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Abstract 
Magnetoencephalography (MEG) is an excellent tool for noninvasive investigation of neuronal 
activity from outside of the head. It provides millisecond temporal accuracy and good spatial 
resolution. The classical measure of task-related brain activity is the evoked response that is 
phase-locked to task or stimulus. But the brain also exhibits spontaneous oscillations, or 
rhythmic activity, that has been observed to be modulated during task or in response to stimuli. 

 
This Thesis mainly focuses on investigations of cortical brain rhythms, developing methods 

for analyzing them and probing their relationship with evoked responses. While the sensor 
level MEG signal can be used successfully for studying evoked responses and cortical rhythmic 
activity, a proper evaluation of the data requires localization of the active brain areas. For this 
purpose, a beamforming technique called Dynamic Imaging of Coherent Sources (DICS) was 
used and modified in this Thesis. With DICS, it is possible to examine both power level 
modulations of rhythmic activity and functional connectivity between different brain regions 
conveyed by rhythmic activity. 

 
In this Thesis, an event-related version of a beamformer method DICS was implemented to 

assist the modeling of rhythmic activity. The feasibility of this new method, erDICS, was shown 
with simulations and real MEG data. The method was further applied to compare evoked 
responses and rhythmic activity in a high-level cognitive task of picture naming, with the 
conclusion that the two measures of cortical processes are largely detached and that both 
measures are needed for an accurate portrayal of brain activity. With another data set from a 
word priming study, erDICS was used to investigate connections between the left superior 
temporal cortex and other cortical regions. The method revealed different brain networks for 
phonological and semantic priming. 

 

Keywords magnetoencelography, MEG, rhythms, oscillations, evoked response, functional 
connectivity 

ISBN (printed) 978-952-60-4786-7 ISBN (pdf) 978-952-60-4787-4 

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942 

Location of publisher Espoo Location of printing Helsinki Year 2012 

Pages 70 urn http://urn.fi/URN:ISBN:978-952-60-4787-4 





Tiivistelmä 
Aalto-yliopisto, PL 11000, 00076 Aalto  www.aalto.fi 

Tekijä 
Hannu Laaksonen 
Väitöskirjan nimi 
Aivokuoren rytmit hermostollisen käsittelyn merkkinä 
Julkaisija Perustieteiden korkeakoulu 
Yksikkö O.V. Lounasmaa -laboratorio 

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 119/2012 

Tutkimusala Teknillinen fysiikka, lääketieteellinen tekniikka 

Käsikirjoituksen pvm 01.06.2012 Väitöspäivä 10.10.2012 

Julkaisuluvan myöntämispäivä 16.08.2012 Kieli Englanti 

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit) 

Tiivistelmä 
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spontaaneja rytmejä, joiden on havaittu vaihtelevan tehtävän aikana tai ärsykkeen 
seurauksena. 

 
Tämä väitöskirja keskittyy aivokuoren rytmiseen toimintaan, sen tutkimiseen tarvittavien 

menetelmien kehittämiseen ja rytmien ja herätevasteiden välisen yhteyden tarkasteluun. 
Vaikka anturitason MEG-signaalia voidaan käyttää menestyksekkäästi herätevasteiden ja 
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aivoalueiden paikoista. Tätä varten väitöskirjassa käytettiin Dynamic Imaging of Coherent 
Sources (DICS) -menetelmää, jonka avulla on mahdollista tutkia sekä rytmisen toiminnan 
tehon muokkautumista eri aivoalueilla että toiminnallista kytkeytyvyyttä aivoalueiden välillä. 
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1. Introduction

Studying the human brain is one of the most intriguing research fields

of today. The task is daunting, however, as the sheer complexity of the

nervous system makes the pursuit extremely convoluted. The basic units

of the human brain, neurons, number in the order of 1011 and the con-

nections between them at a staggering 1014 – prior to 64-bit computing

it would not have been even possible to map so many indices. The upper

limit of a 32-bit address space is roughly only 4 · 109, which is also the

number of possible unique IPv4 addresses. Due to the complicated na-

ture of the brain, it cannot be investigated in all its aspects at once and

the research field is thus split into several subfields. The functions of the

nervous system can be approached through anatomical or behavioral ob-

servations and measurements. To actually see what goes on inside the

skull when the brain is in action, we need instruments for measuring

activity from single or a few neuronal cells, or even imaging the whole

functioning brain at once. No single approach gives us all of the answers,

but by putting together the various pieces we get closer to understanding

how the nervous system works.

Magnetoencephalography (MEG) is an excellent tool for noninvasive in-

vestigation of neuronal activity from outside of the head. It provides

millisecond temporal accuracy and good spatial resolution. The classi-

cal measure of task-related brain activity is the evoked response that is

phase-locked to task or stimulus. But the brain also exhibits spontaneous

oscillations, or rhythmic activity, that has been observed to be modulated

during a task or in response to stimuli.

This Thesis mainly focuses on investigations of cortical brain rhythms, de-

veloping methods for analyzing them and probing their relationship with

evoked responses. While the sensor-level MEG signal can be used suc-
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cessfully for studying evoked responses and cortical rhythmic activity, a

proper evaluation of the data requires localization of the active brain ar-

eas. For this purpose, a beamforming technique called Dynamic Imaging

of Coherent Sources (DICS) was used and modified into an event-related

variant (erDICS) in this Thesis. With DICS, it is possible to examine both

power-level modulations of rhythmic activity and functional connectivity

between different brain regions conveyed by rhythmic activity.

The next chapter of this Thesis will briefly describe the basics of neu-

ronal signal generation and the physics and instrumentation of MEG; for

a more detailed account, one may consult, e.g., the review article by Hä-

mäläinen et al. (1993) or the textbook by Hansen et al. (2010). Chapter 3

outlines the main aims of this Thesis, and Chapter 4 describes the main

results of the separate studies. Chapter 5 discusses the main findings and

future directions.

12



2. Background

2.1 Origin of the MEG signals

2.1.1 The brain

The human brain is customarily divided into three parts: the cerebrum,

cerebellum and brain stem. The cerebrum and cerebellum can further be

divided into left and right hemispheres. The outer part of the cerebrum

is called the cerebral cortex and it plays a key role in human awareness

and consciousness. Roughly every tenth, or 1010, of human neurons are

found in the cerebral cortex. This layer is only a few millimeters thick

and is heavily folded so that most of its surface is hidden in sulci. Folded

out, it would cover the area of 2500 cm2, the same as a large cloth napkin.

In MEG studies, the main focus is on the cerebral cortex. This is because

of its functional role in many cognitive functions and because, as it is

the outmost layer of the cerebrum, MEG measurement systems can most

readily pick up signals from this part of the brain.

The cerebral cortex in both of the hemispheres is often divided topograph-

ically into four lobes: the occipital lobe, parietal lobe, temporal lobe and

frontal lobe (Figure 2.1). A major landmark, the central sulcus or Rolandic

fissure, separates the frontal and parietal lobes and another major sul-

cus, the lateral sulcus or Sylvian fissure, separates the frontal lobe from

the temporal lobe. Relative directions in the brain are, by convention,

posterior (towards the back of the head), anterior (towards the front of

the head), superior/inferior (above/below) and lateral/medial (towards the

sides or the midline).

13
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Figure 2.1. Schematic illustration of the brain (left hemisphere).

The cortex may also be divided according to the different functional roles

associated with different areas. For example, the primary motor area that

controls execution of movements is located anterior to the central sulcus;

posterior to that sulcus lies the primary somatosensory area that pro-

cesses touch. The main visual processing area is located in the occipital

cortex, the most posterior part of the brain. Most connections from the pe-

ripheral nervous system connect to the opposite (contralateral) side of the

brain. Therefore, when, for example, a subject moves his/her right hand,

the most prominent activation is observed in the left sensorimotor cortex.

There are also connections to the same side (ipsilateral), which results in

bilateral activity.

2.1.2 Neurons and synapses

The basic information processing unit in the human brain is a neuronal

cell or a neuron. Neurons exchange information among themselves via an

electric and chemical signaling system. A single neuron consists of a cell

body, or soma, a number of information-receiving dendrites and an axon,

which transmits signal to other neurons. The connecting junction between

an axon of one neuron and a dendrite of another is called a synapse. The

signal travels in the form of electric potential change along the neuron cell

membrane, but is delivered chemically to the next neuron at the synapse.

14
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This arrangement combines fast information transfer (electric potential)

with the possibility of large-scale modulation (chemical signals).

At rest, a neuron’s cell membrane potential is around -70 mV, which is cre-

ated by a concentration gradient of various ions across the cell membrane

and is maintained by the different membrane permeabilities to different

ions and active ion pumps. When the cell receives excitatory input from

the numerous synapses in its dendrites, the soma depolarizes (making it

more positive). If the soma depolarizes above around -55 mV, it kicks off

an event called an action potential (AP) which travels along the axon us-

ing voltage-gated ion channels. During an action potential, only a small

patch of the axon is affected at a time. At first, the Na+ channels open,

bringing Na+ ions into the cell and strongly depolarizing the cell mem-

brane. After a delay, this is followed by repolarization via closing of the

Na+ channels and opening of the K+ channels that bring the cell back to

the resting level. The whole event only lasts for a few milliseconds, but

causes the neighboring cell membrane to depolarize and start the same

cycle. This causes an action potential to travel as an electric pulse from

the soma to the end of the axon. After the AP moves on, the cell mem-

brane goes into a refractory state for about a millisecond. During this

time, no action potential can be formed, ensuring that action potentials

always travel only in one direction.

