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1. Introduction

This thesis consists of two multidisciplinary studies that apply computer

science methodology and techniques to solving problems in geoinformat-

ics. In both studies the aim of the research is to examine the use of in-

teraction and visualization methods in geoinformatics. The two topics of

the research are teaching spatial data algorithms and developing spatial

analysis methods. The two topics may seem, at least at first, to be almost

completely unrelated. Both learning and analysis are, however, interac-

tive and often iterative processes, where the user – learner or analyst –

tries to test their mental model of a situation by using given external data.

These similarities between the processes give rise to the possibility that

we can gain new information by comparing the processes.

The goal of teaching data structures and algorithms is to have the stu-

dents learn how these constructs work on a given level of abstraction. The

levels of abstraction vary. The lowest level is knowing how to implement

a data structure or an algorithm on a specific programming language.

Higher levels include conceptual knowledge of different problem solving

strategies that can be used to design data structures and algorithms. This

study concentrates on the conceptual knowledge level.

Spatial algorithms are algorithms designed to store and manipulate co-

ordinate data and spatial relationships, such as topology. As such they

tend to be conceptually more complicated and harder to grasp than reg-

ular data structures and algorithms. Thus, teaching spatial data algo-

rithms is a challenging topic. Results of the work done on the develop-

ment of spatial data algorithm teaching at Aalto University have been

detailed in [84].

Spatial analysis is a process where coordinate data, such as maps of dif-

ferent types, are analyzed using various methods in order to solve a prob-

lem or help decision making. The data analysis example in this research

1



Introduction

is off–road mobility analysis. In off-road mobility analysis, the terrain is

categorized to different suitability categories according to how easy the

movement outside roads is for a specific vehicle type.

1.1 Background and Motivation

The original idea that led to this research was the desire to improve the

teaching of spatial data algorithms at Aalto University (previously known

as Helsinki University of Technology). This topic was taught at the De-

partment of Surveying in a single course aimed at third year geoinformat-

ics students. The teacher in charge of the course was interested in adding

interactive web–based exercises to the course. The idea was to use visu-

alizations, since geoinformatics uses a lot of illustrations in the form of

maps and figures, and therefore the students were already familiar with

visualizations.

Thus, the initial idea was to add exercises that use software visualiza-

tion to the spatial data algorithms course and investigate how they affect

the students’ learning results. This aim required two topics of research.

The first topic of research was whether it is possible to create comput-

erized, visual exercises on spatial data algorithms. There had been pre-

vious work at creating spatial data visualizations and some individual

exercises, but no comprehensive exercise sets existed. The second topic of

research was the effect such exercises would have on learning.

Later, the research was expanded to include the use of visualization in

spatial analysis. This broadened the research from software visualization

to the more general category of information visualization. The spatial

analysis problem selected for the project came from our research partners

in the Finnish Defense Forces. The Defense Forces had developed terrain

analysis methods for analyzing mobility, fortifiability, and other topics rel-

evant to defense [86]. The original work by Defense Forces concentrated

on traditional mathematical models that could be used automatically. In

order to use a given model, the user gathered the required input data,

preprocessed it into a specific format, and inserted the processed data

into the model. As output, the user would get a mobility map for the area

depicted by the input data. However, these models are valid only with a

given, strictly–defined input, and only for Finnish terrain. Thus, the goal

of this work was to investigate if there were ways to create more flexible

analysis methods that employed visualizations and interactive methods.
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Introduction

The method selected was exploratory analysis techniques.

1.2 Fields of Science in This Study

This work is a multidisciplinary study, and as such several fields of sci-

ence are relevant to this work. This section briefly introduces the different

elements used. The study draws mainly from computer science and geoin-

formatics. Elements from information visualization are also an important

part of the thesis.

1.2.1 Computer Science

Computer science is the study of the theory and application of compu-

tational problem solving, and related disciplines. The field contains nu-

merous topics from the study of computational complexity, i.e. how much

resources solving a given problem takes, to the design of programming

languages. This work draws mainly on two fields of computer science.

The first field, algorithmics, is the design and study of algorithms. An al-

gorithm is a finite number of precise steps that solve a well-defined prob-

lem, or prove that no solution is possible. Practically all computerized

problem solving is based on algorithms. The second field, software visual-

ization, is a branch of software engineering focused on the illustration of

software. Software visualization seeks to create useful and understand-

able visualizations that help the viewer understand certain aspects of the

software. These visualizations can be pictures, picture series, or anima-

tions. A visualization may allow the user to interact with it in order to

make it easier to focus on interesting aspects of the visualization.

1.2.2 Geoinformatics

Geoinformatics can be defined as being any aspect of the capture, stor-

age, integration, management, retrieval, display, analysis, and modeling

of spatial data [120]. Geoinformatics can be approached from many points

of view. In this work, two approaches are considered. The first approach is

to consider GIS as the application of different methods in order to accom-

plish an objective. From this point of view, how the methods work is not

interesting, and the user is more focused on what can be accomplished

with the tools at hand. Thus, geoinformatics can be seen as a way to

solve spatial problems using available tools and frameworks. The second
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approach is to consider GIS as the application of different computerized

methods for solving spatial problems in novel ways. From this point of

view, the details of the methods are a point of interest. These methods

are typically applied for creating new solutions to existing problems or

for solving newly discovered problems. From this point of view, geoinfor-

matics is the application of computer science methods for solving spatial

problems in novel ways.

Most institutions teaching geoinformatics lean towards the first point

of view. Students are taught how to use the various existing tools and

methods, such as desktop GIS environments and map algebra, for solving

geoinformatics problems. The underlying data structures and algorithms

used are typically taught only on a very basic level. At Aalto University,

however, spatial data structures and algorithms are an important part of

the curriculum.

1.2.3 Information Visualization

Information visualization is a field of science that studies how complex

large–scale collections of information can be visualized in an understand-

able manner [113]. The goal is to create visualizations from which the

viewer can gain additional value and information. Information visual-

ization techniques are used to illustrate, for example, organization struc-

tures, network relations, databases, or program code. In the broadest

sense, any illustration of complex data or information can be viewed as

information visualization.

One application of information visualization is multivariate data visual-

ization, where the goal is to comprehensibly visualize n-dimensional data

elements. One multivariate data visualization method, the parallel coor-

dinates plot (PCP) [52], is used in this work. In a PCP visualization the

data dimensions are depicted as parallel lines and data elements are vi-

sualized as polylines with vertices on the parallel lines. An example of a

parallel coordinates plot can be seen in Figure 1.1, where a PCP view is

shown together with a map view representing the same data. The figure

also shows another often-employed visualization method: the use of mul-

tiple, simultaneous linked views. Both views in Figure 1.1 show the same

set of data using different visualizations. The views are linked together:

if a modification such as highlighting some data items is done in one of

the views, this is also reflected in the other view.
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1.2.4 Visualization in Geoinformatics

The most common visualizations in geoinformatics are different types of

maps. Most people are familiar with common maps, which are often used

in everyday life. In geoinformatics many types of thematic maps are also

used. A thematic map is used to emphasize the spatial pattern of one

or more geographic attributes [108]. A thematic map can show, for ex-

ample, population density, annual rainfall, or different soil types. There

are numerous different types of thematic maps, such as choropleth maps,

dot maps, and dasymmetric maps. In a choropleth map, for example, the

attribute value is shown separately for each measurement region, and

different values are differentiated using, for example, different shades or

colors. The regions are selected by the map designer and can reflect, for

example, municipalities.

Often, however, using only map visualizations is not sufficient. For ex-

ample, if there are several independent attribute data variables, it be-

comes hard to include all of them in one map. Thus, when the number

of interesting variables grows, multivariate visualization methods are re-

quired. Information visualization views combined with map visualiza-

tions allow the user to gain insight on the data that is hard to grasp from

just map views. Techniques used include bar charts, parallel coordinates

plots, Chernoff faces [22], and star diagrams [21]. Some of these can be

overlaid on the map, while others need a separate view. An example of

two linked views can be seen in Figure 1.1, where spatial data has been

clustered using three input data layers. In the figure, the clusters are

shown both using a map view and a parallel coordinates plot view. In

both views one cluster has been highlighted using magenta color. The

map view on left side of the image shows the spatial distribution of each

cluster, and the right side shows the data value distribution of the cluster

using parallel coordinates plot.

1.2.5 Spatial Data and Spatial Data Algorithms

Spatial data is data that is located in a multi-dimensional space [68].

In geoinformatics, spatial data typically models geographic locations on

Earth’s surface. Such data has either two or three spatial dimensions –

x– and y–coordinates, and possibly elevation – and may also have time

as an additional dimension. Thus, each data item contains spatial infor-

mation that defines the location of the data item in space, and possibly in
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Figure 1.1. Simultaneous map and multivariate visualization view of the same data. The
data represents a clustering result for three attribute dimensions. The map
shows the geographic extent of each cluster, while the PCP view shows the
attribute extent of each cluster.

time, and associated attribute data that defines what the data item rep-

resents. Spatial data is manipulated using both regular non-spatial data

structures and algorithms, and specialized spatial data structures and al-

gorithms that have been designed to take the multidimensional nature of

the data into account.

Spatial data structures are based on non-spatial structures, such as ar-

rays or trees, and algorithms for manipulating these structures. How-

ever, taking the multidimensional nature of the data into account makes

the design and implementation of efficient spatial structures a complex

task. For example, multidimensional data does not have any one unam-

biguous order. Thus, in order to linearize spatial data, methods such as

space-filling curves or spatial location code, are needed [118].

1.2.6 Spatial Analysis

Spatial analysis is the formal study of spatial data. The term is not very

well defined and may have widely different meanings in different con-

texts. O’Sullivan and Unwin [87], for example, use the term spatial anal-

ysis in four different contexts: spatial data manipulation, spatial data

analysis, spatial statistical analysis, and spatial modeling. However, they

also mention that it is typically hard to distinguish between the different

approaches, and in many situations all four are required. Furthermore,

the data analysis, statistical analysis, and modeling definitions are closely

related. In general, spatial analysis is the investigation of spatial data

(using the definition given in section 1.2.5) using various qualitative and

quantitative methods. The aim is to investigate a phenomenon or solve a

problem.

6



Introduction

There are numerous different methods for spatial analysis. The best

methods for any given situation depend on the problem at hand and the

data used in the analysis. For example, there are exploratory methods

that are used to investigate the datasets interactively in order to gain fur-

ther knowledge of their qualities. There are also statistical methods that

calculate statistics of the data, taking into account their spatial character-

istics. These statistics can be either global, where the statistics represent

some features of the whole data set, or local, where the statistics vary

spatially across the data.

When doing spatial analysis, the analyst needs to select the methods

used depending on the situation, the available data, the spatial phenom-

ena being studied, and the desired solution or results. If the analyst uses

exploratory, visual approaches, then they are constantly interacting with

various visualizations. These visualizations can potentially show the an-

alyst tremendous amounts of information, which in turn can make the

visualizations completely incomprehensible. Thus, in most visual anal-

ysis the basic approach taken can be summarized using the Visual In-

formation Seeking Mantra [103]: "Overview first, zoom and filter, then

details-on-demand".

1.2.7 Software Visualization

Software Visualization (SV) is a branch of software engineering, which

aims to use graphics and animation to illustrate the different aspects of

software [110]. In [94] SV is divided into two subcategories: program

visualization (PV) and algorithm visualization (AV). PV is the use of var-

ious visual techniques to enhance the human understanding of computer

programs. It is typically used to illustrate actual, implemented programs.

AV, on the other hand, illustrates abstractions of algorithmic concepts and

is often independent of any actual algorithm implementation. Of the two

subcategories, only algorithm visualization is relevant for this thesis.

Education is one of the primary applications of SV – numerous SV sys-

tems have been developed for teaching purposes. It has been noted in [49],

that merely introducing SV to teaching does not seem to improve learning

results. In order to benefit from the use of SV, the learner must become

an active participant in the learning process by interacting with the visu-

alizations. They must, for example, construct an animation or simulate

the work flow of a data structure. Thus, modern educational SV systems

typically offer high level of interaction for the learner. One way to do this
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is to use exercises where interaction with the algorithm visualizations is

required for solving the problem. For example, the learner might manipu-

late data structures through graphical user interface in order to simulate

the modifications a real algorithm might do [73]. Another possible op-

tion is to create a system, where the user needs to construct algorithm

animations, and thus explore how the algorithm works [48].

1.3 Interaction and Visualization as Part of a Process

Both spatial analysis and learning processes are interactive and often it-

erative. During the process the user (either analyst or learner) interacts

with the data, typically using various visualizations. Furthermore, both

the analysis process and the learning process can result in an untenable

situation. In analysis the result might not contain the information re-

quired, or in learning the learner’s understanding of the topic can turn

out to be unusable. Thus, both processes may require the user to return

to an earlier phase of the process and start again from there, trying some-

thing different. Thus both processes can be – and often are – iterative.

1.3.1 Teaching Process

This work is based on the idea that learning happens using a mental

model [12], which is a person’s internal understanding of a given topic. A

mental model is viable, if it can be used to correctly solve problems related

to the topic at hand. The model can be refined using many methods. This

work discusses exercises, where the learner needs to apply their mental

model. If the model is not viable, the learner will encounter situations

where their mental model leads to incorrect answers. These conflicts then

cause the learner to refine their mental model, and through refinement

the model can become viable.

The refinement of mental models requires interaction with the topic,

and the process is often iterative in nature. After a conflict has been dis-

covered, the learner must try to solve it. One way to do this is to find

the point where the mistake was made, and try and solve the problem

again from this point, fixing the mistake. Such interactive and iterative

process is possible in a classroom. There, the students can interact with

the course staff and get feedback. Outside the classroom setting other

methods for gaining feedback need to be devised.
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One way to gain feedback regardless of the time or location is to use

exercises that can be automatically assessed. This way, the solutions the

learners submit for exercises can be checked without involvement from

the course staff. Furthermore, if the automatic assessment system is con-

nected to the Internet, the learners can return their solutions anywhere

and at any time, and thus do not need to come to the classroom at a given

time in order to submit their solutions.

For teaching data structures and algorithms, automatic assessment can

be combined with software visualization techniques in order to make it

possible for the learner to interact with the data structures relevant to a

given problem. In order to be effective, the software visualizations used

should be interactive and make the learner an active participant in the

learning process [49]. One way to do this is to use visual algorithm sim-

ulation [60], where the learner simulates the behaviour of an algorithm

by manipulating a set of data structure visualizations. Using such ex-

ercises the learner can see whether their mental model of a given algo-

rithm is viable, and try to refine the model when conflicts are encountered.

The exercises can introduce conflicts either immediately when the learner

makes a mistake, by giving feedback after each simulation step, or after

the learner has completed the exercise and submitted it for assessment.

Then, after discovering the cause for the conflict and trying to improve

the mental model, the learner can try the exercise again in order to see

whether the refined mental model is viable. This way both interaction

and iteration can be used in a learning process.

1.3.2 Spatial Analysis Process

The idea of exploratory spatial analysis [9] exemplifies both interactivity

and iterativity. The process is also called exploratory spatial data anal-

ysis, or exploratory data analysis, when the spatial nature of the data

is not emphasized. Here the term "exploratory analysis" will be used.

The idea of exploratory analysis is that the analyst is interacting with the

data by using various visualizations and tries to find new information and

insights by exploring the various aspects of the data. Typically the main

goal of exploratory analysis is the formulation of hypotheses that can then

be tested using other methods, such as spatial statistics.

Exploratory analysis has influenced the creation of other data analysis

methodologies. One such related methodology is visual analytics, which

is a method of analytical reasoning facilitated by interactive visualiza-
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tions [114]. The idea of visual analytics is that the analyst interacts with,

and explores, data sets using interactive visual interfaces in order to gain

deeper insight. This newly created understanding can then be used to ad-

vance the problem solving process. Visual analytics in spatial analysis is

closely related to exploratory analysis. In both cases the analyst explores

the data using visualizations. In exploratory analysis the emphasis is on

exploration, and in visual analytics it is on the visualizations.

Since spatial datasets typically have two or three spatial dimensions

and a number of attribute data dimensions, multivariate visualization

methods are often required in order to be able to interpret the data in any

meaningful manner. Furthermore, in many cases it must be possible to

control the amount and type of data being visualized in order to be able

to comprehend visualizations. This ties back to the information visualiza-

tion mantra [103].

Without sufficiently informative visualizations, it is not possible to see

patterns in a dataset that has numerous data elements in many dimen-

sions. Furthermore, it has been shown that while many variables can

be visualized on the same map, such maps quickly become hard for the

viewer to understand [108]. Thus, when multiple attribute data values

need to be shown simultaneously, methods such as interactivity or multi-

variate visualizations are required in addition to maps.

A spatial analysis process can also alternate between exploratory phases,

where the analyst uses various means to interact with the data in order

to gain new insight, and confirmatory phases, where other spatial analy-

sis methods are used to test these insights. Exploratory analysis can be

defined to include only the use of interaction and visualizations. In this

work, however, it is assumed that exploratory phases can also contain

the use of computational methods. For example, several data sets can be

combined using map algebra [115].

Visualizations are not only required in the exploratory phase, but also

in the interpretation of the computational spatial analysis methods. Most

spatial analysis methods give a spatially varying output. Examples of

spatially varying methods are the kernel density function, the various dif-

ferent variations of Voronoi–diagram, spatial interpolation methods, and

numerous different field model calculations. Thus, maps are required in

order to visualize the results of the analysis for further interpretation.

Therefore, visualization is present in spatial analysis from the very be-

ginning to the end.
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For example, the kernel density function is a method for analyzing point

data density. It creates a field representation from point data, where the

field value at each location is dependent on the number of data points

that are closer than given distance r, which is often called the bandwidth

of the kernel estimation. In a simple, naive kernel density, the number

of points inside the bandwidth is calculated, and each point is given the

same weight. In a more complex analysis the distance to the point is

taken into account using a kernel function. When using a kernel function,

the more distant points are given less weight than points that are close

by. [87].

Figure 1.2. Kernel Density Function. Originally presented in [65], used with permission
of the original author

Figure 1.2 shows an example of kernel density function analysis. Kernel

density is typically used to calculate the density of data points, and it has

several applications. At Aalto University, for example, kernel density has

been used to estimate crime and rescue operation densities [119], space-

time trajectories [31], and moose behavior and density [65].

There are also methods, like G– and K–functions, or the misclassifica-

tion matrix, that give non–spatial output. In such situations it is possible

to draw some conclusions about a dataset without using map visualiza-

tions. The output of a G– or K–function is a two–dimensional line chart,

where the value of the function is given depending on the distance. The

G–function, for example, measures the shortest neighbor distances be-

tween elements in a point set. The value of a function at a distance d is

the fraction of the points in the set for which the distance to the nearest

neighbor is less than, or equal to, d.

To summarize, spatial analysis can be considered to consist of two phases:

an exploratory phase where the analyst familiarizes themselves with the

data, and a confirmatory phase where insights gained during the ex-

ploratory phase are tested. Furthermore, in practice these phases can

be hard to separate from each other due to the interactive and iterative
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nature of the analysis process.

1.4 Research Problems

The focus of this research are the two following processes: the process of

learning spatial data structures and algorithms, and the process of ana-

lyzing spatial data. The interaction and visualization methods employed

by the two processes are the main topics of investigation in this work.

For the questions "what is the best visualization", and, "what is the best

interaction method", there are unlikely to be any general answers. The

information communicated by a visualization, and the extent and type of

interaction required, is task–specific, and also depends on the data. Fur-

thermore, for a given situation, different people have different opinions

about the best visualization or interaction method.

The research is constructive in nature, and in both processes existing

visualization and interaction methods are used. The goal is to investigate

how these methods can be used in novel ways to solve problems. Thus, the

basis of the research is a literature review of existing methods. Some of

the methods are then selected and included in a prototype. The prototype

is tested, and the data gathered is analyzed to measure the usefulness of

the prototype.

The two processes are different, but they share several similarities.

Thus, a comparison of the processes was done as a part of the research.

There are two research questions concering the comparison: Are there

similarities between the learning and the analysis process? and Can either

of these processes be enhanced by using knowledge gained from comparing

the two processes?

1.4.1 Teaching SDA

The initial motivation for this research was improving the teaching of spa-

tial data structures and algorithms at Aalto University by using software

visualization. Software visualization was decided on because of the intrin-

sically visual nature of geoinformatics. Students are already familiar with

visualizations such as shown in Figure 1.1. Therefore algorithm visual-

ization was hypothesized to be a good learning tool for teaching SDA. The

TRAKLA2 system [73], originally created for teaching basic data struc-

tures and algorithms, was thus expanded to cover spatial data.
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The main research problem in this part of the work is How can soft-

ware visualization be used to help geoinformatics students to learn spatial

data structures and algorithms? Most of the research on educational use

of algorithm visualization has focused on basic data structures and al-

gorithms. This research examines the use of visualization in teaching a

completely different area of algorithmics.

Geoinformatics is an intrinsically visual field, and therefore the stu-

dents can be assumed to be familiar with the concept of visualization.

However, most visualizations they are familiar with are cartographic vi-

sualizations or information visualizations. Furthermore, the students

cannot be assumed to have the same level of background knowledge in

computer science as CS majors, and many of the data structures and algo-

rithms discussed on the course are quite complicated. Therefore, it is not

certain what kinds of visualizations the algorithms require, and whether

the visualizations affect learning or not.

This research problem can be divided into a number of smaller problems.

1. How can spatial algorithms be visualized? Most software visualization

techniques are focused on showing the details of the data structures. In

such visualizations data elements are typically shown using key values

that identify each data element. Key values are one-dimensional.

The data used in geoinformatics is spatial, and therefore simple key

value visualizations are inadequate for conveying how different data

items relate to one another. However, merely drawing two-dimensional

data elements to the 2D plane makes it hard to grasp how the elements

are stored in the data structures. Therefore, more complex solutions

are required. This question can then be divided further into smaller

subquestions:

(a) What kinds of algorithm visualization elements are available for spa-

tial visualization? Spatial data has always at least two dimensions,

the x- and y-coordinates. Thus, traditional one-dimensional key value

visualizations are not sufficient, and multidimensional data visualiza-

tion views are required. Furthermore, these views should be such that

they can convey how spatial data elements relate to one other. Thus,

not all multidimensional visualizations are appropriate for visualizing

spatial data, and specific data views designed for illustrating spatial

data are required.
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(b) How does spatial data affect algorithm visualization design? After

spatial data visualization methods have been reviewed, the next step

is to use them to design algorithm visualizations that illustrate how

spatial data structures and algorithms work. Most algorithm visu-

alizations are focused on visualizing basic data structures and algo-

rithms containing one-dimensional data elements. Spatial data struc-

tures and algorithms, which handle multidimensional data, may re-

quire different design principles.

(c) How can comprehensible spatial algorithm simulations be implemented

using TRAKLA2? Prior to this research, the TRAKLA2 system did not

have any semantics for multidimensional data items, and no means of

presentingmultidimensional views. The visualization of two-dimensional

data is more complicated than one-dimensional data. The relation-

ships between items are more complicated, and a computer screen only

has two physical dimensions. Such complications make the implemen-

tation of useful visual algorithm simulation exercises a challenging

task.

2. Do the implemented TRAKLA2 spatial exercises promote learning ? Merely

implementing an algorithm visualization system for multidimensional

data is not sufficient. If the implemented system does not help students

to learn, either by affecting the learning results or by improving the

student attitudes, there is no clear advantage in using it.

