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Abstract 
In 1995, atomic physics took a quantum leap with the experimental discovery of almost
ideal Bose–Einstein condensation in dilute gases of alkaliatoms. The gaseous condensates
offer a rare chance to study an interacting many-particle system accurately from first-
principles theories, and they can be used to simulate many seminal models that have proven
elusive in their original context of, e.g., solid-state or high-energy physics. An important
topic in the research has been the quantized vortex, which was experimentally realized in
1999 and whose existence is intimately related to the concepts of quantum phase coherence
and superfluidity.

In this dissertation, unconventional vortex structures are investigated in the dilute con-
densates at ultralow temperatures. A combination of analytical and numerical methods
is used to examine the structure, stability, and dynamical behavior of multiquantum vor-
tices and vortex–antivortex pairs in spin-polarized condensates, unusual vortex lattices in
two-species condensates, and spin textures in condensateswith dipolar interactions. In
studying the properties of the multiquantum vortices, particular emphasis is placed on
exploring the practical limits of producing them through adiabatic pumping of vorticity.
The majority of the research is conducted by solving the mean-field Gross–Pitaevskii and
Bogoliubov equations.

Various original, experimentally verifiable results concerning the exotic vortex struc-
tures are presented. Novel splitting patterns of vortices with large quantum numbers are
introduced, and it is shown that such vortices can be feasibly stabilized by piercing them
with a focused laser beam. A recent experiment on vortex–antivortex pairs is simulated,
and an excellent quantitative agreement with the experimental data is obtained. Unconven-
tional ground-state vortex lattices, such as ones having a square geometry or consisting of
two-quantum vortices, are shown to exist in rotating two-species condensates. Dipolar
interactions are found to support helical spin-vortex states, and the energies of spin-wave
excitations are observed to increase rapidly with the dipolar coupling strength.

This dissertation contributes to the understanding of superfluid phenomena in Bose–
Einstein condensates and has significant implications for the prospects of detecting novel
vortex structures in current experiments.
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Tiivistelmä 

Vuonna 1995 atomifysiikassa otettiin merkittävä edistysaskel, kun lähes ideaalinen Bosen–
Einsteinin kondensaatio saavutettiin harvoissa alkaliatomikaasuissa. Atomikondensaatit
mahdollistavat vuorovaikuttavan monihiukkassysteemin mallintamisen perusteorioihin no-
jaten. Kondensaattien avulla voidaan myös simuloida monia uraauurtavia malleja, joiden
tutkiminen on osoittautunut hankalaksi niiden alkuperäisess̈a yhteydess̈a kuten kiintëan
olomuodon tai korkean energian fysiikassa. Erään̈a ẗarkëan̈a tutkimuskohteena on ollut
kvantittunut virtauspÿorre, vorteksi, joka tuotettiin kokeellisesti vuonna 1999. Vorteksit
liittyv ät läheisesti kvanttimekaanisen vaihekoherenssin ja suprajuoksevuuden k̈asitteisiin.

Väitöskirjassa tarkastellaan eksoottisia vorteksirakenteita harvoissa kondensaateissa
nollalämp̈otilan rajalla. Analyyttisia ja laskennallisia menetelmiä käytẗaen tutkitaan moni-
kvantittuneiden vorteksien ja vorteksi–antivorteksiparien rakennetta, stabiilisuutta ja dyna-
miikkaa spinitẗomiss̈a kondensaateissa, epätavallisia vorteksihiloja kahden kondensaatin
systeemeiss̈a sek̈a spin-tekstuureita kondensaateissa, joissa vaikuttavatdipoli–dipolivoi-
mat. Monikvanttivorteksien tapauksessa halutaan erityisesti selvitẗaä, kuinka suuria vor-
teksien kvanttilukuja voidaan saavuttaa niin sanotun vorteksipumpun avulla. Suurin osa
tutkimuksesta perustuu Grossin–Pitaevskiin ja Bogoliubovin yhtälöiden ratkaisemiseen.

Työss̈a saavutetaan uusia, kokeellisesti varmistettavissa olevia tuloksia eksoottisiin
vorteksirakenteisiin liittyen. Vortekseille, joiden kvanttiluku on suuri, l̈oydeẗaän uuden-
laisia jakautumismekanismeja. Lisäksi osoitetaan, että ẗallaisista vortekseista saadaan dy-
naamisesti stabiileja lävisẗamällä niiden keskus fokusoidulla lasersäteell̈a. Vorteksi–anti-
vorteksipareista suoritetaan simulaatioita, jotka tuottavat erinomaisen kvantitatiivisen vas-
taavuuden tuoreiden koehavaintojen kanssa. Kahden pyörivän kondensaatin systeemille
löydeẗaän ep̈atavanomaisia perustiloja kuten neliömäisïa tai kaksikvanttivortekseista koos-
tuvia vorteksihiloja. Dipoli–dipolivuorovaikutusten huomataan suosivan korkkiruuvimai-
sia spin-vorteksitiloja, ja spin-aaltojen eksitaatioenergioiden havaitaan kasvavan nopeasti
dipoli–dipolivuorovaikutuksen voimakkuuden funktiona.

Väitöskirjassa esitetyt tulokset edistävät vorteksi-ilmïoiden tuntemusta Bosen–Einstei-
nin kondensaateissa. Tuloksilla on merkitystä mÿos, kun uusia vorteksirakenteita etsitään
tämänhetkisiss̈a kokeissa.
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1. Introduction

Superfluidity, superconductivity, and laser light may be considered among

the most important discoveries of modern physics in terms of scientific in-

terest and technological potential. Although these phenomena are observ-

able on macroscopic length scales, their origin lies in quantummechanics.

In particular, all three are intimately related to the macroscopic occupa-

tion of a single quantum state.

The notion of macroscopic quantum occupation dates back to 1924–1925,

when Albert Einstein extended Satyendra Nath Bose’s statistical deriva-

tion of Planck’s law for photons [1] to systems with a conserved number

of particles [2, 3]. Einstein recognized that an ideal gas of atoms obey-

ing the resulting statistical distribution would condense into the ground

state of the system at sufficiently low temperatures. According to Ein-

stein, a phase transition would occur at a critical temperature Tc, below

which a macroscopic number of the atoms would occupy the lowest-energy

quantum state. This phenomenon, which has subsequently been termed

Bose–Einstein condensation, is a purely quantum-statistical phase tran-

sition in the sense that it occurs even for noninteracting bosons.

In 1938, Fritz London proposed that the then recently discovered super-

fluid 4He [4,5] could be a manifestation of Bose–Einstein condensation [6,

7]. Although London’s suggestion was later supported by neutron scatter-

ing experiments [8] and Monte Carlo simulations [9], the exact character-

istics of the phase transition into the superfluid state still remain some-

what unclear due to strong interaction effects and the consequent lack

of a transparent microscopic theory. In addition, Bose–Einstein conden-

sation is closely related to the Bardeen–Cooper–Schrieffer (BCS) mecha-

nism of superconductivity [10], which can be interpreted as the simulta-

neous formation and condensation of fermion pairs. However, the BCS

superconductors are not well described by a simple Bose-gas picture since

1



Introduction

Figure 1.1. Successive occurrence of Bose–Einstein condensation in rubidium [16]. From
left to right is shown the atomic distribution in the cloud just prior to conden-
sation, at the start of condensation, and after full condensation. High peaks
correspond to a large number of atoms. The distributions were recorded 6 ms
after switching off the magnetic trap. Reprinted from The Nobel Foundation
9th October 2001 Press Release [19].

the fermion pairs behave as composite bosons only in an approximate

sense [11].

In the 1960s, an intensive search began for Bose–Einstein condensa-

tion in dilute, weakly interacting bosonic gases, in which the condensa-

tion phenomenon would not be blurred by strong correlation effects or

deviations from the exact Bose–Einstein statistics. After decades of re-

search on trapping and cooling of neutral atoms [12–15], the final break-

through came in 1995, when nearly ideal Bose–Einstein condensation was

achieved in magnetically trapped ultracold vapors of alkali metals 87Rb

[16], 23Na [17], and 7Li [18] (see Fig. 1.1). These pioneering experiments—

for which Eric Cornell, Wolfgang Ketterle, and Carl Wieman were later

awarded the 2001 Nobel Prize in Physics [19]—launched an avalanche of

research into the fascinating physics of dilute Bose–Einstein condensates

(BECs). To date, the gaseous BECs have been experimentally realized by

over a hundred groups.

To reach Bose–Einstein condensation in a dilute alkali gas, the atoms

have to be cooled below the critical transition temperature Tc. In a typ-

ical experiment, the number of atoms in the dilute BEC is of the order

of 106 and the radius of the atomic cloud is of the order of 10–100 μm,

yielding a particle density of roughly 1014 atoms/cm3, which is by a factor

105 smaller than in air. Due to the low density, the condensation temper-

ature is extremely low, typically of the order of Tc ≈ 1 μK. Such ultracold

temperatures are usually achieved using a combination of different laser

2
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cooling techniques and forced evaporative cooling [20–23]. To produce the

atomic gas, alkali atoms are first evaporated off from a solid sample at

high temperature. A beam of these atoms is directed into a so-called Zee-

man slower in which the velocity of the atoms is reduced enough for the

atoms to be captured in a magneto-optical trap. The gas is then typically

laser-cooled down to sub-mK temperatures, after which it is cold enough

to be captured using only magnetic fields. The final step is the evapora-

tive cooling, in which the most energetic atoms are removed from the trap

with radiofrequency transitions.

The gaseous condensates are in many ways exceptional compared with

other systems exhibiting macroscopic quantum phenomena. On one hand,

the interactions between the atoms give rise to nonlinear phenomena that

are not present in laser fields. On the other hand, the interactions are suf-

ficiently weak to allow high condensate fractions and a simple mean-field

analysis, in contrast to superfluid helium. Due to their diluteness, the

natural length scales in the condensates are relatively large, which makes

them amenable to direct optical imaging. The ultracold gases have also

turned out to be surprisingly robust and flexible. Diverse means to ma-

nipulate them—in particular the strength and spatial dependence of the

atomic interactions [24]—render the gaseous condensates versatile tools

for studying complex quantum phenomena in a controllable environment.

The phenomena studied so far range from atom lasers [25–27] to quan-

tum phase transitions [28, 29], but the condensates have been suggested

to be used as simulators, e.g., for black holes [30,31], cosmic strings [32],

and self-gravitating gases [33].

The interplay between coherence, long-range order, and superfluidity

are of fundamental interest in the study of BECs. The formation of long-

range order in bosonic gases implies the onset of Bose–Einstein conden-

sation and phase coherence. Conventionally, the characteristic features of

superfluidity, i.e., dissipationless and irrotational flow, vanishing viscos-

ity, and reduced moment of inertia, have also been interpreted in terms

of phase coherence and spontaneous symmetry breaking: the superfluid

system is described with an order parameter having a well-defined phase.

Although superfluidity is indeed closely connected with the phase coher-

ence of the system, it can still exist in the absence of a coherent BEC. On

the other hand, the uniform ideal BEC is not a superfluid [34,35], and the

degree to which the weak atomic interactions do sustain superfluidity in

the atomic condensates has been a central issue under investigation.

