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1. Introduction

1.1 Motivation

Wireless communication has been the fastest growing segment of the com-

munications industry in the last decade. As a result, wireless systems

have become ubiquitous with several applications (e.g., cellular telephony

and wireless internet) and various devices (e.g., mobiles, laptops, and

tablets). In addition, new applications like wireless sensor networks,

automated factories, smart home appliances, remote telemedicine, and

many more are emerging from research ideas to concrete systems [1].

With the incredible growth in the number of wireless systems and ser-

vices, the availability of high quality wireless spectrum has become severely

limited. This is evident from the frequency allocation charts for Fin-

land [2] (see Fig. 1.1) and the United States [3]. This has lead to a com-

mon belief that the spectrum is a scarce resource and it is difficult to find

spectrum for new applications. However, actual measurements carried

out in various countries show that most of the radio frequency spectrum

is inefficiently utilized with spectrum utilization mostly in the range of

5%-50% [4–7]. Therefore the real problem is not the spectrum scarcity

but the inefficient spectrum usage. This inefficiency results from static

spectrum allocations, rigid regulations, fixed radio functions, and limited

network coordination.

Cognitive radio offers a novel solution to overcome the underutiliza-

tion problem by allowing an opportunistic usage of the spectrum resources.

This is evident from the definition of cognitive radio adopted by the Fed-

eral Communications Commission (FCC): Cognitive Radio: a radio or

system that senses its operational electromagnetic environment and can

dynamically and autonomously adjust its radio operating parameters to

1
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Figure 1.1. Finnish Communication Regulatory Authority’s frequency allocation chart
for Finland [2].

modify interference, facilitate interoperability, and access secondary mar-

kets [8].

In cognitive radio terminology, a primary user (PU) is defined as a legacy

user or a licensed user who has higher rights on particular part of spec-

trum. Examples of licensed technology are global system for mobile com-

munications (GSM) [9, 10], worldwide interoperability for microwave ac-

cess (WiMax) [11,12], and long term evolution (LTE) [12,13] while exam-

ples of legacy technology are microphone and wireless local area network

(WLAN) [12,14]. On the other hand, unlicensed cognitive users with lower

priority are defined as secondary users (SUs). A SU can access spectral re-

sources of a PU when the PU is not using them. However the SU has to

vacate the frequency band as soon as the PU becomes active so that neg-

ligible (or no) interference is caused to the PU. Such opportunistic access

of the PU resources by the SUs is called as dynamic spectrum access.

A SU can opportunistically utilize different spectrum holes corresponding

to different PUs in order to satisfy its bandwidth requirement without

causing interference to the PUs as shown in Fig. 1.2.

Spectrum sensing is a key enabler for dynamic spectrum access in

cognitive radios. It is the task of obtaining awareness regarding the ra-

dio spectrum as well as identifying idle spectrum. It enables the SUs to

explore and exploit the unused PU spectrum. In addition it is crucial for

managing the level of interference caused to the PUs of the spectrum.

2
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Frequency 

Time 

Secondary User Transmission 

Primary Users’ Transmissions 
Spectrum Hole 

Figure 1.2. In cognitive radios, secondary users (SUs) opportunistically use the spectrum
not used by the primary users.

Spectrum sensing can be done by an individual SU and is called as

single-user sensing or local detection. Single-user sensing becomes diffi-

cult in challenging propagation environments like multipath fading, Doppler

spread, and shadowing. In such a scenario a SU has to distinguish be-

tween a white space, where there is no primary signal, and a deep fade,

where it is hard to detect the primary signal. Cooperative sensing (CS),

where different SUs collaborate to detect the presence of a PU, provides

diversity gains to tackle the fading and shadowing effects. CS also helps

to increase the SNR gain and network coverage, decrease the detection

time, and simplify the detector design.

1.2 Scope of the thesis

Cognitive radio is a very broad and a highly multidisciplinary technology

involving several fields of research such as smart antennas, hardware ar-

chitectures, signal processing, communication theory, medium access con-

trol (MAC), learning mechanisms, dynamic spectrum allocation methods,

cognitive network architecture, and protocol design. Moreover, cognition

may take place in all layers of a protocol stack such as Open Systems

Interconnection (OSI). However the main focus of this thesis is on the de-

sign and analysis of local and cooperative spectrum sensing algorithms for

dynamic spectrum access from the physical layer (PHY) signal processing

point of view. The problem of spectrum sensing is commonly formulated as

a binary hypothesis testing problem and the desired sensing algorithms

stem from the detection theory.

The first goal of this thesis is to develop simple and computationally ef-

ficient local spectrum sensing algorithms to detect Orthogonal Frequency

3
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Division Multiplexing (OFDM) based PU transmissions. OFDM is a key

technology for the present and future broadband wireless communication

systems. It is used in various applications: IEEE 802.22 or digital tele-

vision (DTV) broadcasting, IEEE 802.11a/g/n or wireless local area net-

works (WLANs), IEEE 802.16 or wireless metropolitan area networks

(WMANs) , IEEE 802.20 or mobile broadband wireless access (MBWA)

systems, LTE, for example. Therefore, it is fair to assume that many of

the PUs will be OFDM based. Hence, the problem of detecting OFDM

signals is very relevant. Local spectrum sensing schemes are proposed to

detect OFDM based PU in Publications I and III.

The second goal of this thesis is to develop fast, energy efficient, and

practical collaborative sensing algorithms. Cooperative sequential sens-

ing schemes are proposed in Publications II and III. Cooperative sensing

may involve multiple SUs searching multiple bands corresponding to dif-

ferent PUs. However, the discussion in this thesis is limited to the col-

laborative scenarios where a group of SUs are trying to detect the same

PU in a given single frequency band. The developed methods stem from

decentralized detection theory. Sensing policy, which resolves different is-

sues related to CS such as user selection and sensing scheduling, is not

considered in this thesis.

The third goal of this thesis is to study the effects of non-idealities on

the cooperative spectrum sensing algorithms. The effects of some typical

non-idealities such as quantization, censoring, and imperfect reporting

channels on CS are studied in Publications I, IV-VIII. Quantization and

censoring schemes help in saving the bandwidth and energy required for

transmitting the decision statistics from the SUs to the fusion center (FC).

However these savings come at the cost of performance degradation for

CS. In addition, reporting channels from the SUs to the FC may introduce

errors in the SU decision statistics and severely affect the CS performance

in a practical scenario. Therefore it is important to take these issues into

account while designing the CS systems so that the performance degra-

dation caused is negligible. Note that the effects of non-idealities in the

radio frequency (RF) front end such as carrier frequency offset, DC-offset,

non-linearity, IQ imbalance, and phase noise are not considered in this

thesis.
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1.3 Contributions of the thesis

The contributions of this thesis are in two fields related to spectrum sens-

ing: single-user spectrum sensing and cooperative spectrum sensing. The

problem of detecting a PU activity is modeled as a binary hypothesis test-

ing problem where the null and alternate hypotheses correspond to the

absence and presence of PU transmission, respectively. The observations

at the cooperating SUs are considered independent conditioned on the

either of the two hypotheses. For cooperative spectrum sensing, a par-

allel network topology with a dedicated FC is considered where each SU

sends decision statistic to the FC which makes the final decision. The per-

formances of the proposed schemes are studied using analytical methods

and extensive MATLAB simulations. For all the detailed derivations and

simulation results see the Publications I-VIII.

The contributions of the thesis to the SINGLE-USER SPECTRUM SENS-

ING for cognitive radios are listed as follows:

• Autocorrelation based detectors are proposed in Publications I

and III which use the autocorrelation property of cyclic-prefix (CP)

OFDM based PU signals to detect them. The proposed detectors are

simple, computationally efficient, and require minimal knowledge

regarding the OFDM based PU. It is shown that the log-likelihood

ratio test (LLRT) statistic in the low SNR regime is the maximum

likelihood (ML) estimate of the autocorrelation coefficient. The dis-

tribution of the test statistic has been derived under the two hy-

potheses. The performances of the proposed schemes are studied

in additive white Gaussian noise (AWGN) and multipath channels.

The gain in assuming the knowledge of synchronization and the CP

length is also demonstrated.

The contributions of the thesis to the COOPERATIVE SPECTRUM SENS-

ING for cognitive radios are listed as follows:

• Censoring based CS scheme is proposed in Publication I which

uses autocorrelation based decision statistics to detect a CP-OFDM

based PU system. In the censoring approach, only informative lo-

cal decision statistics are sent to the FC. The motivation behind the

censoring approach is to reduce the bandwidth and energy used for

transmitting the decision statistics from the SUs to the FC. The dis-

tribution of the decision statistics at the SU and the test statistic at

5



Introduction

the FC are established under both hypotheses. Significant reduction

in the transmissions of decision statistics is obtained under the null

hypothesis while the performance loss is minimal even under strict

communication constraints.

• Sequential detection schemes are proposed in Publications II and

III where SUs send autocorrelation based log-likelihood ratios (LLRs)

to the FC which makes a decision sequentially. Expressions are de-

rived for the average sample number (ASN), which is the number of

samples required to arrive at a reliable decision under either of the

hypotheses. Later the performance of the proposed cooperative se-

quential scheme is compared to that of Neyman-Pearson (NP) fixed

sample size (FSS) test in AWGN, multipath, and shadowing chan-

nels. Significant gains are shown in terms of the number of samples

sufficient for achieving the desired performance criteria.

• Effects of Quantization on CS are analyzed in Publications IV.

Main aim is to find the number of bits required for quantizing the

decision statistics at the SUs such that the CS performance loss re-

mains negligible. The loss in the CS performance caused by the

quantization decreases with an increase in the number of bits for

quantization. It is shown that as low as four bits are required to

achieve performance similar to that of the unquantized versions by

simply using a uniform quantizer and the Gray mapping.

• Effects of Imperfect Reporting Channels on CS are analyzed

in Publications IV-VIII. It is shown that there is increase in the er-

ror probabilities of false alarm and missed detection when the re-

porting channel errors increase. The reporting channel errors are

modeled using bit error probability (BEP). Performance limitations

of the CS have been introduced in the form BEP wall in the pres-

ence of imperfect reporting channels. The BEP wall is defined as

the BEP value above which it is impossible to satisfy the imposed

performance constraints on the detector error probabilities at the FC

irrespective of the SNR on the listening channel or the sensing time

at the SUs. The performance is studied for CS schemes using one-bit

hard decisions (HDs) and multi-bit soft decisions (SDs). It is shown

that the BEP wall values are sufficiently low to be of practical im-

portance and may cause severe performance limitation in certain CS

schemes. Contrary to the popular belief that cooperation always im-
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proves the CS performance, cooperation is shown to degrade the CS

performance for some cases. Performance comparison of HD and SD

based schemes have been provided to show the performance gain in

using SDs for CS even in the presence of reporting channel errors.

1.4 Structure of the thesis and summary of the publications

This thesis consists of an introductory part and eight original publica-

tions. The introductory part is organized as follows. Chapter 2 reviews

cognitive radio networks and their application to dynamic spectrum ac-

cess. Chapter 3 gives a review of local sensing algorithms and issues re-

lated to them. In addition, an autocorrelation based detector (presented

in Publications I-III) for detecting an OFDM based PU is discussed. The

review of CS algorithms and related issues are presented in Chapter 4. In

addition, CS algorithms like censored distributed detection (proposed in

Publication I) and sequential detection (proposed in Publications II and

III ) are also discussed. The chapter also discusses the effects of non-

idealities such as quantization and channel errors on the CS (presented

in Publication IV) and the resulting performance limitations (presented

in Publications V-VIII). Chapter 5 provides the concluding remarks.

In Publication I, a simple and computationally efficient autocorrela-

tion based detector is proposed to detect an OFDM based PU in AWGN

channel. Next, the proposed scheme is extended to the case of CS where

the SUs send only the informative decision statistics to the FC. For cen-

soring, the decision statistics used are autocorrelation values. Limits of

the censoring region are found under constraints on the false alarm and

transmission rates. The distributions of the local decision statistics at the

SU and the test statistic at the FC are established under the two hypothe-

ses.

In Publication II, a distributed autocorrelation based sequential detec-

tion scheme of OFDM signals is proposed. Each SU sends autocorrelation

based LLR to the FC, which employs sequential detection. Expressions

are derived for the ASN under either of the hypotheses. Next, comparison

of the proposed sequential detection scheme is carried out with NP FSS

test in the AWGN channel.

In Publication III, the work in Publications I and II is extended. It

is shown that for CP based OFDM system, the ML estimate of the au-

tocorrelation coefficient at the lags equal to the useful data length in an

7
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OFDM symbol is the LLRT statistic in the low SNR regime. The proposed

detector does not assume the knowledge of CP length in an OFDM sym-

bol. The distributions of the local decision statistic are established under

the two hypotheses. Next, the effects of exploiting information related to

the CP length and synchronization on detection performance are studied.

The performances of the proposed local detectors are studied in AWGN

and multipath scenarios. Later, sequential detection is considered for CS

where local detectors send autocorrelation coefficient based LLRs to the

FC. Expressions are derived for the ASN under either of the hypotheses.

The performance is then compared with the FSS test in AWGN and shad-

owing conditions.

In Publication IV, the effects of quantization and channel errors on

the CS performance are studied. The autocorrelation coefficient based

LLRs from the SUs to the FC are quantized to reduce the bandwidth con-

sumption using a uniform quantizer. At the FC, the sum fusion rule is

considered. The reporting channel errors are modeled using BEP and are

considered to be independent and identically distributed (iid). The distri-

bution of the decision statistics at the SU and the test statistic at the FC

are established under either of the two hypotheses.

In Publication V, the existence of a performance limitation in the form

of a BEP wall is demonstrated for HD based CS in the presence of im-

perfect reporting channels. Each SU sends a one-bit decision to the FC,

which employs K-out-of-N fusion rule. Expressions for the BEP walls for

the K-out-of-N rules (also called counting rules) are derived. Effects of

parameters like false alarm probability, missed detection probability, K,

and N on the BEP wall values are also studied.

In Publication VI, the existence of BEP walls for SD based CS is

demonstrated in the presence of reporting channel errors. Cooperative de-

tection is formulated as a composite hypotheses testing problem and PU

signal distribution is assumed to be unknown. Each SU sends a quantized

version of the ML estimate of the autocorrelation coefficient to the FC. Dif-

ferent quantization schemes such as uniform quantization and maximum

output entropy quantization are implemented. The reporting channel is

modeled as a binary symmetric channel (BSC) with a particular BEP. A

sum fusion rule is implemented at the FC along with NP detection crite-

ria.

In Publication VII, the work of Publication V is extended to the case

where the reporting channels are not necessarily identical. Expression
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for the BEP wall values in the general scenario is obtained for the K-

out-of-N fusion rules. The BEP wall values in this case form a surface of

BEP values which divides the BEP region into two regions: feasible and

unfeasible. It is also shown that the robustness of different fusion rules

depends on different performance constraints.

In Publication VIII, the BEP wall phenomenon is demonstrated for SD

based CS. Unlike Publication VI, CS is formulated as a simple hypothe-

sis problem and an optimal fusion rule is used at the FC which takes the

reporting channel errors into account. The distribution of the decision

statistics at the SU and the test statistic at the FC are established under

either of the two hypotheses. In addition, comparison of HD and SD based

CS schemes is carried out for AWGN and shadowed listening channels in

the presence of erroneous reporting channels.

In all the publications, the author of this thesis did the theoretical analysis,

simulations, and writing of the publications. The co-authors guided the re-

search and helped in writing the publications. The censoring framework

in Publication I and the sequential detection framework in Publications II

and III were suggested by the co-authors.
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2. Cognitive Radios for Dynamic
Spectrum Access

Cognitive radio is an emerging concept which has a potential of being a

disruptive technology and will enable the future wireless world [15, 16].

In [15], the author envisions cognitive radio to be a convergence of sev-

eral functionalities in a smart radio thereby providing a base for useful

and innovative applications such as dynamic spectrum access. However

the cognitive radio technology is still in its infancy and has attracted

a lot of attention from the researchers in the field of wireless commu-

nications. The concept of cognitive radio is highly multidisciplinary as

inputs from several fields are needed on different issues. For example,

smart antennas, hardware architectures including software-defined ra-

dio (SDR), signal processing, networking, communication and information

theory, learning mechanisms, game-theory, policy definitions, and moni-

toring [15, 16]. Interested readers are referred to [15–19] for details on

the history, background, and various multidisciplinary issues related to

the cognitive radios.

The main focus of this thesis is on spectrum sensing in cognitive radios

for dynamic spectrum access. This chapter starts with a general descrip-

tion of cognitive radio followed by its application for dynamic spectrum

access. Later, brief overviews are presented on various issues related to

the dynamic spectrum access including spectrum sensing, access policies,

learning mechanisms, sensing policy, interference management, and stan-

dardization efforts.
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2.1 Cognitive radio

2.1.1 Definitions

Cognitive radio is a broad concept in general and has different meanings

in several contexts [8,17,20,21]. The term cognitive radio has been coined

by Mitola as an intelligent radio which is aware of its surrounding envi-

ronment and capable of changing its behavior to optimize the user experi-

ence [20,22]. Therefore a cognitive radio has three important characteris-

tics: awareness, cognition, and adaptability. Slightly different cognitive ra-

dio characterizations are given in [21,23,24]. Awareness is the ability of

the radio to measure, sense, and be aware of its environment and internal

states. A radio may exhibit different levels of awareness such as spectrum

awareness, location awareness, user awareness, and network awareness,

etc. Cognition is the ability to process information, learn about the en-

vironment, and make decisions about its operating behavior to achieve

predefined objectives. Adaptability is the capability of adjusting operat-

ing parameters for the transmission on the fly without any modifications

on the hardware components. This capability enables the cognitive radio

to adapt easily to the dynamic radio environment. There are several re-

configurable parameters: frequency, transmit power, waveforms, antenna

configuration, communication technology, and protocol.

Dynamic spectrum access is cognitive radio’s most important applica-

tion, which promises to overcome the apparent spectrum scarcity prob-

lem caused by the rigid spectrum allocation and the underutilization of

the spectral resources. In the context of dynamic spectrum access, a more

pertinent definition of a cognitive radio is given by Haykin [21]: Cog-

nitive Radio is defined as an intelligent wireless communication system

that is aware of its surrounding environment and uses the methodology

of understanding-by-building to learn from the environment and adapt its

internal states to statistical variations in the incoming RF stimuli by mak-

ing corresponding changes in certain operating parameters (e.g. transmit

power, carrier frequency, and modulation strategy) in real time with two

primary objectives in mind: One: highly reliable communication whenever

and wherever needed, Second: efficient utilization of the radio spectrum.

12
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2.1.2 Applications

Cognitive radio presents the possibility of numerous revolutionary appli-

cations apart from dynamic spectrum access. For example, cognitive radio

may facilitate location services, seamless mobility, optimum performance, and

coexistence of heterogeneous wireless systems. Cognitive radio may provide

location services by helping the user locate services like restaurants,

car rental, train, flights, etc., when he travels in a new country. Cognitive

radio may facilitate seamless mobility by automatically detecting and

inter operating with different networks like WLAN, wireless metropoli-

tan area network (WMAN), Bluetooth, etc. Cognitive radio may be useful

in obtaining optimum performance by optimizing spectrum usage, data

rates, service cost, battery power minimization, etc., or a mix of such ob-

jective functions. Coexistence of heterogeneous wireless systems in

the same frequency bands (e.g., IEEE 802.15.4 Zigbee and IEEE 802.11

WLAN) results in severe interference caused by different power levels,

asynchronous time slots, and incompatible MAC and physical layer pro-

tocols [25]. This interference in turn severely degrades the performance

of the coexisting wireless systems. Cognitive radio can provide solutions

to reduce the interference among the coexisting heterogeneous wireless

systems and improve their performance.

2.1.3 Enabling technologies

Many technologies and practical considerations, which are highly mul-

tidisciplinary, need to come together to result in the cognitive technolo-

gies [18]. There are a few enabling technologies that play an important

role in cognitive radio systems: sensors, software technologies, and software

defined radio.