Therefore, in this research, the aim is evaluating the effect of TRAKLA2

spatial visualizations on learning. Both the students’ learning results

and attitudes are examined. Thus, this research question can be di-

vided into two subquestions: Are there quantitative effects and are there

qualitative effects.

1.4.2 Spatial Analysis

Spatial analysis is the analysis of spatially varying phenomena with the

aim of producing new information. There are numerous different tasks

where spatial analysis can be applied, for example decision support and

planning. Perhaps the most well-known spatial analysis method involving

multiple map layers is the map overlay. In a map overlay several input

maps are added together into one output map that contains a combination
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of the input map information. A very simple map overlay method is sieve

mapping, where the goal is to find areas suitable for a given task. Initially

the whole area is considered suitable. Then, a number of input layers

containing criteria that make some area unsuitable are laid over each

other. In the output map, only areas that have no disqualifying criteria

are considered suitable. [87]

Sieve mapping is an example of suitability analysis, which is the process

of determining the feasibility of a given area for a given activity. Suitabil-

ity analysis can answer various questions, for example, how safe or risky

a certain area is, or what are the best locations for field hospitals, commu-

nication links, command posts, or helicopter landing areas. The output of

a suitability analysis is a map that splits the given area into suitability

categories according to the characteristics of each point. The map visual-

ization can also be combined with other information visualization views

that give different perspectives to the results of the analysis and thus en-

able the analyst to, for example, see why a certain point has a certain

suitability value.

The research group on Geoinformatics at the Department of Surveying

at Aalto University, together with the Finnish Defense Forces, has de-

veloped several methods and tools for terrain analysis [53, 104, 117]. At

Aalto, the tools typically reach a prototype stage, and further software

development is handled by the Defense Forces. The collaboration with

Finnish Defense Forces has continued in this work.

One topic of research in suitability analysis is troop mobility in the field.

The mobility of troops depends on several factors, including the troop type,

the season, the soil type, the type and coverage of vegetation, roads, and

buildings. Traditionally the analysis is done using a mathematical model

that has been developed for the purpose. The model gives each pixel of

the area a mobility value.

The problem of verified models is that they only work with specific in-

put data. Thus, if one or more of the input data sets are missing, or the

contents of a data set differ from what is assumed, the model is not us-

able. For example, the soil type input data is assumed to conform to the

soil type classification used by the defense forces. This classification is de-

signed for Finnish terrain, and thus may not be usable in other countries.

Similarly, the vegetation layer assumes that the amount of vegetation is

given using cubic meters of wood per hectare. If some other measure for

the amount of vegetation is used, or the vegetation is given as different
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vegetation types, the model cannot use the input. Thus, since the model

is developed for Finland, it cannot be used in places where the circum-

stances are radically different from Finnish terrain.

Therefore, there is a need for flexible and general analysis methods for

situations where traditional models can not be used. For example, in cri-

sis management situations the analyst often needs to find a solution using

whatever data is available. There are no guarantees about the quality,

type, or contents of the available data, and thus explicit models are likely

to be unusable. Using exploratory techniques, analysis can be attempted

with whatever data happens to be available. Thus exploratory analysis

may work in situations where traditional models are unusable. Suitable

methods and visualizations depend on the situation and the data avail-

able. Possible analysis methods include the use of map algebra [115], or

data mining methods such as clustering.

In clustering, the data is divided into several different categories (clus-

ters) based on the similarity of the data points. Possible ways to calculate

the similarity of data items are distance between items or the density of

data items in the data space. Perhaps the most well–known clustering

method is the distance–based k-means method [71], but numerous others

have also been developed. In this work, k-means and the density-based

DBSCAN [33] are used.

The main research question of this part of the work is How can ex-

ploratory analysis methods be used to enhance suitability analysis? The

model-based suitability analysis method has several limitations that pre-

vent its usage in many situations. Therefore other, more flexible methods

should be investigated for possible advantages. This problem can further

be divided into smaller subproblems as follows:

1. How can suitability analysis be solved using exploratory methods? One

of the main goals of this work was applying exploratory analysis to suit-

ability problems. This research question can be divided into smaller

subproblems:

(a) What kind of visualizations are available for suitability analysis?

The first subproblem was selecting and researching suitable visualiza-

tions for solving the problem. There are numerous different visualiza-

tions for depicting spatial data. The usefulness of each visualization

depends on the problem at hand, the data used for solving a specific

16



Introduction

problem instance, and the analysis methods used.

(b) How can available visualizations be applied to suitability analysis?

The visualizations must be integrated into the data analysis process

in order to help the analyst in their task. However, the visualizations,

and the analyst’s interaction with them, must be implemented in a

way that assists in the analysis process. Therefore, care must be taken

when selecting the visualizations and interaction methods used in the

analysis process.

(c) How can exploratory methods be used to solve the cross-country mo-

bility problem? Mobility is a problem that may need to be solved in

various different environments, using whatever data happens to be

available. Since the existing model-based approach to the problem re-

quires specific input. Thus, flexible, exploratory methods can offer a

more general alternative. Therefore, a way to solve this problem us-

ing exploratory analysis is desirable. Furthermore, such a solution

can work as an example on how to use exploratory methods for solving

suitability problems.

(d) How can the exploratory suitability analysis process be modeled? An

exploratory analysis process is generally described as a data-centered,

interactive process, where the analyst uses various means to delve

into the data. A general model of this process is required in order to

expand the work from the cross-country mobility example used in this

research.

2. How exploratory methods enhance cross-country mobility analysis com-

pared to the existing model-based approach? Problems can be solved

using different methods. These methods have various advantages and

disadvantages. These differences can be found, for example, in the pro-

cess itself, in the metadata created by the process, or in the final output

of the process. The focus of this part of the research are these three as-

pects of the analysis. Thus, this research question can be divided into

subproblems.

(a) How does the output gained from an exploratory process compare

to the output of the model-based approach? By comparing existing,
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model-based mobility maps of a given area to maps of the same area

created using exploratory process it is possible to see if there are differ-

ences in the output given by the two approaches. If the model-based

map is considered to show mobility for the area accurately, then the

exploratory process should be capable of creating a comparable map

in order to be useful. More detailed analysis, where differences be-

tween the two approaches are examined in more detail, could also be

possible.

(b) Is there new (meta)data or information that can be found using the

new process? The result of both model-based and exploratory approach

on suitability analysis is a suitability map. However, for the model-

based approach this is the only information that is gained during the

process. The details of the analysis, such as the metadata used dur-

ing the process or the reason why certain point got a certain mobility

value, are not preserved. In an exploratory approach, however, such

data can be preserved and thus new information can be gained from

the process.

(c) Does the process based on exploratory methods offer improvements

over the model-based process? The two processes have a completely

different approach on solving suitability problems. Thus, the processes

need to be compared in order to see what advantages or disadvantages

they have.

1.5 Structure of This Thesis

This thesis overview is divided into an introduction and three parts. The

first part discusses the teaching of spatial data algorithms using web-

based visual exercises, the second part discusses spatial analysis using

exploratory methods, and the third part contains discussion and conclu-

sion. The first part consists of four chapters, numbered from 2 to 5. Chap-

ter 2 gives an in-depth introduction to the topic and chapter 3 discusses

related research. Chapter 4 shows the visualization theory used in the

work, and describes the implementation of spatial data algorithms learn-

ing environment. Chapter 5 discusses the results of using the learning

environment on a real course on spatial data algorithms.
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The second part consists of four chapters, numbered from 6 to 9. Chap-

ter 6 introduces the topic, and chapter 7 discusses related research and

other exploratory analysis systems. Chapter 8 describes the spatial anal-

ysis process, and how it can be modeled. Chapter 9 introduces the proto-

type spatial analysis software implemented in this project, and describes

the results of using the prototype in a real problem solving situation.

The third part contains discussion of work done in parts one and two, as

well as a comparison of the two processes. In the comparison, the goal is

try and find similarities and differences between the processes and how

this new information can be used to improve the processes. Conclusions

and future work end the overview.

At the end of the overview there are two appendixes related to the spa-

tial data algorithm teaching. Appendix A describes some spatial data

algorithm exercises in more detail, while appendix B gives a list of imple-

mented exercises.

19



Introduction

20



Part I

Teaching Spatial Data Algorithms





2. Introduction and Background for Part
I

The initial motivation for this research was improving the teaching of spa-

tial data structures and algorithms at Aalto University. The SDA course

has been a part of the school curriculum for years, and experience has

proven it to be difficult for many students.Thus, the teacher in charge of

the course wished to improve the student learning results on the course

by applying new teaching methods.

2.1 Teaching Spatial Data Algorithms

The spatial nature of the data used in geoinformatics makes teaching the

topic more complicated than teaching, for example, basic data structures

and algorithms. Since the data items are multidimensional, the relation-

ships between items can become rather complex. Data items can overlap,

intersect, and the distance between items can be measured using sev-

eral different metrics. Therefore, in order to show how spatial data items

are related to each other, a multi-dimensional illustration that shows the

data in their respective coordinates is required. Such views, however, are

typically not very good at showing how the data structures used to store

the data are composed. Therefore, in order to demonstrate how spatial

data structures and algorithms work, multiple, simultaneous, and syn-

chronized views are required. One view shows how the data items are

related to one other, and another shows how the data structure used to

store them is composed.

Multiple, simultaneous visualizations are commonly used in literature

describing spatial data algorithms. Such views can be found in all rel-

evant text books, as well as in several scientific articles, for example

in [27, 34, 42]. For the learners, this means they must be able to con-

nect several different views of the same data structure together in order

23



Introduction and Background for Part I

to be able to comprehend how the data structure is arranged. However,

with just static pictures of the data, it is often hard to grasp how the data

structure is modified as data is added or removed, or how the structure

behaves with different input data. Such dynamic visualizations can be

achieved by utilizing algorithm visualization to create animations.

2.2 Software Visualization in Teaching Data Structures and
Algorithms

Algorithm visualization (AV) is a part of software visualization (SV), a

branch of software engineering that uses graphics and animation to il-

lustrate the different aspects of software [110]. Algorithm visualization

can be used to illustrate how algorithms work through animations de-

picting how the associated data structures are modified during the al-

gorithm’s execution. Animation in AV is typically divided into two cat-

egories: smooth animation, where state transitions are shown explicitly

by data elements moving around, and stepwise animation, which consists

of a series of snapshots during the algorithm’s execution. Both types of

animation are used in teaching.

There is, however, strong evidence that the type of animation used in

teaching is not as important as the level of engagement the learner has

with the visualizations [49]. For learners to gain benefit from the use of

software visualization, it must be used in a way that activates the learn-

ers and enables them to construct and refine their knowledge. Therefore

using just passively viewed algorithm animations is not a very good way

to improve learning.

Learners can be activated by exercises where problem solving is based

on interacting with visualizations. For example, the learner could manip-

ulate data structure visualizations in order to simulate how an algorithm

modifies the data structures during execution. We call such exercises Vi-

sual algorithm simulation exercises [60].

We have implemented visual algorithm simulation exercises using the

TRAKLA2 learning environment [73]. TRAKLA2 is a web-based learning

environment where learners solve exercises through the web. The system

uses automatic assessment to give the learners immediate feedback on

their solutions without the need for instructor participation.

TRAKLA2 has been shown to be an effective learning tool for teaching

basic data structures and algorithms [67, 75]. The spatial data algorithm
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extension to TRAKLA2, introduced in [84], is the first time the system has

been used to teach something beyond basic data structures or algorithms.

2.3 Contributions in This Part of the Thesis

Previously, the TRAKLA2 system included only basic data structures and

algorithms, which manipulate one-dimensional data elements, such as

numbers or strings. In order to include spatial data structures and al-

gorithms, the system must be able to manipulate and visualize multidi-

mensional data and data items. For spatial data, the most important data

elements are two-dimensional points, lines and polygons. Such items can

be visualized as key values, but for easier understanding multidimen-

sional views should also be used.

This part of the thesis contains a theoretical framework describing how

to visualize data structures on different levels of abstraction. The frame-

work is based on four different levels of abstraction, and the concept of

canonical views for basic structures. Canonical views are commonly used

data structure visualizations that are familiar from practically all data

structure textbooks and scientific papers. Such views can be used to visu-

alize any data structure. However, canonical views are not very good for

visualizing all aspects of data structures. For example, canonical views

assume that data key values are described as text, which makes it hard

to grasp how, for example, two-dimensional data items are arranged.

Some applications require other data structure representations. Such

representations still contain some information about the data structures

used. For example, when visualizing how two-dimensional points are

structured in a quadtree [34], the two-dimensional view would show how

different parts of the tree cover different subsections of the area. However,

information about the data structure can be completely removed from the

view in order to create domain-specific visualizations. Examples of such

views are cartographic visualizations that show how the data is struc-

tured but do not contain any information about the data structures used.

This part of the thesis describes the spatial data structure extension

to the TRAKLA2 environment. The extension contains a number of new

data structures for storing multidimensional data, as well as visualiza-

tions for illustrating the data structures. A number of TRAKLA2 exer-

cises have been implemented using these structures and visualizations.

The exercises have been put into use in the spatial data structures and
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algorithms course at the Aalto University. The learning results and stu-

dent attitudes towards the system have been evaluated, and evaluation

results are reported.
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3. Related Work

3.1 Software Visualization

The use of software visualization in teaching began in the early 1980s,

with the development of the Sorting out Sorting video [10]. The develop-

ment of this one non-interactive animation took years [11]. Since then,

there have been numerous algorithm visualization systems developed for

educational purposes. Early systems concentrated on developing clear

and attractive animations. The focus was on how well different aspects

of visualization had been implemented, how versatile the graphical rep-

resentations were, and whether the animation was smooth or step-wise.

This is reflected in the early taxonomy by Price et al. [94]. Prominent

systems from this period include Balsa [18] and its successor Zeus [19],

Tango [109], and several others.

More recent research has revealed that the level and type of interac-

tion enabled by the system is much more important for learning than the

attractiveness or the level of detail of the visualizations [49]. The more

recent systems have, therefore, been more focused on creating possibili-

ties for learner interaction than developing extremely polished represen-

tations. Also recently, more and more systems have been designed to work

in web-based environments, such as [39, 45, 82, 92]. There have also been

efforts to create guidelines for the creation and evaluation of visualization

systems [81]. Another aspect, which has become important, is the amount

of work and effort required for taking a visualization system into use on

a course, as well as the amount of effort required for creating new visu-

alizations using a particular system [51]. Interaction between different

systems has also been studied [54]. A reasonably recent overview of the

algorithm visualization field can be found in [105].
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3.1.1 TRAKLA2 System

TRAKLA2 is a learning environment for data structures and algorithms

developed at the Department of Computer Science and Engineering at

Helsinki University of Technology [73]. The system was originally im-

plemented for teaching basic data structures and algorithms to under-

graduate students. Since then, the system has been used in numerous

institutions in both Finland and abroad [67]. The spatial data algorithm

expansion is the first extension of the system beyond basic data structures

and algorithms.

The TRAKLA2 system is the successor of the highly-successful auto-

mated assessment system TRAKLA, which was developed at TKK in the

early 1990s [50]. Initially, the original TRAKLA system did not contain

any algorithm visualization functionality. The system contained a num-

ber of algorithm simulation exercises that the learners received via email,

solved using pen and paper, and submitted solutions via email. The email

interface used a specified text format to represent the data structures. To

solve the exercises, the learners had to simulate the manipulations an al-

gorithm would do to a data structure using a given input. Typically pen

and paper were used in this simulation process. Later, a web-based algo-

rithm visualization system was added to TRAKLA, enabling students to

solve the exercises graphically [59]. The visualization system was merely

a graphical overlay on the original TRAKLA system: the exercises were

still returned by the web applet using the same text format than was used

with the email submissions.

As the limitations of the original TRAKLA system became more appar-

ent, a completely new algorithm visualization system was designed. The

new system was based on Matrix [61], a general purpose framework for

creating algorithm visualizations and animations. Matrix is based on a

very small number of fundamental visual components that are used to im-

plement all visualizations used in the system. Unlike original TRAKLA,

Matrix also allows the user to modify actual, implemented data structures

through manipulation of the visualizations. Therefore, using Matrix, it is

possible to create visual algorithm simulation exercises where the user-

submitted simulation sequence can then be compared to a sequence cre-

ated by a real algorithm. In TRAKLA, the correctness of algorithm sim-

ulations was checked by taking one or two snapshots of the algorithm

simulation sequence.
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Furthermore, the Matrix framework allows for multiple synchronized

visualizations of the same data structure. Therefore, it is possible to, for

example, view a binary heap both as an array and as a binary tree at

the same time. Modifications done to one visualization will then be re-

flected in all views. Moreover, the Matrix framework allows hierarchical

visualizations. For example, a B-tree can be visualized by using array vi-

sualizations to show how data elements in each tree node are arranged.

The arrays are contained inside the visualizations of the tree nodes.

Based on the Matrix framework, a new learning environment called

TRAKLA2 was implemented in of the beginning 2000s [73]. The system

replaced the old TRAKLA in 2003. Since inception, the TRAKLA2 system

has been improved and expanded constantly.

3.2 Teaching Geoinformatics

In many institutions, teaching geoinformatics is focused on how to use

available tools and techniques to solve geographical data problems. There-

fore, courses tend to concentrate on teaching how to use common geoin-

formatics tools such as MapInfo, ArcGIS, or some other GIS software,

and how to apply techniques such as numerical modeling [55], simula-

tions [26], or exploratory data analysis [6]. The requirements for under-

standable and clear maps are also taught [108]. In addition to common

geoinformatics tools, internet and eLearning environments have also been

used [29, 95].

There are few institutions that have courses with a technical point of

view on the techniques and algorithms used in geoinformatics, but even

when spatial data algorithms are included, the course probably does not

use algorithm visualization systems. The only other large collection of

spatial data structure and algorithm visualizations the author is aware of,

is the VASCO Spatial Index Demo collection of Brabec and Samet1, which

is related to a number of books by Samet [99, 100, 101]. Unfortunately,

this collection has not been under active development in the recent years.

There are, however, several algorithm visualization systems that illus-

trate some data structures or algorithms used in geoinformatics. For ex-

ample, there are several systems that visualize geometric algorithms or

Voronoi diagrams [35, 45, 46, 107]. Such systems seem, however, to be

aimed at computer science curriculum, and none of them come even close

1available at http://donar.umiacs.umd.edu/quadtree/
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to covering the basics of spatial data structures used in geoinformatics.

There does not currently seem to be much active research interest in the

topic. A 2008 paper on the MAVIS system had one spatial algorithm ex-

ample [58], but the author is unaware of any other recent progress in the

field2.

3.3 Visualization in Geoinformatics

In geoinformatics, the use of maps is ubiquitous, making it an intrinsi-

cally visual field. Therefore, the creation of clear and understandable

maps is an important, and much studied topic. The creation of maps has

been studied for a long time and the basics are typically covered in every

GIS textbook. There is a wealth of literature on map making, including

textbooks on how to create maps, and scientific literature discussing map

making concepts. See [17, 32, 66, 98, 108], for some examples, and [77]

why care must be taken in map-making. The basics of cartographic visu-

alization appear to be well established these days. Thus, research tends

to focus on new visualization strategies for specific purposes or situations.

One active area of research is the visualizations used in exploratory

analysis of geodata [116]. Exploratory data analysis is an analysis method

where the user explores the data by using various visualizations, in order

to find hypotheses to test, for example, or assess assumptions about the

data. The exploration requires dynamic, interactive visualizations that

may differ greatly from traditional printed maps [37]. In many cases

using only maps, even dedicated and customized thematic maps, is not

sufficient for showing all relevant aspects of the data in question. There-

fore, geoinformatics applies several other types of information visualiza-

tion methods [63, 70, 106]. Exploratory analysis uses several analytical

methods, many of which are also used in data mining [16]. The use of ex-

ploratory analysis in actual problem solving has also been evaluated [6].

Research on geovisualization touches many topics, ranging from data

uncertainty [70, 122] to ontological similarity [38] and distributed model-

ing [47, 89]. Applications range from evaluation of the quality of life [97]

and human activity patterns [96] to data quality assessment [40], forestry [6],

and symbology [62]. In addition to visualization, other elucidation meth-

ods, such as auralization, have also been researched [20].

2A spatial algorithm visualization example was one of the winners of AlgoViz
awards in 2010. That, however, is not a scientific contribution.
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4.1 Levels of Algorithm Visualization Abstraction

In algorithm visualization, we are interested in illustrating the organi-

zation of a data structure. In order to be effective, visualizations must

be clear and understandable, so that the viewer can comprehend what

the visualizations are depicting. One way to achieve this is to use widely-

accepted and commonly used visualizations, which we call canonical views.

Examples of these views are shown in Figure 4.1. Such views of data

structures can be found in practically all books and scientific papers dis-

cussing the topic. For example, most figures depicting data structures in

the Introduction to Algorithms book [25], which is used as course book

on the first data structure course at Aalto University, are variations of

canonical views.

Canonical views, however, are not always sufficient for depicting all as-

pects of a data structure or algorithm. For example, when using just

canonical views to visualize spatial data structures, it is hard to grasp

how two-dimensional data items are related to each other. When the data

is drawn to a two-dimensional plane, the relations between data items can

easily be seen, but the details of the data structure are harder to under-

stand. For example, both Figure 4.2 and Figure 4.3 are required to grasp

how a quadtree is arranged, and how the data stored in the quadtree is

arranged in two dimensions. Therefore, there are several cases were mul-

tiple simultaneous views are useful for representing a data structure or

algorithm more understandably. Furthermore, these views may be on dif-

ferent levels of abstraction in order to bring different aspects of the struc-

ture into focus. In the following, we define levels of abstraction for the

visualization of data structures and algorithms.
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The levels of data structure abstraction were first introduced in Publi-

cation I. A slightly revised version, where the names of a few abstraction

levels were made more descriptive, was described in Publication IV. The

following will briefly go through the levels of abstraction using quadtree [34],

a spatial data structure, as an example. In the publications, two one-

dimensional data structures, binary heap and B-tree, were used as exam-

ples.

There are four levels of abstraction in the model. They are, from the

lowest level of abstraction to the highest, elementary structure level, data

structure level, representation level, and domain level.

4.1.1 Elementary Structure Level

Most data structures are created from simple, generic structures, such

as arrays, trees, lists and graphs. These structures are archetypes, or

reusable, basic building blocks for creating data structures. We call them el-

ementary structures, and visualizations of these structures are at the el-

ementary structure level. This level was called basic structure level in

Publication I.

Figure 4.1. Canonical views of elementary structures.

Since elementary structures are used in the implementation of most

data structures, all of them have well-known visualizations, or canoni-

cal views, shown in Figure 4.1. The canonical views are rather close to

the actual structure implementation, but they are still abstractions. An

array, for example, is visualized as a set of boxes arranged side-by-side

to represent the different array indices. An actual array implementation,
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however, is typically a continuous block of memory locations for storing a

specific type of variable.

Being general building blocks, the elementary data structures have no

set semantics. The definition of an array does not dictate the data type

used, the order of, or the values for the items inside the array. For effec-

tive data structures, however, we need to impose a set of semantics on the

data structure in order for algorithms to work efficiently. Similarly, the

visualizations need to reflect these semantics. In many cases, this just

means that the data in the structure is arranged in a specific way. How-

ever, illustrating some data structures, like the quadtree, may require

additional visual cues. In the case of quadtree, we need to label nodes in

order to know which quadrant of the parent node each child covers.

