced in Publication II and re-

visited in Publication III. The case without paired samples is introduced

in Publication III; a more advanced sampling algorithm is introduced in

Publication IV. Another theoretical extension of multi-way modelling is

one of the covariates having a previously unknown structure, introduced

in publication III. In Publication V, the single-source method is applied to

a new lipidomic study with an imperfect multi-way experimental design

and a repeated measures setup.

1.5.3 The model

The achievement of this dissertation is that all the closely-related multi-

way modelling settings can be handled with a unified Bayesian model.

The different setups need a slightly different structuring, but in each case
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a variant of the unified multi-way, multi-source model can be constructed.

It is shown that, although the combination of multiple data sources and

multiple covariates is very complicated, it is possible to define an overall

generative model that can be assumed to have generated all the observed

data. The model is interpretable and the desired statistical testing results

are directly obtained from the parameters of the model. In contrast to

joint multi-way, multi-source modelling, existing statistical methods can

only solve simpler tasks. The advantage of an overall generative model is

that model parameters of the whole model can be learned jointly, which

improves uncertainty estimation of the model. A careful uncertainty est-

imation is crucial when the number of samples is small.

The unified model has an integrated dimensionality reduction that is

based on the biologically relevant assumption that there are groups of cor-

related variables. The effects of covariates are modelled on these groups

instead of single variables.

1.5.4 Applicability area of the model

The applicability area of the model covers most of the multi-way, single-

source and multi-source experimental designs encountered in today’s bio-

medical research that is focused on omics data. Relevant experiment

types include clinical biomarker discovery, studying organisms in response

to interventions or perturbations, studies on model organisms, and trans-

lational studies. Any relevant covariates present in these types of exper-

iments, being confounders or covariates of interest, can be included as

long as they are discrete or discretized. Also, any data integration task

where different omics profiles are obtained from the same individual, be-

ing from different tissues or different omics types, can be analyzed with

this model. The translation model is usable in multi-species cases with

different data sets (species) having a similar multi-way experimental de-

sign and different variables in different species. Modelling similarities of

multiple diseases is another possible application of the translation model.

The model can also deal with time-series datasets, if time-point can be

seen as one of the covariates in the multi-way design. Three time-series

modelling cases are possible: (i) time can be considered as a standard

covariate, as in Publication I, (ii) irregular measurement times can be

aligned into latent states [Publication III and IV], and (iii) repeated mea-

sures designs can be formulated by having an ‘individual effect’ as an

additional covariate [Publication V].
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The common factor to all the datasets studied in this dissertation is

that they are lipidomics datasets with a multi-way experimental design.

The datasets are either from single-source or multi-source settings; some

datasets are time-series. The multi-source setups have either paired sam-

ples or no paired samples. The developed Bayesian model is applicable to

all these multi-way modelling cases.

1.5.5 Multi-way learning as a novel branch of machine learning

As one theoretical contribution of this dissertation, multi-way learning is

defined as a branch of machine learning. In the machine learning com-

munity, learning of the association of data to an external covariate has

been mostly restricted to supervised learning: regression or classifica-

tion. There are currently three popular advanced supervised approaches

that are closely related to multi-way learning: multi-task learning, multi-

label prediction, and multi-class classification. I will argue that multi-way

learning is a different learning task that has remained mostly un-tackled

in the machine learning literature, despite the importance of ANOVA and

related methods in classical statistics.

1.6 Organization of the thesis

The remaining chapters are organized as follows. In Chapter 2, I present

a biological review of different omics data types as parts of the biological

information chain and discuss integration of these data types. In Chapter

3, I present the Bayesian learning paradigm and justify why it was cho-

sen as the modelling approach. In Chapter 4, I present a review of the

standard multivariate modelling approaches that are commonly used in

modelling omics data, and discuss their inadequacies in modelling high-

dimensional, small sample-size data having a multi-way experimental de-

sign. In Chapter 5, I present the existing multi-way modelling approaches

to conclude that none of the existing methods perfectly fits to the multi-

variate case. In Chapter 6, I present relevant existing approaches that

can be used for integrating multiple data sources and conclude that none

of the existing approaches can fully address multi-way experimental de-

signs. In Chapter 7, I present our Bayesian model for multivariate multi-

way modelling of single-source and multi-source data, which is followed

by a discussion of possible future improvements in Chapter 8. Finally, I
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present the main conclusions of this dissertation in Chapter 9 and a dis-

cussion of the applicability of this work in Chapter 10.
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2. “Omics data”

The topic of this dissertation is how to analyze and integrate data from

omics experiments: transcriptomics, proteomics, metabolomics, and lipid-

omics. In this Chapter, a brief introduction to the biological background

of these molecular types is presented. The Chapter introduces the central

dogma of biology that illustrates the relationship of the different molec-

ular types in order to explain the need of integrating the different omics

data types. This is followed by a section describing lipidomics, a part of

metabolomics, given that lipidomics datasets were used as case studies in

this dissertation. The origin of correlations between metabolites or lipids

is also discussed to justify why modelling correlated groups of variables

was chosen as the main assumption of modelling omics data. Finally, the

different phases of the data analysis pipeline from preprocessing to sta-

tistical analysis are presented.

2.1 Central dogma

The central dogma of biology states that genetic information contained

within the DNA sequence of genes is transcribed into messenger RNA

(mRNA) molecules, and this information is further translated into the

amino acid chain of a certain protein. Proteins catalyze chemical reac-

tions, where metabolites are converted from one to another, which main-

tains metabolism and homeostasis (stable cellular conditions).

The static genotypic information flows into the phenotype dynamically,

influenced by the environment. A variety of signaling and regulatory

mechanisms control the dynamic functioning of cells and in fact the whole

organism in response to environmental factors, developmental factors, or

simply for maintaining homeostasis. The genes need to be expressed to

maintain a desired metabolism, which is the endpoint [11] of the biologi-
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cal information flow.

Recent research has suggested, however, that the information contained

in the DNA sequence may alone be insufficient in predicting human dis-

ease phenotype, rendering the classical central dogma inadequate. This

suggests that environmental influences may actually be inherited through

mechanisms such as epigenomics (reversible, possibly heritable modifica-

tions in DNA without altering DNA sequence) and gut microbiome (in-

testinal bacteria) compositions.

2.2 Integrating omics data

One of the most important focus areas of biomedical research has become

how to integrate the different phases of the biological information chain,

in other words the different omics types, to obtain a comprehensive view

of the dynamic state of an organism [42]. It has been realized that study-

ing any single molecular type alone is a reductionist approach and in-

sufficient for understanding the functioning of the organism. There are

enormous research opportunities as each step of the information chain,

from DNA to RNA (gene expression), and further to proteins (proteomics)

and metabolism (metabolomics), can nowadays be measured in a high-

throughput manner to deliver a profile of a large number of its molecules.

The relationships of different omics data types and relationships of omics

data with other relevant biological data types have been widely studied.

The case that has attracted the most interest has been the study of func-

tional relationships of the DNA sequence and gene expression data. One

common approach is studying whether Single Nucleotide Polymorphisms

(SNP), that is, variations of a single nucleotide between individuals, have

a regulatory role on gene expression; such SNPs are called Expression

Quantitative Trait Loci (EQTL) [55, 56, 57, 58]. The relationship of DNA

and gene expression can also be determined by studying whether gene

Copy Number Variations (CNV) (duplications of sequences of DNA in the

genome) influence gene expression [59, 60]. Numerous studies have also

been carried out on other data integration options. For example, a com-

mon approach is to study associations between the concentrations of two

omics types, such as proteomics and metabolomics [61] or transcriptomics

and proteomics [62]. Another approach is to study whether there are sim-

ilar or negatively-correlated responses to drug treatments or other covari-

ates in transcriptomics and metabolomics [24, 63], or metabolomics and
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gut microbiota [43, 46, 47], for instance. The notion of EQTL has also been

extended to studying whether SNPs affect the concentrations of metabo-

lites [64] or lipids [65, 66]. An example of a more biologically focused

approach is studying the relationships between proteins and metabolites

in the context of proteins as catalysts in a metabolic network model to

predict metabolic flux [67]. Some methods have been developed for in-

tegrating more than two data types [2, 42, 54, 68, 69] or studying the

relationships of omics data to clinical data [70, 71, 72, 73].

In summary, the biological or mathematical definitions for what inte-

gration means, vary a lot depending on the research question and the

experimental settings. The common approaches for continuous-valued

omics data are searching for a similar response to a single covariate or

associations between the molecular profiles of different omics types. The

contribution of this dissertation to the biological data integration field is

to present a formal model for integrating continuous-valued omics data

types in the context of an underlying multi-way experimental design. In

this work, I provide a novel definition to justify the data integration: if a

similar response to multiple covariates and their interactions is found in

multiple omics datasets, there is a connection between these omics types

that is related to the disease or other covariates. The mathematical for-

mulation will be presented in Section 7.2.

2.3 Metabolomics and lipidomics

Lipidomics is an important class of metabolomics. Lipidome refers to the

complete set of lipids in a cell or a tissue, whereas metabolome refers to

the complete set of metabolites.

The key physiological role of metabolism is to convert nutrients to en-

ergy in order to maintain cellular functions and, more generally, home-

ostasis. Despite the unifying term metabolomics, the range of chemi-

cal properties of the different metabolite families is large and consists

of small amino acids, lipids, bile acids, and keto-acids [3, 74]. There

is no currently existing experimental technique that can measure all of

them simultaneously. It is common to concentrate on high-throughput

measurements in one of the metabolite classes, such as lipids. The most

common measurement techniques in metabolomics are Nuclear Magnetic

Resonance (NMR), Gas Chromatography mass spectrometry (GC/MS) and

Liquid Chromatography / Mass Spectrometry (LC/MS).
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Lipids are a diverse class of metabolites with important roles as build-

ing blocks of cellular membranes, energy storage and cell signaling [3].

A broad definition of lipids is that they are hydrophobic or amphiphilic

molecules that originate from ketoacyl or isoprene building blocks [75].

The LC/MS is the main experimental technique for measuring a lipidomic

profile from the blood plasma or other tissues.

A particular characteristic of metabolomics and lipidomics is that con-

centrations of metabolites are highly correlated and there are correlated

groups of metabolites [3, 5, 76]. Maintaining a certain metabolite and

lipid composition, particularly their concentrations, is crucial for the cor-

rect functioning of an organism. There are biochemical networks com-

posed of interconnected pathways where metabolites are converted to oth-

ers, which results in concentrations between metabolites being correlated

[76]. Another special characteristic to be taken into account in mod-

elling is that abundances of metabolites vary by orders of magnitude

[76, 77], however, groups of metabolites with very different abundances

are nonetheless often highly correlated and respond similarly to external

covariates.

A key concept in lipidomics is allostasis and allostatic responses [3].

In contrast to homeostasis, which refers to maintaining stable internal

conditions in an organism, allostasis refers to maintaining homeostasis

by making a physiological or behavioral change. When a pathological

metabolic state develops, a biological stress disturbs the normal home-

ostatic mechanisms of the cell. This disturbance is compensated by an

allostatic response, such as activation of alternative pathways. An allo-

static response [3] can be a result of a malfunction in the biological system

and it can eventually lead to disease onset. Allostatic load refers to the

stress caused by the activation of the alternative pathways. When the

organism can no longer tolerate the harmful allostatic load, the failure

in the biological system leads to the onset of a disease. Because of the

allostatic response, the original change in lipid metabolism does not nec-

essarily show up in lipidomics data; one rather detects a secondary change

(side effect), which is a result of an allostatic mechanism compensating for

the original change.

In summary, entire pathways are usually affected by environmental

changes and by the resulting allostatic responses leading to up- or down-

regulations of entire pathways. Many publications [30, 43, 46, 78] report

having found that groups of lipids were found up- or down-regulated to-

30



“Omics data”

gether; lipids within a group from the same lipid family, such as fatty

acids, triglycerides, sphingomyelins or phosphaticylcholins. To exploit the

knowledge of the existence of correlation structures, I argue that espe-

cially for lipidomics, studying groups of similarly behaving, correlated

clusters of variables (lipids) is the most biologically justified modelling

approach. This approach enables the direct detection of up- or down-

regulation of groups of variables as a response to covariates and therefore,

this was taken as the main assumption of the dimensionality reduction

part of our model.

The dimensionality reduction part of our model was indeed first devel-

oped [Publication I] to be feasible especially for metabolomics and lipid-

omics data that we used in our case studies. However, preliminary exper-

iments on gene expression data [data not shown] have shown that corre-

lated groups of variables is also a good assumption for gene expression.

We assume this holds true also for proteomics.

2.4 Analysis of omics data

In this section, I discuss the different phases of the data analysis chain

of omics data: preprocessing and modelling [5]. Within this data anal-

ysis chain, my work concentrates on exploratory statistical modelling of

preprocessed omics data.