Sensors are needed to create awareness about the environment. Some

examples of sensors are RF receiver, microphone, camera, biometric scan-

ners (fingerprint, iris, retina), global positioning system (GPS). Sensors

such as microphone, camera, and biometric scanners can be used for user

awareness, which is helpful in avoiding unauthorized access and provid-

ing user centric experience in a multiuser scenario. GPS enables several

useful applications for a cognitive radio by providing the location aware-

ness.

Software technologies, which are enabling cognitive radio, include

policy engine, machine learning, advanced signal processing, and net-
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working protocols [15]. The spectrum usage is regulated by the regula-

tory body and regulation policies may vary depending on country, time,

software, and hardware developers. Policy engine helps in adhering to

different regulations by having a library of policies in the form of down-

loadable software. Machine learning focuses on automatically learning

and making intelligent decisions based on the available information. Ex-

amples of machine learning approaches are artificial neural networks,

reinforcement learning, and genetic algorithms. Advanced signal pro-

cessing approaches are required in cognitive radios for communications

(e.g., modulation/demodulation, forward error correction, channel estima-

tion, equalization, filtering) and sensor signal processing (e.g., spectrum

analysis, feature extraction, pattern recognition, wavelet synthesis). Net-

working protocols enable cooperation between different SUs which has

the potential of increasing the cognitive radio capability. Moreover they

may help SUs to coexist with the PUs and the other SUs. Examples of

networking protocols are routing and medium access protocols.

A software defined radio or SDR, is a radio communication system

where components that have been typically implemented in hardware

(e.g. mixers, filters, amplifiers, modulators/demodulators, detectors, etc.)

are instead implemented in software using digital signal processing (DSP).

Therefore simply modifying or replacing software programs can completely

change the functionality of the radio. This flexible radio functionality al-

lows the use of different wireless communication techniques in a single

portable device making SDR a key enabling technology for cognitive ra-

dios. Some examples of commercially available SDR are Universal Soft-

ware Radio Peripheral (USRP), USRP2, FLEX-5000A [26].

2.2 Dynamic spectrum access

Currently dynamic spectrum access is the most important application of

cognitive radios. It has attracted lots of interest among policy makers,

regulators, network operators, and researchers [8, 18, 19, 21, 27–29]. Al-

though cognition is a very broad term and has applications in all levels

of a protocol stack, this thesis will focus only on the application of cogni-

tion to the PHY/MAC layers for dynamic spectrum access. Fig. 2.1 shows

the considered scenario for dynamic spectrum access where multiple PUs

and SUs are coexisting. The SU networks opportunistically access the

PU bands such that the interference caused to the PUs is negligible. The

14



Cognitive Radios for Dynamic Spectrum Access

  

  

Secondary User Networks 

Primary User Network 

Figure 2.1. Coexistence of multiple primary and secondary user networks (homogeneous
or heterogeneous).

SU networks operating may be homogeneous or heterogeneous. Examples

of heterogeneous networks operating in the same frequency bands are

WLAN (IEEE 802.11), Bluetooth, and Zigbee (IEEE 802.15.4).

Based on the sharing models or how the PUs share the spectrum

with SUs, dynamic spectrum access can be broadly classified into three

types [30]: dynamic exclusive use, spectrum commons, and hierarchical ac-

cess. Similar categorization has been done in [31] with slightly different

terminology. In the dynamic exclusive use model, the basic structure of

the current spectrum policy is kept while introducing flexibility to im-

prove spectrum utilization. There are two approaches under this model.

First approach is spectrum property rights [32], where the license holder

can trade spectrum and choose technology based on the market trend.

Second approach is dynamic allocation [33], where spectrum allocation is

varied at a faster scale as compared to current regulations by using the

spectrum usage statistics of the PU in a particular location. In spectrum

commons model, every user has equal rights for using the spectrum. This

is also called as open spectrum model and has been successfully applied

for wireless services operating in the unlicensed industrial scientific and

medical (ISM) radio band (e.g., WLAN). In hierarchical access model, SUs

can use the primary resources such that the interference to the PU is

limited. There are three approaches under this model [19, 34, 35]: un-

derlay, overlay, and interweave. While the SU utilizes gray spaces for the

underlay and overlay approaches, the SU utilizes white spaces for the in-

terweave approach. For the underlay approach, the SU transmits in the

manner of ultra wideband (UWB) systems with sufficiently low power to

limit the interference to the PU. In the overlay approach, SUs use the
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Figure 2.2. Dynamic spectrum access consists of three important functions: spectrum
awareness, cognitive processing, and spectrum access. Spectrum awareness
and spectrum access are the functions to explore and exploit the spectrum
opportunities respectively. Cognitive processing is the intelligence and deci-
sion making function that includes several subtasks: learning, sensing policy,
interference management, and access policy.

partial or full knowledge of the PU information like codebooks or trans-

mitted data to boost the PU performance and mitigate the interference

from the PUs. There is a mix of terminology in the literature regarding

overlay and interweave paradigms. For example in [30], the interweave

approach described above is called overlay while the overlay approach de-

scribed above is not considered. In this thesis we follow the definitions of

underlay, overlay, and interweave given in [19,34,35].

Dynamic spectrum access consists of three main functions: spectrum

awareness, cognitive processing, and spectrum access. Fig. 2.2 shows these

three functions and their interactions. Spectrum awareness creates aware-

ness about the RF environment while spectrum access provides ways to

exploit the available spectrum opportunities for efficient reuse. Cognitive

processing is the intelligence and decision making function that includes

several subtasks like learning about the radio environment, designing ef-

ficient sensing, and access policies along with managing interference for

coexistence of the SU networks with the PU networks. Cognitive process-

ing uses spectrum information, bandwidth requirement, and regulatory

policies as inputs while it provides sensing task and spectrum allocations

as outputs. Next we present a brief overview of these three functions.
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2.2.1 Spectrum awareness

Spectrum awareness is the task of obtaining awareness about the spec-

trum usage and existence of PUs and SUs in a geographical area. A con-

ventional approach to classify spectrum usage in space can be divided into

three types [21]: black spaces, gray spaces, and white spaces. Black spaces

are occupied by high power local interferers; gray spaces are occupied by

low power interferers, while white spaces are free of any interferer ex-

cluding ambient noise. The white and gray spaces are the spectrum op-

portunities or spectrum holes, which can be used by the SUs. However

this conventional approach of spectrum opportunities in [21] only exploits

three dimensions of the spectrum: frequency, time, and space. There may

be additional dimensions that can be utilized [36]: code, polarization, and

angle of arrival. In addition to the detection of spectral opportunities, spec-

trum awareness can also provide various other useful information [37]

such as radio environment map, channel gain map as well as locations and

statistics of the PUs and SUs.

Spectrum awareness can be obtained in two ways by using either active

or/and passive methods. In the active method or spectrum sensing, the

radios become spectrum aware by detecting and estimating the spectrum.

Active methods have broader application areas and lower infrastructure

requirement. In passive methods, the information regarding the unoc-

cupied spectrum is provided to the SU. For example, use of geolocation,

database, and beacons fall into this category [27, 36]. Passive methods

need support from the PUs who are under no obligation to change their

operation to aid the SU network. Therefore passive methods may be dif-

ficult to implement. An alternative solution might be to use a dedicated

sensor network maintained for creating databases and PU information in

a geographical location to aid an incoming SU [24]. Although the users

might have sensing capabilities, such supporting sensor network may be

necessary in the start-up phase of the cognitive service and in rural ar-

eas with low population. However the infrastructure requirement in this

case may be complex and expensive. In the rest of the thesis, we focus

on spectrum sensing performed by cognitive radios because of its broader

application areas and lower infrastructure requirement.

Spectrum sensing schemes can be classified based on different criteria:

detection target, architecture, number of primary users, number of secondary

users, and number of bands to be sensed. Based on the target for detec-
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tion, there are two approaches to spectrum sensing: detecting the trans-

mitter and detecting the receiver. Most of the approaches, including the ap-

proaches proposed in this thesis, are based on detecting the transmitter.

However the receiver is the actual victim of the secondary transmissions

and detecting the transmitter only gives an approximate idea of the lo-

cation of the receiver. Therefore detecting the receiver is an important

task. Algorithms for detection of receiver have been considered in [27,38]

which exploit the local oscillator power emitted by the RF front end of the

receivers. However, detecting the receiver may be a demanding task as

the power of the oscillator leakage is low thereby restricting the reliable

detection range below 20 m [27,38].

Sensing can be performed via two different architectures [39,40]: sin-

gle and dual radio. In single radio, sensing is time multiplexed with the

data transmission/reception while in dual radio, there is a dedicated RF

front-end for both sensing and data transmission/reception. Single radio

architecture has the advantages of low power consumption and hardware

costs over dual radio architecture at the cost of sensing accuracy and effi-

ciency. Based on the number of bands to be sensed, sensing can be clas-

sified as single-band and multi-band sensing [19]. There may be a case when

there are multiple primary users in a given frequency band. For exam-

ple, there are multiple users in a code division multiple access (CDMA)

systems while WLAN and Bluetooth systems share the same bands. De-

tection of multiple users has been studied in [41] while performance anal-

ysis of spectrum sensing in the presence of multiple PUs has been done

in [42]. Based on the number of secondary users for cooperation, sens-

ing can be classified as single-user and multiuser sensing. Multiuser co-

operative detection has several advantages over single-user detection (or

local detection) like improved detector performance, increased coverage,

and simplified local detector design. However these advantages come at

the costs of increased complexity and overhead. Sensing can also be clas-

sified based on the priority of the target: detecting PU and detecting SU.

Most of the techniques applicable for detecting the PUs are also applicable

for detecting SUs. Due to the possibility of coordination between different

SU networks, detecting SUs may be easier especially for the case of homo-

geneous SU networks [43]. Detecting PUs is much more important than

detecting SUs as the secondary access is permitted only if the interference

to the PUs is within a tolerable limit.

The main focus of this thesis is on the topics of local and cooperative
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spectrum sensing for cognitive radios. In this thesis, we focus on active

spectrum sensing techniques for detecting a single primary transmitter in

a single-band. These techniques are applicable to both single and dual

radio architectures. Without loss of generality, we have assumed detection

of only PUs in this thesis.

2.2.2 Cognitive processing

Cognitive processing is the task of optimizing the sensing and access of

the spectrum opportunities based on the sensing information, databases

of spectrum occupancy, and regulatory policies. There are four subtasks of

the cognitive processing: learning, sensing policy, interference management,

and access policy. These four subtasks are inter-related to each other

and will be discussed in the coming subsections. The cognitive processing

function can be implemented in a centralized or distributed manner. In the

centralized implementation, SUs process the observations and send sens-

ing information to a centralized entity which performs the cognitive pro-

cessing. In the distributed implementation of cognitive processing, SUs

may or may not exchange information among each other but implement

cognitive processing functionality on their own.

LEARNING

Learning is the subtask of estimating the current state and quality of the

PU channels using experience rather than sensing alone which may be

expensive. The occupancy and channel quality statistics are estimated

in the frequency bands which may be favorable for the SUs requesting

bandwidth. This helps in making efficient sensing policy, interference

management, and access policy.

Assuming there are multiple frequency bands to be scanned, the SUs

have to decide if they should exploit the identified spectrum opportunities

or explore new frequency bands in hope of better opportunities at a later

instant. Thus optimizing the sensing and access policies is similar to a

bandit problem often encountered in stochastic optimization. Therefore,

reinforcement learning methods which are often employed for the ban-

dit problem can also be employed for designing sensing and access poli-

cies in cognitive radio networks [19]. In reinforcement learning, the SUs

learn from experience and experiments. Thus its operation is in between

the other two machine learning methods: supervised (teacher assisted)

and unsupervised learning methods. Sensing and access policies based on
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reinforcement learning methods have been proposed for cognitive radios

in [44–46].

SENSING POLICY

Sensing policy defines which SUs sense which frequency bands and when.

A sensing policy is needed as sensing the entire spectrum of interest si-

multaneously is demanding for the hardware and may be energy ineffi-

cient. Assuming the frequency bands to be sensed are decided or known,

the sensing policy has two tasks: user selection and sensing scheduling.

Although sensing scheduling can be implemented individually or collabo-

ratively, user selection is specific to cooperative sensing.

Sensing scheduling decides which subbands will be sensed and when.

Scheduling helps in improving the efficiency of spectrum exploration. It

is worth sensing bands which are unused persistently so that the sec-

ondary throughput is increased while the sensing effort is reduced. As

the sensing and access policies are closely connected to each other, co-

operating SUs can jointly optimize the sensing and access efforts. The

joint optimization of sensing and access policies is much easier in a cen-

tralized approach as compared to a decentralized approach. Individual

sensing policies have been proposed in [47–50] using a decision-theoretic

approach by formulating the design of optimal sensing policy as a par-

tially observable Markov decision process (POMDP). Similarly coopera-

tive sensing policies have been proposed in literature using different ap-

proaches: negotiation based policy [51], pseudo random policy [52], and rein-

forcement learning [44,46].

User selection tells which SUs will participate in the cooperation. It is

important to choose SUs experiencing independent fading and shadowing

effects so that maximum diversity gain is achieved. In addition, inclusion

of malicious users in the group should be avoided to ensure the reliability

of the network. User selection can be implemented in two ways: central-

ized [53] and cluster based [54, 55]. Grouping different users for coopera-

tion can also be modeled using game theory. Depending on the behaviors

of different games, behaviors of the SUs can be modeled differently: coali-

tional game [56] and evolutionary games [57].

INTERFERENCE MANAGEMENT

Interference management is important in cognitive radio networks since

secondary usage is allowed only if the SU interference does not degrade

the PU quality of service below a tolerable limit [58]. In addition, there
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Figure 2.3. Received power of the licensed signal transmission as a function of the dis-
tance from the transmitter to illustrate the interference temperature con-
cept [60].

may be interference between different SU networks due to the lack of

coordination resulting in substantial reduction of SUs’ throughputs. For

the review of interference management and related issues in the context

of cognitive radios, see [43,58,59].

Interference temperature model was introduced by the FCC for quan-

tifying and managing the interference [60,61]. Fig. 2.3 shows the received

power of the licensed signal transmission as the distance from the trans-

mitter. In this interference model, each primary receiver has an inter-

ference temperature limit that defines how much noise and interference

it can tolerate to guarantee certain quality of service. This creates spec-

trum opportunities for the SUs. Using this model, cognitive radios can

measure and model the interference environment and adjust their trans-

mission characteristics such that the interference to PU is not above the

regulatory limits. However, major drawback of the model is to measure

the interference temperature at the primary receivers which is unfeasible

in practice. The FCC has abandoned the concept of interference tempera-

ture as unworkable [62]. At the same time, the FCC has also encouraged

the researchers to solve the problems related to the interference temper-

ature and make it feasible.

Techniques managing the interference to the PUs can be broadly

categorized into three groups [43]: interference avoidance, interference con-

trol, and interference mitigation. The interference avoidance approach is

same as the interweave approach. The effects of errors in the detection of

white spaces on the performances of both PU and SU network has been

studied in [63]. To minimize the interference from the SU transmission to

a PU becoming active, algorithms using hidden Markov model (HMM) to

estimate the state of the channel in the next instant have been proposed

in [47]. The interference control approach is same as the underlay ap-
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proach. Different methods are suggested for limiting the power directed

towards the PU: estimating the PU location [64], spectrum shaping [65], beam-

forming [66], and water-filling [59]. In interference mitigation, SUs use the

partial or full knowledge of the PU information like codebooks or trans-

mitted data while operating in gray spaces. The interference mitigation

approach is same as the overlay approach. Different methods for interfer-

ence mitigation have been proposed based on dirty paper coding in [67]

and using multiuser decoding in [68].

Interference among the SU networks is also an important concern.

Althoughmost systems use interference avoidance mechanisms like listen-

before-talk, they are designed to resolve the collisions between homoge-

neous networks. These mechanisms are less effective for heterogeneous

networks where the employed standards, frame structure, communication

protocols, and transmission powers are different in addition to the lack of

coordination and synchronization [43].

ACCESS POLICY

In the case of cooperating SUs, the problem is how to allocate the available

channels among the SUs to optimize a given network objective function.

Few examples of such network objective functions: maximize the sum ca-

pacity of the secondary network, maximize the minimum capacity for an

individual SU or minimize the interference to the primary network with

constraints on transmit power or/and fairness of resource allocations [30].

Note that the design of the access policy is also related with different

medium access techniques such as time division multiple access (TDMA),

frequency division multiple access (FDMA), and CDMA. Similarly the ac-

cess policy is closely connected to the sensing policy and both these policies

can be jointly optimized as done in [44–46].

There are several approaches for designing policies to allocate or

access the spectrum opportunities. These access policies can be di-

vided into two categories [69]: direct access based and dynamic spectrum

allocation. The dynamic spectrum allocation policies exploit complex opti-

mization algorithms to achieve a global purpose in an adaptive fashion.

However they have issues of low scalability, negotiation delay and com-

plexity. Examples of dynamic spectrum allocation policies are graph color-

ing scheme [70], game theory [71–73], stochastic algorithms [74], genetic algo-

rithms [75], and swarm intelligence [76]. The direct access based policies do

not allow any global network optimization. However they are simple and
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have low computational cost and latency. The direct access based methods

can be further classified as contention based and coordination based. In con-

tention based policies, sender and receiver SUs exchange their sensing in-

formation. Then the pair compares available resources and negotiates the

channel for communication. Examples involving contention based policy

are cognitive MAC (COMAC) [77], heterogeneous distributed MAC (HD-

MAC) [78]. In coordination based policies, each SU shares its channel us-

age information with its neighbors to increase sensing reliability and im-

prove overall system performance. Example involving coordination based

access policy is multichannel MAC for cognitive radio (MMAC-CR) [79].

2.2.3 Spectrum access

Once the spectrum opportunities are found, several SUs may want to ac-

cess the spectrum opportunities to transmit their data. This may lead to

collisions in the absence of coordination even when sufficient spectrum

opportunities are available. In the case of limited spectrum opportu-

nities, collisions between different SU transmissions and the resulting

interference become unavoidable. Spectrum access or spectrum sharing

is the task of accessing the unused PU spectrum by SUs such that the

collisions and interference among different SUs are strictly controlled.

Thus spectrum access helps in improving secondary network throughput.

See [18,19,30,43,69] for overview on spectrum access or spectrum sharing.

Note that spectrum access is different from access (or allocation) policy

which is part of cognitive processing. Spectrum access defines how differ-

ent SUs access the given spectrum opportunities. On the other hand, the

spectrum access policy defines which SUs access which spectrum oppor-

tunities and when. Spectrum access policies have been explained earlier

and this subsection focuses on spectrum access mechanisms.

Spectrum access can be classified based on the cooperation model

used by the SUs [43]: cooperative and non-cooperative. Cooperative ac-

cess schemes require coordination among the cooperating SUs. Examples

of cooperative spectrum access schemes are coordination based multiple

access schemes such as TDMA, FDMA, CDMA, and orthogonal frequency

division multiple access (OFDMA). Since SUs may need to transmit over

noncontiguous frequency bands, OFDMA is an attractive candidate for

medium access in cognitive networks [30]. The reconfigurable subcar-

rier structure of OFDMA allows SUs to efficiently fill the spectral gaps

left by the PUs without causing significant interference. However the
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subcarrier spacing and symbol interval need to match with the spectral

and temporal duration of spectrum opportunities. Moreover, there may

be adjacent channel interference due to nonlinearity of the transmitter’s

power amplifier. In the absence of information from other users, SU can

use non-cooperative access schemes. Although the non-cooperative access

schemes are easy to implement, the absence of coordination among the

SUs results in a performance loss compared to the cooperative access

schemes. Examples of non-cooperative spectrum access schemes are con-

tention based protocols like carrier sense multiple access with collision

avoidance (CSMA/CA).