When the action potential reaches the synapse, the presynaptic neuron

releases neurotransmitters into the cleft between the pre- and postsynap-

tic neuron (Figure 2.2). In an excitatory synapse, the neurotransmitters

cause the postsynaptic neuron to depolarize locally, initiating a postsynap-

tic potential (PSP). The PSPs arriving at different dendritic synapses of

the postsynaptic neuron sum both spatially and temporally. If the poten-

tial at the soma reaches high enough a level, a new AP will be generated

at the axon hillock of the postsynaptic neuron. Inhibitory synapses have

the opposite effect. They either hyperpolarize or increase conductance of

the cell membrane without changing the cell membrane potential, mak-

ing it more difficult for the membrane potential to reach the threshold for

AP generation.
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Figure 2.2. Schematic illustration of the neuronal currents: action potential in the presy-
naptic neuron and postsynaptic currents in the postsynaptic neuron.

2.1.3 External fields due to neuronal currents

Neuronal activity produces currents, which generate electromagnetic

fields that can be measured with imaging modalities such as MEG and

EEG. As described above, there are two sources of neuronal activity: ac-

tion potentials and postsynaptic potentials. When measuring brain ac-

tivity with MEG and EEG, we mostly observe only one of them, the PSP.

The reasons are three-fold: field decay, spatial summation and temporal

summation.

The field produced by APs can be viewed as quadrupolar (the intracellular

current is flowing in two directions from the site of an AP), which decays

as 1/r3, where r denotes the distance from the site. In the case of PSP,

however, where the source of the field can be viewed as a dipole (current

flowing into one direction only), which decays as 1/r2 and thus persists

over longer distances.

It has been shown that most of the MEG/EEG signal is generated in the

pyramidal cells of the cortex (Okada et al. 1997). The apical dendrites

of this type of large neuron are aligned in parallel. Therefore, when sev-

eral neurons in the same region receive a signal, the PSPs sum spatially,

making it easier to measure the neuronal signal outside of the head.

The characteristic lifetime of a PSP is on the order of ten milliseconds,

16
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whereas an AP lasts only for around one ms. This makes it possible for

several PSPs to sum temporally, but APs would have to be extremely syn-

chronized to have that benefit. Typically, it takes on the order of thou-

sands nearly simultaneous, spatially-close PSPs to generate an electro-

magnetic field strong enough to be detected from the outside of the head.

It is important to note that the pyramidal cells are oriented perpendicular

to the cortical surface. Because the cortex is heavily folded and forms gyri

and sulci, this means that the neural currents in the crown of the gyri

are oriented radial to the skull whereas the neural currents generated in

the walls of sulci are aligned parallel to the skull (Figure 2.3). This has

important implications when measuring the signal with MEG, as MEG is

particularly sensitive to currents tangential to the skull and less to radial

currents (more on this in section 2.4.1). Importantly, about 2/3 of the

cortex surface is in the fissural cortex (Henery and Mayhew 1989).

Figure 2.3. Orientation of the PSP current flow in different parts of a gyrus/sulcus.

2.2 MEG measurement device

Magnetic fields generated by the human brain were recorded for the first

time in 1968 using a simple magnetometer (Cohen 1968). However, prac-

tical measurements of magnetic signals outside the head became possible

only after the introduction of the superconducting quantum interference
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device (SQUID) (Zimmerman and Silver 1966; Zimmerman et al. 1970;

Cohen 1972).

A SQUID is a superconducting ring with one or two weak links called

Josephson junctions (Josephson 1962). When a bias current is applied to

such a loop, its output varies periodically according to the magnetic flux

that passes through the SQUID loop. This output can be set to zero with

a feedback current, such that the change in the magnetic flux induces a

change in the feedback current. In this type of arrangement, the feed-

back current is proportional to the magnetic flux and enables detection of

extremely small changes in magnetic field.

A typical SQUID is very small and would by itself be quite insensitive to

an external magnetic field. In MEG, the sensitivity of signal detection is

enhanced by using a separate larger pick-up coil that is then coupled to

the smaller SQUID loop with a signal coil. The properties of the pick-

up coil determine the manner in which the device detects the magnetic

field. Typical pick-up coil types are magnetometers and gradiometers. A

magnetometer is a single loop that detects field components normal to its

surface. A gradiometer consists of two loops wound in opposite directions

such that their output is sensitive to the spatial field change at the loop

location. If the two opposing coils are in the same plane, this coil setup is

called a planar gradiometer and if they are on the same axis, the setup is

called an axial gradiometer (Figure 2.4).

Figure 2.4. Different types of pick-up coils. (a) A magnetometer is a single loop. (b) A
planar gradiometer consists of two loops on the same plane and (c) an axial
gradiometer has two loops, one on top of the other.

If a source is far away from the pick-up coil, gradiometers tend to miss

it, because the spatial derivative of the field diminishes with distance.

Magnetometers, on the other hand, are more sensitive to far away sources

as they measure the field itself. However, this also makes them more

prone to disturbance from external sources, whereas gradiometers can
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better detect local field changes. If a dipolar current is located fairly close

to the MEG sensors, a planar gradiometer will give a maximal signal on

top of the source current and a magnetometer on both sides of it.

All the data examined in this Thesis were collected using a 306-channel

Neuromag VectorviewTM MEG device manufactured by Elekta Oy, Hel-

sinki, Finland. It contains 102 sensor elements in a helmet covering the

head. Each sensor element contains two orthogonal planar gradiometers

and one magnetometer. Only signals recorded with the planar gradiome-

ters were used in this Thesis, because of their better signal-to-noise ratio

(SNR) and more accurate spatial information already at the sensor level.

Besides the MEG signal, eye movements are typically recorded with elec-

trodes attached to the skin close to the subject’s eyes (electro-oculography,

EOG). An eye blink or saccade produces a large artifact in the MEG

signal, and intervals contaminated by such movements are typically re-

moved from the data analysis. If needed, subjects’ muscle activity can be

recorded with electrodes attached to the relevant part of the skin (elec-

tromyography, EMG).

The position of the head relative to the sensor array can be determined

using small head position indicator (HPI) coils that are typically attached

to the forehead and behind the ears. The location of these coils may be de-

termined by briefly feeding a current into them and localizing them based

on the resulting magnetic field. By further defining the HPI coil loca-

tions with respect to anatomical landmarks (nasion, preauricular points),

using a 3D digitizer, the MEG source-level results may be displayed on

structural magnetic resonance images of the subjects’ brains.

The magnetic fields generated by neuronal activity are very weak. The

Earth’s magnetic field is over 108 times stronger than the measured signal

(Hämäläinen et al. 1993) and even passing cars on the street, electric

noise from wirings and normal laboratory equipment can interfere with

the measurements. Therefore, there is a need for suppression of ambient

and electronic noise. This can be achieved in multiple ways.

First, an MEG device is placed in a magnetically shielded room that re-

duces external fields via passive shielding, in some cases assisted by an

active compensation system. Second, the choice of measurement coils is

important. Using gradiometers reduces the amount of outside interfer-
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ence, as far-away fields will be locally homogeneous and thus cancel out.

Third, noise can be reduced with computational methods, such as signal

space projection (SSP, Uusitalo and Ilmoniemi 1997) and signal space sep-

aration (SSS, Taulu et al. 2004). In SSP, an interference field estimated

from an empty room measurement is projected out from the measured

data. In SSS, the signal is separated into two subspaces, one originating

from the inside of the measurement helmet and one originating from the

outside.

2.3 Evoked responses and rhythmic activity

In a traditional MEG study, a certain type of task or stimulus is repeated

multiple times, and MEG data averaged over these repeats, or trials, are

used to estimate the underlying neural activity. Averaging improves the

SNR by reducing the contribution of noise uncorrelated to the task. The

response to a single stimulus usually has an insufficient SNR for reli-

able analysis. These phase-locked evoked responses are typically evident

within 1 s of the stimulus or task onset. In simple sensory and motor

tasks, evoked responses arise from the sensory and motor representation

areas, but in more demanding cognitive tasks, evoked responses are gen-

erated in many other areas as well, throughout the cortex (Brenner et al.

1975; Brenner et al. 1978; Hari et al. 1980; Salmelin et al. 1994; Helenius

et al. 1998; Salmelin 2007).

Apart from the evoked responses, cortical rhythms are the most promi-

nent aspect of brain activity recorded with EEG/MEG. In fact, the first

published EEG recording reported 10-Hz brain oscillations over the pos-

terior brain regions (Berger 1929). This well-know rhythm is commonly

called the alpha rhythm and, subsequently, Greek letters have been given

as names to several other distinct brain rhythms, as classified by their

region of origin and frequency content. The mu rhythm in the rolandic re-

gion has a typical comb-like shape, with spectral peaks around 7-13 and

16-24 Hz (Gastaut 1952; Hari and Salmelin 1997). Beta waves (13-35

Hz) are recorded over the motor cortex (Hari and Salmelin 1997). The

theta rhythm (3-8 Hz, Ishii et al. 1999; Jensen and Tesche 2002) is seen

in the frontal brain regions and the tau rhythm (around 8 Hz) around

the auditory cortex (Niedermeyer 1990; Tiihonen et al. 1991). Gamma

band activity (30-100 Hz) has been reported over several cortical areas
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(Tallon-Baudry et al. 1997; Singer 1999; Fries et al. 2001), although most

studies seem to focus on the occipital cortex (e.g., Hoogenboom et al. 2006;

Muthukumaraswamy et al. 2010).