4.1.2 Data Structure Level

At data structure level, the focus is on visualizing the internal composi-

tion of a data structure. On this level the data structures are typically

implementations of an abstract data type (ADT). The ADT defines the

operations that the data structure must conform to, while the implemen-

tation of the operations depends on the data structure. The visualizations

on this level use canonical views to present the physical configuration of

the data structure. The layout of the visualization can, however, be cus-

tomized in order to show some aspects of the data structure more effec-

tively. For example, if the data structure was a graph, where the vertices

have geographical locations, the vertices could be drawn in their correct

coordinates.

Figure 4.2. Tree view of an region-quadtree.

An example of a data structure level visualization can be seen in Fig-

ure 4.2, which shows a region-quadtree using tree visualization [34]. Region-

quadtree is a data structure that covers a two-dimensional area. All data

values in the tree are stored in leaf nodes, and internal nodes of the tree

merely contain information about the area the particular node covers.

Each node of the quadtree divides the area it covers into four quadrants,

and each quadrant is covered by one of the children of the node. The di-
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vision continues recursively until a node contains at most one data value.

In this case, the region-quadtree is used to store a binary raster, where

different values are shown in leaf nodes using white and gray. In gen-

eral, quadtree nodes can contain a certain, set number of elements in

each node, and the structure can be generalized into more than two di-

mensions. Detailed discussion about quadtrees can be found in the works

of Samet [101, 100, 99].

While the figure accurately depicts how data is arranged in the quadtree,

a human viewer cannot really comprehend what the data represents. How-

ever, a skilled observer might be able to see certain details. For example,

the width and height of the area - in pixels - could be estimated from the

height of the tree. Still, a completely different view is required for seeing

what the data depicts.

4.1.3 Representation Level

A single data structure can be presented in various ways in order to em-

phasize different aspects of the structure. A binary heap, for example,

could be presented as an array in order to show how the heap is actually

implemented, or as a binary tree in order to show how the logical struc-

ture of the heap maintains the heap property.

On Representation level, we use different data structure visualizations

in order to emphasize different aspects of the structure. There is no longer

a need to maintain conformance to the data structure implementation,

and visualizations other than canonical views can be used. While all data

structures can be visualized using canonical views, such views are not

always the best ones for illustrating all aspects of the structure.

Figure 4.3. Area view of a region-quadtree.

In Figure 4.3 the area covered by the region-quadtree shown in Fig-
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ure 4.2 is visualized. The emphasized lines represents how the quadtree

divides the area into smaller pieces. From this area view of the data, it is

easy to see how the data items are arranged. However, the exact composi-

tion of the data structure is harder to see, and the order of the child nodes

is impossible to ascertain from the view.

4.1.4 Domain Level

All previous levels of visualization have included some details of the data

structure. At the topmost level of the visualization, the domain level, we

visualize the data in domain-specific ways that may exclude all details

of the underlying data structure. At this level, we are moving from using

algorithm visualization to using information visualization techniques. For

example, a raster map could be indexed using a region-quadtree, but when

the map is viewed using a GIS software, this fact is not shown to the user.

4.2 Visual Algorithm Simulation Exercises

Problem solving in TRAKLA2 is based on the concept of visual algorithm

simulation, first introduced in [60]. In visual algorithm simulation the

user simulates an algorithm by modifying data structures the same way

an actual algorithm would do. The modifications are done through manip-

ulation of data structure visualizations. Currently, the TRAKLA2 system

contains two different types of visual algorithm simulation exercises.

In tracing exercises, the learner is given an input sequence, data struc-

tures, and an algorithm to simulate. The goal is to manipulate the data

structures in order to faithfully duplicate the modifications a real algo-

rithm would do. Such exercises are assessed by comparing the manipu-

lations the learner made to actual algorithm execution. An example of a

tracing exercise is simulating the build-heap algorithm for constructing a

binary heap.

In open tracing exercises, the learner is given an input and the desired

output. The goal is not to duplicate the execution of any specific algo-

rithm. Instead, the intention is to create a specific output. The learner

may do any manipulation enabled by the exercise, and the correctness of

the submission is assessed by comparing the simulation’s final state to

the correct solution. An example of an open tracing exercise is coloring an

AVL-tree into a red-black tree.

35



Spatial Extension to TRAKLA2

Tracing exercises are currently much more common than open tracing

exercises. In the spatial data extension, there are 10 tracing and 3 open

tracing exercises.

4.3 Implementation of the Extension

The exercises implemented in this work can be accessed as Java applets

through the web1. Those interested in the full TRAKLA2 learning en-

vironment should contact the Learning + Technology research group at

Aalto University2.

The implementation of the spatial data structure extension was first de-

scribed in Publication II. The implementation consists of three different

parts: spatial data elements, spatial data visualization, and spatial exer-

cises.

The spatial implementation is the first expansion of the TRAKLA2 sys-

tem beyond basic data structures and algorithms. The new exercises are

based on the same basic look and feel, features, and graphical user inter-

face as older TRAKLA2 material. However, they have been modified for

the requirements of spatial data and data structures.

Exercises in TRAKLA2 are solved by manipulating data structure visu-

alizations via an applet. Figure 4.4 shows a screenshot of a TRAKLA2

exercise page. On the left side, at the top of the figure, there are buttons

with which the user can show or hide the explanatory text and the pseu-

docode, as well as open them in a separate window. On the top right are

buttons for going to the next and previous exercise. Below those is the

explanatory text which tells what the student is supposed to do in the ex-

ercise. In a separate tab are more detailed instructions on how to use the

exercise applet. Below those is the pseudocode for the exercise and the

exercise applet.

Using the exercise applet, a student can solve TRAKLA2 exercises by

manipulating the data structure visualizations. The exercise in the screen-

shot is simulation of the Douglas-Peucker line simplification algorithm.

The algorithm simplifies a polyline by removing unneeded points from the

line. The student can solve the exercise by dragging and dropping points

from the area visualization to the stack, or to the linked list representing

the simplified polyline. In the area visualization, white lines are parts

1http://www.cse.hut.fi/en/research/SVG/TRAKLA2/exercises.shtml
2http://www.cse.hut.fi/en/research/LeTech/
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Figure 4.4. Screenshot of a TRAKLA2 exercise page.

of the original polyline, red lines are parts of the simplified polyline, and

the red dashed line is the next candidate line for the simplified polyline.

The candidate line is surrounded by a buffer zone. The point, for which

the distance from the candidate line is currently measured, is indicated

by the yellow dashed line.

At any time during an exercise, a student can use the ’model answer’

and ’submit’ buttons. The model answer button opens the model answer

for the exercise. For tracing exercises this is an algorithm animation solv-

ing the problem instance, and for open tracing exercises a visualization of

the correct solution. Opening the model answer will disable the submit

button, which is used to send the student’s submission to the TRAKLA2

server. Pushing the submit button will also give the student feedback on

their solution, including the number of correct simulation steps executed

and the points gained from the exercise. After submitting the exercise or

viewing the model answer, the student can use the reset button to initial-

ize the exercise with new input. The number of times an exercise can be

submitted may be limited or unlimited.

4.3.1 Spatial Data Elements

Each two-dimensional point needs to store at least three primitive data

values: the x- and y-coordinates, and the data value associated with the

spatial item. If the spatial data item is more complicated than a point,

other spatial attributes of the item have to be stored as well. A polygon,

for example, can be stored as a series of points, each corresponding to one

polygon corner.

Spatial data items are therefore not primitive data, but are instead com-

pound structures that contain a number of primitive data values with a
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given semantics. In TRAKLA2, this is accomplished by a generic struc-

ture object that can be extended to contain any number of primitive data

values and given a set of semantics. Structures are used to implement the

three important spatial data elements: points, lines and polygons.

4.3.2 Spatial Data Visualization

Spatial data items can be visualized in at least three ways. First, we can

visualize the structure as a set of independent values, each of which has

a label that indicates the semantics associated with the value. Second,

we can visualize the structure using a key value that identifies it without

showing the associated primitive data elements. Third, we can visualize

the data items in the space they occupy. For spatial data elements in

TRAKLA2, all three visualizations are possible.

The first visualization is implemented using a specific structure visual-

ization, where the fields of the structure are named. A structure is then

visualized as a compound object, where it is possible to manipulate the

values of individual fields. The second visualization is the same key vi-

sualization which is used for basic data items in the system. These two

visualizations can be used on any abstraction level.

The third visualization is a separate area view, designed for visualiz-

ing two-dimensional areas and spatial data items stored in the associated

data structure. The area view can also contain conceptual elements asso-

ciated with an algorithm, such as the sweep line of a line sweep algorithm.

Such elements do not explicitly exist in normal algorithm implementa-

tions. The area view is a representation level visualization.

An example of the different levels of visualization is shown in Figure 4.5,

which depicts an exercise where the student simulates the line sweep al-

gorithm [13] for finding line segment intersections. On the top-left in the

figure is a binary heap that stores points depicting either line segment

endpoints or intersections. The structure visualization is used for these

points in this view. For each point, the visualization contains the point’s

key value, the x-coordinate, and the y-coordinate. On the top-right of the

figure, the points are visualized in two-dimensional area using a labeled

point visualization. In this visualization, each point is drawn to its proper

coordinates, and the key value is shown next to the point. A key value

visualization for points can be seen the two bottom views of Figure 4.4.
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Figure 4.5. Screenshot of a TRAKLA2 line segment intersection exercise showing 2D
points visualized using both point and structure visualizations

4.3.3 Spatial Exercises

Using the spatial data elements and visualizations together with normal

data and data structure level visualizations of the various data structures,

it is possible to create spatial TRAKLA2 exercises. On a conceptual level,

the spatial exercises differ from other exercises in the system only by us-

ing spatial data. There are, however, some implementation level details,

which are different between non-spatial and spatial exercises. This sec-

tion discusses some of the differences and difficulties encountered when

developing the exercises.

The most important difference is that multidimensional data requires

more complicated visualizations than one-dimensional data. Basic data

structure or algorithm exercises can be implemented using only canoni-

cal views. Furthermore, most of the time the canonical visualizations are

used on the elementary and data structure levels. In spatial exercises, on

the other hand, area views are required. Therefore there are representa-

tion level visualizations used in each exercise. Moreover, most exercises

require the use of multiple views on combined levels in order to visualize

all relevant aspects of the data and data structures.

Another important difference between spatial and non-spatial exercises

is the generation of random input data. The creation of random, one-
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dimensional, data seldom has many constraints. Therefore, most non-

spatial exercises can receive their input from the same source of random

data. For two-dimensional data, however, the input must be such that it

can be visualized in an informative manner as well as manipulated in the

area view. Furthermore, what is considered “informative”, and how the

data needs to be manipulated, depends on the exercise. Therefore, for 2D

data, there is no common data source that can be used to generate input

data. Each exercise requires its own input generator.

Two-dimensional visualizations often require some extra effort to make

them as understandable as possible. For example, the area view for a

quad-tree contains information about both data items stored in the tree

and how the area is divided into smaller subareas by the tree. Similarly,

in a line sweep exercise, a clear difference must be made between the

sweep line and the line segments that are the input data.

A total of 13 spatial exercises for TRAKLA2 were implemented in this

project and used on the spatial data algorithms course. Some of the ex-

ercises were deemed successful in depicting how the particular algorithm

works, and have a great potential as learning aides. Others were less

successful. Some example exercises are described in Appendix A.
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5. Use of Spatial TRAKLA2 in Teaching

At Aalto University the spatial extension to the TRAKLA2 system was

first taken into use in the spatial data algorithms course in spring 2007.

For this research, the use of the system was monitored during the spring

2007 and spring 2008 courses. Some information from spring 2009 is also

included. During that time, the system was expanded to include new

exercises, old exercises were updated with better user interface, and a

large number of software bugs were fixed. Most of the modifications were

done during the 2007 course (mainly bug fixes) and between the 2007 and

2008 courses.

Use of the TRAKLA2 spatial extension in teaching is described in Publi-

cation IV. The learning results gained using the system, and the students’

attitudes towards it, were first reported in Publication III. The results

were analyzed in more detail in Publication IV.

5.1 The Spatial Data Algorithms Course

The spatial data algorithms course is taught at Aalto University by the

Department of Surveying. The goal of the course is to teach some of the

basic data structures and algorithms required in geoinformatics. The

structures are typically taught at a rather high level of abstraction. The

goal of the course is not to teach how to implement the data structures

and algorithms. Instead, after the course, the students should be able to

compare different problem solving methods, know how several common

geoinformatics problems are solved by a computer, and be able to select

the correct problem solving method for a given situation.

For years, the course was taught using the same format. Lectures were

four-hour sessions that started with a short traditional lecture of approx-

imately one hour. After that, the students did group work for two hours,
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familiarizing themselves with one data structure or algorithm. At the end

of the session, one hour was reserved for the groups to present their work

to other students. After the lecture, each group had to write a one- or two-

page summary of their work. The course typically consisted of six or seven

lectures, after which the students had their first chance to take the final

examination. After the lectures, the students also made a small program-

ming exercise either alone or in pairs. In the exercise they implemented

one of the algorithms discussed on the course.

The TRAKLA2 SDA extension was first taken into use in spring 2007.

The system was added to the course without making any other modifica-

tions, and was used the same way in 2008. In 2009 the course lecturer

changed, and the course underwent major changes. At the same time the

way TRAKLA2 was used on the course changed.

In 2007 and 2008 TRAKLA2 exercises were a compulsory part of the

SDA course. The students needed to gain at least 50% of the maximum

points from TRAKLA2 in order to pass the course. No further benefits

could be gained by getting more points. In 2009, TRAKLA2 was no longer

a compulsory part of the course. Instead, the students could gain 2 addi-

tional points for the final examination by solving exercises. The maximum

points for the final exam, excluding these bonus points from TRAKLA2,

was 24 points.

Between the 2007 and 2008 courses, several bugs in the exercises were

fixed, two new exercises were added to the course, one exercise was re-

moved, and one exercise was completely redesigned. Between 2008 and

2009, one new exercise was added to the course.

5.2 TRAKLA2 Results for the SDA Course

The results of using the system were assessed in two ways. The first

point of the assessment was the students’ learning results, which were

measured by comparing TRAKLA2 results to exam results. The second

point of assessment was the student attitudes towards the system, which

were measured using course feedback forms and interviews. Feedback

forms were used each year, and interviews were conducted after the 2008

course. The following will give a brief summary of the learning results.

Detailed description and analysis of the learning results can be found in

Publication IV.

The learning results were evaluated using both quantitative and quali-
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tative methods. The quantitative method used was linear regression. The

linear regression analysis was used to see the correlation between the

students’ TRAKLA2 results and the exam results. It was also used to

see to what extent the TRAKLA2 results could explain the exam result

variation.

The qualitative analysis method used was content analysis [64]. It was

used to investigate how the students’ experiences with TRAKLA2 exer-

cises were reflected in their exam answers. It was also used to see what

misconceptions the students had about data structures and algorithms.

5.2.1 Quantitative Learning Results

Table 5.1 contains basic course information and the students’ TRAKLA2

results. The table shows how many students started the course each year,

and how many of them participated in the first examination. Also, the ta-

ble shows the number of TRAKLA2 exercises on the course, how many of

those were spatial exercises, as well as the total number of exercise sub-

missions, and the average score given to the students. The table contains

information for all three years.

Table 5.1. Basic course data for the Spatial Data Algorithm course

year # students # in exam # exer. (SDA) # subs avg. score

2007 16 10 15 (9 SDA) 723 67%

2008 20 16 16 (10 SDA) 1036 83%

2009 13 10 14 (11 SDA) 662 80%

The linear regression analysis was done twice. The first analysis was

for all TRAKLA2 exercises and the whole exam; the second analysis was

for the TRAKLA2 exercises and exam questions that covered R-trees [42].

Table 5.2 contains the results of the linear regression analysis. The table

shows the number of students included in the analysis as well as the ρ

(correlation), adjusted R2 (strength of relationship) and p (statistical sig-

nificance) for both the whole exam and the R-tree questions. Table 5.2

contains results only for years 2007 and 2008. In the 2009 course there

were no exam questions concerning R-trees and the way TRAKLA2 was

used on the course was radically different from the previous years. There-

fore the 2009 results would not be comparable to the previous years.

The quantitative analysis was actually done twice, and the results were

first reported in Publication III. The analysis was later revisited in Publi-
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Table 5.2. Learning results on the spatial data algorithms course

Course info Whole exam R-trees

Year N ρ adj. R2 p ρ adj. R2 p

2007 10 0.74 0.50 0.01 0.90 0.78 < 0.01

2008 16 0.48 0.18 0.058 0.55 0.25 0.03

cation IV. The results in Tables 5.1 and 5.2, are those reported in Publica-

tion IV. Results from the 2009 course were not available when the results

were originally written, and were added to Table 5.1 in this work. The

analysis was redone since some of the data was actually missing in the

analysis reported in Publication III. The analysis was corrected for Publi-

cation IV. There were no statistically significant differences between the

results in the two publications.

The analysis indicated that the use of TRAKLA2 in SDA teaching had

similar results to using the system in teaching basic data structures and

algorithms, as reported in [75]. The ρ values, which indicate correlation

between the TRAKLA2 exercises and the exam results, are over 0.7 for the

2007 course, and above 0.48 for the 2008 course, and the p-values, which

indicate the strength of the statistical relationship, are well under the

0.05 mark, with the exception of the whole course in 2008. This indicates

that students who did well in TRAKLA2, also did well in the exam.

This does not prove that TRAKLA2 promotes learning. However, that

is one explanation for these results. TRAKLA2 is a tool the students can

use to learn how spatial data algorithms work. Those students, who learn

how to solve TRAKLA2 exercises, can be assumed to know SDA better,

than students who do not learn how to solve the exercises. The students,

who can solve TRAKLA2 exercises well, typically also do well in the exam.

Thus, it can be argued that TRAKLA2 can promote student learning.

However, the class sizes on the SDA course were so small that any

statistical results should be assumed to be merely indicative instead of

definitive. Both the 2007 and 2008 courses have sufficient number of data

points for statistical analysis. This does not, however, change the fact

that number of data points is small and thus it is easy to induce bias in

the results. Thus, one should be very careful when drawing conclusions

from these results.

The exam results from the years 2004-2009 were also compared. The

exams used in the years 2006 and 2007 had a maximum of 30 points,
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whereas the other exams had a maximum of 24 points. For the compar-

ison, these two exams were scaled to 24 points. After this, the Shapiro-

Wilks test was used to confirm that all data sets were normally distributed.

Welch’s t-test andMann-Whitney U test were used to see if there were any

statistical differences between data sets.

No significant differences were found between data sets. This was, how-

ever, to be expected. The exams used on the course typically had four

questions where essay-type answers were expected. In 2006 and 2007

there were five questions. The exams were graded by the same person

(with the exception of the year 2009 exam, when the course lecturer changed)

without using any external, objective assessment criteria. The exams

from different years cannot be compared. The assessment for each year

reflects the variation between exam answers for that year, and does not

contain any knowledge of the previous years’ exams. Therefore, the re-

sults merely show that the data from different years is not comparable

and indicates nothing about whether TRAKLA2 affects learning.

Interestingly, the data from the year 2005 had statistically different

mean compared to 2006 and 2009 data (p=0.047 and p=0.049, respec-

tively) shown by Welch’s t-test. Mann-Whitney U test did not, however,

show significant differences between these data sets (U=83.5 p=0.064 and

U=60.5 p=0.075, respectively). The hypothesis is that exam grading on

the 2005 course was more lenient, although other causes are also possi-

ble.

This shows, again, how difficult it is to find the influence of any particu-

lar learning method or other variable without proper experimental setup.

5.2.2 Qualitative Learning Results

The qualitative results were first described in Publication IV. The method

used was content analysis, and two questions were considered: how stu-

dents’ TRAKLA2 experiences were reflected in their exam answers, and

what kind of misconceptions the students had. Each exam question was

considered separately, and the analysis was done by question and not by

student. Therefore the results reflect, for example, what kinds of miscon-

ceptions students have about a given algorithm, and not what kinds of

misconceptions a single student has.

Depending on the exam question, there was none, some, or extensive

influence of TRAKLA2 in the exam answers. The influence was primar-

ily observed in the diagrams students drew in the exams. TRAKLA2 also
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had some influence on which parts of the data structure or algorithm the

students’ answers concentrated upon. Therefore, it is clear that the stu-

dents gained at least some knowledge from using the TRAKLA2 system,

and are able to apply this knowledge in the exams. While the evidence of

the influence of TRAKLA2 is far from universal among the students’ exam

answers, it indicates that TRAKLA2 does play some part in the students’

learning process.

Several commonmisconceptions were also discovered in the R-tree ques-

tions in the exam. For example, several students thought that R-tree

nodes can hold only two data elements (like the example in [121] had), or

that an R-tree is created by recursively dividing the area into two subar-

eas covered by the nodes’ children. In reality R-trees, like B-trees they

are based on, can have many data elements in each node, and R-trees are

created by repeatedly adding new data elements to the structure.

The misconceptions clearly show that many students’ understanding of

how the R-tree data structure is created and how it works was still fun-

damentally flawed at the time of the exam. Furthermore, these miscon-

ceptions are such that the use of TRAKLA2 should remove them. In the

TRAKLA2 R-tree exercise, the students are required to insert polygons

into an R-tree. The tree nodes hold a maximum of three elements, and the

number of polygons to be inserted is sufficient to create a situation, where

the root node has more than two child nodes. However, there were stu-

dents who did such mistakes despite the presence of a tool which should

have exposed such misconceptions. It was not investigated whether the

students who held these misconceptions were able to solve the TRAKLA2

R-tree exercise or not.

5.2.3 Student Attitudes

The student attitudes towards the TRAKLA2 system were collected using

two methods, a course feedback form at the end of each course, and a

number of interviews after the 2008 course.

The course feedback questionnaire had a number of questions on the

TRAKLA2 system. The students were asked to grade the system as a

whole, as well as give their opinion on the usefulness of various features

of TRAKLA2 ranging from pseudo-code to the user interface of the applet.

The questionnaire also had questions where the students were to grade

the teaching methods used on the course, learning materials used, and

other aspects of the SDA course. The students could also tell which parts
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of the course they liked and which they disliked. The student attitudes

were first reported in Publication III. Some further analysis was done in

Publication IV.

According to the feedback questionnaires the student attitudes to the

TRAKLA2 system changed radically between the two years. In 2007

TRAKLA2 was ranked as the second-lowest of all teaching methods on

the course, while on 2008 and 2009 it was the highest-ranked method on

the course. Furthermore, in 2007 many students stated that TRAKLA2

was their least-favorite part of the course. In 2008 and 2009 no student

regarded TRAKLA2 as the least-favorite part of the course, and to some it

was the favorite. It should be noted, however, that in 2009 the number of

feedback questionnaires received was much smaller than in the previous

years.

The main difference in the TRAKLA2 system between the year 2007 and

the later years was that a number of irritating bugs that had not been

noticed in testing were corrected and that a couple of badly implemented

exercises were removed. Thus, this again shows how small things can

affect the users’ opinion radically. Most of the TRAKLA2 was the same in

all years. Thus, it was likely the small and easily corrected, but annoying

bugs in the 2007 version, which made it so unpopular with the students.