When the measurements from blood or tissue samples have been done

using for example MS or NMR methods in metabolomics, or by RNA

micro-arrays or RNA-sequencing in transcriptomics, the data have to be

analyzed. During the preprocessing phase, raw data from the measure-

ment device are processed into a data matrix where rows are samples

(individual patients) and columns are variables (absolute or relative con-

centrations of the molecules of a chosen omics type). Preprocessing starts

by converting raw signals from the measurement device into intensities

of the molecules. In MS methods, this is done by detecting and identifying

signal peaks from raw data. Other preprocessing procedures include nor-

malization and removal of experimental artifacts and systematic biases.

The lipidomic datasets used in this dissertation had been preprocessed

using the MZmine software [79].

The modelling step attempts to answer the central research question

of the study, for instance to determine the effect of a disease. The two

main lines of modelling are [5] statistical modelling and more biologically-
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focused modelling. In statistical modelling, the aim is to find associa-

tions between and within omics variables and clinical variables (covari-

ates). Exploratory statistical analysis refers to describing and summariz-

ing main characteristics of the data in an easily understandable form,

having emphasis on novel interesting findings and hypothesis genera-

tion. Confirmatory statistical analysis refers to testing and confirming

pre-defined hypothesis. Examples of more biologically-focused modelling

tasks are pathway analysis [5], metabolic flux analysis [80], deciphering

gene regulatory networks, and searching for transcription factor binding

sites.
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The Bayesian formalism has been chosen as the modelling paradigm for

the methods presented in this dissertation. The main characteristics of

the data are small number of samples, high dimensionality and a need

for radical dimensionality reduction. For the methods to work, the dimen-

sionality reduction scheme has to be able to take into account the charac-

teristics of the data. The problem setup, including multiple data sources

and covariates, is complicated. The possibility of bringing prior knowl-

edge flexibly into the hierarchical model structure is the key to solving

these challenges and modelling the whole setup jointly as a single unified

model with joint uncertainty estimation.

In this chapter, I introduce the Bayesian learning paradigm and explain

how its advantages to our work stem from its basic principles. I first in-

troduce the advantages of building generative models and describe how

model parameters can be learned by Bayesian inference. Then I present

the concept of hierarchical models to illustrate their usefulness in our

modelling task, which is followed by an introduction to plate diagram no-

tation that is used to visualize model structures. Finally, I discuss Gibbs

sampling, an approximate inference method that was used in learning the

model.

3.1 Generative models

An important class of statistical models are generative probabilistic mod-

els where the main idea is to assume a statistical model that has gener-

ated the observed data. The model parameters can then be learned from

the observed data, which enables the interpretation of the data by iden-

tifying the generative process. The model parameters are often learned

by maximum likelihood learning or by full Bayesian inference (details be-
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low).

Factor Analysis (FA) is one of the most widely known statistical multi-

variate methods, based on an underlying generative model. The key idea

is that a few underlying factors (and a noise model) generate the varia-

tion in the observed high-dimensional data. When learning the model,

the model parameters of interest are the ones that model the structure of

the factors because they indicate which variables function together. Fac-

tor Analysis is closely related to Principal Component Analysis (PCA) [81]

but, as FA is based on a true generative statistical model, it can be used

as a building block in a unified hierarchical model, as is done in Chapter

7.

Generative models differ from the discriminative models used in super-

vised learning (regression, classification, see Chapter 4.5) in the sense

that they assume a model that has generated the observed data. Discrim-

inative models, in contrast, attempt to learn only a model that explains

the class label (classification) or continuous outcome variable (regression),

given the observed data.

When a probabilistic generative model is assumed in modelling, its pa-

rameters can be learned in the classical (non-Bayesian) paradigm by var-

ious optimization algorithms that lead into a Maximum Likelihood (ML)

estimate. Maximum likelihood means the most likely model parameters

Θ to explain the observed data X. The probability distribution of X given

a model M and the model parameters, called likelihood, is p(X|Θ,M).

3.2 Bayesian learning paradigm

The Bayesian modelling paradigm is an increasingly popular method in

statistical learning. The main advantage of using full Bayesian inference

is that a probability distribution over the model parameters is determined

and it can be used directly as a rigorous uncertainty estimate of the re-

sults in the form of confidence intervals. The posterior distribution de-

scribes the full uncertainty of the model parameters given the observed

data and the assumed model structure.

The central idea of the Bayesian paradigm is inverse statistics: given

the observed data X and a model M , find the posterior probability distri-

bution p(Θ|X,M) of the model parametersΘ. The Bayesian formula reads
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as

p(Θ|X,M) =
p(X|Θ,M)p(Θ|M)

p(X|M)
. (3.1)

Bayesian modelling makes it possible to use prior information in mod-

elling. The prior term p(Θ|M) describes the prior probability distribution

of model parameters given the model, and any prior knowledge can be in-

cluded into this term. In the absence of prior information, uninformative

priors are commonly used. The term p(X|M) is a normalization constant.

Using Bayesian statistics is especially advantageous when the number

of available data samples is small, since it makes it possible to do a princi-

pled uncertainty estimation of the result even in that case. Full Bayesian

inference for complex models is applicable also with small sample-sizes,

whereas ML theory is asymptotic and requires a large number of sam-

ples. At the large sample-size limit where data dominates the priors, the

results given by Bayesian inference converge to the results given by max-

imum likelihood estimation.

3.3 Hierarchical models

The possibility of building hierarchical models is a unique feature of Bayes-

ian modelling. In a hierarchical model, a prior distribution p(θ|M) for a

model parameter θ depends of another model parameter θ′ as p(θ|M) ∼
p(θ|θ′,M) and θ′ is also to be learned. In practice, all the assumptions

of the process that has generated the observed data can be included in a

hierarchical generative model. In our model, we use a hierarchy of dimen-

sionality reduction, data integration and multi-way modelling, which will

be explained in Chapter 7.

3.4 Bringing prior knowledge into model structures

The concept of prior information in Bayesian modelling is not restricted

to prior distributions of parameters or to prior parameter values, such as

a priori known disease prevalence rates. One important usage of prior

knowledge is the design of model structures. Any expert knowledge or

belief (such as biological or medical) can be included in the design of the

likelihood distribution of the model M to reflect the best belief of the pro-

cess that has generated the observed data. Hierarchical models are a

flexible way to include this type of prior knowledge.
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From the perspective of Bayesian modelling, the contribution of this dis-

sertation is, with proper utilization of prior knowledge, to construct a hier-

archical model structure M that solves the multi-way, multi-source mod-

elling task in “small n, large p” - conditions. To solve this modelling task,

the properties of Bayesian modelling are utilized in two ways. Firstly, it

is possible to design a dimension reduction scheme that models the data

in a suitable way (correlated groups of variables) so that the relevant in-

formation in the observed data is preserved and transmitted to the next

levels in the hierarchy. Secondly, building hierarchical models makes it

possible to include the tasks of learning the effects of multiple covariates

and learning from multiple data sources in a single unified model and to

couple them with the dimension reduction scheme. The advantage of us-

ing a unified model comes from the proper propagation of uncertainties

between different model parts.

3.5 Plate diagram notation

Plate diagrams [82] are the standard notation of the machine learning

community for representing Bayesian model structures, and therefore as-

sumptions of conditional independence between random variables as a

graph. Plate diagrams have also been used to visualize the model struc-

tures in the publications of this dissertation. As an example, see Figure

3.1. In this representation, nodes stand for different variables, shaded

nodes being the observed variables and white nodes unobserved model pa-

rameters. The arrows depict conditional dependencies between the model

parameters. Plates symbolize replications of variables, for instance mul-

tiple patients.

3.6 Gibbs sampling

Learning and inference in Bayesian models can in principle be done by

exact analytical inference; in practice however, the analytical solution is

often intractable due to complex model structures and approximate in-

ference is needed. Alongside variational methods and Laplace approxi-

mation, Markov Chain Monte-Carlo (MCMC) sampling methods [83] are

commonly used in learning Bayesian models. MCMC methods are used

for drawing samples from the posterior distribution by constructing an
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Figure 3.1. The plate diagram of the model in Publication I. Reprinted with kind per-
mission from Springer Science and Business Media: Publication III, Figure 2
a).

MCMC chain where each new sample is drawn by conditioning on the

previous sample.

Gibbs sampling is a popular MCMCmethod due to some appealing prop-

erties: it is relatively easy to derive Gibbs sampling equations for complex

model structures and implement samplers. Conjugate prior distributions

[83] are required in order to use Gibbs sampling. In the case of non-

conjugate priors, Metropolis-Hasting steps can be included in the sam-

pling formulas.

The main problems of Gibbs sampling and other MCMC methods are

slow convergence of the sampler and the known fact that the sampler

can get stuck in one posterior mode. The latter complicates finding the

global optimum, since complex Bayesian posterior distributions are often

highly multimodal. We used Gibbs sampling as the inference method in

our model, although the posterior distribution is multimodal due to the

complexity of the modelling problem. The implications and possible solu-

tions of this problem will be discussed in Section 8.1.
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4. Multivariate modelling of omics data

Most of the current omics studies have an underlying multi-way, even

multi-source experimental design but the statistical analysis is usually

done by standard simplistic tools. Proper data analysis, that takes into ac-

count the full multi-way nature of the data, is rarely done due to method-

ological difficulties and a lack of suitable methods.

Omics data are simply continuous-valued multivariate data and hence

existing statistical tools are usually applicable and are often adopted.

Statistical analysis can be done by supervised methods or unsupervised

methods. Supervised methods can be used to learn a model of the asso-

ciations between the omics data and a covariate, whereas the purpose of

unsupervised methods is to find hidden structures from the data with-

out the use of known training labels (covariates). Standard supervised

approaches are limited to defining the statistical analyses as (one-way)

case-control setups. In this chapter, I review the standard approaches

commonly used for modelling omics data, including univariate statisti-

cal tests, unsupervised multivariate methods such as PCA and clustering,

and supervised multivariate methods: classification and testing known

groups. I also present relevant recent research to overcome the difficul-

ties of multivariate analysis in the case of small sample-size and high

dimensionality.

This thesis explores a novel approach for multi-way modelling; to date,

few methods have been developed that use modern machine learning ap-

proaches. The aim of this thesis is to develop a single unified model that

takes properly into account the underlying multi-way (even multi-source)

experimental design. There is a need for such advanced methods since

they allow a more meaningful interpretation of the data given the re-

search question asked (see Chapter 1.2). The motivation of this chapter is

to describe the standard statistical ideas since they will be used as build-
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ing blocks in our overall model, but also to describe their inadequacies in

order to justify the model structure chosen for our multi-way model. An

example of applying the full multi-way model as an existing tool is pro-

vided in Publication V, where our model was applied to a new lipidomics

dataset with a multi-way design.

4.1 Data and statistical challenges

The characteristics of the data in a standard data analysis of omics data

are as follows.

• Data: Continuous-valued multivariate data with populations consisting

of biological replicates. The data comes as an input data matrix with

samples as rows and variables as columns.

• Statistical task: I concentrate on the most common tasks: modelling

differential expression between populations, such as case and control,

and modelling and discovering groups of variables based on correlations.

• The “small n, large p”-condition: High dimensionality p of the data is

a challenge for data analysis. Firstly, it is difficult to comprehend a

large amount of data with a lot of redundant information by visual in-

spection. Dimensionality reduction is usually required to find the inter-

esting phenomena in the data. Secondly, the known problem of doing

statistical analysis by univariate tests is multiple testing (Section 4.2).

Thirdly, the combination of high dimensionality and small sample-size

n is also problematic for most multivariate methods. Many classical

multivariate methods are based on inverting a correlation (covariance)

matrix and these cannot be used, since the covariance matrix becomes

singular. Some multivariate methods can be used, but since the high-

dimensional data space is populated only by a few data points (samples),

the methods are prone to overfitting.

• Multicollinearity: The existence of correlated groups of variables, called

multicollinearity, is a characteristic of omics data, known a priori from

scientific biological knowledge. The similarly behaving correlated groups

of variables often also have similar differential expression. Multicollinear-

ity is a problem for some methods but, on the other hand, discovering
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the correlated groups is biologically interesting.

4.2 Univariate analysis

The standard statistical analysis of omics data includes univariate sta-

tistical tests, such as Student t-test, Wilcoxon rank sum and one-way

ANOVA, for studying the associations of a single variable at a time to

a covariate. The statistical significance of the association is quantified

by a p-value. Fold-change is another relevant measure used for studying

differential expression [84], but not considered in this dissertation. The

statistical significance levels obtained from these univariate statistical

tests are a thoroughly known and a widely accepted method for deciding

the significance of differential expression in biomarker discovery.

An example of stratifying a case/control, time-series multi-way experi-

mental design, and using t-tests and fold change for comparing case and

control groups at each time point, is provided in [14].

The main problem of univariate tests is that of multiple testing where,

with a large number of parallel statistical tests, there is always a cer-

tain number of false positives. This problem can be alleviated to some

extent by multiple testing correction, such as False Discovery Rate (FDR)

[26]. Another problem is that discovering groups of genes or metabolites

functioning together is biologically relevant, but univariate analysis of

high-dimensional data omits correlations between the variables and only

produces long lists of p-values.

