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Abstract 
Remote sensing of the Earth using microwave radiometers is an important tool for the 
monitoring of diverse environmental processes from space. Passive microwave instruments 
are used, amongst other applications, for the monitoring of ocean processes, the properties of 
soil and vegetation, and different aspects of the Earth’s cryosphere. Compared to optical 
instrumentation, passive microwaves provide the advantage of being largely insensitive to 
atmospheric and lighting conditions. However, the radiometers typically suffer from a poor 
spatial resolution, which makes the interpretation of observations of heterogeneous areas 
challenging. An important part in understanding passive microwave signatures of the Earth’s 
surface is the development of emission models, linking the observations to the physical 
properties of the target. Advanced models can be further applied to account for the effects of 
varying vegetation and land cover in the observation. 

 
The first part of this thesis dissertation describes the development, validation and application 

of a radiative transfer based model for the simulation of microwave emission from snow 
covered terrain. The model is an improvement of an existing model published in literature, 
introducing the possibility to account for the vertical layering of snow and ice structures in the 
simulation. The modified model is verified against experimental observations from ground  
based and airborne radiometer instruments, and finally applied for the retrieval of snow cover 
parameters from space. 

 
Calibration of radiometer instruments is a prerequisite for reliable observations. Calibration 

of space-borne radiometers is particularly challenging due to the typically high sensitivity of 
instrumentation to changes in environmental conditions. In the second part of this 
dissertation, the calibration method for a novel type of radiometer instrument, the first 
interferometric radiometer using aperture synthesis in space, is presented. Specifically, on-
ground characterization of the calibration subsystem of the instrument is described, including 
an analysis of the effects of the characterization errors on the final performance of the 
instrument. 
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Tiivistelmä 
Maapallon kaukokartoitus mikroaaltoradiometreillä on käyttökelpoinen menetelmä eri 
ympäristötekijöiden seurannassa. Passiivisten mikroaaltolaitteiden mittauksia käytetään mm. 
valtamerten, kasviston sekä lumi- ja jääpeitteen havainnointiin. Verrattuna optisiin 
kaukokartoitusinstrumentteihin mikroaaltolaitteiden etuina ovat ilmakehän heikko vaikutus 
sekä riippumattomuus valaistusolosuhteista. Passiivisilla mikroaaltolaitteilla on kuitenkin 
vaatimaton spatiaalinen erottelukyky, mikä tekee heterogeenisten alueiden havaintojen 
tulkinnasta haastavaa; tähän tarvitaan maanpinnan tuottaman mikroaaltosäteilyn mallinnusta. 
Kehittyneiden mallien avulla voidaan myös kompensoida esimerkiksi heterogeenisten 
kasvillisuuden tai maaston vaikutusta havaintoihin. 

 
Väitöskirjatyö kuvaa lumipeitteen mikroaaltoemissiota selittävän mallin kehitystä, 

malliennusteiden oikeellisuuden tarkastelua kokeellisin mittauksin sekä mallin soveltamista 
kaukokartoitushavaintojen tulkintaan. Kehitetty malli laajentaa aiempaa emissiomallia 
kuvaamaan myös eri kerrosrakenteiden vaikutusta lumen emissioon, mahdollistaen mm. 
lumipeitteisten järvien mikroaaltovasteen mallinnuksen. Laajennetun mallin ennusteita 
vertaillaan työssä sekä maan pinnalta että lentokoneesta mitattuihin radiometrihavaintoihin, 
sekä käytetään lopulta lumipeitteen ominaisuuksien tulkintaan satelliittihavainnoista. 

 
Tärkeä edellytys kaukokartoitushavaintojen käytölle on niihin käytettyjen laitteiden 

kalibrointi. Satelliittiradiometrien kalibroinnin erityisenä haasteena on laitteiden suuri 
lämpötilariippuvuus. Väitöstyössä esitellään uudenlaisen kuvaavan radiometrijärjestelmän 
kalibrointimenetelmä. Osana väitöstyötä kehitettiin malli kalibrointijärjestelmän 
ominaisuuksien kuvaamiseen eri lämpötiloissa, sekä tutkittiin mallin epävarmuuksien 
vaikutusta radiometrin kuvanmuodostuksen luotettavuuteen. 
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Symbols 
 

,ߙ  -  Empirical parameters ߚ

 - ఓ Fractional coverage of land cover ߚ

 -  Dirac delta function ߜ

Δߠ௞௣ Uncertainty of baseline phase difference   

of receivers k and j  [deg] 

Δ݂ Bandwidth   [Hz] 

Δܩ RMS variation of system gain   - 

Δ ௝ܵ௬ Uncertainty of calibration network gain  

from source y to receiver j  [dB] 

Δܶ Radiometer sensitivity  [K] 

Δܶீ  Brightness temperature uncertainty  

due to receiver gain fluctuations  [K] 

Δ ேܶ Brightness temperature uncertainty  

due to noise fluctuations  [K] 

 Permittivity   [F/m] ߝ

 - ௜,௧ Sum of model and observation errorsߝ

߳ Emissivity   - 

,ߠ  ௦ Propagation angle  [deg]ߠ

 ௜ Incident angle   [deg]ߠ

,௤௜ߠ  ௤௝ Quadrature error of radiometers i and j. [deg]ߠ

,௞௤ߠ ௝௤ߠ  CAS signal path phase from source q to  

receivers k and j   [deg] 

௞௝ߠ
′  Measured phase difference of correlated 

 noise   [deg] 

 Permeability   [N/A2]  ߤ

 - ௜௝ Normalized correlation coefficientߤ

 -  Direction cosines  ߟ	,ߦ
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 Wavelength   [m] ߣ

ௗబ,ೝ೐೑ߣ
ଶ  Variance of grain size value  [mm2] 

 -  ௔ Absorption coefficientߢ

 -  ௘ Extinction coefficientߢ

 -  ௦ Scattering coefficientߢ

߷ Charge density   [C/m3] 

 ௗ Differential scattering cross section [m2]ߪ

௜ߪ  Standard deviation of random errors - 

 ௦ Scattering cross section  [m2]ߪ

 ௥௘௙,௝ Standard deviation of model a prioriߪ

parameters ݔො௥௘௙,௝  - 

߬ Integration time  [s] 

Ψ Scattering phase function  - 

߱ Angular frequency  [rad/s] 

Ω௦ Solid angle for emitted power  [srad] 

Ω௥ Solid angle for received power  [srad] 

 ௥ Receiver aperture  [m2]ܣ

 ௦ Area of power source  [m2]ܣ

B Bandwidth   [Hz] 

۰  Magnetic flux density vector  [T] 

 ௙ Spectral brightness   [J/m2]ܤ

 ௙,௕௕ Brightness, blackbody  [J/m2]ܤ

ܿ  Speed of light in vacuum  [m/s] 

݀଴,௥௘௙ Reference snow grain size  [mm] 

݀଴,ఓ Reference snow grain size for land cover  [mm] 

۲ Electric flux density vector  [C/m2] 

 -  ௝ Directivities of antennas i and jܦ	,௜ܦ

 ௢௕௦ Observed snow grain size  [mm]ܦ

۳  Electric field vector  [V/m] 
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 ଴,୷ Electric field amplitude  [V/m]ܧ ,଴,୶ܧ

݂, ଴݂ Frequency, radiometer centre frequency [Hz] 

௜݂ሺܠሻ Model giving using vector of variables ܠ  - 

,൫૙෡܎ ଍̂൯ Normalized scattering amplitude vector - 

 - ௡ Normalized antenna beam patternܨ

௡௜ܨ ;   ௡௝ Normalized beam patterns of antennasܨ	

of radiometers i and j.  - 

 -  ௝ Gain of receiver jܩ

 -  ௦ Average system power gainܩ

݄ RMS height variation of rough surface [m] 

݄ Planck’s constant  [Js] 

݄௡ Thickness of layer n  [m] 

۶ Magnetic field vector  [A/m] 

۸ Total current density vector  [A/m2] 

 -  Emission source function ܬ

݇ Wave number   [m-1] 

݇஻  Boltzmann’s constant  [J/K] 

݈௡  Loss factor of layer n  - 

  ௜௝ Quadrature-corrected correlationܯ

Coefficient for radiometers i and j. - 

௩ܰ Number of scatterers in volume V - 

  Ratio of forward and total scattered ݍ

radiation coefficients  - 

ܲ Noise power   [W] 

௜ܲ௡ Receiver input power  [W] 

௥ܲ Received power   [W] 

௦ܲ Emitted power   [W] 

 - .௜௝ Fringe-washing factor of radiometer pair i, jݎ̃

 -  ௡ Reflection coefficient of layer nݎ
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 - ௣ Modified reflection coefficient for polarization pݎ

 - ௣,ி௥௘௦௡௘௟ Fresnel reflection coefficient for polarization pݎ

ܵ௔௩  Power of electrical field ´ [J/sm-2] 

௜ܵ  Power of incident field  [J/sm-2] 

௝ܵ௬ Gain of calibration network from source y 

to receiver j   [dB] 

ܵ௡ Geometric sum of multiple reflections 

 in layer n   - 

ܵ௦ Power of scattered field  [J/sm-2] 

ܶ Temperature   [K] 

஺ܶ Antenna temperature  [K] 

஻ܶ Brightness temperature  [K] 

஻ܶ,௡,↑ Upwelling brightness temperature  

of layer n   [K]  

஻ܶ,௡,↓ Downwelling brightness temperature 

 of layer n   [K] 

௖ܶ Noise temperature of cold calibration load [K] 

஼ܶ஺௅ Calibration source noise temperature [K] 

௛ܶ Noise temperature of hot calibration load  [K] 

௜ܶ௝
′  Modified brightness temperature [K] 

 - ௡ Transmission coefficient of layer boundary nݐ

ேܶ Noise injection noise temperature [K] 

ேܶ,௝
஼ଵ , ேܶ,௝

஼ଶ  Noise levels measured at NIR outputs  

for calibration signals 1 and 2  [K] 

ோܶ Receiver noise temperature  [K] 

ோܶாி Reference source noise temperature [K] 

௦ܶ Physical temperature of snow  [K] 

௦ܶ௬௦ System noise temperature  [K] 

 ௢௙௙ Receiver offset   [V]ݑ
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௖ܷ Receiver output voltage for cold 

 calibration load   [V] 

ܷ௛ Receiver output voltage for hot  

calibration load   [V] 

  ௝ଶ LICEF PMS output voltages of receiver jݒ ,௝ଵݒ

for noise injection levels 1 and 2 [V] 

ܸ Volume   [m3] 

௜ܸ௝ Visibility measured with radiometers i and j [K] 

௢ܸ௨௧ Output voltage   [V] 

ఓܹ, ܹ  Snow water equivalent  [mm] 

஺ܹ Beam energy loss due to absorption [J/m] 

஺ܹௌ Beam energy loss due to scattering [J/m] 

௙ܹ Increase of beam radiation energy [J/m] 

ாܹ  Increase of radiation energy by thermal  

radiation   [J/m] 

ூܹௌ Increase of radiation energy by scattering [J/m] 

 -  Vector of variables x ܠ

 -   ௝ Geophysical variables 1…mݔ

 - ௝ݔ ො௥௘௙,௝ A priori values of variablesݔ

 -  ݕ Vector of observations ܡ

 - ௜ Remote sensing observations 1…nݕ
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1. Introduction 
 

Remote sensing is a term which can be applied broadly to describe any 

observation of an object from a distance by means of electromagnetic 

waves. The term is also applied to describe observation of the surface of the 

Earth from either space or an aircraft. Remote sensing can be conducted 

either by observing the emission of radiation from the object of interest 

(passive remote sensing), or by measuring the scattering properties of the 

object by exposing it to radiation and measuring the properties of the 

returned signal (active remote sensing). The focus of this thesis is on 

passive microwave remote sensing, i.e. the study of the microwave 

emission properties of natural objects, such as the surface of the Earth, and 

the instrumentation used to perform these measurements. 

Microwave radiometry provides a powerful tool for purposes of Earth 

Observation (EO) from space. Due to the relatively low loss of microwave 

radiation in the atmosphere at certain frequency bands, microwaves can be 

used to obtain information of the Earth surface with only a small 

interference from atmospheric conditions (e.g. Tedesco and Wang 2006a). 

Radiometers are devices which measure the naturally emitted microwave 

radiation from an object, typically restricting observations to a defined 

frequency band, polarization and spatial area on the observed object. Since 

the emergence of the first satellite missions carrying microwave 

radiometers in the 1970’s, these devices have been applied for a variety of 

purposes in Earth observation. In recent studies over sea surfaces, 

radiometers have been applied in e.g. detection of sea ice concentration 

(Comiso et al., 1997; Spreen et al., 2008; Mills and Heygster, 2010) and 

ocean salinity (e.g. Reul et al., 2009; Font et al., 2010). Over land surfaces, 

the relatively coarse spatial resolution of passive microwave 

instrumentation restricts applications to those presenting relatively 

homogeneous properties over a wide area; these include, for example, the 

observation of vegetation properties in the boreal forest zone (e.g. Grandell 

et al., 1998), measurement of soil moisture (e.g. Njoku and Kong, 1977; 

Njoku et al., 2003; Kerr et al., 2010) and seasonal snow cover (e.g. Chang et 

al., 1987; Goodison et al., 1995; Kelly et al., 2003). The monitoring of 

atmospheric properties from space is also possible by using microwave 

radiometry through the detection of wavelengths sensitive to atmospheric 
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gases and particles, such as precipitation (e.g. Fox and Illingworth, 1997; 

Solheim et al., 1998). Contrary to observations at optical wavelengths, 

microwave observations are possible regardless of lighting conditions, 

which is an important factor when monitoring polar regions. For many 

natural objects, microwaves also exhibit a larger penetration depth than 

optical frequencies, allowing to obtain information from beyond the surface 

of the object under scrutiny. Due to these features, microwave radiometry is 

an essential mean for monitoring of the Earth’s cryosphere, such as the 

properties of sea ice, soil and seasonal snow cover.  

 

 

1.1. Monitoring of the cryosphere using microwave radiometry 
 

The cryosphere forms an integral part of the climate system of the Earth. It 

consists of diverse components including seasonal snow, mountain glaciers, 

ice sheets, seasonally frozen soils, sea ice and freshwater ice. Together, the 

cryosphere contains up to 75-80 % of the freshwater supply, the largest 

mass being contained in ice sheets (Fitzharris et al., 1996, Lemke et al., 

2007). In the Northern Hemisphere, seasonal snow cover ranges from 3.8 

km2 in August to 46.5 million km2 in January (Robinson et al., 1993), 

covering 49% of the total land surface in midwinter. On the other hand, 

permafrost occurs over approximately 24 % of the land surface (Zhang et 

al., 1999), with seasonal soil freezing affecting a total of 51 % (Zhang et al., 

2003). The cryosphere affects the climate system through its influence on 

surface energy balance, moisture flux and atmospheric circulation over both 

seas and land surfaces. In particular, a strong feedback is generated by the 

high reflectivity of snow cover, which controls the total surface albedo in the 

Northern Hemisphere during winter months, and the low thermal 

conductivity of snow which affects the heat transfer between soil and the 

atmosphere (Groisman et al., 1994, Clark et al., 1999, Zhang et al., 2005). 

Monitoring of seasonal snow cover properties is therefore essential in 

understanding interactions and feedback mechanisms related to the 

cryosphere. 