Furthermore, most of the bugs had been removed by the end of the 2007

course, but the students still held a low opinion of the system. Thus, it

has been shown again, that the initial impression is important.

A total of four interviews were conducted after the 2008 course. The in-

terviews followed the interview guide approach [90]. The approach states

that an interview is conducted using a general outline of topics, but the

interviewer is free to vary the wording and order of the questions to some

extent. The interviewees consisted of one Finnish male, one Finnish fe-

male, one foreign male, and one foreign female student. The ages of the

interviewees were between 22 and 28 years, and their backgrounds var-

ied. A detailed report of the interviews can be found in Publication III.

Two main paths of questions were explored. First, what was the stu-

dent’s subjective opinion of the system, and second, what they thought

about it compared to other teaching methods and learning materials. The

interviews revealed both strengths and drawbacks of the system.

The interviewees found the system to be beneficial and thought that it

was an important learning tool that should continue to be utilized on the

course. Also, by using the TRAKLA2 system, the interviewees felt they
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could grasp details of the algorithms that did not come up in the lectures.

Furthermore, interviewees felt that by doing algorithm simulations it was

easier to remember the details than by using other learning methods.

The interviewees criticized the graphical user interface, and the feed-

back gained from most exercises. The required GUI actions used to solve

an exercise varied between different exercises. Therefore students had to

spend some time to learn the user interface first, before they could start

solving the exercise. The feedback on most exercises was just the number

of points gained, and the number of correct simulation steps done. The in-

terviewees would have wanted more detailed feedback. The interviewees

also thought that it was cumbersome to go through the simulation steps

in order to find the error. Also, the fact that the system did not give any

points after the first error was thought to be unfair.

According to the interviews, the students’ overall attitude towards the

system seems to be more or less positive. However, there are still many

things in the system that could be improved. Perhaps the most impor-

tant finding for this particular study was the students problems with the

GUI. It is an indication of problems with the system design. Either the

point-and-drag GUI semantics of TRAKLA2 should be expanded in some

manner, or more attention should be given for designing an understand-

able and consistent GUI for spatial exercises.
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Spatial Analysis





6. Introduction and Background for Part
II

The original motivation for this research was the limitations of traditional

model-based spatial analysis. Models are typically tied to a specific situa-

tion. A model takes certain, specified input and produces an output. This

means that the model cannot work without the given input being present,

and often the process of how the input is combined to a specific output

cannot be examined. Thus, a model easily turns into a black box, where it

is hard to verify the correctness or usefulness of the output. Exploratory

methods, where the process can easily be traced and verified, offer an al-

ternative to modeling.

The ability to trace and verify an analysis makes the process transpar-

ent. Besides making it possible for the analyst to later review the analysis,

it also makes it possible for other people to familiarize themselves with

the analysis and thus verify whether the analysis output is useful. Such a

feature could be useful in, for example, multinational crisis management.

Crisis management exercises have shown that in a crisis management sit-

uation with numerous different organizations, these organizations often

do not trust analyses done by other organizations. Therefore, during an

exercise many organizations request that others give them only the raw

data instead of any analysis results. This situation and its consequences

are described in Publication V and Publication VI.

There are at least two reasons for refusing analysis results created by

other organizations. First, different organizations have different values

and knowledge, and their analysis results reflect this. Thus, an analysis

done by another organization may not reflect the needs of the recipient

organization. Second, the details of a particular analysis process are typi-

cally not revealed to other parties. Thus the recipient organization has to

use the analysis results without detailed knowledge of its creation. With-

out this knowledge the recipient organization can not infer how the pro-
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cess, and the values and knowledge used in it, have affected the result,

and thus may feel that they can not trust the result.

Furthermore, in crisis management, it is impossible to know before-

hand what sort of data will be available. Often the data on the crisis

area needs to be compiled from a variety of sources, including publicly

available maps, satellite images, on-site measurements, and such. It is

similarly not possible to know beforehand what kind of problems need to

be solved. This leads to a situation where general methods, which can

be used to solve a wide range of problems and work with whatever data

happens to be available, are required.

Thus, the analysis methods selected for use in such a situation should be

free of values, so that they do not inherently show bias towards any orga-

nization and therefore can be accepted as tools by several organizations,

transparent, so that anyone can trace the details of the analysis process

and therefore validate the results of an analysis, and general, so that they

can be used in many situations, using whatever data is available.

The problem used as a case example in the research is off-road mobility

analysis, where the goal is to create a map that shows how difficult it is

for a specified vehicle to advance over terrain. Typically, in crisis man-

agement, the goal of mobility analysis is to create a mobility map that

depicts the maneuverability of the terrain in the operational area. Mobil-

ity in such a map is divided into a number of mobility categories. Each

category represents how difficult it is to travel over area covered by the

category. Mobility can, for example, be divided into three categories: NO

GO for areas that cannot be crossed, GO SLOW for areas where maximum

practical speed is slow, and GO for areas where it is possible to drive fast.

6.1 Suitability Problems

Dividing an area into mobility categories is an example of a suitability

problem. In general, the goal of suitability analysis is to find a location,

or locations, best suited for a given activity, or to categorize locations ac-

cording to their suitability. The off–road mobility problem belongs to the

second type of suitability problems.

How different locations are assigned to categories depends on the in-

put, the type of vehicle, and several other considerations. However, in the

end, all locations belonging to a category have similar overall suitability

scores. This means that these locations are somehow similar, and there-
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fore similarity measures can be used for solving the problem. Dividing

the area into suitability categories is a general method that can be used

to solve also many suitability problems.

In this work, an analysis process, which can be used to solve many types

of problems, has been developed. Off-road mobility is used as the example

problem, and the main analysis methods used are exploratory data anal-

ysis, which is an interactive, data-driven method of data analysis [9],and

visual analytics, which is a method of analytical reasoning facilitated by

interactive visual interfaces [114]. When using exploratory analysis, the

user explores the data using various interactive means in order to gain

new insight and find new information; in visual analytics, the user ex-

plores the data sets using various interactive visualizations, and thus

gains deeper insight on the data. Using the new information gained from

this interaction, the user can then make decisions and solve problems.

Suitability problems can typically be solved by creating a scale of suit-

ability for each available input data set, combining the datasets, and then

comparing locations against the scale. This also means that the suitabil-

ity of locations can be compared by measuring their similarity; locations

that are similar typically have the same suitability. Thus, methods that

use the similarity to group locations into categories, can be used to solve

this problem.

Clustering is the task of dividing a set of data items into subsets accord-

ing to their similarity. Elements in the same subset are similar to each

other, and are as different as possible from the elements in other groups.

In cluster analysis, the goal is typically to see whether the data can be

divided into natural subsets, which are clearly distinct from each other.

Thus, the goal is to discover something about the nature of the data be-

ing analyzed [43]. In the case of off-road mobility, the goals could be: to

see whether there is a subclass of good mobility that is clearly distinct of

classes of bad mobility; to see whether there is a subclass or subclasses of

fair mobility, and what are the differences between these; to see whether

there are clearly distinct subclasses of bad mobility, and what prevents

mobility in these classes.

The input for a clustering method is a set of data vectors, where each

data vector is a multidimensional set of data elements. In the case of suit-

ability problems, each data vector represents the input data in a given

geographic location. The data vectors are compared for similarity, and

similar vectors are combined into clusters. Similarity in clustering is
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measured using a function, which takes two data vectors as input and

returns a similarity value for them. The most common, and most basic,

similarity measure is simple Euclidean distance between the data vectors

in attribute space. In many cases, however, other measures can be more

useful, for example when the data has numerous dimensions. One such

distance measure is the Mahalanobis distance, which takes into account

the correlation between input data dimensions. The correlation is given

by the covariance matrix of the data set [72].

Clustering, as well as many related data mining methods, are data-

driven analysis methods, where new information rises from the data [43].

This allows the analyst to find new points of view and gain insight into

data that might not otherwise be found. For example, when combining

data from several input layers into one suitability score, data mining

methods can help in discovering how the different input layers interact,

and to discover unusual, or unexpected, divisions in the source data. This

can lead, for example, to the discovery of areas where assigning suitability

would require more detailed analysis or additional information.

Thus, data-driven methods can give more information to the analyst

than a direct suitability categorization would. Therefore, the results can

be of more use in further analysis and decision making than the direct

suitability scores, which do not allow such information discovery. Fur-

thermore, in many cases it could be hard for the analyst to decide the best

criteria for different suitability scores without first familiarizing them-

selves with the data. Data–driven methods can show the analyst possible

criteria by showing how the data can be arranged.

6.2 Requirements of the Process

Several requirements of the data analysis process were derived from the

background and motivation of this research. The purpose of these re-

quirements was to guide the development of the analysis process and a

prototype implementation.

The first requirement was for the analysis process to be free of inher-

ent values, and employ only well-known and general visualizations and

computational methods. This makes the process to be usable by several

actors, who may have incompatible goals, values, or knowledge they wish

to use when doing their own analyses. Furthermore, it enables the meth-

ods to be used to solve several different problems.
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Thus, the methods selected must not contain values or knowledge spe-

cific to any organization, or for solving any specific problem. However,

it is impossible to solve a spatial problem without using any values or

knowledge in the process. Thus, the user needs to explicitly, and often

also implicitly, insert the required knowledge and values to the analysis

process. Explicit insertion of knowledge into the process also makes it

possible to keep track of the values or knowledge used while solving a cer-

tain problem. For example, when analyzing mobility, the analyst needs

to insert the knowledge of how each input layer affects mobility into the

process.

The second requirement was for the analysis process to be transparent.

This requirement may have two different meanings. First, the analysis

process in general can be transparent, so that any user or organization

can examine the process and make sure there are no hidden values or

knowledge in the process. Second, the analysis of a specific problem can

be transparent so that other users can review the analysis process and see

what values and knowledge have been inserted in order to arrive at the

given conclusion. A transparent process can later be reviewed by different

actors in order to ascertain whether a specific analysis result is usable for

them.

This work has facilitated the first meaning of transparent by using well-

known and general visualizations and computational methods. Further-

more, in the prototype application, these methods have been implemented

independently, or by using open source software in the implementation

whenever possible. Unfortunately, outside considerations forced the use

of the closed source ESRI ArcEngine platform as the GIS framework.

The third requirement was for the analysis process to be general, so

that it can be used to solve a wide range of problems. This research has

concentrated on suitability problems, where an area needs to be divided

into categories according to their suitability for certain activity. Numer-

ous problems belong to this category, since selecting the best position for

something is an important and common GIS problem. The approach used

in this work is exploratory analysis combined with visual analytics, where

interactive visualizations are used in order to examine the data and draw

conclusions from it. Thus, the analysis process can be used to solve a wide

range of problems, and is therefore general.

The prototype application constructed as a part of this research is aimed

at solving the problem of cross-country mobility. Due to time and resource
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considerations it uses a limited number of visualizations and computa-

tional methods. It is, however, capable of accepting a wide range of inputs.

Finally, there is one requirement for the process that did not arise di-

rectly from the needs of international crisis management, but from the

goals of this research and conscious decisions. The focus of this research is

the development of analysis processes, not methods development. There-

fore, basic, well–known techniques and methods are sufficient for this re-

search. This way it is possible to ascertain that the methods employed in

the process – the visualizations, the interaction methods, and the compu-

tational analysis methods – are effective. Thus, there is no need to spend

time and effort on establishing whether the individual methods are of use.

The focus of the work is on analyzing the process itself.
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7.1 Exploratory Analysis and Visual Analytics

The idea of exploratory data analysis (EDA) was first proposed by John

Tukey to complement confirmatory data analysis, which is concerned with

testing hypotheses or assumptions about the data [116]. According to

Tukey, EDA is not a set of specific tools or processes, but more an attitude

or philosophy about how data should be analyzed. The goal of EDA is

to explore data, to detect and describe patterns, trends or relationships in

the data, and to summarize them in an easy-to-understand form. The pro-

cess can be used, for example, to formulate new hypotheses about data,

or to support the selection of appropriate statistical methods and tools.

It is therefore not a replacement for confirmatory data analysis. Instead,

it represents a completely different approach. Other authors have later

expanded EDA to cover different types of analysis and different data set

types. For example, Andrienko and Andrienko have written on how ex-

ploratory analysis can be applied to spatial data sets [9].

EDA has also influenced the development of other data analysis meth-

ods, such as visual analytics (VA). Visual analytics is "a method of rea-

soning facilitated by the use of interactive visualizations" [113]. It is a

multidisciplinary field that focuses on analytical reasoning techniques,

visual representations and interaction techniques, data representations

and transformations, and techniques that support the production, pre-

sentation and dissemination of analysis results. Visual analytics tools

and techniques can be used to "synthesize information and derive insight

from massive, dynamic, ambiguous, and often conflicting data" [113]. In

essence, it is a set of visualization and interaction tools and techniques

meant to assist analyzing large datasets. Thus, the field is related to
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both information visualization and scientific visualization, two interre-

lated fields of science studying the use of visualizations for representing

large datasets. There is still, however, debate on the definition of the

term, and how it relates to other fields of science; a definitive consensus

is yet to be reached [5].

Exploratory data analysis methods and interactive visualizations are

often used together for problem solving. Thus, in many cases it is possi-

ble to argue that the process depicted is both an example of EDA and an

example of visual analytics. Examples of cases where exploratory and vi-

sual approaches have been used to analyze spatial data include ecological

network planning [65], vehicle safety [78], forestry [6], public health [97],

and eye movements [23]. There has also been a number of works that

study the use of exploratory analysis and interactive visualizations. The

topics of these papers range from combining exploratory visualizations

with data mining [16] to the fundamental problems of exploratory anal-

ysis [37], from evaluating exploratory and visualization methods [63] to

clustering methods [79] etc. However, it seems that there are still nu-

merous challenges in using visual analysis and exploratory methods with

geodata [7].

7.2 Visualization

Visualization is the act of representing something using images or il-

lustrations. Information visualization is the study of how to visualize

complex large-scale collections of information in an understandable man-

ner. The goal of information visualization is to create visualizations, from

which the viewer can gain additional value and information. There are

numerous different visual metaphors that can be used to depict data.

Most methods work for hundreds or thousands of data elements, while

some techniques can scale up to millions of elements. The best method for

a given situation depends on the size and type of the data, and the goal

of the analysis process. Furthermore, in many cases multiple information

visualization methods can be used simultaneously or in succession. The

visual information seeking mantra states "overview first, zoom and filter,

then details-on-demand" [103]. In cases where there are numerous data

elements, the user might want to use different visualizations for showing

the overview and for the details. If, for example, the whole set is hundreds

of thousands of elements, then a different view could be more useful there

58



Related Work

than when examining the details of a dozen data elements.

Information visualization techniques are required for the visualization

ofmultivariate data, where each data element consists of several attribute

values. In case of spatial multivariate data, each data element also has

a geographic location associated with it. Thus, the data has at least two

spatial dimensions and a number of attribute dimensions. In such case,

the spatial distribution of the data can be visualized by using a map, and

the attribute distribution by using multivariate data visualization meth-

ods.

There are numerous visualizations that can be used to represent large,

multivariate datasets in an understandable manner. The different visual-

izations all have advantages and disadvantages, and therefore it depends

on the situation, which method is the best one to use. Solutions include

scatterplot matrices [4], star plots [21], glyphs such as Cernoff faces [22],

reordeable matrices [15], parallel coordinate plots [52], and many others.

Figure 7.1. A parallel coordinate plot example

Parallel coordinate plot (PCP), shown in Figure 7.1, was selected as the

primary information visualization method used in this work. PCP is a

multivariate visualization method [52]. It displays n–dimensional data in

two dimensions using n parallel axes. The axes are arranged either hor-

izontally or vertically, and data elements are visualized as polylines that

traverse through these axes. A polyline representing a particular data

element intersects each axis at a point that represents the data element’s

value in the dimension represented by the axis. PCP has been found to

be a very useful tool, which works well in combination with maps [30].

The main limitation of PCP is that its effectiveness is limited to situa-

tions where less than 1000 data elements need to be shown on the screen

simultaneously [57]. When more elements need to be shown simultane-
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ously, other visualization methods are typically more effective. Some tech-

niques, such as dense pixel displays, can visualize up to millions of data

elements [56].

7.3 Spatial Analysis Methods

Spatial analysis is the formal study of spatial data. The term can have

multiple meanings, depending on the context. O’Sullivan and Unwin give

four different contexts: spatial data manipulation, spatial data analysis,

spatial statistical analysis, and spatial modeling [87]. Of these four con-

texts, spatial data analysis corresponds to exploratory analysis of spatial

data. It is in contrast with statistical analysis of spatial data, in which

various statistical methods are used to test hypotheses and see whether

a given data set conforms to a statistical model, and spatial modeling, in

which models are constructed to predict spatial outcomes. In exploratory

analysis, a number of different methods can be employed. The analyst

can use various visualizations to explore the data set. The analyst can

also use computational methods to manipulate the data, in order to see

new aspects or find new information.

One computational method that can be used in EDA is data mining. It is

the process of discovering patterns or relationships in large data sets [43].

One often–used data mining technique is clustering, which is the process

of dividing a set of data elements into subsets, where elements in the same

subset are similar to each other, and elements in different subsets are

distinct from each other. There are numerous clustering algorithms that

can be divided into different models, including: hierarchical clustering

methods, where clusters are created by combining or breaking up existing

clusters; distance–based methods, where data elements that are closest to

a given cluster center point belong to the same cluster; and density–based

models, where elements that create sufficiently dense areas in the data

space belong to the same cluster. In this work, two clustering methods

were used: k–means clustering and DBSCAN.

K–means is a well–known and widely used clustering method originally

proposed in the 1960s [71]. K–means divides a set of data elements into k

clusters, where the number of clusters needs to be given beforehand. The

clusters in k–means are defined by cluster centers, which are calculated

iteratively: the center of each cluster is the mean of its elements, and

each data element is assigned to the cluster with the nearest mean. K–

60



Related Work

means has been applied to numerous problems and has a large number

of improvements and variations. For details, see for example [14]. In the

context of geoinformatics, k–means has been used for finding locations for

facilities [69], landslide hazard prediction [41], and analyzing space–time

paths [106].

DBSCAN, or Density–Based Spatial Clustering of Applications with Noise,

is also widely used [33]. DBSCAN creates clusters from data elements

that constitute sufficiently dense regions in the data space. In DBSCAN,

density is defined using two parameters: distance value ε and minimum

number of neighbors p. If a point has at least p other points closer to it

than ε, the point, and all its neighbors, belong to a cluster. Data elements

that do not have p other elements inside the epsilon–distance, and are not

inside the ε–distance of any point belonging to a cluster, are marked as

noise. DBSCAN has been used for finding clusters in road networks [111]

and earthquakes [91]. Also, the algorithm has variations. One example

is GDBSCAN, which generalizes the concepts of density and neighbor-

hood [102].

7.4 Related Systems

GIS systems, whether commercial products such as ArcGIS, or free soft-

ware products such as GRASS, traditionally have had rather limited sup-

port for exploratory analysis or visual analytics. A typical GIS system is

more focused on the visual representation of maps and traditional con-

firmatory data analysis. Thus researchers interested in using EDA or

VA methods typically need to either implement their own systems from

scratch, or build them on top of existing GIS framework. Therefore, a

number of EDA and VA systems that explicitly support spatial data have

been implemented in academic institutions.

7.4.1 GeoVISTA

GeoVISTA is currently an active research project at Pennsylvania State

University [2]. The project has developed a number of visualization tools

for GIS. One is the GeoVISTA Studio software framework [112] and a

number of software projects derived from it, such as the GeoViz Toolkit [44].

GeoVISTA Studio software framework allows users to create a wide

range of different data analysis processes via a graphical programming
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environment. GeoVISTA contains a wide range of visualizations and com-

putational analysis methods that can be combined into new analysis pro-

cesses in a custom visual programming environment. The system is im-

plemented using Java and JavaBeans, and new functionality can be added

to it by adding new beans. The system is general and flexible, but by our

own experience it has a rather steep learning curve. In the beginning, a

new user can a have hard time getting started, because there is so much

functionality presented. The system is developed as free software and

uses the GNU Lesser General Public License. Last public release of the

GeoVISTA Studio system was in September 2007. The system has appar-

ently been developed further, even if there have been no further releases

of the framework. This is demonstrated by, for example, the recent paper

describing the GeoViz Toolkit developed using the system [44].

GeoViz Toolkit is a visual analytics toolkit based on GeoVISTA Studio.

The system contains a large number of different visualizations that can

be used to view the data at hand. The views are interactive and linked

together, and thus a change done in one of the views is reflected in all

other views. An example of GeoViz in action is shown in Figure 7.2. The

Figure shows, from left to right, the attribute selection window, star plot

window, map window, and PCP window, with animator window and table

view window below them. One element is highlighted in all data windows.

Figure 7.2. View of the GeoViz Toolkit containing a number of visualization windows.

The GeoVISTA Studio is a mature, robust, and versatile software pack-

age. A large part of the functionality required for this work has been

implemented in GeoVISTA. Furthermore, the system has been published

as free software, and thus should be easy to take into use and to modify.

62



Related Work

7.4.2 CommonGIS

CommonGIS is a java–based software for visual analysis of spatial and

spatiotemporal data. The system has been developed at the Fraunhofer

Institute for Intelligent Analysis and Information Systems [1].

The system offers a large number of different information visualization

views that can be combined with a linked map view for visual analysis

of the data sets. The system can also calculate a number of analyses and

statistics from the data. The system can also handle time–series data, and

has visualizations specific for such datasets. CommonGIS is implemented

in Java, and can be used both as a java application or as an applet on a

web page. The CommonGIS software is based on previous systems named

IRIS and Descartes [3], and the initial development on the system was

done around the turn of the millennium [8].

The main window of the CommonGIS system resembles the main view

offered by several desktop GIS applications. This window is shown in the

top-right corner of Figure 7.3. On the left–hand side of the map window

is a view showing all data layers that have been loaded. The layers can

either be shown or hidden on the map. On the right–hand side of the map

window is a view that can be used to fine–tune the layer visualizations.

On the top of the main window are menus, from which the user can call

functionality, such as the calculation of statistics.

Figure 7.3. View of CommonGIS containing a number of visualization windows.

Figure 7.3 shows several CommonGIS windows representing earthquakes

around the Marmara region of Turkey. On the top left is a scatterplot

matrix showing the year and the magnitude of each earthquake. Only
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quakes of magnitude 5 or larger are shown. Next to the scatterplot is

the map view showing the location of each earthquake. Bottom left is the

table view of the earthquake data, and next to it is the dynamic query

window used to filter out the smaller earthquakes.

CommonGIS is a versatile software package that offers a lot of GIS func-

tionality common to many desktop programs, as well as a large number of

information visualization views. The software is available without a cost

for educational institutions.

7.5 The ArcGIS Environment

The ArcGIS platform is a family of commercial GIS products developed by

ESRI. The system was initially released in 1982 as ARC/INFO, and the

graphical desktop version in 1995 as ArcView. The number of included

software products was subsequently expanded, and these days the ArcGIS

software family includes a large number of GIS software. Included are,

for example, the desktop GIS environment ArcMap, data management

software ArcCatalog, and software development environment ArcObjects.