The multicollinear nature of omics data and, therefore, the need for

multivariate modelling and dimensionality reduction are widely acknowl-

edged. Studying correlations, such as Pearson correlations, between the

variables is the first step towards modelling similarities between the vari-

ables.

4.3 Clustering

Clustering is a basic unsupervised statistical tool for partitioning objects

into sets of clusters. One can either cluster samples or variables depend-

ing on the data analysis task. Since omics data is multicollinear, cluster-

ing the variables (genes, metabolites) is a standard way of finding simi-
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larly behaving clusters of biological molecules. The most commonly used

clustering tools are hierarchical clustering [85] and K-means clustering.

Pearson correlations or Euclidean distance are common choices for the

distance measure.

4.4 Unsupervised component models: PCA

Multicollinearity of data, and resulting redundancy in the information,

is often tackled by finding the principal components (or main latent fac-

tors) in the data. PCA is the most widely used multivariate method in the

statistical analysis of omics data and other continuous-valued data types.

The question of finding which variables are correlated can be accessed

from the loading matrix of the learned PCA model. Since the loading ma-

trix represents the relationship of the original variables to the latent fac-

tors, the latent factors can be used for visualization or further statistical

analysis.

The goal of clustering and component models is to facilitate the interpre-

tation of the data by studying the behavior of similarly behaving variables

together. However, while clustering provides well-defined clusters of vari-

ables, the disadvantage of the standard component models (PCA, FA) is

that each component has a non-zero loading from all the original vari-

ables. In practice, it is possible to interpret the latent components only

if each component has a non-zero loading from a small number of origi-

nal variables. The traditional solution for this problem is to use a cutoff

for the loading strengths; a more recent solution is developing sparse ap-

proaches (Section 4.5.2).

Another disadvantage of standard unsupervised component models is

that they do not model the association of data to covariates while forming

the components. Although component models are a good dimensionality

reduction approach for further analysis and the latent variables can be

used in subsequent supervised tasks, the latent factors may not retain

the biologically relevant association to covariates.

The model developed in this thesis uses a component model as a dimen-

sionality reduction scheme to form latent factors for further analysis. We

make a clusteredness assumption, where each variable belongs only to

one factor.
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4.5 Supervised models: Classification

Classifiers are a common method of choice for multivariate modelling of

omics data when covariate information is available. Classifiers are super-

vised, usually discriminative models where the idea is to use known class

labels to train a classifier that maximally separates two or more popula-

tions of data points (classes). The main purpose of classifiers is to predict

the class label of a new data point, but the learned classifier can also be

used as a model of the association between variables and a covariate. The

performance of the learned classifier can be quantified by measuring the

classification accuracy, in other words how well the classifier can predict

the class label of new test samples with unknown class labels that where

not used in training the classifier. Some classifiers, based on variable se-

lection or latent factor models, are easily interpretable in the sense that it

is straightforward to report which variables influence the discrimination

between the classes the most.

Some classifiers do dimensionality reduction by forming supervised la-

tent factors consisting of groups of correlated variables when learning the

classifier from the data. This latent factor-space is used for the classi-

fication task, but it can also be used for interpreting the components.

Partial Least Squares - Discriminant Analysis (PLS-DA) [86, 87] and its

advanced version Orthogonal Projections to Latent Structures OPLS [30,

61, 88] are among the most commonly used classifiers for omics data, since

they can form latent factors in “small n, large p”- conditions and can deal

with multicollinear data. Linear Discriminant Analysis is a similar clas-

sical method, but it is based on inverting a data covariance matrix, and

hence requires a regularization scheme, such as in [89], in order to be

applicable in “small n, large p”-conditions.

Variable selection is another approach for dimensionality reduction of

classifiers, and it also enhances interpretability by highlighting the most

significant variables. Variable selection is a good approach for search-

ing for a small set of significant variables. However, if the separation of

classes is due to correlated groups of variables, variable selection may not

work well since the set of selected variables may not be stable. Each of

these redundant variables is an almost equally good explanation, and dif-

ferent variables may get selected in different trials. Some of the most pop-

ular classifiers for omics data using variable selection are Decision Trees

and its extension Random Forest [90], and optimization methods such as
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LASSO [91], that induce sparsity in the discriminative model. Support

Vector Machines (SVM) [92] and K-Nearest Neighbors (KNN) [93], on the

other hand, are examples of well performing classifiers where interpreta-

tion may be harder.

4.5.1 Using classifiers for biomarker discovery

Interpretable classifiers have become a popular method for biomarker dis-

covery [9, 20], since the standard tool — univariate statistical testing —

is not a satisfactory approach for high-dimensional data and there are no

widely used multivariate statistical tests for high-dimensional data. Clas-

sifiers enable multivariate modelling of the variables contributing to the

differences between case and control classes. The justification for using

them for biomarker discovery is that variables that have predictive value

for a class label (case, control) may be biologically relevant. There are,

however, several problems in this approach:

Firstly, classifiers are usually discriminative models, whereas statisti-

cal testing (including ANOVA-type modelling) is a generative modelling

task. It is important to realize that in classification the task is to find a

sufficient distinction between different classes, which can be achieved by

finding only a few strongly discriminative variables. When classification

is combined with variable selection or assumptions of sparsity, the goal

is explicitly to find a minimal set of variables. The statistical question

of ANOVA-type analysis, on the other hand, is to study which of all the

possible variables have statistically significant differential means.

Secondly, overfitting is a serious problem for supervised multivariate

methods, especially when the number of samples is small and dimension-

ality high. Overfitting means that a classifier searches for a maximal

separation between the classes in the learning data but, when there is

a large number of variables and a small number of samples, the clas-

sifier may fit to noise and classification accuracy may be poor. Serious

care to guard against overfitting has to be taken, usually in the form of a

Bayesian analysis or using resampling methods, such as cross-validation,

bootstrapping [94] or permutation testing.

When using classifiers that form a supervised latent factor space, such

as PLS-DA and OPLS, one has to very cautious [95] if considering using

the latent factors for further analysis, such as plotting the factor scores,

visualization or doing further statistical testing on them. The supervised

latent factors have been constructed so that they find a maximal separa-
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tion between classes. If the same data that were used for estimating the

latent factor space are represented in the latent factor space, the class

separability will seem over-optimistic, drastically so in “small n, large p”

- conditions.

In summary, unsupervised component models are at a risk of not retain-

ing biologically relevant covariate-related variation when forming latent

factors, whereas classifiers find the most strongly separating direction in

the data and are at risk of overfitting. Therefore, both approaches are

problematic for the purpose of reducing dimensionality for further multi-

way modelling. Our aim has been to develop a modelling approach that

is a compromise between these two extremes. We construct a generative

model that is not supervised, to seek maximal separability. However, un-

like unsupervised component models, it does model the effects of covari-

ates as latent effects acting on the latent factor space.

Whereas the use of resampling methods is one possible tool against over-

fitting, Bayesian models estimate inherently a posterior distribution of

the model parameters, which is another approach for uncertainty estima-

tion. The possibility of performing uncertainty estimation of dimension-

ality reduction jointly with further analysis is the advantage of fully Bay-

esian models.

4.5.2 Sparse approaches and regularization

Solving the main difficulties of the multivariate analysis of high-dimensio-

nal and small sample-size data is an active research area in machine

learning, statistics and bioinformatics since these conditions are preva-

lent in many application areas. The main problems are singularity of the

covariance matrix, overfitting, and difficulties in interpreting latent com-

ponents that are linear combinations of all the original variables.

A currently popular approach is to improve existing multivariate meth-

ods by either including a regularization scheme or using sparsity-enforcing

priors or constraints. Regularization means adding a penalty term to the

cost function of the optimization problem that is solved when learning

the model. For methods using a covariance matrix, such as LDA, the in-

tention is to make the covariance matrix non-singular [89, 96]. Also the

loading matrix of a classifier can be regularized to enforce strong loadings

for significant variables and weak loadings for non-significant variables,

which helps in interpretation and against overfitting.

Sparsity-enforcing priors or constraints are an improvement over regu-
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larization that (attempt to) actually enforce the non-significant loadings

to zero. The additional promise of sparsity is a facilitated interpretation

of the results as the loading matrix of a classifier or component model has

a non-zero loading only for the significant variables.

The L1-regularization, or LASSO [91], is currently the most actively

studied sparsity approach for supervised models. The aim of L1-regulariza-

tion is to do variable selection by enforcing the loadings of the non-significant

variables to zero, retaining only the most influential variables. LASSO is

an example of a method that could be used for finding a small set of single-

variable biomarkers, which is a good approach for data types where each

individual input variable has strong effects on covariates. This approach

is, however, problematic for multicollinear data where entire clusters of

variables up- or down-regulate together.

Elastic Net [97] is an improved sparsity approach for multicollinear data

that encourages joint sparsity patterns for groups of variables using a

combined L1-L2-regularization. The need for properly finding and mod-

elling correlated groups of variables in sparsity models has been noted

recently [98, 99].

In Bayesianmethods, the most common sparsity-enforcing prior for vari-

able selection and statistical hypothesis testing in supervised methods is

the point mass mixture prior [25, 100], also known as the spike and slab

prior.

4.6 Testing known groups

The biological fact that variables act together as groups is widely known

also in gene expression. Testing the joint differential expression of sets

of variables that are known, a priori, to belong to the same pathway, is a

popular approach in the analysis of gene expression data. The standard

methods are Gene Set Enrichment Analysis (GSEA) [101] and Gene Set

Analysis [102]; the concept has also been extended to metabolomics data

[103]. In an advanced extension [104], multi-way experimental designs

were actually taken into account. A recent machine learning approach for

testing known groups is presented in [105].

The disadvantages of testing known, pre-defined sets are that a corre-

lated cluster may also be only a subset from a gene set [39] or composed

of subsets from various gene sets. An additional, exploratory drawback is

that by testing known sets, no new and potentially interesting sets can be
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found.

4.7 Summary: modelling correlated groups of variables

I have now presented biological, technical, and interpretational considera-

tions to claim that generative modelling of correlated clusters of variables

is the most justified approach for ANOVA-type modelling of omics data.

To recapitulate, it is known that there are correlations between groups

of metabolites or similarly behaving genes and it is biologically relevant to

find these groups. It has indeed been commonly reported in lipidomics, for

instance, that clusters of correlated lipids from the same lipid family were

found to be up- or down-regulated similarly [30, 78]. The dimensionality

reduction part of the model has to be able to model joint up- and down-

regulations of groups of variables efficiently.

Modelling omics data takes place in “small n, large p”-conditions. To fa-

cilitate interpretation of the data, the redundancy of information in mul-

ticollinear data should be decreased by dimensionality reduction. Sparse

components, having a non-zero loading from only a subset of variables,

should be used for easier interpretation. Unfortunately, most supervised

multivariate methods run into problems with overfitting or singularity

of the covariance matrix. Unsupervised component models, on the other

hand, may not find the biologically relevant variation in the data. The

main problem of univariate tests is multiple testing.

The optimal approach to reach the goal of this thesis - multi-way mod-

elling of single-source and multi-source omics data using groups of corre-

lated variables as the dimensionality reduction scheme - is a combination

of all the presented approaches. We assume explicitly clusters of corre-

lated variables that respond similarly to covariates to construct latent

factors. Statistical testing takes place in a low-dimensional latent fac-

tor space representing the clusters, with the entire modelling being done

within a unified Bayesian model.

We construct the dimensionality reduction scheme as a FAmodel, where

the latent factors are constrained such that each variable belongs only to

one factor. This approach is related to sparse component models in the

sense that each factor consists of only a subset of variables. This retains

the benefits of sparse approaches: easier interpretation of the components

and overcoming the “small n, large p”-problem.

The reason for using the clustering approach instead of the common
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sparsity approaches developed for supervised methods, is the difference

between supervised learning and statistical testing. Whereas the super-

vised approaches and especially their sparse variants aim to find only

the smallest possible subset of variables (or groups of variables [98, 99])

to separate two classes, ANOVA-type analysis aims to do statistical sig-

nificance testing for all the variables. There are also highly correlated

clusters of variables that do not respond to external covariates, and the

model should discover this result as well.

Unsupervised component models with sparsity-priors have also been de-

veloped [100, 106] and could in principle be used as an alternative to the

clustering approach. We chose the clustering model because the clustered-

ness assumption is relevant for the omics data. It would be of interest to

study whether equally good results can be obtained with sparsity assump-

tions.

48



5. Existing multi-way ANOVA-type
models

In this Chapter, I review existing approaches that can be used for multi-

way modelling of continuous-valued data. First, I introduce the basic

tools ANOVA and MANOVA and explain how they are special cases of

the framework of General Linear Models. I then discuss the problems

of ANOVA and MANOVA for high-dimensional data and present previ-

ous approaches to solve these problems by an additional dimensionality

reduction step. Then, I present relevant Bayesian approaches for multi-

way modelling and, finally, I review the connection of multi-way modelling

to the related advanced machine learning approaches: multi-task learn-

ing, multi-label prediction and multi-class classification. The conclusion

of this Chapter is that none of these methods is a rigorous approach for

multivariate multi-way modelling of high-dimensional data; an even more

important note is that none of these approaches enables an obvious exten-

sion to multi-way modelling of multi-source data.