In addition to its extent, a key variable defining seasonal snow cover is the 

Snow Water Equivalent (SWE), which defines the total water content held 

in a snow pack as a product of snow depth and density. Together with 

glacier meltwater, the total water content of seasonal snow is the main 

driver considering spring runoff of rivers in Eurasia and North America 

(Barnett et al., 2005). The total mass of the snow pack also determines its 
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insulating properties, affecting soil processes such as freezing and thawing 

during the winter and the total energy transfer between the atmosphere and 

the surface of the Earth. Although snow cover properties such as snow 

depth and SWE can be monitored by the means of in situ monitoring 

networks (Ye et al., 1998, Brown and Braaten, 1998, Dyer and Mote, 2006, 

Jonas et al., 2009), observations with global coverage at a sufficient revisit 

time are only feasible by means of remote sensing from space. This holds 

especially for polar regions where monitoring networks are sparse and 

difficult to maintain. 

The monitoring of Snow Water Equivalent and other properties of 

seasonal snow cover from space became possible with the launch the first 

operational multiple channel satellite microwave radiometers (e.g. Gloersen 

and Barath, 1977; Hollinger et al., 1990). The basis of the detection of SWE 

lies in the inverse relationship of the observed intensity of microwave 

radiation and the total snow mass. This relationship is due to extinction of 

microwave radiation in the snow medium; radiation originating from the 

ground surface is both absorbed and scattered by snow, the total energy loss 

depending on snow properties and the amount of snow in the signal path. 

In dry snow, absorption effects dominate the extinction behavior in the 

lower end of the microwave spectrum, while scattering is dominant for 

higher frequencies, where scattering particles are comparable in size to the 

wavelength (Ulaby et al., 1981). Increased scattering at higher frequencies 

can be exploited to detect the mass, or water content of snow (Rango et al., 

1979). For wet snow, however, the increasing liquid water content quickly 

causes the dominance of absorption effects over scattering throughout the 

microwave spectrum. This prevents the retrieval of snow mass properties 

from wet snow using passive microwave systems. On the other hand, the 

same effect enables the application of microwave radiometry for detection 

of, for example, snow melt onset and melt-refreeze areas (Künzi et al., 1982; 

Cagnati et al., 2004; Macelloni et al., 2005), while the high contrast of 

emission signature from wet snow compared to snow-free terrain can be 

exploited to retrieve the instance of snow clearance (Takala et al., 2009).  

The first algorithms proposed for snow water equivalent retrieval typically 

relied on empirical formulae relating snow properties to the detected 

microwave emission (Rango et al. 1979; Foster et al., 1980; Künzi et al., 

1982). As already indicated in these first studies, passive microwave snow 

cover estimates are prone to inaccuracies originating from spatial 

heterogeneity of the ground surface in the satellite’s large field of view. 

These effects have been mitigated in past studies by applying e.g. 

compensation factors for the effect of vegetation (e.g. Foster et al., 1991), or 

by deriving regional or land-cover specific regression coefficients to the 
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inversion algorithms (e.g. Tait, 1998; Derksen et al., 2010). Other sources of 

error arise from spatially and temporally varying snow conditions; 

regression coefficients defined for certain snow conditions may not be inter-

annually consistent (Derksen et al., 2003). This is due to the scattering in 

snow being dependant not only on the amount of snow, but also on e.g. the 

size and shape of the scattering (snow) particles. The density and vertical 

structure of the snowpack are other factors which vary spatially and evolve 

over time, deteriorating the capability of static inversion algorithms in 

detecting snow properties (Hall, 1987; Kelly et al., 2003).  

Consequently, an essential factor to understanding the observed 

microwave emission from space is the development of analytical models for 

describing the emission properties of snow covered terrain. Such models 

have to take into account e.g. the effects of land cover, soil, vegetation and 

atmosphere, as well as the snow cover itself. As an alternative to purely 

empirical algorithms, applying the inversion of these models to 

observations potentially allows the estimation of snow properties in diverse 

snow and land cover conditions; for example, Chang et al. (1987) proposed 

a discrete inversion algorithm based on radiative transfer calculations for 

certain snow conditions. Development and validation of forward models 

simulating microwave emission requires the use of extensive experimental 

datasets. Purely theoretical models have been formulated based on basic 

theory of microwave propagation (e.g. Tsang et al., 2000; Strogyn, 1986). 

On the other hand, measurements conducted in controlled conditions have 

also provided information on the basic structural and dielectric properties 

of snow and its interaction with microwaves (e.g. Hallikainen et al., 1987; 

Wiesmann et al., 1998); this has allowed the development of semi-empirical 

models, i.e. models based on, for example, radiative transfer theory but 

adjusted with empirical fitting parameters (e.g. Wiesmann and Mätzler, 

1999; Pulliainen et al., 1999). Furthermore, passive microwave 

experimental datasets collected from natural landscapes from either 

ground-based or airborne instruments, accompanied by various in situ 

observations of the target properties, allow the verification of models in 

natural surroundings (e.g. Tedesco and Kim, 2006b).  

 

 

1.2. Radiometer calibration 
 

All remote sensing observations include an error element. The observation 

errors can typically be separated into random and systematic errors; 
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random errors arise e.g. from random thermal noise originating from the 

instrument components. Systematic errors, on the other hand, depend most 

on calibration accuracy of the instrument and subsequent drift after the 

calibration. Achieving good calibration accuracy, and on the other hand, 

instrument stability, are thus elemental factors when attempting to reduce 

the systematic errors of observations.  

Calibration of space-borne microwave radiometer instrumentation is a 

challenging task; reliable operation of radiometers typically requires 

frequent calibration as the stability of the instrumentation may vary 

strongly with changing ambient conditions, such as physical temperature. 

Traditional calibration of radiometers relies on measuring two or more 

calibration targets or loads, the properties of which are accurately known. 

The calibration loads can be internal, allowing calibration of the radiometer 

receiver but excluding the antenna and some adjoining components, or 

external, in which case the whole instrument can be calibrated. The use of 

natural targets, such as the cosmic background can be used either for 

verification of calibration stability or as an external calibration load. 

Concerning artificial calibration loads, the main difficulty with space 

instrumentation is designing reliable and mechanically feasible solutions; 

external calibration loads typically consist of absorptive surfaces and mirror 

solutions to reflect the cold sky background to the radiometer. Internal 

calibration loads typically consist of passive loads at varying physical 

temperatures, or more recently, active microwave sources such as noise 

diodes. 

 

 

1.3. Structure and study objectives 
 

This thesis consists of two parts; in the first part, microwave radiometry is 

used in the study of snow cover and soil properties in the northern boreal 

forest and tundra regions. Airborne datasets of radiometer observations are 

applied to investigate the effect of varying land cover in the microwave 

signature of snow covered terrain [P1]. The studied effects include those of 

vegetation, and in particular, the signatures from lakes and other wetlands. 

Furthermore, an extension to an existing snow emission model (HUT snow 

emission model, Pulliainen et al., 1999) is presented, allowing the 

simulation of multiple layered structures in snow [P2]. The model is further 

extended for the simulation of emission from snow-covered frozen lakes. 

Data from ground based and airborne observations are used to test the 
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model performance in simulating the brightness temperature 

characteristics of stacked snow and ice structures [P3]. 

The emission model for lake ice is further applied used in a study 

presenting an advanced inversion algorithm for the estimation of Snow 

Water Equivalent. The developed algorithm allows to compensate for the 

effect of variable land cover in the estimate, such as the effect of snow 

covered lakes [P4]. Finally, the microwave signatures of soil in the boreal 

forest zone are investigated using a season-long experimental dataset of L-

band radiometer observations and in situ information on soil. Again, an 

adaptation of the modified emission model is applied to examine the effect 

of soil freezing processes to the detected microwave signatures ([P5]).  

The second part of the thesis deals with calibration of radiometer 

instrumentation. The design and characterization of a calibration 

subsystem for a space borne radiometer instrument at L-band is presented. 

L-band instruments are suitable for observing, for example, soil properties 

due to a relatively high penetration depth achieved. SMOS, the Soil 

Moisture and Ocean Salinity mission of the European Space Agency (ESA), 

was constructed for this purpose (Kerr et al., 2010). The mission hosts an 

innovative payload, MIRAS (Microwave Imaging Radiometer using 

Aperture Synthesis; McMullan et al., 2008), the first L-band 

interferometric radiometer deployed in orbit for Earth observation. Using a 

conventional radiometer, achieving imaging capability at the nominal 

resolution of SMOS (~50 km) would have required a prohibitively large 

antenna. Rather, MIRAS applies a set of small radiometer antennas and 

receivers that were placed in orbit in a contracted mechanical configuration, 

thus avoiding the difficulties associated with launching large, rigid 

mechanical structures in space. After launch, the antennas were extended to 

form a Y-shape, providing a synthetic aperture. The technique applied with 

MIRAS, aperture synthesis through interferometry, has been broadly 

applied in the field of radio astronomy, but MIRAS presented the first 

example of a space-borne interferometer used for remote sensing of the 

Earth. Calibration of the radiometer receivers in orbit is a challenging task 

at best; in the case of MIRAS, the large number of receivers provided a 

further complication as each receiver had to be provided with an individual 

but accurately known calibration signal. A design involving a distributed 

noise injection network was adopted for this purpose (Corbella et al., 

2000). The characterization of this Calibration Subsystem, CAS, was an 

important part of ground characterization of SMOS, as, among other things, 

the physical temperature of the network affects its properties. As a final part 

of this thesis work, a study on the characterization of CAS is presented in 

[P6].  



 
 

29 

Chapters 2 and 3 provide an overview of the theoretical basis of passive 

microwave remote sensing and radiometer instrumentation, respectively. A 

survey of research achievements retrieving snow properties from 

microwave signatures of snow covered terrain is given in Chapter 4. 

Chapter 5 details the multiple layer emission model developed during this 

work ([P2]). Chapter 6 summarizes measured emission signatures of 

varying snow covered terrain and describes modeling efforts done to 

simulate these signatures in various studies ([P1] – [P5]). Chapter 7 

summarizes the application of the developed lake ice model in the context 

of SWE retrieval from satellite observations. The characterization of the 

SMOS calibration subsystem is described in chapter 8. Finally, the 

contribution of this thesis work to remote sensing of snow cover and on the 

other hand, radiometer calibration techniques, are summarized in Chapter 

9. 
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2. Theory of microwave radiometry 
 

This chapter gives an overview of the physical basis of microwave 

radiometry. In the first part, the theoretical basis of electromagnetic wave 

propagation in lossy media is presented, as well as a description of the basic 

definition for brightness temperature, the variable measured in microwave 

radiometry, and it’s relation to the physical properties of natural objects. 

The second section introduces the basics of wave scattering in random 

media and scalar radiative transfer theory, which are later applied in the 

context of snow emission modeling. The last part of the section describes 

the typical measurement environment in microwave radiometry, and gives 

an overview of the different variables affecting the total observed 

microwave emission. 

 

 

2.1. Electromagnetic fields and emissions from natural objects 
 

Maxwell’s equations (Maxwell, 1865) form the foundation of the classical 

theory of electromagnetism. The equations relate the electric and magnetic 

fields to each other and describe how electrical charges and currents act as 

sources to these fields. On the other hand, the emission of electromagnetic 

energy from natural objects can be explained by Planck’s radiation law 

(Planck, 1901). Together, these form the theoretical basis for passive 

microwave remote sensing. 

 

2.1.1. Maxwell equations for time-harmonic plane waves 
 

For a time harmonic field, i.e. a field in which the time variation of the field 

phase follows a sinusoidal period, Maxwell’s equations can be expressed as 

(Ulaby et al., 1981) 
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׏ ൈ ۳ሺܚሻ ൌ െ݆߱۰ሺܚሻ 

׏ ൈ ۶ሺܚሻ ൌ െ݆߱۲ሺܚሻ ൅ ۸ሺܚሻ 

׏ ∙ ۲ሺܚሻ ൌ ߷ሺܚሻ 

׏ ∙ ۰ሺܚሻ ൌ 0, 

(2.1) 

 

where ۳ሺܚሻ  is the electric field, ۶ሺܚሻ  is the magnetic field, ۰ሺܚሻ  is the 

magnetic flux density, ۲ሺܚሻ the electric flux density,	۸ሺܚሻ is the total current 

density, and ߷ሺܚሻ is the total charge density in the dimension ܚ. ߱ denotes 

the angular frequency (߱ ൌ  For isotropic matter the flux densities can .(݂ߨ2

be expressed in terms of their equivalent fields so that ۲ ൌ and ۰ ۳ߝ ൌ  ,۶ߤ

where ߝ is the permittivity and ߤ the permeability .  

Considering electric and magnetic fields in matter with no charges or 

currents, i.e. ߷ሺܚሻ ൌ 0 and ۸ሺܚሻ ൌ 0, the equations in (2.1) give the following 

wave equations for the fields (Helmholtz equations): 

ሻܚଶ۳ሺ׏ ൅ ϖଶμε۳ሺܚሻ ൌ 0 

ሻܚଶ۶ሺ׏ ൅ ϖଶμε۶ሺܚሻ ൌ 0. 
(2.2) 

 

The above equations describe the propagation of the electric and magnetic 

fields as a function of all three directions of the Cartesian coordinates (ܚሻ. In 

remote sensing, the distance to the observed source of radiation is in most 

cases large compared to the size of the source ܚ (e.g. the footprint of a radar 

or radiometer instrument). Therefore, electromagnetic fields originating 

from the source can be approximated to be planar at the location of the 

observer, and vice versa (e.g. Tsang et al., 1985). Plane waves can be 

expressed using a single Cartesian coordinate denoting the direction of 

propagation. For a plane wave propagating in the direction z this simplifies 

e.g. equation (2.2) for the electric field to the form1 
                                                                    
 

1 The electrical field now has two solutions: ۳ሺݖሻ ൌ ۳଴݁േ௝௞௭; here ݇ ൌ  is the ߳ߤ√߱

wave number, the positive exponential signifies the electrical field propagating in the 

forward direction and the negative a field propagating in the opposite direction. 
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݀ଶ

ଶݖ݀
۳ሺݖሻ ൅ ϖଶμε۳ሺݖሻ ൌ 0. (2.3) 

 

In general, all electromagnetic waves can be described as a sum of linearly 

polarized wave components. For plane waves, the polarization can be 

described by the sum of two orthogonal, linearly polarized components, 

both of which are also orthogonal to the direction of propagation so that 

۳ሺݖሻ ൌ ଴,୶݁௝ܧ
ሺఠ௧ି௞௭ሻܝ୶ ൅ ଴,୷݁௝ܧ

ሺఠ௧ି௞௭ାఝሻܝ୷ ,  (2.4) 

 

where ܝ୶ ୷ܝ ,  are unit vectors perpendicular to ܝ୸ . Here, the time 

dependence is noted by ݁௝ఠ௧ , and ߮ is the phase difference between the 

components.  

Lastly, it follows from Maxwell’s equations that the average total power 

density ܵୟ୴ of a time-harmonic electromagnetic field can be expressed by 

the real part of the so-called Poynting vector (Ulaby et al., 1981). In a 

general direction r,  

ܵ௔௩ሺܚሻ ൌ
1
2
Reሼ۳ሺܚሻ ൈ ۶∗ሺܚሻሽ

ൌ
1
2
Re ൜

݇௥ ൅ ݆݇௜
ߤ߱

଴ܧ
ଶeିଶܚ∙ܓൠ

ൌ
1
2
݇௥
ߤ߸

଴ܧ
ଶeଶܚ∙ܓ, 

(2.5) 

where from (2.1), ۶ሺܚሻ ൌ
ሻܚൈ۳ሺ׏

ି௝ఠఓ
. 

 

2.1.2. Emission of microwave energy 
 

All natural matter emits energy continuously in the form of electromagnetic 

radiation. The radiation arises from the thermal energy (heat) within the 

object. An idealized object, which both absorbs all incident radiation and 

also emits all of its thermal energy, is called a blackbody. Unlike a 

blackbody, natural objects emit only a part of their thermal energy; 

likewise, not all of the incident radiation is absorbed, but some is scattered. 