The ArcGIS desktop environment, ArcMap, is a flexible software prod-

uct, which can be used both for map construction and spatial analysis.

The spatial analysis functionality in the software is included in the Spa-

tial Analyst extension to the software. The extension contains a large

number of different analysis tools that range from the specific, such as

calculating a slope layer from an elevation layer, to the generic, such as

the map algebra tool.

The focus of the analysis tools in the ArcMap environment is on tradi-

tional, confirmatory spatial analysis, although several tools can be used

as part of an exploratory process. There is, however, little support for

exploratory analysis of spatial data, and especially the support for differ-

ent types of information visualization is limited. Typically, a spatial data

layer in ArcMap can be visualized as a map, as a table of values, and as a

histogram or a scatterplot. The different views are linked.

Figure 7.4 shows the ArcMap software with several visualizations rep-

resenting the slope degree around the city of Lahti in Finland. Different

degrees of slope are shown using different shades of blue. Flat area is

shown in white, and extreme slopes in red. In addition to the map view,

the data is also visualized using the table and the histogram views. On

the left side of the screen is the view used to control data layers, and on
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Figure 7.4. View of ArcGIS containing a map, table and histogram views of the data.

the right side are the different tools available for the user.

ArcGIS also includes a software development environment called Ar-

cObjects. The environment can be used to implement new functional-

ity or new applications using the ArcGIS functionality. The functionality

available to ArcMap or ArcCatalog through GUI is also available through

ArcObjects. The environment is available in .NET, Java, C++, and Python

languages.

ArcGIS in This Project

In this project two ArcGIS products, the ArcMap desktop environment

and the ArcObjects programming framework were used. The ArcGIS plat-

form was selected as the implementation platform since it was the sole

GIS system used by the Finnish Defense Forces, who funded the initial

research on this topic. Thus adopting ArcGIS made it easier to share the

ideas and concepts developed in this project. Because ArcGIS had been

used at the Department for several years, our research group had exten-

sive experience with the environment. There was also concerns about

the amount of documentation and support available for the established

research prototypes. When the project was started, the research proto-

types were still mainly used in the institute that implemented the system.

Thus, it was decided that using an established, commercial system was a

better choice, since support was available on demand.

It was clear, that research prototypes such as GeoVISTAwould have pro-

vided more exploratory and visual analytics functionality than ArcGIS.

However, in this case other considerations won over the provided func-
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tionality, and thus it was decided that ArcGIS was the platform of choice

for this research.
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8. Analysis Process

There are numerous ways to analyze spatial data. This work concentrates

on exploratory methods, combined with visual analytics and clustering

for analyzing suitability problems. Off-road mobility analysis is used as

the main case example. The process developed in this project was first

described in Publication V. It was elaborated further, and results on using

the process were described in Publication VI. Publication VI also includes

a detailed example of how the process can be used to solve the cross–

country mobility problem.

The data used in this study is assumed to contain no spatial dependen-

cies, and thus can be analyzed without taking spatial autocorrelation into

account. This means that a value at a given location can be measured

without having to take into account the location’s neighborhood. Exam-

ples of such phenomena are soil type, amount of vegetation, amount of

rainfall, elevation, etc. Examples of phenomena that are dependent of the

neighborhood are the viewshed, the catchment, and the distance to the

nearest road.

Spatially dependent phenomena can also be used in the analysis dis-

cussed here, if the phenomenon can be transformed into a format where

it can be expressed as a simple attribute value in each location. For ex-

ample, the distance to the nearest road or the amount of catchment can

be calculated for each position and expressed as a number. In this form

these phenomena can be considered spatially independent as long as the

data does not change. A viewshed, on the other hand, cannot be a simple

attribute value. The output of a viewshed analysis is a map that shows

all locations visible from the given location.

The spatial analysis process described in this work is based on the con-

cepts of exploratory analysis and visual analytics. This means that the

user controls the process and therefore needs to have quite a lot of expert
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knowledge about the situation at hand. Furthermore, the process itself

does not contain any values or knowledge, and these need to be inserted

by the user during the analysis. Thus, the user’s expert knowledge about

the problem at hand, the input data used, and the analysis process are vi-

tal. Several times during the process the user’s knowledge is either used

to control the process or inserted into the process in other ways.

The expert knowledge required in this kind of process can be divided

into two categories. Domain knowledge is knowledge about the problem

at hand and the factors that affect that problem; GIS knowledge is knowl-

edge about geoinformatics and GIS, and how GIS can be used in problem

solving [65]. Both types of knowledge are required for solving spatial anal-

ysis problems. In cases where no single person has sufficient knowledge

both about the domain in question and the GIS techniques, two users can

work together in order to solve the problem. In such cases, a domain ex-

pert handles the tasks that require domain knowledge, and a GIS expert

handles the GIS tasks.

8.1 The Spatial Analysis Process

Overview of the spatial analysis process described in this work can be

found in Figure 8.1. The boxes in the figure stand for different phases of

the analysis process. The process moves top-down t and consists of four

main phases, labeled from A to D in the figure. Inside each phase are a

number of smaller sub-phases. Orange arrows represent steps forward in

the process, and blue arrows represent steps backwards. The backwards

arrows represent iterative steps where the process is continued from an

earlier phase. Each backwards arrow also contains a short explanation

for the reason for backtracking. It should be noted that there are no back-

wards arrows from phase C, since computational data analysis always

requires interpretation before the user can decide whether they need to

backtrack. Output interpretation is in phase D of the process, and it is

the first instance where it is possible to backtrack, once phase C has been

entered.

The analysis process consists of four phases: A: Preparation for the Anal-

ysis, B: Visual Data Exploration, C: Computational Data Analysis and D:

Interpretation of Output. In Publication VI phase A was called "analysis

design" and phase B "Data Exploration and Preparation".

In phase A, the analyst gathers input data layers for the analysis, and
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Figure 8.1. Overview of the spatial analysis process. Figure originally published in Pub-
lication VI.
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designs how each layer is used during the process. In phase B, the analyst

investigates the data further, and processes it in order to make the differ-

ent input data layers comparable. In this phase the analyst also converts

the data into a format that can be given to a computational data analysis

method. Phase C parameterizes and executes the method, and its output

is interpreted and further analyzed in phase D. If the output of phase D

is acceptable as an analysis result, the process terminates; otherwise the

analyst goes back to a previous phase to continue the process. The details

of the process are first described in Publication V and further elaborated

in Publication VI.

8.1.1 Iterative work

Typically, a spatial analysis process does not proceed smoothly from one

phase to the next. Instead, during the process various problems and mis-

takes are discovered, such as having insufficient or unusable data in some

phase of the process. When this happens, the user needs to go back to a

previous phase of the process. Often this iteration needs to be done sev-

eral times before an acceptable solution can be found. Figure 8.1 shows

this using blue backwards arrows.

Each of the arrows is labeled with the most probable reason for back-

tracking. If an arrow starts in a given phase, it means that it is possible

for the backtracking to start from any sub-phase. If an arrow ends at a

given phase, it means that it is possible for the backtracking to end in

any sub-phase. Arrows starting or ending in a particular sub-phase mean

that backtracking starts or ends at that particular sub-phase.

On the bottom of the figure are arrows that backtrack from phases B

and D of the process to phase A. These depict situations where the user

discovers that the input data used for the analysis is either insufficient

for the analysis, or otherwise unusable for some reason. For example,

the attribute data format in an input layer may be such that it cannot be

used for the intended purpose. For example, a vegetation layer that shows

different types of vegetation may be unusable, if an analysis requires the

amount of vegetation to be shown.

On the top of the figure are arrows that backtrack to and from specific

sub-phases of the process. The first arrow from the top goes from phase

A.2 to A.1. This depicts a situation where, while selecting and categoriz-

ing the data, the user realizes that some required input data layers are

still missing, and the gathered data is thus insufficient for the analysis.
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The second arrow on the top goes to phase B.1 from the later sub-phases

of the Visual Data Exploration phase. This depicts the situation where

data preparation for computational analysis requires more visual explo-

ration before the user can make a decision on how to proceed in particular

part of the analysis. This also means that it is possible to go from B.1 to

any of the subsequent sub-phases inside phase B of the process. These

jumps forward are not depicted in the figure in order to simplify it. The

jumps also depict that the data preparation is a very interactive task,

where the user often needs to use various visualizations to see, how the

data layers are arranged, and how the data is spread in a given layer.

The third arrow on the top at the right side of the figure depicts the most

common iterative loop of the analysis process. This arrow starts at phase

D of the process, and ends in either phase C or phase B. It covers the sit-

uation where the output of the computerized analysis method is deemed

unusable, and the user returns to a previous part of the process in order

to get a new result. In practice, this particular loop often ends in phase

C.1, where the user gives the algorithm new, different parameters, and

runs it again in order to see the new result. For example, in the k-means

clustering the user must give the number of clusters for the algorithm to

use. The output is heavily dependent on the number of clusters, and if

there are too few clusters the output might be such that all of the clusters

contain data elements depicting bad mobility. Thus the user may need to

run the algorithm several times before gaining an acceptable output. The

other possible end point of this backtrack are the sub-phases of phase B.

In this situation, the user needs to modify the input given for the algo-

rithm. For example, the normalization used could be such that it does not

differentiate between different types of terrain sufficiently well, and thus

there are no discernible differences between clusters.

Finally, there is a backwards arrow going from phase D.2 to D.1, which

depicts the fact that the output interpretation is a very interactive task

where the user applies various visualizations in order to interpret the

algorithm output. In essence, the user examines a cluster or a number of

clusters, and then gives these clusters a suitability value. After this, the

user examines new clusters in order to discern their suitability.

8.1.2 Limitations of the Process

The process described in this work is aimed at solving suitability prob-

lems. So far, it has been extensively used to solve the cross-country mobil-
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ity problem, and small experiments have been done with other suitabil-

ity problems, such as suitable locations for artillery pieces and helicopter

landing areas. The most common limitation in suitability analysis are

the often strict requirements for input data. In the current version of the

process described in this work the input must be such that spatial auto-

correlation can be ignored, and the characteristics of each location can be

expressed by a simple numerical value. Thus, for example, selecting good

locations for microwave communication link masts is a difficult problem

to solve using this method. The location of each communication link af-

fects the optimal locations of every other link, and two masts must always

have a line of sight between them. Thus, when the locations of two masts

are selected, the LOS between each two candidate positions must be con-

sidered. The process, as it currently stands, cannot support such analysis.

Up until now the topic of each experiment with the analysis process has

been a suitability problem. However, it should theoretically be possible to

apply the process to any problem, where the effect of each input layer on

the problem can be characterized independently of other inputs, the effect

of each input layer can be characterized using a simple, numeric value on

each location, the output is some kind of combination of the input values

at each location, and the neighborhood of each location has no effect on

the analysis. The data used in the process must also be of sufficiently

good quality. The quality aspects are, however, out of the scope of this

work.

Furthermore, in order to use the process, the analyst, or analysts, must

be familiar with exploratory analysis techniques and with the GIS prob-

lem at hand, as well as the problem being solved. Without a GIS expert

and a domain expert at hand, the process cannot be used.

The current prototype application used to test the process in real prob-

lem solving situation, described in Chapter 9, currently supports only

parts of the process, and contains only limited visualization and computa-

tional analysis functionality. It is by no means a general or industry-ready

implementation of the process.
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In order to validate the analysis process described in Chapter 8, it was ap-

plied in a real spatial analysis situation. Tools available in common GIS

tool sets such as ArcGIS, MapInfo, or GRASS actually cover large parts

of the analysis process. Phases A, B, and D.3 (additional analysis) can

typically be accomplished by the functionality already included in a good

GIS system. Still, current GIS software does not typically include cluster-

ing algorithms or visualizations required for interpreting the clustering

result. Thus, existing GIS software were not sufficient for the needs of

this research.

As described in Chapter 7, current GIS software systems that incorpo-

rate comprehensive visual analytics or data mining tools tend to be re-

search prototypes. Some of them, like GeoVista are quite mature, while

others tend to be rather limited. Another consideration was the fact that

this research was done in cooperation with, and partially funded by, the

Finnish Defense Forces. The FDF had, before the start of the project, de-

cided to adopt ArcGIS as their exclusive GIS platform. Because of this

ArcGIS was adopted as the sole GIS platform of this project and a proto-

type application was built on top of ArcObjects framework. The prototype

application covers phases B.4 (data normalization) through D.2 (output

interpretation) of the analysis process, and contains three data analysis

methods.

There were several reasons for including these phases and only these

phases in the prototype. The by far most important reason was the the

prototype described here is a research prototype designed to verify the

usefulness of the approach described in Chapter 8 and act as a reference

for future development. It was not meant to act as a basis for the devel-

opment of a complete software product. Thus, since the ArcGIS desktop

included the functionality required for the other phases of the process,
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replicating it in a prototype would be unnecessary extra work. Also, since

the functionality in phases C.1 through D.2 is not included in ArcMap,

these phases needed to be implemented. Since the results of a clustering

are highly dependent of the clustering algorithm used, its parameteri-

zation, and the input data, one hypothesis was that iteration between

phases B.4 and D.2 is the most common iteration in the process. Thus,

while phase B.4 could also be done with the functionality offered by Ar-

cMap, this phase was included in the prototype.

Three data analysis methods were included in the prototype. Two of the

methods were clustering methods: k-means and DBSCAN. Both cluster-

ing methods use euclidean distance between data vectors as the distance

measure. The output of these methods is a number of clusters that have a

spatial distribution and a data space distribution. These can be visualized

using a map for the spatial distribution and a parallel coordinates plot for

the data space distribution. The third analysis method was map algebra

local multiplication, where the values are normalized to an interval from

0 to 100. The output of this method is a raster map depicting the differ-

ent multiplication results. It can be visualized using a map for the raster

image and a histogram for the data values.

The prototype application has been implemented using Java, the ArcOb-

jects framework for Java, and the JCharts and JFreeChart diagram li-

braries for creating the information visualization views. Map algebra was

provided by ArcObjects, and k-means and DBSCAN were implemented

using common pseudocode and algorithm descriptions as references.

9.1 Prototype User Interface

The prototype consists of two user interface windows, the main window

and output interpretation window. Themain window, shown in Figure 9.1,

is opened as the prototype is launched. The visualizations in the main

window are standard ArcGIS functionality. On the left-hand side is a

frame listing all open input data layers, and on the right-hand side is a

map frame that visualizes the currently selected input layers.

In the main window, the user can select the input layers for the com-

puterized data analysis, normalize the layers, and parameterize and run

analysis methods. Analysis methods can be run only for layers that have

been normalized. The results of an analysis are visualized in the output

interpretation window, which is opened automatically once the analysis is
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Figure 9.1. Main Window of the Prototype.

ready.

Only the functionality that is absolutely essential for the analysis pro-

cess is included in the main window. Therefore, there are no means in the

prototype for using information visualization views to further explore the

details of the input data layers, and the means of how to apply, for exam-

ple, the normalization of an input layer is rather crude. Since the goal

was not to create a polished software product, but to validate a concept,

this was deemed sufficient for the purposes of this research.

Figure 9.2 shows the output interpretation window for k-means cluster-

ing. At the top of the window are tools for manipulating the map view.

Below the map tools the window is divided into four frames. In the top

row, on the left, is a map visualization frame, and on the right, an in-

formation visualization frame showing the parallel coordinates plot. The

map visualization frame shows different clusters using separate colors.

The user can pan, zoom, and select clusters or individual pixels from the

map for highlighting or more detailed analysis. The information visual-

ization frame contains a PCP, which has four axes that stand for slope,

soil type, amount of vegetation, and cluster number. The user can select

clusters from the PCP visualization for highlighting. One of the clusters is

highlighted in both views. Each time the highlighted cluster is changed,

this change is reflected in both views.

In the bottom row, on the left, is the output interpretation frame, and on

the right a frame showing the cluster details. The output interpretation

frame contains functionality for assigning suitability values to the clus-

ters. The cluster details frame shows the centroid of each cluster and all
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Figure 9.2. K-means clustering interpretation window of the Prototype.

data vectors belonging to each cluster. There is no special functionality in

this frame.

Using the output interpretation window the user can view the details of

each cluster. They can see how the cluster is distributed on the map, how

it is distributed in the data space using the PCP, and view the data vectors

belonging to the cluster. Using this information the user can assign each

cluster a mobility value. Once all clusters have been given a mobility

value, the user can click the ’Color by mobility button’ to see the color

map, and can save the data using ’Save analysis’ button.

The functionality provided by some of the visualization views is rather

limited. The PCP view, for example, is missing some common function-

ality, such as the ability to modify or rearrange the axes. When the pro-

totype was built, it was made for solving the cross-country mobility prob-

lem. It was assumed that each input layer is normalized the same way,

and thus each dimension should be visualized the same way. Further-

more, since the number of input layers used in mobility analysis is typi-

cally rather small, it was assumed that rearrangement of the axes would

not be a very important feature to include. It is, after all, typically used

in order to be able to examine specific dimensions of a large-dimensional

data set. Such bare-bones functionality was thought to be sufficient for

the purposes of this research.

The frames in the output interpretation window are fully customized ac-

cording to the analysis method used in a particular situation. Figure 9.3

shows the output interpretation window for map algebra local multipli-

cation. Instead of a parallel coordinates plot, there is a histogram that

shows how many pixels have a given mobility value. In the interpreta-

76



The Prototype Application and Results

tion frame the user can set the lower limit for each of the three mobility

classes, and divide the area that way. The map view and its interaction

methods are unchanged from the interpretation window for clustering,

except for the different color scheme for the map. This is due to the way

ArcGIS assigns map colors. The user can interact with the histogram by

selecting one or more bars. These bars and the corresponding areas on

the map are then highlighted.

Figure 9.3. Local product interpretation window of the Prototype.

The histogram visualization was selected as the information visualiza-

tion view used for the interpretation of the local multiplication due to the

fact that the output of the local multiplication method gives each pixel a

numerical value representing its mobility compared to other pixels. Thus,

a histogram view of the output map is a natural way to represent this

data, and shows to the user how many pixels of a certain value there are,

and if there are, for example, natural breaks in the data that could indi-

cate separation between different classes of mobility.

In a typical use case, the user starts the analysis using a normal desktop

GIS such as ArcMap. When entering phase B.4 of the process, the analy-

sis moves to the prototype application, where the analysis continues until

phase D.2 has been completed. While testing the system it was noticed

that in a typical analysis scenario, there are several iterations between

phases C and D before an acceptable output is found. After this, the rest

of the analysis process can be done using the selected desktop GIS pro-

gram. In a real application, the functionality of the prototype should be

integrated into the desktop program. For the purposes of this research, a
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9.2 Experimental Verification

The the usefulness of the prototype was tested by applying it to off-road

mobility analysis in Finland. Two experiments were conducted using two

data sets. In the first experiment the goal was to ascertain that the ap-

proach can be used for spatial analysis, and that the results are useful.

This was done by trying to replicate the model–based mobility analysis

done by the Finnish Defense Forces by using exploratory techniques and

visualization. The results were verified by expert evaluation and by com-

parison to the FDF mobility model. This experiment used the data sets

originally produced by FDF for their mobility analysis. The details of this

experiment and its results have been published in Publication VI.

In the second experiment the goal was to ascertain if it is possible to

do the entire analysis process, starting from input data acquisition, suffi-

ciently fast to support the decision making. The data for this experiment

was gathered independently from available sources. The details of this

experiment have not been published previously.

The vehicle for which the mobility was created was the same in both in-

stances: the Patria Pasi armored personnel carrier. The Pasi was selected

as the example vehicle, because the full metadata used in the creation of

the FDF mobility model for this vehicle type was available.

9.2.1 First Experiment: Feasibility of the Analysis Results

The results of the first experiment were reported in Publication VI, and

the following is only an overview of the experiment.

The input data used in the first experiment was soil type, amount of

vegetation, slope data, road data, and building data. Soil type, vegeta-

tion, and slope layers were used throughout the analysis, while road and

building data were integrated to the solution in the additional analysis

phase. In this experiment the vehicle mobility was divided into three cat-

egories: GO, GO SLOW, and NO GO. The FDFmodel divided mobility into

seven categories. Thus, for comparison, the categories in the FDF model

were generalized into three categories in order to make the two results

comparable. The input data and data normalization used were the same

as what had been used in building the FDF model. The data normaliza-
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tion was between 0 and 1 with one-digit precision, where zero depicted no

mobility and 1 perfect mobility.

The experts in FDF suggested the use of three categories in the exper-

iment. The categorization comes originally from NATO usage, and one

of the goals of the FDF was to create mobility maps with this categoriza-

tion. The generalization of the existing FDF mobility model was done by

using expert knowledge. The most important expert knowledge was the

understanding of how the FDF model-based approach works, and from

this deriving an acceptable generalization of existing seven categories.

The area used in the experiment was a part of central Finland that

had both wilderness and urban areas. The wilderness in the experiment

area was divided into two clearly distinct subsections by the Salpausselkä

ridge system. The area was 80km X 80km in size, and pixel size was 25m

X 25m, making the raster images used in the analysis 3200 X 3200 pix-

els in size. The analysis was done several times using both k–means and

DBSCAN clusterings. In order to simulate quick, ad–hoc analysis with

limited information available for the analyst, all roads were categorized

as good mobility (GO) and urban areas were categorized as no mobility

(NO GO). Where the two areas overlapped, roads were given precedence.

It should be noted that in reality datasets had sufficient information for

more detailed categorization, and the urban dataset covered, for example,

airplane runways, which offer good mobility.

The output of the analysis was a number of k–means and DBSCAN clus-

tering results. Eventually three results were deemed the most promising

and were selected for comparison with the FDF data. Two of the results

were gained by using k–means, and one by using DBSCAN. Further eval-

uation revealed that the k–means results were variations of the same k–

mean clustering result, with the values of two clusters reversed. The two

results had been gained using the same input data and the same value

of k, which lead to identical algorithm output, since the implementation

of k–means used in this work is deterministic. Thus, only the one, which

better conformed to the FDF analysis result, was described in Publication

VI. The two analyses were made on different days, and the k–means out-

put had been interpreted differently. In the following these are referred

to as k–means1 and k–means2 outputs.

Detailed results of the experiment can be found in Publication VI. There,

the results have been analyzed using expert evaluation and a misclassi-

fication matrix. The results of the experiment indicate that exploratory
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analysis and visual analytics can be used to arrive at a result similar to

the one gained by using traditional modeling techniques. The misclassifi-

cation matrix analysis showed that the k-means output was a much better

match for the FDF model than the DBSCAN output.

The area in the DBSCAN output, which was labeled GO, was over twice

the GO area in the FDF model. The DBSCAN output covered most of the

GO area in the model, but also included most of the model’s GO SLOW

area, as well as considerable amounts of NO GO area. In comparison, the

corresponding area in the k-means output covered most of the GO area in

the model, as well as some of the model’s GO SLOW areas, with no NO

GO areas covered.

The likely reason for the result of the DBSCAN is in the distribution

of the data elements in the attribute space. Since DBSCAN is a density-

based clustering algorithm, all data element that are sufficiently densely

packed are put in the same cluster. In the experimental data, one such

cluster contained all data elements that depict good mobility, and also

contained data elements, where the slope degree prevented good mobility.