5.1 ANOVA and MANOVA

The univariate ANOVA [107] was the first and is currently the most widely

known method for the task of modelling the effects of multiple covari-

ates and their interactions in populations of measurements. Multi-way

ANOVA is an extension of the F-test used in one-way ANOVA and the

Student’s t-test. The central assumption of multi-way modelling is that a

generative model explains the observed covariate-related variation in the

data (in the two-way case) as

x = μ+αa + βb + (αβ)ab + ε. (5.1)

Here a and b (a = 0, . . . A and b = 0, . . . B) are the two independent co-

variates. The main effects αa and βb and the interaction effect (αβ)ab
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model the variation from the baseline level (grand mean) μ. Despite the

confusing notation, the interaction effect (αβ)ab is just another term: the

interaction effect of disease and treatment, for example. The ε is a noise

term. A Bayesian formulation of ANOVA was presented in [83].

Multivariate ANOVA (MANOVA) is a multivariate generalization of ANO-

VA. The MANOVA model is the same as the ANOVA model in Equa-

tion 5.1 except that all the terms are vectors, whereas in the univariate

ANOVA-model they are scalars.

5.2 General linear model

ANOVA and MANOVA are special cases of the General Linear Model

(GLM), which is a general term for the generative model

X = DB+ noise, (5.2)

where X is the data matrix, D is a design matrix of the levels of known

covariates and B contains the regression coefficients. The statistical sig-

nificance of the elements of B implies which covariates in D explain the

data inX. The GLM incorporates the cases of univariate and multivariate

data for discrete and continuous-valued covariates. ANOVA is the special

case of GLM in the case of discrete covariates and univariate data. In

MANOVA, the data are multivariate. In the case of both discrete and con-

tinuous covariates, the methods are called Analysis of Covariance (AN-

COVA) and Multivariate Analysis of Covariance (MANCOVA). Joint Bay-

esian modelling of discrete and continuous covariates, which is essentially

a mixture of ANOVA and regression, has been presented for example in

[29, 108]. (M)ANCOVA-type analysis is not, however, discussed in this

thesis. The GLM incorporates also the Student t-test, F-test and linear

regression. Generalized Linear Model is a generalization of GLM that

additionally includes non-linear relationships between the data and the

covariates, such as the logistic function in logistic regression. I do not

discuss non-linear relationships in this thesis.

5.3 Linear mixed models and time-series modelling

Whereas the standard (M)ANOVA-type linear model consists of standard

fixed effects, Linear Mixed Models (LMM) extend (M)ANOVA-type analy-

sis such that they can also include random effects. Fixed effects mean ef-
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fects of interest, or treatments, that have been chosen in the experimental

design and are relevant regarding the chosen research question. Random

effects model out real, but often uninteresting effects in the data, such as

experimental artifacts from repetitions on an individual [109, 110], gene-

specific effects in a clustering model [111, 112] or confounding factors due

to a population structure [113]. The equation for a linear mixed model is

often written as

X = DB+VU+ noise, (5.3)

which extends the linear model having fixed effects with the inclusion

of random effects V. The U are the regression coefficients from random

effects to the data. The D indeed consists of fixed zeros and ones that

relate known covariates to the samples, whereas the random effects V

are assumed to have been sampled from a Gaussian distribution and they

have to be learned as well.

LMMs have been a popular choice for modelling time-series omics data.

In ANOVA-type or LMM-modelling of time-series data, time-point is usu-

ally the fixed effect; the main covariate to be modelled or one of the co-

variates in the case of a multi-way design. Time-series modelling of omics

data is a big field of research of its own [114], where the central research

questions are how to optimally take the time-series nature of data into

account and how to predict future time-points. However, other than the

possibilities within ANOVA-type modelling, I do not discuss modelling the

time-series nature of data in this thesis.

A particularly interesting application of LMMs is clustering genes in

time-series omics data [111, 112]. In this approach, cluster-specific time-

course is the interesting fixed effect and the gene-specific deviation from

the cluster-specific time-course is a random effect. This is also a model-

based clustering approach where the cluster-specific time-course becomes

the “model”. The random effects are here used to model out uninteresting

gene-specific time-effects, which helps in forming the clusters.

The relationship of our modelling approach to LMMs is two-fold. We

will concentrate on fixed effects only and do not consider mixed models.

However, we will use the same idea of model-based clustering where the

“model” for each cluster can be used to describe the effects of covariates.
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5.4 Problems of ANOVA and MANOVA

The general challenges of univariate statistical tests for high-dimensional

data (Section 4.2) also hold for multi-way ANOVA, although the problem

of multiple testing can be alleviated to some extent with multiple testing

corrections. There are also more advanced test statistics developed for

multi-way experimental designs [84, 115]. Access to the information of

correlated clusters can be sought by clustering the variables before the

analysis, or by grouping the variables [116] according to the p-values ob-

tained from the univariate statistical tests.

MANOVA is the multivariate generalization of ANOVA and defines a

formal multivariate statistical test for testing the effects of covariates on

populations of measurements, taking correlations between variables into

account. MANOVA was originally designed for low-dimensional data in

n > p-conditions. Unfortunately, in “small n, large p” - conditions that are

ubiquitous in omics data, the covariance matrix becomes singular. An-

other problem of MANOVA is that it tests the difference between two

populations in terms of all the variables simultaneously and, therefore,

only gives the statistical significance of the overall effect. This result is

not sufficiently informative for high-dimensional data and the highly rel-

evant information of which variables were up- or down-regulated has to

be deduced by other methods, such as univariate tests. Furthermore, as

ANOVA and MANOVA only give the statistical significance of the effect,

the direction, up or down, has to be deduced by other means.

The univariate ANOVA and multivariate MANOVA are two extremes

for how to solve the multi-way modelling problem, both of them facing

both technical and interpretational problems due to the “small n, large

p”-conditions. Few methods have been presented for multivariate multi-

way modelling, essentially solving the general linear model, in “small n,

large p”-conditions. It is obvious that a compromise between testing a

single variable (ANOVA) and all the variables simultaneously (MANOVA)

is sought; the common modelling choice is a dimensionality reduction into

a low-dimensional latent factor space where the statistical testing is done.

A few such classical and Bayesian approaches have been developed.
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5.5 Multivariate many-step approaches

To my knowledge, no methods for multivariate multi-way modelling of

high-dimensional data with a single unified model exist in classical sta-

tistical literature. In contrast to a unified model, the concept of many-

step approach is here used to refer to a pipeline of separate methods, such

as prior dimensionality reduction followed by statistical testing. All the

presented classical methods for multi-way modelling of high-dimensional

data are many-step approaches.

The working solutions presented so far combine a prior dimensionality

reduction by PCA, followed by modelling the effects of covariates by statis-

tical tests in the reduced-dimensional latent factor space. Examples are

ANOVA on the PCA scores [117], 50-50 MANOVA [118] where a MANOVA

follows a PCA dimensionality reduction and ANOVA-Simultaneous Com-

ponent Analysis (ASCA) [119]. These approaches are prone to the stan-

dard problems of PCA (Section 4.4).

The possibility of estimating a whole model jointly and propagating un-

certainties between different model parts properly makes unified Bayes-

ian models a more elegant approach compared to many-step approaches.

The Bayesian model of this dissertation has an integrated dimensionality

reduction into latent factors where multi-way and multi-source modelling

are done. Another probabilistic method, very similar to our method in

Publication I, was presented later in [74]. In that model, probabilistic

PCA was used in combination with generative modelling of the effects of

multiple covariates.

5.6 Multivariate Bayesian approaches

One Bayesian approach for multi-way ANOVA-type modelling of high-

dimensional data is modelling the dataset by univariate linear models

that are coupled together by joint sparsity priors [29, 32, 108]. This ap-

proach defines a regression from all the covariates to each variable. A

joint sparsity prior, point-mass mixture priors in this work, gives a non-

zero loading only for the regression coefficients most strongly modelling

the association between the variables and covariates. This is a good ap-

proach against the multiple testing problem and the induced sparsity

helps in interpreting the dataset.

Another well known approach that uses the point-mass mixture priors
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is sparse factor regression [25]. In this supervised multivariate approach,

sparse latent factors are used to predict an external covariate. Using the

external covariate to supervise the latent factors can overcome the prob-

lem of standard PCA where covariates are not taken into account when

learning the principal components. The point-mass mixture priors make

it possible to form sparse factors where each factor is associated only with

a subset of variables and vice versa. This supervised approach can be used

to find the groups of variables that best predict the covariate. A similar

non-Bayesian approach for (one-way) supervised PCA has been proposed

in [120].

A further extension called sparse latent factor regression model [100]

was developed by combining the univariate ANOVA models, coupled by

a joint sparsity priors, with sparse latent factor models into a joint lin-

ear model. The model is used so that known covariate-related variation

is modelled by the univariate ANOVA models. This variation is often as-

sumed to be uninteresting experimental bias and is explained away. The

remaining variation not explained by the covariates is assumed to be the

interesting information and is modelled by the sparse latent factors. The

latent factors can be either unsupervised or supervised for a prediction

purpose. In the supervised case, the response variables can be Gaus-

sian, right-censored, categorical or binary class labels, where the latter

are dealt with logistic or other link functions.

5.7 Summary: Our modelling approach compared to the existing
approaches

The ANOVA-type modelling is a generative modelling task where the co-

variates are assumed to explain the variation in the data that is high

dimensional in the case of omics data. The Bayesian sparse latent fac-

tor regression model [100] is closely related to our model in Publication

I (Chapter 7) in the sense that sparse latent factors, each consisting of

only a subset of the variables, are formed in a data-driven manner. The

difference in the models is that in [100] (as well as in any other models

[25, 29, 32] in the same framework), multi-way modelling is not done in

the multivariate sense. This model can either do multi-way modelling

using the univariate models, or the multivariate latent factors can be su-

pervised for the purpose of multiple classification tasks, or both. As dis-

cussed in Chapter 4.5, classification is a different task compared to statis-
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tical testing. The multivariate component model part of the sparse latent

factor regression model therefore can not rigorously separate the effects

of multiple covariates from the effects of their interactions.

In contrast, our model (Publication I, Section 7.1) does multivariate

multi-way modelling by estimating the statistical significance of the ef-

fects of covariates and their interactions in the latent factor space, where

each latent factor represents a cluster of correlated variables. The other

model that does multivariate multi-way modelling is 50-50 MANOVA,

presented in Section 5.5, since it does the MANOVA test on the PCA

scores. However, this approach is a many-step approach.

The most important aspect of our modelling approach is that it enables

the extension of the multi-way model naturally into the multi-source cases

as a single unified model. Compared to the sparse latent factor regression

model [100], our model has an additional latent factor space where the ef-

fects of the covariates are modelled. This additional hierarchical structur-

ing in our generative model makes it possible to straightforwardly define

yet another layer of latent factors that are used for integrating multiple

data sources. In contrast, the extensions of the sparse latent factor re-

gression model used for multi-species translation [29, 32] are many-step

approaches. In that model, a list of genes responding to a covariate in one

dataset, is used as prior information for further modelling in the other

dataset.

5.8 Multi-way learning compared to other advanced machine
learning genres

In the machine learning literature, we have introduced the name “multi-

way learning” to define the multi-way modelling task: finding and eval-

uating the statistical significance of the effects of multiple independent

covariates and their interactions. Multi-way learning is a generative mod-

elling task and clearly different from standard discriminative models,

such as classifiers. Binary classifiers are, however, commonly used in

analyzing data having a multi-way experimental design. This is done

naively by either stratifying the case-control comparison according to the

additional covariates or by predicting each covariate at time.

There are currently three popular advancedmachine learning approaches

that are closely-related to multi-way learning: multi-task learning, multi-

label prediction, and multi-class classification. In this section, I review
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the connection of these approaches to multi-way learning and justify why

multi-way learning is a different learning task.

5.8.1 Multi-class classification

When considering the relationship of multi-way learning to other machine

learning genres, it is important to notice that each sample is associated

with multiple covariates and there is a structure between them. This

means that in a setting consisting of “diseased treated” and “diseased un-

treated” patients, for instance, data from both groups is used to estimate

the disease effect.

A multi-way experimental design can in principle be naively consid-

ered as a multi-class classification problem where each combination of

covariates, such as “diseased treated”, is considered an individual class.

Even standard classifiers, such as PLS-DA and LDA, can be used in this

sense. An example of converting a data analysis problem with a multi-

way, multi-source design into a series of multi-class PLS-DA classifiers,

each source at a time, was presented in [121]. In this approach, one natu-

rally loses the information that samples with “treatment 1 in early time-

point” and samples with “treatment 1 in late time-point” are related due

to both having “treatment 1”. Multi-class classification cannot be used

easily to estimate the statistical significance of the effects of multiple co-

variates and their interactions.