The radiated energy of a blackbody is given by Planck’s radiation law 
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(Planck, 1901), which defines the spectral radiance (or, brightness) of an 

object so that for a blackbody at physical temperature T 

௙ܤ ൌ
2݄݂ଷ

ܿଶ
൭

1

݁
௛௙
௞ಳ் െ 1

൱ , (2.6) 

 

where ܿ is the speed of light in vacuum (2.998108 m/s), ݂is the frequency, ݄ 

is Planck’s constant (6.63410-3 Js), ݇஻ is Boltzmann’s constant (1.3810-23 

J/K). In the microwave frequency range (approximately 300 MHz to 300 

GHz) ݄݂ ≪ ݇஻ܶ . This leads to the Rayleigh-Jeans approximation 2  of 

Planck’s law, which can be expressed as (Ulaby et al., 1981) 

௙ܤ ൎ
2݇஻݂ܶଶ

ܿଶ
ൌ
2݇஻
ଶߣ

ܶ	. (2.7) 

 

The Rayleigh – Jeans approximation holds well for most of the microwave 

spectrum (until approx. 120 GHz) when the physical temperature is close to 

Earth-ambient (~300 K). Figure 1 depicts the spectral brightness Bf  as 

given by Planck’s law against that given by (2.7) for three exemplary 

physical temperatures (1 K, 300 K and 1000 K). Planck’s law determines the 

frequency spectrum of emitted radiation; the frequency with the maximal 

radiative power shifts to higher frequencies as the physical temperature 

increases. The maximal radiative power for objects at 300 K is close to 17 

THz in the infrared region of the spectrum. For objects at 1 K temperature, 

the peak power is emitted already at 59 GHz; the validity of the Rayleigh-

Jeans approximation at 1 K deteriorates quickly with increasing frequency 

at this temperature. For objects at 1000 K temperature, the peak spectral 

brightness occurs at 59 THz. At this temperature, the Rayleigh-Jeans 

approximation can be considered as valid for the whole microwave 

spectrum. 

 

                                                                    
 

2 The exponential term in (2.6) can be approximated by ݁
೓೑

ೖಳ೅ ൎ 1 ൅
௛௙

௞ಳ்
. 
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Figure 1. Comparison of Planck’s law and the Rayleigh – Jeans 

approximation over the frequencies above 100 MHz for three values of 

blackbody physical temperature (1 K, 300 K and 1000 K). The nominal 

microwave frequency range of 300 MHz to 300 GHz indicated by vertical 

lines. 

 

The emissivity ߳  of an object can now be defined as the ratio of the 

brightness ܤ௙ of the object to the brightness ܤ௙,௕௕ of a blackbody at the same 

physical temperature (Ulaby et al., 1981) so that 

߳ ൌ
,௙ሺ݂ܤ ܶሻ

,௙,௕௕ሺ݂ܤ ܶሻ
. (2.8) 

 

By applying the Rayleigh-Jeans approximation, we can define the 

brightness temperature  ஻ܶ	, i.e. the equivalent physical temperature of a 

perfect blackbody that would emit the detected amount of electromagnetic 

energy as a real object at physical temperature T. It follows, using (2.8), that 

the emissivity can be expressed simply by the relation of ஻ܶ	and T: 

߳ ൌ ஻ܶ

ܶ
. (2.9) 
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Equation (2.9) forms the basis for microwave measurements; the 

(apparent) brightness temperature ஻ܶ	  is the quantity measured by 

microwave radiometers, which can be directly related to the emissivity if the 

physical temperature is known. The emissivity, in turn, can be related, for 

example, to the dielectric properties of the observed object. The emissivity 

of natural objects typically varies with observation angle, polarization and 

frequency. Thus, inversion algorithms used to interpret brightness 

temperature observations may apply measurements at a number of 

frequencies or both horizontal and vertical polarizations, depending on the 

application. 

 

 

2.2. Radiative transfer theory 
 

Radiative transfer theory is an integral part of modeling the behavior of 

microwave frequencies in lossy (natural) media. Radiative transfer theory 

attempts to describe the propagation of electromagnetic intensity in a 

media characterized by absorption, emission and scattering properties. In 

this section, the basic theory behind scattering of electromagnetic radiation 

in random media is presented. The radiative transfer equation is described 

in terms of its different components. An adaptation for horizontally planar 

media, typically applied in the context of remote sensing, is presented. 

 

2.2.1. Scattering and absorption in random media 
 

For strongly scattering random media, various approximations have been 

developed to model the interaction of microwaves with the scattering 

particles. A defining factor in the choice of the scattering model is the size of 

the scattering particles when compared to the wavelength. Amongst the 

most common cases are (Ishimaru, 1978) 

- Rayleigh scattering; when particles are small compared to the 

wavelength 

- Physical optics approximation: when particles are large compared 

to the wavelength 
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- Application of Mie theory; scattering particles of various sizes are 

considered as spheres (the scattering of which can be modeled 

accurately) 

In a general case, the scattering cross section of an object defines the 

relation of incident and scattered radiation from a particle or surface. At a 

distance R approaching infinity, the differential scattering cross section can 

be defined as (Ishimaru, 1978) 

,ܚௗሺߪ ሻ′ܚ ൌ ห܎൫૙෡, ଍̂൯ห
ଶ
ൌ lim

ோ→ஶ

ܴଶܵ௦ሺܚሻ

௜ܵሺܚ′ሻ
, (2.10) 

 

where ܎൫૙෡, ଍̂൯ is the normalized scattering amplitude, ௜ܵ  is the incident field 

power and ܵ௦ the power of the scattered field. The scattering cross section is 

obtained by integrating the normalized scattering amplitude ܎ over 4 

(Ishimaru, 1978):  

௦ߪ ൌ නห܎൫૙෡, ଍̂൯ห
ଶ
݀Ω

ସగ

. (2.11) 

 

The scattering coefficient can now be defined as (Ishimaru, 1978) 

௦ߢ ൌ 	
௩ܰߪ௦
ܸ

, (2.12) 

 

where ௩ܰ is the number of scatteres in volume ܸ, and ߪ௦ is the scattering 

cross section of individual scatterers. The extinction coefficient the sum of 

the absorption and extinction coefficients, representing total loss of energy 

in the medium; ߢ௘ሺݏሻ ൌ ሻݏ௦ሺߢ ൅  ሻ.3ݏ௔ሺߢ

 

 

                                                                    
 

௔ߢ 3 ൌ െ2݇|Imሼ√߳௥ሽ| ; where ߳௥ is the complex permittivity of the media.  e.g. Ulaby 

et al., 1981. 
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2.2.2. General form of scalar radiative transfer equation 
 

The radiative transfer equation in its scalar form can be written in terms 

of the energy balance of an infinitesimal unit of volume as depicted in 

Figure 2. The medium is characterized by the absorption coefficient ߢ௔ and 

the scattering coefficient ߢ௦ . A wave with brightness ܤ௙  propagates in 

direction ܚ along the path ݏ.  

 

Figure 2.Factors of radiative transfer equation affecting brightness Bf along 

propagation path s at infinitesimal distance ds. The medium is 

characterized by the emission source function J, absorption ࢇࣄ  and the 

scattering ࢙ࣄ . Incident scattering from all directions in angle d’ is 

scattered in direction r at solid angle d as determined by the scattering 

phase function. 

 

In this case, the increase of the beam radiation energy in the distance ݀ݏ, 

denoted by ௙ܹ, can be expressed as (Sharkov, 2009) 

,௙ሺsܤ݀ ሻܚ

ݏ݀
ൌ ௙ܹ ൌ ாܹ െ ஺ܹ ൅ ூܹௌ െ ஺ܹௌ. (2.13) 

 

The term ாܹ  represents the increase of radiation energy caused by 

thermal radiation of the medium and attenuated by absorption. In a local 

thermal equilibrium, ாܹ  is obtained from the intensity of radiation of a 

perfect blackbody (Sharkov, 2009) 

ாܹ ൌ  ሺsሻ, (2.14)ܬሻݏ௔ሺߢ
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where ܬ the emission source function. The term ஺ܹ represents losses caused 

by absorption to the propagating radiation. This can be expressed by 

(Sharkov, 2009) 

஺ܹ ൌ ,ݏ௙ሺܤሻݏ௔ሺߢ  ሻ. (2.15)ܚ

 

The term ூܹௌ represents the increase of energy, from radiation directed at 

the unit volume from all directions ܚ′  of a surrounding sphere, and 

scattered in the direction of propagation ܚ . This can be expressed as 

(Sharkov, 2009) 

ூܹௌ ൌ ሻݏ௦ሺߢ
1
ߨ4

න Ψሺܚ, ሻ′ܚ
ସగ

,ݏ௙ሺܤ ሻ݀Ω′ܚ , (2.16) 

 

where Ψሺܚ, 	ሻ′ܚ is the scattering phase function. The last term ஺ܹௌ 

represents radiation losses due to scattering (Sharkov, 2009):  

஺ܹௌ ൌ ,ݏ௙ሺܤሻݏ௦ሺߢ  ሻ. (2.17)ܚ

 

Using equations (2.14) to (2.17) enables one to write the radiative transfer 

equation in the form (Ishimaru, 1978) 

,ݏ௙ሺܤ݀ ሻܚ

ݏ݀
ൌ 	െߢ௘ሺݏሻܤ௙ሺݏ, ሻܚ

൅ ሻݏ௦ሺߢ
1
ߨ4

න Ψሺܚ, ሻ′ܚ
ସగ

,ݏ௙ሺܤ	 ሻ݀Ω′ܚ ൅  .ሺsሻܬሻݏ௔ሺߢ

(2.18) 

 

2.2.3. Radiative transfer equation for planar media 
 

In its general form given by (2.18), solving of the radiative transfer equation 

can be challenging. For remote sensing applications, it is often useful to 

express (2.18) for a case of plane waves propagating in a media 
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homogeneous in the azimuth direction, representing, for example, the 

atmosphere. For a plane wave propagating in the direction ߠ௜ in respect to 

the z-axis in Cartesian coordinates, equation (2.18) can be simplified to 

,ݖ௙ሺܤ݀ ௜ሻߠ

ݖ݀
ൌ 	െߢ௘ሺݖሻ sec ௜ߠ ,ݖ௙ሺܤ  ௜ሻߠ

൅ߢ௦ሺݖሻ
sec ௜ߠ
2

නΨሺߠ′ሻ

గ

଴

,ݖ௙ሺܤ	 ሻ′ߠ sin ′ߠ ᇱߠ݀

൅ ሻݖ௔ሺߢ sec ௜ߠ  .ሻݖሺܬ

(2.19) 

 

 

2.3. Microwave radiometry in remote sensing 
 

This section presents the factors affecting a practical observation in passive 

microwave remote sensing, and describes the connection between the 

electromagnetic field theory presented in previous sections and the 

measured quantity of brightness temperature.  

 

2.3.1. Passive microwave observations 
 

A schematic of the typical observation scenario in passive microwave 

remote sensing is depicted in Figure 3. The figure demonstrates the typical 

components contributing to the brightness temperature emitted in the 

direction of the observer in Earth orbit. These components include 

a – the upwelling emission of the atmosphere 

b – cosmic background (and/or solar) radiation reflected from the 

atmosphere 

c- cosmic background (and/or solar) radiation reflected from the ground 

surface and attenuated in the atmosphere 

d- downwelling emission of the atmosphere, reflected by the ground and 

attenuated in the atmosphere 

e- upwelling emission from the ground surface, attenuated by the 

atmosphere 
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Figure 3. Schematic of passive microwave remote sensing scenario. The 

observed brightness temperature is a sum of components a-e. 

 

A complication to passive microwave remote sensing is that the wanted 

parameter is typically only one of these factors, typically e. For a 

measurement occurring at a low altitude within the atmosphere (e.g. from a 

tower or from an aircraft), the components a and b may be neglected, as 

well as the atmospheric transmissivity affecting e. However, additional 

complications will arise when e consists of several components, only one of 

which is the wanted brightness temperature. For example, this study deals 

for the most part with observations of snow covered terrain; the emission 

from snow is the parameter sought after, whereas emission sources from 

the snow background and e.g. vegetation influence the observation in 

addition to the atmosphere and cosmic background components. 

 

2.3.2. Antenna temperature 
 

A schematic of the radiometer observation of brightness ܤ௙ is depicted in 

Figure 4. ܤ௙ in the direction ߠ௦	of the receiver is given by (Ulaby et al., 1981) 

௙ܤ ൌ
௦ܲ

cos ௦ߠ ௦Ω௦ܣ
, (2.20) 
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where ௦ܲ is the emitted power and ܣ௦ the infinitesimal area of the power 

source. On the other hand, the power ௥ܲ captured by the antenna aperture 

 ௥ at the solid angle Ω௥ is (Ulaby et al., 1981)ܣ

௥ܲ ൌ  ௥Ω௥, (2.21)ܣ௙ܤ

 

where ܣ௥ is the antenna aperture area and Ω௥	 the solid angle of observation 

covering ܣ௥ . Note that due to the invariant nature of radiance in the 

radiation path, ܤ௙ is independent of the distance R (Ulaby et al., 1981).  

 

Figure 4. Schematic of measurement of radiance from surface As at distance 

R. 

 

Now, considering an antenna with a normalized beam pattern 4  in an 

electric field with brightness ܤ௙ሺߠ, ߶ሻ , the total power detected by the 

antenna in the frequency range Δ݂ ൌ ଶ݂ െ ଵ݂can be expressed by (Ulaby et 

al., 1981) 

ܲ ൌ ௥ܣ න ඵܤ௙ሺߠ, ߶ሻ
ସగ

,ߠ௡ሺܨ ߶ሻ݀Ω݂݀

௙మ

௙భ

. (2.22) 

 

                                                                    
 

,ߠ௡ሺܨ 4 ߶ሻ ൌ
ிሺఏ,థሻ	

ி೘ೌೣሺఏ,థሻ	
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Again considering the entire antenna beam pattern is surrounded by a 

blackbody at temperature T, using the Rayleigh-Jeans approximation for 

,ߠ௙ሺܤ ߶ሻ the resulting power detected by the antenna is (Ulaby et al., 1981) 

ܲ ൌ ݇஻ܶΔ݂. (2.23) 

 

In this case, the power induced to the antenna by the blackbody is thus 

independent of the antenna gain or other parameters, and depends only the 

bandwidth and the physical temperature of the blackbody. For an 

observation of a non-blackbody target, the physical temperature is replaced 

by the antenna temperature so that ܶ ൌ ஺ܶ . ஺ܶ  consists of the total 

brightness temperature in the scene observed by the radiometer, weighted 

by the antenna beam pattern ܨሺߠ, ߶ሻ. If the entire beam pattern is covered 

by a target emitting a brightness temperature ஻ܶ , then ܶ ൌ ஺ܶ ൌ ஻ܶ  in 

(2.23). 

 

2.3.3. Radiative transfer equation for passive microwave 
remote sensing 

 

For the case of microwaves, the radiative transfer equations (2.18), (2.19) 

can be expressed in terms of the brightness temperature. This is useful in 

terms of most practical situations simulating the total brightness 

temperature emission of a media.	 In the microwave regime the emission 

source function ܬ  can now be substituted by either Planck’s law or the 

Rayleigh-Jeans approximation ((2.6), (2.7)), so that in the spectral band Δ݂, 

ܬ ൌ
2݇஻
ଶߣ

ܶΔ݂. (2.24) 

 

Now, equation (2.19) for planar media can be expressed as  

݀ ஻ܶሺݖ, ௜ሻߠ

ݖ݀
ൌ 	െߢ௘ሺݖሻ sec ௜ߠ ஻ܶሺݖ,  ௜ሻߠ

൅ߢ௦ሺݖሻ
sec ௜ߠ
2

නΨሺߠ′ሻ

గ

଴

	 ஻ܶሺݖ, ሻ′ߠ sin ′ߠ ᇱߠ݀

൅ ሻݖ௔ሺߢ sec ௜ߠ ܶሺݖሻ. 