The occipito-parietal alpha rhythm is most prominent when the subject

is awake with the eyes closed and is decreased when the subject is pre-

sented with a visual stimulus or during visual imagery (Salenius et al.

1995; Hari and Salmelin 1997). This rhythm seems to be suppressed more

strongly by a more intense task, as observed, e.g., when comparing brain

responses between passive viewing of pictures and naming of the same

pictures, either silently or aloud (Salmelin et al. 1994). Modulation of

the alpha rhythm is not limited to sensory events; e.g., an increase in

parieto-occipital 10-Hz rhythm has been linked to memory load (Jensen

et al. 2002; Tuladhar et al. 2007).

The mu rhythm is suppressed by limb movements and tactile stimula-

tion (as reviewed, e.g., by Hari and Salmelin 1997), followed by a rebound

above baseline level after the movement offset. This rebound has been

suggested to reflect cortical inactivation or immobilization when return-

ing to rest (Salmelin et al. 1995; Chen et al. 1998; Pfurtscheller and Lopes

da Silva 1999). The rebound of the 20-Hz component of the mu rhythm

seems to be faster and stronger than the rebound of the 10-Hz component

(Pfurtscheller 1981; Salmelin and Hari 1994b). At rest, the mu rhythm

is mostly visible only close to the hand representation area in the motor

cortex (Salmelin and Hari 1994a).

It is common to divide brain rhythms into two categories; spontaneous

and induced. Spontaneous rhythms are observed without any external

stimulus or task and induced rhythms are observed in response to a stim-

ulus or task. For example, the occipital alpha rhythm, occurring when the

subject’s eyes are closed, belongs to the category of spontaneous rhythms

and an increase of the 20-Hz rhythms in the motor cortex after limb move-

ment (e.g. Salmelin and Hari 1994b) is seen as modulation of induced

rhythmic activity.

A very striking difference between evoked responses and brain oscilla-

tions is the duration of the events. Evoked responses are typically rapid

transient events (< 1 s in a typical MEG experiment), while rhythms last

over several seconds. This extended temporal scale of oscillatory activity

has been suggested to be useful in processing sequential events by keep-
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ing information available over longer time scales (Dinse et al. 1997).

2.4 Source modeling and data analysis

While the sensor level MEG signal can be successfully used for studying

evoked responses and cortical rhythmic activity, several distinct brain re-

gions can contribute to the measurements and confound the data analysis.

In order to properly separate signals from different sites, it is therefore vi-

tal to be able to go from measurements outside the head to modeling the

neural currents inside the brain. This decomposition of the measured sig-

nal is called solving the inverse problem, and it usually requires some

assumptions about the brain’s geometry and current distribution.

2.4.1 Forward model

Before solving the inverse problem, one must first solve the forward prob-

lem, i.e. estimating the measurements if the current density in the brain

were known. This problem can be solved starting from Maxwell’s equa-

tions

∇ ·E = ρ/ε0, (2.1)

∇×E = −∂B/∂t, (2.2)

∇ ·B = 0, (2.3)

∇×B = μ0(J+ ε0∂E/∂t), (2.4)

where E is the electric field, ρ is the charge density, ε0 is the permittivity

of vacuum, B is the magnetic field, μ0 is the vacuum permeability and J

is the total current density. Here the permeability of the head is assumed

to be that of vacuum.

Because neuronal events are slow, with typical frequencies below 100 Hz,

we can use the quasi-static approximation of Maxwell’s equations (Hämä-

läinen et al. 1993). This renders the time derivates in Eq. 2.3 and Eq.

2.4 equal to zero. The magnetic field satisfying Eq. 2.2 - 2.4 can then be

calculated with Ampère-Laplace’s law as

B(r) =
μ0

4π

∫
J(r′)× (r− r′)
| r− r′ |3 dv′, (2.5)

where B is the magnetic field outside the head at location r and J(r′) is

the current density at point r′ inside the brain.
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The current density is typically divided into macroscopic volume current

Jv and primary current Jp. The primary current is the neuronal current

flowing inside the cell and the volume current is the passive current flow-

ing in the conducting medium. Volume currents are driven by the macro-

scopic electric field E and obey Ohm’s law. Current density can therefore

be denoted as

J = Jp + Jv = Jp + σE = Jp − σ∇V, (2.6)

where σ is the conductivity of the medium and V is the electric potential.

Using Eq. 2.2 – 2.6, it is now possible to write out equations for the mag-

netic field outside the head and the relationship between V and the pri-

mary current:

B(r) =
μ0

4π

∫
(Jp(r

′) + V∇′σ)× r− r′

| r− r′ |3dv
′ (2.7)

∇ · (σ∇V ) = ∇ · Jp. (2.8)

See Sarvas (1987) and Hämäläinen et al. (1993) for more details. By

solving V from Eq. 2.8, it is straightforward to estimate B(r) from Eq.

2.7 and thus solve the forward problem. By making some assumptions

about the volume conducting properties of the head and about the current

distribution, V can be solved either numerically or even analytically in

some cases.

2.4.2 Current dipole

For solving V in Eq. 2.8, one needs a model for primary current density.

A commonly used approach is to model current density as a superposi-

tion of current dipoles. A dipole is a mathematical construct, a point-like

source of an electric field defined by its location rQ and moment Q. The

primary current by a single dipole can then be expressed using Dirac’s

delta function δ(r):

Jp(r) = Qδ(r− rQ). (2.9)

A current dipole also reflects our knowledge of neuronal currents. As

shown in section 2.1.3, the field generated by the PSP that generates most

of the measurable signal is fairly dipolar in nature when viewed from a

distance. It is worth noting that here a current dipole denotes, conceptu-

ally, a patch of cortex with synchronously active pyramidal cells.
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2.4.3 Volume conductor models

A typical volume conductor model for the head is a sphere. As the shape

of the head and the brain is fairly spherical, this simple approximation

is a useful tool for MEG/EEG. With the spherical conductor model, the

solution for the forward problem (Eq. 2.7) can be solved based on the

radial component of the magnetic field:

Br(r) =
μ0

4π

∫
Jp(r

′)× r− r′

| r− r′ |3 · erdv
′, (2.10)

where er is a unit vector radial to the sphere surface (Sarvas 1987). Note

that with this derivation of Br(r), the magnetic field outside the head

could be estimated without any information about the volume currents.

However, other components of Br are affected by the volume currents.

A more realistic model for the conductivity profile of the brain can be ac-

quired by using, for example, a boundary element model (BEM, Hämä-

läinen and Sarvas 1989). In practice, when estimating the location of an

isolated current dipole, the simple spherical model has an accuracy of 2-4

mm, which can be improved only marginally with the use of more realis-

tic head geometries (Leahy et al. 1998; Crouzeix et al. 1999; Tarkiainen

et al. 2003). These more complex conductivity models are of use mainly

when focusing on activity in anterior frontal and deep brain regions.

When considering the special case of a dipolar source in a spherical con-

ductor, the magnetic field outside the sphere assumes an analytical form

(Sarvas 1987):

B(r) =
μ0

4πF 2
(FQ× rQ − (Q× rQ · r)∇F ), (2.11)

where F = a(ra + r2 − rQ · r), ∇F = (r−1a2 + a−1a · r + 2a + 2r)r − (a +

2r+ a−1a · r)rQ and a = r− rQ. From Eq. 2.11 it also follows that radially

oriented sources do not produce any magnetic field outside the sphere.

In the case of MEG, this means that in the gyri, where pyramidal cells

are roughly radially oriented, the measured signal would be diminished.

However, it has been shown that only a very small part of gyri is invisible

to MEG (Hillebrand and Barnes 2002).

2.4.4 Inverse problem solution

With models for the current distribution and the shape of the volume con-

ductor, we can estimate the solution for the inverse problem. When using
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equivalent current dipole as a model for current distribution, the source

that best fits the measured data is called an equivalent current dipole

(ECD). At a given time instant, the parameters of an ECD (location, ori-

entation and amplitude) can be estimated from the MEG measurement

with a least-square search. Usually a subset of MEG sensors is used in

order to better constrain the search space. This search also gives a con-

fidence interval for the ECD location parameter. If several brain regions

need to be included in the model, a multi-dipole model is constructed by

fitting more ECDs individually at different time instances or with a dif-

ferent set of sensors. The validity of an ECD may be estimated with the

goodness-of-fit value:

g =
1− |b− b̂|2

|b|2 , (2.12)

where b is the measured signal and b̂ is the estimated signal (obtained

via the forward solution). The temporal behavior of these sources can be

determined by fixing the ECD location and orientation parameters and

allowing the amplitude to vary to explain as much of the data as possible.