To my knowledge, the concept of multi-way classification taking into ac-

count the multi-way experimental design and being able to estimate inter-

action effects has not been introduced, although defining such a concept

could result in a useful methodology.

5.8.2 Multi-task learning

Multi-task learning [122] is a popular machine learning approach that

can be used for learning the association between the data and multiple co-

variates. The leading principle of multi-task learning [58, 123, 124] is that

there are multiple related (usually supervised) learning tasks and learn-

ing these tasks jointly makes it possible to borrow statistical strength

from one another. This improves learning results in contrast to learning

each task separately, which is usually evaluated in the form of classifi-

cation accuracy. Searching for task relatedness [125] is another goal of

multi-task learning.
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Some multi-task learning methods deal with multiple sets of samples

with the same input space, each set having its own learning task [123,

126, 127]. Another common setting is learning multiple related tasks (co-

variates) from the same dataset [128, 58], the latter task being closely

related to multi-way learning. However, the leading principles of the two

genres “learning multiple related tasks jointly” and “modelling the effects

of multiple independent covariates and their interactions” are clearly con-

tradictory. The common multi-task learning assumption of finding a com-

mon set of discriminative variables predictive of all the relevant tasks

is not a relevant assumption in multi-way learning. In multi-way learn-

ing, covariates are independent and each is a priori assumed to up- or

down-regulate different variables, although overlap is naturally possible.

Therefore, multi-way learning should be considered as a different genre.

There is, however, a connection between multi-task learning and multi-

way learning; the dimensionality reduction of our multi-waymodel is done

by representing each cluster of variables by a latent factor and the ef-

fects of multiple covariates and their interactions are learned in this low-

dimensional latent factor space. The latent factor space is the same for all

of the samples (and all the covariates) and, therefore, the effects of each

covariate are learned in the same space. In multi-task learning, there is

a similar aim to learn all the tasks in a shared variable, or latent variable

space, which supposedly provides increased statistical strength compared

to learning each task in a different space.

5.8.3 Multi-label prediction

Multi-label prediction is a recent machine learning genre developed to

address modern application problems of molecular biology and Internet

data, such as gene function prediction or text and image annotation. In

multi-label classification, for instance, the task is to predict a large num-

ber of class labels associated with the samples.

The setting is similar to multi-way learning in the sense that each sam-

ple is associated with multiple covariates. The main interest of multi-

label prediction is, however, in learning or utilizing label correlations and

label structure. A good example is Hierarchical Multi-Label Classifica-

tion [129, 130], which deals with labels having a hierarchy such that the

sample belonging to a class automatically belongs to all ancestor classes

in the hierarchy.

Again, the central difference is that multi-way learning is a generative
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learning approach, aiming to estimate the statistical significance of the

effects and interaction effects of a few central, independent covariates.

Multi-label prediction is a discriminative classification approach and does

not have proper means for doing this evaluation.
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6. Integration of multiple data sources

As the integration of different biomedical data types is believed to be in-

creasingly important in the future medicine, data integration itself is an

active research field in the methodological machine learning research, of-

ten called multi-view learning. Its applications and modelling problems

span a wide range of statistical questions and combinations of heteroge-

neous data types, such as continuous-valued data, categorical data, rela-

tional (network) data, rank data, text data, “Internet clicking”- data and

image data.

Also in this dissertation, I present methodological contributions to inte-

grating multiple continuous-valued data sources, but now in the context of

multi-way modelling where no previous multi-source methods have been

presented. When integrating multiple data sources, a central question is

what kind of pairing information is available to connect the data sources.

We will do multi-way, multi-view learning in two cases: paired samples,

which appear when measurements are taken from multiple tissues or by

multiple different omics techniques from each patient; and in the case

of no paired samples, which appear from cross-species translation be-

tween multiple species. The latter problem is much more difficult in the

statistical sense. Another question is whether variables are matched be-

tween the data sources. In our models, we focus on the general case and

assume no a priori matched variables since in our applications, different

data sources have in general different molecules. Having matching infor-

mation of variables available would make it possible to build more pow-

erful statistical models, however, the applicability area of such models is

restricted.

When integrating information from multiple data sources, an assump-

tion for connecting the multiple datasets is required. In this Chapter,

I first review two relevant existing approaches that can be used for in-
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tegrating multiple continuous-valued data sources with paired samples:

unsupervised generative modelling that can be used to find what is shared

between the datasets, and supervised approaches that define similar clas-

sification results in multiple datasets as the justification for integrating

the data sources. Other proposed means of connecting different data

sources are projecting different data spaces into a latent factor space, such

that neighborhood relationships are preserved [131] and shared causality

[34]. I then review the existing approaches for cross-species translation-

type data integration, where samples are not paired, and show that most

existing approaches are based on having a matching of variables avail-

able, whereas our model is not restricted to such an assumption.

Themodel presented in this dissertation complements the existing multi-

source approaches by a novel assumption for data integration: a shared

response to multiple covariates and their interactions. According to this

assumption, a similar response to multiple covariates and their interac-

tions can be discovered in both datasets and it can be modelled by an

underlying shared latent variable that is assumed to have generated the

data in both data sources.

6.1 Unsupervised data integration

Canonical Correlation Analysis (CCA) [132] is a widely used method for

finding dependencies between two or more datasets with paired samples

and different variable-spaces. CCA can be used to answer the question

of what is shared between two data sources, being a generalization of

correlation to multivariate data. CCA has recently attracted considerable

attention as the importance of integrating multiple data sources has been

noticed.

The underlying assumption of the generative model of CCA [133] is that

there is a shared latent process that has generated a part of the varia-

tion in both of the observed data sources and, additionally, there is data

source-specific variation. This formulation makes it evident that CCA

is closely related to other, single data-source factor models, such as FA

and PCA. These models can, therefore, be used conveniently together as

building blocks of a hierarchical unified model, as was done in Publica-

tion II. CCA extends FA and PCA such that in the generative model,

there is a shared latent factor common to both data sources (together with

source-specific effects). A Bayesian formulation of CCA was presented
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in [134, 135] and several other formulations have been presented lately

[136, 137].

A central theme in the current research on CCA, as well as on other

factor models, is finding sparse components both to facilitate interpre-

tation of high-dimensional data and to deal with the “small n, large p”-

conditions. Themain approaches of the Bayesian genre for sparsity-induc-

ing priors of CCA are an advanced version of the Automatic Relevance De-

termination (ARD) prior [136] and an Indian Buffet Process prior [137].

Non-Bayesian approaches are usually based on L1 and/or L2 -regularized

optimization methods [57, 138, 139] or kernel methods [140]. In our

model, the CCA-component integrates multiple low-dimensional latent

factor spaces that result from a dimensionality reduction at a lower level

in the hierarchy. Further sparsity approaches are therefore unnecessary

for the CCA-component in our model.

In applications having both paired samples and matching information

between the variables available, the matching information can be used

to reduce the number of parameters of the CCA-model, which makes the

model more powerful [59].

Other canonical correlation-type approaches for unsupervised data in-

tegration are Co-Inertia Analysis (CIA) [141, 142, 143] and O2-PLS [61,

144], which is a generalization of OPLS. Methods that assume shared la-

tent variables between multiple data sources can be also used for cluster-

ing the samples (patients) [145]. The goal of finding unsupervised depen-

dencies between datasets without modelling response to covariate(s) can

also be achieved by regressing from one dataset to another [48, 143, 146],

for instance by PLS.

Overall, methods that search dependencies between data sources are

one modelling option for connecting multiple data sources, however, since

the unsupervised data integration approaches do not take the covariate

information into account, they need to be extended for the purpose of

multi-way modelling. We will do that in Section 7.2.

6.2 Supervised data integration

The standard supervised approach for data integration is to learn a sepa-

rate classifier to predict a binary class label (covariate) in each data source

and combine the classification results. The usual goal is to determine

whether additional data sources, often of different data type, can improve
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classification accuracy, as was done in the original multi-view learning

paper [147] and in several later approaches [70, 71, 72, 73, 121]. These

studies have indeed shown that integrating classification results from

multiple data sources can improve the classification accuracy over using a

single data source. The combined multi-source, supervised one-way learn-

ing is a setting closely related to multi-source, multi-way modelling, but

the ultimate goal of multi-source, multi-way modelling is again different:

learning the association and statistical significance of (multi-source) data

to multiple covariates and their interactions, and in particular, explaining

the covariate-related dependencies between the data sources.

Corresponding to our interest in combiningmulti-way learning andmulti-

view learning, the multi-task learning community has lately presented

various methods for combining multi-task learning and multi-view learn-

ing [148]. This indicates a growing interest in learning joint models in

setups involving multiple data sources and multiple covariates (or tasks).

6.3 Cross-species analysis and translation

Cross-species analysis of omics data is a research genre with increas-

ing importance since model organisms are used as models of a disease

or treatment response and the findings have to be translated into hu-

man clinical studies. The use of omics techniques enables a biomarker

discovery-type approach to cross-species analysis: studying how the con-

centrations of different molecules respond (up- or down-regulate) to co-

variate(s). The genomes of different species have a partially shared, con-

served component due to joint genetic ancestry [12]. Due to evolutionary

changes, however, different species have additionally a species-specific ge-

netic component. As a result, partially similar gene expression [12] and

other omics phenotypes can be expected between different species as well,

including partially same molecules (mRNA/proteins/metabolites) and par-

tially similar physiological functions.

Modelling cross-species omics data is a difficult data integration task. It

differs from the data integration tasks with paired samples (Subsections

6.1 and 6.2) in the sense that there are no paired samples, as naturally

there is no pairing between an individual human and mouse, for instance.

Despite this difficulty, the goal of these two data integration settings is

the same: to find what is shared between the data sources.

An important issue is whether a known correspondence, or matching
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between different molecules in the two species exists. Two different types

of models are usable depending on whether the variables can be a priori

matched (at least partially) between the species, or whether no such pair-

ing information is available. Having a priorimatching information makes

the modelling task much easier by considerably more statistical strength

being available. Most importantly, the matching offer a well-defined set-

ting for finding shared patterns between the datasets. For mRNA data,

this matching information is often known since the traditional research

question of cross-species analysis has been to find orthologous genes [12]

based on the similarity of the DNA sequence coding the gene. If an or-

thologous gene has a similar role in a cellular physiological process across

species, it is called a core gene [12, 50] in the case of gene expression data.

If an orthologous gene has a different role in the different species, it is

called divergent gene [50].

In some cross-species research questions, such as in translational lipid-

omics studies between human patients and model organisms [49], there is

not necessarily any matching information available. Although the experi-

mental techniques identify similar chemical molecules in multiple species

[31], these molecules can be divergent genes or metabolites or different

molecules in different species may have taken the same role in some phys-

iological systems. If the correspondence of the roles of a chemically sim-

ilar molecule in different species is not well known, it is better not to

assume any known matchings. Therefore, a research question of great

importance is how to actually map the, say, lipidomics disease phenotypes

and responses to drugs between clinical human studies and model organ-

isms [31, 49]. By using omics data, this problem can be approached in a

data-driven way. Also, the validity of a specific animal model as a model

for a certain disease is often debated by the biomedical community [9]

and computational cross-species analysis can help to validate [31] these

models. In lipidomics, for instance, the mappings of phenotypes between

species are to date mostly unknown. The scientific community is only be-

ginning to search for means for finding this information, [49] being one of

the first attempts. Computational models based on a priori known match-

ing between variables are not usable here.

6.3.1 Known matching between the variables

When orthology information of genes is available, the central research

question of cross-species analysis of mRNA data is finding the core genes,
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conserved cross-species gene modules [12, 68] that give evidence of evo-

lutionary mechanisms. Expression meta-analysis [12] refers to compar-

ing expression of genes in different species under similar (usually one-

way) experimental conditions. When matching information of orthologous

genes is available between all the variables, expression meta-analysis is

conceptually straightforward: comparing lists of p-values, at the simplest,

although such results have not always been encouraging [12].

I give two examples of using the known matching of variables. Firstly,

when translating findings between observational human studies and in

vitro cultured human cells or cancer cell lines, matching between practi-

cally all the variables is present [32], which provides a straightforward

starting-point for translation. Secondly, in cross-species analysis of gene

expression data, there is usually a list of orthologous genes available

[12, 29, 149, 150]; this list is a subset of all the genes in each species. For

instance, the authors in [29] report that out of 12000 human gene probe-

sets and 12000 mouse probesets, there are 7000 known matches. The

analysis can, therefore, be restricted to this common subset. The transla-

tion is done in [29] and [32] using as prior information the list of model

organism genes that respond to a covariate, the model organism being cell

lines [32] or mouse [29]. The subsequent analysis on human samples is

done by restricting the latent factor modelling to the prior list of genes.