(2.25) 
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From this, it is possible to solve the magnitude of the brightness 

temperature ஻ܶ	at distance H in the media: 

஻ܶሺܪሻ
ൌ 	 ஻ܶሺ0ሻ݁ି఑೐ ுୱୣୡఏ೔

൅ sec ௜ߠ න ൥
ሻ′ݖ௦ሺߢ

2
නΨሺߠ′ሻ

గ

଴

஻ܶሺߠᇱ, sin	ሻ′ݖ ′ߠ ᇱߠ݀
ு

଴

൅ ൩	ሻ′ݖሻܶሺ′ݖ௔ሺߢ ݁ି఑೐
ሺ௭ᇱሻ ୱୣୡఏ೔	݀ݖ′ 

(2.26) 
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3. Radiometers 
 

Radiometers are used to measure the electromagnetic energy emitted by an 

object or area of interest. Radiometers designed for Earth observation are 

built to measure microwave radiation emitted by the Earth surface (or, 

atmosphere) from space or from aircraft, usually restricting observations to 

a defined frequency band, incident angle and optionally, polarization. 

Antennas with a high directivity are applied to enable spatial discrimination 

of the detected brightness temperatures. Radiometer receivers are designed 

to be very sensitive; contrary to, for example, radar signal receivers, the 

signal level received by the radiometer is typically smaller than the local 

noise level of the receiver. Care must be taken in the calibration of the 

radiometers, as this is typically the main factor defining radiometer 

accuracy. The stability of the radiometer in-between calibrations is also 

typically sensitive to changes in ambient conditions such as temperature 

and supply voltage to the receiver components. This sensitivity can be 

addressed to some degree with instrument design. This section describes 

some of the basic radiometer designs, as well as a description of the more 

complex imaging interferometric radiometer. A description of radiometer 

calibration methods is also given. Finally, a radiometer system applied for 

parts of this work is described. 

 

 

3.1. Receiver architectures and sensitivity 
 

The task of the radiometer receiver is to measure the antenna temperature 

୅ܶ, which was presented in the previous section, and express the detected 

power as a quantifiable parameter (usually, voltage over the detector) at the 

receiver output. The output voltage is then integrated over a certain time 

period to reduce the effect of random variations in the signal, and calibrated 

with a priori calibration parameters to provide a measure of ୅ܶ. The general 

characteristics of the receiver can be summarized as being the receiver gain 

the receiver noise temperature ோܶ ,ܩ , and the receiver bandwidth ܤ; the 

antenna temperature at the input of the receiver is amplified by the total 

gain G and restricted to the bandwidth B. ோܶ is a measure of thermal energy 

(noise) added by the receiver components to the signal at the antenna 
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reference frame (i.e. ୅ܶ ). The front end of a receiver may also include 

downconversion to a lower frequency (superheterodyne receivers). After 

amplification, band selection and possible downconversion, the signal is 

detected by the square-law detection and integrator stages.  

The power available at the input of the receiver in the bandwidth B can be 

understood as a sum of receiver temperature and the receiver noise 

temperature, reduced to the receiver input; together these form the system 

noise temperature ௦ܶ௬௦. Using (2.23), the input power is then (Ulaby et al., 

1981) 

௜ܲ௡ ൌ k୆ሺ ୅ܶ ൅ ோܶሻܤ ൌ k୆ ௦ܶ௬௦(3.1) .ܤ 

 

Reduced to the system output, this results in the detected voltage 

௢ܸ௨௧ ൌ ܤk୆ܩ ௦ܶ௬௦ . (3.2) 

 

The performance of a radiometer can be characterized in terms of its 

accuracy and precision (Ulaby et al., 1981). The (absolute) accuracy of the 

receiver is mostly determined by the achievable calibration accuracy (see 

next section). The precision of the radiometer is determined by the receiver 

architecture, choice of components and measurement parameters. The 

precision Δܶ, or sensitivity of the radiometer, is the smallest change in 

system noise temperature which can be determined by the receiver. The 

precision uncertainty consists of two components, that are statistically 

independent of one another: the uncertainty due to noise fluctuations Δ ேܶ 

and the uncertainty due to gain fluctuations of the receiver, Δܶீ . These can 

be summed so that (Ulaby et al., 1981) 

Δܶ ൌ ඥሾሺΔ ேܶሻଶ ൅ ሺΔܶீ ሻଶሿ 

ൌ	 ௦ܶ௬௦ ቈ
1
߬ܤ

൅ ൬
Δܩ
௦ܩ
൰
ଶ

቉
ଵ/ଶ

, 

(3.3) 

 

where ߬ is the integration time in seconds, Δܩ is the effective RMS variation 

of the system power gain, and ܩ௦ the average system power gain. As seen 

from (3.3), the system noise temperature is an integral factor affecting the 

radiometer sensitivity. Minimization of the noise temperature is thus a 
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major driver for radiometer design. The noise temperature is largely 

determined by the first amplification stage of the front end; therefore, the 

first amplifier is typically optimized for low noise rather than amplification, 

and all losses in components before the amplifier are minimized. A 

straightforward way to improve the sensitivity is also to increase of 

integration time ߬; the method is applied widely in radio astronomy. For 

Earth observation purposes, this method is typically constrained by 

sampling frequency requirements, the chosen integration time being a 

tradeoff between spatial and temporal resolution and radiometric precision. 

Equation (3.3) applies for the most basic radiometer design, termed the 

total power radiometer. In the following, a few other radiometer designs are 

briefly discussed. The motivation of the more advanced designs is typically 

the improvement of the radiometer precision, i.e. the minimization of Δ ேܶ 

and Δܶீ  

 

Dicke radiometer 

The so-called Dicke-switch radiometer (Dicke, 1946) introduces a switch as 

a first component after the antenna; the usually two-way switch adds a 

terminated load with noise temperature ோܶாி	as a reference input to the 

antenna temperature (Skou and Le Vine, 2006). The measurement 

sequence is timed so that the observation time is divided between the 

antenna and the reference load in a single integration. The switch action 

frequency is typically fast, in the order of 1000 Hz, exceeding the typical 

gain variations Δܩ in the receiver amplifiers; in this way, the system gain 

remains quasi-constant over the measurement cycle. The switching signal 

also drives a voltage inverter after the detector, which allows subtraction of 

antenna and the reference load duty cycles.  

Dividing the observation time between the antenna and reference load 

effectively doubles the achievable noise uncertainty Δ ேܶ. However, under 

certain conditions the gain uncertainty Δܶீ  can be completely eliminated. It 

can be shown that adding the reference load leads the radiometer sensitivity 

to be described as (Ulaby et al., 1981) 
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Δܶ ൌ ቈ
2ሺ ஺ܶ ൅ ோܶሻଶ ൅ 2ሺ ோܶாி ൅ ோܶሻଶ

߬ܤ

൅ ൬
Δܩ
௦ܩ
൰
ଶ

ሺ ஺ܶ െ ோܶாிሻଶ቉
ଵ/ଶ

. 

(3.4) 

 

From (3.4), it is obvious that a minimum of Δܶ (i.e. best sensitivity) is 

achieved when ோܶாி ൌ ஺ܶ. ோܶாி should thus be chosen to match closely the 

expected measured brightness temperature. Several designs also exist to 

artificially match the reference load to the antenna temperature. These 

designs are discussed in the next section. 

 

Balanced Dicke radiometer using noise injection 

The concept of noise injection improves the Dicke receiver design presented 

in the previous subsection by artificially matching the reference duty cycle 

to the antenna temperature. Several methods exist to perform the 

balancing, including reference channel noise injection (Machin et al., 1952), 

antenna channel noise injection (Goggins, 1967) and gain modulation (e.g. 

Orhaug and Waltman, 1962). 

The reference channel noise injection method uses a feedback loop to 

control directly the reference load ோܶாி	 , e.g. by adjusting a variable 

attenuator which couples a noise source (diode) to the reference noise 

temperature channel, so that the radiometer remains balanced (i.e. ோܶாி = 

஺ܶ). The antenna channel noise injection does the same but for the antenna 

channel. Figure 5 presents a schematic of the antenna noise injection 

method, which is of relevance concerning the presented work. In the design, 

the receiver output is set at V=0 through negative feedback driving a noise 

diode coupled to the antenna receiver input, giving the noise temperature 

TI. Knowledge of the required TI thus gives the antenna temperature, 

considering that TREF remains stable. Compared to the reference channel 

noise injection, this method has the advantage that all conceivable antenna 

temperatures in Earth observations are fairly simple to match to the 

reference load, which can be kept at a relatively high ambient temperature. 

In the reference channel method, balancing low antenna temperatures with 

an equivalent reference would require either cryogenic cooling of the 

reference or, for example, the application of Active Cold Loads (e.g. 

Sobjaerg et al., 2009).  
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Figure 5. The noise injection radiometer (after Skou and Le Vine, 2006). 

 

The sensitivity of the antenna channel noise injection radiometer can be 

expressed as (Ulaby et al., 1981): 

Δܶ ൌ
2ሺܶ ൅ ோܶሻ

߬ܤ√
, (3.5) 

 

where ܶ ൌ ோܶாி  is in the ambient temperature of the reference load to 

which the antenna temperature is matched. For the concept to work in 

practice ܶ  has to be set higher than the largest measured antenna 

temperature.  

 

 

3.2. The interferometric radiometer 
 

Applying interferometry to Earth observing satellites is a fairly new concept 

although it has been applied in radio astronomy for decades. The 

motivation for interferometry is to achieve a synthetic aperture, matching a 

physical antenna aperture that would not be feasible mechanically or 

otherwise. In radio astronomy, applications typically employ narrow-beam 

antennas allowing high-resolution imaging of point-like targets. For 

purposes of remote sensing of the Earth, following a concept first proposed 

by Ruf et al. (1988), wide-beam antennas can be applied to achieve imaging 

capability over large surfaces without mechanically or electrically pointing 

the antenna beam. 
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Aperture synthesis is achieved by applying multiple antennae and 

receivers in a constellation; the multiple radiometers form each an 

interferometric pair with all the other receivers. These so-called baselines 

are correlated with one another. Both signals are divided before correlation; 

one divided signal is delayed using a phase shifter (analogue or digital) by 

90 degrees, forming the so-called quadrature (Q) signal. The remaining two 

in-phase (I) signals are correlated to create the real part of the correlation 

coefficient; correlating the I and Q signals of different receivers forms the 

imaginary part. Also, the real part can be obtained by correlating the two 

quadrature signals, and the imaginary part from both of the two different 

combinations of in-phase and quadrature signals. Ideally, the two complex 

signals formed are each other’s complex conjugates (Skou and Le Vine, 

2006).  

The correlated interferometric pairs form so-called visibilities, which can 

be expressed as (Corbella et al., 2004) 

௜ܸ௝ሺݑ, ሻݒ ൌ ඵ ௜ܶ௝
ᇱ ሺߦ, ௜௝ݎሻ̃ߟ

కమାఎమஸଵ

൬െ
ߦݑ ൅ ߟݒ

଴݂
൰ ݁ି௝ଶగሺ௨కା௩ఎሻ݀ߟ݀ߦ,  (3.6) 

 

where ௜ܸ௝ is the visibility measured by radiometers i and j; u and v denote 

the physical coordinates of the antennas of i and j in the interferometric 

system, and f0 is the central frequency. The direction cosines are given by 

ߦ ൌ sinߠcos߶  and ߟ ൌ sinߠsin߶ ௜௝ݎ̃ .  is the fringe washing factor of the 

radiometer pair. The modified brightness temperature ௜ܶ௝
ᇱ  is given by 

(Corbella et al., 2004)5 

௜ܶ௝
ᇱ ሺߦ, ሻߟ ൌ

ඥܦ௜ܦ௝
ߨ4

஻ܶሺߦ, ሻߟ െ ௥ܶ

ඥ1 െ ଶߦ െ ଶߟ
௡௜ܨ ሺߦ, ௡௝ܨሻߟ

∗ ሺߦ, .ሻߟ (3.7) 

 

where ܦ௜  and ܦ௝  are directivities and ܨ௡௜  and ܨ௡௝   the normalized field 

patterns of the antennas i and j, respectively, ஻ܶ is the apparent brightness 
                                                                    
 

5 1Modification by Corbella et al. (2004) replaced brightness temperature TB in the 
classical equation with the difference of brightness temperature and the physical 
temperature of the receiver (Tr). For an analysis of the effects of the modification, see 
e.g. Moreno-Galbis et al. (2007). 
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temperature and ௥ܶ  is the physical temperature of the receivers (assumed 

here to be identical for i and j). ஻ܶ can be obtained from the visibilities using 

an image reconstruction technique based on inverse Fourier transform 

(Camps et al., 1997).  

In practice, the measured correlator counts are affected by the (usually 

non-identical) system noise temperatures of the receivers and the relative 

phase differences of the transmission path from antenna to receiver. In 

order to acquire Vkj as defined by the visibility equation, the measured 

correlator counts are first preprocessed to account for quadrature errors 

inherent to each receiver (the quadrature error is defined as the deviation 

from 90 degrees of the I and Q channels of the receiver), forming 

quadrature-corrected correlation coefficients ܯ௜௝. The visibility function can 

then be expressed in terms of the correlation coefficients, taking into 

account the system noise temperatures ௦ܶ௬௦,௜ and ௦ܶ௬௦,௝ of the receiver pair 

and the value of the fringe-washing function in the origin ̃ݎ௜௝
ሺ߬ ൌ 0ሻ, so that 

(Corbella et al., 2005) 

௜ܸ௝ሺݑ, ሻݒ ൌ
ඥ ௦ܶ௬௦,௜ ௦ܶ௬௦,௝

௜௝ሺ0ሻݎ̃
 ௜௝ (3.8)ܯ

 

where 

௜௝ܯ ൌ
1

cosߠ௤௜
൫Reൣܯଵߤ௜௝൧ ൅ ݆Imൣܯଶߤ௜௝൧൯ (3.9) 

 

where ߤ௜௝ ൌ ௜௝ߤ
௜௜ ൅ ௜௝ߤ݆

௤௜  is the normalized correlation coefficient, and M1 and 

M2 are parameters derived from the quadrature error ߠ௤௜	of the receiver i 

(Corbella et al., 2005)6.  

 

 

 

                                                                    
 

ଵܯ 6 ൌ cosΘ௜௝
ᇱ െ ݆ sinΘ௜௝ ଶܯ , ൌ cosΘ௜௝ ൅ ݆ sin Θ௜௝

ᇱ , Θ௜௝
ᇱ ൌ

ఏ೜ೕ
ଶ
െ

ఏ೜೔
ଶ

; Θ௜௝
ᇱ ൌ

ఏ೜ೕ
ଶ
൅

ఏ೜೔
ଶ
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3.3. Radiometer calibration 
 

Calibration of microwave radiometers is an essential part of their operation. 

Radiometer calibration is performed by measuring well-know calibration 

loads ஼ܶ஺௅	 with a noise temperature range equivalent to the expected range 

of antenna temperatures measured. The accuracy by which the calibration 

loads are known determines the accuracy of the radiometer, if these can be 

measured ideally (Ulaby et al., 1981). 