This can be explained by the fact that the experimental terrain contains

rather steep changes in elevation in places where the other input data

values do not change (the soil type and amount of vegetation stay the

same). The k–means clustering, which is distance-based, does not suffer

from the same problem with this data. One of the cluster centers was in

the attribute space location which depicted very good mobility, and thus

one cluster included most of the good mobility data elements.

Comparison of the Two K-means Results

The following discussion will concentrate on clusters k–means1 and k–

means2, and the differences between the two, as these were left out of

Publication VI due to space constraints.

The k–means1 interpretation was similar to the FDF mobility map,

while k–means2 had significant differences. Specifically, k–means2 had

GO SLOW areas that were different from those in the FDF map. GO

areas in the two interpretations were identical.

A further comparison of the two interpretations revealed that the dif-

ference between the two was in two clusters, referred in this discussion

as cluster A and cluster B. In k–means1 result cluster A was labeled GO

SLOW and cluster B as NOGO; in k–means2 A was NOGO and B was GO

SLOW. Figure 9.4 shows a PCP visualization of the two clusters. Cluster
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A is on the left, and cluster B on the right in the figure.

Figure 9.4. Comparison of clusters A and B in k–means interpretations using the PCP
visualization on normalized cluster input data. Cluster A is on the left and
cluster B on the right. The two clusters represent potential GO SLOW areas.
The data axes are, form left to right, slope, soil type, vegetation, and cluster
number.

As can be seen from the figure, cluster A has rather good values on slope

(>= 0,6) and vegetation (>= 0,8), while soil type values are between 0,1 and

0,6. Cluster B has mostly good values on slope (>= 0,6) and fair values on

soil type (between 0,5 and 0,8). Vegetation, on the other hand, has values

between 0,3 and 0,6.Thus, in cluster A the mobility is mainly prevented by

the soil type, and in cluster B, both soil type and vegetation make mobility

worse. GO SLOW in cluster A covers most of the area marked GO SLOW

in the FDF map, while the GO SLOW area in cluster B is mostly NO GO

in the FDF map. Therefore, if we accept that the FDF map is an accurate

depiction of mobility in the area, the k–means1 result depicts mobility

better than k–means2.

9.2.2 Second Experiment: Feasibility of the Analysis Process

The second experiment was a part of the TiTiMaKe–project coordinated

by the University of Eastern Finland. One of the goals of the project was

to create a number of on–line information services that can serve an en-

vironmental monitoring system used, for example, in crisis management.

One of the services was a reachability service, which answers the ques-

tion of how far a vehicle can move from a given position inside a given

time frame. In order to implement a reachability service, a mobility map

is required. This mobility map was created using exploratory analysis

methods.

Thus, the goal of the second experiment was to use the analysis process

in a real situation. This would tell whether it would be feasible to try

and implement the analysis process in an actual application. Thus, the
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second experiment would also answer whether expert users could use the

the analysis process in a real problem solving situation. In experiment

one, it was known that the data used was such that it could be used to

solve the problem. In the second experiment, raw data was gathered from

existing sources without a priori certainty of their usefulness.

The input for the experiment was gathered from various public sources,

and consisted of road, soil, elevation, forest, and swamp data. Building

data was not used in the experiment. Since the experiment area and the

surrounding countryside was sparsely built, leaving the building data out

did not affect the results in any significant manner. In order to ascertain

that knowledge gained during experiment one was not used in this ex-

periment, an FDF Pasi driver was used as a domain expert. He assisted

in analyzing the input data and constructing the normalizations required

for further analysis. The expert was not involved in the implementation

of the mobility model used by FDF, and thus could give an opinion inde-

pendent of the FDF model for the mobility of the Pasi vehicle. Therefore,

he needed to insert his own knowledge into the process instead of copying

the knowledge contained in the FDF mobility model.

Map algebra local multiplication was used instead of clustering to com-

bine the input layers in order to get a more detailed mobility map. The

output was then generalized into 10 off–road mobility values, and road

and water data was overlaid to the map. The best off–mobility was es-

timated to be half the speed that could be achieved while on road, and

water blocked movement completely.

The whole process of map creation was less than 8 hours of work for

two people. Both were expert users, one a GIS expert and the other a

domain expert. Most of the time was actually spent in collecting the data

and preparing it for the analysis. The normalization, computational anal-

ysis, and additional analysis steps took only a small fraction of the total

time, although several iterations of the computational analysis and its

interpretation were required before acquiring an acceptable analysis re-

sult. Most of the time was spent on gathering and preprocessing the input

data. Thus, reusing the same data for some other analysis would take only

a fraction of the time used in the experiment.

The map produced in the experiment was examined using expert evalu-

ation. No glaring problems were found in the test area, and the map was

thus deemed usable for the purposes of the TiTiMaKe project. Since the

main focus of the project was combining the various services together, the
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accuracy of the map was not extensively evaluated. In some parts outside

the test area the map had gross mistakes. The most conspicuous problem

was that the entire center of the city of Kuopio was apparently covered in

water. The reason for this was found in the input soil type data. The soil

type for the city center was omitted from the input, and omitted areas had

the same numerical soil type code as water areas. Thus, when the vector

soil type map was rasterized, omitted areas turned into water.

The experiment demonstrated that it is feasible to create an analysis

from scratch using exploratory methods in a reasonable amount of time.

While the output was not particularly accurate in some places, it was suf-

ficient for its purpose. Together, the two experiments have demonstrated

that experimental methods can be used as an alternative to the tradi-

tional model–based approach. The output, when properly prepared, is of

similar quality to using an existing model, and thus exploratory analy-

sis is a valid alternative to model-based analysis. Furthermore, as has

been shown in Chapter 8, it is possible to formalize exploratory analysis

into a well-defined process. Such a model can be used, for example, to re-

view specific analyses, or develop the analysis process further. However,

it should be noted that the model described in this work is only one way

to formalize spatial analysis. It is by no means the only way, nor should it

be considered definitive.
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10. Discussion

10.1 First Part: Teaching SDA

The main research question in the first part of the thesis was "How can

software visualization be used to help geoinformatics students to learn spa-

tial data structures and algorithms". Spatial data structures and algo-

rithms have been visualized for decades. For example, the original R-Tree

paper by Guttman [42] contained both a tree view and an area view visu-

alizations of the R-tree. Similarly, there are algorithm animations for spa-

tial data, such as the animations related to the works of Samet [99, 101].

However, to my knowledge, these spatial visualizations and animations

are typically implemented without assessing or taking into account the

pedagogical effectiveness of the output.

Hundhausen et al. [49] have shown that meaningful interaction with

visualizations is a requirement for a useful learning tool. Different types

and levels of interaction have been formalized in the engagement taxon-

omy [83] and its extension [80]. According to the engagement taxonomy,

the higher and more involved the interaction between the learner and the

system is, the more likely the visualization is to facilitate learning.

The TRAKLA2 exercises described in this study are one implementation

of interactive visualizations with a high level of engagement. The results

gained from their use on the spatial data algorithms course at Aalto Uni-

versity indicate, that the TRAKLA2 system can promote learning SDA

the same way it promotes learning basic data structures and algorithms.

However, due to the small class sizes the results cannot be considered

definitive. Moreover, as seen in Appendix A, creating such exercises can

be difficult. Thus, some spatial algorithms may require techniques and

approaches different from the ones investigated in this study.
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The main SDA teaching research question was divided into two smaller

problems: "How can spatial algorithms be visualized" and "Do the imple-

mented TRAKLA2 spatial exercises promote learning".

10.1.1 How Can Spatial Algorithms Be Visualized?

The first of these research questions is further divided into three sub-

questions: "What kinds of algorithm visualization elements are available

for spatial visualization", "How does spatial data affect algorithm visu-

alization design", and "How can comprehensible spatial data simulations

be implemented using TRAKLA2". In effect, the topic of these three sub-

questions is what kinds of visualizations can be used in this situation,

how they differ from one-dimensional visualizations, and how such visu-

alizations can be implemented in an on-line learning environment.

What Kinds of Algorithm Visualization Elements are Available for
Spatial Visualization?

The literature that discusses spatial algorithms, such as [27, 28, 25, 34,

35, 36, 42, 46, 76, 99, 101], contain illustrations that use a two–dimensional

view to show the spatial data elements. Therefore, it can be assumed that

an area view is typically assumed to be required in order to visualize spa-

tial data algorithms effectively. In many cases this area view is the only

visualization used.

However, the area view omits the exact details of how the data structure

is arranged, and thus hides information from the viewer. In some cases,

it can be useful to decrease the amount of details shown at once, and

thus perhaps make the visualization easier to comprehend. Decreasing

the amount of details can, however, also hide important information from

the user, and thus hinder their understanding of the topic. Therefore, in

many cases, both an area view, and a more traditional data structure view

are used together in order to give the user a more complete picture of the

situation. Examples of such can be found both in scientific papers [34, 42]

and textbooks [27].

Whether it is better to only use area views, or combine them with data

structure views, depends on the algorithm or data structure in question,

as well as on the level of detail it is described in. In the case of multi-

dimensional trees, such as Quad-tree [34] or R-tree [42], it is reasonable

to use both views. An area view can be used to show how the data is dis-

tributed spatially and how the data distribution affects the tree structure.
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It is hard, however, to use such a view to show certain details of the tree,

such as how the tree nodes are arranged and how data is arranged inside

a given tree node. Thus, a data structure view of the tree is required in

order to show the structure and the details of the tree.

In other cases, the data structure view can either be used, or left out. For

example, in the case of line segment intersection [13], the data structure

level can be included, as demonstrated in [27], or left out as in [25]. The

data structure view included in [27] shows a binary tree. The tree is used

to store the order in which the sweep line intersects the current working

set of line segments, and the visualization shows how the elements are

arranged in this tree. As the order is defined by the position of the sweep

line, it is possible to understand how the algorithm works without know-

ing the details of how the line segments are stored. Therefore, it depends

on the author whether the data structure view is required. By using the

view, the author shows how the algorithm works in more detail, but at the

same time gives the reader more information to comprehend.

Thus, when designing a spatial algorithm visualization, the author must

consider the algorithm in question and the level of abstraction the visual-

ization is on. After such details have been decided, it is possible to select

the views used in the visualization. The more important the internal ar-

rangement of a data structure is for comprehending how the algorithm

works, the more important it is to include a data structure view to illus-

trate the structure. However, adding such a view can sometimes be detri-

mental for the clarity of the visualization. If the focus of the visualization

is on a very high level of abstraction, the details of most data structures

are typically not essential for understanding the topic.

Similarly, in creating algorithm visualizations for spatial data, the use

of an area view is essential. Without it, it is not possible to show the two-

dimensional distribution of the data, and thus the viewer cannot hope

to comprehend what the data set represents. This is unlikely to change

even if interactive visualizations are used instead of static illustrations.

Depending on the situation, data structure views may also be required.

In TRAKLA2 both views are often used. This makes it possible for the

learner to see both how different data elements relate to one other and

how they are arranged in a data structure.

In most cases, the data structure view can be based on the canonical

views described in Section 4.1.1. The two–dimensional area view shows

the area covered by the data, and often includes details about the data
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structure. For example, when visualizing a line sweep algorithm, the area

view also includes a visualization of the conceptual sweep line. However,

since a computer monitor has only two physical dimensions, it is some-

times difficult to distinguish between data elements and other algorithm

artifacts. Methods such as color or emphasis can be used to distinguish

between the two.

How Does Spatial Data Affect Algorithm Visualization Design?

The two-dimensional nature of the data complicates the creation of spatial

data structure visualizations. This ties to the second subquestion "How

does spatial data affect algorithm visualization design". The first obvi-

ous difference between one-dimensional and two-dimensional algorithm

visualizations is the use of an area view to show how spatial data ele-

ments are arranged. The second obvious difference is the use of area and

data structure views together in order to show the data from two differ-

ent points of view. However, it must be mentioned that multiple views can

also be useful in the visualization of certain data structures or algorithms

handling one-dimensional data. The use of multiple views can cause addi-

tional problems in the visualization design. For example, if the amount of

space available for visualizations is restricted, it may be difficult to place

multiple visualizations in the available space.

In case of interactive algorithm visualizations, such as the ones used in

TRAKLA2, the user interface design for spatial algorithms can be more

complicated than for one-dimensional algorithms. Many one-dimensional

data structure exercises can be implemented using one algorithm visual-

ization view. With spatial data algorithms, this is often impossible. The

user has to interact with data elements at a given geographic position by

using an area view, and in a given position in the data structure by using

a data structure view. This requires separate views for the two types of

interaction.

Sometimes the interaction can be even more complex. For example, in

the line sweep exercise described in Appendix A, the learner must be able

to remove elements from the priority queue, add line segment intersec-

tions to the queue, and modify the order of the line segments in the ad-

jacency structure. In order to be able to do all this, the learner must in-

teract with three separate data structures: the queue, the line segments,

and the adjacency structure. Therefore, at least three different views are

required.
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Furthermore, in many spatial exercises multiple views of the same data

are required in order to enable sufficient interaction. For example, one

view can be used to demonstrate the details of the data structure and

another to demonstrate how the data elements are related in two dimen-

sions. The first view could then be used to modify the manner the data is

arranged in the structure and the second to pick data elements according

to their spatial characteristics. Of course, depending on the exercise, the

total number of views required can vary. Several exercises include many

data structures that need to be shown to the learner in order to solve

the exercise. As shown by the closest pair of points exercise described in

Appendix A, including too many views and too complex interaction can

make the exercise unusable. Some exercises, on the other hand, can be

implemented by using only one visualization, as shown by the Delaunay

Triangulation exercises described in Appendix A.

The more complex user interfaces caused by the increased number and

complexity of visualizations can also affect the GUI semantics. In most

TRAKLA2 exercises with one-dimensional data, the semantics of clicking

or dragging are the same: a click selects an element and a drag moves,

copies or swaps it. Spatial exercises often require the modification of the

semantics. Unfortunately, this forces the learners to master the user in-

terface semantics for each exercise separately, which increases the cogni-

tive load each exercise imposes.

This is shown, for example, in the expanding wave exercise in Appendix A,

where the semantics of clicking on a node can be changed using a radio

button. With both radio button settings, the main semantics of click are

to select. The selection, however, has side effects, which depend on the

setting. With "connect" -setting, selection adds the selected point to the

triangulation; with "calculate angle" -setting, selection calculates the an-

gle created by the selected point and two other points. These side effects

of selection are unique to the expanding wave exercise, and the learner

cannot anticipate them before starting the exercise. There are side effects

in most of the exercises. Therefore, each time the learner starts solving a

new exercise, they are exposed to new side effects.

How Can Comprehensible Spatial Data Simulations Be Implemented
Using TRAKLA2?

The third subquestion on spatial data visualization was "How can com-

prehensible spatial data simulations be implemented using TRAKLA2".

For implementing such exercises, TRAKLA2 required new data elements
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that can store multidimensional data, a new two-dimensional area visu-

alization, and an implementation of required data structures, algorithms,

and exercises.

New data elements were required in order to display two-dimensional

data items. The new elements were implemented as structures, or collec-

tions of primitive data elements that have been given semantics. A point,

for example, is implemented as a pair of floating point numbers repre-

senting coordinates, and a string representing a name. The coordinates

define the location of the point in two dimensions, and the name gives it

an identity.

The spatial data elements were used in the implementation of spatial

data structures and algorithms. These, in turn, were used to construct

model answers for exercises, which were used both for checking the cor-

rectness of a submission and for giving feedback to the students. Visual-

izations were used to construct the graphical user interface for the exer-

cises. An area visualization was required for visualizing the spatial data

elements in two dimensions. The area visualization was implemented

to contain both actual data elements stored in the structure, as well as

visual cues of more abstract algorithmic concepts, such as a sweep line

or the minimum bounding rectangle of a polygon. Each exercise also re-

quired a generator of random input data.

Due to the two–dimensional nature of the data, input data generation

was often more complex than in one-dimensional cases. The input data

had to be comprehensible in the area view. Thus, the data items were re-

quired to be, for example, sufficiently evenly distributed but still random.

The exact requirements for input data varied between exercises.

As shown in Appendices A and B, a number of exercises has been imple-

mented in this work. However, as shown in Appendix A, not all of these

implementations were deemed successful. The selection of appropriate vi-

sualizations and user interface semantics for each exercise were perhaps

the two most challenging problems during the implementation process.

The unsuccessful exercise described in Appendix A.3 fails on both of these

accounts: there are too many visualizations, and GUI semantics for the

exercise are very cumbersome. This particular exercise also has several

other problems, which are discussed further in the Appendix.

The problems with the user interface semantics tie to one of the main

design principles of TRAKLA2: a mouse click selects the clicked element,

and a mouse drag swaps, moves or copies the dragged element into a new
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position. For spatial exercises this design principle was broken, mainly

by giving the actions exercise-specific side effects. A selection, for ex-

ample, could add, remove, or change the data, highlight or create new

visualizations, or have other unique effects. Thus, in effect, each exer-

cise used whatever semantics seemed most appropriate for the situation.

At the start of the project, there was insufficient information about the

implementation of spatial exercises in TRAKLA2 for designing expanded

semantics in a systematic fashion. Now, perhaps, it could be possible to

map the semantics down and see if there is a uniform way to approach

the problem in all exercises. One way to do this would be to document the

different types of semantics used in the exercises, and to try to see if they

can somehow be arranged into categories. The categorization can then

be, for example, used in the documentation or system tutorial to show the

learners what kinds of user interface semantics they can expect.

10.1.2 Do the Implemented TRAKLA2 Spatial Exercise Promote
Learning?

The final research question for teaching was "Do the implemented TRAKLA2

spatial exercises promote learning". Due to the small class sizes, it was not

possible to give definitive answers to this research question. Quantitative

data implies, however, that the exercises have an effect on student learn-

ing. Previous research on basic data structures and algorithms has shown

that such exercises can be as effective as class-room exercises. These re-

sults hint that the same can hold true for teaching spatial data structures

and algorithms. Further investigation with a better experimental setup

and a larger number of participants is, however, required before anything

definitive can be said.

Qualitative data shows that the students use the system, and this is

reflected in their exam answers. Therefore, at least some students re-

member what they learned in using the system, and are able to recall and

apply these lessons in an exam situation. Furthermore, the students en-

joy using the system. However, the system must work sufficiently well be-

fore students feel comfortable using it. The interviews highlighted many

aspects of the system the students felt uncomfortable with. These could

use some further work in order to make the system more user-friendly.

The use of automatic assessment also has many other advantages, which

are not directly related to the students’ learning results on the course. A

large advantage for course staff is that the use of automatic assessment
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can help to free resources. Classroom exercises can be replaced by an

automated system, if the two methods have the same effect on learning

results. This can free additional human resources for other teaching ac-

tivities. Furthermore, after a set of exercises has been developed, the

amount of effort required for including them in a course is independent of

the number of students on the course. Therefore, automatically assessed

exercises are most useful in courses with a large number of students.

From the students’ the point of view, web-based automated exercises

give opportunities not present in traditional class-room exercises. The

students can submit their exercises whenever and wherever they wish,

and can be given immediate feedback. In addition, automated systems

allow for resubmission, which can promote learning [74]. Since the system

assesses the exercises automatically, it does not require any additional

resources from the course staff.

10.1.3 Ethical Considerations of The First Part of the Research

The first part of this research used students on a compulsory course as

test subjects. Although the goal of the study - and the initial hypothesis

of the researchers - was that the use of the system improves learning, the

students were not given a choice whether they wished to participate in

the experiment. This raises the question whether it was ethical to use the

students in the research.

When the research was conducted, there were no formal ethical guide-

lines, nor a committee of research ethics at the Helsinki University of

Technology. Therefore, the decisions of how to conduct the research and

how to use students as participants in the experiment were made together

by the author and the supervising professor.

When the decision to include the TRAKLA2 system as an obligatory

part of the SDA course was made, it was the honest opinion of both the

researcher and the supervisor that including the system is an honest at-

tempt of improving the quality of the teaching. Furthermore, the amount

of work included in the course was such, that the inclusion of TRAKLA2

did not cause undue amount of extra effort for the students. After the in-

clusion, the total estimated workload was still well inside the guidelines

given by the university. Furthermore, the students were not placed into

an unequal situation, since everyone had to use the system. Thus, all

students on the same course were given the same teaching, and the same

opportunities for learning.
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Modifications to courses are periodically done by teachers. Therefore,

the inclusion of a new learning method in the form of TRAKLA2 can be

considered as normal part of trying to develop a course for the better. In

all such cases, there is a chance that the change is for the worse. This

does not mean, however, that courses should never be changed. Instead,

change should be encouraged, since all students have the right to the best

possible teaching they can get. Thus, there were no ethical problems in

the research.

10.2 Second Part: Spatial Analysis

The main research question for this part of the work was "How can ex-

ploratory analysis methods be used to enhance suitability analysis". The

idea of exploratory analysis was proposed in the 1970s [116]. Thus, the

idea of data-driven examination of data in order to find novel information

is not new. The term visual analytics, on the other hand, was developed

around the turn of the millennium [114], but the idea of using information

visualization, interaction, and related techniques as part of exploratory

analysis is older. For example, parallel coordinates plot was developed in

the 1980s [52], and research on the topic has been going on from at least

since the 1970s [4, 22].

Exploratory analysis methods have been applied to several GIS prob-

lems [6, 23, 65, 78, 97], and systems designed for the use of exploratory

methods have been developed [8, 44]. There have also been attempts to

create general guidelines of how to apply exploratory analysis for spatial

data [9]. Therefore, there is more than sufficient evidence to claim that

exploratory analysis and visual methods are an accepted part of GIS prob-

lem solving.

In this work, exploratory methods are used to solve the cross-country

mobility problem, which is an example of a suitability problem. The goal

of the suitability analysis is to categorize given locations according to their

suitability for a given task, in this case movement. The problem has tra-

ditionally been solved by using methods based on mathematical modeling

[53, 104, 117]. In this work, it has been shown that exploratory analysis

methods can be used to achieve comparable results. In addition, using the

exploratory analysis process can preserve and create metadata and other

information not present in the model-based method.

The main research question about spatial analysis was divided into two
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questions, both of which were further divided into subquestions. The

first research question was "How can suitability analysis be solved us-

ing exploratory methods", and the second research question was "How ex-

ploratory methods enhance cross-country mobility analysis compared to

the existing model-based approach?"

10.2.1 How can suitability analysis be solved using exploratory
methods?

This research question was further divided into four subquestions: "What

kind of visualizations are available for suitability analysis", "How can

available visualizations be applied to suitability analysis", "How can ex-

ploratory methods be used to solve the cross-country mobility problem",

and "How can the exploratory suitability analysis process be modelled".

The topic of these subquestions is what kinds of visual tools there are

available for suitability analysis, and how the suitability analysis is struc-

tured.

What Kind of Visualizations Are Available for Suitability Analysis?

There are numerous different information visualizationmethods that have

been developed. One way to assess these methods is to review how many

distinct data dimensions and simultaneous data elements they can sup-

port. Some visualizations, such as Chernoff faces [22] or star plots [21]

typically depict only very few elements in a single visualization, and are

capable of handling only a relatively small number of data vectors. Other

methods, such as the parallel coordinates plot [52] can support numer-

ous data dimensions, and a larger number of data vectors. There are also

methods that can handle larger number of data elements andmore dimen-

sions than the PCP. [57]. Depending on the context, the data in question,

and the preferences of the analyst, the best view for each given situation

can vary. The PCP and histogram views were chosen for this research.