In case of homogeneous secondary networks, both cooperative and

non-cooperative spectrum access techniques are easier to implement as

the networks have same PHY/MAC protocols. However in case of het-

erogeneous secondary networks, different PHY/MAC strategies may

limit the effectiveness of the non-cooperative listen-before-talk mecha-

nisms in achieving fairness. For example, consider a coexistence scenario

between CSMA/CA based devices and TDMA based devices. In this case,

CSMA/CA devices will back off when there are TDMA transmissions while

TDMA devices will not listen before transmitting. In case of cooperative

access schemes, communication between the heterogeneous networks is

required which limits the implementation of cooperative spectrum access

schemes among heterogeneous networks. Even in case there are mecha-

nisms such as a common control channel for sharing relevant coexistence

information, a tight synchronization is required across all devices belong-

ing to different networks. Moreover a negotiation process is involved be-

tween different competing networks.

Nowadays, radio systems often require larger bandwidths. In addition,

the available spectrum opportunities at a given time instant may result

from multiple PUs and may be scattered in the frequency domain. There-

fore to be able to provide larger bandwidths in multiuser environment, es-

pecially in an opportunistic manner, multi-band operation could allow to

perform spectrum aggregation or spectrum pooling of multiple spec-

trum segments from different spectrum owners (cellular, satellite, mil-

itary, etc.) into a common pool [80]. Multi-band operation in a multi-

primary environment significantly improves the spectrum usage in the

considered bands [81], [24].
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2.3 Standardization efforts

With the rising interest in cognitive radio technology, wireless standards

developed recently or currently under development have started incorpo-

rating cognitive features [36, 43, 82–86]. IEEE 802.22 is the first world-

wide effort to define a standardized air interface based on cognitive ra-

dio techniques for the opportunistic use of TV white spaces (TVWS) [82].

The standard is designed for the secondary usage of TVWS on a non-

interfering basis so as to prevent any harmful interference to the incum-

bent operation (such as digital TV and analog TV broadcasting) and low

power licensed devices (such as wireless microphones and medical teleme-

try devices). The primary application of this standard is fixed broadband

access specially for hard-to-reach, low population density areas (typical of

rural environments) and thus has a great potential for worldwide appli-

cability. Cognitive functionalities included in the standard are PU detec-

tion, geolocation, coexistence with other WRANs, and frequency agility.

The implementation of a database is mandatory for PU detection while

sensing is optional.

Other standardization initiatives related to cognitive radios are IEEE

802.11 [14], dynamic spectrum access networks standards committee (DyS-

PAN - SC) [84], IEEE 802.16 [11], and IEEE 802.19 [85]. IEEE 802.11af

standard, which is currently under development, aims to define modifica-

tions to IEEE 802.11 PHY/MAC for TVWS operation [83]. IEEE 802.16h

[86] defines modifications to IEEE 802.16 PHY/MAC for coordinated and

uncoordinated coexistence among homogeneous or heterogeneous users

in an unlicensed band. The DySPAN-SC develops standards for radio

and spectrum management. It was also formerly known as IEEE Stan-

dards Coordinating Committee 41 (SCC41) and IEEE P1900 standards

committee. IEEE 802.19 focuses on coexistence between different unli-

censed wireless networks in 802.11 group of standards like IEEE 802.11

(WLAN), IEEE 802.15 (WPAN), 802.16 (WMAN), 802.22 etc. IEEE 802.19

task group 1 focuses on wireless coexistence in the TVWS.
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3. Single-User Spectrum Sensing

Availability of idle radio spectrum varies depending on time, frequency

and location resulting in spectrum opportunities. SUs can use such idle

spectrum in an opportunistic manner. Spectrum sensing helps SUs to

achieve this objective by identifying underutilized spectrum reliably and

rapidly. Spectrum sensing also helps in quickly determining if the PUs

have become active so that those bands can be vacated immediately. This

is important for ensuring that the interference caused to the PUs remains

below a permitted level. Moreover, detection of other SUs may be neces-

sary as well for co-existence with other secondary networks. Thus spec-

trum sensing is an integral part of the cognitive radios and has attracted

a lot of attention from the research community. Several recent surveys

on spectrum sensing and related issues along with long lists of up-to-date

references can be found in [19,36,87–94].

We start this chapter with a brief review of different detection strate-

gies, performance criteria, and state-of-the-art spectrum sensing tech-

niques. The discussion in this chapter is limited to the single-user sens-

ing (or local detection) scenario. The issues related to cooperative sensing

(where the case of collaboration between multiple SUs is considered) are

presented in Chapter 4. Similarly without any loss of generality, we limit

our discussion only to the detection of PU for convenience. As we have

proposed autocorrelation based detectors in Publications I and III, a spe-

cial emphasis is given on the review of the state-of-the-art autocorrelation

based detectors in Section 3.2.5. Later effects of different non-idealities

on the single-user sensing are discussed. Finally, conclusions are drawn

regarding the local spectrum sensing issues.
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3.1 System model

A key task in spectrum sensing is to decide whether the spectrum is idle or

not. In this thesis, the problem of detecting the presence or absence of the

PU transmission is formulated as a binary hypothesis testing problem.

The null hypothesis denoted by H0 corresponds to the received signal be-

ing only noise. On the other hand, the alternative hypothesis denoted by

H1 indicates that the received signal contains the PU signal along with

noise. In case the hypotheses have no unknown values the hypotheses

are called simple. If there are unknown or unspecified values, then the

hypotheses are called composite. As an example, a simple binary hypoth-

esis test for detecting the PU transmission in an AWGN channel is given

by

H0 : x(t) = w(t)

H1 : x(t) = s(t) + w(t), (3.1)

for t = 1, . . . ,M . Here t represents the discrete time index and M denotes

the number of observations while x(t), s(t), and w(t) indicate the received

signal, PU signal, and AWGN, respectively. The corresponding observa-

tion vector is given by x = [x(1) . . . x(M)]. For binary hypothesis testing,

the observation space is divided into two regions X0 and X1 such that if

the x lies in X0, then H0 is declared; otherwise H1 is declared. In most

practical cases, a scalar test statistic T is computed from the observation

vector x and a threshold η divides the observation space (which is a line

for a scalar quantity) into two regions. In such cases, detection is based

on comparing the test statistic T to the threshold η. If the test statistic

is greater than the threshold, then H1 is declared true. Otherwise H0 is

declared true. In this thesis, we have focused on designing detectors in-

volving a scalar test statistic and a threshold, unless stated otherwise.

The design of the threshold depends on the decision making strategy and

the distributions of the test statistics under different hypotheses. The

choice of the test statistic and decision making strategy also depends on

the desired performance parameters.

3.1.1 Test statistics

Under the assumption that the received observations are independent of

each other conditioned on the hypotheses, the optimal test statistic for a

simple hypothesis test under several detection criteria is the likelihood
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ratio test (LRT). The LRT statistic is given by

Tl =

M∏
t=1

p
(
x(t) |H1

)
M∏
t=1

p
(
x(t) |H0

)
H1

≷
H0

ηl. (3.2)

If the distributions of the received signal under the two hypotheses de-

pend on unknown parameters, then the test becomes composite. It can

be modified to a simple test by integrating out the nuisance parameters

given that the distribution of the random parameters are known. In this

case the test takes the following form

Tc =

M∏
t=1

∫
p
(
x(t) | θ1;H1

)
p(θ1)dθ1

M∏
t=1

∫
p
(
x(t) | θ0;H0

)
p(θ0)dθ0

H1

≷
H0

ηc, (3.3)

where θi, for i = 0, 1, are the unknown random parameters.

If some of the quantities in the distributions are unknown yet deter-

ministic, then in some cases the test can be modified such that it does

not depend on these parameters. Another approach is to estimate the un-

known parameters using the ML estimator and substitute the obtained

parameters in the LRT. The resulting test is called generalized likelihood

ratio test (GLRT). Although the GLRT is a suboptimal detector, it gives

satisfactory performance in most of the cases. The GLRT is given by

Tg =

M∏
t=1

max
θ1

p
(
x(t) | θ1;H1

)
M∏
t=1

max
θ0

p
(
x(t) | θ0;H0

)
H1

≷
H0

ηg. (3.4)

In some cases, it may be difficult (or computationally complex) to evalu-

ate the above test statistics. In such scenarios, simpler test statistics like

estimates of the energy, eigenvalues, correlation, etc., or their functions

may be used.

When the statistics are only coarsely known nonparametric techniques

can also be applied [95, 96]. Most nonparametric detectors are easier to

implement than the parametric detectors because they rely on less infor-

mation. The mostly used nonparametric detectors are sign and Wilcoxon

detectors [95].

3.1.2 Performance criteria

Performance of spectrum sensing algorithms may differ in different sce-

narios. It is therefore important to compare and choose the best scheme
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for a given scenario. At the same time, it is necessary to choose proper

performance criteria for a fair comparison. In this section, we briefly

present important performance parameters which can be used to evaluate

the sensing algorithms:

• False alarm probability: It is defined as the probability that the

detector declares the presence of PU, when the PU is actually absent.

False alarm probability is also called Type I error. If there are too

many false alarms, the spectrum opportunities may be overlooked

resulting in an inefficient spectrum reuse. Therefore controlling the

false alarm probability is crucial for efficient spectrum usage.

• Missed detection probability: It is defined as the probability that

the detector declares the absence of PU, when the PU is actually

present. Missed detection probability is also called Type II error.

Too many missed detections may lead to collisions of the PU and SU

transmissions causing interference to the PU. Therefore controlling

the missed detection probability is crucial for keeping the interfer-

ence to the PU under the permissible limits. It should be noted that

establishing distributions of decision statistics helps in controlling

the probabilities of missed detection and false alarm.

• Sensing time: If the receiver chain is time-duplexed for reception

and sensing, it is desirable that the sensing durations are shorter

and the data transmission durations are longer. If the sensing time

is too long, the data transmission duration reduces thereby reducing

the throughput of the SUs.

• SNR: The SNR of the received PU signal at the sensor depends

on the PU transmitted power and the propagation environment.

The two error probabilities (Type I and II) are linked to each other

through sensing time, SNR, and detection threshold. The detection

performance improves with an increase in the SNR.

• Detection range: It is the maximum distance between the sensor

and the PU such that the detector should detect the PU reliably.

Detection range depends on the detection performance of the detec-

tor, SNR at the receiver, sensing time and propagation environment.

Spectrum sensing schemes should detect the PU signal reliably in

low SNR regime as the PU receivers which are far away from the

transmitter should not be interfered with. At the same time, the
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sensor should not be too sensitive to detect the PU signals with ex-

tremely low SNR values and well outside its interference range.

• Complexity and implementation issues: It is desirable to have

simple and implementable sensing algorithms which are also en-

ergy efficient. Therefore estimating the hardware cost and energy

efficiency through computational complexity of the algorithm is also

important.

• Requirement on prior knowledge of PU parameters and noise

distribution: We may exploit the structural and statistical prop-

erties of the primary signals and noise in the process of designing

spectrum sensing algorithms. The more we know about the PU and

the noise distribution, the better the expected detector performance.

For example, the PU signal may be deterministic or random. Sim-

ilarly, we may have very specific information on statistical proper-

ties of noise (e.g., zero-mean complex white Gaussian noise with a

known variance), or the knowledge of noise may be very vague (e.g.,

the noise distribution may be symmetric and unimodal). In addition

to the statistical properties, knowledge of different PU parameters

such as mobility, location, receiver sensitivity and type (transmitter

or receiver) are beneficial.

• Detecting different PU waveforms: Ability to detect different

PU waveforms is a desirable property as ideally one will want a sin-

gle detector which can reliably detect all kinds of PU signals. Some

detectors can detect many different PU signal types whereas some

detectors are tuned for a specific waveform of a specific PU signal

and cannot be used for other waveforms. For example, energy detec-

tor can be used to detect all kinds of PU waveforms.

• Distinguish between different waveforms: This is a desirable

property as it helps the sensor to distinguish if the received signal is

either a PU signal, a SU signal, noise, or an interfering signal.

• Robustness against non-idealities: The received signal may be

distorted due to different non-idealities in addition to the channel

effects. For example, loss of synchronization, hardware issues, and

impractical assumptions. The resulting distortion of the received

signal may degrade the detection performance further [92]. Non-

idealities will be treated later in Section 3.3 in more detail.
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The performance parameters of false alarm probability, missed detec-

tion, SNR, and sensing time are quantitative and are generally presented

in the form two curves. First plot shows probability of detection as a

function of SNR for given values of false alarm probability and sensing

time. Second plot, which is also called as receiver operating characteris-

tics (ROC), shows the probability of detection as a function of false alarm

probability for given values of SNR and sensing time. Other parameters

are more qualitative as quantifying them may not be always possible.

Typically there are trade-offs between different performance parame-

ters. For example, the secondary throughput can be increased by increas-

ing the false alarm probability. However this will increase the missed

detection probability for a fixed SNR value which in turn increases the in-

terference to the PU. Therefore it is important to choose the performance

parameters carefully to achieve the desired objective. For example, the

problem of designing the sensing duration is studied in [97] with an ob-

jective to maximize the achievable throughput for the secondary network

under the constraint that the interference to the PUs is within a reason-

able limit. Similarly a joint optimization of detector thresholds and power

allocation is carried out in [98] across multichannel links in order to max-

imize the aggregate opportunistic access in multicarrier cognitive radio

networks.

3.1.3 Detection criteria

The choice of a detection criteria is based on the optimization of the de-

sired objective function involving different performance parameters dis-

cussed in Section 3.1.2. There are several detection criteria [96, 99–101]:

Bayesian, Neyman-Pearson, minimax, locally optimum, sequential detection, etc.

Bayesian formulation can be used to minimize the Bayes risk, which

depends on the prior probabilities of two hypotheses, cost assignments,

and conditional densities of the observations under the two hypotheses.

However the required prior probabilities of the hypotheses and cost as-

signments may not be necessarily available to implement the optimal

Bayesian decision rule. Neyman-Pearson (NP) formulation maximizes

the probability of detection for a given constraint on the false alarm proba-

bility. Noise statistics are required for the NP implementation and may be

estimated. Yet another criteria for detection is minimax whichminimizes

the maximum Bayes risk by using the Bayes decision rule corresponding

to the least favorable prior probability assignment. Minimax concept re-
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sults in robust detection where optimum detectors are designed for cer-

tain least favorable models like heavy-tailed noise models. Robust detec-

tion techniques are used when the observation statistics are not known

exactly but only approximately. Locally optimum detection is the opti-

mal detection scheme for weak signal detection as it maximizes the slope

of the detection probability at a point where the signal strength tends to

zero. Sequential detection minimizes the detection time for fixed false

alarm and missed detection probabilities.

3.2 State-of-the-Art Sensing Algorithms

Spectrum sensing algorithms can be classified into three classes based on

the amount of PU information used during the detector design process:

energy detection, feature detection, and matched filter detection. Energy detec-

tion algorithms do not make any assumption on the PU signal statistics

while matched filter detection algorithms make explicit assumptions on

the known pilot waveform or the preamble to design the detectors. Fea-

ture detectors lie in middle of these two extremes and only make certain

assumptions on the structural or statistical properties of the PU signal

while designing the detectors. For example, almost all man-made signals

exhibit distinct cyclostationary features which can be used to detect the

signals. Again, the presence of CP induces a particular autocorrelation

structure in an OFDM signal that can be used to design detectors for such

signals. Circularity and non-circularity of complex-valued signals is also

a distinguishing feature as the noise is typically circular. These kind of

algorithms may also be useful to detect and distinguish different kinds of

signals.

Next, most important classes of state-of-the-art sensing algorithms are

presented. For a more complete list of sensing algorithms see [36, 89–91,

94].

3.2.1 Matched filter detection

A matched filter is obtained by correlating a known sequence with the

received signal. The matched filter is the optimal linear filter which max-

imizes the output SNR in the presence of additive Gaussian noise. There-

fore this method is the optimal method for the detection of PUs in AWGN

when the transmitted signal is known. In this case the test statistic can
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be written as

Tmd = sHC−1w x (3.5)

where x is the observation vector, s is the known deterministic signal to

be detected, andCw is the noise covariance matrix. Thus the test statistic

depends on the known signal vector and noise covariance matrix.

The main advantage of the matched filter detection approach is that the

sensing time required to achieve given missed detection and false alarm

probabilities is relatively short compared to the other methods. Also as

the detector is a linear filter, it is easy to implement. On the other hand,

the main disadvantage is that matched filters are specific to a particular

PU signal and can be used to detect only one type of PU signal. Since

cognitive radio will typically need sensing capability for variety of PU

signals, a bank of matched filters are needed for detecting the PUs of

interest. Certainly complexity is increased, hardware requirements are

more demanding and it is hard to change the detector if new waveforms

are introduced or the system evolves. In addition, perfect synchronization

is required as coherent processing is done [5]. The presence of non-line-of-

sight frequency selective channels and synchronization errors may distort

the pilot structure in the received signal thereby seriously degrading the

detection performance of the matched filters [92, 102]. In addition, if the

preamble structure is not repeated frequently, the detection delay may be

significant for the matched filters trying to detect the preamble [103,104].

Also noise covariance must be perfectly known.

Matched filter pilot detection for cognitive radios has been proposed

in [102–107]. Coherent detectors for advanced television systems com-

mittee (ATSC) - digital television (DTV) standard in North America sig-

nals employing the field sync segment have been proposed in [103, 104].

Pilot based detectors have been proposed for digital video broadcasting

- terrestrial (DVB-T) standard in [102, 105, 106] to exploit the rich pilot

structure in the DVB-T signal. In [107], an entropy based matched filter

has been proposed, which compares the estimated entropy of the matched

filter output to a threshold.

3.2.2 Energy detection

The classical energy detector, which is also called the radiometer , mea-

sures the received energy and compares it to a threshold. The basic energy
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detector is given in [108] by

Ted =
2

N0

M∑
t=1

|x(t)|2, (3.6)

where N0 is the noise spectral density. Factor 2 comes from the fact that

under circularity assumption the complex noise power is equally divided

between the real and imaginary parts.

For the case of detecting a deterministic signal in the presence of zero

mean iid complex Gaussian noise, the energy detector test statistic obeys

the following distribution [108]

H0 : Ted ∼ χ2
2M

H1 : Ted ∼ χ2
2M (2γ),

(3.7)

where γ is the signal-energy-to-noise-spectral-density defined as γ = ES/N0.

In this case, ES =
∑M

t=1 |s(t)|2 is the signal energy. Therefore the test

statistic follows central chi-square distribution with 2M degrees of free-

dom under H0 and non-central chi-square distribution with 2M degrees

of freedom and non-centrality parameter 2γ under H1. Equation (3.7) is

applicable in all such cases provided that the probability of detection is

considered a conditional probability of detection where the condition is a

given amount of signal energy [108].

The main advantages of the energy detectors are that they are simple

to implement and can be applied to detect any signal, known or unknown,

deterministic or random. In case of iid Gaussian noise with known noise

power the energy detector is the optimum detector for a random uncorre-

lated Gaussian signal and at least a GLRT for completely unknown ran-

dom signals [101]. On the other hand, energy detectors cannot distinguish

among different signals (PUs, SUs, interferences) and are not able to ex-

ploit the detailed information regarding the PU which is available gener-

ally. Also in case the noise statistics are not explicitly known it is difficult

to maintain specified false alarm or missed detection probabilities. In fact,

the presence of uncertainty in the noise statistics results in severe perfor-

mance limitation in the form of the SNR wall phenomenon [109]: In the

presence of uncertainty, it is impossible to robustly distinguish the signal

from noise at SNR values lower than the SNR wall even if the sensing time

tends to infinity.

A review of energy based detection literature has been provided in [110].

In addition, constant false alarm rate (CFAR) strategies for the chan-

nelized radiometer have been considered in [96]. CFAR detectors adap-

tively adjust their thresholds to maintain a constant false alarm property
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if the additive noise is non-stationary. Recent performance analyses of

energy detection in fading channels have been carried out in [111–115]

as well. Experimental measurements of energy detection performance

with noise uncertainty have been provided in [102, 116]. Energy detec-

tion of WiMAX systems for ultra-wideband/WiMAX coexistence has been

considered in [117]. The detection of wireless microphone signals using

the maximum of the frequency domain energy measurements has been

proposed in [118]. Energy detectors have been proposed for colored Gaus-

sian [119], independent non-Gaussian [99,120], and colored non-Gaussian

noise [120] as well.