Brain activity can also be modeled with a mapping approach: instead of

estimating parameters for one source area at a time, one may try to ex-

plain the measured signal with a large number of spatially fixed dipoles.

The sources can be confined to the cortical sheet. This type of approach is

called distributed source modeling. Because in these approaches the num-

ber of estimated parameters outnumbers the measurements, the inverse

problem solution is underdetermined. A unique solution can be, however,

achieved by imposing additional constraints on the data. Typically these

types of methods seek to explain the data using a source distribution with

the smallest norm. If this norm is of type L2 (sum of squared amplitudes,

i.e., minimum overall power), the method is referred to as MinimumNorm

Estimate (MNE, Hämäläinen and Ilmoniemi 1994), whereas methods us-

ing type L1 norm (sum of absolute amplitudes, i.e., minimum overall cur-

rent) are called Minimum Current Estimates (MCE, Matsuura and Okabe

1995; Uutela et al. 1999).

2.4.5 Beamforming

An alternative to ECD or distributed source modeling is a type of localiza-

tion technique called beamforming. Beamforming aims to determine the

activation time course at a given location independently of the other brain
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regions. This is done with a spatial filter which seeks to maximize gain

from one region while suppressing input from the others. A spatial filter is

essentially a set of weights that define a weighted sum of the sensor-level

MEG signal. Mathematically this equals

y = WTx, (2.13)

where y is the time course of activity at a given location, W is the weight

matrix of the spatial filter and x is the measured signal. A map of ac-

tivity is then obtained by moving the spatial filter across the cortex and

finding a different set of weights for each location. By applying principles

of linearly constrained minimum filtering (LCMV, Van Veen et al. 1997)

to MEG/EEG data, it can be shown that the best least square fit for the

weights W at location r can be determined as follows:

W =
C−1L

LTC−1L
, (2.14)

where C is the cross-covariance matrix of the measured data and L is

the forward solution for a source at location r (Gross and Ioannides 1999).

The approach seeks to minimize the interference of other sources and con-

strain the gain from r to a unit response. This type of beamforming is

sometimes referred to as adaptive beamforming, because the covariance

C makes the estimate dependent of the data itself. Beamforming was

initially developed for radar and sonar use (Van Veen and Buckley 1988),

but has since been applied successfully to analysis of cortical rhythmic ac-

tivity measured with MEG/EEG (e.g. Robinson and Vrba 1999; Gross et

al. 2001). However, using beamformers for analysis of evoked responses

is problematic due to an insufficient covariance estimate: a number of

time samples that exceeds the number of channels by a factor of 3-4 is

needed for a good covariance estimate (Van Veen et al. 1997). As evoked

responses have a short duration, this criterion is difficult to meet.

LCMV beamformers have been shown to converge to minimum norm so-

lutions with an a priori assumption of uncorrelated sources (Mosher et

al. 2003). The beamforming approach does not require any assumptions

about the number of sources and can be performed for a limited volume at

a time. A major theoretical weakness of beamforming is that it is blind to

perfectly correlated sources. In practice, however, sources with quite high

correlation can be modeled successfully with LCVM beamformers (Van

Veen et al. 1997; Sekihara et al. 2002).
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2.4.6 Analysis of rhythmic activity

Rhythmic activity is rarely phase-locked to a stimulus or task. Thus, av-

eraged evoked responses will not capture this type of brain activity as

averaging removes non-phase-locked responses. To identify the types of

oscillatory activity included in the data, one typically starts the data anal-

ysis by examining the spectra of the measured signal at the MEG sensor

level. With the Welch’s method (Welch 1967), the spectrum is estimated

from fast Fourier transforms (FFT) of short, partially overlapping data

segments and averaged over all segments.

The task or stimulus-related time course of signal strength in a certain

frequency band can be quantified by band-pass filtering the signal to the

desired frequency range, rectifying and averaging over trials (TSE, Tem-

poral Spectral Evolution, Salmelin and Hari 1994b). Another technique

for sensor-level evaluation of rhythmic activity is Time-Frequency Rep-

resentation (TFR, Tallon-Baudry et al. 1997). It shows the evolution of

MEG signal as a function of time and frequency similarly to, e.g., spectro-

grams for sound signals in sound processing.

Cortical sources of rhythmic activity may be estimated with sequential

ECD modeling (Salmelin and Hämäläinen 1995). In this approach, a nor-

mal dipole fitting scheme is applied to several batches of raw data filtered

to desired frequency band, with dipoles fitted at small time intervals (e.g.

every 10 ms). Because the SNR of raw data is far below that of an aver-

aged evoked response, one needs to collect large amounts of dipoles that

form reliably identifiable clusters. The number of dipoles in the clusters

is reduced by requiring them to explain the data as well as possible, i.e.

setting acceptance thresholds for goodness-of-fit and confidence interval

values. The final selected source model is the ECD that best accounts for

the observed task/stimulus related modulations. The time evolution of

the source can be estimated with a TSE curve similar to estimations at

the sensor level. Sequential dipole fitting was used successfully in Publi-

cation I.

Lately, minimum norm methods and beamforming have been applied to

the analysis of rhythmic activity. Beamforming can be transformed into

the frequency domain by substituting the cross-covariance in Eq. 2.14

with cross-spectral density (Gross et al. 2001) or by estimating the covari-
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ance from broad-band MEG signals and then passing the narrow-band

signal through the spatial filter (synthetic aperture magnetometry, SAM,

Robinson and Vrba 1999; Barnes et al. 2003). For an overview on beam-

forming with MEG, see the review by Hillebrand et al. (2005). In this

Thesis, the cross-spectral density approach was used in a method called

Dynamic Imaging of Coherent Sources (DICS). It will be discussed in de-

tail in section 2.6.

2.5 Functional connectivity

Exploration of the brain function based on separate active areas and their

time courses of activation has been successful, but in recent years the fo-

cus has been shifting towards the way these areas operate in synchrony.

Interactions between areas may reveal important functional properties of

the neuronal system and it has even been claimed to be vital for cogni-

tion (Singer 1999; Varela et al. 2001). Connectivity has been explored in

several studies on animals and humans (e.g. Büchel and Friston 1997;

Logothetis 2003; Mechelli et al. 2004; Penny et al. 2004) using functional

magnetic resonance imaging (fMRI). However, the slow hemodynamic re-

sponse limits the time scales that can be accessed with fMRI measure-

ments. As behaviorally relevant brain synchronization is likely to hap-

pen at a high temporal rate across the cortex, MEG, with its millisecond

time resolution, should be well suited for addressing such phenomena.

Indeed, synchronization of oscillatory cortical activity has been proposed

as a prime candidate mechanism for connecting different cortical areas

(Singer and Gray 1995; Varela et al. 2001).

When observing two cortical areas and their time series of activation,

several methods exist for quantifying their interaction. Focusing on the

methods in the frequency domain, the most common measure of depen-

dency between signals is coherence. It is defined via power spectral den-

sities as

Coh =
|Pxy|2
PxxPyy

, (2.15)

where Pxx and Pyy refer to power spectral densities of signals x and y,

and Pxy is the cross-spectral density of the two signals. Coherence takes

values between 0 and 1, with Coh = 1 indicating complete synchrony. In

practical data analysis, it can be robustly implemented, is fast to compute,
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and has been widely used in EEG to estimate interactions between differ-

ent brain regions (Nunez et al. 1997). Coherence is used in this Thesis as

the primary measure of connectivity (Publication V).

It is important to be aware of the limitations of coherence measures. First,

this approach cannot distinguish between a case where areas A and B are

connected directly from a case where A and B are connected via an area

C. A method called partial coherence (Dahlhaus et al. 1997) has been

developed to help distinguish between these two cases. Second, coherence

is influenced by both the amplitude and phase of the signal. Thus, even

in a case of total phase synchrony, coherence might yield relatively low

estimates of connectivity. Since the phase information of the signal may

play an important role in cortical connectivity (Singer and Gray 1995;

Lachaux et al. 1999; Varela et al. 2001), methods relying only on the

phase synchrony are also used. The most common of these measures are

called phase-locking value (PLV, Lachaux et al. 1999) and synchronization

index (SI, Tass et al. 1998). PLV is defined as

PLV (t) =
1

N
|

N∑
n=1

eiθ(t,n)|, (2.16)

where θ(t, n) is the instantaneous phase difference between two signals

at time t and trial n. PLV can further be tested for statistical significance

with the use of surrogate data. SI is based on the notion of n : m phase-

locking value defined as

ϕn,m(t) = nφ1(t)−mφ2(t), (2.17)

where t is time, n andm are integers and φ1,2 the normalized phases of two

signals obtained via Hilbert transform. The preferred phase difference

between two signals is then acquired from cyclic relative phase defined as

the modulus of Eq. 2.17. SI is computed from the distribution of the cyclic

phase either based on Shannon entropy or conditional probability (Tass et

al. 1998).

Methods have further been developed to estimate whether the link be-

tween two areas has a primary direction of information flow or whether

the information flow is bidirectional. Granger causality (Granger 1980)

and partial directed coherence (Sameshima and Baccala 1999) are based

on autoregressive modeling, i.e., they seek to predict one signal on the

basis of another. Directionality index (Rosenblum and Pikovsky 2001) is

based on the instantaneous phases of the signals and is the continuation
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of the phase synchrony line of analysis. In Publication V, partial Granger

causality (Geweke 1982; Guo et al. 2008) was used as a measure of di-

rectionality of information flow. It has superior performance over regular

Granger causality in the presence of hidden or latent variables, which is

a very possible problem in the case of EEG/MEG recordings.