3
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Quantum phase coherence is typically manifested on microscopic length

scales as the existence of quantized vortices which are string-like topo-

logical defects in the complex phase of the order-parameter field. Quan-

tized vortices are characteristic of macroscopic quantum systems: these

coherent whirlpools have been studied extensively in the context of su-

perfluid helium [36,37] and superconductors [38], and they also appear in

such diverse fields as astrophysics (neutron stars [39]), cosmology (cosmic

strings [40]), optics (optical vortices [41]), and nuclear and elementary

particle physics (rotating nuclei [42]).

Since quantized vortices are inherently connected with superfluidity,

there has been wide interest in studying them in trapped dilute BECs [43].

Ever since their first experimental observation in 1999 by Matthews et

al. [44], a plethora of vortex experiments in the dilute condensates have

been providing important information on the coherence and superfluid

properties of these systems.1 A central issue has been the stability of vor-

tices [46–56]—the existence of stable quantized vortices often serves as

smoking-gun evidence for superfluidity.

The development of methods to trap neutral atoms by purely optical

means [57, 58] has made it possible to study BECs with internal spin de-

grees of freedom [59].2 From the point of view of vortex physics, these

spinor BECs are important since they exhibit a rich variety of unconven-

tional topological defects such as half-quantum vortices [60–64], skyr-

mions [65], and monopoles [66–70]. The spin degrees of freedom can

also be directly utilized to produce vortices either by magnetic manipu-

lation [71] or by laser-induced artifical gauge fields [72]. In particular, the

manipulation of the atomic spins by magnetic control fields allows for a

cyclically operated vortex pump [73], which can, stability issues notwith-

standing, produce giant vortices with arbitrarily large quantum numbers.

During the past few years, long-range dipole–dipole interactions be-

tween the condensate atoms have attracted a lot of interest [74]. Espe-

cially, recent experiments have indicated that the dipolar interactions can

be relevant for some phenomena in spinor condensates of 87Rb [75, 76].

The dipole–dipole interactions also play a role in the study of topological

defects, since dipolar forces are able to stabilize spin vortices [77–80] and

may give rise to intriguing spin textures such as spin helices [81].

1For an almost exhaustive list of experiments on vortices in BECs, see Ref. [45].
2When the atoms are trapped using magnetic fields, their spins become polarized
along the field direction and the spin degree of freedom is effectively frozen out.

4
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The objective of this dissertation is to study exotic vortex structures in

gaseous BECs at ultralow temperatures. A combination of numerical and

analytical methods is used to examine the structure, stability, and dynam-

ical behavior of multiply quantized vortices and vortex–antivortex pairs

in spin-polarized BECs, unconventional vortex lattices in two-species con-

densates, and spin textures in dipolar BECs. The underlying purpose

of these investigations is to broaden and deepen our understanding of

vortex phenomena in the gaseous condensates. Although the research is

theoretical, it is strongly motivated by current experimental prospects.

For example, when studying the stability of multiply quantized vortices,

particular emphasis is placed on analyzing the aforementioned vortex

pump and exploring its practical limits in producing giant vortices with

extremely large quantum numbers. Also, the investigation of vortex–

antivortex pairs is closely related to recent experiments [82].

This overview is organized as follows. Chapter 2 describes the physi-

cal systems considered in the dissertation and the theoretical framework

used to model them. Chapters 3–5 review the research reported in Pub-

lications I–VII: Quantized vortices, topological methods to create them,

and the stability of vortices with large quantum numbers (Publications I–

III) are discussed in Chapter 3. Vortex–antivortex pairs in spin-polarized

BECs (Publication IV) and vortex lattices in a system of two interacting

condensates (Publication V) form the topic of Chapter 4. In Chapter 5,

BECs with dipolar interactions are introduced, and helical spin textures

and elementary excitations in such systems (Publications VI and VII) are

investigated. Each of Chapters 3–5 also includes a motivation for study-

ing the topic at hand and a discussion of the obtained results. Finally,

Chapter 6 concludes the dissertation by summarizing the contributions

made and proposing areas for future research.
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2. Mean-Field Theory of Dilute
Bose–Einstein Condensates

In this chapter, we describe the mean-field theory used to model the di-

lute BECs at ultralow temperatures [23, 83, 84]. In Sec. 2.1, we charac-

terize the second-quantized Hamiltonian of the system, and in Sec. 2.2,

we define Bose–Einstein condensation using the Penrose–Onsager crite-

rion. Section 2.3 introduces the nonlinear differential equation governing

the time evolution of the condensate, the Gross–Pitaevskii equation, and

Sec. 2.4 discusses elementary excitations and their role in the stability

analysis of the condensate.

2.1 System characterization and Hamiltonian

The physical system considered in this dissertation is an ultracold gas

of weakly interacting bosonic atoms which are captured, manipulated,

and measured using magnetic and laser fields. Alkali-metal atoms are

particularly suitable for such purposes since their optical transitions can

be excited with available lasers and their energy-level structure enables

laser cooling to record-low temperatures [85]. The atoms are assumed to

have a hyperfine spin F = 1, giving rise to a three-component quantum

field operator describing them. In the z-quantized basis |F = 1, j〉, the
field operator has the components ψ̂j(r, t), where j ∈ {1, 0,−1}.1
The effective grand-canonical Hamiltonian K̂ of the system is written

1The hyperfine spin F is the quantum number corresponding to the total angu-
lar momentum operator F = I + J, where I and J are the operators for the nu-
clear spin and the electronic angular momentum, respectively, in units of �. For
the experimentally most relevant alkali atoms 23Na and 87Rb, the corresponding
quantum numbers have the values I = 3/2 and J = 1/2, which implies F = 1 or
F = 2, the first being the lower-energy multiplet [86,87]. The F = 1 multiplet is
fully characterized by the z-quantized basis states |F = 1, j〉, where j ∈ {1, 0,−1}
is the eigenvalue of the z component of F.
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as [88,89]

K̂ = Ĥ − μN̂ =

∫
d3r

[
ψ̂†j(r, t) (Hjk − μδjk) ψ̂k(r, t)

+
gn
2
ψ̂†j(r, t)ψ̂

†
j′(r, t)ψ̂j′(r, t)ψ̂j(r, t)

+
gs
2
ψ̂†j(r, t)ψ̂

†
j′(r, t)Fjk · Fj′k′ψ̂k′(r, t)ψ̂k(r, t)

]
, (2.1)

where μ is the chemical potential controlling the average number of par-

ticles. The single-particle Hamiltonian operator is given by

Hjk =

[
−�

2∇2

2m
+ Vtr(r)

]
δjk + gFμBB(r, t) · Fjk, (2.2)

where m denotes the atomic mass, gF is the Landé g-factor, and μB is the

Bohr magneton. The possibly present external magnetic field is denoted

by B(r, t), and Vtr(r) = m
(
ω2
rx

2 + ω2
ry

2 + ω2
zz

2
)
/2 is the optical potential

trapping the atoms. Moreover, F = F x x̂ + F y ŷ + F z ẑ is a vector of the

standard spin-1 matrices

F x =

⎛
⎜⎜⎝

0 η 0

η 0 η

0 η 0

⎞
⎟⎟⎠ , F y = i

⎛
⎜⎜⎝

0 −η 0

η 0 −η
0 η 0

⎞
⎟⎟⎠ , F z =

⎛
⎜⎜⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟⎟⎠ ,

(2.3)

where η = 1/
√
2. In Eq. (2.1) and what follows, the spin indices take

the values j, j′, k, k′ ∈ {1, 0,−1} and summation over repeated indices is

assumed.

The coupling constants gn and gs appearing in Eq. (2.1) measure the

strengths of the local density–density and spin–spin interactions, respec-

tively. They are related to the s-wave scattering lengths a0 and a2 into

spin channels with total spin 0 and 2� through gn = 4π�2 (a0 + 2a2) /3m

and gs = 4π�2 (a2 − a0) /3m. The spin–spin interaction is referred to as fer-

romagnetic if gs < 0 and antiferromagnetic if gs > 0. Spinor condensates

of 87Rb are examples of the ferromagnetic case, whereas condensates of
23Na have antiferromagnetic coupling.

In the Heisenberg picture, the quantum field operator ψ̂j(r, t) evolves in

time according to the Heisenberg equation of motion,

i�∂tψ̂j(r, t) =
[
ψ̂j(r, t), K̂

]
. (2.4)

By inserting the Hamiltonian (2.1) into Eq. (2.4) and using the canonical

commutation relations

[ψ̂j(r, t), ψ̂
†
k(r

′, t)] = δjkδ(r− r′), [ψ̂j(r, t), ψ̂k(r
′, t)] = 0, (2.5)

we obtain

i�∂tψ̂j = Hjkψ̂k − μψ̂j + gnψ̂
†
j′ψ̂j′ψ̂j + gsψ̂

†
j′Fj′k′ψ̂k′ · Fjkψ̂k. (2.6)
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2.2 Definition of Bose–Einstein condensation

The onset of Bose–Einstein condensation is associated with the formation

of off-diagonal long-range order in the system. A convenient way to char-

acterize the condensation phenomenon and the existence of off-diagonal

long-range order is provided by the Penrose–Onsager criterion [90], which

relates these concepts to the single-particle density matrix ρ1 defined as

ρ1(jr, j
′r′; t) = 〈ψ̂†j′(r′, t)ψ̂j(r, t)〉. (2.7)

Since ρ1(jr, j′r′; t) is an Hermitian matrix, it can be diagonalized in terms

of single-particle eigenfunctions with real eigenvalues. According to the

Penrose–Onsager criterion, a conventional Bose–Einstein condensate ex-

ists if ρ1 has exactly one eigenvalue, N0, that is of the order of the to-

tal number of particles, N , and the rest of the eigenvalues are much

smaller than N . Furthermore, we define the condensate order param-

eter Ψ = (Ψj) = (Ψ+1,Ψ0,Ψ−1) as the spinor-valued eigenfunction that

corresponds to the eigenvalue N0,
∫
d3r′ρ1(jr, j′r′; t)Ψj′(r

′, t) = N0Ψj(r, t), (2.8)

and that is normalized such that
∫
d3rΨ∗j (r, t)Ψj(r, t) = N0. The ratio

N0/N is referred to as the condensate fraction.

2.3 Gross–Pitaevskii equation

In order to develop a mean-field theory for the dilute BECs, let us con-

sider a system which has condensed according to the Penrose–Onsager

criterion. Using the order-parameter field given by Eq. (2.8), we define

the bosonic field χ̂(r, t) := ψ̂(r, t) − Ψ(r, t), which allows us to decompose

the quantum field operator as

ψ̂j(r, t) = Ψj(r, t) + χ̂j(r, t). (2.9)

The order parameter Ψ describes the atoms in the coherent condensate,

whereas the fluctuation operator χ̂ characterizes the noncondensed, or

thermal, component of the gas.