3.2.3 Spectrum estimation

Spectrum estimation methods are generally classified as parametric or non-

parametric methods. The parametric methods assume a model for the

signal and try to estimate the parameters of the model. The signal can

be modeled by autoregressive (AR), moving average (MA) or Autoregres-

sive moving average (ARMA) processes. Although the parametric meth-

ods may result in better performance than that of non-parametric meth-

ods, the accuracy of the parametric methods depend on the assumptions

of the model [121]. Therefore the non-parametric approach may be more

suitable for the spectrum sensing purpose as compared to the parametric

approach to detect the unknown signals [89].

Classical non-parametric spectral estimation schemes like Peri-

odogram, Correlogram, Barlett method, and Welch method can be used

to detect the idle spectrum. These schemes and their variants have been

presented in detail in [121] and make use of discrete Fourier transform

(DFT). Accuracy of the estimation depends on frequency resolution, leak-

age, bias and variance of the estimated power.

A spectrum estimation technique called multitaper spectrum estima-

tion has been proposed in [122] and this has been applied for the cognitive

radio scenario in [21]. In multitaper spectrum estimation, the procedure

involves linearly expanding the part of the time series corresponding to a

fixed bandwidth in a family of sequences known as the Slepian sequences.

These sequences have the property that their Fourier transforms have

the maximal energy concentration in the bandwidth of interest under a

finite sample-size constraint. This property can be utilized to reduce the

variance of the spectral estimate without increasing its bias.

A filter bank based approached for spectrum sensing is proposed in
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[123]. The input process is passed through a bank of filters and the out-

put power of each filter is measured as an estimate of the spectral power

over the associated subband. In [124] generalized filter-bank designs have

been proposed to detect the spectral scan with particular shape. Also,

a detector based on Capon spectral estimator, which is a filter bank ap-

proach using data dependent bandpass filters, is proposed [124].

A wavelet based approach for spectrum sensing has been proposed

in [125, 126]. Wavelets can be considered as a special case of the filter

banks with a single wavelet basis. Fine temporal analysis is done with

contracted (high frequency) versions of the wavelets while the fine fre-

quency analysis uses dilated (low frequency) versions [127]. Therefore

unlike Fourier transforms, wavelets are typically good in describing sin-

gularities such as edges in the image or sharp band edges in OFDM and

therefore suitable for spectrum sensing.

3.2.4 Cyclostationary detection

Cyclostationary processes are random processes for which statistical prop-

erties such as mean and autocorrelation change periodically as a function

of time. Wireless communication signals typically exhibit cyclostationar-

ity at multiple cyclic frequencies that may be related to the carrier fre-

quency, symbol, chip, code or hop rates, as well as their harmonics, sums

and differences. These periodicities can be exploited to design powerful

sensing algorithms for cognitive radios. However, signals typically need

to be oversampled (e.g. with respect to the symbol rate or the chip rate)

to reveal the cyclostationary features. Cyclostationarity-based detectors

have the potential to distinguish among the PUs, SUs and interference

exhibiting cyclostationarity at different cyclic frequencies. Moreover, sta-

tionary random noise commonly does not possess cyclostationarity prop-

erty. Cyclostationarity based detection has received considerable amount

of attention in the literature. Recent bibliographies on cyclostationarity,

including a large number of references on cyclostationarity-based detec-

tion, are provided in [128–130].

Most of the PU signal characteristics and parameters are specified in

standards. In addition, regulatory bodies monitoring the spectrum allo-

cation require such information to be disclosed. Therefore it is reasonable

to assume the explicit knowledge of cyclic frequencies of the PUs. Cyclo-

stationary properties of several widely used waveforms have been estab-

lished in [131–134].
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An optimummulticycle spectral correlation detector is proposed in [135]

for a signal in an AWGN channel. However the knowledge of signal phase

is required, otherwise the detector performance may suffer. A subopti-

mum detector is also proposed where the phase information is not needed.

Still different information like modulation type, carrier frequency, symbol

rate are needed. A suboptimum multicycle detector which only requires

the knowledge of cyclic frequencies is introduced in [136]. On similar

lines of [135, 136], a single cycle detector for detecting CDMA signals in

universal mobile telecommunication system (UMTS) and DVB-T signal

are proposed in [137] and [138], respectively.

In [139], a single cycle GLRT for the presence of cyclostationarity has

been proposed. The tests are based on testing whether the expected value

of the estimated cyclic autocorrelation value at a given cyclic frequency is

zero or not. Moreover, a generalization of the above test for the presence

of the kth order cyclostationarity has been done. In [134], the GLRT has

been formulated for the presence of non-conjugated second order cyclosta-

tionary as well. Note in case the cyclic frequency is not known, the test

can be carried out at various values of cyclic frequency. However this is

computationally very expensive.

In [130, 140], GLRT multicycle detectors have been proposed. This is

generalization of the results in [139]. In addition, two simplified multicy-

cle test statistics are proposed and their performance analyzed. Similar

multicycle detectors have been proposed to detect the OFDM based DVB-

T [141] and spread spectrum signals [142]. In [143], a multicycle detector

based on Fourier representation of the autocorrelation function has been

proposed. In [144], a locally optimummulticycle detector in non-Gaussian

noise has been derived. A spatial sign cyclic correlation based detector has

been proposed for robust spectrum sensing in [145]. Robust sign detector

trades off optimality with robustness to various non-idealities [92].

3.2.5 Autocorrelation detection

CP based OFDM is a key technology for several broadband wireless sys-

tems including wireless local and metropolitan area networks (WLANs

and WMANs), DVB systems and LTE. Therefore it is highly probable that

most of the PUs will be OFDM based systems. Hence detecting an OFDM

based system in a cognitive radio scenario is crucial.

Fig. 3.1 shows a CP based OFDM symbol. Let Td, Tc, and Ts be the

number of data samples, CP and total number of samples in an OFDM
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Figure 3.1. (a)An example of CP based OFDM symbol. (b) Corresponding autocorrelation
function r(t, τ) at lag τ = Td.

symbol so that Ts = Tc + Td. For OFDM signal, the last Tc samples of

the data block are copied in front of the data block. This results in the

autocorrelation function r(t, τ) = E[x(t)x∗(t + τ)] at lags τ = ±Td to be

periodic as shown in Fig. 3.1. The periodic autocorrelation function can

be expressed using the Fourier series [141] as

r(t, τ) = R0(τ) +

k=Ts/2−1∑
k=−Ts/2,k �=0

Rk(τ)ej2πkt/Ts (3.8)

where Rk(τ) is the cyclic autocorrelation function at the cycle frequency

k/Ts and given by

Rk(τ) = lim
T→∞

1

T

T−1∑
t=0

x∗(t)x(t+ τ)e−j2πkt/Ts . (3.9)

Thus OFDM signal can be considered as consisting of two components:

stationary (the first term in (3.8)) and cyclostationary (the second term in

(3.8)). Cyclostationary detectors presented in Section 3.2.4 detect the

OFDM signal by exploiting the fact that Rk(τ) is non-zero for k �= 0 and

τ = ±Td [130, 134, 141]. In this section, we focus on spectrum sensing

schemes which mainly exploit the fact that the stationary part of the

autocorrelation function (R0(τ)) at the lags τ = ±Td is non-zero for the

OFDM signal. This significantly simplifies the detector design at the cost

of slight performance loss. For simplification, we will denote R0(τ) as

R(τ) in the rest of this chapter. If we denote the received observations as

[x(0), . . . , x(M +τ −1)], then the ML estimate of the autocorrelation at the

lag τ is given by

R̂(τ) =
1

M

M−1∑
t=0

x(t)x∗(t+ τ). (3.10)

Here the conditional distributions of the received samples x(t) under the

two hypotheses are considered Gaussian as was shown in Publications I

and III.
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Several detectors based on the correlation property have been proposed

to detect the OFDM signal in Publications I, III, [105,106,146–151]. Most

of these detectors are NP detectors as the prior probabilities of P (H0)

and P (H1) are usually unavailable or may vary as a function of time and

are therefore hard to estimate. Table 3.1 summarizes the information

assumed by different autocorrelation based detectors for sensing OFDM

based PUs. Synchronization in the table refers to the knowledge of the

start of OFDM symbols and thereby position of the CP in the received

OFDM signal. Note that the assumed information may or may not be eas-

ily available. For example, some of the parameters like Tc and Td may be

easily available from the standards while information on signal variance,

noise variance, and synchronization may not be necessarily available and

have to be estimated. The errors in estimation can cause further per-

formance loss in the detectors assuming this information. Again, these

schemes can be classified based on the threshold calculation. If the de-

cision statistics are derived conditioned on the null hypothesis, thresh-

old for the NP detector can be easily found analytically. Otherwise, the

threshold has to be evaluated empirically, which is a major disadvantage.

The empirical calculation is done by passing sufficient number of white

Gaussian noise samples of a corresponding noise variance through the

signal detector, calculating the test statistics and finding the threshold

for the given probability of false alarm.

AUTOCORRELATION DETECTORS IN PUBLICATIONS I AND III

The LRT statistic in this case is the real part of R̂(Td) and is given in

Publication I by

A1 = R{R̂(Td)}. (3.11)

In Publication III, the autocorrelation coefficient is used instead of the

autocorrelation value so that the test statistic is normalized with respect

to the received signal variance. Therefore the threshold calculation de-

pends only on the number of observations and need not be calculated ev-

ery time the received signal variance changes. Under the assumption

that the conditional distribution of x(t) is Gaussian under either of the

hypotheses, the ML estimate of the autocorrelation is shown to be the log-

likelihood ratio test (LLRT) statistic in the low SNR regime and is given

by

A2 =

1
M

M−1∑
t=0

R{x(t)x∗(t+ Td)}

1
2M

∑M−1
t=0 |x(t)|2

. (3.12)
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Detectors Information required
Thres.

Calc.

Tc Td σ2
s σ2

n Sync. (A or E)

Autocorrelation detector (A1) [I] - x - - - A

Autocorrelation coefficient detec-

tor (A2) [III]
- x - - - A

Autocorrelation coefficient detec-

tor (A3) [III]
x x - - x A

CP detection (A4) [148] x x x x - A

Robust detector (A5) [149] x x x x - A

CP based tests (A6) [105,106] x x - x - E

CAV and CFN (A7) [146] - - - - - A

Ratio test (A8) [147] - x - x - A

Optimal NP detector [150] x x x x x E

GLRT (A9) [150] x x - - - E

Synchronized Multipath and CP

based GLRT [151]
x x - x x E

Unsynchronized Multipath and

CP based GLRT [151]
x x - x - E

Table 3.1. Information assumed by different autocorrelation detectors for sensing OFDM
based PUs. Thres. Calc. means threshold calculation which can be done ana-
lytically (A) or empirically (E). Sync. means synchronization to the symbol timing
is required.
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In A1 and A2, we have assumed a very conservative view that we do not

have any knowledge of the CP duration in samples, the range of values

CP length can take and the synchronization information (position of the

CP in an OFDM block). The effects of exploiting information related to

CP on detection performance are shown in Publication III by using the

following test statistic

A3 =

1
M1

Ns−1∑
n=0

∑
t∈CP R{x(t+ nTs)x

∗(t+ nTs + Td)}

1
2M

∑M−1
t=0 |x(t)|2

. (3.13)

where Ns = M/Ts is the number of received OFDM symbols and M1 =

NsTc. The distributions of the test statistics given by (3.11), (3.12) and

(3.13) under both hypotheses have been derived analytically in Publica-

tions I and III. See Publications I and III for detailed derivations and

simulation results. The schemes A1 and A2 proposed in Publications I

and III require knowledge of Td. This is a reasonable assumption on the

PU waveforms as this information is specified in the standards. Even if

the exact value is not known, we can detect for different values of Td from

the possible few options. The proposed autocorrelation based detectors

have been used as the local detector in the rest of our Publications II,

IV-VIII. The test statistic A1 is used in Publication II whereas the test

statistic A2 has been used in Publications IV-VIII. Moreover, the imple-

mentation of the proposed detectors A1 and A2 in a FPGA environment

has been well studied along with the effects of hardware non-idealities

and simple solutions to overcome these effects [92,152,153].

The performances of the proposed autocorrelation-based detectors in the

Publications I and III have also been studied in different multipath chan-

nels in addition to the AWGN channel. Note that it is sufficient that the

coherence time of the multipath channel is longer than the duration of

an OFDM symbol so that the data and the corresponding CP are affected

by the same channel. This will ensure the CP correlation is not signif-

icantly degraded. The performance of correlation estimator in different

channel conditions (AWGN, Multipath: Rayleigh (frequency flat and fre-

quency selective), frequency flat Rician, Shadowing) has been compared

with different detectors in [91] and [92].

OTHER AUTOCORRELATION DETECTORS

In [148], a NP test is proposed under the assumption of knowing Tc, Td,

signal variance, and noise variance. The LRT statistic used is

A4 = |R̂(Td) + c|2, (3.14)
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where c = μσ2
n

(1+2μ2)SNR+2
with SNR = σ2

s/σ
2
n and μ = Tc

Tc+Td
. Here σ2

s and

σ2
n are signal and noise variances, respectively. The distribution of the

normalized test statistic |R̂(Td)+c|2
σ2
R̂

is non-central chi-squared with two de-

grees of freedom. The authors also proposed c = 0 to overcome the issue of

dependence of the threshold on Tc, Td, and signal variance. However the

threshold still depends on the knowledge of noise variance.

In [149], the test statistic proposed in the low SNR regime can be ap-

proximated for M � Td as

A5 = |R̂(Td)|2 −
1

M
|R̂(0)|2. (3.15)

This way the noise variance no longer affects the test statistic. Therefore

the detector is claimed to be robust to the noise uncertainty. In addition,

the detection criterion focuses on minimizing false alarm probability for

a given missed detection probability. In this case, the distributions of

the test statistic under both hypotheses are non-central chi-squared with

different non-centrality parameters.

In [105], a CP based sliding correlation test statistic is proposed for one

OFDM symbol. It has been extended to multiple OFDM symbols and any

number of received samples in [106] by using the following modified test

statistic

A6 = max
Θ

∣∣∣∣∣
Ns−1∑
n=0

Θ+Tc+nTs∑
t=Θ+nTs

x(t)x∗(t+ Td)

∣∣∣∣∣ , (3.16)

where Θ ∈ {0, . . . , Ts − 1}. If we take the real part of the sum instead of

the absolute value, we get the second test statistic proposed in [106].

In [146], two test statistics have been proposed based on the sample

covariance matrix. It is based on the fact that the off diagonal elements

of such matrices are zero under the H0 hypothesis assuming white noise.

The general test statistic is given by

A7 =

Ls∑
n=1

Ls∑
m=1

|R̂(n−m)|k

Ls∑
n=1

|R̂(0)|k
. (3.17)

where Ls is the number of lags. For (k = 1), we get the first method called

covariance absolute value (CAV) while (k = 2) gives the second method

called covariance Frobenius norm (CFN) detection. The optimality of the

proposed schemes is not discussed and the schemes may become compu-

tationally complex if the number of lags is large.

A ratio test is proposed in [147] to detect a CP-OFDM system in the
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presence of frequency flat channel. The test statistic in this case is

A8 =
|R{R̂(Td)}|

|R{R̂(Td − 1)}|
. (3.18)

The conditional distributions of the numerator under the two hypothe-

ses are Gaussian with different mean and variances. On the other hand,

the denominator has the same Gaussian distribution under both the hy-

potheses. The test statistic A8 has a standard Cauchy distribution under

H0. Although the moments are not defined for the Cauchy distribution,

the cumulative distribution function (CDF) is defined making it possible

to determine the threshold analytically. In case the channel is frequency

selective, the detection statistic should be modified by replacing R̂(Td − 1)

with R̂(Td − L), where L is the number of channel taps. The proposed

detector is shown to outperform the energy detector.

In [150], an optimal NP test has been proposed under the assump-

tion that the signal variance, noise variance, synchronization (start of an

OFDM symbol), CP length Tc, and data length Td are known. Moreover

a GLRT statistic is proposed based on the second order statistics when

signal variance, noise variance, and synchronization are unknown. The

proposed detector employs the following test statistic

A9 = max
τ

Ns−1∑
t=0

|ζt|2

∑
t∈Cτ

∣∣∣∣∣ζt − 1
Tc

∑
t∈Cτ

R{ζt}
∣∣∣∣∣
2

+
∑
t/∈Cτ

|ζt|2
, (3.19)

where ζt =
1
Ns

∑Ns−1
n=0 x(t + nTs)x

∗(t + Td + nTs) for t = 0, . . . , Ts − 1. Here

Cτ represents the CP part of the OFDM symbol assuming a timing offset

of τ samples. The proposed test is a CFAR test as the empirical threshold

computation for a fixed false alarm probability in this case is independent

of the noise variance.

In [151], it is shown that the autocorrelation coefficient based detection

algorithm presented in Publication III is a special case of the constrained

generalized likelihood ratio test (CGLRT) for the no-multipath case. In

addition, a multipath-based CGLRT is proposed which takes into account

the correlation induced by the multipath channel. These two correlation

features can also be combined to get a better performance. A modifica-

tion is suggested which can work in unsynchronized case with slightly

degraded performance.

The choice of an autocorrelation based detector for sensing the

OFDM signal depends on the detector performance, information avail-

able, complexity and robustness. It is expected that performance can be
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improved by using more knowledge about the PU waveform at the cost

of complexity or robustness. The detectors assuming synchronization like

autocorrelation coefficient detector (A3 in Publication III), optimal NP de-

tector [150] and synchronized multipath and CP based GLRT [151] are

expected to perform better than the rest of the schemes. However the as-

sumption of synchronization is not practical and may lead to significant

degradation in the detection performance. Therefore these schemes may

only serve to provide upper bounds on the performance of a detector in

their considered scenarios. Similarly schemes assuming the knowledge of

signal or/and noise variances like the detectors of [105,106,147–149,151]

may be susceptible to errors in the estimates of signal and noise vari-

ances when these informations are unknown. The schemes in Publica-

tions I (A1), Publication III (A2) and GLRT (A9) [150] are more practical

and robust as the parameters assumed in these schemes like Tc and Td

are easily available from the standards. Although the detection schemes

CAV and CFN in [146] assume the least information and are among the

most robust schemes, they have high computational cost. Other detection

schemes with high computational cost are the detectors like the optimal

NP test [150] and the detectors in [151]. The empirical nature of the

threshold calculation also adds to the computationally complexity in the

schemes which do not analytically derive the detector thresholds. On the

other hand, schemes with analytical threshold calculations like detectors

in Publication I, Publication III and ratio test [147] have low computa-

tional complexity. Moreover, unlike under the analytical approach, de-

sired false alarm rate or missed detection probability are not guaranteed

with empirical methods.

3.2.6 Sequential detection

Sequential detection requires on average fewer samples to achieve the

same performance level as the fixed sample size (FSS) test. Sequential

detection is useful in cases where data acquisition is costly and when both

reliability and small decision delay are important considerations [154].

The sequential detection test after receiving k data samples is given by

[154]

Tk≤ηa, Decide H0

Tk≥ηb, Decide H1 (3.20)

Otherwise, Take Next Data Sample.
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where Tk is the test statistic after k data samples while ηa and ηb are the

upper and lower thresholds. Literature on sequential detection can be

found in [96,154–157].

Most of the proposed sequential detectors are based on the sequential

probability ratio test (SPRT) proposed by Wald in [158]. In terms of the

LLRs, the SPRT [158] after receiving k data samples is

k∑
m=1

Lm≤ log B, Decide H0

k∑
m=1

Lm≥ log A, Decide H1 (3.21)

Otherwise, Take Next Data Samples.

where Lm is the LLR corresponding to the mth observation, A = 1−βs

αs
and

B = βs

1−αs
. Here αs and βs are the constraints on the probabilities of false

alarm and missed detection, respectively. The performance of sequential

detectors is generally expressed in terms of the average sample number

(ASN) for given αs and βs. Among all the tests with equal and or smaller

error probabilities, the SPRT is optimal for testing simple hypotheses test

as it minimizes the ASN under H0 and H1 [159]. However, note that the

distribution of the observations needs to be known to evaluate the LLRs

at the local detectors.