The information visualization views must be combined with map views

in order to understand the spatial nature of the data, since a non-spatial

information visualization view cannot adequately convey how the data

elements are arranged spatially. There are numerous different ways to

visualize spatial data [108]. For suitability analysis, befitting thematic

maps need to be selected.
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How Can Available Visualizations Be Applied to Suitability Analysis?

For several suitability problems the input is limited to less than a dozen

layers. Furthermore, at least according to the experiences gained from

this project, each layer can be normalized to a limited number of suit-

ability values without losing any vital information. Thus, the maximum

number of distinct data elements in the attribute space is the number of

data layers times the number of suitability values. Or, if there are k input

layers, and s distinct suitability values for each, the maximum number of

data elements is ks. In practice, the actual number of distinct data ele-

ments is typically much lower, since not all suitability combinations are

actualized. Thus, for many suitability analysis problems, the number of

data dimensions and elements is such that the parallel coordinates plot is

a good initial visualization method.

The parallel coordinates plot can be used to visualize the input data in

the attribute space. In this project, PCP is typically used for normalized

data. In many cases, PCP could also be used to visualize the initial input

data before normalization. If the computational analysis method used in

the process is such that it gives multidimensional data elements as output

- such as clustering - then PCP can also be used to visualize the output of

the data analysis process. In cases where the output of the computational

analysis is one-dimensional - such as local multiplication - some other

visualization is more appropriate. The histogram view used in this work

is one such visualization.

In addition to information visualization views, a suitable map view is

required in order to understand the spatial aspect of the data. Each input

layer needs to be visualized separately or, if the user wishes to visualize

them using a single map, a suitable map visualization method has to be

used. In this work, each input layer is visualized separately, and one map

is used for the output. The variable selected to be visualized on each map

view depends, again, on the computational method used. For clustering

algorithms, the cluster number is shown, and for the local multiplication,

the output of the multiplication is shown. These variables are chosen,

because they characterize the output and are also used in the construction

of the suitability map.

Separately, the map view and the information visualization view give

an imperfect picture of the data under scrutiny. However, by linking the

views together, the analyst can gain a more thorough understanding of

the situation. Only by being able to view the same data elements in both
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the map view and the information visualization view, can the analyst see

the whole picture and thus be able to make informed decisions in each

situation.

There are also other visualizations that can be used. A table view can be

used to get more details of the data value distribution of each input layer.

A textual description of each cluster is included in the prototype, and the

analyst can use it to see the details of each cluster. More visualizations,

such as histograms of the input data layers, or table view of the output,

could also be used if required. These views allow the user more ways to

examine the data sets, and allow them to see specific details on demand.

Such options would allow for the system to be used in varied situations,

and for the analyst to use their individual preferences in selecting how to

view the data.

The important thing about the visualizations is that they are selected

to convey a given message to the analyst. All these messages are such

that they are assumed to help the analyst in solving the given problem.

In this case, it is assumed that in order to solve a suitability problem, the

analyst needs to view the input layers and their meta-data. The analyst

also needs to normalize the input for the computational analysis, and then

interpret the results of the computation.

How Can Exploratory Methods Be Used To Solve the Cross-Country
Mobility Problem?

The analysis process described in Chapter 8 and the prototype implemen-

tation described in Chapter 9 are an example of how to use exploratory

methods for solving suitability problems. The analysis process, described

in Figure 8.1 has four main phases, where the analyst familiarizes them-

selves with the data, modifies it to a format usable in the process, uses

computational methods to gain additional information, and finally con-

structs a solution. The process is user driven, interactive, and iterative,

and thus clearly an example of exploratory analysis.

The system has been demonstrated to be capable of solving the cross-

country movement problem, which is one example of suitability problems.

A number of short, ad-hoc tests indicate that it could also be used to solve

other suitability problems. The input data for this method needs to be

expressed using raster data layers. However, since vector data can be

rasterized, this means that any data layers should be usable inputs for the

process, as long as the layer represents data with no spatial dependencies.

The process outlined here is not the only way to solve the problem. The
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process does, however, contain all steps required in order to create a so-

lution. First, input data is gathered, evaluated, and selected. Then, the

data is modified to be comparable, and each input data layer normalized

to represent its effect on the problem at hand. Then, the input data is

combined, and the combined data is turned into a solution. Each of these

phases is required in order to create a mobility map.

How Can the Exploratory Suitability Analysis Process Be Modelled?

The analysis process is described in Chapter 8, and an overview of the

process is shown in Figure 8.1. As described in the previous subsection,

the process consists of four main phases, which are all required in order to

find the solution. A number of short tests indicate that the same process

could be used to solve other suitability problems, and therefore it has at

least the potential to be general process for solving suitability problems.

While it is likely that some suitability problems can be solved without

using all the subphases of the process, the four main phases are always

required. The third phase of the process, the execution of a computa-

tional method, can, however, be replaced by a user-controlled method for

combining the input layers together. Indeed, suitability problems can be

solved by using sieve mapping, where each input layer is divided into

suitable and non-suitable areas. Areas suitable for the whole activity are

then found by overlaying all input layers together, and declaring areas

that have no disqualifying criteria (non-suitable in any input layer) as

suitable, and other areas unsuitable.

Nevertheless, input gathering, input modification, combination, and pro-

duction of output are phases that will always be required in suitability

analysis.

10.2.2 How Exploratory Methods Enhance Cross-Country
Mobility Analysis Compared To the Existing Model-Based
Approach?

This research question was further divided into three smaller questions:

"How does the output gained from an exploratory process compare to the

output of the model-based approach", "Is there new (meta)data or infor-

mation that can be found using the new process", and "Does the process

based on exploratory methods offer improvements over the model-based

approach". These subquestions discuss the similarities and differences

between the two analysis methods, and possible improvements of the use
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of exploratory methods.

How Does the Output Gained from an Exploratory Process Compare To
the Output of the Model-Based Approach

The model-based approach used in this work was the analysis method

used by the Finnish Defense Forces. The maps created by using this

method originally had eight categories: seven classes of mobility and one

for water. For comparison with the cluster-based mobility maps produced

in this research, the FDF maps were generalized to three mobility cate-

gories. The first category included areas of good mobility, where the vehi-

cle was capable of moving at least half of its maximum speed. The second

category included areas where mobility was possible, but using less than

half of the maximum speed. The third category included areas where mo-

bility was not possible.

The misclassification analysis first reported in Publication VI and de-

scribed in Section 9.2 indicates that the generalized FDF model results

and exploratory analysis results are comparable. There are, of course,

some minor differences. Some of the results, such as the mobility map

gained using the DBSCAN clustering algorithm, give results that are not

consistent with the FDF model. Detailed analysis of the DBSCAN result

indicate that in this case the DBSCAN result is likely to be less accurate

with the reality than the FDF model. The reason for this can be found in

the DBSCAN algorithm itself.

DBSCAN is a density-based clustering algorithm, which means that it

will put into the same cluster all data elements that form a point cloud of

sufficient density. Thus, if there is a cloud of sufficiently densely packed

data elements that includes both the data elements that depict good mo-

bility and data elements that depict bad mobility, these elements are put

into the same cluster. This is what, apparently, happened with the DB-

SCAN clustering algorithm. The only cluster that contained data ele-

ments representing good mobility also contained data elements represent-

ing fair, or bad mobility.

Perhaps, since DBSCAN is density-based, it would be better to use the

algorithm with the whole data set rather than subset with unique data

elements. That way the point density would correspond to the real density

of points in the data set instead of the density of the set of unique data

elements, which might in turn give better results. This was not, however,

tested in this work.

In the second experiment, a mobility map with ten distinct mobility val-
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ues was created. This map was not, however, tested against the FDF

model, since the map was constructed on a location for which we did not

have the corresponding FDF model. Expert analysis of the mobility map

deemed it sufficient for the purposes of the experiment. The map was not,

however, verified using any external data or on-site experimentation.

Is There New (Meta)data or Information that Can Be Found Using the
New Process?

The exploratory method preserves a lot of information that is not pre-

served by the FDF method. The old, model–based approach does not

preserve any metadata about why certain position or area is given cer-

tain mobility value. The only output of the process is the mobility map,

and no information about how the different mobility values came about

is preserved. In contrast, using exploratory, user-controlled methods the

analyst can record the reasons why each area was given a certain mobility

value. For example, when using clustering, the normalizations, the clus-

tering result, and the mobility value decisions made for each cluster can

be stored and later reviewed.

This metadata can be useful later on, if the analysis is reviewed, or

if new analysis is being done based on the same data. For example, if an

area is considered intractable due to the amount of vegetation, it means it

is possible to clear roads through it if necessary. Similarly, if the mobility

map is shown to be inaccurate in some places, the reasons for this can be

investigated. The use of metadata and the information gained during the

process was not further investigated in this work.

Does the Process Based on Exploratory Methods Offer Improvements
Over the Model-Based Approach?

Compared to the existing model-based method, exploratory methods en-

able the analyst and other users to review the analysis process and thus,

for example, make certain that the result is valid. The metadata could

also be used in further analysis, if a similar problem is later encountered.

The model-based approach, on the other hand, is more of a black box,

where data is put in and from which a result is gained. No data about the

procedure itself is preserved, and all further analysis of the conclusions

must be done from scratch.

The ability to review the analysis process has other potential benefits

besides assessing the validity and correctness of an analysis. One of the

initial motivations for this research was the fact that in international cri-
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sis management exercises the different actors working together did not

trust each others’ analyses. The main reason for the distrust was the

inability to ascertain how a given analysis had been produced. When ex-

ploratory methods are used instead of a model-based approach, the meta-

data of the work can be stored for further review. Therefore, it is possible

to give this metadata to other actors, who can then ascertain how a spe-

cific analysis had been conducted and decide, whether they can use the

analysis result.

The method is also flexible and capable of handling many different types

of data. A traditional model typically requires certain types of input

data, and does not work if the data is in a different format or missing.

The bigger role of the analyst in the exploratory method enables them to

use whatever data happens to be available when an analysis needs to be

done. Thus, the new method is more flexible than existing model-based

approaches. Of course, the quality of the input, especially if some impor-

tant data layers are missing, will be reflected in the output and the re-

sults gained may have inconsistencies or errors. However, quality issues

are out of the scope of this work.

10.3 Comparison of the two processes

Two processes have been discussed in this thesis: the process of solving

visual algorithm simulation exercises, and the process of analyzing data

using exploratory methods. In the following discussion these will be re-

ferred to as the "simulation process", and the "analysis process".

Both processes are interactive, and often iterative. In both cases the

process is controlled by the user through a graphical user interface, and

the user’s interaction with the various visualizations is an important part

of the process. In the simulation process, the user interacts with algo-

rithm visualizations that depict various aspects of the data structure or

algorithm being studied. In the analysis process, they interact with infor-

mation visualizations that depict the data being analyzed. Both processes

can be divided into clearly defined phases. Since the process is iterative,

the user may go through some of the phases several times.
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10.3.1 Process Structure

Both the simulation process and the analysis process can be divided into

roughly four phases, which are here called preparation, visual interaction,

algorithm execution, and interpretation. In the analysis process, depicted

in Figure 8.1, these four phases are Preparation for the Analysis, Visual

Data Exploration, Computational Data Analysis, and Interpretation of the

Output. A similar division of the simulation process is depicted in Fig-

ure 10.1.
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Figure 10.1. Overview of the visual algorithm simulation process.

As can be seen in the figure, the simulation process can be depicted us-

ing the same division to four phases as the analysis process. In the prepa-

ration phase the learner consults learning material on the exercise topic

and then starts the TRAKLA2 exercise. The learning material can be, for

example, a course book, lecture slides, or Internet material. In the Visual

Algorithm Simulation phase the learner solves and submits a TRAKLA2

exercise. After submission, the exercise is assessed by the TRAKLA2 sys-
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tem in the Automatic Assessment phase. Finally, in the Interpretation of

Feedback phase the learner reviews the results of their submission and

views the feedback they have received. Depending on the results of the

submission, the learner may either accept the results or go back to a pre-

vious phase in the process and try to do the exercise anew.

In the simulation process there are fewer sub-phases than in the anal-

ysis process, and there are fewer links back to the previous phases of the

process. This is due to the fact that the simulation process is intrinsically

simpler and more constrained than the analysis process. The aim of a

visual algorithm simulation exercise is to teach the learner how a specific

data structure, or an algorithm works. Thus, the interaction the learner

has with an exercise is typically restricted to specific user interface ac-

tions. This is in contrast with the analysis process, where the analyst

typically has the functionality of a full desktop GIS system at their dis-

posal and can select the best way to proceed according to their expert

knowledge and the problem at hand.

10.3.2 Generalization of the Processes

Both the simulation process and the analysis process can be seen as ex-

amples of a general problem solving process, as depicted in Figure 10.2. In

the figure, each process phase containing a face, is an interactive phase,

where the user guides the process. The third phase, which has no face as-

sociated with it, is not user-controlled. The figure also explains the data

or visualizations the user interacts with in each phase of the process.

The figure highlights the similarities between the two processes. Both

can be depicted using four phases, three of which are characterized by

high level of interaction between the user and the computer. The excep-

tion to this is the algorithm execution phase, which typically has minimal

user input. It should be noted, however, that the algorithm execution

phase could also be replaced with an interactive phase, where the user

is in control. Of the three interactive phases, the preparation phase is

characterized by interaction between the user and various information

sources. These sources could range from discussions with other people to

existing literature and databases.

The two remaining phases of the process, visual interaction and inter-

pretation, are characterized by interaction between the user and the vi-

sualizations. In both phases the user manipulates the visualizations in

order to advance the process. In the visual interaction phase the user is

104



Discussion

��������
�� �
�����!�����	�
�� !����������
��

���
����

�"�����
���

����	��

�
����
���
���
��"�0���

����
�'��
���	��
��

)������
�
����
���
���

Figure 10.2. Depiction of a general problem solving process. Face inside a phase depicts
interaction with the user, and the box inside a phase describes what the
user interacts with

interacting with visualizations that depict the input data for the process

and the modifications done to them via user interaction. In the inter-

pretation phase the user is interacting with the output of the algorithm

execution phase.

For example, when using TRAKLA2, the learner views data structure

visualizations and modifies the visualized data structures. The goal is to

simulate the execution of an algorithm. In the interpretation phase the

learner views the feedback given by the system. The feedback consists

of textual and visual components. Textual feedback tells the learner how

many simulation steps they did correctly, and the amount of points they

gained. Visual feedback consists of a model answer which shows how

a real algorithm would modify the data structures. Interaction consists

of viewing different phases of the model answer and comparing it to the

learner’s submission.

10.3.3 Sharing and Transferring Knowledge

Two notable differences between the processes are the knowledge distri-

bution between the user and the software, and the knowledge transfer

between the user and the software. Knowledge, in this context, is defined
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to be the means required to solve the current problem in a manner that

creates an acceptable solution. For TRAKLA2 exercises, the acceptable

solution is a correct algorithm simulation sequence; for cross–country mo-

bility the acceptable solution is a mobility map the analyst considers to be

sufficiently accurate.

For the simulation process, the learning environment contains knowl-

edge of how the given exercise should be solved. When a learner starts

an exercise, the learning environment selects the appropriate visualiza-

tions and shows them to the learner, who is then required to interact with

the visualizations in order to solve the exercise. The feedback the learner

gains when submitting an exercise is designed to enable the learner to

find out where they did mistakes. These facilities have been designed in

order to help the learner create a viable mental model of the topic of the

exercise. Thus, the system helps the learner to gain new knowledge, and

the knowledge is transferred from the system to the learner.

For the analysis process, the user holds the knowledge. The prototype

application described in this work has been implemented to contain as

little knowledge as possible in order to make it flexible and acceptable

in situations where multiple actors need to cooperate. It is possible to

create an exploratory tool that contains knowledge of the analysis process.

However, the review of the available tools, described in Chapter 7 would

imply that the more general the tool is, the less knowledge concerning a

particular problem it contains.

During each phase the analyst inserts their knowledge to the analysis

process. Since the process itself is values-free in its general form, the

analyst needs to do this in order to be able to advance the process. Thus,

here the analyst holds the knowledge, and uses it to guide the process

towards the desired goal. The analyst also gains new knowledge during

the process, as he or she manipulates the data set. During this process,

the data is rearranged and shown using various new visualizations, which

in turn give the analyst a chance to see the data in new ways and thus

find new insight and construct new knowledge.

In addition to the system and the user, there is also a third party in-

volved in the distribution of knowledge: the system developer. Especially

in the case of TRAKLA2, the role of the developer in the knowledge man-

agement is significant. In TRAKLA2, the developer of the system imple-

ments the exercises that the learners must solve. Thus, the developer

originally holds the knowledge, and tries to implement the exercises in a
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way that is consistent with their mental model of the data structure or al-

gorithm at hand. In the case of a data analysis system, the developer does

not have direct knowledge about any specific problem at hand. Instead,

the developer creates a system reflecting the developer’s knowledge about

general problem solving techniques, instead of concentrating on a spe-

cific problem. The only exception is when the system is designed to solve

a specific problem and therefore needs to contain a lot of problem-specific

knowledge. Thus, in the case of the analysis process, the knowledge trans-

fer is from the analyst to the system. The analyst, in turn, can gain new

knowledge by interacting with the system.

Simulation Process 

Developer Learning 
environment 

Learner 

Knowledge  of the developer 
inserted to the exercises  
during implementation 

Learner interacts with 
the exercise 

The learner gains new insight 
and knowledge through 
the interaction 

Knowledge is stored in the  
learning environment 

Analysis Process 

Developer Analysis 
Software 

Analyst 

The developer implements 
various methods for  
problem solving 

Analyst tries to solve 
a problem 

The analyst gains new insight 
and knowledge through 
the interaction 

Software contains various 
problem solving tools 

Figure 10.3. Knowledge transfer between the system and the user, as well as the system
and the developer. Orange arrows show knowledge transfer, while black
arrows show interaction and other effects.

Figure 10.3 shows how knowledge is transferred between the system

developer, the software, and the user. Orange arrows in the figure show

transfer of knowledge, while black arrows stand for other types of inter-

action. The difference between the two processes can easily be seen in

the figure. In the case of the simulation process, the knowledge is trans-

ferred from the developer to the learner via the learning environment; in

the case of the analysis process, the knowledge transfer is between the

analyst and the system.
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10.3.4 Improving the Processes

The general outline of the process depicted in Figure 10.2 and the knowl-

edge transfer model depicted in Figure 10.3 show how both the simulation

and the analysis process can be structured. The processes have much in

common, but are also in some ways the mirror images of each other. This

structure can potentially be used to help, for example, in the design of

an analysis, in the design of an analysis software, or in the design of an

educational system.

In the simulation process the developer creates an exercise, into which

they store their knowledge of the exercise topic. The exercise is designed

so that when a learner tries to solve the exercise, the knowledge stored

in the exercise should be transferred to the learner. This is done by the

learner testing their mental model of an algorithm against the implemen-

tation originally created by the developer, and visualized using the learn-

ing environment. It is via this visualization, that the knowledge of the

developer can be transferred to the learner.

In the analysis process, on the other hand, the analyst uses their knowl-

edge to guide the analysis process. They also insert their knowledge to the

process and to the analysis software as required. Typically, this knowl-

edge is not completely documented or stored in the system for future use.

However, if the metadata and the knowledge about the analysis process

were to be stored, it would make it possible to improve the analysis pro-

cess in several ways.

First, a stored the analysis process can be reviewed. If the data is stored,

it is later possible to see how a particular result was reached, and verify

whether the result is valid. In order to do this review thoroughly, a lot of

information about the analysis process needs to be saved. For example,

in order to later review a cross-country mobility analysis, at least the fol-

lowing need to be stored: the original input data, all data manipulations

done for it, the preprocessing done in order to make the data compatible

with the algorithmic method used, the algorithm parameters, algorithm

output, and interpretation of the output. In the optimal case, also the ana-

lyst’s reasoning for each action would be stored, but that would likely lead

to a situation, where the analysis process itself becomes too complex and

cumbersome compared to the amount of benefit gained from the increased

effort required.

Second, if the decision making processes done by the analyst could be
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Figure 10.4. Learning under teacher supervision, and with an automated system.

stored in addition to the other metadata of the process, it might also be

possible to use the stored information for teaching purposes. Currently,

classroom exercises are used in the teaching of spatial analysis at Aalto

University. In the exercise session the teacher gives students analysis

tasks they need to complete. The teacher may also show an example of

how the analysis task can be solved. If the students have questions or

problems, the teacher is there to help them. At Aalto, this works well on

most courses on spatial analysis, since the class sizes tend to be small.

However, as the number of students increases, the amount of teaching

resources required for this type of teaching also increases. Thus, when

the class size become sufficiently large, alternative teaching methods,

such as web-based learning environments, may become an attractive al-

ternative. If automatically assessed, web-based exercises could be used

to help teaching spatial analysis, the amount of teaching resources re-

quired per student would decrease dramatically. Such exercises would

also have other advantages over class-based ones, such as support for dis-

tance learning.

Of course, implementing such a web-based system would be a major un-

dertaking requiring considerable resources. In such a system, the knowl-

edge transfer would be similar to the simulation process. The developer

needs to insert their knowledge into the system, where it is stored. Then,
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the learner interacts with the system in order to gain new knowledge from

it. In the current instruction model at Aalto, the software used does not

contain knowledge about the problem. Instead, it is used merely as a

medium of knowledge transfer from the teacher to the learner.

The difference between the two learning approaches is shown in Fig-

ure 10.4. The top of the figure represents how knowledge is transferred in

the teacher-led approach. The teacher gives the students exercises they

need to solve, and instructs them in the problem solving process. The

software is used to facilitate learning, but does not contain any knowl-

edge about the problem solving process in itself. When using a learn-

ing environment, the developer’s knowledge is stored in the system and

the learner gains knowledge by interacting with the system without any

teacher intervention.

The actual implementation of the learning environment could have sim-

ilarities to the Alice visual programming environment [24]. Alice has

tutorials for teaching how the framework can be used. These tutorials

strongly limit the amount of user interface actions available for the user,

and thus force them to use particular actions. The goal of the tutorials is

to help to learn how the system can be used. Similar methods could be

used to teach the learner how to use a system for learning spatial analy-

sis without teacher intervention, and guide them towards a specific way

of solving an analysis problem. After the learner has cleared the tutori-

als, they can be given exercises where all user interface functionality is

available.

There are, however, several other factors that need to be taken into con-

sideration when building a learning environment for spatial analysis. For

example, for many spatial analysis problems there is no unambiguous

correct solution. This may complicate the creation of an automatic as-

sessment system for the environment, since the system would have to be

able to assess whether a given solution is acceptable or not. When the

correct solution is not unambiguous, designing an automatic assessment

procedure is likely to be rather challenging.
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11. Conclusion

This work has concentrated on two processes that are iterative, interac-

tive, and characterized by a high degree of interaction between the user

and various visualizations. The visualizations used in the simulation pro-

cess, in which the user tries to solve spatial data algorithm exercises, are

quite different from the visualizations used in the analysis process, in

which the user tries to analyze a spatial problem. The simulation process

employs algorithm visualizations, which depict the status of a data struc-

ture or a number of data structures using various views. The focus is on

showing how data is arranged in a data structure. The analysis process,

on the other hand, uses map and information visualizations in various

ways to depict the data being analyzed. The focus is on showing the data

and the relationships between data items.