In this dissertation, we will exclusively work in the limit of zero tem-

perature. In such a setting, the fluctuation operator χ̂ is assumed to yield

only a small correction to the overall state of the system, and the theory

is developed as a perturbation expansion in the powers of χ̂. To this end,

9
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we insert the decomposition in Eq. (2.9) into Eq. (2.6) and collect terms in

orders of χ̂, yielding the zeroth-order equation,

i�∂tΨj =
(Hjk − μδjk + gnΨ

∗
j′Ψj′δjk + gsΨ

∗
j′Fj′k′Ψk′Fjk

)
Ψk, (2.10)

which is the celebrated Gross–Pitaevskii (GP) equation [91–93] for spin-1

BECs, and the first-order equation

i�∂tχ̂j(r, t) = (Hjk − μδjk + Cjk) χ̂k(r, t) + Bjkχ̂
†
k(r, t), (2.11)

where the self-energies are given by

Bjk = gnΨjΨk + gsFjj′ · Fkk′Ψj′Ψk′ , (2.12)

Cjk = gn
(
Ψ∗j′Ψj′δjk +ΨjΨ

∗
k

)
+gs

(
Fjk · Fj′k′ + Fjk′ · Fj′k

)
Ψ∗j′Ψk′ . (2.13)

The GP equation (2.10) forms the backbone of the mean-field analysis

used in this dissertation. To solve Eq. (2.10) numerically, we discretize it

on a uniform grid using finite-difference methods and compute the time

evolution of Ψ(r, t) with a split-operator approach [94, 95]. Often, we are

interested in the stationary states of the condensate that satisfy the time-

independent GP equation,

(Hjk − μδjk + gnΨ
∗
j′Ψj′δjk + gsΨ

∗
j′Fj′k′Ψk′ · Fjk

)
Ψk(r) = 0. (2.14)

Its numerical solutions are obtained with the technique of successive over-

relaxation [94].

2.4 Elementary excitations

In this section, we study the low-energy elementary excitations of the

BEC in the zero-temperature limit. Elementary excitations are closely

related to the collective oscillations of the system and characterize its re-

sponse to small external perturbations, often enabling a lucid comparison

between theory and experiments. The theoretical formalism for trapped

spin-1 BECs [96,97] is based on the framework established by Bogoliubov

in 1947 for a uniform gas of interacting bosons [98]. The basic idea is

to expand the Hamiltonian (2.1) in powers of χ̂ about a stationary state

of the condensate and diagonalize the resulting second-order term by a

canonical operator transformation.

To study the small-amplitude oscillations in the vicinity of a given sta-

tionary state Ψ(r), we write the field operator in the form ψ̂(r, t) = Ψ(r) +

10
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χ̂(r, t), where Ψ(r) satisfies Eq. (2.14). Equation (2.11) for the nonconden-

sate operator χ̂ is then solved by introducing the Bogoliubov transforma-

tion

χ̂j(r, t) =
∑
q

[
uq,j(r)e

−iωqtb̂q + v∗q,j(r)e
iω∗

q tb̂†q
]
, (2.15)

where b̂q and b̂†q are the annihilation and creation operators for bosonic

quasiparticles with energy �ωq. We require the transformation to be canon-

ical, which implies that the quasiparticle amplitudes (uq, vq) must satisfy

the orthonormality condition
∫
d3r

[
u∗q,j(r)uq′,j(r)− v∗q,j(r)vq′,j(r)

]
= δqq′ . (2.16)

Inserting Eq. (2.15) into Eq. (2.11) yields the Bogoliubov equation for the

elementary excitations
⎛
⎝ Ajk Bjk

−B∗jk −A∗jk

⎞
⎠

⎛
⎝ uq,k(r)

vq,k(r)

⎞
⎠ = �ωq

⎛
⎝ uq,j(r)

vq,j(r)

⎞
⎠ , (2.17)

where Ajk = Hjk − μδjk + Cjk.
It is noteworthy that the Bogoliubov matrix in Eq. (2.17) is generally

not Hermitian, which permits the existence of eigensolutions with non-

real eigenfrequencies ωq. Such excitation modes are referred to as com-

plex modes. However, the complex modes are not proper quasiparticle

solutions in the sense that they do not satisfy the orthonormality condi-

tion of Eq. (2.16) [99,100]. Thus, the existence of complex modes indicates

the failure of the usual Bogoliubov transformation [101] and special care

must be taken in quantizing them [31,102].

When the Bogoliubov spectrum is used to expand the grand-canonical

Hamiltonian (2.1), the resulting diagonalized form shows that the cre-

ation of a quasiparticle corresponding to a real eigenfrequency ωq increases

the energy of the state by �ωq, whereas the energy cost of populating com-

plex modes vanishes. Therefore, the complex modes can become excited

even when there is no mechanism for energy exchange between the sys-

tem and the environment.

Stability criteria

The Bogoliubov excitation spectrum can be used to classify the stability of

the condensate states. By definition, a physical system is locally energet-

ically stable if its state is a local minimum of the free energy functional
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under the relevant constraints.2 In terms of the excitation spectrum, local

energetical stability is equivalent to all excitation energies �ωq being posi-

tive. This means that the coherent part of the gas cannot lower its energy

by exciting quasiparticles. The existence of an excitation with negative

energy renders the stationary state locally energetically unstable, indi-

cating that it does not correspond to a local minimum of the mean-field

energy. By populating these negative-energy modes, the coherent conden-

sate is able to dissipate energy to its environment. Since the dissipative

environment consists mainly of the thermal gas, energetically unstable

states can still be quite long-lived if the temperature—and hence the den-

sity of the thermal gas—is kept sufficiently low.

Another important stability concept is dynamical stability, or Lyapunov

stability [103]. In Publications I–III, dynamical stability is studied in the

context of multiply quantized vortices. Dynamical stability is a weaker

condition than energetical one, since energetically stable systems are al-

ways dynamically stable [104]. Essentially, a system is dynamically stable

if small perturbations to its state cause only small deviations in its time

development. Dynamical stability is intimately related to the existence of

complex modes: As can be observed from Eq. (2.15), the amplitude of a

small perturbation associated with the excitation of a complex mode ini-

tially evolves exponentially in time. Consequently, stationary states that

support complex modes are dynamically unstable. On the other hand, if

all excitation energies of a stationary state are real, the state is dynami-

cally stable. Dynamical instabilities are particularly relevant for the BEC

experiments, since their effect cannot be disposed of by reducing temper-

ature.

2If this minimum is absolute, the state is called globally energetically stable, or
thermodynamically stable, and it is the ground state of the system.
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3. Creation and Properties of
Multiquantum Vortices in Dilute
Bose–Einstein Condensates

This chapter is devoted to quantized vortices which manifest the quan-

tum phase coherence of the BEC and characterize its response to external

rotation. The concept of a quantized vortex is introduced in Sec. 3.1, and

a topological method to create them is described in Secs. 3.2 and 3.3. This

method also makes it possible to create vortices with multiple quanta;

the properties of such vortices, in conjunction with the results of Publica-

tions I–III, are discussed in Secs. 3.4–3.6.

3.1 Quantized vortices in Bose–Einstein condensates

The idea of quantized vortices was originally put forward by Onsager [105]

and Feynman [106] when considering the hydrodynamics of superfluid

helium. In nature, whirlwinds of various kinds, such as tornadoes, dust

devils, and waterspouts, serve as classical analogs to the vortices in the

quantum realm.

By starting from the expression for the particle current density,

j(r) = n(r)v(r) =
�

2im

(
Ψ∗j∇Ψj −Ψj∇Ψ∗j

)
, (3.1)

and factorizing the order parameter into the particle density n and a unit-

normalized spinor ζ as Ψ(r) =
√
n(r)ζ (r), we can write the velocity field

of the condensate as [89,107]

v(r) =
�

im
ζ∗j (r)∇ζj(r). (3.2)

The line integral of v around a closed loop γ defines the circulation

Γ =

∮
γ
dl · v(r). (3.3)

For clarity, let us first consider a scalar BEC with a single-component

order parameter, say, Ψj = Ψ1δj,1. In this case, the unit spinor ζ can be
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written simply as ζj(r) = eiS(r)δj,1, where S(r) is a real-valued phase field.

Consequently, the velocity v in Eq. (3.2) is found to be proportional to the

gradient of the phase, v = �∇S(r)/m. It immediately follows from this ex-

pression that the velocity field must be irrotational, i.e., ∇×v = 0, unless

there is a singularity in the phase S. Moreover, since the order parameter

must be continuous, its phase S may only change through a multiple of

2π along a closed path. Hence, Eq. (3.3) implies that the circulation in the

scalar BEC is quantized in units of h/m,

Γ =
�

m
2πκ, (3.4)

where κ is an integer winding number. If κ �= 0, the path γ encircles a

vortex line—a one-dimensional singularity in the phase field S. The par-

ticle density must vanish at the singularity, giving rise to the core of the

vortex. A vortex line whose winding number satisfies |κ| ≥ 2 is referred to

as a multiquantum vortex and typically constitutes an energetically un-

stable state. Such vortices are discussed in Secs. 3.2–3.6. Vortices having

κ < 0 in the chosen coordinate system are called antivortices.

Quantized vortices are conventionally interpreted as the signature of

superfluidity and quantum phase coherence. Vortices may also be consid-

ered as the quantized response of the irrotational condensate to a suffi-

ciently strong external rotation. Indeed, if one tries to rotate a cylindri-

cally symmetric BEC about its axis of symmetry, it remains at rest until

the first critical rotation frequency Ωc1 is reached, beyond which it be-

comes energetically favorable for the condensate to nucleate a quantized

vortex. Rotation at a frequency Ω 
 Ωc1 will result in the formation of

several vortices typically arranged into a triangular, so-called Abrikosov

lattice [108]. In experiments with atomic BECs, Abrikosov lattices con-

sisting of up to over a hundred vortices have been created, e.g., by stirring

the condensate with a focused laser beam [109–112]. Vortex lattices in a

system of two interacting condensates are studied in detail in Sec. 4.2.

In the scalar BEC, the circulation Γ defined in Eq. (3.3) is always quan-

tized, and the vortices are of the singular, mass-current-carrying type dis-

cussed above. In spinor BECs, on the contrary, Γ is not in general quan-

tized, and the multicomponent nature of the order parameter allows for

a richer variety of vortices. Here, we consider only the ferromagnetically

coupled spin-1 BEC ( gs < 0) due to its relevance to Publications III, VI and

VII. Its order-parameter space in the ferromagnetic phase has a group

structure corresponding to SO(3), the group of three-dimensional rota-

tions [89]. The antiferromagnetically coupled spin-1 BEC ( gs > 0) gives
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rise to the order-parameter space
[
U(1)× S2

]
/Z2, and it also supports

a wide selection of topological defects including skyrmions [65], mono-

poles [66], and half-quantum vortices [60–64].

In the ferromagnetically coupled spin-1 BEC, the local magnetization

M(r) = Ψ∗j (r)FjkΨk(r) tends to be maximized. Since M(r) can have spa-

tial dependence, the system can exhibit both mass and spin currents, and

consequently two kinds of circulations exist. The vortices encountered in

this dissertation can be characterized with two winding numbers κm and

κs corresponding to the mass and the spin circulation, respectively.

A vortex carrying both mass and spin currents with equal or opposite

winding numbers, |κm| = |κs|, is referred to as a Mermin–Ho vortex [97,

113]. The Mermin–Ho vortex is an example of a coreless vortex [114,115]

that can be continuously changed into a uniform spin texture. Its core

exhibits a finite particle density and a nonvanishing magnetization.

Another type of vortex prominent in ferromagnetically coupled spin-1

BECs is the polar-core vortex [96, 97, 116–120], which carries only spin

current (κs �= 0, κm = 0) and has a nonmagnetized core. The particle

density, on the other hand, does not vanish at the core, but instead the

region is occupied by antiferromagnetically ordered condensate matter.