Although the probability that the test will terminate with a finite num-

ber of samples is one, there is no upper bound on the number of samples

required for SPRT and the sample size can be occasionally extremely large

[155]. Also if there is a mismatch between the actual and assumed values

of the parameter, then the SPRT may be less efficient than the FSS test.

There have been numerous efforts to design sequential detection tests

for the case of composite hypotheses, such as truncated SPRT [155, 160],

2-SPRT [161], invariant SPRTs [162], sequential generalized likelihood

ratio (GLR) tests [163], robust and nonparametric sequential detectors

tests. For more information, see [155,156] and references therein.

Applications of the sequential detection framework for local detection

in cognitive radios have been studied in [145, 164, 165]. In [145, 165],

cyclostationary based sequential detection methods are proposed, while

energy based sequential methods are proposed in [164]. Sequential de-

tection schemes are proposed for binary [145,164,165] and multiple [165]

hypotheses testing problems. The proposed sequential detector in [165]

uses a single cycle detector with both phase and magnitude information.

Note that a fixed sample size scheme does not suffer any performance
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loss due to the loss of phase information. In [145], a single user truncated

sequential detection approach based on spatial sign cyclic correlation es-

timator has been proposed. In [164] sequential detectors with varying

thresholds (triangular and reverse parabolic thresholds) are presented to

ensure that the test terminates in certain number of samples.

QUICKEST DETECTION

Like ordinary sequential detection, quickest detection also involves choice

of a stopping rule. However the basic hypotheses of interest in quickest

detection is not binary, but there is one hypothesis for each possible obser-

vation time. In particular, the tth hypothesis is that the distribution of the

observations changes at time t for t = 1, 2, . . . , k. The quickest detection

problem is to detect the change in distribution as soon as possible after

it occurs with some constraint on the rate of false alarm. There are two

basic formulations: one in which the change point t is assumed to be a

random variable with known prior distribution and second in which t is

assumed to be unknown but nonrandom. For the introduction and details

on quickest detection, see [157].

Quickest detection has been applied to spectrum sensing for cognitive

radios in [166], [167]. In [166], the authors have used cumulative sum

(CUSUM) test for detecting the change in spectrum for the case when

signal and noise variances are known. Also tests are presented for the

case where these parameters are unknown. Mathematical analysis for

minimum detection delay for a given false alarm rate is done. However,

the schemes described in this paper have high implementation complex-

ity. In [167], quickest detection of off periods in multiple on-off processes

has been proposed. The main idea here is to abandon the current process

when its busy state is unlikely to change in the near future and seek op-

portunities in a new process. In this case, a Bayesian formulation of quick-

est change detection in multiple on-off processes with geometrically dis-

tributed busy and idle times is obtained within a decision-theoretic frame-

work. A low-complexity threshold policy for channel switching and change

detection is proposed. Superior performance over the single-channel ap-

proach is seen.

3.2.7 Compressive sensing

Compressive sensing or sparse sampling is a technique for finding sparse

solutions to a under-determined linear system; see [168] and the ref-
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erences therein for details. The underutilization in most of the spec-

trum bands results in sparseness in the frequency domain. Such sparsity

has motivated the use of compressive sensing in finding available spec-

trum opportunities for dynamic spectrum access. Using wideband spec-

trum sensing techniques, CR nodes can scan the whole spectrum at once

and avoid the delay and complexity of channel-by-channel scanning [169].

Compressed sensing techniques for identifying the unused spectral re-

sources have been proposed in [126], [170]. In [126], the autocorrelation

of the received signal sampled at Nyquist rate is compressively sampled.

Next the compressive sampling reconstruction is done followed by ob-

taining an estimate of the spectrum by using a wavelet edge detector.

In [170], compressive sampling is directly done on the wide-band analog

signal using an analog-to-information converter instead of doing compres-

sive sampling on the autocorrelation of the discrete-time signal obtained

at Nyquist rate as done in [126].

3.2.8 Multiantenna detector

Multiple input multiple output (MIMO) technology uses multiple anten-

nas at the transmitter and receiver to improve communication perfor-

mance (array gain, diversity gain, interference suppression gain, spatial

multiplexing). In addition, multiantenna systems may also provide di-

rection of arrival information of the signal. Because of these advantages,

MIMO has attracted a lot of attention in the field of wireless communica-

tion. For example, it is an important part of wireless communication stan-

dards such as WLAN (IEEE 802.11n), 3rd Generation Partnership Project

(3GPP) LTE, WiMAX and evolved high speed packet access (HSPA+).

These multiple antennas can also be used for the spectrum sensing

tasks. MIMO can trade-off between beamforming gain, parallel sensing

gain and diversity gain for detecting the PU. Beamforming helps improve

the received SNR while parallel sensing reduces the sensing time and di-

versity gain helps overcome the effects of multipath fading channel.

In Chapter 4, we will present the case of cooperative sensing (CS) where

several SUs cooperate to detect the PU. The multiantenna systems can

also be thought of as cooperative systems with colocated antennas. The

degree of spatial diversity determines the kinds of gain that can be ob-

tained in using CS. If the antennas see uncorrelated fading, diversity gain

will be available; otherwise, mainly SNR (or array) gain is obtained. In

some propagation environments like shadowing, diversity gains obtained
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by multiantenna systems will be lower than that by CS as the channels

may be more correlated for the case of multiple antennas. In addition,

an obvious disadvantage of multiantenna systems is the significant cost

increase as multiple RF front ends are needed. On the other hand, MIMO

has an advantage that the sensing information from different antennas

can be fused instantly while in the CS scenario the FC has to wait for the

sensing data from the SUs. Also there are no issues related to errors over

the reporting channel.

Several multiantenna sensing algorithms have been proposed in [93,

171–176]. In [171], a multiresolution multiantenna spectrum sensing

technique has been proposed where a coarse sensing stage is followed by

a fine sensing stage. This helps in avoiding the need to sense the en-

tire bandwidth with maximum resolution. In [172], multiantenna energy

detection schemes based on the maximum ratio and selection combining

are presented. It has been shown in [173] that a multiple antenna based

OFDM detection scheme using the square law combining energy detector

has better performance than the single antenna scheme. In [174–176],

GLRT schemes are proposed for the multiantenna detector case. These

methods do not require prior knowledge of one or more parameters like

channel gains, noise variance and primary signal variance.

3.2.9 Multistage detection

Two stage sensing schemes have been proposed in [177,178]. In the first of

the two stages of energy detection suggested in [177], the total spectrum is

divided into several contiguous coarse sensing blocks of equal bandwidth

and spectrum sensing is performed on these blocks. In the next stage,

fine sensing is done on the blocks with idle channels. It is shown that

the two stage sensing with a small coarse sensing bandwidth outperforms

the traditional one stage sensing scheme when the fraction of idle chan-

nels is low. A slightly different approach was adopted in [178] where two

stage sensing was considered with energy detection for the first stage and

cyclostationary based detection in the second stage. It is shown that the

proposed two-stage sensing provides improved performance over energy

detection specially in the low SNR regime while the mean detection time

is much lower than that in the cyclostationary scheme for most of the SNR

range.
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Figure 3.2. Typical RF front end of a direct conversion receiver. The components of the
analog front end: wideband antenna, RF filter, low noise amplifier (LNA),
voltage controlled oscillator (VCO), phase locked loop (PLL), channel select
filter (CSF), automatic gain control (AGC), and analog-to-digital converter
(ADC).

3.3 Non-idealities

Performance of the sensing algorithm may degrade in the presence of

practical non-idealities like channel impairments, loss of synchronization,

hardware non-idealities, and errors in the underlying assumptions. Exam-

ples of different channel conditions are AWGN, shadowing, and multipath

fading. Also there may be errors in the assumptions made for the PU sig-

nal, channel, and noise.

Hardware issues of the RF front end may depend on the type of re-

ceiver implemented: super heterodyne or direct conversion. Modern direct

conversion has several advantages over super heterodyne: cost benefit,

possibility of using microprocessors, high selectivity, and no issue of im-

age frequency. This is a more cost effective solution for enabling high-

performance multistandard/multiband radio designs. In this thesis we

will focus on issues related to direct conversion receiver as it is typical

in modern radios and is commonly used also in cognitive radio sensor

nodes [5, 92]. The typical RF front end of a direct conversion receiver

is presented in Fig. 3.2. However a direct conversion receiver also has

non-idealities: DC offset, non-linearity, narrowband interference, IQ imbalance,

phase noise, and synchronization errors [92,179,180].

Next we describe few of the non-idealities relevant to local spectrum

sensing:

• Channel Impairments: The performance of a local detector de-

grades in the presence of propagation effects such as shadowing

and multipath fading [91]. For example, frequency selective fading

distorts the pilot structure thereby severely degrading the perfor-

mance of the DVB-T pilot detector [92]. Again, these channel con-
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ditions may result in the hidden node problem, where a secondary

transceiver is outside the listening range of a primary transmitter

but close enough to the primary receiver to create interference.

• Nonlinearity: Nonlinearity may originate in the low noise ampli-

fier (LNA), mixer, filters, automatic gain control (AGC), and analog-

to-digital converter (ADC). The presence of nonlinearity generates

harmonics and intermodulation products resulting in out-of-band

signal detection in all the detection algorithms [92]. The probability

of false detection in the band of interest is dependent on the linearity

of the receiver front-end and on the SNR at the digital-to-analog con-

verter (DAC) output. While energy detection is always affected by

any out-of-band signal, the effect will be less pronounced for the fea-

ture detectors if the out-of-band signal has different features than

the in-band signal.

• DC offset: DC offset is caused by a second order non-linearity and

ADC threshold offset, which may or may not vary as a function

of time [92]. DC offset may affect the sensing algorithms in two

ways. First, it may be detected as a primary signal and thus cause

false alarms. Second, it can cause interference which decreases the

detection performance by effectively decreasing the SNR. Although

DC offset affects most of the sensing algorithms, it can be removed

by estimating its value from the input signal and compensating for

it [92,152,153].

• Narrowband Interference: Spurious interference is caused by

clock feed-through and feed-through of interference from implemen-

tation of DSP blocks in the receiver chain [92]. It may also be caused

by an intentional interferer or jammer. If narrowband interference

is strong, it can saturate the detector and the detector will only de-

tect the interferer [92].

• Synchronization errors: Synchronization errors like carrier and

sampling frequency offsets result from the transmitter and receiver

operating at different frequencies. The performance of the detec-

tors using the phase information may be severely affected because

of carrier frequency offset. For example, the performances of DVB-T

pilot detector [106], pilot aided cyclostationary detector [180], and

the autocorrelation detectors in Publications I and III degrade in
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the presence of carrier frequency offset [92]. On the other hand,

performances of the considered energy and cyclostationarity detec-

tors are unchanged as phase information is not used. In [179], it

is shown that the energy detector is not sensitive to sampling clock

offset while the considered cyclostationarity detector suffers from a

high performance degradation.

• IQ imbalance: IQ imbalance results from the physical differences

in the in-phase (I) and quadrature (Q) branches of the receiver. There

is negligible effect of IQ imbalance on the performances of the energy

and cyclostationary detectors [179] and pilot based cyclostationary

detector [180].

• Phase noise: Phase noise is the random perturbation in the phase

of the carrier signal generated by the oscillators. In [180], the phase

noise is shown to degrade the performance of a pilot aided cyclosta-

tionary OFDM detector.

• Noise model uncertainty: There may be uncertainty or errors in

the modeling of the additive noise which may cause performance

degradation. For example, there may be uncertainty in the noise

variance. Although it is typically assumed that the noise variance

is exactly known, noise power may vary due to temperature and out

of band interference. Moreover, the noise variance cannot be per-

fectly known and has to be estimated at the receiver based on a

finite number of observed samples in a signal free band. There-

fore there will be some uncertainty in the estimate. Normally the

noise uncertainty is in the range of 1 dB in the absence of interfer-

ence [181]. In the presence of interference, the value can be sig-

nificantly higher. The variance of the noise variance estimate may

tend to zero if the number of samples is extremely large which is

not practical. In [109], a performance limitation resulting from the

noise uncertainty is shown in the form of a SNR Wall, which is a

lower bound on the SNR at which detection is possible. There may

also be uncertainty in the assumed distribution of the noise.

For example, the noise is modeled Gaussian in most of the detection

literature. However, man-made noise in many outdoor and indoor

frequency bands is impulsive in nature. For example, noise gen-

erated by microwave ovens, electric motors, switches, etc., fall into

this category [182]. The distribution of a typical impulsive noise has
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a heavier tail than the Gaussian distribution. The presence of multi-

ple such impulsive noise sources generates interference and may de-

grade the performance of spectrum sensing schemes which assume

noise to be Gaussian. Robust nonparametric detection methods have

been suggested for cyclostationary based detectors in non-Gaussian

noise in [145,183].

3.4 Discussion

In this chapter, several important aspects of single-user spectrum sensing

schemes have been reviewed: detection strategies, performance parame-

ters, and non-idealities. The state-of-the-art sensing algorithms are also

reviewed and it is seen that several tools from diverse fields like spec-

trum estimation, compressive sensing, multiantenna systems, quickest

detection, etc., have been applied to design the sensing schemes for cogni-

tive radios.

Special emphasis has been given in this chapter on the review of au-

tocorrelation based OFDM sensing schemes as we have proposed

autocorrelation based detectors in Publications I and III. In Publication

I, an autocorrelation based detector is proposed for local spectrum sens-

ing while in Publication III an autocorrelation coefficient based detector

is proposed. The only difference between the two schemes is that the

test statistic in III is normalized by the received signal variance, thereby

eliminating the need for recalculating the threshold whenever there is a

change in noise variance. The statistical properties of the decision statis-

tics are established. The proposed autocorrelation based detectors are

simple, efficient and assume the least amount of PU information. The im-

plementation of proposed detectors in a FPGA environment has been well

studied along with the effects of hardware non-idealities and simple so-

lutions to overcome these effects [92, 152, 153]. In addition, the proposed

detectors are among the earliest detectors proposed for sensing CP based

OFDM systems based on their autocorrelation. Most of the later works on

autocorrelation detector have assumed our work as the base work and im-

proved the performance of the detector at the cost of increased complexity

and more prior knowledge regarding the PU activity and used waveforms.

Several state-of-the-art sensing algorithms have been presented in

this chapter. Table 3.2 shows qualitative performance comparison of rep-

resentative spectrum sensing schemes belonging to different categories.
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Detectors Detection

perfor-

mance

Complex-

ity

Robust-

ness

Distingu-

ish diff.

signals

Detect

diff. PUs

Robust detector * *** ***** ***** *****

Energy detector ** ***** ** * *****

Autocorrelation

detector

*** **** *** *** ***

Cyclostationary

detector

**** ** **** ***** *****

Matched filter

detector

***** * * ***** *****

Table 3.2. Qualitative performance comparison of representative spectrum sensing
schemes belonging to different categories. ’*****’ corresponds to excellent per-
formance and ’*’ corresponds to extremely bad performance.

There is no feasible quantitative scaling of the performance that could be

used for all the spectrum sensing techniques considered and therefore a

qualitative performance comparison is used. The detection performance

is assumed to be for given values of false alarm probability, sensing time

and SNR. For the results shown in the table, it is assumed that the prob-

ability of detection can be improved with increase in the knowledge of the

PU signal and noise at the cost of complexity.

It is clear from the performance comparison table and discussion on

pros and cons of the detectors that no one detector has the best perfor-

mance for all scenarios. The energy detector is the simplest of all the

detectors. However it has the serious issue of SNR Walls in the presence

of noise uncertainty. Autocorrelation detectors have advantages of rea-

sonable performance, low complexity and robustness to most of the non-

idealities. However they cannot be used to detect PU signals other than

OFDM. An added advantage of the energy and autocorrelation detector is

that they do not often need any extra hardware as the functions used by

these two detectors are very basic and incorporated in almost every radio

receiver. The matched filter detector has the best performance to detect a

known PU signal in AWGN. However it is computationally costly and sen-

sitive to synchronization errors and frequency selective fading channels.

Note that even though a matched filter cannot detect any other signal,

the receiver parameters can be tweaked to detect different PU signals

at the cost of increased complexity and under the assumption that the

preambles/pilot signals are known. With regulatory bodies like FCC and

54



Single-User Spectrum Sensing

Ofcom removing the obligation for the use of sensing for TV white spaces

(TVWS) in DTV frequencies [184, 185], use of the DVB-T pilot detector

may be limited. Cyclostationary detectors have several advantages like

good performance, robustness and can detect and distinguish any PU (or

SU) signals. If complexity is not an issue, they are the best choice. The

robust detector trades off detection performance with robustness to non-

idealities and therefore the implementation of robust detectors will be

limited to the cases where the non-idealities seriously affect the sensing

performance.

Since no one detector is optimal for all scenarios, it is desirable to have

a bank of sensing algorithms which will satisfy the requirement in the

majority of cases. Note that it should be sufficient to have only a few

complementary sensing algorithms in the bank of algorithms so that we

can use a multistage detector to trade off between the different perfor-

mance parameters. For example, a simple bank of sensing algorithms

may have two algorithms: one sensing algorithm which is simple and fast

(like an energy detector or an autocorrelation detector) for coarse sensing

and another sensing algorithm which is robust and capable of detecting

and distinguishing different signal transmissions (like a cyclostationary

detector).

Even though there has been a lot of research on sensing and many al-

gorithms have been proposed for the local detector, there is performance

degradation caused by propagation effects and non-idealities. Therefore

single user detection may not be sufficient to achieve the desired perfor-

mance and cooperation between different SUs may be needed. Moreover,

each individual detector can be simpler with cooperative detection while

maintaining the overall detection performance at a desired level. Cooper-

ative detection will be the topic of the next chapter.
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The performance of a local detector degrades in the presence of propaga-

tion effects such as shadowing and fading caused by multipath. These

channel conditions may also result in the problem of hidden node, where

a secondary transceiver is outside the listening range of a primary trans-

mitter but close enough to the primary receiver to create interference.

These issues can be overcome using cooperative sensing (CS), where neigh-

bouring yet geographically distributed SUs cooperate in sensing a com-

mon PU transmission by exchanging sensing information among them be-

fore making a final decision. Most of the CS schemes stem from the field of

distributed detection [96,154,186,187]. Fig. 4.1 shows an example of CS,

where N SUs sense listening channels for the PU signal activity and send

the sensing information on reporting channels to the fusion center (FC),

which makes the final decision. It is very unlikely that all the channels

between the PU and the SUs will be in a deep fade simultaneously. Thus

cooperative detection helps in mitigating the channel effects through mul-

tipath diversity [5, 188]. Other benefits of cooperative detection include

improved detector performance, increased coverage, simplified local de-

tector design, and increased robustness to non-idealities. Therefore, CS

has generated lot of interest in the cognitive radio literature. Recent sur-

veys on cooperative spectrum sensing and related issues along with long

lists of up-to-date references can be found in [18,19,36,37,90,189,190].

There are several components of CS: knowledge of PU waveform and ac-

tivity, selection of SUs for cooperation, listening channels, local detectors,

cooperation models, reporting channels, detection criterion, and fusion

rule at the FC. Most of these topics have already been briefly discussed

in the previous chapters. The focus in this chapter will be on cooperation

models, fusion rules, and effects of non-idealities on CS performance. This

chapter starts with a brief discussion on cooperation models. Next, differ-
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Figure 4.1. Cooperative Sensing (CS): Secondary users (SUs) sense a common PU on the
listening channels and send the sensing information to a fusion center (FC)
over reporting channels. The fusion center processes this information and
makes the final decision whether the PU is active or not.

ent fusion rules are presented. Later, the effects of non-idealities on CS

are discussed. As this thesis has contributions in the fields of sequential

detection, CS with censoring, CS with quantized decision statistics and ef-

fects of reporting channel errors on CS, special emphasis is given on these

topics.