In these experiments, both human samples and model organisms have

the same or related disease, although the full experimental designs are

not equal. Biclustering both genes and conditions is another approach for

multi-species integration [68] when matching of genes are available.

It has also been shown that knowing some matchings a priori can be

used to find more matchings from the data [50, 150]. On the other hand,

[150] questioned the exactness of known orthologs between genes in mul-

tiple species that are solely based on sequence similarities. Instead, they

used the degree of sequence similarity as a probability of match, trans-

forming exact prior affiliations to soft prior probabilistic matchings to be

confirmed by additional omics data.

Another worthwhile question is whether cross-species translation should

be done assuming one-to-one matching of individual variables or by as-

suming matching of clusters of variables. Although there indeed exists,

in some cases, prior information for one-to-one correspondences of orthol-

ogous genes [12, 50, 149, 150], the redundant information resulting from

multicollinearity of omics data makes the question of finding one-to-one
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matching difficult. Most computational approaches are indeed clustering-

based methods [12, 32, 68, 150, 151], and we also assume matching for

clusters of correlated variables.

6.3.2 Unknown matching between the variables

A novel, considerably more difficult computational problem of “how to ac-

tually find matching from the data” appears when no a priori matching

information is available or it is not reasonable to use it. This task has

been tackled by a CCA-type approach [49, 51, 152] and by a Co-Inertia

Analysis-based method [151]. In the lipidomics application of [51], how-

ever, the search for matching was facilitated by restricting the search

space to candidate sets according to prior information on lipid functional

classes and chemical properties. These methods do not take the covariate-

information into account, which makes it difficult to interpret what the

similarity in matched variables (molecular profiles) actually is.

The model presented in this dissertation tackles the problem of find-

ing matching without any a priori matching information between the

variables in different species and, additionally, translating the results

between the datasets coming from the two species. As a summary: no

existing method can tackle this task. The methods that assume an a pri-

ori known matching between the variables naturally can not be used to

find the matching. The existing methods that do not assume an a priori

matching [51, 151] do not model the response to covariates, which would

enable to translate these responses.

The novel contribution of our model (Section 7.2.3, Publications III and

IV) in the cross-species translation line of research is to search for trans-

lation by searching for a similar response to multiple covariates and their

interactions in the context of a similar underlying multi-way experimen-

tal design in the two species. The method therefore finds what is shared

in the two datasets, which can be modelled by a shared underlying latent

effect. Using this approach, the model can both find the variables that re-

spond similarly determining that such variables are matched, and model

the shared (core) response to the covariates, which translates the find-

ings (response to covariates) between the species. The method is there-

fore directly usable to the task of mapping disease and treatment-related

findings between model organisms and clinical studies.
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7. The unified multi-way, multi-source
model

The contribution of this dissertation is to extend multivariate multi-way

ANOVA-type modelling to multiple data sources with different, unmatched

variables in each data source and to make multi-way modelling possible

in “small n, large p”-conditions. Two data integration cases are consid-

ered: (i) multiple data sources with paired samples (multiple tissues or

multiple omics types measured from each individual), and (ii) multiple

data sources without paired samples (translating results between human

patients and model organisms). Multi-way modelling is additionally ex-

tended to cases where the structure of one of the covariates is partly un-

known. These modelling problems are closely related as illustrated in Fig-

ure 7.1. We have developed a unified Bayesian model that can be struc-

tured for all the multi-way modelling cases with slight modifications to

the model structure according to the experimental design.

In this chapter, I first present how the problem of high dimensionality

and small sample-size can be overcome by a dimensionality reduction ap-

proach, where clusters of similarly behaving variables are modelled as

latent factors. The effects of the covariates and their interactions are

modelled in the low-dimensional latent factor space. I then present how

multiple data sources can be combined by integrating the low-dimensional

latent factor spaces they are represented by. This is followed by the ex-

tension of multi-way modelling to the case where one of the covariates has

a partly unknown structure; the idea is to learn the unknown structure

jointly with multi-way modelling. Finally, I will discuss the technical de-

tails of the model and how we handled the imperfect experimental design

of the data in Publication V.

In all the multi-way modelling cases, the goal is to train a unified gener-

ative model that is assumed to have generated all the observed data. After

learning the parameters of the model, the posterior distribution provides
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a solution to the multi-way modelling task. The statistical significance of

the effects, the decomposition to shared and data source-specific effects,

and the cluster assignments of the variables can all be directly obtained

from the posterior distribution.

7.1 Single-source multi-way modelling

Our approach for solving the multi-way modelling task of a single data

source in “small n, large p”-conditions [Publication I] is the following. We

reduce the dimensionality of the data by modelling clusters of correlated

groups of variables by a factor analyzer and the effects of covariates are

modelled in the latent factor space. The factor analysis model is

xlat
j ∼ N (0,Ψx),

xj ∼ N (μx +Vxxlat
j ,Λx) . (7.1)

Here xj is a p-dimensional observation vector for sample j = 1, . . . , n and

Vx is the projection matrix (p ×K) that is assumed to generate the data

vector xj from the K-dimensional latent variable xlat
j . The K is the num-

ber of components (clusters). The Vxxlat
j models common variation of the

data around the p-dimensional mean vector μx.

The regularizing assumption required to overcome the “small n, large

p”-problem is that latent factors are composed of clusters of (correlated)

variables such that each variable belongs exactly to one component (de-

tails in Publication I). The elements of Vx have been restricted to being

positive only; therefore, each cluster consists of only positively correlated

variables. These components can be seen as sparse factors, since each

factor involves only a subset of the original variables, unlike in the stan-

dard FA and PCA where components are a linear combination of all the

variables.

The effects of multiple covariates act directly on the latent factors as

xlat
j ∼ N (αa + βb + (αβ)ab,Ψ

x), (7.2)

where αa and βb are the K-dimensional main effects and (αβ)ab are the

K-dimensional interaction effects for covariates a = 0, . . . A and b = 0, . . . B.

This equation holds also to the case of one of the covariates having partly

unknown structure, presented in Section 7.4.
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Figure 7.1. Illustration of the four data analysis tasks in this paper. (a) Standard
ANOVA setup, but with high dimensionality (variables) compared to the
number of samples (rows). (b) Extension to multiple data sources with paired
samples. (c) Extension to time with unknown alignment. (d) Extension to
multiple data sources without paired samples. The images represent data
matrices, where rows are samples and columns are variables. The illustra-
tion represents the experimental design of each task, composed of a combi-
nation of standard covariates (disease, treatment), time-series information,
and integration of multiple data sources. Reprinted with kind permission
from Springer Science and Business Media: Publication III, Figure 1.
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7.1.1 Relationship to PCA-approaches

The intuitive idea of doing multi-way modelling in a low-dimensional la-

tent factor space is similar to the many-step approaches where PCA is

followed by multi-way analysis on the PCA scores [74, 118, 119]. For

the multi-source case with paired samples, the intuitive idea is doing a

sparse CCA followed by multi-way modelling on the scores in a shared

CCA-space. The added benefit of our unified model is that the uncertainty

estimation of dimensionality reduction and multi-way modelling is done

jointly.

7.1.2 Relationship to LMMs

From the perspective of clustering, the Bayesian model does model-based

clustering of variables where the latent factor scores (probabilistic in our

model) are the “model” for each cluster. Multi-way modelling on these

probabilistic factor scores on the next level up in the hierarchy provides

directly the statistical significance of the effects of the covariates and their

interactions for each cluster of variables. As noted in Section 5.3, this

model-based clustering approach is related to using LMMs for clustering

time-series data. Another connection to LMMs is that in the higher level

of hierarchy of our model (Equation 7.2), the variation of the latent fac-

tors is separated into fixed multi-way (and multi-source) effects and latent

space noise. The latent space noise is closely related to random effects in

the sense that it models individual-specific variation that deviates from

covariate effects for each cluster. Modelling the latent space noise enables

clusters of correlated variables to be formed even when no significant fixed

effects are found from the data.

7.2 Multiple data sources

I now proceed by extending the single-source model into multi-source

cases; the different model variants are illustrated in Figure 7.2. In all

cases, the effects of covariates are modelled with terms αa, βb and (αβ)ab.

In the single-source cases, these effects act directly on the latent space

representing the groups of correlated variables. In the multi-source case

with paired samples, these effects act on another level of hierarchy; the

shared latent factor space modelling shared variation between the sources.
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In each case, the posterior distribution of the effects is estimated and can

be used to directly estimate the statistical significance of the effects of the

covariates and their interactions.

7.2.1 The ‘data source’ as a covariate

The key theoretical idea of extending multi-way modelling to multiple

data sources is to consider the ‘data source’ as an additional covariate. In

a standard multi-way model, there are covariates such as disease, treat-

ment, time, and gender. In this subsection, I call these standard co-

variates [Publication III] to distinguish them from the ‘data source’ as a

covariate. An ANOVA-model for two standard covariates is

x = μ+αa + βb + (αβ)ab + noise. (7.3)

Consider now a data analysis task with two standard covariates and two

data sources with different variables. When the source is an additional

covariate d, the model becomes

xd = μ+αa + βb + (αβ)ab + γd +

(αγ)ad + (βγ)bd + (αβγ)abd + noise, (7.4)

where γd would denote the effect of source. However, since different data

sources have different (and a varying number of) variables, this model

cannot be applied as such. The main and interaction effects cannot act on

two different data spaces with different dimensionalities.

It is possible, however, to build a hierarchical model where the latent

effects are projected to the actual data spaces x and y with unknown pro-

jections fx and fy that can be estimated from the data. The equations

are

x = μx + fx(αa + βb + (αβ)ab) + fx(αx
a + βx

b + (αβ)xab) + ε,

y = μy + fy(αa + βb + (αβ)ab) + fy(αy
a + βy

b + (αβ)yab) + ε .

From now on I denote the two data sources as x and y, respectively. In this

definition, the effect of the data source cannot be included as a main effect

since different data sources have different variables. However, it is now

possible to separate the main effects αa, βb, and (αβ)ab from the interac-

tion effects of a standard covariate and the sourceαx
a, β

x
b , and (αβ)xab (sim-

ilarly for y). The latter effects have the interpretation as “source-specific”

covariate effects, whereas the main effects are shared covariate effects
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Figure 7.2. The introduced model variants. (a) The hierarchical latent-variable model for
standard multi-way modelling of a single data source with standard covari-
ates, under “large p, small n” conditions, (b) model for the multi-source case
with paired samples, (c) time with unknown alignment, (d) multi-source case
without paired samples, coupled only by shared latent effects (time-course
with unknown alignment in this case). Reprinted with kind permission from
Springer Science and Business Media: Publication III, Figure 2.
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that act on both data sources. We here define that modelling shared ef-

fects of multiple covariates and their interactions is the underlying as-

sumption of the integration of multiple data sources in the context of a

multi-way design.

The idea of considering the source as a covariate and solving the multi-

way, multi-source problem by a hierarchical machine learning model is

valid for both paired and unpaired samples. In the case of unpaired sam-

ples, both data sources need to have a similar experimental design for the

above definition to work.

7.2.2 Paired samples

The known pairing of the samples can be used for integrating the data

sources [Publication II] by including the generative model of CCA [133,

134] to the unified model. This is illustrated in Figure 7.2 and in Figure 3

in Publication II. The equations of the hierarchical generative model are:

α0 = 0,β0 = 0, (αβ)a0 = 0, (αβ)0b = 0

αa,βb, (αβ)ab,α
x
a,β

x
b , (αβ)

x
ab ∼ N (0, I)

zj |j∈a,b ∼ N (αa + βb + (αβ)ab, I)

zxj |j∈a,b ∼ N (αx
a + βx

b + (αβ)xab, I)

xlat
j ∼ N (Wx

sharedzj +Wx
specificz

x
j ,Ψ

x)

xj ∼ N (μx +Vxxlat
j ,Λx), (7.5)

and similarly for y. If shared variation in the two data sources can be

modelled by a shared latent space z such that statistically significant

shared effects αa, βb and (αβ)ab can be found, then shared covariate-

related variation was present in the two data sources.

The generative model has an intuitive interpretation: diseasesαa, treat-

ments βb, and their interactions αβab have a shared effect on the entire

organism z of individual j. This shared effect affects multiple tissues xlat

and ylat and activates multiple pathways in each tissue; each pathway is

represented by one dimension of xlat or ylat. Each pathway then affects

the concentrations of a cluster of correlated lipids in the observed data x

and y.

7.2.3 No paired samples

The case of no paired samples, motivated by the translation of biomark-

ers between two data sources with a similar covariate structure, is sta-
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tistically much more difficult since without paired samples there does not

exist a shared latent space z. The learning task becomes a matching prob-

lem; finding groups of variables that respond similarly to multiple stan-

dard covariates in the two data spaces (species). The definition of the data

integration task remains the same: search for shared covariate-related ef-

fects αa, βb, and (αβ)ab. There is a dependence between the data sources

if statistically significant effects can be found.