2.6 Dynamic Imaging of Coherent Sources

Dynamic Imaging of Coherent Sources (Gross et al. 2001) is a versatile

tool for mapping power distribution and connectivity on the cortex. It uti-

lizes the principles of adaptive beamforming (see section 2.4.5) by building

a spatial filter which employs the cross-spectral density (CSD) matrix as

the representation of dependencies of oscillatory components in the MEG

signal.

As mentioned in section 2.4.5, beamforming is based on the concept of

cross-correlation between signals. For signals x and y, it is defined under

wide-sense stationary assumption as

ϕx,y[l] = E{x[n]yT [n+ l]}, (2.18)

where E is the expectation value and l is the time lag. The CSD is then

defined as the Fourier transform (FT ) of ϕx,y:

C(f) = FT{ϕx,y[n]}f =
∞∑

n=−∞
ϕx,y[n]e

−i2πfn, (2.19)

where C is the cross-spectral density. This can be directly calculated by

using Fourier transforms (X, Y) of signals x and y:

C(f) = X(f)Y(f). (2.20)

In practice, the estimation of CSD from data is typically done with Welch’s

method. Instead of a Fourier transform one can use wavelets which scale

their time resolution with frequency. This latter approach is used in

event-related DICS (erDICS, Publication II).

The CSD matrix is constructed by repeating the estimation of Pxy for all

MEG sensor pairs. Additionally, external signals such as EOG or EMG

can be included into the CSD matrix estimation. The diagonal of the re-

sulting matrix will store the power spectral densities. Sensor-level coher-

ence can be directly accessed with the matrix by using Eq. 2.15.
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A spatial filter is constructed in order to achieve cortical-level power and

coherence mapping. In DICS, the spatial filter is defined slightly dif-

ferently than in the theoretical beamformer explained in section 2.4.5.

Mainly, a regularization parameter is included in the minimization prob-

lem, which reads as follows (Gross and Ioannides 1999):

min[E‖AX‖2 + α‖A‖2], subject to AL(r) = I, (2.21)

whereA is the spatial filter transformation matrix,X is the Fourier trans-

formed data from all sensors and L(r) contains the solutions of the forward

problem at r for two tangential orthogonal dipoles. α is the regularization

parameter, which controls the spatial extent of the spatial filter. The ma-

trix A is solved by forming the Lagrange function for Eq. 2.21 and finding

its minimum. The result is

A(r, f) = (LT (r)Cr(f)
−1L(r))−1LT (r)Cr(f)

−1, (2.22)

where Cr(f) = C(f) + αI. The CSD estimate between four source combi-

nations at locations r1 and r2 is

Cs(r1, r2, f) = A(r1, f)C(f)A(r2, f). (2.23)

By substituting r1 = r2, one gets the power estimation at a given location:

P(r, f) = Cs(r, r, f) = A(r, f)C(f)A(r, f). (2.24)

The CSD matrix can be investigated via its singular values. If one is far

larger than the other, the cross spectrum can be attributed to a single

source with a fixed orientation determined by the eigenvectors, and CSD

can be determined with the larger singular value:

cs(r1, r2, f) = λ1{Cs(r1, r2, f)} (2.25)

where λ1{} denotes the largest singular value. Similarly for power:

p(r, f) = λ1{P(r, f)} (2.26)

With Eq. 2.25 - 2.26, coherence at cortical location r can be expressed as

Coh(r1, r2, f) =
|cs(r1, r2, f)|2
p(r1, f)p(r2, f)

(2.27)

For mapping cortical power or coherence, the approach illustrated above

is applied on a grid spanning the brain. Typically, the grid point distance
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is 5-10 mm, and the deep structures are removed from the grid, as MEG

is not very accurate there (Tarkiainen et al. 2003). Hence, the coherence

estimate from these areas may lead to spurious connection estimates as

several sites might see the same activity. Power maps are noise normal-

ized either to white noise or to estimation of an empty measurement room

noise. Coherence maps need a reference point, which is either an external

signal or a brain region. It is possible to map coherence between all possi-

ble source area combinations and to infer from there a map of functional

connectivity.
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3. Aims of the Thesis

The goal of the Thesis was to better understand the rhythmic brain activ-

ity as a marker of complex brain processing. The specific research goals

were to

• investigate what power level modulations can tell about brain process-

ing in language-related motor tasks. The 20-Hz rhythm was used as an

index of motor cortex activation (Publication I).

• create a method for event-related mapping of power level modulation

of rhythmic activity by expanding cross-correlation estimation in DICS

using wavelets (Publication II).

• compare task effects in complex cognitive processing as conveyed by

modulation of rhythmic activity and the far more commonly used evoked

responses. Here, a picture naming experimental paradigm was used to

expand the search beyond primary sensory areas (Publications III and

IV).

• expand event-related power mapping further to time-sensitive mapping

of functional connectivity. Connectivity was mapped during a priming

experiment (Publication V).
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4. Summary of studies

4.1 Indexing mouth-movement-related activity via brain
oscillations (PI)

Mouth movements are essential in various human actions, from eating

and chewing to expressing emotions and speaking. In the cortex, the

most important functional area for controlling mouth movements is the

face representation area of the primary motor cortex (M1) (Penfield and

Boldrey 1937; Huang et al. 1989), which is part of the sensorimotor cortex

(SMC) along the central sulcus. This area is involved in the control of the

lip, tongue and jaw movements.

Besides motor movement control, M1 seems to also be a part of the brain

network dealing with visuomotor mapping (e.g. mapping letter symbols

to corresponding motor actions). Visuomotor mapping has been demon-

strated in monkeys, when they map colors into arm movements (Zhang et

al. 1997). In humans, preparatory activity in the face area of M1 before

articulation has been shown with MEG recordings in an overt reading

task (Salmelin et al. 2000). Activation is not observed in the hand rep-

resentation areas (evidence from MEG: Salmelin et al. 2000; Salmelin

and Sams 2002). However, the M1 activity seems to coincide more with

movement execution than with preparation. Interestingly, the hand M1

involvement seems to differentiate between speech and nonspeech mouth

movements.

In Publication I, we used movement-related changes of the 20-Hz range

rhythm as an index of motor cortex activation (Hari and Salmelin 1997;

Pfurtscheller and Lopes da Silva 1999) to investigate how a varying de-
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Figure 4.1. (a) The mean location (dot) and orientations (tail) of ECDs shown on two
axial planes (i and ii). (b) The mean location and orientation of ECDs on left
and right lateral views. Central sulcus is plotted with the thick dark line.
Adapted from PI.

gree of speech-likeness of simple and complex mouth movements is re-

flected in the rhythmic brain activity in the mouth and face motor areas.

Besides serving as a highly specific marker of M1 involvement, the 20-Hz

rhythm is a valuable measure also because is not markedly disturbed by

electric and magnetic fields originating from facial muscles (Salmelin et

al. 2000; Salmelin and Sams 2002). The difference between the suppres-

sion minimum and the post-movement rebound maximum was selected as

the measure of task-related activation in M1. This measure was further

normalized by the level of activity at rest.

The experimental tasks were simple one-item mouth movements based

on phonemes or gestures and complex four-item movements that ranged

from non-speech gestures to real words in four steps: the stimuli were

either a string of gestures, consonant strings, CVCV (Consonant, Vowel)

pseudowords or words (See Figure 1 in PI). The subjects were instructed

to perform the mouth movements silently.

The cortical source areas were modeled with sequential ECDs (see section

2.4.6 for details) from three 30-s blocks of the non-averaged MEG data set.

The ECD analysis was conducted on subsets of 20-28 sensors covering the

maximum sensor-level TSE modulation, separately for each hemisphere.

An ECD model of sources bilaterally in the M1 hand and face areas was

constructed for each individual. For comparison and visualization, the

ECD locations were transformed into a standard brain (Schormann et al.

1996; Woods et al. 1998a; Woods et al. 1998b) using elastic transforma-

tion (Roland and Zilles 1996). The mean locations of the source areas are

shown in Figure 4.1 and their time courses of activation in Figure 4.2.
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Figure 4.2. Time courses of 20-Hz modulation in the face and hand areas for word stim-
uli. The black rectangles indicate the mean movement durations and the
gray rectangles the duration of stimulus presentation. Adapted from PI.

These data suggested that the face motor cortex not only controls the mus-

cle activity during speech but is also involved in coordination of visuomo-

tor mapping and/or movement sequencing. In the face areas, we found

that the onset and offset of suppression of the 20-Hz activity was earlier

in the left than the right hemisphere, both for speech and non-speech

movements. In the hand areas, the modulation of 20-Hz activity was

systematically stronger for non-speech than speech-related mouth move-

ments. This finding may reflect either more focal M1 activation specifi-

cally for language or importance of both mouth and hand coordination in

non-speech mouth movements.