4.1 Cooperation models

Cooperation models describe how sensors process the data, how they ex-

change information among themselves, and who combines the data/decision

statistics and makes the final decision. Based on how local sensors pro-

cess the data, cooperative detection can be modeled in two ways: central-

ized and decentralized (or distributed). In a centralized system, each sen-

sor sends all of its observations to a central decision maker or a FC who

makes the final decision regarding which of the hypotheses is true using

classical detection theory. In a decentralized system, each sensor sends a

summary of its observations to the FC. The loss of information in summa-

rizing the observations results in minor or no performance degradation

for the decentralized system as compared to the case of centralized sys-

tem. However, the bandwidth requirement for the decentralized system is

much smaller than that required for the centralized system [186]. In ad-

dition, the energy efficiency is much better for the distributed systems as

compared to the centralized system since data transmission consumes en-

ergy. These are the reasons why decentralized detection is very important

in practical scenarios and has attracted lot of attention in the research

community. Introduction to distributed detection theory and various is-

sues related to distributed detection can be found in [96,154,186,187,191].
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Cognitive radios have some intelligence and processing capabilities. In

addition, there are the constraints on the bandwidth of the reporting (or

control) channel and energy consumption of the battery-operated termi-

nal. Therefore, distributed detection is considered more suitable than cen-

tralized detection for cognitive radio applications. Hence we focus on dis-

tributed detection systems in the rest of this thesis unless stated otherwise.

Cooperation models can also be classified based on how information is

exchanged among different SUs. Some of the widely used topologies

for cooperation are: parallel, serial, and tree. In a parallel configuration,

sensors do not communicate with each other and there may or may not be

a FC [187]. In the case of distributed detection without fusion, the detec-

tors observe a common phenomenon and make local decisions. Although

the detectors do not communicate with each other, the costs of decision

making are coupled as a system wide optimization is performed [96]. This

results in coupled thresholds (each threshold is a function of other thresh-

olds) and thereby couple the operations. In this thesis we are interested

in the case where the decisions are fused. More information and thus

more gain can be expected by fusing the decisions as compared to the case

without fusion. In case of parallel fusion networks, there may or may not

be a dedicated FC. An example of a parallel fusion network with a ded-

icated FC is shown in Fig. 4.1. In case there is no dedicated FC, one of

the sensors can act as the FC or the role of FC may rotate, e.g., cluster-

heads in an ad hoc network. The dedicated FC approach is well suited

for a wireless network with a base station and has been advocated by the

IEEE 802.22 draft standard [192]. On the other hand, the approach with-

out a dedicated FC is suited for ad-hoc networks, which do not require a

pre-existing infrastructure and where each node participates in routing

by forwarding the data for other nodes. However, this approach is suited

only for small area networks.

In a serial configuration, a sensor sends its decision statistics to another

sensor which combines its own observation and decision statistics of the

previous sensor to generate a new decision statistic. The second sensor

then forwards these decision statistics to the next sensor. The last sensor

makes the final decision. In general, serial networks suffer from issues

like unreliability, excessive delays and ordering of the sensors. In addi-

tion, the error probability of the serial networks is bounded away from

zero even as the number of sensors tends to infinity [187].

In a tree network, the FC serves as the root of the tree while the sensors
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form the leaves of the tree. The information flows only in one direction

from one sensor (child) to an other sensor (parent) in the direction towards

the FC. In the end, the information from all the sensors reaches FC, which

makes the final decision. The details on deriving the fusion rules for the

tree topology and other general topologies can be found in [96].

The topologies described above do not consider any feedback from the FC

or communication among the sensors. More general networks with such

additional communication capabilities have been presented in [96, 187]

and can improve the system performance. In [193], a parleying approach

is presented, where each sensor transmits its tentative decision to all

other sensors and the sensor makes another tentative decision based on

the original observations and the recent set of tentative decisions. This

process continues till a consensus is reached. General networks with feed-

back have been presented in [96]. In addition, different interesting topics

like the case of asynchronous decisions, rules with direct observations,

correlated decisions are also covered [96]. An overview and discussion of

several important issues, such as randomization and computational com-

plexity is given in [186].

4.2 Fusion rules

Fusion rules describe how the data or the local decision statistics from the

SUs will be combined to generate the test statistic at the FC. In a central-

ized system, the SUs send their observations to the FC which makes the

final decision. Therefore, the detection problem for centralized detection

is similar to that of the local detection and classical hypothesis testing

discussed in Chapter 3 can be used to arrive at the final decision. In this

section, we will focus on fusion rules for distributed systems, where SUs

send processed data to the FC. As the decision is made on the basis of less

information in the distributed systems, there may be some performance

loss as compared to the centralized systems. Based on the performance

comparison of the fusion rules in a distributed system to that of the opti-

mal fusion rule in a centralized system, the fusion rules for the distributed

systems can be classified as lossless fusion and lossy fusion.
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4.2.1 Lossless fusion

If each of the users sends a sufficient statistic (such as likelihood ratio

(LR) or log-likelihood ratio (LLR)) of its observations to the FC, then it

is possible to combine the decision statistics such that there is no per-

formance loss in such distributed system as compared to the case of cen-

tralized system. Each of the N cooperating SUs evaluates a LLR Ln and

sends it to the FC. The LLR Ln at the nth SU is given by

Ln = log

M∏
t=1

p
(
xn(t) |H1

)
M∏
t=1

p
(
xn(t) |H0

) , (4.1)

where xn(t) are the observations at the nth SU. Under the assumption

of independence of the observations at the SUs conditioned on either of

the hypotheses, the optimal fusion rule using these LLRs from the SUs is

given by

Tllr =
N∑

n=1

Ln, (4.2)

while the corresponding LLRT is given by

Tllr
H1

≷
H0

ηllr, (4.3)

where ηllr is the threshold at the FC and depends on the detection strategy

to be employed, i.e., Bayesian, NP, Min-max, etc. For example, in the NP

detector, the threshold depends on the false alarm probability Pf,cs and

the distribution of the test statistic at the FC under the null hypothesis.

This approach has been used in Publications I, II, III by using autocor-

relation based LLRs. Note that the distributions of the data under both

hypotheses are required. However, these quantities may not always be

available. In such a case it may be possible to obtain a sufficient statistic

which is independent of the signal distribution. For example, the auto-

correlation estimate is used as a sufficient statistic in Publication I. Note

that the knowledge of the test statistic’s distribution under the null hy-

pothesis is still required. It is also assumed that the sufficient statistics

are transmitted as exact values to the FC which may consume excessive

bandwidth. In addition, an erroneous or malicious local detector may offer

a wrong likelihood ratio which dominates the global likelihood ratio [194].

61



Cooperative Spectrum Sensing

4.2.2 Lossy fusion

SOFT COMBINING

Sometimes it may become impractical to implement a lossless fusion rule

at the FC due to the difficulty in evaluating the sufficient statistic or the

threshold. For example, the optimal LLR test statistic becomes quadratic

for the case of local detectors employing energy detection and finding the

optimal threshold for the test statistic is not mathematically tractable

[195]. An easier approach in this case is to use maximum ratio combining

(MRC) or equal gain combining (EGC) by using a linear fusion rule given

by

Tlin =
N∑

n=1

wnEn (4.4)

where En = 1
M

M∑
t=1

|x(t)|2 and wn is the weighting coefficient such that

0 ≤ wn ≤ 1 and
N∑

n=1
wn = 1 [88]. If the source signal power received by

each user is known, the optimal combining coefficients can be found for

the MRC [97, 195]. For the low SNR case, the optimal weights [88, 97]

are given by wn = σ2
s,n/

N∑
i=1

σ2
s,i, where σ2

s,n is the received signal power (ex-

cluding the noise) at the nth SU. If there is no information on the source

signal power received by each user, EGC can be used where the weighting

coefficients are given by wn = 1/N, ∀n. Other ways of combining include

selection combining and switched combining. In selection combining, the

SU with maximum value among the decision statistics is chosen. There-

fore, wn = 1 for the SU with maximum value of the decision statistic and

wn = 0 for all others. In switched combining, the receiver switches to an-

other signal when the currently selected signal drops below a predefined

threshold. Assuming iid channel conditions and same experimental pa-

rameters for performance comparison, performance in general improves

with more information in the following order: switched combining, selec-

tion combining, EGC, and MRC.

The decision statistics like sufficient statistics, energy or SNR levels

convey local decision along with a confidence level with which a decision

has been made and therefore the fusion of such decision statistics is also

termed as soft combining. The topic of energy (or SNR) based soft combin-

ing has been addressed in the distributed detection literature [112] and

the cognitive radio literature [113, 115, 188, 196–203]. In [196], CS algo-

rithms to detect vacant TV channels are proposed and their performance
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is compared with the AND fusion rule. In [201], a comparison of different

CS algorithms like LRT, MRC, and EGC is carried out. The MRC and

EGC schemes have also been considered in [199]. In [203], soft combina-

tion schemes are proposed under NP and minimax criteria. However the

derived combination schemes require highly accurate information of noise

power levels and PU signal energies which are extremely difficult to ob-

tain in the low SNR regime. It is also shown that the optimal combining

scheme is better than MRC when the noise power levels are not identical

at different SUs.

Collaborative energy detection schemes for different channel conditions

have been considered: Rayleigh, Nakagami, and Rician fading channels

[112], Rayleigh and Nakagami fading [199], Rayleigh fading and log-normal

shadowing [113, 115, 197, 201], Suzuki fading with correlated and uncor-

related shadowing [198] and Rayleigh fading with a block obstacle shad-

owing model [188].

HARD DECISION COMBINING

In hard decision (HD) combining, each of the SUs sends a one-bit HD to

the FC which fuses these decisions to arrive at the final decision. Exam-

ples of one-bit HD combining are Boolean fusion rules such as OR, AND,

and MAJORITY. Advantages of HD combining are that they are easy to

implement and reduce the bandwidth requirement on the reporting chan-

nel between the sensors and the FC. However these advantages come at

the cost of performance loss resulting from the quantization. HD combin-

ing has been well studied in the detection literature [96, 186, 187]. If un
is the decision sent by the nth SU, then the optimal fusion rule for both

the Bayesian formulation and NP formulation is a likelihood ratio given

in [96] by

Tcv =
N∑

n=1

[
un log

1− Pm,i

Pf,i
+ (1− un) log

Pm,i

1− Pf,i

]
. (4.5)

This fusion rule is also termed the Chair-Varshney fusion rule and is a

weighted sum of incoming local decisions, where the weights depend on

the local probabilities of false alarm Pf,i and missed detection Pm,i. The

optimal decision rules at the FC and at the local detectors are LRTs in

both the Bayesian and the NP formulation [96]. However, finding the lo-

cal and global thresholds is not trivial and may involve complex optimiza-

tion techniques like Lagrangian or person-by-person optimization (PBPO)

methods. Moreover, knowledge of the local false alarm and missed detec-
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tion probabilities may not be available and have to be estimated. These

local probabilities can be estimated empirically [204], which is a major

disadvantage.

The optimal fusion rule reduces to a K-out-of-N fusion rule (also called

counting rule) for the case of identical sensors with iid observations. Count-

ing rules are a general class of Boolean fusion rules which include the

widely used OR, AND and MAJORITY fusion rules. They have the added

advantage of ease of implementation and low computational complexity.

The optimum value of K is derived in [96] which minimizes the Bayesian

risk. However, it is shown in [205] that the probability of error does not

tend to zero as N tends to infinity if the probability distributions under

the hypotheses do not satisfy certain conditions. For certain examples, it

is also shown that the performances of the OR and AND fusion rules are

worse than that of a single sensor.

HD based CS for cognitive radios has been considered in several works

[188, 196, 199–201, 206–208]. Energy based local detectors are used in

[196, 199–201, 206, 207] while cyclostationary based local detectors are

considered in [208]. The optimum number of cooperating users for energy

detection based cooperation has been investigated for AND and OR fusion

rules in [206] and for K-out-of-N fusion rules in [207]. It was observed

that including SUs experiencing bad channels for cooperation may de-

grade the performance [206]. In [207], the optimal K that minimizes the

total error probability for iid sensors with identical local decision rules for

the general K-out-of-N fusion rule was found to be 	N/2
 for typical error
probabilities. In [188,196,199–201], soft combining schemes are compared

with one or more hard decision schemes. Hard decision schemes consid-

ered in these papers belong to the class of counting rule. It is a common

conclusion that there is more performance loss with hard combining than

in the case of soft combining. However the performance difference be-

tween soft and hard combining can be relatively small as was shown for

energy based local detectors for large number of SUs in [188].

4.3 Sequential detection

Sequential detection, which was discussed in Section 3.2.6, has also found

application in cooperative detection. There are many flavors of coopera-

tive sequential detection: centralized [100, 155, 157], distributed [96, 155,

209–212], and quickest [157, 213, 214]. In the centralized version, se-
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quential detection is applied at the FC based on the observations from the

sensors. In the distributed version, sequential detection can be applied

at the individual sensors or/and at the FC. Distributed sequential testing

at the FC has been considered in [209,211] where the FC makes a sequen-

tial decision based on the summarized observations from the sensors. Dis-

tributed sequential testing at sensors has been considered in [212] where

there is no FC and the sensors are coupled with a common objective func-

tion. In [215] a decentralized SPRT (D-SPRT) scheme is proposed in which

both the local sensors and the FC employ SPRTs. In quickest detection,

the aim is to detect the change in the state of the system as soon as pos-

sible. The topic of cooperative quickest detection will be treated later in

this section.

Application of sequential detection framework in cognitive radios has

been studied in Publications II, III, [176,216,217]. While Publications II,

III and [176, 217] employ distributed sequential tests at the FC, [216]

employs a centralized sequential test. In Publications II and III, au-

tocorrelation based LLR evaluated for a data block is sent to the FC

while [176, 217] use energy based LLR as a decision statistic. This way

the decision statistic can be approximated using Gaussian distribution

without consideration of the statistical distribution of the primary signals

under both the hypotheses. However, knowledge of the received SNR at

each SU is needed. Simple hypotheses are considered in Publication II,

III, [176,216,217] and composite hypotheses in [216]. In [217], the cooper-

ative sequential scheme with censored and ordered transmission is used

so that the subsequent LLRs would have values with a lesser magnitude

than the earlier LLRs. This is extension of work in [218] for cognitive ra-

dio context and unlike [218], only K LLRs with the highest magnitudes

out of the N LLRs are processed.

4.3.1 Autocorrelation based sequential detection of OFDM
systems

In Publications II and III, SPRT is proposed such that each SU sends

an autocorrelation based LLR to the FC which makes the decision se-

quentially. The difference in the two publications is that autocorrelation

value A1 given by (3.11) is used in Publication II while autocorrelation

coefficient A2 given by (3.12) is used in Publication III. Note that since

the two detectors are the same, except for the normalization, they will

have similar performances. In both the papers, distributions of the deci-
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sion statistics (LLRs from the SUs) conditioned on either hypothesis are

established. Under the assumption of iid observations, the ASN of the

proposed sequential detector is derived in Publication III and is given by

Ksprt = max{E[K|H0], E[K|H1]} (4.6)

where E[K|H0] and E[K|H1] are the ASNs under the null and alterna-

tive hypotheses, respectively. The performance of the sequential detection

schemes is studied and compared with the FSS test in AWGN channel in

both publications and in shadowing channels in Publication III. The ben-

efit of sequential detection over FSS test is expressed in terms of relative

efficiency (RE) given by

RE =
Kfss

Ksprt
, (4.7)

where Kfss is the minimum sample size for FSS test to achieve the same

false alarm probability and missed detection probability. It is shown that

there are significant savings in the number of SU decision statistics re-

quired while using sequential detection as compared to the FSS test for

the same reliability level. For example, RE = 2.042, i.e., only half of the

number of samples are required for SPRT as compared to FSS when the

given values of false alarm probability and missed detection probability

are both 0.01. For detailed derivations and simulation results, please see

Publications II and III.

4.3.2 Quickest detection

The cooperative quickest detection problem has been considered by sev-

eral authors [157,213,214,219]. The proposed schemes are based on using

CUSUM or its variant as the test statistic. In [213], a change detection

scheme is proposed where each sensor quantizes the observed signal and

sends it to the FC which makes the decision whether or not a change has

been detected. One shot schemes for decentralized quickest change detec-

tion are proposed in [214], where a sensor communicates with the FC only

once and the FC then has to make a decision. The CUSUM stopping rules

for all sensors are asymptotically (as the mean time between false alarms

tends to infinity) sufficient statistics for the problem of quickest detection.

Therefore asymptotically, there is no loss of performance as compared to

the case of centralized quickest detection.

Cooperative quickest sensing in cognitive radios has been considered

in [220–224]. In [220, 221] distributed quickest detection is considered

without a FC in the presence of network delay. A two-thread CUSUM
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algorithm is proposed for a simple two-node network in [220] while a

multi-thread CUSUM test is proposed for a general multi-node network

in [221]. In [222], a Dual CUSUM test is proposed such that CUSUM

tests are performed both at the sensors and at the FC. Each sensor trans-

mits only if the CUSUM is above some threshold. Variants of the Dual-

CUSUM scheme are proposed in [223] and [224]. The local sensors use

GLR CUSUM algorithms in [223] while autocorrelation based LLRs are

used to detect OFDM transmission in [224].

4.4 Performance evaluation criteria

In this section, performance evaluation criteria is presented which is im-

portant to make a fair comparison of different cooperative sensing schemes.

In this thesis, the performance evaluation criteria is considered to be con-

sisting of performance parameters and non-idealities, which are described

in the following two subsections:

4.4.1 Performance parameters

Cooperation may result in gain and overhead as compared to the local

sensing case. Cooperation gain can be any improvement in one or more of

the performance parameters while cooperation overhead can be any degra-

dation in one or more of the sensing performance parameters. Most of the

performance parameters for a CS algorithm are the same as for the local

sensing algorithms explained in Subsection 3.1.2: false alarm probability,

missed detection probability, SNR regime, sensing time, computational complex-

ity, energy consumption, and robustness against non-idealities. In addition,

there are a few parameters which are specific to cooperative detection

scenario and those are

• Cooperation delay: Cooperation delay includes the time taken for

reporting the decision statistics from the SUs to the FC and process-

ing the decision statistics at the FC. For example, cooperation delay

may be caused by collisions and resulting retransmissions while us-

ing random medium access scheme. As cooperation delay is in addi-

tion to the local sensing time, it increases the overall sensing time

and therefore this parameter should be as small as possible. The

effect of cooperation delay has been included in [225] and references

therein.
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• Reporting overhead: A reporting or control channel is required

for sharing sensing information with the FC or other SUs. The re-

porting channel can be a dedicated channel in licensed or unlicensed

bands. Reporting overhead is the amount of bandwidth and energy

required for reporting the sensing information through the reporting

channels. Thus reporting overhead decides the amount of coopera-

tion between SUs. Issues related to the reporting overhead have

been considered in [225] and Publications IV-VIII.

• Cooperation footprint: It is the area where SUs cooperate with

each other. Since cooperative gain is obtained from spatial diver-

sity, cooperation footprint is an important parameter. The distances

between the SUs should be sufficiently large such that the observa-

tions are not correlated. However if the cooperation footprint is too

big, some of the SUs may be far away from the PU affecting the CS

performance. In addition, a bigger cooperation footprint may result

in inefficiencies in the spectrum reuse which is a local concept. It

is also important to consider the SU distribution (which depends on

the number of SUs and the cooperation footprint) in addition to the

distance between the SUs while designing sensor network dimen-

sioning and user selection schemes. Network dimensioning for coop-

erative sensing has been considered in [226] and references within.

• Number of SUs: Performance gain in CS depends on the number

of SUs. For AWGN listening channels, the gain is mostly SNR gain

that increases with the number of cooperating SUs. However the

diversity gain for multipath channels is obtained with diminishing

returns as the number of SUs is increased [227]. In case of correlated

channels, the obtained diversity gain can be very small [227]. It is

desirable to have as few SUs as possible since the reporting overhead

increases with an increase in the number of SUs.