Two algorithms have been presented in this dissertation to solve the

matching problem. In Publication III, a simple matching algorithm was

presented to find only the shared response in the two sources. In Publica-

tion IV, a more advanced algorithm was presented, attempting to estimate

also the source-specific effects. In Publication IV, two covariates where

included; one of them being a covariate with partly unknown structure,

namely, unaligned time.

7.3 Multi-level covariate

I have so far dealt with binary covariates, such as healthy/diseased or

male/female, however, a discrete covariate can in general have multiple

levels. Typical examples of a multi-level covariate are time, having mul-

tiple measurement times or age groups, and treatment, as there are often

multiple drug alternatives or other treatments.

The model developed in this dissertation is applicable to experimental

designs where one or several of the covariates in the multi-way design

have multiple levels. There is, indeed, a time-series setting in several

applications of this dissertation. In the second application of Publication

I, age is one of the relevant covariates and we binned it to age groups.

This is a working formulation, but from the point of view of time-series

analysis it is a naive solution. In this application, disease is the other

covariate and the interaction of time and disease has the interpretation

of an age-specific disease effect.

In publications III and IV, the same dataset [14] was analyzed in a more

advanced manner. There were two multi-level covariates: disease state

and development state. The dataset was accompanied with antibody in-

formation, which allowed us to divide the disease covariate into multiple

(fixed) disease development states. As for the development state covari-

ate, it had an a priori unknown structure that we wanted to learn from

the data.
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As another example, we formulated the treatment covariate in the multi-

way design of Publication V as a multi-level covariate that has levels

‘treatment’, ‘placebo’, and ‘untreated’, as will be explained in Section 7.7.

7.4 Covariate having partly unknown structure

We have also extended our model to multi-way designs where one of the

covariates has a partly unknown structure. As a case study, we have used

time with unknown alignment that is usually modelled by HiddenMarkov

Models (HMM).

The HMMs are a common time-series model in the machine learning

literature; the idea is to align time-points into latent HMM-states. We

have taken the point of view that a HMM model can be seen as a one-

way multi-level ANOVA-model where the HMM-state of each sample is

a covariate and the mean parameter of each HMM-state is the covariate

effect. The difference to a standard one-way ANOVA-model is that the co-

variates associated with the samples are a priori unknown, but they can

be learned from the data simultaneously with learning the mean param-

eters of HMM-states.

In this dissertation, I present a multi-way model where the unaligned

time is one of the covariates together with others, such as disease. The

previously unknown structure of time was learned jointly while learning

the multi-way model. However, this concept is not limited to time and

HMMs; there can be other similar applications where the previously un-

known structure of a covariate has to be learned. Factorial HMM [153]

is a related model where the observed data is generated by the combined

effects of multiple HMM chains.

Another note in the relationship of this work to HMMs is that HMM is

a generative model and the HMM-state is assumed to emit the observed

data sample from the emission distribution defined by the mean param-

eter of each HMM-state. In our work, the HMM chain and the other co-

variate effects emit a latent variable together; this latent variable in turn

generates the actual data point. This is consistent with our standard

multi-way model where the covariate effects generate a latent variable,

which in turn generates the data sample.

We have used standard formulations of the Bayesian HMM [154, 155].

The model structure is a restricted linear HMM-structure where only self-

transitions and transitions to the next state are allowed.
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7.5 Using the Bayesian posterior distribution to perform a
statistical test

It is worth noticing that in this dissertation, the posterior distribution of

the effects of covariates is used in order to perform a statistical test. When

the model parameters have been learned from data, the posterior distri-

bution of the covariate effects gives directly the statistical significance of

the effects; a posterior distribution consistently above (below) zero implies

a consistent positive (negative) effect with some level of significance. We

have used a widely adopted threshold of 95%. Since the prior of the effects

is zero-mean Gaussian, the posterior distribution models simultaneously

two things: whether the effect is non-zero (significant) and whether the ef-

fect is positive or negative, implying an up-regulation or down-regulation,

respectively.

A similar idea of variable selection and statistical hypothesis testing has

been used in the Sparse factor regression models [25, 29, 32, 108, 100]

and other related models using the sparsity-inducing point-mass mixture

priors (Spike and Slab priors). In these works, the Spike and Slab prior

models the regression coefficient between the observed variable and the

latent factors or covariates. Whereas our prior for a covariate-effect is

Gaussian, the Spike and Slab is a mixture of point mass at zero and a

Gaussian distribution. This construction induces sparsity since the point-

mass component forces most regression coefficients to zero. In our model,

the statistical testing is done one level higher up in the hierarchy between

the covariates and latent factors and the clustering of the variables at a

lower level makes the components sparse. Since the dimensionality of the

latent factor space is low, the effects can be estimated without assuming

sparsity.

7.6 Repeated measures

Repeated measures ANOVA, also known as pairwise comparisons, is an

important and well-founded concept in statistical testing and in LMMs.

The idea is that, if the measurement has been done from each individ-

ual before and after a treatment, it is advantageous to take into account

that the two measurements come from the same individual. Including

the individual-specific effects in the ANOVA-model, in other words do-

ing pairwise comparisons, makes the statistical test stronger since the
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individual-specific variation is taken into account.

The experimental design of Publication V included such pairwise com-

parisons: measurements had been done before and after drug treatments.

We found out that modelling pairwise comparisons can be included in our

model by including an individual-specific effect. The assumption we make

is that individual-specific variation affects clusters of variables.

7.7 Imperfect multi-way design

In Publication V, we presented an application of the model developed in

this thesis on a novel lipidomic drug study where the dataset had an in-

teresting experimental design: an imperfect design. Whereas a standard

two-way design with binary covariates would include four populations of

measurements, in this study there were three populations: two groups of

human patients had been given fenofibrate drug treatment and another

group had been given a placebo treatment. Fenofibrate raises Homocys-

teine (Hcy) levels of patients after treatment in varying amounts. A pop-

ulation from the highest quartile of elevated Hcy levels (called high Hcy

group) and a population from the lowest quartile (called low Hcy group)

had been chosen for the study. Placebo does not raise Hcy levels and,

therefore, a placebo group with high Hcy concentrations is biologically

not possible. Lipidomics measurements had been taken before and after

treatment.

The research question was to study the effect of the fenofibrate treat-

ment (compared to the placebo group) in lipid profiles and, additionally,

to study the difference between high Hcy and low Hcy groups. The exper-

imental design is clearly of multi-way nature, however, since there does

not exist a low Hcy - placebo group, there is not a unique way to formulate

this design for multi-way data analysis. In addition, there was a repeated

measures design.

The aim was to formulate a single multi-way model that can answer

both research questions: (i) effect of fenofibrate, and (ii) difference be-

tween low Hcy and high Hcy groups. This joint modelling task was solved

in Publication V in the following way. All the samples taken before fenofi-

brate or placebo treatment belong to the control group (‘before treatment’).

The treatment covariate is a multi-level covariate having three levels:

fenofibrate treatment, placebo and ‘before treatment’. Hcy level (high/low)

is the second covariate, however, it applies only to the patients treated
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with fenofibrate and hence the multi-way design is imperfect. By using

this formulation, we were able to estimate the effects of the fenofibrate

treatment, placebo and the interaction of fenofibrate and Hcy level. Eval-

uating the statistical significance of these effects answered the two re-

search questions. We also found the anticipated result that, for most lipid

clusters, there is no placebo effect.

7.8 Biological prior knowledge of existing clusters

If prior information on lipid or gene clusters is available and it is desirable

to use, it can be included directly as prior probabilities of clustering, see

Publication I.

7.9 Model complexity selection

An important issue in Bayesian modelling is to compare different models

and choose the one that best explains the data. In this dissertation, model

comparison is a relevant issue in choosing the number of clusters and it

was solved using predictive likelihood, as explained in Publication I. In

the multi-source cases, the selection of the number of clusters is done

for each data source separately. Another issue is choosing the number

of HMM states. However, since solving both model complexity selection

tasks simultaneously is a difficult problem, we have so far simply chosen

the number of HMM states a priori according to an earlier HMM analysis

on the same dataset [33].

7.10 Summary

In summary, the applicability area of the model presented in this disser-

tation covers most single-source or data integration (paired or non-paired

samples) multi-way modelling tasks, possibly with one covariate with a

partly unknown structure. The main message is that, although these

data analysis tasks are very complicated, they can be formulated as a

multi-way ANOVA-type problem where the design can consist of standard

covariates and possibly multiple data sources.
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8. Future improvements

In this chapter, I present potential technical improvements that would

make our model even more usable in multi-way modelling of omics data.

8.1 Multimodality of the posterior distribution

Multiple modes of the posterior distribution of complicated Bayesian mod-

els is a known problem of MCMCmethods, including Gibbs sampling used

in this dissertation. When sampling multimodal posterior distributions,

an MCMC chain can get stuck in one of the modes. The complicated multi-

way (multi-source) model presented in this dissertation also encounters

this general problem. In practical data analysis, the problem is that

a unique globally optimal solution cannot be guaranteed and different

MCMC chains give slightly different results, although our results have

been relatively consistent. When modelling real-world datasets, there can

be multiple modes and if clusterings obtained from parallel chains are dif-

ferent, combining these results can be somewhat difficult.

Two approaches could help to solve this problem. One is to replace

MCMC with another approximate inference method, for instance varia-

tional approximation. Unfortunately, no currently existing approximate

inference method is guaranteed to find a global optimum for complicated

models. Another solution is to develop a proper approach for combining

information from multiple chains.

8.2 Multiple components in CCA

The current multi-source method with paired samples [Publication II] es-

timates only one shared component between the data sources and one

source-specific component for each data source. However, in a complex
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high-dimensional real-world dataset, there can be more than one shared

effect that have different responses to multiple covariates. Therefore,

more than one component might be required to uncover all the relevant

information from the data. In the formulation of our model, the shared

effect is represented by a CCA-component having contribution from one

or more clusters in each data source. It was demonstrated in Publication

II that the method can find the shared effect and one source-specific effect

in each data source simultaneously.

Since our modelling approach is an extension of CCA which is normally

used for estimating multiple shared components, it is conceptually straight-

forward to include multiple shared components in our model. In prac-

tice, however, there is a challenge of unidentifiability of multiple compo-

nents when using the Bayesian CCA model. The existing solution for the

unidentifiability of probabilistic CCA [156] is not applicable here because

our model is a modification of CCAwhere the effects of the covariates mod-

elled as hyperpriors. Furthermore, it is difficult to simultaneously choose

the number of shared components and the number of source-specific com-

ponents in each data source. Solving these issues is an active topic in CCA

research, and one recent promising solution has been found [157].

8.3 Finding the optimal number of clusters

Model complexity selection is one of the fundamental research problems

in machine learning. We have constructed our Gibbs sampler such that

the number of clusters is fixed a priori in order to have a parameter space

with constant dimensionality. The clusters can also become empty. The

task of finding the optimal number of clusters has been solved in this

thesis by a predictive likelihood approach, as explained in Publication I.

Although this is a well justified approach, in practical data analysis it is

somewhat inconvenient and computationally extensive due to the use of

cross-validation. The practicality of the method would improve by a better

approach for choosing the number of clusters.

Non-parametric Bayesian methods, such as Dirichlet processes [158]

and Indian Buffet process [159], are one promising approach to deal with

the uncertainty in the number of clusters or components. There are, how-

ever, unresolved practical difficulties in using these methods, and they do

not yet offer a working solution for our problem.
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8.4 Modelling non-linearity of biological data

The question of linearity vs. non-linearity of biological data is a common

issue, many experts claiming biological data is non-linear. Our model is a

linear model as it follows the traditional concept of ANOVA. Since we are,

however, using a hierarchical Bayesian model, we can replace Gaussian

distributional assumptions by non-linear distributions.

However, learning non-linear relationships from the data requires con-

siderably more data points than learning linear relationships, and non-

linear models have an even more serious risk of overfitting. When the

modelling takes place in “small n, large p”-conditions, it is questionable

whether more complex relationships than linearity can be learned. Allow-

ing non-linear relationships might also require redefining the statistical

significance concepts for non-linear ANOVA, although the topic has al-

ready been studied to some extent in the formalism of Generalized Linear

Models.

8.5 (M)ANCOVA-type modelling

The current version of our model cannot be readily applied to (M)ANCOVA-

type modelling, mixture of discrete and continuous-valued covariates. How-

ever, continuous-valued clinical variables, such as BMI and age, are com-

mon covariates in multi-way designs of omics datasets. There are two

possible approaches for taking continuous-valued covariates into account.

Firstly, the multi-way, multi-source model [Publication II] can be applied

such that the omics data are one data source and the continuous-valued

clinical variables are another data source. Secondly, the model can be

modified by changing the distributional assumptions of the covariates to

allow also continuous-valued covariates.