Thus, the polar-core vortex constitutes an interesting example of the co-

existence of competing magnetic phases in spinor condensates. Except for

the filled polar core, these vortices are analogous to the so-called disgyra-

tions found in the fermionic superfluid 3He-A, which is also characterized

by the order-parameter space SO(3) in its dipole-locked phase [121,122].

3.2 Topological creation of multiquantum vortices

The first multiply quantized vortices were created in 2002 by using the

topological phase engineering method [71] that was originally proposed

by Nakahara et al. [123] and subsequently studied in Refs. [124–130]. In

this technique, the phase winding associated with a multiquantum vortex

is obtained by rotating the spins of the condensate atoms about an axis

that depends on the location of a particular atom. Recently, it has also

been theoretically demonstrated that topological phase engineering can

be used to create a Dirac monopole in a spinor BEC [69].

In accordance with the original proposal and the experiment [71], we

consider a spin-F BEC confined in a Ioffe–Pritchard (IP) trap [131]. This

type of magnetic trap is formed by four Ioffe bars aligned parallel to the
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z axis, each carrying a current of equal magnitude and providing confine-

ment in the xy plane, and two circular coils generating confinement in the

z direction. In the plane z = 0, the IP field can be written as a sum of a

quadrupole field Bq and a uniform axial bias field Bz,

B(r, φ, z = 0, t) = Bq(r, φ) +Bz(t) = B′qr (cosφx̂− sinφŷ) +Bz(t)ẑ, (3.5)

where B′q is the radial gradient of the quadrupole field and (r, φ, z) denote

the cylindrical coordinates. The IP trap provides confinement for the so-

called weak-field seeking states of the spin-F BEC, which correspond to

the eigenvalues mzgFμB|B|, mz ∈ {1, . . . , F}, of the linear Zeeman Hamil-

tonian1 HZ = gFμBB · F. For concreteness, we have assumed that gF > 0.

To topologically imprint a multiquantum vortex in a IP trap, the axial

bias field Bz(t) is initially set strong enough to render the BEC essentially

spin-polarized along the z axis, with all atomic spins residing in the eigen-

state |F,mz〉 of HZ. The bias field Bz(t) is then reversed adiabatically, i.e.,

sufficiently slowly such that the individual spins follow the local magnetic

field and the system remains in the instantaneous eigenstate ofHZ. Since

spins at different locations rotate about different axes, the order param-

eter acquires a spatially dependent U(1) phase factor that is associated

with the presence of a multiply quantized vortex.

In order to describe the process mathematically, let us write the unit vec-

tor of the magnetic field as b̂ = sinβ cosα x̂ + sinβ sinα ŷ + cosβ ẑ, where

(α, β) form the standard parametrization of the unit sphere. The eigen-

states of HZ can then be written in the general form R (n̂(α);β) |F,mz〉,
where the unitary operator R (n̂(α);β) = exp [−iβn̂(α) · F] rotates the lo-

cal spin by an angle β about the unit vector n̂(α) = − sinα x̂ + cosα ŷ

perpendicular to b̂. For the IP field, Eq. (3.5) yields α = −φ and β =

tan−1 [Bqr/Bz(t)]. Assuming that the initial and final values of the bias

field satisfy Bz(0) ≈ −Bz(T ) 
 B′qR, where R is the condensate radius

and T is the time duration of the reversal, the field reversal rotates the

spins essentially by β = π about the normal vector of the quadrupole field,

n̂q (φ) = sinφ x̂+ cosφ ŷ. Thus, the final state is given by

R (n̂q(φ);π) |F,mz〉 = (−1)F+mze−2imzφ|F,−mz〉, (3.6)

corresponding to a vortex with a quantum number κ = −2mz.

In the experiment [71], condensates of 23Na were prepared in the hy-

perfine states |F = 1,mz = −1〉 and |F = 2,mz = 2〉 in a IP trap. The

1In this section and the next, we assume the spin-F operator F to be given in the
(2F + 1)-dimensional irreducible representation of SO(3) or SU(2).
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vortices were created by reversing Bz linearly in time, and they could be

removed by reversing the bias field back to its original direction. The or-

bital angular momentum per particle was measured using surface-wave

spectroscopy [132, 133], yielding 〈L̂z〉/N ≈ 2� for the state |1,−1〉 and

〈L̂z〉/N ≈ −4� for the state |2, 2〉, which correspond to a two-quantum and

a four-quantum vortex, respectively.

3.3 Vortex pump for Bose–Einstein condensates

In a IP trap, the topological phase engineering technique enables the cre-

ation of a 2F -quantum vortex in a BEC with total hyperfine spin F . As

discussed above, the phase winding of the vortex is created by an az-

imuthally dependent reversal of the external magnetic field. Reversing

the field back to its original configuration would cause the vortex to un-

wind itself, and the resulting state would again have no orbital angular

momentum. In principle, vortices with large quantum numbers could be

created in the IP trap by using atoms with larger values of the hyper-

fine spin F . However, this approach quickly becomes impractical, since

manipulation of atoms with large F is experimentally very challenging.

On the other hand, if higher-order magnetic fields such as the hexapole

field are employed in place of the quadrupole field Bq, it becomes possible

to create more than 2F� of orbital angular momentum per particle with

a single bias field reversal. Indeed, this is the essential observation that

forms the basis for the vortex pump introduced by Möttönen et al. [73]:

Initially, Bz < 0 and the condensate is prepared in the spin state |F,mz =

−F 〉 without a vortex. By using the hexapole field

Bh(r, φ) = B′hr [cos (2φ) x̂− sin (2φ) ŷ] (3.7)

during the first bias field reversal, a 4F -quantum vortex is produced. In

terms of the spin rotations discussed above, this is expressed as the op-

eration R(n̂h(φ);−π)|F,−F 〉 = ei4Fφ|F, F 〉, where the normal vector of the

hexapole field is given by n̂h (φ) = sin (2φ) x̂ + cos (2φ) ŷ. Then, switching

Bh to Bq and reversing the bias field Bz back to its original value, only

2F� of orbital angular momentum per particle is lost, and the final spin

state becomes

R(n̂q(φ);π)R(n̂h(φ);−π)|F,−F 〉 = ei2Fφ|F,−F 〉. (3.8)

Hence the final state has accumulated 2F� of orbital angular momentum
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Figure 3.1. (a) Control cycle of the vortex pump in the magnetic-field parameter space.
Here, B′

q and B′
h are the radial derivatives of the quadrupole and hexapole

field magnitudes, and Bz is the uniform axial bias field. (b) The control pa-
rameters as a function of time for the pumping cycle used in Publication III.
The common maximum value of B′

q and B′
h is denoted by B0

r , and T is the
duration of the cycle. The time dependence of Bz is such that spins at a fixed
distance from the z axis are reversed with constant speed.

per particle. This process can then be repeated, and each cycle increases

the vorticity of the condensate by 2F quanta.

Figure 3.1 illustrates a possible pumping cycle, which is identical to the

one used in Ref. [73] and is presented in more detail in Publication III.

The control parameters consist of the axial bias field Bz(t) and the ra-

dial gradients of the quadrupole and hexapole fields, B′q(t) and B′h(t). The

control cycle can be operated both fully adiabatically and partly nona-

diabatically [73]. In the former case, an additional optical potential is

needed to confine the condensate during moments when both multipole

fields vanish. Furthermore, in order to stabilize the vortex and prevent it

from splitting, an optical plug potential can be employed; in Publication

III, this approach is used to demonstrate the adiabatic creation of an un-

split 20-quantum vortex. The partly nonadiabatic operation, on the other

hand, can be carried out without any optical potentials, but with the cost

of losing a part of the atoms from the trap. Later, Xu et al. [134, 135]

have investigated alternative pumping cycles utilizing magnetic-field se-

tups different from the original proposal.

The vortex pump can be interpreted in terms of the geometric Berry

phase accumulated by the individual spins of the condensed atoms [73].

According to the result by Berry [136], an adiabatically and cyclically

turned spin acquires a geometric phase equal to −mzΩs, where Ωs is the

solid angle subtended by the path of the spin with the initial state |F,mz〉.
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In the case of the pumping cycle of Fig. 3.1, Ωs equals twice the angle

between the normal vectors n̂q and n̂h. For mz = −F , this yields a lo-

cal Berry phase of 2Fφ, consistent with the accumulation of 2F quanta of

vorticity per cycle. 2

3.4 Core sizes and dynamical instabilities of giant vortices

In Publication I, the vortex core sizes and dynamical instabilities of ax-

isymmetric giant vortex states are studied in nonrotated BECs as func-

tions of the vorticity quantum number κ and the interaction strength g.

The investigation is motivated by the following considerations:

1. Earlier studies on the stability of multiquantum vortices have focused

on the regime κ ≤ 5 [48,52–55,137], most likely because previously there

has been no realizable method to controllably create isolated vortices

with large quantum numbers. However, the recently introduced vortex

pump provides such an opportunity.

2. We aim to determine how large winding numbers the pump can reach

for a single vortex. In principle, vortex pumping enables a controlled,

adiabatic production of vortices with arbitrarily large κ. However, in

real experiments κ will be limited by the stability properties of the

vortex states. In particular, the existence of dynamical instabilities

(Sec. 2.4) renders a giant vortex prone to splitting into single-quantum

vortices, and the frequencies of these instabilities can be used to ap-

proximate its lifetime. On the other hand, the size of the vortex core

is known to increase with increasing κ. As explained in Publication I,

this enables one to speed up the pumping cycle without compromising

adiabaticity as more vorticity accumulates in the BEC. Consequently,

the interplay between the core size and the lifetime of the vortex as

a function of κ ultimately determines the maximum winding number

reachable with the pump.

We search for spin-polarized solutions to the time-independent GP equa-

2A similar kind of reasoning can also be used to explain the vortex cre-
ation method discussed in Sec. 3.2 by considering the geometric phase differ-
ence between two spins located at different values of the azimuthal coordi-
nate φ [125,129].
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tion, Eq. (2.14), that describe stationary axisymmetric κ-quantum vortices

in pancake-shaped condensates.3 Such states can be written as

Ψj(r, φ, z) = f(r)eiκφζ0(z)δj,1, (3.9)

where ζ0(z) = exp
(−z2/2a2z) / 4

√
πa2z, az =

√
�/mωz, and f(r) is a real-

valued function to be determined. For stationary states of this form, the

quasiparticle amplitudes can be expressed as

uq,j(r, φ, z) = uq(r)ζ0(z)e
i(lq+κ)φδj,1,

vq,j(r, φ, z) = vq(r)ζ0(z)e
i(lq−κ)φδj,1, (3.10)

where lq is an integer that determines the orbital angular momentum

of the excitation with respect to the condensate. The stationary states

and the corresponding Bogoliubov excitation spectra are solved for the

parameter ranges 0 ≤ κ ≤ 100 and 0 ≤ g̃ ≤ 104, where the dimensionless

interaction strength is g̃ =
√
8πNa2/az. In typical experiments, 102 ≤ g̃ ≤

106.