 

3.3.1. Two-point calibration 
 

Calibration usually assumes a linear behavior of the receiver and square-law 

detection with changes in detected power. This is a good approximation in 

most cases, although non-linearities can be observed by accurate 

measurements (e.g. Hoer et al., 1976). Additional calibration points can be 

applied to compensate for detector non-linearity (Skou and Le Vine, 2006). 

Assuming linear behavior, however, the relation of the measured output 

voltage at the detector can be related to the calibration noise temperature 

using the simple equation 

௢ܸ௨௧ ൌ ൫ܩ ஼ܶ஺௅ ൅ ௢௙௙൯ݑ , (3.10) 

 

where ܩ is the gain or gradient of the calibration line and ݑ௢௙௙ the offset. 

Now, measuring two known calibration loads ௛ܶ and ௖ܶ enables one to solve 

the gain and offset using the corresponding output voltages ܷ௛ and ௖ܷ, so 

that (see Figure 6) 

ܩ ൌ
ܷ௛ െ ௖ܷ

௛ܶ െ ௖ܶ
 (3.11) 

௢௙௙ݑ ൌ
௖ܷ ௛ܶ െ ௖ܷ ௖ܶ

௛ܶ െ ௖ܶ
. (3.12) 
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Figure 6. The calibration line formed by Tc and Th ( for “cold” and “hot” 

calibration loads). 

 

In some cases, it may be preferable to calibrate also the small deviation 

from linearity of the detector (e.g. Hoer et al., 1976). This may be especially 

be required if the range of measured brightness temperatures is large. The 

calibration can be performed by, for example, increasing the number of 

calibration points to four by injecting the noise temperature ேܶ  from a 

stable noise source and coupling this with the hot and cold calibration 

loads, creating loads  ௖ܶ 	, 	 ௖ܶ൅ ேܶ, ௛ܶ and 	 ௛ܶ൅ ேܶ. 

 

3.3.2. Receiver and antenna calibration 
 

Radiometer calibration can be made at 1) the antenna reference plane, or 2) 

at the receiver input reference plane (i.e. excluding the antenna). In the first 

case, the entire radiometer is calibrated. The calibration loads for the 

antenna reference plane typically consist of highly absorptive materials 

either at ambient temperature or materials cooled using a cryogenic 

substance (e.g. liquid nitrogen or helium). For space-borne instruments, the 

cryogenic load may also be replaced by observing the radiometrically cold 

cosmic background at ca. 2.7 K. This may be realized by using a reflecting 

microwave mirror (e.g. Imaoka et al., 2010) or by periodically pointing the 

entire antenna at the cold sky. As a special case concerning ground-based 

radiometers, the so-called tip curve calibration method can be used (Han 

and Westwater, 2000). In the tip curve calibration method, the brightness 
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temperature of the sky is observed from zenith to increasingly smaller 

elevation angles. This enables the establishment of a relationship between 

the brightness temperatures at different elevations angles and the optical 

thickness of the atmosphere; this, in turn, can be used to extrapolate the 

receiver output for a cold sky (without atmosphere). The method is suitable 

for wavelengths with relatively high transmissivity in the atmosphere; 

furthermore, the method assumes the atmosphere to be stratified and 

homogeneous in the horizontal direction, which restricts its use to clear-sky 

conditions. 

When performing the calibration at the receiver input reference plane, the 

calibration loads are typically coupled to the receiver through a directional 

coupler or an additional input switch. The loads can consist of terminated 

waveguides at certain temperatures (at receiver ambient temperature or 

cryogenically cooled) or of active noise sources delivering a defined level of 

noise to the receiver. This simplifies the construction of calibration loads 

compared to antenna calibration. However, the antenna and connecting 

components must either be characterized a priori and assumed stable, or 

subtle changes in ambient conditions (i.e. temperature) of the antenna must 

be measured and taken into account through calculation. Furthermore, the 

measured calibration path is not entirely the same as is measured by the 

antenna. Therefore, in order to achieve optimal accuracy, impedance 

mismatches in the front end selection switch must be measured beforehand 

and taken into account in the calibrations. (Ulaby et al., 1981). 

 

 

3.4. The airborne radiometer system HUTRAD 
 

A significant part of this work was made by applying measurements of the 

airborne HUTRAD (Helsinki University of Technology Radiometer) system; 

data collected using HUTRAD was used in [P1] and [P2]. The system 

consists of dual-polarized radiometer receivers at six frequencies (6.8, 10.7, 

18.7, 23.8, 36.5, and 94 GHz). The 36.5 GHz system is fully polarimetric 

(Lahtinen et al., 2003). The complement of frequencies closely corresponds 

to those available on past and present satellite microwave sensors (e.g. 

AMSR-E, the Advanced Microwave Scanning Radiometer for EOS). The 

radiometers are usually installed on a backward-profiling configuration, 

with a nominal incidence angle of ~50°. The characteristics of four receivers 

applied in this study are listed in Table 1. 
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TABLE 1: CHARACTERISTICS OF THE HUTRAD RADIOMETER SYSTEM. 

HUTRAD 

Frequency 
(GHz) 

6.8 18.7 36.5 94 

Bandwidth 
(MHz) 

310 1000 400 2000 

Receiver 
noise 

temperature 
(K) 

400 640 1570 1100 

Integration 
time (s) 

defined by user; typical 0.5 

Sensitivity1) 
(K) 

0.11 0.08 0.26 0.04 

  5 3 4 4 

1) Theoretical value with 300 K antenna temperature 

 

The calibration of the HUTRAD system is performed using a typical two-

point calibration. Absorptive material at ambient temperature is used to 

cover the entire aperture of antennas to create a warm calibration target. 

The cold target is achieved using similar material cooled to ~77 K using 

liquid nitrogen. In addition, the 36.5 GHz system uses a polarimetric 

calibration standard (Lahtinen and Hallikainen, 2003). The system does 

not include a possibility for internal (receiver) calibration; therefore, 

emphasis has been put on the thermal stabilization of the receivers in order 

to minimize receiver gain and noise temperature variations in between 

calibrations.  
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4. Overview of SWE retrieval 
algorithms  

 

 

A summary of investigations reported in the literature regarding the 

monitoring of snow water equivalent using passive microwave observations 

is provided. Although the subject has been studied for decades, there still 

remains ambiguity in particular related to the applicability of rigid, linear 

regression algorithms inter-annually and for varying land cover. Several 

early studies point out the necessity of accounting for snow metamorphosis 

and the natural variability of snow properties due to land cover and 

vegetation. One possibility for address this issue is through the application 

of physically-based emission models for snow cover. 

The monitoring of snow depth and water equivalent can be performed on 

ground by means of manual or automated point-wise measurements by 

applying appropriate interpolation methodologies (e.g. Brasnett, 1999). 

However, in northern regions measurement networks can be sparse, and 

the representativeness of point-wise measurements of snow cover over large 

distances can be questioned (Atkinson and Kelly, 1997). Satellite microwave 

radiometry provides an appealing opportunity in this regard due to the 

spatial and temporal coverage of present satellite instruments and its 

applicability in polar regions. 

Retrieval of Snow Water Equivalent from passive microwave observations 

dates back three decades to initial studies made using the first operational 

radiometers in space (Rango et al., 1979; Foster et al., 1980; Tiuri and 

Hallikainen, 1981; Künzi et al., 1982). These studies define the basic 

methodology behind most present SWE retrieval algorithms from passive 

microwave observations. The hypothesis behind the algorithms is that the 

relatively high brightness temperature of the soil surface is scattered and 

thus attenuated by snow. The intensity of the scattering is depends on the 

wavelength, the amount of snow in the signal path and the scattering 

properties of snow; the latter are assumed to be affected especially by the 

size and shape of the scattering particles, i.e. ice crystals within the snow. 

Snow also provides a contribution to the detected signal through self-

emission, but this contribution is considered to be small when compared to 

the (attenuated) ground emission.  
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The scattering intensity increases as the wavelength approaches the size of 

the scattering particles (e.g. Mätzler et al., 1982). Considering that 

individual snow particles are measured in millimeters, high microwave 

frequencies (short wavelengths) will be attenuated more than low 

frequencies (long wavelengths). For this purpose, the first algorithms 

proposed for snow water equivalent and snow cover detection employ the 

scattering properties of a 37 GHz (  8.1 mm) channel available on satellite 

instruments at the time. However, in order to account for the effect of 

varying brightness temperature of the soil background and snow, a lower 

frequency channel at ca. 19 GHz (  15.8 mm)  is applied as a reference. 

The scattering of a 19 GHz signal in snow is considerably smaller when 

compared to 37 GHz, while the emissivity of frozen soil and snow is largely 

similar at both frequencies. Thus observing the brightness temperature 

difference of the two channels, instead of only 37 GHz, allows one to 

establish a relation with the detected signal and snow depth with the 

additional benefit that the effect of variations in physical temperature on 

the measured brightness temperature are reduced. Similarly, observing a 

channel difference reduces or even cancels out systematic errors of the 

observation, provided that the errors in the two observations are similar 

(e.g. due to using common calibration targets). The first algorithms assume 

a linear regression dependence between the channel difference and snow 

depth (or, water equivalent). The algorithms take the general form  

ܧܹܵ ൌ ݂ሺݔሻ ൌ ߙ	 ൅ ߚ ∙  (4.1) ,ݔ

 

where  and  are empirically derived parameters and ݔ ൌ Δ ஻ܶ ൌ

൫ ஻ܶ,௙ଵ,௣ െ ஻ܶ,௙ଶ,௣൯ is the channel difference of frequency bands f1 and f2 at 

polarization p. Moreover, other frequency pairs than 19 and 37 GHz have 

been proposed (e.g. Derksen, 2008). 

Already the first studies note that a general parameterization of (4.1) is 

unlikely to be applicable over the whole range of heterogeneous scenes 

observed by coarse-resolution passive microwave radiometers. In order to 

account for varying land and snow cover, several parameterizations and 

modifications to (4.1) have been proposed in the literature. In investigations 

by Hallikainen (1984), Hallikainen and Jolma (1986) and Hallikainen and 

Jolma (1992) the effect of varying local soil conditions and vegetation is 

compensated by applying a reference value for Δ ஻ܶ measured just before the 

first snowfall. Empirical parameterizations of the Δ ஻ܶ  value are then 

calculated by using training data from small test areas. The study by 

Hallikainen (1984) also indicates substantial differences by land cover type 
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to the sensitivity of Δ ஻ܶ with SWE; forested areas show considerably lower 

sensitivity  when compared to bogs, farmland and freshwater surfaces 

(lakes and rivers). It is noted by Hallikainen and Jolma (1986), that 

although relatively good correlations between channel differences can be 

found in particular for the vertically polarized 19-37 GHz channel 

difference, the optimal parameterizations for the algorithm vary from year 

to year. Thus the study suggests applying yearly new parameterizations 

using training data. 

Based on theoretical calculations of radiation extinction in the snow, 

Chang et al. (1987) proposed the first hemispherical parameterization of 

(4.1). The parameterization is validated over several regions using Nimbus-

7 SMMR (Scanning Multichannel Microwave Radiometer) observations. 

The study notes that the algorithm is applicable to level snow cover with a 

mean grain radius of 0.3 mm, density of 0.3 g/cm^3 and a maximum depth 

of 1 meter. In agreement with results by Hallikainen and Jolma (1984), it 

was noted that the algorithm by Chang et al. (1987) tends to underestimate 

the SWE value for forested areas; this is due to the snow cover being 

virtually masked out by the emission from vegetation for densely forested 

areas, decreasing the channel difference Δ ஻ܶ  and thus decreasing the 

sensitivity to changes in the underlying snow cover. Foster et al. (1991) use 

a correction of the form 

ܧܹܵ ൌ
ߚ ∙ Δ ஻ܶ

1 െ ݂݂
, (4.2) 

 

where 	݂݂  is the fractional forest cover; thus it is assumed that the 

sensitivity decreases in a linear fashion, approaching zero for grid cells with 

100 % forest cover. However, this may be an oversimplification of the 

problem, as forest vegetation type (tree species) and the total vegetation 

biomass have a larger correlation with emission rather than a simple 

fractional forest cover figure (e.g. Hallikainen et al., 1988). 

Snow characteristics are rarely uniform over large areas. Therefore, static 

algorithm parameterizations following (4.1) are of limited accuracy when 

applied on a hemispherical scale. In order to overcome this, Foster et al. 

(1997) first proposed a modification to the original algorithm by applying 

regionally varying parameters in (4.1) for Eurasia and North America, 

following recorded snow densities and grain growth estimates. As an 

extension to this, empirical fits of (4.1) based on training data have been 

proposed on a regional basis (e.g. Hallikainen et al., 1988). A further 

example of an empirical approach, applying in situ measured SWE values 
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against satellite data in different regions, is the land cover sensitive 

algorithm suite developed by Environment Canada, consisting of different 

parameterizations for open prairie environments, deciduous forests, 

coniferous forests and sparse forests (Goodison and Walker, 1995; Derksen, 

et al., 2002; Goita et al. 2003). When performing the retrieval, the 

algorithm weighs each algorithm by the fractional content of the respective 

land cover type in an observation grid cell, similarly to Hallikainen (1984). 

An emerging approach is the use of snow emission models to account for 

dynamic changes in snow properties due to snow metamorphism and 

spatial variations due to land cover effects. Kelly et al. (2003) propose an 

algorithm which employs a non-linear brightness temperature difference 

between Δ ஻ܶ  and snow mass, calculated using a radiative transfer model 

(Tsang et al., 2000).The model is used in a deterministic way, i.e. values 

predicted by the model for different situations are predefined for different 

snow states using a polynomial fit. The algorithm also applies a temporally 

dynamic effective snow grain size and density, accounting for natural 

metamorphosis. However, the authors note an increase in RMS error when 

compared to reference data when the dynamic algorithm is used.  

A study presented by Pulliainen and Hallikainen (2001) is of particular 

relevance to this thesis work. The study presents the use of a semi empirical 

snow emission model (Pulliainen et al., 1999) in a numerical inversion 

algorithm of satellite observations. Separate modules account for 

atmospheric and vegetation effects. Several a priori parameters are 

required by the model (e.g. temperature, snow density, snow grain size, and 

soil properties) in order for the inversion to be successful. However, the 

study demonstrates that these parameters can be found to be regionally 

consistent; in order to allow for spatial variations in snow properties, the 

(effective) snow grain size is considered as a variable parameter constrained 

by a reference value and its statistical variability. Retrieval errors when 

compared to a linear regression algorithm are significantly decreased.  

A further improvement extends the applicability of the method of 

Pulliainen and Hallikainen (2001) to a hemispherical scale. A main driver in 

the applied emission model and thus retrieval accuracy is the (effective) 

value for snow grain size; this determines largely the sensitivity of 

scattering to snow volume. In an improved algorithm (Pulliainen, 2006), 

the snow grain size is used to fit the model to observations in locations 

where snow information is available (e.g. from a weather station network). 

The obtained values for effective grain size are then extended over the 

whole area of observations using kriging interpolation (see e.g. Isaaks and 

Srivastava, 1989). The obtained map of effective grain size and grain size 
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uncertainty is then applied in the numerical inversion of the emission 

model following Pulliainen and Hallikainen (2001). As a last step, the 

satellite-retrieved SWE estimates and weather station observations are 

combined in a Bayesian assimilation scheme. In a recent study (Takala et 

al., 2011), the assimilation method is shown to considerably improve SWE 

estimates on a hemispherical scale when compared to typical algorithms 

based on linear regression. Table 2 summarizes the most notable 

characteristics of the discussed SWE retrieval algorithms as reported in 

literature. 
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TABLE 2: SUMMARY OF SNOW WATER EQUIVALENT RETRIEVAL ALGORITHMS FROM 

PASSIVE MICROWAVE OBSERVATIONS 

Study Applicable 

sensor 

Algorithm type Specifics 

Künzi et al. 