It is evident that the degree of cooperation depends on different and pos-

sibly conflicting performance parameters. Performance parameters like

detection probability, false alarm probability, sensing time, and robust-

ness may improve with an increase in the number of SUs. However coop-

eration delay, reporting overhead, and energy consumption may increase

with an increase in the number of SUs, which is undesirable. Therefore

degree of cooperation is a trade-off between different performance param-

eters to achieve the desired objective.
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4.4.2 Non-idealities

In the previous sections, most of the assumptions made for cooperative

sensing are valid only in ideal conditions. In a practical scenario, there

may be several non-idealities caused by the propagation environment,

hardware issues, malicious users, bandwidth, and power constraints. Fol-

lowing are a few examples of the non-idealities for cooperative sensing:

• Correlated observations: Most of the optimal fusion rules are de-

rived under the assumption of conditional independence of obser-

vations for the two hypotheses. Correlated observations might arise

due to shadowing or line-of-sight channel conditions. Shadowing can

result in observations being correlated even for relatively large dis-

tances. Collaborative distributed spectrum sensing with correlated

listening channels has been considered in [187, 188, 196, 228] and

with correlated reporting channels in [229]. While the optimal so-

lution is intractable in general for such a scenario [187], using sub-

optimal fusion rules may result in a performance loss [188]. Asymp-

totic performance analysis for the correlated nodes case shows that

the missed detection probability does not converge to zero [196]. A

linear quadratic deflection-optimizing detector has been proposed

in [228] for fusing the binary decisions from the local energy detec-

tors at the FC. The proposed detector performs better than the K-

out-of-N fusion rules in correlated log-normal shadowing. In [229],

it is shown that the performance degradation caused by correlated

shadowing at the reporting channels is similar to that at the listen-

ing channels.

• Bandwidth constraints on reporting channels: Optimal detec-

tion performance for cooperative sensing can be achieved if each user

transmits exact value of the sufficient statistics (like LLR) and the

FC combines them using an optimal fusion rule. However this re-

sults in excessive bandwidth consumption. The reporting channel

bandwidth is limited and it poses constraints on the amount of data

transmitted for cooperative sensing thus determining the level of

cooperation. Techniques like quantization and censoring help in re-

ducing the excessive bandwidth consumption at the cost of slight

performance loss. As the thesis has contributions in the fields of

censoring (Publication I) and quantization (Publications IV-VIII) for

cooperative sensing, they are discussed in more detail later.
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• Energy constraints: The functions of sensing and data reporting

add to the energy consumption of the cooperating SUs. This is a se-

rious issue in battery-operated mobile terminals. The resulting en-

ergy or power constraints may affect the cooperative sensing perfor-

mance by limiting the level of cooperation between the SUs. As more

energy is spent in data transmission as compared to data processing,

techniques like quantization and censoring help in achieving better

energy efficiency. Another approach to minimize the energy con-

sumption is to optimize the cooperative sensing performance with

energy constraints [230] or minimize energy consumption with de-

tection performance constraints [231].

• Imperfect reporting channels: Erroneous reporting channels cor-

rupt the decision statistics sent by the SUs to the FC. This may

increase the error probabilities at the FC [232] and thereby affect

the CS performance as shown in Publication IV. Moreover, perfor-

mance limitations of CS in the presence of reporting channel errors

have been shown in [233] and Publications V-VIII. This necessitates

the use of error coding to cope with reporting channel errors. At

the same time, the overhead caused by error control codes should

be minimized. In fact, error coding can be avoided in low-cost and

low-power sensor networks if the channel errors do not significantly

affect the CS performance [234]. The issue of reporting channel er-

rors will be discussed later in detail.

• Synchronization issues: Most of the cooperative schemes assume

that all the cooperating SUs are synchronized to a common clock

and that the decision statistics from the SUs are available to the

FC at predetermined instants. However, it is very practical to have

timing and frequency synchronization issues between the SUs and

the FC. In addition, the decision statistics from the SUs may ar-

rive at different instants at the FC owing to networking and trans-

mission delays. The loss of synchronization may eventually affect

cooperative sensing performance. The effects of networking delays

on distributed detection and spectrum sensing have been studied

in [96,232] and [235] respectively.

• Security: Sensing a frequency band consumes energy and time.

Hence users have an incentive to sense for a shorter duration than

stipulated. Again, the resource allocation of the vacant frequency
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bands is based on the quality of decisions the SUs send. Therefore

there is also an incentive for malicious users to fake the detection

results. The presence of untrusted SUs has been shown to degrade

cooperative sensing performance [188]. The issue of untrusted SUs

can be tackled by using schemes which use anomaly detection on

the decision statistics sent by the SUs to distinguish and remove

the malicious users from the group. For example, a weighted SPRT

with reputation-based mechanism is proposed in [236] and a con-

sensus based scheme is presented in [237] to overcome the effect of

untrusted SUs.

4.5 Censoring

A censoring based approach is introduced in [238] where only informa-

tive observations are sent to the FC. The decision statistics are deemed

informative if they are sufficiently high or low, i.e., favor one of the hy-

potheses clearly. This approach provides significant benefits in terms of

reduction in bandwidth requirement and energy requirements while the

performance loss is negligible as compared to the conventional case of co-

operative detection without censoring.

Distributed detection using censored statistics has been considered in

several works [218, 238–243]. It is shown in [238] that the optimal no-

send region is a single interval using different criteria like Bayesian, NP

and distance between hypotheses (where the measure used belongs to Ali-

Silvey family). This simplifies the problem of finding the no-send region

as we need to find just two thresholds for each detector instead of an ar-

bitrary N -dimensional set. This is further simplified under certain con-

ditions [238, 239] where the lower threshold tends to zero and we only

need to find the upper threshold. A robust and locally optimal formula-

tions of the censoring problem is considered in [239], for the cases where

the signal and noise distributions are not completely known. In [243],

the knowledge of fading channels is integrated in developing optimal and

suboptimal fusion rules for the case of cooperative sensing with censor-

ing. Performance analysis is carried for different channels like Rayleigh,

Rician and Nakagami fading channels. In [218], a censoring and ordered

transmission based approach gives considerable reduction in transmis-

sions as compared to the optimal censored but unordered scheme with

minimal performance loss.
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The censoring based approach has been applied to cooperative spectrum

sensing in [54, 217, 231, 244] and Publication I. While [54, 231] send en-

ergy based HDs to the FC, [244] uses cyclostationary based SD, [217] uses

energy based SD and Publication I uses autocorrelation based SD. The

common conclusion is that there are significant savings in bit transmis-

sions at the cost of negligible performance loss. In [54], the performance

of the proposed censoring scheme for the OR fusion rule is studied for the

cases where the reporting channel may or may not be erroneous. In the

presence of channel errors, the sensing performance decreases as com-

pared to that in a perfect channel. In [231], the authors consider a com-

bined sleeping and censoring scheme to minimize the energy consumed in

distributed sensing subject to constraints on the detection performance. A

censoring and ordered transmission based approach is considered in [217]

for cognitive radio context. In [244], the asymptotic distribution of the cy-

clostationary based test statistic under the null hypothesis is derived by

numerically inverting the characteristic function using a Fourier series

method. This is done as the truncation of the test statistics due to cen-

soring makes an analytic solution intractable for finite observations. In

Publication I, a censoring approach similar to [244] is proposed for auto-

correlation based local test statistic for detecting OFDM systems, instead

of cyclostationary property as was done in [244]. This will be briefly pre-

sented next.

4.5.1 Autocorrelation based censoring scheme for detecting
OFDM systems

The local test statistic in this case is the maximum likelihood estimate of

the autocorrelation at the lag Td, i.e., A1 given by (3.11). For simplicity,

this value is denoted for the nth SU by ρ̂n. The censoring region for the

collaborating users is determined using the constraint on the data rate.

The lower threshold is −∞ while the upper threshold ηn is given by

P (ρ̂n > ηn|H0) ≤ κn ∀n = 1, . . . , N, (4.8)

where κn ≤ 1 is the send rate of the user n. Let Nns = {n : ρ̂n ≤ ηn} be the
set of SUs in the no-send region. Now the test statistic at the FC is given

by

Tc =
∑

n/∈Nns

ρ̂n +
∑

n∈Nns

ENns [ρ̂n] (4.9)

where ENns [ρ̂n] is the average value of the test statistic in the no-send

region for the nth SU under the null hypothesis. The detection criterion
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used is NP. The distributions of the local decision statistic and test statis-

tic at the FC under the null hypothesis are established in Publication I.

Once the distribution of the test statistic under the null hypothesis is es-

tablished, the threshold at the FC can be evaluated so that the desired

constraint on the false alarm probability can be achieved. It is shown

that there is negligible performance loss in using censoring even for very

tight communication constraints resulting in significant reduction in en-

ergy and control bandwidth consumption. Detailed derivations, theoreti-

cal and simulation results can be found in Publication I.

4.6 Quantization

Decision statistics like sufficient statistics, energy levels or their quan-

tized versions serve as soft decisions (SDs). Use of SDs improves co-

operative detection performance in comparison to the one-bit HD case

[196,202,245]. However in this section, we will focus mostly on the multi-

bit or quantized version of SDs and their effect on cooperative detection.

An argument that is often made against the use of SD based CS is that the

bandwidth requirement scales linearly with the number of bits used for

quantization. This is not necessarily true. The presence of a frame header

and additional information like interference levels, channel states and oc-

cupancy information, or probabilities for the channel occupancy [238,246],

may result in a significant overhead even in the HD case. Therefore the

relative increase in the transmitted data needed for the SDsmay be small.

The problem of designing optimum quantization algorithms for signal

detection and fusing the quantized data has received lot of attention in

the distributed detection literature [96, 186,247–250]. In [186,249], like-

lihood ratio quantizers (LRQs) have been shown to be the optimal quantiz-

ers for signal detection. In [247], a locally optimum quantizer is proposed

while a minimum average error (MAE) quantizer is presented in [251].

In [250], multibit distributed detection of weak random signals in addi-

tive, possibly non-Gaussian, noise is considered for the case where the

signal observations are correlated at sensors. In [194], optimum local de-

cision partitioning for distributed detection is considered. Here the global

optimization criterion for the desired objective function involves multi-

bit local decision statistics, local decision thresholds, FC decision statistic

and FC threshold. It is shown that quantizing the decision statistic is

equivalent to subpartitioning the false alarm and missed detection prob-
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Figure 4.2. Secondary users (SUs) send quantized sensing information to the fusion cen-
ter (FC) through error free reporting channels.

abilities. Also it is shown that with optimal subpartitioning of the local

decision space, detection performance increases monotonically with the

number of partitions at the cost of complexity.

The problem of SD based CS has been addressed in the cognitive radio

literature [199, 200, 202, 252, 253], Publications IV, VI, VIII. While publi-

cations IV, VI, and VIII use quantized versions of autocorrelation values

or the LLRs as SDs, papers [199,200,202,252,253] use quantized versions

of SNR or energy values as SDs. Most of these papers compare their pro-

posed detection schemes with one or more fusion rules belonging to the

counting rule family (OR, AND, and MAJORITY) and the common conclu-

sion is that the use of SDs gives significant performance gain as compared

to HD based CS and negligible loss as compared to the use of unquantized

SDs.

Different schemes have been considered to quantize the decision statis-

tics in different papers: uniform quantization in [252], Publication IV,

and VI, maximum output entropy (MOE) quantization in Publications VI

and VIII, Lloyd-Max quantization in [253]. The schemes in [253] and

Publication IV require the distributions of the received signal under both

hypotheses to be known while the schemes in [252] and publication VI

depend only on the probability of false alarm so that the distribution of

the received signal under H1 is not required.

4.6.1 Autocorrelation based soft decisions for detecting OFDM
systems

In Publications IV, VI, and VIII, the effects of quantization are analyzed

on the performance of CS with and without reporting channel errors while

using autocorrelation based SDs. In this section, the effect of quantization

on CS in the absence of reporting channel errors will be presented and
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the case with channel errors will be dealt with later when discussing the

effects of reporting channel errors on the CS performance.

Fig. 4.2 shows the considered cooperative sensing scenario using quan-

tized LLRs. The nth SU quantizes the decision statistic using a D−level
(or equivalently a d−bit) quantizer where D = 2d. For example, autocor-

relation based LLR Ln is quantized to get the quantized version Lsu
n . The

quantized decision statistic is mapped to a bit sequence and sent to the

FC over an error free reporting channel using binary phase shift keying

(BPSK). At the FC, the bit sequence is again mapped back to the levels. A

sum test statistic is assumed at the FC. Under the assumptions that the

observations at the SUs are iid, the optimal test statistic at the FC is to

sum the received quantized LLRs.

While Publications IV and VIII use quantized versions of autocorrela-

tion based LLRs, Publication VI uses quantized versions of autocorrela-

tion coefficient instead of LLRs. Publication IV uses uniform quantiza-

tion, Publication VIII considers MOE quantization while Publications VI

compares the uniform and MOE quantization schemes. The schemes of

Publication IV and VIII require the distributions of the received signal at

the SU under both hypotheses are required while the schemes in Publi-

cation VI depend only on the probability of false alarm so that the distri-

bution of the received signal under H1 is not required. Gray and binary

mappings are assumed to map the quantization levels to the bit sequences

at the SU and vice-versa at the FC in Publication IV. Gray mapping is

shown to give better performance than binary mapping, specially at small

values of D. Therefore only Gray mapping is considered in Publications

VI and VIII. AWGN listening channels are considered in Publications IV,

VI and VIII, while shadowing effects are also considered for the listening

channels in Publication VIII.

In Publications IV, VI, and VIII, the distributions of the quantized de-

cision statistics from the SUs are derived. Under the assumption that

the observations at the SUs are independent conditioned on either of the

hypotheses, the decision statistics from the SUs are independent of each

other. Therefore, the probability mass function (pmf) of the test statistic

can be derived by convolution of the pmfs of the corresponding individual

random variables. Since the test statistic at the FC is a discrete random

variable, randomization has to be used to implement the NP criterion.

Also note that the considered sum test statistic at the FC is optimal un-

der the assumptions that the observations at the SUs are iid and that
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there are no reporting channel errors.

In Publications IV, VI, and VIII, the theoretical and simulation results

show that using d ≥ 3 bits, there is negligible loss as compared to the

unquantized LLRs in the absence of reporting channel errors. Also MOE

quantization performs better than uniform quantization scheme at the

cost of complexity.

4.7 Imperfect Reporting Channels

Issues related to erroneous reporting channels in distributed detection

have been studied in [232, 234, 254–257]. In [232], the effects of trans-

mission delay and channel errors on the performance of a HD based dis-

tributed sensor network have been studied. Channel errors are modeled

as a BSC. The optimal fusion rule and the local tests have been shown

to be LRTs for a NP formulation [232] and Bayesian formulation [255].

In [254], the performances of different fusion rules such as the LR, Chair-

Varshney fusion rule, MRC and EGC with binary decisions for Rayleigh

faded reporting channels have been compared assuming a finite num-

ber of sensors and the use of phase shift keying (PSK) for reporting the

decisions. Different modulation schemes (frequency shift keying (FSK)

and on/off keying (OOK)) and different fusion rules (the counting rule

and Square Law Combining (SLC)) are considered in [234] as well. The

asymptotic error exponents are calculated using large deviation theory

for slow Rayleigh fading channels and AWGN channels in [234]. Channel

aware distributed detection is considered in [254, 256, 257] for improved

performance and better energy efficiency. In [257], a new LR-based fusion

rule is proposed which requires only the knowledge of channel statistics

whereas channel state information is required in [254]. In [256], joint

source-quantization and channel-encoding algorithm is proposed which

exhibits inherent adaptivity in resource (bit) allocation in response to

varying channel conditions. That is, the less reliable the reporting chan-

nels are, the fewer quantization level in the optimal quantizer output,

hence more redundant bits are used to combat any possible channel im-

pairment.

The effects of reporting channel errors in cognitive radios have been

studied for SNR (or energy) based local detectors in [233, 245, 258–261]

and for autocorrelation based local detectors in Publications IV-VIII. Co-

operative communication schemes for sensing are considered to overcome
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the channel effects in [233, 259–261] while non-cooperative communica-

tion schemes are suggested in [245, 258]. An amplify-and-forward relay

strategy has been proposed for two user networks in [259] and for mul-

tiuser networks in [260]. In [261], a transmit diversity based coopera-

tive sensing scheme is proposed to address the performance degradation

caused by the reporting channel errors. In [233], a performance limita-

tion of OR fusion rule is shown in the presence of reporting channel errors.

To overcome the effects of reporting channel errors, a robust cooperative

spectrum sensing scheme is proposed where multiple nodes come together

to form a virtual antenna array and space time coding is employed. In ad-

dition, a cognitive space frequency coding is also proposed for reporting

decisions from SUs to the FC. In [258], a two step detector is proposed

in which the local decisions are first estimated using a maximum a pos-

teriori (MAP) detector at the FC from their corrupted versions and then

fused to arrive at a final decision. The performance loss of this compu-

tationally simple algorithm is minimal in AWGN as compared to the op-

timal detector. However, performance comparison with non-cooperative

schemes shows that the non-cooperative scheme may be more effective in

some cases. In [245], the FC determines a set of users that maximizes

the detection probability for a given false alarm probability by solving an

optimization problem using the interference-to-noise ratio (INR) and SNR

reports from the SUs.

In Publications IV-VIII, the effects of reporting channel errors on the

performance of CS with HDs and SDs are considered. Publications V and

VII mainly deal with the performance limitations for HD based CS while

Publications IV, VI and VIII mainly deal with CS with quantized versions

of SDs. In addition, a performance comparison of hard and soft combining

schemes is carried out in publication VIII. In the next three subsections,

we briefly discuss the work in Publications IV-VIII as they are the ma-

jor contributions of this thesis. For detailed derivations and simulation

results, see the corresponding publications.

4.7.1 Effects on hard decision combining

Fig. 4.3 shows the considered scenario of HD based CS where the nth SU

sends one-bit HD usun to the FC over an erroneous reporting channel. The

received one-bit decision is denoted by ufcn . The reporting channels are

assumed to be iid binary symmetric channel (BSC) with a certain bit error

probability (BEP) Pb while listening channels are AWGN. For HD based
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Figure 4.3. Secondary users (SUs) send one-bit hard decision (HD) to the fusion center
(FC) over an erroneous reporting channel.

CS at the FC, counting rules or K-out-of-N fusion rules are employed at

the FC for HD based CS as the K-out-of-N fusion rule is a more general

class of fusion rules and includes the widely used OR, AND and MAJORITY

Boolean fusion rules. For CS, the important performance parameters of

false alarm probability and missed detection probability are denoted by

Pf,cs and Pm,cs, respectively. Moreover the constraints on the probabilities

of false alarm and missed detection for CS are denoted by αcs and βcs,

respectively.

The reporting channel errors are modeled using the BEP as it is a con-

venient and a widely applicable method to model the end-to-end perfor-

mance of the system including the transmitter, the channel and the re-

ceiver. Therefore, the effects of channels, modulation, coding and inter-

leaving schemes can be incorporated through a corresponding BEP value.

An assumption is made here that the erroneous sensing data received at

the FC is used in CS irrespective of the error detecting or/and correcting

codes used. However we do not consider the case where the transmitted

packet is dropped if packet errors are detected. The problem with drop-

ping the packets and resending the messages from the SUs to the FC may

cause significant delay in decision making at the FC.

In Publications V, a performance limitation in terms of BEP wall was

demonstrated for HD based CS under the constraints on false alarm and

missed detection probabilities: If the effective BEP of the reporting chan-

nel is above the BEP wall value, then the constraints on the detector perfor-

mance cannot be met at the FC irrespective of the received signal quality on

the listening channel or the sensing time at the SUs. The concept of BEP

wall can be explained using Fig. 4.4 which plots SNR loss vs. BEP curves

for differentK-out-of-N fusion rules forN = 5. Here SNR Loss is the min-
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Figure 4.4. SNR Loss in dB vs. Pb for the K-out-of-N fusion rules for αcs = 0.01, βcs =

0.01 and N = 5. The SNR Loss is the required increase in the local SNR
for maintaining the same error levels at the FC as in error-free reporting
channel case. The BEP wall phenomenon is clearly observed.

imum additional SNR required at the SUs to meet the same performance

constraints for the considered CS scheme with the erroneous reporting

channels as compared to the ideal case (optimal fusion rule, exact LLRs

and error-free reporting channels). There are three distinct regions for

each of the curves. In region i, channel BEP has negligible affect on the

CS performance and all the SNR loss is due to quantization. In region ii,

an increase in the BEP leads to an increase in the SNR Loss, however the

constraints can still be met. In region iii, a slight increase in BEP leads to

an exponential increase in the SNR loss and the SNR loss tends to infinity

as BEP approaches the limiting value. Since the phenomenon looks like a

wall at a certain BEP, we have termed it as BEP wall.