The main results of Publication I are presented in Fig. 3.2, where the

core sizes and the dominant dynamical instabilities of the giant vortices

are plotted as functions of the winding number κ. The vortex core radius

rc is found to be a strictly increasing function of κ with the asymptotic

behavior r̃c ∝
√
κ for large κ [Fig. 3.2(a)]. Publication I also presents an

analytical estimate for rc that is in good agreement with the numerically

obtained radius. On the other hand, the maximum strength of the dynam-

ical instability of a κ-quantum vortex turns out to increase slowly with κ

or even to saturate to a relatively low value [Fig. 3.2(b)].

Publication I provides the first systematic study of the instabilities of

quantized vortices with extremely large winding numbers κ. From the

point of view of the vortex pump (Sec. 3.3), the obtained results are en-

couraging. Qualitatively, the efficiency of the pump in producing vortices

with large winding numbers is described by the ratio τsp/T , where τsp is a

characteristic time scale for vortex splitting and T is the duration of the

pumping cycle. Since the radius of the vortex core increases monotonously

with the winding number, it should be possible to gradually decrease T

and still retain the adiabaticity of the process. On the other hand, the

splitting times τsp ∝ 1/maxq |Im (ωq) | decrease only slowly with κ for

large vorticities. Consequently, the ratio τsp/T can—at least ideally—be

3BECs in traps that satisfy ωz 
 ωr are called pancake shaped, whereas traps
with ωz 
 ωr produce cigar-shaped condensates.
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Figure 3.2. (a) Radius rc of the vortex core as a function of the winding number κ for g̃ =

1 and g̃ = 104. (b) The maximum dynamical instability of a giant vortex state,
maxg̃ {maxq [|Im(ωq/ωr)|]}, as a function of κ. This parameter is maximized
over the interaction strength g̃ and thus depends only on κ. The dashed
vertical lines indicate the points at which the angular-momentum quantum
number lq of the dominant complex mode changes.
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increased after a sufficient amount of vorticity has accumulated into the

condensate. Hence, our results suggest that giant vortices with very high

winding numbers may be achieved by gradually increasing the operation

frequency of the pump.

3.5 Splitting dynamics of giant vortices

Besides being generally energetically unstable, states with a multiquan-

tum vortex are often also dynamically unstable in harmonic traps [48,

52–55]. Dynamical instability is a peculiar feature of nonlinear dynam-

ics through which small perturbations of a stationary state can lead to

large structural changes, even in the absence of dissipation (cf. Sec. 2.4).

In the case of multiquantum vortices, the existence of dynamical insta-

bilities indicates that the multiquantum vortex is unstable against split-

ting into single-quantum vortices. Experimentally, the splitting process

has been investigated for two-quantum and four-quantum vortices, and

they were observed to dissociate into a linear chain of single-quantum vor-

tices [130,138,139], in accordance with theoretical predictions [140–142].

Motivated by the fact that the vortex pump opens the possibility of real-

izing stationary vortex states with very large winding numbers, we inves-

tigate in Publication II the splitting dynamics of multiquantum vortices

for an unprecedently wide range of winding numbers, 2 ≤ κ ≤ 50; in the

previous studies, the focus has been on the regime 2 ≤ κ ≤ 5. The split-

ting is studied in spin-polarized condensates both by directly computing

the temporal evolution of the condensate from the time-dependent GP

Eq. (2.10) and by solving the Bogoliubov excitation spectra to predict the

essential features of the splitting process. We start from an initially sta-

tionary multiquantum vortex state and, to trigger the splitting, perturb

it by adding either small-amplitude random noise or a complex-frequency

Bogoliubov excitation to its order-parameter field.

Vortices with large winding numbers turn out to be dynamically un-

stable at nearly all values of the interaction strength g̃. When the dy-

namically unstable vortex states are perturbed with random noise, the

vortex is found to dissociate through one of three possible splitting mech-

anisms, referred to as linear, threefold, and fourfold splitting. The results

are summarized in Fig. 3.3(a), where the noise-induced splitting patterns

are compared with the values of the quantum number lq [Eq. (3.10)] of

the dominant complex mode. Typically, the noise-induced splitting pat-
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Figure 3.3. Noise-induced splitting of giant vortices. (a) The observed splitting pat-
terns and dominant complex modes of stationary multiquantum vortices in
the (g̃, κ) plane. The lines separate regions where the angular-momentum
quantum number lq of the dominant complex mode is constant and has the
value indicated. The shaded area corresponds to alternating values of lq and
regions of dynamical stability. The bars, triangles, and squares indicate split-
ting patterns with 2-, 3-, and 4-fold symmetries, respectively, resulting from
the addition of small-amplitude random noise. (b) Density profiles obtained
for κ = 20 and different values of g̃ illustrating the three types of splitting.
The field of view in each panel is 18ar × 18ar, where ar =

√
�/mωr is the

radial harmonic oscillator length.
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tern is found to reflect the rotational symmetry of this excitation, which

indicates that the splitting of the vortex can usually be ascribed to the

dominant complex mode.

The three possible splitting patterns are exemplified for 20-quantum

vortices in Fig. 3.3(b). The splitting proceeds through the creation of

vortex sheets and results in separate, vortex-free domains of condensed

atoms. We also find these splitting mechanisms to be robust against dis-

sipation. Our results indicate that a giant vortex does not split by melting

into a chaotic liquid of singly quantized vortices. Instead, the long-time

dynamics preserves the rotational symmetry of the excitation mode re-

sponsible for the splitting. Therefore, the vortex pump may not be an

efficient way to realize a strongly correlated vortex liquid phase [143] as

envisioned in Ref. [73].

The novel vortex splitting patterns discovered in Publication II would

enable a lucid comparison between theory and experiment. The splitting

of the condensate into distinct fragments is detectable with current imag-

ing techniques, and would allow for the clear identification of the angular-

momentum quantum number lq of the split-inducing excitation. Thus, the

realization of an isolated giant vortex, e.g., with the vortex pump, and the

consequent observation of its splitting would provide a means to directly

relate the experimental data to discrete theoretical quantities.

3.6 Stabilization and pumping of giant vortices

In principle, the vortex pump (Sec. 3.3) enables a controlled production

of vortices with arbitrarily large quantum numbers κ. However, as dis-

cussed above, vortices with large κ are dynamically unstable and prone

to split into singly-quantized vortices, which poses a serious challenge to

reaching high vorticities through adiabatic pumping. In Publication III,

we address this issue by investigating how vortices with large κ can be

made dynamically stable in nonrotated harmonically trapped BECs. As

our method of choice, we study the effect of applying a repulsive Gaussian-

shaped optical plug potential along the symmetry axis of the trap.

The plug is incorporated into the scalar GP mean-field model by aug-

menting the optical trap potential V (r) in Eq. (2.2) with the Gaussian

term

Vplug(r) = Ae−r
2/d2 , (3.11)

where A denotes the amplitude of the plug and d is its beamwidth. This
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Figure 3.4. Minimum plug amplitude Amin required to stabilize vortices with a given
winding number κ. The black dots indicate values that stabilize the vortices
in the whole interval 0 ≤ g̃ ≤ 2000, and the dashed blue line is the least-
squares fit Amin = 13�ωr exp(0.072κ). The green diamonds show the values
that stabilize the vortex for fixed g̃ = 250, and the dotted red line represents
the fit Amin = 6.2�ωr exp(0.065κ). In both cases, the width of the plug is set
to d = 3ar.

type of potential can be realized in experiments by a tightly focused far-

blue-detuned laser beam [17,111, 112, 144–146]. In the vortex pump, the

plug not only serves to stabilize the vortex but also prevents unwanted

spin flips in the central region of the trap.

To study the vortex stabilization numerically, we solve the stationary GP

equation and the Bogoliubov equations for different values of the winding

number κ, interaction strength g̃, plug amplitude A, and beamwidth d,

and determine the values of A and d that are sufficient to render the mul-

tiquantum vortices at given κ and g̃ dynamically stable. The results are

shown in Fig. 3.4, where we plot, as a function of κ, the limiting plug am-

plitude Amin above which the κ-quantum vortex is dynamically stable for

all values of g̃. The stabilizing amplitude Amin is found to increase ex-

ponentially with κ for sufficiently large winding numbers.4 Importantly,

the stabilizing values are small enough to be realizable with laser powers

that are available for BEC experiments. Thus, these results suggest that

achieving dynamical stability is feasible up to high quantum numbers.

In order to demonstrate the efficiency of the stabilization method, we

4If we fix the amplitude A and determine the smallest beamwidth, dmin, that
dynamically stabilizes the κ-quantum vortex for all g̃, we find that dmin increases
as a square-root function of κ.
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Figure 3.5. Orbital angular momentum of the condensate as a function of time during
the vortex pump simulation of Publication III. The inset shows the particle
density and phase of the 20-quantum vortex (field of view 18ar × 18ar) at
the time instant t = 8.5T marked with the red cross. Here, T = 360/ωr

is the duration of the pumping cycle. The coupling constants are given by
g̃n =

√
8πN (a0 + 2a2) /3az = 250 and gs/gn = −0.01.

also show in Publication III that by utilizing a sufficiently strong plug

potential, the vortex pump can be used to adiabatically create an unsplit

giant vortex with a very large winding number. We consider a spin-1

BEC and compute the time evolution of the spinor order parameter from

Eq. (2.10) during vortex pumping in a setup where the harmonic trap is

combined with a strong plug potential of the form of Eq. (3.11). The plug is

chosen to have the amplitude A = 100�ωr and width d = 3ar, and thus it is

considerably stronger than that used in Ref. [73] (A = 10�ωr and d = 2ar),

where unsplit vortices up to κ = 8 were reached. Otherwise, the systems

considered in Publication III and Ref. [73] are identical; in particular, the

control cycle is the one presented in Fig. 3.1.

Figure 3.5 shows the time dependence of the orbital angular momen-

tum 〈L̂z〉 = i�
∫
d3rΨ∗j (r) (y∂x − x∂y)Ψj (r) of the BEC during the pump-

ing simulation. A symmetric 20-quantum vortex is obtained in the middle

of the ninth cycle at t = 8.5T . After t = 9T , the dissociation of the giant

vortex begins in spite of the plug, causing single vortices to move out of

the condensate. This is manifested in Fig. 3.5 by the gradual decrease

of 〈L̂z〉. Nevertheless, the simulation shows that a giant vortex with a

very large quantum number κ can be created by pumping if a sufficiently

strong optical plug is utilized and the temperature is kept low enough

such that dissipation effects due to the thermal gas are negligible.
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4. Vortex Clusters

We saw in the previous chapter that multiquantum vortices are prone

to divide into several single-quantum vortices. In this chapter, we use

states that contain more than one vortex as a starting point for the study.

In Sec. 4.1, we discuss vortex dipoles, pairs of vortices and antivortices,

focusing on the results of Publication IV and their relation to recent ex-

periments. In Sec 4.2, we describe how a system of two attractively inter-

acting BECs can produce unconventional vortex lattices as a response to

external rotation.

4.1 Quantized vortex dipoles

A vortex dipole in a classical or quantum fluid consists of a pair of vortices

of opposite circulation, i.e., a vortex and an antivortex, with the dynamics

of each vortex line influenced by the fluid flow pattern of the other vortex.