Despite these differences, the two processes have much in common. Both

are user-driven, often highly iterative, and enable interaction with the

computer through the manipulation of visualizations. Furthermore, both

processes can be depicted using the same overall structure of prepara-

tion, visual interaction, algorithm execution, and output interpretation.

The knowledge transfer between the system and the user, and between

the system and the system developer, is also similar in the two processes.

In many ways, the two processes mirror each other.

In the simulation process, the developer has inserted their knowledge

into the system during system development, and as the user solves ex-

ercises, the knowledge is transferred from the system to the user. Thus,

the direction of the knowledge transfer is from the system to the user.

Or, from the point of view of mental models, the developer has created

the system in such a way that it challenges users with non-viable mental

models.

In the analysis process, the user holds the knowledge, and inserts their
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knowledge to the system during the process. The developer has merely

enabled this knowledge insertion by implementing a number of visualiza-

tions and tools in the system. The user reflects on the feedback the system

gives to them during the process. This feedback enables the user to guide

the analysis process and, if possible, gain new knowledge about the sit-

uation. Thus, the direction of knowledge transfer is from the user to the

system. Or, from the point of view of mental models, the system enables

the user to see whether their mental model of the situation is viable, and

if not, adjust the model accordingly.

This research has also shown, that the simulation process can help to

teach spatial data algorithms, and that the analysis process can be used to

solve spatial analysis problems. Thus these processes offer an alternative

to traditional class room learning for teaching SDA, and and alternative

to spatial models in analyzing problems. In neither case can the work be

said to be complete.

The TRAKLA2 spatial extension constructed in this research contains

approximately a dozen exercises, which cover only a small part of what is

actually discussed on the Aalto University spatial data algorithms course.

Thus, there is much work to be done, before the system contains a suffi-

cient range of exercises for the students to benefit from them throughout

the course. Furthermore, all the exercises currently implemented cover

algorithms where the data is in vector format, meaning that each data el-

ement is a distinct object, which has a location, an extent, and a number

of attribute values. In addition to vectors, spatial data can also be stored

as rasters, or fields, where the value of specific spatial attribute is stored

separately for each location. This raster data format is used, for example,

in the cross-country mobility analysis discussed in this work.

There were efforts to develop raster data exercises during the first part

of the research. However, no worthwhile method for making visual al-

gorithm simulation exercises for raster data was found. Vector data,

and vector data structures typically work well with algorithm simulation.

With different input, the user typically needs to do different manipula-

tions to the visualizations in order to accomplish their goal. This reflects

the fact that typically with vector data, the algorithm execution differs be-

tween different inputs. In other words, the input affects how the control

structures of the algorithm behave.

With raster data and raster data structures, the input typically has little

effect on the algorithm execution. The same lines of code are executed in

112



Conclusion

the same order, and the difference is typically only in the output of the

calculations done on specific code lines. In other words, the input typically

does not affect how the control structures of the algorithm behave. Thus,

TRAKLA2-style algorithm simulation exercises would not work for raster

data, since the simulation steps would not depend on the input data.

This thesis does not prove that the implemented TRAKLA2 exercises

are particularly effective or helpful learning tools. The results gained

from two courses, where the system was used, are promising and indicate

the system might help students to learn. However, the small class sizes

and the lack of a control group make the results very hard to interpret.

Therefore, no definitive conclusions can be made.

Similarly, the prototype for exploratory analysis of suitability problems

constructed in this research contains only the functionality required to

solve the example problem, which was not directly supported by the ESRI

ArcMap desktop GIS environment. It is a long way from being a complete

software product that could be given to other people for use. There are

many aspects in the prototype that would need to be changed before it

could be used to comfortably solve suitability problems in general, since

the initial version was meant only for mobility analysis. In the analysis

window, for example, it is assumed that the area is split into three cate-

gories, which are explicitly identified as GO, GO SLOW, and NO GO; the

colors used for depicting these areas in the visualization views are orig-

inally taken from the FDF mobility maps, etc. Thus, new functionality

could be added to the prototype to make it more useful, and there are also

several ways, in which the prototype user interface could be improved.

The testing that was done to ascertain the usability of the prototype

was similarly rather limited. The experiments show that it is possible to

get results similar to the FDF model using an exploratory process and k-

means clustering, and that a mobility map for a given area can be created

from scratch in a rather short amount of time. There were also some in-

formal, short tests with other problems, the results of which indicate that

the system could be used to solve them. However, no systematic larger

testing with a larger number of problems, on a larger geographical scale,

or with more users, were conducted. Therefore, no definitive conclusions

can be drawn on the generality, usability, or suitability of the system.
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11.1 Future Work

The results of the simulation process research could use further verifica-

tion. The number of students in the classes where TRAKLA2 was used

was small, and thus the results obtained are not definitive. Furthermore,

no control group was arranged due to the small class size. Thus, a further

experiment with a larger number of students would be useful. It might

be possible to arrange for such an experiment in cooperation with another

course at the Aalto university.

The spatial expansion to TRAKLA2 could also benefit from further de-

velopment. The number of exercises implemented is rather small and cov-

ers only a part of the spatial data algorithms course. However, if further

exercise development were to be done, part of the focus should be on the

development of the user interface semantics. The current TRAKLA2 se-

mantics, which are based on clicking or dragging data structure elements,

seem to be insufficient for many spatial data algorithm exercises. The de-

fault click and drag semantics (selection and movement/copying) need to

be modified in many exercises. This, in turn, makes it harder for the stu-

dent to solve the exercises, since they first need to learn the user interface

semantics before being able to concentrate on solving the exercise itself.

The more complex user interface semantics could be shown, for exam-

ple, by using a toolbar. This way the learner would know the possible

semantics beforehand, and know what kind of semantics are used in each

exercise immediately upon starting the exercise. Some steps towards this

have been taken in the system in the form of tool tips that are shown when

putting the cursor over a visualization. The tooltip shows the semantics

active for that particular visualization.

However, before such a user interface element could be implemented,

the developers should have a clear vision of what types of semantics are

required in spatial data algorithm exercises. This would require a thor-

ough review of the existing exercises as well as design work on how the

system could be further expanded before implementation.

In this work the experimental and visual spatial analysis process was

applied to only one problem, off-road mobility. There were a few short, in-

formal experiments, in which the process was applied to other problems,

including artillery battery locations and wireless communication link lo-

cations. However, these experiments did not include any true verification

of the results beyond brief expert evaluation. According to these eval-
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uations, it seems that the process can be used to solve these problems.

However, the results of these experiments are not on a level where they

could be included in any scientific report. Thus, one possible direction of

future work would be to verify the generality of the described process by

applying it to a number of different problems and evaluating whether the

results gained are useful.

The current prototype application used to test the process has rather

a limited functionality. There are only a handful of computational anal-

ysis methods and just a few visualization views in the prototype. For

future research, it would be interesting to take, for example, an existing

visual analysis application and combine that with an existing data min-

ing framework in order to increase the number of available visualizations

and computational methods. This would also make it possible to evalu-

ate the various analysis methods and the overall process in a much more

robust way.

Another possible future direction is research on how to store and use the

metadata of an analysis process. Stored metadata can be useful later on if

the analysis is reviewed or if new analysis is being done on the same data.

For example, if some area is considered intractable due to the amount of

vegetation, it means it is possible to clear roads through it if necessary. If

some parts of the mobility map are shown to be inaccurate, the reasons

for this can be investigated. This possibility of storing metadata about the

analysis process and the decisions made during the process thus enables

further work and research.

The comparison of the two processes revealed many similarities and dif-

ferences in the processes; how they can be arranged, and especially how

the transfer of knowledge between the system and the user is arranged.

This work could be used as a starting point for further knowledge manage-

ment research. The goal of such work could be, for example, to identify,

categorize, formalize, and store the knowledge gained during a problem

solving process. Such knowledge could then be used to help in solving sim-

ilar problems. The simplest use for such knowledge would be to have the

system store normalizations for further use. A more complicated example

would be to use stored analysis processes as a basis for an automated or

semi-automated spatial analysis learning environment.
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A. Spatial Data Exercise Examples

A.1 Line Segment Intersections

The line segment intersections problem is as follows: given a set of possi-

bly intersecting line segments, a line segment intersection algorithm finds

all intersections. Such problem is trivial for a human to answer, once the

line segments have been drawn. For a computer, however, the problem

is non-trivial. The conceptually simplest way of solving such problem by

computer is to compare each line segment to all others. Such approach,

however, would make O(n2) comparisons. When the number of line seg-

ments grows large, such an algorithm will become inefficient.

A more efficient solution is to use line sweep to solve the problem [13].

In the line sweep approach a conceptual sweep line will be moved across

the plane, stopping at points where interesting events happen. In this

problem, the endpoints of line segments and their intersections are such

events. The line sweep algorithm is capable of finding all line segment

intersections inO(nlogn+klogn) time, where k is the number intersections

in the data set.

Figure 1.1 contains a screenshot of the TRAKLA2 exercise applet for

the problem. The applet contains four data structure views. In the top

row there is a tree view of a binary heap, which is used as a priority

queue, and an area view showing the line segments, their intersections

and the current position of the sweep line. In the bottom row there is

the adjacency structure used by the algorithm, visualized as an array,

and a linked list for storing the output. In the figure, the student has

started solving the exercise. As can be seen from the area view, three

line segment intersections have been discovered in the simulation and are

explicitly shown. Intersections are explicitly drawn to the area view when
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the corresponding line segments are next to each other in the adjacency

structure, simulating how a real algorithm finds the intersections.

Figure 1.1. Line segment intersections with line sweep.

With the exception of the output visualization, all visualizations in the

exercise are actually representation level views. The priority queue used

in the exercise is a binary heap, which is actually implemented using an

array. In the exercise the heap is visualized as a binary tree. Similarly,

the adjacency structure in the algorithm is typically a balanced binary

tree, such as red-black tree. However, since the purpose of the structure

is to order the line segments according to where they intersect the sweep

line, we decided to visualize the adjacency structure as an array. In an

array the order of the segments is easy for a human to see.

The area view is also a representation level visualization, although sig-

nificantly different from the two other representation level views. Fur-

thermore, the area view shows a conceptual element that is actually not

explicitly included in a real algorithm implementation: the sweep line.

Typically, the sweep line is implicitly stored as the y-coordinate of the lat-

est element taken from the priority queue. In the exercise, it needs to be

explicitly implemented in order to be visualized.

To solve the exercise, the student simulates the algorithm by dequeue-

ing elements from the priority queue, maintaining the adjacency list, and

adding intersections to the priority queue and the output. Snapshots of

the solution process can be seen in Figure 1.2. the top left snapshot de-

picts the situation at the beginning of the simulation, when no elements
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have been handled. The second snapshot, at the top right, shows the visu-

alizations after four elements from the priority queue have been handled.

The bottom left snapshot depicts the situation after more elements have

been handled, and bottom right snapshot shows the situation at the end

of the simulation process.

Figure 1.2. Four snapshots of solving the line segment exercise. Snapshots start at the
top left, and end at the bottom right picture.

The line segment intersection exercise has been used on the SDA course

for three years. It was completely re-designed after the first year, and

Figure 1.1 illustrates the current version. In the original design the sweep

line swept from left to right and was not visualized, and the line segment

endpoints and intersections were visualized using much larger elements.

The original version of the exercise was much harder for the students to

solve than the current version, and most gained approximately 50% of

the points. Using the new version students typically gain 80-100% of the

points from the exercise.

The exercise combines views on very high level of abstraction (the area

view), with views that are closer to the actual implementation (the other

views) in order to show the student both the problem instance, and the

data structures the algorithm uses to solve the problem.

A.2 Several Exercises On the Same Topic: Delaunay Triangulation

Delaunay triangulation is a triangulation of point set P such that no point

in the set P is inside the circumcircle of any triangle. The Delaunay tri-
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angulation is a very important structure in many spatial problems, since

each point in the triangulation is connected to its closest neighbouring

points, the triangles have as equal angles as possible, and the Delaunay

is a dual of the Voronoi diagram for the point set [85]. Both Delaunay and

Voronoi have numerous applications in geoinformatics.

Delaunay triangulation and Voronoi diagram are, on the conceptual level,

more complicated than line segment intersections. Whereas finding inter-

sections is trivial for a human, constructing a valid Delaunay or Voronoi

is not. Therefore, before discussing algorithms that construct, modify, or

use the structures, the students need to learn the concepts behind them.

Therefore we made several TRAKLA2 exercises about Delaunay triangu-

lation, two of which deal with the creation of a Delaunay Triangulation.

In the first exercise, the student needs to build a valid Delaunay trian-

gulation for a set of points. No specific algorithm needs to be followed, and

the exercise is assessed by comparing the student’s solution to the actual

Delaunay (which is unambiguous) for the point set. The applet for this

exercise can be seen in Figure 1.3. In the Figure, the student has started

solving the exercise. The exercise shows the Delaunay edges in white, cor-

responding Voronoi edges in dark grey, and the student has highlighted

one triangle, for which the circumcircle is drawn using red dash line. The

additional point shown in the Figure is the meeting point of three Voronoi

edges (and coincidentally over one Delaunay edge), and the center of the

circumcircle.

The student solves the exercise by clicking on pairs of points. If the

points are not connected, a new Delaunay edge will be added between

them, and if the points are connected, the existing edge will be removed.

Snapshots of a solution process can be seen in Figure 1.4. The top left

snapshot shows the beginning of the simulation when no Delaunay edges

have been added. The top right snapshot shows that the student has

started solving the exercise by connecting the points of the convex hull.

In the bottom left picture, the Delaunay triangulation is approximately

halfway done and the Voronoi diagram is starting to take shape. The bot-

tom right picture shows the completed Delaunay and the corresponding

Voronoi.

The goal of the Delaunay construction exercise is for the student to fa-

miliarize him- or herself to the concept of Delaunay triangulation, and

to be able to create a valid Delaunay for a small point set. Since no ac-

tual algorithm is used in the exercise, there are not set data structures
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Figure 1.3. Delaunay construction exercise.

Figure 1.4. Snapshots of the Delaunay construction.

in it either. Therefore, the only view used in the exercise is an area view.

The area view can be understood to be either representation or domain

level view. The view includes some algorithmic information in the form

of circumcircles and their minimum angles and therefore can be seen as
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representation level. However, the data structures used are not visualized

in any way, and therefore the structure can also be seen as domain level

visualization. It thus demonstrates how differences between the levels of

abstraction can be fuzzy.

In the second Delaunay construction exercise, the student needs to sim-

ulate the expanding wave -method for Delaunay construction [76]. With

this method the Delaunay triangulation is created by sweeping around

each point of the set in turn, connecting the current point to all of its

Delaunay neighbours. Data structures the algorithm uses are a set of

auxiliary points that form a border around the point set and a queue.

The expanding wave exercise applet can be seen in Figure 1.5. There

are two views in the applet. On top there is an area view, which shows

the point set and the Delaunay triangulation under construction. The cur-

rent point to be handled is shown in red, and its latest found neighbouring

point in yellow. The circle drawn in the picture is used to find new neigh-

bour candidates, which are drawn in green. Next to the area view are

two radio buttons which are used to modify the semantics of clicking on a

point in the area. Below the radio buttons there is a “Get candidates” but-

ton, which will draw a circle to the area view. Both the current point and

the current neighbour will be on the on the edge of the circle. Clicking on

the button again will draw a new, larger circle. This feature can be used

to find neighbour candidates. At the bottom there is a queue visualized as

a linked list.

The student simulates the expanding wave algorithm by manipulating

the area view and the queue. Removing an element from the queue will

cause it to become the current element in the area view and be colored

red. Then, the student can select neighbouring elements , or measure

angles from the area visualization, in order to construct the Delaunay

triangulation. New elements can be added to the queue by dragging and

dropping the corresponding point from the area view to the queue. The

gradual construction of the triangulation can be seen in Figure 1.6. The

queue has been omitted from the figure.

The two visualizations used in the exercise are on different levels of ab-

straction. The area view, which shows the points, the Delaunay triangula-

tion being constructed, and the circle for selecting neighbour candidates,

is clearly on representation level. The actual data structure implementa-

tion is hidden, but several elements used in the algorithm and the trian-

gulation being constructed are visualized in the view. The queue view, on
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Figure 1.5. The expanding wave method.

Figure 1.6. Snapshots of the expanding wave exercise.

the other hand, accurately depicts how the queue used in the exercise is

implemented as a linked list and thus is on data structure level.

A.3 An Unsuccessful Exercise: Closest Pair of Points

The closest pair of points problem asks what is the shortest distance be-

tween two points in a given point set. The problem can be solved in

many ways. The conceptually simplest solution is to calculate the dis-

tance between all point pairs in the set, leading to a O(n2) runtime. More

efficient solutions can be achieved, for example, as by-product of calcu-
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lating the Delaunay triangulation of the set. After all, the closest point

pair are neighbours in the triangulation. The problem can also be solved

by a divide-and-conquer algorithm originally described by Preparata and

Shamos [93]. These more efficient methods can solve the problem in

O(nlogn) time.

The divide-and-conquer algorithm works by splitting the point set into

two smaller subsets, for which the closest pair problem is then solved

recursively. When two subsets are merged, the closest pair is either the

current known closest pair, or a pair where the first point is in one subset

and the second point in the other subset. The algorithm keeps track of

the closest known pair of points, and during each merge-operation, the

points sufficiently close to the dividing line between the two point sets are

examined for possible closest point pair. The merges in the algorithm are

based on the merge operation used in the merge-sort algorithm.

A TRAKLA2 exercise of the algorithm was used on the 2007 course.

After the course, the exercise was reviewed, using the students results

and expert opinion. The students’ results in the exercise were much worse

than their results in most other exercises on the course. Furthermore, the

user interface was deemed to be very complicated and the exercise gave

an overall impression of being messy and hard to understand. Therefore,

we decided to remove the exercise from the course.

The exercise applet can be seen in Figure 1.7. As can be seen from the

figure, the applet contains a large number visualizations. At the very

top, there is an array holding the point set. In this visualization, the

coordinates of each point are shown, since those are required in the merge

part of the algorithm. Below the point set, there is an auxiliary table used

in the merge part of the algorithm, and next to it is the array for holding

the current known closest pair. Below that is an area view of the point

set, where the part of the area relevant to current merge shown in green.

next to the area view is a call stack, used to keep track of where in the

recursion tree the algorithm currently is. Below the call stack there is

button for moving points from the auxiliary table to the table holding the

point set (“move”) and buttons for manipulating the call stack (“call” and

“return”).

As can be seen from Figure 1.7, the user interface to the exercise con-

tains more views than the GUI of any other exercise described. Further-

more it is not initially clear what the function of each view is. For example,

the area view highlights the subarea on which a new closest pair should
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Figure 1.7. The expanding wave method.

be searched for. However, not all points in this area need to be considered

in a given merge, since some of them may not be included in the currently

handled subsets. Relevant points have not, however, been highlighted in

any way, and need to be identified using the array visualization. Further-

more, in order to solve the exercise, the student needs to manipulate all

the visualizations in the exercise, and in many operations needs to keep

track of the state of several visualizations at the same time. Therefore,

the GUI of the exercise is very complex, and it probably takes a student

quite a lot of time to comprehend both what should be done, how it can

be done, and how the different GUI actions correspond to different parts

of the algorithm. Therefore we actually hypothesize that many students

who were able to solve the exercise did not comprehend how the GUI op-

erations translate to operations of the algorithm. They merely learned

how to “win the game” in this exercise. However, since no students were

interviewed in the 2007 course, we could not test this hypothesis.

The root of the problem in the closest pair exercise is probably including

the whole algorithm in a single exercise, on a very high level of detail.

There are several rather difficult concepts that all need to be understood

in order to comprehend how the algorithm works. First, the algorithm

divides the points into smaller sets using the same recursion principle

as the merge-sort algorithm. Second, before the algorithm executes, the
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points are already sorted according to their x-coordinate. The points are

sorted again, according to their y-coordinate, during the algorithm’s ex-

ecution. Third, during each merge, the points that are in the merged

sets are compared to see if a new closest point pair is found. The points

are compared to each other in a bottom-up fashion according to their y-

coordinate. All these aspects of the algorithm need to be understood in

order to truly comprehend how the algorithm works and be able to sim-

ulate it. This makes the whole algorithm conceptually very hard. Com-

bined with the complex user interface, this makes the cognitive load for

this exercise extremely high [88]. This, in turn, makes the exercise hard

for students to solve, and probably even harder to truly understand.

A better approach would probably have been to either split the exercise

into several exercises, like was done with the Delaunay triangulation, or

at least raise the abstraction level in order to hide some of the algorithmic

details. However, many of these faults were truly understood only after

the exercise had already been used on the course for the first time.

Currently, the exercise has not been modified after being taken from

the course, and there are no plans of doing more development work on it.

This is mostly because the closest pair problem, at least in the number of

dimensions typically used in geoinformatics, can be efficiently solved us-

ing Delaunay triangulation. Therefore, from the pedagogical point of view,

the only reason for including this algorithm is for teaching the divide-and-

conquer problem solving method. There are, however, numerous other

algorithms that use the method and therefore the closest pair of points

algorithm is not essential for the course.

The closest pair algorithm was not the only algorithm for which we were

unable to create a sensible TRAKLA2 exercise. There were two other

cases during the project: Fortune’s algorithm for Voronoi construction [36]

and a polygon network traversal algorithm by de Berg et al. [28]. In the

case of Fortune’s algorithm we were not able to create satisfactory GUI

interaction for manipulating the beach line used in the algorithm. For

the polygon traversal we discovered that TRAKLA2 did not have a good

visualization for the Doubly Connected Edge List data structure used in

the algorithm. Unfortunately, we did not have sufficient resources for

developing a new visualization view just for illustrating the DCEL.
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Table 2.1. Spatial exercises in the TRAKLA2 system.

Name Description Years used

Point in polygon The learner is to find whether a point is inside

a polygon by counting the number of intersec-

tions a half-line drawn from the point has with

the polygon.

2007, 2008

Closest pair of points The learner is to find the closest pair of points

in a set of points by using a divide-and-conquer

approach based on the mergesort algorithm.

2007

Douglas-Peucker line simplification The learner is to simplify a polyline using the

Douglas-Peucker line simplification algorithm.

2007,2008

Line sweep The learner is to find line segment intersec-

tions in a set of line segments by using the line

sweep algorithm. The exercise was completely

redesigned between the two courses.

2007, 2008

Voronoi construction The learner is to construct a valid Voronoi dia-

gram from a set of points. There is no need to

follow a specific algorithm, only the end result

is assessed.

2008

Adding a point to TIN The learner is to add three new points to a De-

launay triangulation and to modify the trian-

gulation so that it still stays valid. There is

no need to follow a specific algorithm, only the

end result is assessed.

2008

Expanding wave-method The learner is to construct a Delaunay trian-

gulation using the expanding wave algorithm.

2007, 2008

Visibility with rotational sweep The learner is to find polygon end points visi-

ble from a given point by using the rotational

sweep algorithm.

2007,2008

R-tree insert The learner is to insert a number of polygons

into an R-tree.

2007,2008

Point-region quadtree insert The learner is to insert a number of points into

a point-region quadtree.

2007,2008

Point in polygon with R-tree Point in polygon where the edges of the poly-

gon are in an R-tree and the learner must

search the R-tree for edges that may cross the

half-line.

2007,2008
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