(1982) 

SMMR Linear regression of 

horizontally polarized 

brightness temperature 

gradient* 

Empirical algorithms based 

on limited training data 

Hallikainen 

(1984) 

Hallikainen 

and Jolma 

(1986) 

SMMR Linear regression of 

horizontally polarized 

brightness temperature 

difference 

Use of snow free reference 

brightness temperature 

Chang et al. 

(1987) 

SMMR Linear regression of 

horizontally polarized 

brightness temperature 

difference 

Parameterization based on 

theoretical calculations of 

extinction in dry snow 

Foster et al. 

(1991) 

SMMR Linear regression of 

horizontally polarized 

brightness temperature 

difference 

Fractional forest cover 

correction 

Goodison 

and Walker 

(1995) 

SSM/I Linear regression; vertically 

polarized brightness 

temperature difference 

Region-specific 

parameterization for North 

American prairies 

Foster et 

al., (1997) 

SMMR Linear regression; 

horizontally polarized 

brightness temperature 

difference 

Fractional forest cover 

correction 

Region-dependant 

parameterization for North 

America and Eurasia 

Goïta et al. 

(1997) 

SSM/I Linear regression; vertically 

polarized brightness 

temperature difference 

Fractional forest type 

consideration 

Pulliainen 

and 

Hallikainen 

(2001) 

SSM/I Radiative transfer model 

inversion of spectral and 

polarization difference 

Dynamic effective grain size 

restricted by statistical 

variance 

Vegetation/atmosphere 

effect compensation. 

Kelly et al. 

(2003) 

SSM/I 

(AMSR-E) 

Non-linear regression 

algorithm based on 

radiative transfer model 

parameterization 

Temporally varying 

empirical grain growth and 

density expressions 

Takala et 

al. (2011) 

SMMR 

SSM/I 

AMSR-E 

 

Radiative transfer model 

inversion of spectral 

difference. 

 

Combined with assimilation 

of in situ derived snow 

depth 

Radiative transfer model 

parameterization using in 

situ data. 

Assimilation of passive MW 

SWE estimates with kriging-

interpolated snow depth 

maps 

*gradient ܶܩ ൌ 	
்ಳ,೑భି்ಳ,೑మ

௙భି௙మ
	ቂ

௄

ீு௭
ቃ 
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5. Multiple layer modification of HUT 
snow emission model 

 

 

A multiple-layer adaptation of the HUT snow emission model (Pulliainen et 

al., 1999) was developed in the frame of this thesis work. The original 

model considers the snowpack as a single homogeneous layer of snow with 

effective scattering and absorption properties. In most cases, this is a 

simplification of the complex stratigraphy of snowpacks (e.g. Colbeck, 

1991). However, the motivation of the original formulation was to provide a 

simple enough model which would allow inversion of satellite observations, 

based on the type of limited knowledge of snowpack structure available for 

a large scale retrieval (Pulliainen and Hallikainen 2001). Also, it is arguable 

that the effect of snow stratification on retrieval accuracy is minimized in 

the typical comparative algorithms relying on brightness temperature 

difference of two channels on the same polarization (Foster et al., 2005). 

The effect is further reduced with coarse scale observations covering large 

areas, and when the vertical polarization is employed (e.g. Hallikainen, 

1984). Indeed, satisfactory retrieval results on a hemispherical scale have 

been achieved recently using a method based on inversion of the original 

one-layer model (Takala et al., 2011). In the method, the emission model is 

first used to assign effective values for the size of scattering particles in the 

snow, where reference information on snow depth is available. These 

effective values, essentially compensating also for effects of snow layering, 

are then applied over a larger area using interpolation.   

However, it is clear that natural snowpacks form layered structures that 

affect the microwave emission (e.g. Boyarskii and Tikhonov, 2000). As 

such, layered emission models on a point scale can yield superior results 

when compared to one-layer models (e.g. Hall, 1987, Durand et al. 2008, 

Rees et al., 2010). The question concerning practical retrieval applications 

on a satellite scale remains on how to acquire the necessary information on 

stratification to drive the forward models. Physical snow models of varying 

complexity (e.g. Sun et al., 1999, Brun et al., 1989) can be used to predict 

snow stratification to a good degree of accuracy if adequate input 

information is available. Coupling these models with layered forward 

emission models has been shown to yield reasonable results (Andreadis et 

al., 2008, Durand et al., 2008) on point scales. Furthermore, clear, layered 
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structures in winter landscapes are formed by sea, lake and river ice covered 

with snow. Moreover, lake ice growth can be predicted using either weather 

station or atmospheric reanalysis information to drive a physical lake ice 

model (Duguay et al., 2003). Therefore, the HUT model was modified to 

accommodate simulation of emission from several stratified layers of ice or 

snow (Lemmetyinen et al., 2010, [P2]). This section presents the physical 

basis of the HUT model and the modification made to accommodate 

multiple layers in the simulation. A section describing model inversion 

methods is also included. 

 

 

5.1. Original HUT snow emission model 
 

The original HUT snow emission model (Pulliainen et al., 1999) is a 

radiative transfer-based, semi-empirical model which calculates the 

emission from a single homogenous snowpack. The HUT model assumes 

that most scattering of radiation propagating in a snowpack is concentrated 

in the forward direction (of propagation). This assumption is based on 

studies by Hallikainen et al. (1987); similar results for the scattering phase 

matrix have also been obtained using the DMRT (Dense Media Radiative 

Transfer) model (Tsang et al., 2007) 7 . Based on the consideration of 

dominant forward scattering, the HUT model applies the delta-Eddington 

approximation (Joseph et al., 1976) to the radiative transfer equation, 

applying an empirical constant to determine the forward scattered intensity 

of snow.  

The absorption coefficient in the HUT model is determined from the 

complex dielectric constant of dry snow, applying the Polder-van Santen 

mixing model for the imaginary part (Hallikainen et al., 1986). The 

calculation of the real part of the dielectric constant for dry snow is 

presented by Mätzler (1987). Emission from the snow layer is considered as 

both up-and downwelling emission. These are, in turn, reflected from 

interfaces between layers (air-snow, snow-ground). The transmission and 

multiple reflections between layers interfaces are calculated using the 

incoherent power transfer approach presented by Ulaby et al. (1981). 
                                                                    
 

7 DMRT is a theoretical model based on vector radiative transfer theory, modified for 
dense media, taking into account the full polarized nature of electromagnetic 
radiation (contrary to scalar radiative transfer, which models only the propagation of 
intensity). The model thus allows the calculation of effects such as correlative 
scattering between particles.  
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The extinction coefficient of snow, dependant on snow grain size and 

frequency, is calculated empirically following Hallikainen et al. (1987). 

Snow wetness and salinity content can be simulated if required; the 

modified dielectric constants for wet or saline snow are described through 

empirical formulae. Reflection and transmission coefficients and the 

refraction angle between layer interfaces are calculated using an incoherent 

approach (Ulaby et al., 1981) following Fresnel's law.  

For radiation propagating in a snowpack at depth d’ at the angle , the 

HUT snow emission model expresses the transfer equation in eq. (2.25) so 

that (Pulliainen et al., 1999) 

߲ ஻ܶሺ݀ᇱ, ሻߠ

߲݀ᇱ
ൌ ௔ߢ sec ߠ ௦ܶ 

൅ߢ௦ sec ߠ
1
ߨ4

ඵΨሺܚ, ,ᇱߠ ߶ᇱሻ
ସగ

஻ܶሺ݀ᇱ, ,ᇱߠ ߶ᇱሻ sin ᇱߠ  ᇱ݀߶ᇱߠ݀

െߢ௘ sec ߠ ஻ܶሺ݀ᇱ,  ,ሻߠ

(5.1) 

 

where ஻ܶ  is the brightness temperature, ௦ܶ  the physical temperature (of 

snow), ߢ௔  the absorption coefficient, ߢ௘  the extinction coefficient, ߢ௦  the 

scattering coefficient, Ψ the scattering phase function and ܚ the unit vector 

to the angle of observation. 

The most challenging problem in solving the radiative transfer equation in 

(5.1) can be said to be determination of the scattering phase function, which 

determines the increase or decrease in radiated intensity due to multiple 

scattering. The HUT model assumes that most of the scattered radiation in 

a snowpack is concentrated in the forward direction (of propagation) due to 

multiple scattering within the snow media. This assumption is based on 

previous studies by Hallikainen et al. (1987). The HUT model applies the 

delta-Eddington approximation to the radiative transfer equation; in the 

case of dominant forward scattering the scattering phase function can be 

expressed in terms of the differential scattering cross section ߪௗ  and the 

particle scattering cross section ߪ௦ሺܚොሻ so that (following Ishimaru, 1978) 

Ψሺܚො, ො′ሻܚ ൌ
,ොܚௗሺߪߨ4 ො′ሻܚ

ොሻܚ௦ሺߪ
ߠሺߜ െ ߶ሺߜሻ′ߠ െ ߶′ሻ. (5.2) 
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Now, assuming that the ratio between forward scattered and total 

scattered radiation coefficients is expressed by a constant q so that 

ݍ ൌ
,ොܚௗሺߪ ො′ሻܚ

ොሻܚ௦ሺߪ
. (5.3) 

 

Equation (5.1) can be now simplified to 

߲ ஻ܶሺ݀ᇱ, ሻߠ

߲݀ᇱ
ൌ ௔ߢ sec ߠ ௦ܶ ൅ sec ߠ ሺߢݍ௦ െ ௘ሻߢ ஻ܶሺ݀ᇱ,   ሻ. (5.4)ߠ

 

The emission of the snow medium with thickness ݀଴ just below the 

medium boundary can be then obtained from (Pulliainen et al., 1999): 

஻ܶ ൌ ௦ܶ
௔ߢ

௘ߢ െ ௦ߢݍ
ቀ1 െ exp൫ሺെߢ௘ ൅ ௦ሻߢݍ ∙ ݀଴ ∙ sec   ൯ቁ, (5.5)ߠ

 

where 1/L is the attenuation. An empirical equation is used to relate the 

snow extinction coefficient to frequency and snow grain size (Hallikainen et 

al., 1987), so that for frequencies 1 to 60 GHz; 

௘ߢ ൌ 0.0018݂ଶ.଼ܦ௢௕௦
ଶ , (5.6) 

 

where f is the frequency in GHz and Dobs is the observed scattering particle 

(snow grain) diameter in millimeters. The empirical parameter q in (5.5) 

has been defined for snow by fitting the HUT model to experimental snow 

slab emission data (Pulliainen et al., 1999). The emission data, presented by 

Weise (1996), represents several snow types and spans a frequency range 

from 11 to 94 GHz. A common value of q=0.96 was found to be applicable 

for all frequencies in this range.  

It should be noted that the parameter q includes effects from multiple 

scattering in the snowpack, and is as such relatively high compared to a case 

of singular scattering following e.g. the Rayleigh scattering approximation. 

As pointed out by Hallikainen et al. (1987), in snow the losses due to 

scattering are approximately equal to generation of incoherent intensity by 

scattering. This is supported also by recent theoretical studies of multiple 

scattering in snow, which predict that at microwave frequencies, the largest 
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part of total volume scattering to be in the forward direction (Tsang et al., 

2007).  

 

 

5.2. Multiple layer adaptation 
 

The original HUT snow emission model (Pulliainen et al., 1999) was 

expanded to allow the simulation of emission from a vertically stacked 

structure of multiple snow and ice layers. The original formulation of 

radiation scattering and absorption in individual snow layers was not 

altered (Lemmetyinen et al., 2010, [P2]).  

 

5.2.1. Emission from a system of stacked layers  
 

The treatment of multiple layers is based on calculating the transfer of 

incoherent radiation intensity between layers (Ishimaru, 1978); coherent 

effects are neglected 8 . Snow and ice layers are considered as stacked, 

smooth planar layers, infinite in the horizontal direction (Figure 7). 

                                                                    
 

8 The omission of wave coherence effects between layer reflections originates in part 
from the original purpose of the HUT model as a simple, computationally light model 
for large scale inversion and retrieval of snow properties (see e.g. Pulliainen and 
Hallikainen, 2001). Although the omission of coherence effects may degrade the 
performance of the model on the point scale in cases where a discrete thin layer is 
present (e.g. Rees et al., 2010), it is unclear whether the variable nature of natural 
snowpacks allows coherence effects to persist on the scale of satellite applications. 
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Figure 7. Schematic overview of the new multiple layer HUT snow 
emission model, with N layers of snow or ice, each with brightness 
temperature Ts,n, reflection rn and attenuation ln. Air and ground layers 
(layers N+1 and “0”, respectively) contribute their respective up- and 
downwelling brightness temperatures TB,SKY and TB,GND. Lemmetyinen et 
al. (2010) [P2].  2010 IEEE. 

 

The resulting emission is calculated based on the emissivity and 

attenuation properties of individual layers, and the reflection and 

transmission coefficients at layer interfaces. The upwelling emission flux 

,nT of layer n of a system as depicted in Figure 7 can be determined as  

௡ܶ,↑ ൌ ܵ௡ ቆ ௦ܶ,௡ ൅ ௡ܶାଵ,↓
௡ିଵݎ௡ݐ
݈௡ଶ

൅ ௡ܶିଵ↑
௡ିଵݐ
݈௡

൅ ௦ܶ,௡
௡ିଵݎ
݈௡

ቇ , (5.7) 

 

where ݐ௡ ݎ௡ and ݈௡ 	are the Fresnel transmission and reflection coefficients, 

and the loss factor of layer n, respectively. ܵ௡  is the geometric sum of 

multiple reflections in layer n, so that 

ܵ௡ ൌ
1

1 െ ௡ିଵ/݈௡ଶݎ௡ݎ
. (5.8) 

 

In (5.7), the first term inside the parenthesis is the internal upwelling 

emission, the second term the downwelling emission from layer n+1, 

reflected from layer n-1, and attenuated twice by ݈௡ . The third term is the 
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upwelling emission from layer n-1, reduced to interface n, and the last term 

is the internal downwelling emission, reflected from ݎ௡ିଵ and reduced to ݎ௡. 

Similarly, the downwelling emission is expressed as 

௡ܶ,↓ ൌ ܵ௡ ቆ ௦ܶ,௡ ൅ ௡ܶାଵ,↓
௡ݐ
݈௡

൅ ௡ܶିଵ↑
௡ݎ௡ିଵݐ
݈௡ଶ

൅ ௦ܶ,௡
௡ݎ
݈௡
ቇ . (5.9)  

 

The up- and downwelling fluxes of each layer can then be expressed as a 

group of linear equations, from which the total upwelling emission 

௡ܶ,↑	beneath the topmost layer can be solved. The mathematical solution is 

presented in [P2]. The multiple layer adaptation can also be directly 

employed in the simulation of a water-ice-snow system, such as snow 

covered lake ice.  

 

5.2.2. Simulation of ice layers 
 

For a layer consisting of pure ice, the HUT model considers scattering to be 

negligible. Therefore, it is assumed that the proportion of scattering is 

completely directed in the forward direction (q=1). In other words, the 

extinction in an ice layer is considered to be dependent only on the 

absorption, simplifying (5.1) to 

஻ܶ ൌ ௦ܶ ቀ1 െ exp൫ሺെߢ௔ሻ ∙ ݀଴ ∙ sec ൯ቁߠ . (5.10) 

 

Stacked layers, which can be considered to be pure ice and therefore 

applicable to (5.10), are present in nature mainly in the case of frozen lakes 

and sea ice. Even with these, bubble formation by upwelling gases and, on 

the other hand, impurities and trapped particles may induce scattering 

effects. Another possible application may be a rain-induced ice lens (Rees et 

al., 2010). For simulation of reflections from the soil-snow interface, the 

empirical model by Wegmüller and Mätzler (1999) has typically been 

applied (e.g. Pulliainen et al., 1999, Pulliainen, 2006, Takala et al., 2011). 