Whereas single vortices carry angular momentum, vortex dipoles can be

viewed as basic topological entities that are able to carry linear momen-

tum. Although vortex dipoles are widespread in classical fluid flows [147],

their role in superfluids seems less well established. Given the appear-

ance of vortices and antivortices in the Berezinskii–Kosterlitz–Thouless

transition of two-dimensional superfluids [29, 148–153] and superfluid

turbulence [154–156], a detailed study of vortex dipoles will contribute

to a broader understanding of superfluid phenomena.

The realization of vortex dipoles in atomic BECs is particularly impor-

tant as the condensates provide a clean testing ground for vortex physics.

In this context, simulations based on the GP equation have shown that

vortex dipoles are nucleated when the BEC moves past an impurity faster

than a critical velocity, above which the emergence of vortices induces a

drag force [157,158]. Vortex dipoles are hence believed to provide a mech-
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anism for the breakdown of superfluidity [159–161].

Quantized vortex dipoles were recently observed for the first time in

a BEC experiment by Neely et al. [146]. The dipoles were nucleated by

forcing superfluid flow around a repulsive Gaussian plug potential within

the BEC. The observations were accompanied by a numerical integration

of the GP equation, which achieved good agreement with the experimental

vortex trajectories.

The presence of the trapping potential in the atomic BECs allows for

the existence of peculiar vortex-cluster states that are stationary in the

laboratory frame of reference without any external rotation. Let us con-

sider the vortex dipole, and denote the separation distance between the

vortex and the antivortex by dsep, and let Evd (dsep) be the minimum en-

ergy of the trapped condensate with the restriction that the distance of

the phase singularities is dsep. The ground state of the system is ob-

tained in the limit dsep → 0, and thus, Evd is an increasing function

of dsep for sufficiently small dsep. On the other hand, the ground state

also corresponds to the limit dsep → ∞. Consequently, there must ex-

ist at least one point dcsep which is a local maximum of Evd (dsep). This

maximum indicates the existence of a stationary, energetically unsta-

ble vortex-dipole state at the separation dsep. Based on similar reason-

ing, other vortex cluster configurations that are stationary in nonrotated

BECs and consist of a greater number of phase singularities, such as vor-

tex tripoles and vortex quadrupoles, have also been predicted and ana-

lyzed [162–165]. Furthermore, vortex tripoles have been observed in a

recent experiment where vortices were generated using oscillating mag-

netic quadrupole fields [166].

The stationary vortex dipole was realized experimentally by Freilich

et al. [82]. In the experiment, vortices were spontaneously created dur-

ing evaporative cooling due to the Kibble–Zurek mechanism [167,168], in

which the rapid quench of a cold thermal gas through the BEC phase tran-

sition results in the appearance of topological defects [169–171], and the

orbital dynamics of single vortices and vortex dipoles were measured with

high precision. The observations were done with a novel method of vortex

probing that allows vortex dynamics to be observed in real time during a

single experimental run rather than by reconstruction of images from sev-

eral runs.1 The method is based on repeated extraction, expansion, and

1Typically, vortices have been imaged by removing the trapping potential and
expanding the condensate in order to make the vortex cores optically resolvable,
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Figure 4.1. Stationary vortex dipole in three dimensions. (a) The isosurface of the parti-
cle density |Ψ(r)|2 for the stationary vortex dipole corresponding to the par-
ticle number N = 5 × 105. Here, dsep is the separation distance between the
vortex cores and RTF is the Thomas–Fermi radius of the condensate. (b) The
ratio dsep/RTF as a function ofN . The red crosses represent the experimental
data of Ref. [82].

imaging of small fractions (1 to 10%) of the BEC. In the experiment, up to

nine images of a single BEC were taken. This enabled Freilich et al. to

obtain compelling experimental evidence for stationary vortex dipoles. In

addition, they were able to accurately measure the separation distance

dsep of the dipole in the stationary state.

Previously published predictions [164,165,172–174] for the sizes of sta-

tionary vortex dipoles concern only very weakly interacting or pancake-

shaped condensates and hence cannot be directly compared with the data

of Ref. [82]. In Publication IV, we present stationary vortex-dipole states

for a BEC identical to the one used by Freilich et al. and find excel-

lent quantitative agreement with the experiment. The stationary vor-

tex dipoles are solved from the three-dimensional time-independent GP

equation for a range of particle numbers N corresponding to the experi-

ment. The results are summarized in Fig. 4.1. As can be observed from

Fig. 4.1(b), the experimental values of Freilich et al. are within a few per-

cent of the numerically obtained separation distance. We stress that the

numerical curve in Fig. 4.1(b) is drawn without any fitting parameters,

and that there is actually an estimated 10% uncertainty in the measure-

ment of the particle number N .

In addition to stationary vortex dipoles, Freilich et al. also investigated

the orbital motion of nonstationary asymmetric vortex dipoles, with one

vortex near the center of the BEC and the other close to the surface [82].

In Publication IV, we perform a related simulation by first placing the

vortex cores at the experimentally measured initial positions and then

letting the state evolve according to the GP equation. We also study the

effect of the multishot imaging method on the dynamics by reducing the

which prevents taking multiple images from a single BEC.
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Figure 4.2. Trajectories (xv/RTF, yv/RTF) of vortices for an asymmetric vortex dipole
when 5% of the atoms are removed every 60 ms from the state (blue curves).
The red curve shows the trajectories when no particles are removed. The in-
sets depict the density |Ψ(x, y)|2 at each moment of particle extraction; these
time instants are indicated by solid circles. The triangles designate the ex-
perimental measurements of Ref. [82] for the same time instants and initial
configurations. The marker colors correspond to the image frames.

value of N by 5% every time particles are removed for imaging. An ex-

ample of the obtained vortex trajectories is presented in Fig. 4.2. We find

that the vortices move along approximately periodic trajectories whose

exact shapes depend strongly on the initial vortex positions.2 The atom

removal speeds up the vortex motion and excites the breathing mode of

the condensate with the characteristic frequency fBM = 2ωr/2π but does

not alter the underlying structure of the paths.

Publication IV explains the experimental observations by Freilich et

al. [82]. In particular, the numerical results for the sizes of the station-

ary vortex dipoles are in excellent agreement with their data. In light

of Fig. 4.2, the real-time imaging method appears to be a promising tool

for studying vortex dynamics in trapped BECs: the spatially uniform ex-

traction of particles is found to cause only isotropic size oscillations of the

BEC, which can be subtracted from the data at will by a global distance

scaling. However, a full exploration of the imaging technique and its effect

2Recently, Middelkamp et al. have analyzed in detail the motion of nonstationary
vortex dipoles both theoretically and experimentally [175].
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on vortex dynamics awaits a rigorous description of the particle-extraction

process and is beyond the scope of Publication IV.

4.2 Vortex lattices in two-species condensates

An important issue in vortex physics is to elucidate the vortex phases

in BECs that consist of more than one component [176]. Multicomponent

condensates allow the formation of various unconventional topological de-

fects such as those discussed in Sec. 3.1 for the three-component spin-1

condensates. Even for the simpler two-component BEC, a rich variety of

ground-state vortex phases have been found in theoretical studies. These

include coreless vortices [177, 178], serpentine vortex sheets [179], giant

skyrmions [180, 181], and interlacing square vortex lattices [181–187].

Since it is possible to load and cool two different atomic isotopes in the

same trap [188–195], or atoms in two different hyperfine spin states [44,

196–200], two-component BECs can be realized experimentally. To date,

the singly quantized coreless vortices [44] and the square lattices [196]

have been observed in the laboratory.

In Publication V, we study vortex lattices in rotating two-component

BECs in which the two components have unequal atomic masses and in-

teract attractively with each other. The system is modeled with the cou-

pled two-dimensional GP equations [176]
[
− �

2∇2
2D

2mj
+
1

2
mjω

2
j r

2 + gjnj + g12n3−j − ΩLz − μj
]
Ψj(r, φ) = 0, (4.1)

where nj = |Ψj |2, j ∈ {1, 2}, and g12 ≤ 0 is the attractive intercomponent

coupling constant. The z component of the orbital angular momentum op-

erator is given by Lz = −i�∂φ, and Ω is the angular frequency at which the

trap is rotated about the z axis. Because the atomic masses m1 and m2 of

the two components are assumed unequal, it follows from the generalized

Feynman relation [106,201,202],

nv,j =
mjΩ

π�
, (4.2)

that the areal vortex densities nv,1 and nv,2 are also unequal. On the other

hand, the attractive intercomponent interaction favors states in which

vortices of different components lie on top of each other, since it acts to

maximize the overlap
∫
n1n2 d

2r. Thus, the two-component BEC may sup-

port unconventional vortex lattice geometries when the atomic mass ratio

m1/m2 is far from unity and the intercomponent attraction is sufficiently
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strong. This kind of system was first studied by Barnett et al. [201, 202],

but they considered only mass ratios m1/m2 � 1 and thus did not detect

any nontriangular vortex lattices.

By numerically solving Eqs. (4.1), we demonstrate that the two-compo-

nent BEC with m1 �= m2 and g12 < 0 exhibits exotic ground-state vor-

tex configurations in a rotating harmonic trap. The main results are

illustrated in Fig. 4.3. For simplicity, we consider here only the mass

ratio m1/m2 = 2 due to its rich variety of lattice structures as well as

its experimental relevance—for the already realized mixtures of 41K and
87Rb [188–192], the mass ratio is 2.1, and we have verified numerically

that such a system hosts ground-state vortex lattices similar to those

found for ρ = 2. To emphasize the role of the intercomponent attraction,

we consider a range of values for its relative strength σ := −g12/g1 ∈ [0, 1).
In experiments, g12 may be controlled with interspecies Feshbach reso-

nances [203], which have been demonstrated for various alkali-metal mix-

tures [191,204–206].

At σ = 0, the components are noninteracting, and the ground state con-

tains triangular lattices in both components. As the intercomponent at-

traction increases, the ground-state profiles change gradually into square

lattices as shown for σ = 0.60. A further increase in σ eventually recovers

the triangular geometry, but with vortex pairs occupying the lattice points

in component 1 instead of solitary vortices. Finally, as σ → 1, the vortex

pairs merge into two-quantum vortices.

The results of Publication V shed light on the hydrodynamics of inter-

acting superfluid mixtures and provide a novel example of a ground-state

multiquantum vortex, a structure that rarely exists in nature.3 Impor-

tantly, the square geometry or the double-quantum nature of the lattices

is not induced here by external fields [207] but is an inherent property of

the system. The exotic lattices can be realized with current experimental

techniques [191].

3Since the energy of a vortex increases quadratically with its quantum number,
multiply quantized vortices do not usually appear in the ground state.
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Figure 4.3. Ground-state particle densities n1 (left column) and n2 (center column) of
a two-component BEC with the mass ratio m1/m2 = 2 for different values
of the intercomponent attraction strength σ := −g12/g1. The right column
illustrates each lattice geometry, and the unit cell of the combined lattice is
shown with dashed grey lines. The rotation frequency is set to Ω = 0.97ω1

and the total interaction strength is (g1 + g12)N1/�ω1a
2
r,1 = 705, where ar,1 =√

�/m1ω1.
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5. Spin Vortices and Elementary
Excitations in Dipolar Bose–Einstein
Condensates

During the recent years, long-range dipole–dipole interactions have at-

tracted considerable interest in the study of gaseous BECs [74]. Conden-

sates subject to these anisotropic forces form the subject of this chapter.