From a data analysis point of view and for the purpose of this Thesis, PI il-

lustrated typical properties of oscillatory brain signals: duration in order

of seconds and the suppression – rebound pattern seen in 20-Hz rhythms.

It also became obvious that while in this study the 20-Hz rhythm was

easy to localize and the results showed functionally relevant modulation,

a more accommodating approach was needed for less restricted mapping

of cortical rhythms. Special care should be taken when modeling suppres-

sions, because the decreased SNR makes them difficult to model directly.

To this end, we turned to beamforming in study PII.
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4.2 A method for spatiotemporal mapping of rhythmic activity:
erDICS (PII)

Since DICS was originally designed to be used with continuous tasks, a

more flexible version was needed for time-sensitive analysis of rhythmic

modulations in an event-related experimental paradigm. If applied di-

rectly, DICS cannot, e.g., discover all the details of the modulatory behav-

ior of brain oscillations seen in study PI. The main motivation of study

PII was therefore to expand the use of DICS into a more refined time-scale

by exploiting a wavelet-based filter bank technique. With this approach,

it is possible to identify increases and decreases of rhythmic activity by

comparing different time points (e.g. baseline vs. activation). This is es-

pecially vital for mapping decreases of rhythmic activity, which cannot be

easily examined due to decreased SNR during suppression. A statistical

testing procedure was also introduced in study PII. This new method was

tested on simulated and real MEG data sets. In this study, erDICS was

used only for power mapping. Later, in study PV, it was further exploited

for connectivity estimation.

DICS can be expanded as an event-related method by estimating the CSD

matrix as a function of time. Power and coherence mapping can then be

performed in the usual manner (see section 2.6), but as a function of time.

A short-term FFT could have been applied as well, but it suffers from the

rigid time resolution inherent in Fourier transform estimation: roughly

1 s of data would be needed for proper estimation of spectral properties.

Wavelets, however, scale their time resolution with frequency, allowing

for mapping of fast changes in high frequency spectral power, at the cost

of frequency resolution.

In PII, the CSD matrix was estimated with the use of a Morlet wavelet

filter bank. A Morlet wavelet (Morlet et al. 1982) is a sinusoidal signal

modulated with a Gaussian envelope (modified from Tallon-Baudry et al.

1997):

M(t, fc, σt) = Se−t
2/(2σt)ei2πfct, (4.1)

where t is time, fc is the center frequency of the wavelet and σt is the stan-

dard deviation of the wavelet in the time domain. The scaling parameter

S ((σt
√
(π))1/2) normalizes the energy of the wavelet to 1. The standard
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deviation of the wavelet in the frequency domain is

σf = 1/(2πσt). (4.2)

The ratio w = fc/σf is called the width of the wavelet and sets the rela-

tionship between time and frequency resolution. Full width at half maxi-

mum (FWHM) of the wavelet in the time and frequency domains (wt and

wf , respectively) quantify the resolution of the wavelet:

wt =
√
2 ∗ ln(2) /π ∗ w/fc, (4.3)

wf = 2
√
2 ∗ ln(2) ∗ fc/w. (4.4)

As can be noted from Eq. 4.3 - 4.4, the temporal resolution is improved

with smaller w and higher central frequency.

By estimating a time-dependent CSD matrix (Cr(f, t)) with the wavelet

approach, Eq. 2.22 now reads:

A(r, f, t) = (LT (r)Cr(f, t)
−1L(r))−1LT (r)Cr(f, t)

−1. (4.5)

We applied two approaches for the estimation of the CSD matrix: (i)

Single-trial CSDs, where CSDs and power maps are evaluated for each

trial separately, and (ii) a mean CSD approach where the CSD is aver-

aged over all trials. We evaluated the feasibility of these approaches with

simulated MEG data, where three artificial oscillatory sources had an ini-

tial suppression of activity followed by an increase of the power level.

The results of the power mapping for (i) and (ii) are shown in Figure 4.3

for data with an SNR of 1/5. In the case where the suppression and in-

crease of activity were separated by 0.3 s (Figure 4.3a), the mean CSD

approach yielded accurate localization and timing, whereas for the single-

trial CSD approach the active areas were more spread out temporally and

spatially. This was mainly due to the poor SNR of the single-trial CSD

and the limited time resolution of the wavelet, which caused temporally

close suppressions and increases to overlap. When the time separation be-

tween the events was increased to 1.2 s (Figure 4.3b), the different types

of activations could be separated with the single-trial CSD approach, but

the mean CSD approach still outperformed it. Therefore, the mean CSD

approach was chosen as the preferred approach.

For the mean CSD approach, the spatial filter was applied to the raw data

to extract the time series of the active areas. The data was then further
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Figure 4.3. Comparison of the mean CSD and single-trial CSD approaches with simu-
lated data. The delay between suppression and increase of activity was 0.3 s
in (a) and 1.2 s in (b). Adapted from PII.

band-pass filtered to the selected frequency band and instantaneous am-

plitudes were estimated with the absolute values of the Hilbert transform.

The statistical significance of the power change between two conditions

(here, “baseline” and “active” time intervals) was estimated with a ran-

dom permutation test (Nichols and Holmes 2002) based on trial-to-trial

power level distributions. The random permutation test is a nonpara-

metric test that requires minimal assumptions about the data. The main

demand is that the conditions are interchangeable (Holmes et al. 1996).

The voxel-level random permutation test was implemented by first esti-

mating a statistic between “baseline” and “active” conditions. We used the

common Student’s t-test for this purpose. In the second step, the samples

in the two distributions were randomly shuffled and a new t-value was

estimated. This step was then repeated 5000 times and the new t-values

were collected into a new test distribution. The p-value of the permuta-

tion test was then acquired by comparing the original t-value to the test

distribution. Because the test is performed in all of the voxels, the level

of false positives has to be controlled. This was achieved via a maximum-

statistics approach. The maximum and minimum t-values were collected

from all of the voxels into new maximum/minimum distributions. The

final p-values were estimated by comparing the original t-value to the

maximum/minimum distributions.

The performance of the “mean CSD” approach and statistical testing was

evaluated with simulated data under varying SNRs. For this purpose, we
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Figure 4.4. Effects of SNR on erDICS power and statistical maps for simulated data.
Adapted from PII.

also included a fourth source in the simulation. This source acted as a

“fake” source, producing a strong burst (20 times larger than the other

three sources) in 1/20 of the trials. All sources were correctly identified

down to an SNR of 1/15 (Figure 4.4). Increases of rhythmic activity could

be identified even at the SNR level of 1/20. The “fake” source was pre-

served in the power maps, but was eliminated by the random permutation

test.

The erDICS was applied to two sets of real MEG data. The first set was

from an index finger lifting task (from study PI) and the second set was

from a study where the subjects were instructed to silently read words

presented at 3 s intervals (Wydell et al. 2003). For the first data set,

erDICS showed a clear contralateral activation of the motor cortex of the

20-Hz rhythm, as expected (Figure 4.5a). In the cognitively more demand-

ing task of word reading, erDICS identified four active areas (Figure 4.5b).

The validity of these identified source areas was good, as the multi-ECD

model constructed with them explained over 70% of the variance of the

data over the whole analysis time window for both data sets.

In conclusion, study PII showed that erDICS can readily be used for map-

ping event-related induced rhythmic brain activity in individual subjects.

In PIII, erDICS is used to map brain areas of rhythmic activity. Here,
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Figure 4.5. erDICS power and statistical maps for (a) an index finger lifting task (20-Hz)
and (b) silent reading task (10-Hz). Adapted from PII.

and in PIV, the studies focused on the mapping of power modulation. The

erDICS can, however, also be applied for the original purpose of DICS:

studying functional connectivity. This important functionality was later

implemented in study PV.

4.3 Rhythmic activity and evoked responses in a picture naming
task (PIII and PIV)

The relationship between evoked responses and spontaneous rhythmic

brain activity has been under debate. In the so-called additive model, the

two phenomena are considered separate, with the evoked responses inde-

pendent of the ongoing spontaneous oscillations (Shah et al. 2004; Mäki-

nen et al. 2005; Mazaheri and Jensen 2006). However, phase-resetting

of brain rhythms has been shown as a possible generator of evoked re-

sponses in a few cases (Makeig et al. 2002; Penny et al. 2002). Also, slow

evoked responses have been hypothesized to emerge from asymmetry of

rhythmic amplitudes, i.e., the rhythmic activity would not have a zero

mean, but rather the peaks would be modulated more than the troughs

(Nikulin et al. 2007; Mazaheri and Jensen 2008).

When focusing on low-level sensory processing, studies addressing evoked
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responses and rhythmic activity with similar experimental designs found

activity largely in the same brain areas in the occipital cortex and around

the parieto-occipital sulcus (visual processing), as well as along the cen-

tral sulcus (somatosensory areas) (Karhu et al. 1991; Vanni et al. 1996;

Hari and Salmelin 1997; Vanni et al. 1997). However, when the sources

of evoked responses and rhythmic activity were analyzed from the same

data set, the task-specific functionality and hemispheric balance differed

(e.g. Schnitzler et al. 1997; Salmelin et al. 2000). Direct comparisons be-

tween the two measures of activity have not been extensively made out-

side the primary sensory areas and most of the MEG and EEG studies

have focused on only either evoked responses or rhythmic brain activity.