However, in the case of snow-covered lake ice, the model is not applicable 

to the simulation of reflections from the interface between water and ice. 

While this interface can be considered with good precision to be a specular 

surface, even small roughness variations are likely to cause notable 

deviations from specular reflection due to the high contrast in dielectricity 
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between water and ice. Therefore, a relation between the small scale RMS 

variation of surface height h and the reflection coefficient of the ice/water 

interface was adopted following Choudhury et al. (1979)  

หݎ௣ห
ଶ
ൌ หݎ௣,ி௥௘௦௡௘௟ห

ଶ
expሺെ4݇ଶ݄ଶ cosଶ  , (5.11)	ሻߠ

 

where ݎ௣,ி௥௘௦௡௘௟  is the Fresnel (specular) reflection coefficient for 

polarization p, k is the wave number, h the height variation (rms) of the 

rough surface and	ߠ the incidence angle. This approach can be considered 

to be applicable when surface roughness variations are small compared to 

the wavelength. However, it may be difficult to assign a relation between 

measurable physical properties of the surface (correlation length, rms 

height variation) and h (Ulaby et al., 1982). Therefore, h should be 

considered as an empirical fitting parameter. 

 

 

5.3. Model inversion 
 

Remote sensing observations can be interpreted as geophysical parameters 

by inverting physical forward models, e.g. models simulating microwave 

emission. The inversion of complex, non-linear models driven by multiple 

channels of observational data often leads to numerical solutions. In the 

following, the use of these methods is briefly discussed.  

In general, the outcome of a satellite observation can be expressed with a 

model f so that   

ܡ ൌ ݂ሺܠሻ ൅ ઽ , (5.12) 

 

where ܡ ൌ ሾݕଵ, … , ୬ሿ்ݕ  is a vector field of remote sensing observations on 

channels n, ܠ ൌ ሾݔଵ, … ,  ୬ሿ் is a vector of the value of a geophysical variableݔ

driving the model f, and	ઽ ൌ ሾߝଵ, … ,  ୬ሿ் is a vector describing the summedߝ

modeling and observation errors. The errors include both 1) systematic 

errors, e.g. due to errors in instrument calibration and physical basis of the 

model, and 2) random errors, e.g. due to random noise of observations. 

However, when applied as a basis of an inversion algorithm, the systematic 
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errors are considered to be zero. The inversion (i.e. retrieving x from the 

observations y) can be based on empirically derived, linear or non-linear 

regression relations between the observation and x. The inversion of linear 

regression is relatively simple once the regression relations have been 

established by sufficient training data. 

For more complex models f, a numerical solution may be required. If the 

modeling error is assumed to be unbiased and normally distributed, 

statistical inversion theory can be applied (Pulliainen, 2006). Following 

Bayes’ theorem, the parameters x, y and  are all considered to be random 

variables characterized by their probability distributions. The inverse 

solution of the probability distribution function is given by minimizing the 

so-called cost function  

ሻܠሺܬ ൌ෍
1

௜ߪ2
ଶ

௡

௜ୀଵ

൫ݕ௜ െ ௜݂ሺܠሻ൯
ଶ
, 

(5.13) 

 

where ߪ௜  denotes the standard deviation of the random errors . The 

modeling errors include all uncertainties related to the expected behavior of 

the brightness temperature with x, including the effect of variables 

inaccurately accounted for and physical inaccuracies inherent to the model 

itself.  

Considering the practical use of (5.13), ߪ௜  should be understood to 

include also observation errors related to the instrument. These, in turn, are 

dependant mostly on the calibration accuracy and subsequent calibration 

drift of the instrument. In order to reduce the systematic errors of the 

observation, the observations ݕ௜ can also consist of a channel or polarization 

difference; assuming that the systematic errors are similar for both 

channels, analyzing the difference instead of individual channels largely 

cancels out the errors. In a practical remote sensing application, however, 

the model errors in ߪ௜  may typically outweight systematic errors caused by 

instrument calibration.   

Furthermore, if a priori information of one or more of the geophysical 

parameters ݔ௝  is available, (5.13) can be expanded using the constrained 

minimization approach, so that 
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ሻܠሺܬ ൌ෍
1

௜ߪ2
ଶ

௡

௜ୀଵ

൫ݕ௜ െ ௜݂ሺܠሻ൯
ଶ
൅෍

1

௥௘௙,௝ߪ2
ଶ

௠

௝ୀଵ

൫ݔො௥௘௙,௝ െ ௝൯ݔ
ଶ
, 

(5.14) 

 

where ݔො௥௘௙,௝  denotes the a priori values of parameters ݔ௝  and ߪ௥௘௙,௝  their 

standard deviation. This constrains the solution of the minimization 

towards ݔො௥௘௙,௝, the relative weigh of each reference value depending on their 

standard deviations.  
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6. Simulation of microwave 
signatures of snow-covered terrain 

 

 

The main motivation for work presented in this chapter was the known 

variability of microwave emission signatures in the winter landscape of 

boreal forests. In this regard, the boreal forest zone presents a challenge to 

the coarse scale passive microwave observations of snow cover, in particular 

due to the highly variable and partly dense vegetation. Vegetation affects 

the emission signatures both directly through attenuation, scattering and 

emission from the forest canopy (e.g. De Roo et al., 2007), and indirectly by 

affecting snow distribution and metamorphosis, compared to open areas 

such as tundra (e.g. Sturm et al., 1995). Land cover features such as bogs 

and other wetlands, as well as lakes and rivers provide further complexity to 

the observed scene. The snow background in general has a substantial effect 

on the detected emission. This is emphasized in the lower end of the 

microwave spectrum, where increasing wavelength results in higher 

penetration depth into the ground surface, whereas snow has a decreasing 

influence. 

Airborne observations reported in [P1], measured by separate groups in 

Finland and Canada, provided data at high spatial resolution (< 100 m) on 

the passive microwave signatures of snow cover in the boreal forest zone. 

The measurements complement earlier studies (e.g. Mätzler, 1994; 

Kurvonen and Hallikainen, 1997; Goita et al., 2003; Roy et al., 2004), but 

also provide new insight in particular into the differing signatures of 

wetlands when compared to forested areas. The datasets also enabled 

independent verification of the original HUT snow emission model 

(Pulliainen et al., 1999) over varying terrain. Further airborne observations 

of lake ice emission signatures in [P3] provided data for validation of the 

multiple layer model (Lemmetyinen et al., 2010, [P2]) when applied for 

snow covered lake ice. This enabled to apply the modified model also to 

simulate the complete satellite scene in lake rich areas in [P4]. 

Furthermore, L-band radiometer observations from a tower-based 

experimental campaign enabled the examination of the effect of ground 

freezing and thawing processes on the microwave signature; as the ground 

freezes, the soil permittivity decreases as free water content in the soil 
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diminishes. This can have a detectable effect also at higher frequencies, but 

the signature is in part masked by the presence of snow cover. However, the 

snow has a minimal effect at L-band frequencies and the changes in 

emission due to soil processes can be reliably isolated. For this study, a 

layered emission model was defined to simulate the emission from partially 

frozen soils [P5]. Modeled emission signatures were compared to measured 

emission at L-band during the freezing period at the experimental site. 

The results presented in this section summarize the main findings from 

[P1] - [P5], placing these into context with one another and the overall goals 

of the thesis work. Specifically, the following issues are addressed 

 Effect of land cover and vegetation on brightness temperature of 

snow-covered terrain ([P1]) 

 Capability of HUT snow emission model to estimate these effects 

([P1]) 

 Capability of a modified snow emission model to simulate 

brightness temperature of layered snowpacks at a point scale [P2] 

 Capability of a modified snow emission model to simulate the 

special case of snow-covered lake ice at point scale ([P3]) and on 

satellite scale ([P4]) 

 Effect of soil freeze/thaw processes in winter conditions on 

observed brightness temperature at L-band frequencies ([P5]) 

 

 

6.1. Effect of land cover features on microwave signatures 
 

The study in [P1] describes airborne microwave radiometer datasets 

collected over the boreal forest regions of Finland and Canada, and 

application of the original HUT snow emission model in the simulation of 

the detected microwave emission. The airborne data are complemented by 

comprehensive in situ data on snow conditions, as well as land cover 

information. The airborne sensors used included typical frequencies applied 

in microwave remote sensing of snow (19 and 37 GHz), as well as a lower 

frequency channel (6.9 GHz). The datasets were acquired close to the peak 

snow season in March/April over two years (2005 and 2006). Maps of the 

study areas are provided in Figure 8, and a summary of the datasets in 

Table 3; the data are divided into four sections, or flight lines, labeled A to 

D. The Finnish 2005 flight line C in Southern and central Finland consists 

primarily of conifer-dominated boreal forests with a considerable number 
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of bogs and lakes. Flight Line D, flown in Northern Finland in 2006, 

included a transition from forest to open terrain in the subarctic tundra 

region. While the Finnish datasets are relatively heterogeneous especially in 

the case of flight line C, with agricultural fields, wetlands and different 

forest types, the Canadian data in flight lines A and D are predominated by 

sparse open-canopy boreal forest, tundra and shallow tundra lakes. The 

portion of lakes is notable in particular over flight line A in the Canadian 

Northwest territories, while flight line B is predominantly forested. 

Consequently, the Finnish land cover was categorized into five classes 

(dense forests, sparse forests, open (dry) areas, bogs and lakes). For the 

Canadian data, only three land cover classes were defined (forest, tundra 

and lakes). 

 

  
Figure 8. Overview of ground and airborne sampling sites during 2005 and 

2006 airborne passive microwave campaigns in Canada (left) and Finland 

(right). Flight lines A to D indicated. Lemmetyinen et al. (2009) [P1].  

2009 IEEE. 
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TABLE 3: SUMMARY OF AIRBORNE CAMPAIGNS CONDUCTED IN FINLAND AND 

CANADA. Lemmetyinen et al. (2009) [P1]. 
 Canada Finland 

Flight line A B C D 
Dates of 
Deployment 

April 3-18 
2005 

February 28-
March 13 2006 

March 14 2005 
March 16-17 
2006 

Study Domain 

Snare and 
Yellowknife 
basins, 
Northwest 
Territories. 
Ground 
measurements 
at 15 locations 

Nelson 
watershed, 
Manitoba. 
Ground 
measurements 
at 25 locations 

Southern 
Finland. 
 6 snow course 
observation 
sites  
13 additional 
observation 
sites 

Northern 
Finland. 
 4 snow course 
observation 
sites  
6 additional 
observation 
sites 

Dominant 
ground types 

Forested: 48% 
Tundra: 29% 
Lakes: 23% 

Forested: 60% 
Tundra: 27% 
Lakes: 13% 

Dense forest: 
51% 
Sparse forest: 
7 % 
Open areas: 
9% 
Bogs: 3 % 
Lakes: 10% 

Dense forest: 
46% 
Sparse forest: 
11% 
Open areas: 
12% 
Bogs: 14% 
Lakes: 3% 

Ground 
Measurements 

Snow depth 
Snow water equivalent 
Snow density profiles 
Snow grain size profiles 

Snow, soil, air temperature 
Snow depth 
Snow density and moisture 
profiles 
Snow grain size profiles and 
photographs 

 

6.1.1. Effects of land cover and snow conditions 
 

The investigated transects in Finland and Canada exhibited a range of snow 

conditions. The extent of measured values for snow depth, SWE, grain size 

and density are summarized in Figure 9. Several statistical features are 

noted in [P1] regarding the measured range of brightness temperatures, 

which can be linked to the prevailing snow and land cover conditions. The 

Finnish datasets show a high variability in SWE, in particular for flight 

transect C reflecting also the larger range of land cover types represented in 

the data. For Canadian data the variability of SWE was smaller for both 

datasets. The measured snow density was relatively uniform also for the 

Finnish dataset; therefore, the variability in SWE was mainly a result from 

the large variability in snow depth. 

Bulk grain size in the flight line C dataset (measured grain size averaged 

over the whole snowpack in the vertical direction) ranged from a typical 

value of 1 mm in a 5-10 cm surface layer to up to 2 mm in several bottom 

layers. The data for flight line D showed similar thin surface layers but 

mostly homogenous snowpacks below the surface, with a mean grain size 

smaller than 2 mm. The Canadian datasets exhibit significantly larger grain 
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growth, in particular for 2005 (flight line A). As pointed out in [P1], this is 

due to the significant depth hoar layer present in Canadian snowpacks, 

which increases the bulk average grain size over the whole snowpack. The 

differing snow grain properties between Finland and Canada were 

highlighted previously by Roy et al.(2004) as a major factor influencing the 

applicability of the HUT snow emission model to Canadian boreal snow 

packs. 

 

 

(a) (b) 

 

(c) (d) 

Figure 9. Boxplots of snowpack properties on flight lines A to D: 

SWE (a), depth (b), density (c), and grain size (d). Lemmetyinen et 

al. (2009) [P1].  2009 IEEE. 

 

Figure 10 shows a summary of the airborne brightness temperatures 

measured over flight lines C and D (in Finland) in 2005 and 2006, 

respectively. The data are represented as average values over different land 

cover types (dense forests, sparse forest, open areas, bogs and lakes). Error 

bars represent the standard deviation of observed values. The 6.9 GHz 

signature can be seen to be similar over dry land for both flight lines at both 
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polarizations; the amount of vegetation appears to have little effect (< 1K 

difference in mean values between dense forests and open terrain). 

However, lakes exhibit a strong (~50K) difference to surrounding dry land. 

Interestingly, bogs show a ~5K contrast to dry land surfaces for H-

polarization over flight line C; a similar contrast is seen at V-polarization 

over flight line D. The strong influence at 6.9 GHz was noted also in [P1] 

(Figure 6). 

The strong influence of lakes at the lowest frequency was an expected 

result; the contrast is still discernible at 18.7 GHz in Figure 10 (b) and (e). 

An 8-10 K contrast to dry land is apparent for both polarizations (note that 

data for 18.7 GHz V is missing for flight line D). This would already carry a 

significant impact on SWE estimates based on the 18.7 – 36.5 GHz channel 

difference, the exact impact depending on the fractional coverage of lakes in 

the satellite scene. It is worth noting that the snow cover already 

represented late winter conditions in terms of SWE; for early season 

estimates, the impact would likely be larger (due to reduced attenuation of 

snow cover). Other land cover types over dry land show some variability at 

18.7 GHz. A 3 K contrast between open terrain and densely forested areas is 

apparent for vertical polarization. This is likely a combined effect of 

vegetation and differing snow properties in forests compared to open areas. 

At 36.5 GHz, the effect of varying land cover over dry terrain becomes 

apparent. Densely forested areas show the highest brightness temperatures 

(mean value 236 K and 323 K for V and H polarizations, respectively), while 

open terrain emissions are 10-12 K lower. Also the standard deviation of the 

measured values is much higher than at lower frequencies, reflecting both 

the influence of varying snow cover and vegetation. The standard deviation 

is, however, of similar magnitude (11-13 K) for both open and vegetated 

areas, which would suggest the variability is mostly driven by snow 

conditions. Interestingly, the snow covered lakes no longer give the lowest 

emissions over flight line C (although they do so for flight line D in 2006), 

being of similar magnitude to emission from open terrain. This may reflect 

the generally denser and thicker snow conditions for flight lines C (in 2005) 

and D (in 2006), see Figure 9. For 2006, the shallower and less dense snow 

would allow a larger part of the emission to originate from the medium 

underneath the snow, thus decreasing brightness temperatures over lakes 

also at 36.5 GHz. Furthermore, it is notable that bogs show a clear (~15-20 

K) contrast in emission compared to other land surfaces, including non-

vegetated areas over dry terrain. This suggests that snow conditions over 

bogs differ significantly from other open areas.  
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(a) (d) 

(b) (e) 

(c) (f) 

Figure 10. Brightness temperature distribution per land cover type on 

Flight transects C and D  (Finland). Mean and std (error bars) of H- and V-

polarized brightness temperature at 6.9 (a) & (d), 18.7 (b) & (e) and 36.5 (c) 

& (f) GHz. Note: data for 18.7 GHz V pol on flight line D missing. From 

data in Lemmetyinen et al. (2009). 