Section 5.1 generalizes the mean-field theory of Chapter 2 to include the

dipolar interactions alongside with the ordinary contact interactions. In

Secs. 5.2 and 5.3, we investigate helical spin textures and elementary ex-

citations in dipolar spin-1 BECs. We also summarize and discuss the main

results of Publications VI and VII.

5.1 Dipole–dipole interactions in Bose–Einstein condensates

At least three motives for investigating dipolar BECs can be identified:

1. Significant experimental progress has been made in recent years in

cooling and trapping of electrically polar molecules [208] and atomic

species having large magnetic moments. In the case of polar molecules,

several experimental groups utilizing Feshbach-resonance and photoas-

sociation techniques [209–211] have been making significant progress

in realizing degenerate gases of polar molecules, which interact dom-

inantly by the electric dipole–dipole forces. In the case of magnetic

dipoles, Bose–Einstein condensation of 52Cr, a species with a large atomic

magnetic moment of 6μB, was achieved in 2004 [212] and has since then

enabled the first experimental investigations of dipolar quantum gases.

2. The properties of the dipole–dipole interaction are fundamentally dif-

ferent from those of the local density–density and spin–spin interac-

tions considered in previous chapters. Namely, the dipolar interaction is

long-range (decaying as d−3, where d is the interparticle distance) and

35



Spin Vortices and Elementary Excitations in Dipolar Bose–Einstein Condensates

anisotropic. Thus, the dipole–dipole interaction gives rise to a wealth of

novel and unexpected effects in BECs.

3. Recent experiments have indicated that dipole–dipole interactions may

be important for ferromagnetic spin-1 condensates of 87Rb in the ab-

sence of external magnetic fields [75, 76]. In particular, Vengalattore

et al. [75] demonstrated the spontaneous decay of helical spin textures

into spatially modulated structures of spin domains. When the dipolar

interactions were reduced by means of radio-frequency pulses, the mod-

ulation was suppressed, and thus the effect was ascribed to the dipolar

forces. In addition, although the dipole–dipole interactions in alkali-

metal condensates are typically weak, it may be feasible to tune their

relative strength by utilizing optical Feshbach resonances [213], which

have been demonstrated for 87Rb [214].

Let us begin by generalizing the equations of Chapter 2 to include the

anisotropic and nonlocal dipole–dipole forces. If such interactions are

present in a dilute gas of spin-1 particles and the gas is confined in a

purely optical trap, the spin degrees of freedom are coupled to the orbital

degrees of freedom. The full grand-canonical Hamiltonian of the system

becomes K̂ + Ĥd, where K̂ is defined in Eq. (2.1) and the dipolar term is

Ĥd =
gd
2

∫∫
d3r d3r′Dαβ(r− r′)ψ̂†j(r)ψ̂

†
j′(r

′)Fα
jkF

β
j′k′ψ̂k′(r

′)ψ̂k(r). (5.1)

The dipolar coupling constant is given by gd = μ0μ
2
Bg

2
F /4π, where μ0 de-

notes the permeability of vacuum, and the kernel functions are defined

as Dαβ (R) =
(
δαβR

2 − 3RαRβ

)
/R5 with α, β ∈ {x, y, z}. Correspondingly,

the mean-field GP equation of the dipolar spin-1 BEC becomes a nonlinear

integro-differential equation

i�∂tΨj(r, t) =

[
Hjk − μδjk + gnΨ

∗
j′Ψj′δjk + gsΨ

∗
j′Fj′k′Ψk′ · Fjk

+gd

∫
d3r′Dαβ(r− r′)Mβ(r′, t)Fα

jk

]
Ψk(r, t), (5.2)

where Mβ(r′, t) = Ψ∗j′(r
′, t)F β

j′k′Ψk′(r
′, t) is the β component of the local

magnetization. We point out that in general, the dipole–dipole interac-

tion breaks the rotational symmetry of the system in the spin space. Con-

sequently, the dipolar interaction does not necessarily conserve the total

magnetization of the BEC.

The Bogoliubov equation also becomes nonlocal in the presence of dipo-

lar forces. Let us define a linear functional Lαβ [f ] (r) :=
∫

d3r′Dαβ(r −
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r′)f(r′) and denote (Lαβ ◦ g) f ≡ Lαβ [gf ](r), where f(r) and g(r) are ar-

bitrary functions. With this notation, the dipolar Bogoliubov equation is

written as⎛
⎝ Ajk +Ad

jk Bjk + Bd
jk

−B∗jk − Bd∗
jk −A∗jk −Ad∗

jk

⎞
⎠

⎛
⎝ uq,k(r)

vq,k(r)

⎞
⎠ = �ωq

⎛
⎝ uq,j(r)

vq,j(r)

⎞
⎠ , (5.3)

where the nonlocal dipolar terms are given by

Ad
jk = gd

(
Lαβ

[
Ψ∗j′F

β
j′k′Ψk′

]
Fα
jk + Fα

jk′Ψk′Lαβ ◦Ψ∗j′F
β
j′k

)
, (5.4)

Bd
jk = gdF

α
jk′Ψk′Lαβ ◦Ψj′

(
F β
j′k

)∗
. (5.5)

In Publication VII, Eq. (5.3) is solved in the quasi-two-dimensional pan-

cake geometry.

5.2 Helical spin textures in dipolar condensates

Spin textures with helical geometries, and their relation to dipolar in-

teractions, have recently drawn attention in the study of spinor BECs.

In a recent experiment by Vengalattore et al. [75], a helical magnetization

texture in a quantum degenerate gas of ferromagnetic spin-1 87Rb was ob-

served to decay spontaneously into small spin domains, and the effect was

argued to result from the weak dipolar forces between the atoms. Earlier

theoretical studies have shown that the long-range dipolar interactions

can stabilize spin-vortex states in various geometries [77–79] and that

even weak dipolar interactions can lead to dynamic formation of a helical

spin texture in a ferromagnetic spin-1 BEC [81]. Moreover, in a classical

spin approximation corresponding to ferromagnetic systems with large

magnetic moments, the spin helix has been found to be the ground-state

texture in a suitable geometry and with strong enough dipolar interac-

tions [80].

In Publication VI, we investigate elongated helical spin textures in fer-

romagnetic spin-1 BECs with dipolar interparticle forces. Using Eq. (5.2)

to model the condensate, we seek stationary helical states under the as-

sumption that the system is infinitely long in the direction of the helix

axis and find solutions hosting different types of topological line defects,

i.e., quantized vortices. Due to the symmetry of the order-parameter field,

these line defects encircle the condensate in a helical pattern. Rather

than fixing the dipolar coupling constant gd to some predetermined value,

we present results for various interaction strengths in order to emphasize

the role of the dipolar interactions.
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The assumption that the system is infinitely long in the axial direction

allows a well-defined wave vector κh for the helical texture. In order

to analyze the helices numerically, we fix κh and calculate the energy-

minimizing texture in a plane subject to the condition that the planar tex-

ture is mapped along the axial z direction according to the helical struc-

ture. Thus, we search for stationary solutions to Eq. (5.2) of the form

Ψ(r, φ, z) = eiqzzeiκhzFzΨ (r, φ+ κhz, 0) (5.6)

where (r, φ, z) are the cylindrical coordinates and qz is a Bloch wave vector

that accounts for the effective periodic potential in the z direction. With

this ansatz, Eq. (5.2) is reduced to a two-dimensional equation in which

the dipolar potential can be efficiently evaluated by carrying out a series

of one-dimensional Hankel transforms.

By numerically solving the resulting GP equation for different values

of κh, we find two classes of helical solutions referred to as the Mermin–

Ho vortex helix and the polar-core vortex helix. Examples of these states

are presented in Figs. 5.1(a)–(f). Figure 5.1(g) illustrates the general

structure of the helical solution. The Mermin–Ho vortex helix hosts two

Mermin–Ho vortices with phase windings (0, 1, 2) and (−2,−1, 0) in the

components (Ψ1,Ψ0,Ψ−1), respectively (cf. Sec. 3.1). The two vortices

carry both spin and mass currents: the spin currents flow in the same di-

rection, whereas the mass currents flow in opposite directions. The polar-

core vortex helix contains two spin vortices with the same phase windings

(−1, 0, 1) in the components (Ψ1,Ψ0,Ψ−1), respectively. The spin vortices

have polar core regions, and they carry a spin current but no mass cur-

rent.

Figure 5.1(h) shows the total energy in these two types of states as a

function of the helical wave vector κh. Whereas the energy of the polar-

core vortex is found to be a monotonously increasing function of κh, the

energy of the Mermin–Ho vortex helix is minimized for a finite wave vec-

tor κmin. This minimum persists in the total energy for all positive values

of g and gd considered in Publication VI and becomes more pronounced

with increasing gd.

The helical textures that we find for F = 1 are in qualitative agreement

with those found earlier using the classical spin approach [80], which is

supposed to be an accurate model for ferromagnetic systems in the limit

of large magnetic moments. Therefore, it is reasonable to expect that

similar helical structures exist independent of the value of the atomic

spin number F . Publication VI can consequently elucidate phenomena in
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Figure 5.1. Spin helices in dipolar spin-1 condensates. (a)–(c) The amplitudes (left pan-
els) and complex phases (right panels) of the order parameter componentsΨ1,
Ψ0, and Ψ−1 for (a)–(c) a Mermin–Ho vortex helix with the helical wave vec-
tor κh = 0.25 rad/ar; (d)–(f) a polar-core vortex helix with κh = 0.25 rad/ar.
The field of view in each panel is 14ar × 14ar, and the colormap range is
[0,maxn (r)] in the left panels and [0, 2π] in the right panels. (g) A schematic
illustration of the spin-helix state [Eq. (5.6)]. Here, p = 2π/κh denotes the
pitch of the helix. The arrows point in the direction of the local spin. Sin-
gle points in the plane z = 0 are mapped to helical trajectories depicted by
the solid curves. (h) The total energy as a function of κh for the Mermin–Ho
vortex (solid) and the polar-core vortex (dashed) helices.
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strongly dipolar systems with more complex order parameters, such as in

the spin-3 gas of 52Cr [215].

The helical spin textures discovered in Publication VI are most trans-

parent in elongated, cigar-shaped BECs. One difficulty in observing them

as stable configurations in a condensate with weak dipolar interactions,

such as 87Rb, is that the spins tend to align predominantly parallel to the

weak axis of the trap due to the head-to-tail attraction of the dipoles [77,

79, 80]. However, by performing additional three-dimensional simula-

tions, we show that this problem can be overcome by placing the cigar-

shaped system in a one-dimensional optical lattice potential along the

weak axis of the trap, say, the z axis. In the simulations, we calculate

the energies of an axially spin-polarized state and a helical spin texture

as functions of the strength of the optical lattice potential, observing that

the helical texture becomes the lower-energy state as the lattice strength

is increased. This behavior is understood as follows: A strong enough

lattice deforms the elongated condensate into a series of pancake-shaped

clouds. Within each cloud, the preferred direction of magnetization lies

in the xy plane, and the relative orientation of magnetization between

neighboring clouds is determined by the long-range dipolar forces, which

favor the helical ordering.