Study PIII introduces a picture naming study that relies on the analy-

sis of evoked responses. Study PIV uses this data set together with two

other data sets from picture naming tasks (Vihla et al. 2006; Liljeström

et al. 2009) to evaluate the relationship between evoked responses and

rhythmic activity.

4.3.1 Picture naming task

A picture naming task is widely used behaviorally for assessing the type

of impairment in patients with brain damage (e.g. DeLeon et al. 2007;

Mahon and Caramazza 2009) and in imaging studies for investigating

word production, from visual analysis to accessing meaning and sound

form to articulation. In evoked response studies, the sequence of cortical

activity has been described to start with a transient occipital response less

than 200 ms after the picture presentation. The activation has then been

shown to proceed with more sustained responses to parietal and temporal

areas after 200 ms and reaching frontal cortex after 300 ms (Salmelin et

al. 1994; Indefrey and Levelt 2004; Vihla et al. 2006; Salmelin 2007;

Hultén et al. 2009; Liljeström et al. 2009).

Study PIII used a picture naming paradigm for investigating vocabu-

lary growth and maintenance of learned linguistic information in healthy

subjects. The participants were shown black-and-white line drawings of

tools that were either familiar (Fam, 50 pictures) or unfamiliar (100 pic-

tures). The subjects then learned the name for half of the unfamiliar

items (Name) while the rest remained unnamed (NoName). The subjects’

brain activity was recorded with MEG after they had learned all of the
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Figure 4.6. (a) Source areas of evoked responses for individual subjects, clustering in six
brain regions (occipitoparietal (OP), left/right parietal (LP/RP), left temporal
(LT) and left/right frontal (LF/RF)). (b) Mean time courses of activation across
all measurements in the different brain areas. Adapted from PIII.

names. Afterwards, the maintenance of the learned information was eval-

uated with follow-up MEG measurements and behavioral tests 1 week, 4

weeks, 2 months and 10 months later. The evoked response source areas,

across the six measurement days, were found in the same regions: the

left temporal, the occipital and the bilateral parietal and frontal cortices.

Although some subjects showed right temporal activation, it was not con-

sistent enough across subjects to warrant group comparisons. The timing

and activated areas were in line with earlier MEG studies (Figure 4.6).

Study PIII showed that the change in neural activation in the left tempo-

ral and parietal cortices over one week after learning predicted how much

the activity to correctly named objects had changed by 10 months after

learning (Figure 4.7).

4.3.2 Comparison between rhythmic activity and evoked
responses

PIV sought to assess the relationship between evoked responses and brain

rhythms. Three MEG data sets obtained from a picture naming para-

digm were used for this purpose (PIII; Vihla et al. 2006; Liljeström et al.

2009) with altogether 31 data sets across the experiments. This type of

experimental setup with high cognitive demands activates a large num-

ber of brain regions, thus enabling a thorough assessment of similarities

between the two response types even beyond primary sensory brain areas.

The source-level activity was analyzed separately by selecting the optimal
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Figure 4.7. Change in activation from fully learned to 1 week after learning in the left
frontal (a) and temporal (b) cortices correlated positively with the change in
naming performance after 10 months. Adapted from PIII.

Figure 4.8. Consistency between evoked responses and modulation of 10-Hz (a) and 20-
Hz (b) rhythmic activity at the sensor level. The overlap between the two
measures was first evaluated for individual subjects and then merged across
subjects and data sets. See PIV for details. Adapted from PIV.

methods best suited for each response type: evoked responses were previ-

ously analyzed in the original studies with ECD models and, for the study

PIV, rhythmic activity was modeled using erDICS.

Analysis of rhythmic activity was performed using the frequency bands

with the most salient task-related modulation of rhythmic activity: 7-12

and 17-22 Hz. Already at the sensor level (Figure 4.8), it was obvious

that the spatial overlap between the measures was low. At the cortical

level, rhythmic activity was most consistently localized in the visual and

sensorimotor cortices, with some activity seen in the parietal and superior

temporal areas (Figure 4.9).

For comparison of spatial overlap between the source locations of evoked

responses and rhythmic activity, the brain was divided into 29 regions

of interest in both hemispheres (Figure 4.9) with automated parcellation

techniques (Fischl et al. 2004; Desikan et al. 2006) using the FreeSurfer

software package (http://surfer.nmr.mgh.harvard.edu/). The correspon-
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Figure 4.9. Source regions of rhythmic activity localized using erDICS. Red indicates
brain regions in which modulation of rhythmic activity was identified in at
least half of the subjects in any one of the three experiments. Adapted from
PIV.

dence between the two measures was compared by estimating, for each

source, the minimum distance to any source area of the other measure

of activity. The sources were considered to be from the same brain re-

gion if the distance between them was less than 20 mm. This estima-

tion was done separately for each subject. Two kinds of “hit rates” were

estimated: (i) per brain region, with the rhythmic activity as the start-

ing point, the ratio of subjects who had a source of evoked response in

the same brain region with a rhythmic source, and (ii) per subject, with

the evoked responses as the starting point, the percentage of sources of

evoked responses with a source of rhythmic activity close-by (< 20 mm).

Across the three data sets, the per-region group-level convergence be-

tween evoked responses and rhythmic activity was most consistent in the

lateral aspects of the right occipital cortex. Also, the medial occipital and

the left pericentral cortex illustrated high convergence. In these areas,

the time courses of the two measures were markedly different. In per-

subject comparison, the hit rate between sources of evoked responses and

rhythmic activity was on average 30%, exceeding 50% only for four out of

31 subjects. See Tables 1 and 2 in the original publication for details.

In brief, only weak spatiotemporal overlap was found between the evoked

responses and rhythmic activity in the high-level cognitive task of picture

naming. This suggests that the phase-locked evoked responses and modu-

lation of rhythmic activity are largely detached phenomena and that both

measures are needed for an accurate portrayal of brain activity.

4.4 Event-related functional connectivity during priming (PV)

The preceding studies (PI, PII and PIV) focused on the power modula-

tions of rhythmic brain activity. erDICS can, however, also assess the
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functional connectivity of brain regions via coherence measures, as de-

scribed in section 2.6. In the study PV, erDICS was employed for tracking

interactions between brain regions during a word priming experiment.

Priming refers to the phenomenon where exposure to a stimulus affects

the processing of a subsequent stimulus. In language studies, this para-

digm is commonly used to examine phonological and semantic processing.

Typically, a subject is shown a word (prime), followed by another word

(target) that has a related phonological or semantic content (Nobre and

McCarthy 1994; Simos et al. 1997; Helenius et al. 1998). Behaviorally,

priming leads to faster reaction times for a congruent target, while at the

neural level priming leads to decreased neural activity. Faster process-

ing is seen as a sign of increased efficiency of neural processing (Rossell

et al. 2003), but the exact mechanism of how this happens remains un-

clear. PV investigated whether changes in functional connectivity might

be involved in the increased efficiency during priming.

We hypothesised that priming would result in increased interareal syn-

chronization (i.e., increased coherence between areas) for targets, in con-

trast to evoked responses where the level of activity decreases. Such a

mechanism would suggest that the increased efficiency following priming

would result from enhanced information transfer between brain regions,

also manifesting as reduced processing demands in local neuronal assem-

blies. Connectivity analysis with erDICS was performed on an MEG data

set, where subjects were shown lists of words that were related either se-

mantically or phonologically. Results from the evoked response analysis

(Vartiainen et al. 2009) indicated a strong priming effect in the bilateral

middle superior temporal cortex (STC), in line with numerous other stud-

ies (Simos et al. 1997; Helenius et al. 1998; Marinkovic et al. 2003;

Uusvuori et al. 2008). The left STC could be identified in all subjects

via the evoked response analysis and, hence, connectivity was mapped

between the left STC and all other brain regions in order to determine

whether cortico-cortical interactions between brain areas were modified

either by semantic or phonological priming. In addition, whether the main

direction of information flow was to or from the STC was investigated.

In the experiment, subjects were shown a list of four words, one at a

time, at 1-s intervals with a 2.1-s interval between word lists. The first

three words were related either semantically or phonologically and the
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Figure 4.10. Experimental design, with examples of the word list types. Adapted from
PV.

last word was either congruent or incongruent (Figure 4.10). Since our fo-

cus was on priming effects and not on differences between the processing

of congruent/incongruent words, the analysis was done on the second and

third words of the list.

The candidate time-frequency windows for priming effects in connectivity

were identified at the sensor level. Time-dependent coherence was esti-

mated with the same wavelet approach that was used in PII. The analy-

sis focused on the time interval 250 to 650 ms after stimulus presentation

where the priming effect had been detected in evoked responses (Varti-

ainen et al. 2009). The frequency analysis ranged from 5 to 25 and from

60 to 90 Hz. These frequency bands include the most salient modulations

of rhythmic activity seen with MEG and avoided frequency bands easily

contaminated by artifacts such as line noise. The reference sensor was

the sensor closest to the left STC. Some sensors were discarded from the

analysis as a cautionary step because power-level differences between two

conditions can lead to spurious connectivity in coherence measures due to

field spread (Schoffelen and Gross 2009). Therefore, if a sensor showed

significant power differences between the second and third words of the

word list in at least 3 neighboring time-frequency bins, it was discarded

from the analysis. The final candidate time-frequency windows with sig-

nificant coherence effects were identified with a cluster-based permuta-

tion test (Nichols and Holmes 2002; Maris and Oostenveld 2007).