8.6 Single-variable clusters

As a result of the clusteredness assumption, we have implicitly defined

multivariate multi-way modelling as modelling the effects of covariates

and their interactions on clusters of variables, which complements the tra-

ditional approach of searching for single-molecule biomarkers. Instead of

two separate analyses, it would be desirable to search for single-variable

markers and up- and down-regulations of clusters of similarly-behaving
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molecules jointly. The current model can find clusters consisting of only a

single variable; in practice, few are found. To improve the practical useful-

ness of the method, the flexibility of Bayesian modelling could be utilized

to further encourage the method to find also single-variable clusters. In

this way, the improved method could do joint univariate and multivariate

modelling.
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9. Conclusions

“Factorial designs will become de rigeur within molecular and genome

biology in the way they were in the early 20th century in agricultural

research, and the need for relevant statistical analysis tools will be ever-

more central” - (Seo, Goldschmidt-Clermont and West, 2007)

In this dissertation, I have provided a formal theoretical and feasible

practical approach for multivariate multi-waymodelling of high-dimensio-

nal, small sample-size, single-source andmulti-source datasets. Themulti-

way modelling task, modelling the effects of multiple covariates and their

interactions in the data, is increasingly common in the analysis of data

coming from current biomedical research. Omics datasets also come in-

creasingly often from multiple sources (different omics types, tissues, spe-

cies). Multi-waymodelling has a long tradition in classical statistics where

the problem has been traditionally defined and solved by the Analysis of

Variance (ANOVA). However, ANOVA is a univariate method and cannot

be adequately used for high-dimensional data, which results in a need of

multivariate methods. We have developed such a method and an addi-

tional theoretical contribution of this dissertation is that we have gener-

alized multivariate multi-way modelling to multiple data sources and to

cases where one of the covariates has a partly unknown structure.

9.1 Contribution to single-source multi-way modelling

Since biomedical omics experiments are increasingly common and they

usually have an underlying multi-way experimental design, there is a

great need for methods capable of multivariate multi-way modelling of

high-dimensional data with a small number of samples. As a result of

methodological difficulties and lack of suitable multivariate multi-way
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methods, data analysis of biomedical data is usually done by simpler

approaches, such as (one-way) binary classifiers, univariate statistical

tests or unsupervised methods (PCA and clustering). When using sim-

pler methods, one has to either neglect the multi-way setup, which intro-

duces confounding factors, or to stratify the analysis into multiple case-

control comparisons. In the latter case, multiple separate models have to

be learned, each with even a smaller number of samples available. Using

such simpler approaches cannot lead to as good an interpretation of the

data as full multi-way modelling, and there are technical issues involved.

The first goal of this dissertation was to develop a formal unified Bayes-

ian model where the statistical significance testing is done in a reduced-

dimensional latent factor space. In this way, the uncertainties between

the model parts propagate properly, which is crucial when the number of

samples is small.

Few other approaches have been presented for multivariate multi-way

modelling of high-dimensional data. The Bayesian sparse latent factor re-

gression model [25, 100] is closely related to our model. However, despite

the various applications where the authors have applied their model, to

my knowledge, they have not developed a model variant that does the sta-

tistical testing of the effects of multiple covariates and their interactions

in the multivariate sense, that is, for groups of variables.

9.2 Contribution to multi-source, multi-way modelling

To my knowledge, no previous methods have been presented for multi-

variate multi-way modelling of multi-source data, and this dissertation is

the first approach of the kind. The analysis of experimental omics data

with a multi-way, multi-source setup is usually done using the same stan-

dard tools as in the analysis of single-source data. The analysis is done

separately for each data source or the data sources are concatenated.

In this dissertation we have defined that the underlying assumption for

integrating the data sources is the similar response in multiple datasets

to multiple covariates and their interactions, which can be modelled by

a latent shared effect. This holds true for both common cases: paired

samples and no paired samples.

In the case of paired samples, integrating multiple different omics data

types and integrating data from multiple tissues are the two important

application areas. There are a few existing data integration approaches
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for multi-source data; the problem of unsupervised approaches is that co-

variate information is not taken into account and supervised approaches

are limited to one-way cases. As for the case of no paired samples (cross-

species translation), most existing data integration approaches assume

a priori matched variables. Our model has been developed for the more

general case where such matching information is not available, but the

actual task is to find the matchings based on the data. The existing meth-

ods that do not assume a priori known matching between the variables,

do not take the covariate information into account. Our translation model

thus contributes to the cross-species modelling line of research as a fea-

sible approach for finding unknown matching of molecules between two

species, additionally making it possible to translate biomarker-type find-

ings between the species.

We were successful in developing a formal multi-way, multi-source model.

Using a unified modelling approach makes it possible to define a proper

statistical analysis question and obtain a holistic view of the biological

system even when the dimensionality of the data, the number of data

sources or the number of covariates grows.

9.3 On the results obtained

Our results showed that clusteredness of variables is a very good assump-

tion for lipidomics data and we were successful in utilizing the assumption

for dimensionality reduction to overcome the “small n, large p”- difficulty.

Having clusters of variables also helps to interpret the data. Modelling

clusters of correlated variables is also a good approach against the prob-

lem of multiple testing since the number of statistical tests decreases es-

sentially from the dimensionality of the data to the number of clusters.

Strongly correlated lipid clusters were found in all the lipidomic data sets

studied in the applications. A few preliminary feasibility studies have

shown that the assumption of clusteredness works well for gene expres-

sion and gut microbiota data as well [data not shown]. In particular,

the results showed that all the lipids belonging to a cluster up- or down-

regulate similarly as a response to one or multiple external covariates and

their interactions, and statistically significant multivariate effects were

found despite the extremely small number of samples available. Also, a

desired result was that in each study, most clusters are unaffected by ex-

ternal covariates; this suggests that the method truly finds only the vari-
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ables affected by the covariates and is not prone to overfitting, as many

classifiers are. In this sense, the clusteredness assumption also helps to

guard against single-variable false positives.

We also succeeded in applying the model as a ready tool to a novel 600-

dimensional dataset in Publication V and the model was able to find mul-

tiple main effects and interaction effects. Furthermore, the extensibility

of our Bayesian model was demonstrated here when the dataset had both

an imperfect design and a repeated measures design. We were able to for-

mulate the task as a multi-way modelling problem and extend the model

to take this design into account properly within the unified model, which

would not have been fully possible by standard statistical tools.

In the data integration cases with paired samples and without paired

samples, the task was to find shared effects between the datasets. The

results showed that the clustering also works as the necessary dimen-

sionality reduction component for the complicated data integration cases,

bringing the information in high-dimensional data to the shared latent

variable space. The results showed that the method was capable of find-

ing statistically significant shared effects between multiple data sources

and source-specific effects.

We realize that the problems in sampling multimodal posterior distribu-

tions by MCMC methods concern our work as well, but our model seems

to work well and fulfills the standard requirement that results from par-

allel MCMC chains are consistent. In this work, the models have been

validated with experiments on simulated data. More extensive Bayes-

ian model criticism has been left for future studies. Nevertheless, results

obtained from our model from real lipidomics data were consistent with

results obtained by simpler statistical methods: 50-50 MANOVA [Pub-

lication II], basic statistical analysis done in Publication V, and unpub-

lished preliminary feasibility studies using the basic approaches: univari-

ate tests, PLS-DA, and PCA [data not shown].

One challenge of traditional ANOVA-analysis are unbalanced designs,

where different groups have different numbers of samples. The perfor-

mance of our model in the case of unbalanced designs has not been sys-

tematically studied.
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9.4 Multi-way learning

As a result of this dissertation, I claim that multi-way learning should be

seen as its own machine learning genre. There are three leading trends

in the machine learning community that are closely related to multi-way

learning: multi-task learning, multi-label prediction, and multi-class clas-

sification. The existing methods in these genres solve different, usually

discriminative tasks and these methods are not designed to do multi-way

ANOVA-type modelling, which is a generative modelling task.
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10. Discussion

10.1 Applicability of the model to other data types

The model I have presented is applicable to single-source or multi-source

omics datasets: gene expression, proteomics, metabolomics (lipidomics)

and their combination. This model can handle most modelling problems

that can be formulated as a multi-way experimental design including any

multi-tissue or any data integration setting havingmultiple types of omics

data with paired measurements from each individual. In cross-species

translation type of studies (no paired samples), two datasets from differ-

ent species, with a similar experimental design, can be integrated with

this model in order to match the variables and find a shared response to

the multiple covariates. As an example of a such biological study, see [49].

Both data integration model variants have been developed to be used un-

der the less restrictive assumption of no a priori knownmatching between

the variables from different data sources. If matching between the vari-

ables is available, more powerful statistical approaches can be applied by

either extending this model to take the pairing information into account

or by using other models.

Although I have focused on discussing biomedical omics data in this

dissertation, the model is readily applicable to other continuous-valued

data types where the clusteredness assumption of variables can be made

and where the research question is multi-way modelling of single-source

or multi-source data. One such potential data type is gut microbiota

[43, 44, 45, 46], which is assumed to consist of relative amounts of bacte-

ria in bacterial populations (clusters). Gut microbiota datasets often have

similar experimental designs and research questions and are often inte-

grated with omics data. Another possible data type is Functional Mag-
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netic Resonance Imaging (fMRI) data, which consists of intensity valued

voxels with heavy correlations between neighboring voxels. The fMRI

data are high-dimensional and require dimensionality reduction. Data

integration settings for fMRI data are attracting increasing interest, al-

though the approaches presented so far have been basic many-step ap-

proaches [160, 161]. Integrating MRI data with omics data [35, 162] is an

example of an even more exciting scientific perspective that can be sought

by data integration.

10.2 Future use of unified Bayesian multi-way models

As a result of this dissertation, I claim that unified Bayesian generative

modelling is a good approach for holistic analysis of complex datasets that

consist of an increasingly growing mixture of multi-way, multi-source and

even multi-species settings. The results of this dissertation suggest that

building unified models for analyzing data from complicated experimen-

tal setups is possible; the flexibility of the Bayesian formalism made it

possible to include all the necessary prior information of the experimen-

tal design as necessary building blocks for a unified model: integration of

multiple data sources, multi-way modelling and dimensionality reduction

in the form of clusteredness assumption.

As large biobanks [1, 163, 164, 165, 166, 167] become available, there

will be a growing need to integrate omics data with clinical data and ge-

netic sequence data. Although the current version of our method is not

readily applicable to discrete data types, the unified modelling approach

of this dissertation is a good starting point for integrating new data types

as additional data sources. As sub-components of Bayesian hierarchical

models can be changed flexibly, new data types can be incorporated easily.

A few technical details remain unsolved so far, namely how to tackle the

multimodality of complex posterior distribution and how to find multiple

components in the case of multiple data sources with paired samples. At

the current stage, the model can be used as an exploratory tool for find-

ing interesting multi-way, multi-source structures in the data. As soon as

means for finding a unique solution will be found, the model presented in

this dissertation has potential to become the leading approach in multi-

variate multi-way modelling of high-dimensional data.
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[35] M. Orešič, J. Lötjönen, and H. Soininen. Systems medicine and the in-
tegration of bioinformatic tools for the diagnosis of Alzheimer’s disease.
Genome Medicine, 2(11):83, 2010.

93



Bibliography

[36] G. Blekherman, R. Laubenbacher, D. Cortes, P. Mendes, F. Torti, S. Akman,
S. Torti, and V. Shulaev. Bioinformatics tools for cancer metabolomics.
Metabolomics, 7:329–343, 2011.

[37] J. E. Lucas, C. M. Carvalho, D. Merl, and M. West. In-vitro to in-vivo factor
profiling in expression genomics. In Bayesian Modelling in Bioinformatics,
pages 293–316. Taylor-Francis, 2010.

[38] T. Risby and S. Solga. Current status of clinical breath analysis. Applied
Physics B: Lasers and Optics, 85:421–426, 2006.

[39] M. C. Wu, L. Zhang, Z. Wang, D. C. Christiani, and X. Lin. Sparse lin-
ear discriminant analysis for simultaneous testing for the significance of
a gene set/pathway and gene selection. Bioinformatics, 25(9):1145–1151,
2009.

[40] H. Zhang, A. Y. Liu, P. Loriaux, B. Wollscheid, Y. Zhou, J. D. Watts, and
R. Aebersold. Mass spectrometric detection of tissue proteins in plasma.
Molecular & Cellular Proteomics, 6(1):64–71, 2007.

[41] C. Hu, H. Wei, A. M. van den Hoek, M. Wang, R. van der Heijden, G. Spi-
jksma, T. H. Reijmers, J. Bouwman, S. Wopereis, L. M. Havekes, E. Verheij,
T. Hankemeier, G. Xu, and J. van der Greef. Plasma and liver lipidomics
response to an intervention of rimonabant in apoe*3leiden.cetp transgenic
mice. PLoS ONE, 6(5):e19423, 05 2011.

[42] A. Joyce and B. Palsson. The model organism as a system: integrating
’omics’ data sets. Nature Reviews Molecular Cell Biology, 7:198–210, 2006.

[43] V. R. Velagapudi, R. Hezaveh, C. S. Reigstad, P. Gopalacharyulu,
L. Yetukuri, S. Islam, J. Felin, R. Perkins, J. Borén, M. Orešič, and F. Bäck-
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