5.3 Elementary excitations in dipolar condensates

The study of collective excitations (Sec. 2.4) has played an important role

in probing the physics of atomic BECs. Recently, various studies have

addressed the question of how dipolar interactions affect the elementary

excitation spectra of dilute BECs. Theoretically, the dipolar interactions

have been shown to give rise to novel collapse dynamics [216] and the

roton–maxon instability [217], and a dipolar shift in the frequency of a col-

lective density oscillation has been observed experimentally [218]. These

studies concern spin-polarized dipolar condensates, which are described

by a scalar order-parameter field. In Publication VII, we present the first

investigation of elementary excitations in dipolar BECs that fully incor-

porates the spin degree of freedom into the model.

We use the spin-1 mean-field model, Eq. (5.2), to numerically study the

low-energy excitation spectra of ferromagnetic dipolar condensates. In or-

der to make the numerical solution of Eq. (5.3) feasible, we assume that

the BEC is tightly confined in the z direction such that the order param-
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eter can be factorized as Ψ(r, t) = Ψ(x, y, t)ζ0(z). This approximation im-

plies that the magnetization does not depend on z, and it should be accu-

rate in the limit ωz 
 ωr. Due to the nonlocality of the dipolar interaction

potentials, the resulting Bogoliubov matrix is not generally a sparse ma-

trix, and its explicit diagonalization becomes cumbersome. To avoid this

problem, we use the Arnoldi iteration that relies on repetitive operation

by the system matrix without the need to store it in memory. Each op-

eration by the matrix requires the evaluation of two-dimensional dipolar

integrals, which we implement efficiently with a fast Fourier transform.

The elementary excitations are solved for three types of stationary states

[Figs. 5.2(a)–(c)]. We consider a spin-vortex state and an almost spin-

polarized, so-called flare state in the absence of external magnetic fields.

In addition, we calculate the excitations for a state in which the atomic

spins are polarized perpendicular to an external field and are precessing

rapidly about it with the Larmor frequency ωL.

The elementary excitations can be assigned a quantum number l ∈ Z

that determines the phase winding of the quasiparticle amplitude with

respect to the stationary state.1 Typically, the lowest-energy excitations

are those with small values of l, such as l = 0 (the breathing mode), l = ±1

(dipole modes), or l = ±2 (quadrupole modes). Moreover, in the absence of

dipolar interactions, the excitations can be classified into density waves,

spin waves and magnetic quadrupole waves, depending on whether they

induce oscillations mainly in the density n, the magnetization M, or the

magnetic quadrupole tensor Qαβ = 2δαβ/3 − 〈FαF β + F βFα〉/2n, respec-
tively.

The main results of Publication VII are presented in Fig. 5.2, which

illustrates the three types of stationary states considered and shows their

excitation energies as functions of the dipolar coupling strength gd. For

clarity, we have presented the energies only for selected lowest-energy

excitation modes. In the limit gd/gn → 0, the three highest-energy modes

in Figs. 5.2(d)–(f) are the density breathing (l = 0), density quadrupole

(l = ±2), and density dipole (l = ±1) modes, in order of descending energy.

The three lower-lying modes consist of the lowest magnetic quadrupole

oscillation (l = 0) and spin waves (l = ±2 and l = ±1).

Figure 5.2 reveals that in general, excitations that induce mainly den-

sity fluctuations are relatively robust against changes in the dipolar cou-

pling strength. In particular, the excitation energy of the density dipole

1In Publication VII, this quantum number is denoted by κ.
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Figure 5.2. Stationary states studied in Publication VII and their excitation spectra.
The top row illustrates the three spin textures under consideration: (a) spin
vortex, (b) flare, and (c) spin-polarized state. The spin vortex and flare are
studied in the absence of magnetic fields, whereas the spins in the polarized
state are precessing rapidly with the Larmor frequency ωL about a homoge-
neous field perpendicular to the plane of the figure. The bottom row shows
the excitation energies of selected Bogoliubov modes as functions of the dipo-
lar coupling strength gd for (d) the spin vortex, (e) the flare, and (f) the spin-
polarized state.

mode is determined solely by the external trapping potential, and hence it

is independent of gd. The energy of the density breathing mode similarly

shows only weak dependence on gd. On the other hand, the excitation en-

ergies of the magnetic quadrupole mode and the spin waves are observed

to increase rapidly with gd.

We also find that the density and spin oscillations become mixed due

to the long-range anisotropic dipolar forces. In the limit gd/gn → 0, only

the density oscillations impart significant density modulations. However,

as the dipolar coupling strength increases, even the spin waves start pro-

ducing density modulations. In fact, when an avoided crossing occurs at

gd/gn ≈ 0.06 in Fig. 5.2(d) for the density and spin waves of the same

quantum number l = ±2, the density waves transform into spin waves

and vice versa.

Publication VII provides the first study of elementary excitations in a

harmonically trapped, pancake-shaped BECwith dipolar interactions and

full spin dynamics included in the model. Since the stationary states

studied in Publication VII have analogous counterparts in the classical

spin approach that describes condensates of particles with large dipole

moments, our results may also be applicable to strongly dipolar systems.
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Ever since the realization of the first dilute atomic Bose–Einstein conden-

sates in 1995, there has been a surge in the research activity in atomic

physics, due to the numerous prospects and challenges provided by these

coherent quantum systems. The atomic BECs have opened up the possi-

bility to model an interacting many-particle system from first-principles

quantum theories and have enabled experimentalists to realize a number

of exotic phenomena that have proven elusive in their original context—a

prominent example is the quantized vortex, which was first proposed to

exist in superfluid helium.

In the research presented in this dissertation, the main objective was

to study exotic, yet experimentally relevant, vortex structures in dilute

Bose–Einstein condensates. The specific topics tackled during the re-

search consisted of multiquantum vortices and vortex dipoles in spin-

polarized condensates, vortex lattices in a system of two attractively in-

teracting condensates, and spin textures in condensates with dipolar in-

teractions. Theoretical and computational methods were used to analyze

the energetics, stability, and dynamics of these structures in a harmonic

trap in the zero-temperature limit.

A central research question, motivated by the recently proposed vortex

pump [73], concerned the creation and properties of giant vortices with

large quantum numbers. In Publications I–III, the size, dynamical stabil-

ity, and splitting of such vortices were studied using the zero-temperature

mean-field theory. It was found that although giant vortices are dynam-

ically unstable against splitting into singly quantized vortices at nearly

all values of the atom–atom interaction strength, the strength of this in-

stability saturates to a fairly low value and can be reduced to zero by

employing an experimentally realizable optical potential. On the other

hand, the observed increase of the vortex core radius rc with the vortex
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quantum number κ as rc ∝
√
κ makes it possible to gradually increase

the pumping speed without compromising the adiabaticity of the process.

Together these findings suggest that multiquantum vortices of very high

angular momenta may be achieved with the pump. Since such vortices

would provide access to the novel splitting patterns discovered in Pub-

lication II and open up the possibility to study the proposed connection

between giant-vortex splitting and superfluid turbulence [219, 220], the

experimental realization of the vortex pump would be an important mile-

stone in vortex physics.

In a recent pioneering experiment, Freilich et al. measured vortex dy-

namics in real time and were able to obtain convincing evidence for a

stationary vortex dipole [82]. Publication IV presented numerical calcu-

lations that explained the experimental observations of Freilich et al. In

particular, the numerically obtained size of the stationary vortex dipole

was within a few percent of the experimental value, which confirms that

the state observed by Freilich et al. really was a genuinely stationary vor-

tex dipole. Previous literature on stationary vortex dipoles considered

only weakly interacting or effectively two-dimensional systems, and pre-

dictions that could be compared with the experiment did not exist until

Publication IV.

Publication V was devoted to studying vortex lattices in harmonically

trapped, rotating two-component BECs in which the components have

unequal atomic masses and interact attractively with each other. Such

systems were found to exhibit unconventional ground-state vortex con-

figurations, such as vortex lattices with square geometry or lattices con-

sisting of vortex pairs or two-quantum vortices, if the ratio of the atomic

masses was suitable. The vortex-pair lattice and the two-quantum-vortex

lattice are novel ground-state structures of Bose–Einstein-condensed sys-

tems and contribute to our understanding of how interacting superfluid

mixtures respond to rotation. The lattices should be realizable in the two-

species BEC of 41K and 87Rb with current experimental techniques [191].

In Publications VI and VII, elonganted spin helices and elementary exci-

tations were investigated in spin-1 BECs with dipole–dipole interactions.

Two classes of helical spin textures were discovered, the Mermin–Ho and

the polar-core vortex helix, each texture containing two spin vortices of

the type suggested by the name. The dipolar interactions were found to

stabilize the Mermin–Ho vortex helix for a finite helical pitch. In Publi-

cation VII, the energies of spin-wave excitations were found to increase
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rapidly with the dipolar coupling strength, whereas the energies of den-

sity oscillations changed only slightly.

The results of Publications VI and VII are in line with earlier studies

that have reported a stabilizing effect of the dipolar interactions on vari-

ous spin textures [77,221–223]. Furthermore, because the states analyzed

here for the hyperfine spin F = 1 have counterparts in the classical spin

approach that describes condensates of particles with very large values of

F [80, 224], the results of Publications VI and VII are expected to shed

light on the behavior of strongly dipolar systems with more complex order

parameters, such as the F = 3 condensate of 52Cr or the recently realized

F = 8 condensate of the most magnetic element, 164Dy [225].

This dissertation includes original, experimentally realizable results on

unconventional vortex configurations in dilute Bose–Einstein condensates.

These results cover, e.g., novel splitting patterns of giant vortices, exotic

ground-state vortex lattices in rotating condensate mixtures, and helical

spin-vortex states in dipolar condensates. Taken together, these findings

deepen our understanding of superfluid and vortex phenomena in the di-

lute condensates. The results also contribute to the search for novel vortex

structures in present-day experiments.

In future research, it would be interesting to extend the stability anal-

ysis of the giant vortices and the study of their splitting to three-dimen-

sional or anharmonic trap configurations, to investigate the exotic lattices

analytically in the limit of very fast rotation, and to probe the effect of

trapping on the roton-maxon spectrum in the dipolar condensates. More-

over, the research presented in this dissertation has been performed ex-

clusively using the zero-temperature formalism. In order to study the pos-

sible finite-temperature effects, one could utilize, e.g, the Hartree–Fock–

Bogoliubov–Popov approximation [226,227], classical field methods [228],

or the Zaremba–Nikuni–Griffin formalism [229].

At the present time, we can only speculate as to what the gaseous BECs

will be used for in the future. Come what may, these ideal quantum lab-

oratories will continue to fascinate the minds of physicists for years to

come.
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In 1995, the field of atomic physics took a 
quantum leap with the experimental 
discovery of dilute Bose-Einstein 
condensates in trapped atomic gases. The 
dilute condensates offer a chance to study an 
interacting many-particle system accurately 
from first-principles theories, and they can 
be used to simulate many seminal models 
that have proven elusive in their original 
context of, e.g., solid-state or high-energy 
physics. An important topic in the research 
has been the quantized vortex, which was 
experimentally realized in 1999 and whose 
existence is intimately related to the 
concepts of superfluidity and quantum 
phase coherence. In this dissertation, 
unconventional vortex structures are 
investigated in the trapped condensates 
using a combination of analytical and 
numerical methods. Several results are 
reported that contribute to a better 
understanding of superfluid phenomena and 
have significant implications for the 
prospects of detecting novel vortex 
structures in current experiments. 
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