Cortical-level connectivity analysis was performed with erDICS in the

time-frequency windows identified at the sensor level. Coherence was

estimated between the left STC and 1759 grid points covering most of

the surface of the cortex at 6-mm intervals. Statistically significant con-

nections were identified with permutation tests, across subjects. Paired

48



Summary of studies

Figure 4.11. Brain regions with significantly increased coherence in (a) phonological and
(b) semantic priming. (c) The significant direction of influence in phonologi-
cal priming. Adapted from PV.

signed rank tests were used to assess possible confounding power differ-

ences between the second and third words for connections showing signif-

icant coherence effects.

The main direction of influence between the left STC and significantly

connected brain regions was evaluated with partial Granger causality

(Granger 1980; Geweke 1982; Guo et al. 2008). For directionality analy-

sis, the time series of the STC and other brain regions were estimated

with erDICS. A bootstrapping approach was implemented to evaluate

whether the direction of influence measures exceeded statistical signifi-

cance. If the lower limit of this confidence interval was above zero sys-

tematically across subjects (binomial test), the connection was considered

to display a significant direction of influence at the group level; for the

connections with significant directed components, the differences between

the influence terms were tested with a one-sample t-test.

The connectivity analysis revealed priming effects as significantly in-

creased coherence in one time-frequency window for each of the priming

categories. For phonological priming, this window was centered at 533 ms

and 66 Hz and for semantic priming at 333 ms and 8 Hz. In phonological

priming, coherence increased between the left STC and the left occipital

cortex (Figure 4.11a), whereas in semantic priming, coherence increased

between the left STC and the right frontotemporal and inferior temporal

cortex (Figure 4.11b). A main significant direction of influence was ev-

ident only in phonological priming, where the left STC was the driving

node (Figure 4.11c).
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The results of study PV indicate that corticocortical coherence increased

during priming, thus supporting the notion of enhanced connectivity as a

neural mechanism for increased efficiency during priming. Furthermore,

phonological and semantic priming seemed to involve distinct brain con-

nections with different directionality estimates, indicating a different role

for the left STC in the two types of priming.

The event-related mapping of coherence with erDICS in study PV com-

plements its power mapping capacity applied previously in study PIV.

With both of these functionalities, erDICS is an excellent addition to a

researcher’s toolbox in the field of neuroscience.
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5. Conclusions and discussion

This Thesis sought to better understand and model the ongoing rhyth-

mic activity of the brain. The starting point was a study of motor cortex

activity during a language related mouth movement task. Although not

a new idea, this work showed that rhythmic activity does play a role in

the visuomotor mapping network. However, from a data analysis point of

view, it became clear that a more accommodating approach was needed for

less restricted mapping of cortical rhythms. erDICS, a new event-related

version of the DICS beamformer method was implemented to assist the

modeling of rhythmic activity. The feasibility of this new method was

shown with simulations and real MEG data.

Event-related DICS was applied to compare evoked responses and rhyth-

mic activity in a high-level cognitive task of picture naming, with the con-

clusion that the two measures of cortical processes are largely detached

and that both measures are needed for an accurate portrayal of brain ac-

tivity. In this study, the rhythmic activity was mostly contained in the

visual and sensorimotor cortices, with some activity seen in the parietal

and superior temporal areas, whereas evoked responses could be modeled

from several other areas as well.

Besides power level modulations, functional connectivity can also be

mapped with erDICS. In PV, erDICS was used to investigate connections

between the left STC and other cortical brain regions in a word priming

study. Different brain networks were revealed for phonological and se-

mantic priming. Furthermore, a directed link from the left STC to the

left occipital cortex was revealed with partial Granger measures. As the

statistical analysis applied to this data adhered to, by far, the most strin-

gent methods currently promoted within the scientific community, there

is a fair chance that some additional real effects might have been missed.
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In future studies, to better assess the different connectivity patterns, one

should either increase the number of subjects or apply statistical test less

prone to false negative errors.

5.1 Beamforming – advantages and limitations

Beamforming has become a popular tool for mapping cortical rhythmic

activity in MEG. It provides simultaneous mapping of multiple source ar-

eas and is a very versatile tool for investigating cortical rhythms that are

not phase-locked to a stimulus or task. The resulting maps can also be

subjected to statistical testing to find areas with stimulus or task-related

modulation of rhythmic activity. While beamforming is not a solution to

the inverse problem in a strict sense, as it is rather a scanning method,

the processing of activation maps and identification of significantly ac-

tive brain areas makes it at the very least a close relative of the inverse

problem solution. Furthermore, since the spatial filter also provides time

series for each investigated location, beamforming opens up possibilities

for several analysis approaches requiring accurate temporal information.

One such approach is the Granger causality measure used in this Thesis.

The main drawback of beamforming in general is that it cannot detect

perfectly correlated sources. In MEG measurements of cortical rhythms,

however, the brain signal itself is quite noisy and it is embedded in en-

vironmental noise, which reduces the SNR and, subsequently, coherence

levels. Therefore, the problem of too perfectly correlated sources is mini-

mal. The limitation should be kept in mind when creating simulatedMEG

data, since pure sinusoidal signals will be lost by beamforming and, there-

fore, extra caution must be taken to ensure low enough coherence levels

by introducing enough noise and variability in the generated signals.

Modeling evoked responses is another major problem for beamformers. As

mentioned in section 2.4.5, the sensor coverage of the 306-channel magne-

tometer actually works against mapping of evoked responses with beam-

formers, since the time samples required for a stable estimation of the

covariance matrix increases with the number of channels. As evoked re-

sponses are fast transient events, with limited amount of data samples, it

is difficult to map themwith beamformers. This is unfortunate, because in

PIV it would have been elegant to be able to model both evoked responses
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and rhythmic activity with a beamformer and then find correlations at the

cortical level by performing a statistical test for the activation maps. Mea-

suring MEG signal at a faster sampling rate might help mapping evoked

responses with beamformers.

5.2 Future topics

The basic properties of rhythmic activity in the brain remain elusive.

In order to better understand them, it could be informative to look at

the properties of the measured signal in a stochastic context. For exam-

ple, asymmetry in the amplitude modulation of alpha rhythms has been

shown to give rise to slow evoked responses (Nikulin et al. 2007; Maza-

heri and Jensen 2008; van Dijk et al. 2010). More work is needed to

see if this amplitude asymmetry exist in other types of rhythmic activity

as well. An even more statistical viewpoint is the given by the reports

of scaling law properties of the cortical rhythms (Linkenkaer-Hansen et

al. 2001; Kello et al. 2010). Such systems are investigated in the con-

text of phase transitions, where a small change near a critical point can

propagate quickly throughout the system at several time scales. Some

evidence suggest that abnormal changes in the scaling law properties of

brain oscillations are linked with memory problems, such as in Alzheimer

disease (Montez et al. 2009). When looking closely at the MEG signal,

one can observe considerable intersubject variability in the cortical oscil-

lations, implying that proper testing of different hypotheses will require

a far larger number of subjects than are commonly used in MEG studies

(10-15 subjects). Phase synchrony, another possible mechanism under-

lying functional connectivity, was also not investigated in this work but

remains an interesting research topic.

Recent comparisons between MEG evoked responses and fMRI blood-

oxygen-level-dependent signals point to reasonable similarities but also

marked spatial and functional differences (Liljeström et al. 2009; Var-

tiainen et al. 2011). With MEG on humans, a complex relationship be-

tween alpha, beta and gamma band modulations and BOLD responses

has been shown (Singh et al. 2002; Brookes et al. 2005; Winterer et

al. 2007; Muthukumaraswamy and Singh 2009). In PIV, with partly the

same data set as in the MEG-fMRI comparison study by Liljeström et al.

2009, the spatially convergent active brain areas found with rhythms and
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evoked responses correspond quite well with the fMRI results of the same

subjects. However, some studies indicate that fMRI might miss evoked

responses of short duration (Furey et al. 2006). It is possible that a com-

bination of evoked responses and rhythmic activity could lead to a better

model for linking EEG/MEG and fMRI than either measure alone (Ro-

bitaille et al. 2010).

Connectivity estimation between brain regions is a particularly interest-

ing application of DICS and erDICS. This is still a fairly new line of re-

search in neuroscience that holds great promise. Besides coherence, infor-

mation transfer between cortical areas could manifest in the form of cross-

frequency coupling (CFC), i.e., coupling between the phase of low fre-

quency rhythms and the power of high frequency rhythms. Intracranial

recordings have suggested that CFC plays a role in coordination between

cortical areas (Canolty et al. 2006) and working memory (Axmacher et al.

2010), and MEG measurements have linked CFC with functional integra-

tion of spectrally-distributed processing (Palva et al. 2005) and enhance-

ment of weak signal detection (Händel and Haarmeier 2009). CFC could

be implemented with DICS/erDICS, for example, by extracting time series

for different frequency bands with the beamformer and then performing

CFC analysis between all grid points. This would allow DICS/erDICS to

quantify the potentially important cross-frequency interplay in the brain.
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