Expressions for the BEP wall values have been derived for theK-out-of-

N fusion rule in Publication V assuming iid reporting channel conditions

and are given by

Pb,wall = min(B−1(K − 1, N, 1− αcs), 1− B−1(K − 1, N, βcs)), (4.10)

where B−1(k, n, p) is the inverse of Binomial CDF with parameters k, n

and p. It is shown through theoretical and simulation results that the

BEP wall values are significantly low (on order of 10−2) making error cor-

rection coding necessary in such cases. It is shown in Fig. 4.5 that the

widely used OR and AND fusion rules are very sensitive to the reporting

channel errors while the MAJORITY fusion rule is very robust against the

reporting channel errors.
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Figure 4.5. Under the assumption that the reporting channel errors need not be iden-
tical, the BEP wall values for the OR fusion rule, N = 3, αcs = 0.01 and
βcs = 0.01 are calculated in Publication VII. The BEP wall values for the OR

fusion rule are given by the surface 1 − (1 − Pb1)(1 − Pb2)(1 − Pb3) = αcs as
the constraint corresponding to the false alarm constraint is dominant.

The work in Publications V is extended in Publication VII to the case

in which the reporting channel errors can be non-identical. The feasible

BEP values for the counting rule have been shown to satisfy the following

inequalities in Publication VII:

1−
2N−1∑
l=0

I{ N∑
n=1

ul
n≥K

} N∏
n=1

{
(1− Pb,n)u

l
n + Pb,n(1− uln)

}
≤ βcs, (4.11)

2N−1∑
l=0

I{ N∑
n=1

ul
n≥K

} N∏
n=1

{
Pb,nu

l
n + (1− Pb,n)(1− uln)

}
≤ αcs, (4.12)

where Pb,n is the BEP of the reporting channel from the nth SU to the

FC. Moreover, I(·) is a indicator function and ul is the binary vector corre-

sponding to the decimal value l. Thus in this case, there are several BEP

wall values. The BEP wall values are the BEP values on the boundary of

the feasible region corresponding to the dominant of the two constraints

(4.11) and (4.12) as increasing the BEP value for any of the N reporting

channels will lead to a violation of the constraints. Thus the BEP wall

values form a surface of BEP values satisfying both the constraints in

(4.11) and (4.12) with at least one constraint satisfied with equality. This

surface divides the BEP region into two parts: feasible and unfeasible. In

the unfeasible region, it is not possible to satisfy the cooperative detection

performance constraints even if the SNR on the listening channel or the

sensing time is increased. For example, Fig. 4.5 shows the surface of the

BEP wall values for the OR fusion rule for N = 3, αcs = 0.01 and βcs = 0.01

along with the feasible and non-feasible BEP regions.

In Publication VIII, the detection probability for the K-out-of-N fu-
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Figure 4.6. Secondary users (SUs) send multi-bit soft decision to the fusion center (FC)
over erroneous reporting channels.

sion rule is derived for the general case in which the sensors may ex-

perience different average SNRs on the listening channels. Simulation

results for shadowed listening channels show that the OR fusion rule has

the smallest performance loss while the AND fusion rule has the highest

performance loss as compared to the ideal case (exact LLRs, optimal fu-

sion rules and no reporting channel errors). However the locations of the

BEP walls remain unchanged.

4.7.2 Effects on soft decision combining

Fig. 4.6 shows the considered scenario of SD based CS. The quantized

version of the LLR Lsu
n at the nth SU is mapped to a bit sequence Ssu

n and

sent to the FC over an erroneous reporting channel using BPSK. The FC

receives corrupted bit sequence Sfc
n , which may be different from the sent

version. At the FC, the bit sequence is again mapped back to the levels

Lfc
n . Let Pb,n denote the BEP for the reporting channel from the nth SU to

the FC.

In Publication IV, the distribution of the received decision statistic Lfc
n

is shown to also depend on the statistics of the channel errors such that

the pmf of Lfc
n is given by

P (Lfc
n = li,n|Hj) =

D∑
i=1

P
di,k
b,n (1− Pb,n)

d−di,kP (Lsu
n = li,n|Hj). (4.13)

where di,k is the Hamming distance between the d-bit sequences corre-

sponding to li,n and lk,n. The sum of the received quantized LLRs is used

as the test statistic at the FC. The pmf of this test statistic can be eval-

uated by convoluting the pmfs of Lfc
n for all SUs. Through theoretical

and simulation results for iid channel errors (Pb,n � Pb) it is shown in

Publication IV that the reporting channel errors significantly affect the
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performance of CS. Due to the channel errors, the probabilities of false

alarm and missed detection increase. The effect is significant for low D

and high Pb while the effect is negligible for high D ≥ 8 and low Pb ≤ 0.01.

In Publication VI, a SD based CS scheme using an estimator-detector

structure is proposed for composite hypotheses testing for detecting OFDM

based PU. The SDs are the quantized versions of the maximum likelihood

estimate of the autocorrelation coefficient instead of LLRs as in Publi-

cation IV. For quantization, two schemes uniform quantization and MOE

quantization are considered. However, the proposed SD based CS schemes

suffer significant performance loss in the presence of channel errors and

exhibit BEP wall phenomenon. The BEP wall values are low enough to

be a cause of concern for CS. Simple modifications to these quantization

schemes are suggested to improve their robustness to the channel errors.

In Publication VIII, the distributions of the optimal fusion rule under

the null and alternate hypotheses are derived in the presence of channel

errors and a specific quantization scheme. The performance of the op-

timal fusion rule is analyzed through theory and simulations. Through

simulation results, the existence of a BEP wall for the SD based CS is

established. However the BEP wall values are too high (on the order of

10−1) to be of practical importance for the considered fusion rule and the

quantization algorithm. Later, a performance comparison of the HD and

SD based CS in the presence of reporting channel errors is conducted. It

is shown that there is a considerable performance gain in using SDs for

cooperative detection as compared to HDs for various listening channel

conditions even in the presence of reporting channel errors.

While quantifying performance limitation caused by the channel errors

in terms of the BEP wall, it is assumed that only the channel statis-

tics such as the BEP value are known (i.e., we only know how channel

behaves on average and the instantaneous channel coefficients are un-

known). Under this assumption, the model can be used for fast or slow

fading channels by using BEP value corresponding to the channel. In

cases where partial or full information regarding the reporting channels

may be available, the performance limitation has to be redefined in terms

of the known channel parameters such as the channel order, channel tap

coefficients, coherence time, coherence bandwidth, etc. Although it is pos-

sible to obtain the channel information through channel estimation and

feedback from the FC, it adds to the complexity, communication overhead

and delay for the CS.
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4.8 Discussion

In this chapter several important issues related to CS schemes have been

discussed: cooperation models, fusion rules, performance evaluation frame-

work, and effects of non-idealities such as censoring, quantization, and

reporting channel errors. Different cooperation models for distributed

detection have been presented: parallel, serial, and tree. Each one of the

network topologies has its own advantages and disadvantages.

Next, several fusion rules are discussed: LRT, MRC, EGC, switch com-

bining, selection combining, Chair-Varshney, and K-out-of-N . Based on the

quality of decisions, the fusion rules can be classified as hard combin-

ing and soft combining. The choice of a fusion rule depends on various

performance criteria: detection performance, false alarm control, sensing

efficiency, available information, complexity, energy consumption, and ro-

bustness to non-idealities. The LRT gives the best performance among all

the fusion rules. However, the LRT assumes the distributions of the ob-

servations to be known under both hypotheses. Moreover the performance

of the LRT is optimal under the assumption of independent observations

conditioned on the hypotheses. Therefore their performance may suffer

in a scenario where the assumptions are inaccurate or invalid. In ad-

dition complexity in some cases may be excessive. In such cases linear

combination schemes such as the MRC and EGC can be used at the cost

of slight performance loss. The Chair-Varshney fusion rule performs best

among hard decision combining schemes under the assumptions that the

local false alarm and missed detection probabilities are known. The local

probabilities may not be always available and have to be estimated em-

pirically, which is a major disadvantage. Hard combining schemes like

OR, MAJORITY, and AND belonging to the class of K-out-of-N fusion rules

have been widely implemented because of their simplicity. However there

are disadvantages of loss of performance and robustness.

Sequential detection is a reliable and quick way to arrive at a coop-

erative decision. Sequential detection is suitable for the cases where the

decision statistics from the SUs are arriving at the FC asynchronously

or/and data acquisition is costly. For example this is possible while using

TDMA for transmission of decision statistics. On the other hand, sequen-

tial fusion may not be suitable for the case where the cost of taking a

observation is low and the decision statistics are available at the FC syn-

chronously. This is possible while using access schemes such as FDMA
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and CDMA. For a simple hypothesis, the SPRTminimizes the ASN among

all the tests with equal or smaller error probabilities. However informa-

tion to evaluate the LRs are required such as the conditional distributions

of the observations under H0 and H1. If there is any deviation in the as-

sumed parameters from the actual parameters, the ASN may increase

for the SPRT and it may be even greater than that for the FSS test. In

Publications II and III, SPRT has been applied for detecting OFDM using

autocorrelation based LLRs from the SUs. These publications are among

the first works in the literature to use and analyze sequential detection

schemes at the FC in the cognitive radio context. Most of the later works

on sequential detection in the cognitive radio context have referenced our

work and shown improvement in the performance at the cost of increased

complexity.

Next, a performance evaluation framework has been presented for

CS. There are several performance parameters like probability of detec-

tion, probability of false alarm, sensing time (local sensing time + coop-

eration delay), SNR, cooperation footprint, number of SUs, robustness

against non-idealities and computational complexity. As some of these

parameters may be conflicting in nature, cooperation may result in gain

and overhead as compared to the local sensing case. Cooperation gain can

be any improvement in one or more of the performance parameters while

cooperation overhead can be any degradation in one or more of the sens-

ing performance parameters. Thus the degree of cooperation is a tradeoff

between different performance parameters to maximize cooperation gain

and minimize cooperation overhead. Most of the performance analyses in

the literature on CS is done for one or two parameters at a time while

keeping others fixed. Although it gives a good idea on how the CS perfor-

mance behaves with the given parameter, it does not give provide insights

when there are more variables acting together in the CS. There is a need

to form objective function as a function of various parameters having pri-

ority based weights so that the combined effect of different parameters

can be observed on the CS performance.

The effects of non-idealities like censoring, quantization, and report-

ing channel errors have been considered as well in this thesis. Non-

idealities such as censoring and quantization are required for the feasi-

bility of practical cooperative schemes while reporting channel errors can

not be avoided in a practical scenario. Therefore studying the effects of

such non-idealities is important.
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A censoring based approach helps in limiting the bandwidth and en-

ergy consumption without significantly degrading the cooperative sensing

performance. In Publication I, a censoring approach is used to detect an

OFDM based primary such that only informative decision statistics are

sent to the FC. Huge savings in the number of transmitted decision statis-

tics from the SUs to the FC has been seen under the null hypothesis at

the cost of negligible performance degradation.

The effects of quantization and imperfect reporting channels on

CS have been studied in Publications IV-VIII. The work in these publica-

tions presents the framework to obtain the design parameters of number

of bits for quantization and operational BEP value such that the CS per-

formance loss due to the quantization and channel errors is minimal. It

has been seen that a performance similar to the case of using unquantized

decision statistics can be obtained by using as low as four bits for a simple

uniform quantization scheme. Although multi-bit quantization improves

the detection performance for CS, there is an exponential increase in com-

plexity with the number of bits for quantization for schemes such as MOE

or LR quantization. As only few number of bits are required in practice,

this is not a big concern.

An important performance limitation for CS in the form of a BEP wall

resulting from reporting channel errors has been demonstrated in Publi-

cations V-VIII. Performance limitation for the CS has not received suffi-

cient attention in the cognitive radio literature. Establishing the limita-

tions of a fusion rule is an important topic as it helps in designing prac-

tical detectors and communication protocols between the detectors and

the FC. Therefore demonstration and analysis of the BEP walls has been

an important contribution.The BEP wall phenomenon has been analyzed

for hard decision combining (Publications V, VII, VIII) and soft decision

combining (Publications VI, VIII). It has been found that the OR and AND

fusion rules are very sensitive to the BEP Wall phenomenon while MA-

JORITY fusion rule and soft decision combining are robust to the report-

ing channel errors. Moreover, the performance of the OR and AND fusion

rules degrade with increase in the number of cooperating users. Most of

the papers in literature consider OR and AND fusion rules because of their

simplicity without realizing their serious limitations. In my view, BEP

walls for the OR and AND fusion rules are analogous to the SNR walls for

energy detectors. Similarly, the choice of quantization scheme has been

shown to significantly affect the BEP wall values for soft combining and
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needs to be paid sufficient attention during the design of practical cooper-

ative sensing schemes.

Comparison of hard and soft combining schemes for cooperative

spectrum sensing has been carried out in Publication VIII for different

listening channel conditions. It has been shown that there is a consid-

erable gain in cooperative detection performance and robustness while

using soft decisions instead of hard decisions. There is a common mis-

conception that bandwidth requirement increases linearly with increas-

ing number of quantization bits for soft decisions. However the presence

of significant overhead of header information means that the increase in

traffic resulting from using 3-4 bit long soft decisions is negligible. There-

fore more emphasis should be given to cooperative spectrum sensing using

soft combining as compared to hard combining, whenever possible.
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5. Conclusion

Limited usable radio frequencies and current rigid frequency allocation

policies have resulted in the apparent scarcity of the radio spectrum even

though the overall spectrum occupancy is still very low. Cognitive ra-

dios offer the promise of enabling the future wireless world by increasing

spectrum efficiency through dynamic spectrum access. In dynamic spec-

trum access, the secondary users access the underutilized primary user

spectrum opportunities such that the interference to the primary users

is under allowed limits. Spectrum sensing is a key enabler for cognitive

radios. Sensing provides awareness regarding the radio environment so

that the spectrum opportunities can be efficiently reused while limiting

the interference to the primary user. The focus of this thesis has been

on the local and cooperative spectrum sensing algorithms along with the

effects of non-idealities on their performance.

Single-user spectrum sensing schemes have been proposed in this

thesis to detect OFDM based primary user transmissions. OFDM is a key

technology for the present and future wireless systems and therefore de-

tecting OFDM transmissions is a very relevant task for cognitive radios.

The detector exploits the autocorrelation property of the OFDM symbol

resulting from the presence of the cyclic prefix. Later, the proposed sens-

ing schemes are extended to the case of cooperative sensing where mul-

tiple secondary users collaborate for the task of spectrum sensing. The

proposed local detectors are simple and efficient. Minimal assumptions

regarding the primary user and noise statistics are made by these auto-

correlation detectors. These assumptions are either available from stan-

dards or valid in a practical scenario. Moreover the proposed detectors

have been implemented in a FPGA evaluation environment and the ef-

fects of different non-idealities on their performances have been well stud-

ied. The proposed detectors are among the earliest autocorrelation based
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detectors for OFDM detection and are highly cited in the later works on

autocorrelation detectors.

Cooperative sensing has several advantages over local detection such

as diversity gain, increased coverage and simpler detector design. Se-

quential detection minimizes the detection time for the given constraints

on the probabilities of false alarm and missed detection. Decentralized

sequential sensing scheme has been proposed in this thesis where the

secondary users send sufficient statistics like log-likelihood ratios to the

fusion center which sequentially makes the final decision. Performance

comparison with a fixed sample size test shows significant reduction in

the number of samples required to arrive at the final decision with the

same error probabilities. The proposed sequential detection scheme has

received a lot of attention in the literature and has been highly cited.

Censoring based cooperative sensing has also been considered in which

each secondary user sends autocorrelation based decision statistic to the

fusion center only if it is sufficiently informative. The censoring approach

has shown to provide significant reductions in the transmissions of deci-

sion statistics, especially when the primary user is inactive, at the cost of

slight performance loss. This also improves energy efficiency as the trans-

mission of decision statistics consumes considerable energy. Later the ef-

fects of quantization and imperfect reporting channels have been consid-

ered. Our main aim in studying the effects of quantization and channel

errors on the cooperative sensing is to provide a framework for the de-

signers to choose the operating values of the number of quantization bits

and the target bit error probability for the reporting channel such that

the performance loss caused by these non-idealities is negligible. More-

over, a performance limitation in the form of bit error probability (BEP)

wall has been established for the cooperative sensing schemes in the pres-

ence of reporting channel errors. The BEP wall phenomenon is important

as it provides the feasible values for the reporting channel BEP used for

designing communication schemes between the secondary users and the

fusion center. It has been shown that soft decision combining gives better

performance than hard decision combining in the presence of quantiza-

tion and reporting channel errors. In addition, the hard decision OR and

AND fusion rules have been found to be very susceptible to the BEP wall

phenomenon and any increase in the number of cooperating users make

them more vulnerable to the limitations caused by the reporting channel

errors. It has been also shown that the choice of a quantization scheme
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for soft decision combining significantly affects the BEP wall values.

Although a lot of research has been done on spectrum sensing, there

are still several challenges. In the second opinion and order report,

the FCC has eliminated the spectrum sensing requirement for TV band

devices that use geolocation and database access. However it has been

emphasized in the report that the sensing technology offers significant

promise for improving spectrum access and efficiency both in the TV bands

and in providing dynamic access to other spectrum bands. Therefore the

opportunity to submit applications for certification of sensing-only de-

vices has been kept open and a rigorous process has been suggested for

approval of such devices. Although sensing is not mandatory in IEEE

802.22, most wireless standards being developed for operation in the TV

white spaces do include features to support sensing, which can provide

additional tools for optimization of the system performance and protec-

tion of incumbents. The database may give satisfactory performance in

TV white spaces but may not be sufficient for dynamically accessing the

white spaces corresponding to more dynamic primary users. Moreover,

the sensing approach may be more suitable to increase the spectrum effi-

ciency by accessing gray spaces in addition to the white spaces. Sensing

can also facilitate the coexistence of heterogeneous networks in the same

frequency bands, which is an important research challenge. Therefore

sensing is still important in the current context of dynamic spectrum ac-

cess in TV white spaces and it is also going to be a key enabler in the next

evolutionary step of cognitive radios for dynamic spectrum access. Thus

there is still plenty of room and motivation to design innovative and effi-

cient spectrum sensing schemes, especially for the cooperative scenario.

Cognitive radio is a highly multidisciplinary field and is still in its in-

fancy. Apart from sensing, other important areas for cognitive radios are

sensing and access policy design, coexistence among multiple primary and

secondary networks, cooperative communications, network security, cog-

nitive network architecture and protocol design, cognitive radio architec-

ture, software abstractions, business considerations and regulatory poli-

cies. Although some cognitive features are being used in various wire-

less standards and systems, there is still lot of research to be done in the

important areas mentioned above for making cognitive radio networks a

reality. Moreover, collaboration among researchers across these diverse

fields is crucial for realizing the full potential of cognitive radios for dy-

namic spectrum access.
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Errata

Publication I

Equation (7) is written incorrectly. The correct equation is

E[|r|2|H1] =
(σ2

s + σ2
n)

2 + 2μ2
1

M
+ μ2

1.

Publication IV

Fig. 1 is not printed properly. The proper figure is given below
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Figure 5.1. Secondary users (SUs) cooperate to detect CP-OFDM based primary user
(PU) transmission. The nth SU evaluates LLR (Ln), and transmits d bit
symbol Ssu,n corresponding to the quantized LLR Lsu,n. Due to the channel
errors, the FC receives symbol Sfc,n corresponding to the quantized value
Lfc,n. The FC then combines the received LLRs from the cooperating sec-
ondary users to make a final decision.
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Errata

Publication V

In this paper and Publications VII and VIII, it is assumed that K =
⌈
N
2

⌉
for the MAJORITY fusion rule. This definition of the MAJORITY rule is

appropriate only while using odd values of N as was done in these publi-

cations. However this definition of the MAJORITY fusion rule is incorrect

for even values of N and the correct general definition is K =
⌈
N+1
2

⌉
.
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