 

 

Figure 11 shows a reanalysis of data for flight line C presented in Figure 5 

of [P1], showing the sensitivity of the 18.7-36.5 GHz brightness temperature 

difference (vertical polarization) to SWE over various land cover types (in 

place of individual frequencies displayed in [P1]). This frequency 
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combination is typically considered sensitive to increase in SWE (e.g. Chang 

et al., 1987). As discussed previously, microwave attenuation and emission 

from a dense vegetation cover may mask out any changes in the snow cover 

beyond possibility of detection by remote sensing instruments. In Figure 11, 

densely forested areas can clearly be seen to exhibit the lowest response in 

the brightness temperature difference to increase in SWE. Sparse forests, in 

turn, show sensitivity up to 80-100 mm in SWE but not beyond. Open areas 

(i.e. non-forested) show similarly a sensitivity up to 60-80 mm. However, 

data collected over bogs show sensitivity up to 100-120 mm, which is close 

to the traditionally expected saturation limit of the 36.5 GHz signal 

attenuation in snow. Results over lake ice are in this case ambiguous; for 

low SWE values, the channel difference is negative, and very little response 

is seen with increasing SWE. For this study, however, the SWE over lakes 

was not measured directly. Rather, the SWE was assumed to be identical to 

that measured over bogs. 

 

Figure 11.  Brightness temperature vs. surface SWE measurements for 

different land cover types, flight line C in Finland. Difference of 18.7 and 

36.5 GHz. Total number of samples was 2213 for dense forests, 312 for 

sparse forests, 401 for open areas 453 for lakes and 148 for bogs. 

Accordingly, each data point corresponds on average to  442 (dense 

forests), 62 (sparse forests), 66 (open areas), 37 (bogs) and 90 samples 

(lakes). From data in Lemmetyinen et al. (2009). 

 

Figures 10 and 11 emphasize the effect of land cover and vegetation on the 

brightness temperature and its sensitivity to SWE. An emission model 

describing a heterogeneous scene consisting of several of these land cover 

types must correctly predict their effect on the total observed emission. In 

[P1], the original HUT snow emission model was applied to simulate the 



 
 

81 

brightness temperature over areas covered by the airborne observations. 

The aim was to assess the model performance over varying land cover, 

vegetation and snow conditions. The airborne dataset in [P1] is particularly 

useful for assessing the performance of the empirical vegetation 

compensation component (Kruopis et al., 1999). In the following, the 

modeling results in [P1] are analyzed by land cover type.  

 

6.1.2. Simulations using original HUT snow emission 
model 

 

Available snow, land cover and vegetation data were applied to run the HUT 

snow emission model (Pulliainen et al., 1999), attempting to quantify the 

model performance in simulating the varying boreal forest landscapes 

observed in Finland and Canada. The modeling work was limited to vertical 

polarization, as this is typically the polarization applied for retrieval of SWE 

due to the smaller sensitivity to layering effects (e.g. Kelly et al., 2003). 

Figure 12 demonstrates a summary of the simulation results for flight line 

C (Finland in 2005), for the three investigated frequencies. Simulations 

were made for four land cover types; lakes were not included as the original 

HUT snow emission model was not adapted for water surfaces. The 6.9 GHz 

channel is largely insensitive to the snowpack, and the simulation result is 

mostly dependent on the soil emission simulation (applying empirical 

model by Wegmüller and Mätzler, 1999). One possibility would be to use 

the 6.9 GHz channel for deriving effective surface parameters by 

numerically fitting the model to observations, but in [P1] static values for 

the soil parameters were applied; the permittivity of frozen soil was 

considered to be 6-j, and the effective surface roughness 3 mm, resulting in 

a 3-7 K overestimation in the simulation results. At 18.7 GHz, the modeling 

errors are smaller, ranging from 1 to 4 K (bias error). At 37 GHz, however, 

larger errors emerge for the non-vegetated areas (bogs and open areas); 

here the model results show a clear, 10-12 K overestimation, compared to 

relatively low errors for densely and sparsely forested areas (under 5 K). 

This indicates a possible underestimation in either the grain size or snow 

mass. 
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Figure 12. Observed and simulated brightness temperatures over flight line 

C (Finland), separated by land cover type. Results for vertically polarized 

emission at 6.9, (a), 18.7 (b) and 36.5 GHz (c). From data in Lemmetyinen 

et al. (2009). 

 

A summary of simulation results is shown in Table 4 for all examined 

frequencies (vertical polarization) and flight lines. 

In forested areas, the model estimates indicate good agreement with 

airborne measurements at 19 and 37 GHz for transects C and D (in 

Finland), indicating reasonable performance of the vegetation 

compensation model component and quality of the vegetation data. 

However, the model clearly underestimates brightness temperature with 

both Canadian datasets at these frequencies over forested areas (flight lines 

A and B, see Table 4). In terms of bias, the model simulations 

underestimate brightness temperature by 31 and 21 K for 19 and 37 GHz for 

flight line A, while for flight lines C and D (in Finland) the match is better 

than 8 K and 7 K, respectively. The better results for Finland may reflect 

also the more precise forestry data available; the original model formulation 

for vegetation (Kruopis et al., 1999) was made based on comparing 

vegetation biomass against measured changes in brightness temperature. 

As for the Canadian data, a proxy value of forest biomass had to be used, the 

larger errors may partly be attributed to this. 

Non-vegetated areas allow examining the performance of the snow 

emission model itself, while the observed and simulated microwave 
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emission for forested areas is mostly driven by vegetation. For the 19 and 37 

GHz frequencies, the simulation results over flight lines C and D again 

follow closer the observed airborne values than for flight lines A and B. For 

the Canadian flight lines, the model simulations again underestimate the 

measured brightness temperatures. Compared to forested sites, the errors 

are even larger, with the exception of the 19 GHz simulation over flight line 

B. The bias errors range up to -14 K and -25K for 19 and 37 GHz, 

respectively, while RMS errors exceed 24 K for 37 GHz for both flight lines 

and flight line A for 19 GHz. This is an indication that the single-layer 

model is not suitable for the simulation of tundra snow type, which is 

characterized by a distinct depth hoar layer with rough snow grains. The 

dielectric contrast between the depth hoar layer and the surface snow layer 

will induce reflection components not captured by the one-layer model. 

Furthermore, the original empirical formulation of the snow extinction 

coefficient in the HUT model by Hallikainen et al. (1987) is limited to snow 

grain size below 1.6 mm, which is insufficient for the larger snow grains 

present in the Canadian dataset. As an empirical solution, e.g. Roy et al 

(2004) modify the snow extinction calculation for simulation of large 

grains. In [P1], applying the modified formulation for large grains was seen 

to decrease the modeling errors.  
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TABLE 4. RMS AND BIAS OF ERROR FOR MODELED VS. AIRBORNE BRIGHTNESS 

TEMPERATURES ON FLIGHT LINES A, B, C AND D. VALUES IN KELVIN. 

Channel 6.9 GHz 19 GHz 37 GHz 

RMS bias RMS bias RMS bias 

A (Canada)       

forest 12.8 12.1 13.2 7.6 13.5 9.0 

tundra 12.3 8.6 25.6 13.7 38.5 24.3 

B (Canada)       

forest 6.8 5.4 37.0 31.3 24.6 20.5 

tundra 1.7 1.7 8.3 7.7 24.9 24.7 

C (Finland)       

dense forest 5.7 3.5 5.3 -3.5 12.0 5.1 

sparse forest 5.6 5.2 5.5 -4.1 10.9 0.0 

open 7.4 5.5 6.5 -1.0 18.0 9.8 

bogs 8.4 6.8 5.6 1.2 15.4 12.2 

D (Finland)       

dense forest 12.3 11.6 8.8 7.8 11.1 0.3 

sparse forest 12.0 11.7 6.8 3.1 14.0 -6.5 

open 13.1 11.9 9.9 7.3 17.0 7.8 

bogs 12.9 12.3 4.9 0.5 19.6 -12.1 

 

In summary, the original HUT snow emission model, together with the 

soil surface and vegetation emission model components, was demonstrated 

to be able to simulate the observed airborne brightness temperatures with 

reasonable accuracy for boreal forest landscapes. Modeling errors for 

tundra areas, however, were notably high. Errors originated either from 

insufficient modeling of physical components affecting the emission (e.g. in 

the case of bogs for the Finnish dataset), insufficient data (in the case of 

forested areas, in particular flight line B) or failures in the model itself (in 

the case of tundra snow at 37 GHz). A clear shortcoming of the model was 

the lack of a lake ice emission simulation component, as lakes represented 

c.a. 15 % of the whole dataset. This formed a main incentive to upgrade the 

emission model to simulate also the brightness temperature of layered 

snowpacks, including structures such as frozen, snow covered lakes. This is 

addressed in the following sections.  
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6.2. Layered snowpacks 
 

The multiple layer modification of the HUT snow emission model (section 

5.2) was also evaluated against experimental data from Finland and 

Canada, in order to quantify the potential improvement of simulation 

results when accounting for the vertical structure of snow. Such 

improvement has previously been reported when applying other radiative 

transfer based models (e.g. Hall et al., 1987, Durand et al., 2008). Snow pit 

data from a fixed site in Sodankylä, Finland and from several sites in the 

Canadian Northwest territories were used to run the HUT multiple layer 

modification, comparing model estimates against ground-based radiometer 

observations for the sites (Lemmetyinen et al., 2010 [P2]). Errors of the 

estimated brightness temperatures were evaluated against those produced 

by the original, single layer model. 

 

6.2.1. Datasets 
 

NWT distributed sites 

The first dataset used for evaluation of the multiple layer model was 

collected from spatially distributed sites. The aim was to assess the model 

performance over a range of snow and snow background conditions. 

Measurements performed by Environment Canada at ten tundra sites in the 

Canadian Northwest Territories (NWT) were used for evaluation of the 

performance of the layered model. The data were collected over a 5-day 

period in April 2007. Measurements at each site consisted of radiometer 

observations over a single location, with a snow pit measurement made 

directly from the footprint of the instruments. Three of the sites were 

situated over frozen, shallow tundra lakes. All sites represent a typical 

tundra snow regime with average densities ranging from 0.3 to 0.4 g/cm3. 

The radiometer observations consisted of dual-polarization measurements 

at 6.9, 19, 37 and 89 GHz; the radiometers were mounted on a mobile sled 

allowing easy transportation between sites. The radiometers were calibrated 

with two-point antenna calibration loads before and after the campaign. 

Calibration drift was estimated to be approximately +/- 8 K at 6.9 GHz, +/-

2 K at 19 GHz, < 1 K at 37 GHz, and +/-4 K at 89 GHz ([P2]). 
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Snowpit observations at the NWT sites consisted of a bulk depth and 

density measurement of the snowpack, density and grain size profile 

measurements and snowpack stratigraphy observations. The snowpit 

measurements for each site are summarized as a bar chart in Figure 13. 

Snow layering was determined visually, with grain size estimates made for 

each layer by examining grains on a visual reference grid. A precipitation 

event during above-zero conditions had resulted in the formation of a 

distinct ice lens on top of the snow surface (Rees et al., 2010). The ice lens 

was observed at all sites, with some sites having a shallow layer of new snow 

on top of the lens. The physical structure of the lens allowed it to be 

manually removed with minor disturbance of the snowpack beneath; the 

NWT dataset contains radiometer observations of the sites both for the 

undisturbed snowpack (i.e. with the ice lens) and the ice lens removed. 

 

 

Figure 13: Observed snowpack layering, grain size & density profiles at 
NWT sites. Sites 4, 5 and 6 are lake sites, remaining sites are tundra. 
Location of ice lens indicated with thickened horizontal lines. Numbers 
to the right of each layer correspond to grain size (in mm), density 
(g/cm3) and temperature (C). Lemmetyinen et al. (2010) [P2].  2010 
IEEE. 

 

Time series observations at fixed site 

The second dataset used for model validation was collected at the Arctic 

Research Centre of the Finnish Meteorological Institute (FMI-ARC) in 

Sodankylä, Finland, between the 5th and 13th of March, 2008. The site 

represents typical boreal forest snow conditions and vegetation (coniferous 

forest); the measurement site itself was located in a forest clearing. The 
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purpose of this dataset was to assess the model performance at a single site, 

over temporally changing conditions. Radiometer observations consist of 

dual-polarization observations at 18.7, 36.5 and 94 GHz using the HUTRAD 

radiometer system (see section 3.4). Instead of the usual aircraft 

installation, the radiometer receivers were mounted on a ~8 m tower, with 

antennas observing the chosen study area of approximately 5 x 5 meters at 

an incidence angle of 55. The system was calibrated twice per day with a 

two-point calibration technique at the antenna reference plane. A posteriori 

analysis of the calibration results showed a 1-4 K drift in the calibration, 

depending on the channel. Although the system was set to measure a 

continuous time series, the observations used in [P2] were restricted to 

within +/- 10 minutes from calibrations to minimize errors from the drift. 

Snow conditions at the site remained stable until March 10th, when rising 

temperatures caused the onset of snowmelt. 

Ground data for the Sodankylä dataset consisted of snow grain size, 

temperature, layering and density profile measurements. A track of approx. 

20 meters, situated 5-10 meters from the test area was designated for the 

snow pits. A 1-2 m section of snow from the track was removed each time 

before establishing a new measurement site (snowpit). A total of 18 snow 

pit measurements were made, all during daytime. In the Sodankylä data, 

the total amount of observed distinct layers in the snowpack varies between 

four and nine. Snowpit measurements occurred very close to each other 

(less than 2 m), and it is difficult to determine whether the large variation in 

layering was due to interpretation errors or true variations in the snowpack. 

Some common features can be observed, however, at least for the period of 

dry snow. Firstly, a bottom layer of 20-40 cm, consisting of large depth hoar 

grains was identified in all the observed snowpits. This layer was clearly 

discernible, and the results can be used as an indication of the local 

variability in depth of the lowest layer. Similarly, all observations report a 

surface layer with small average grain sizes (0.2 to 1 mm), albeit with 

varying depth. The amount and structure of intermediate layers varies the 

most; this may then be both due to variations in the snowpack itself and 

observation uncertainties. The bulk snow conditions at Sodankylä were 

comparable to the NWT sites with intermediate levels of SWE (100-150 

mm), although the vertical properties were different as the NWT data 

represent tundra snow (strongly wind influenced) and the Sodankylä data 

represent boreal forest snow conditions.  
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6.2.2. Simulations using modified emission model 
 

Both the original single-layer HUT model, as well as the multiple layer 

adaptation presented in section 5.2, were applied to simulate the microwave 

emission for the ten NWT sites as well as the time series of the Sodankylä 

site, comparing simulated values to radiometer observations. The sites 

represent very different types of snow regimes, the NWT sites representing 

densely packed tundra snow with varying snow depth, and the Sodankylä 

site representing a typical boreal forest snow regime with reduced wind 

effects (densification). Therefore, the simulations allow assessment of the 

model performance over a wide range of snow conditions. 

Simulation results for the Sodankylä time series dataset are shown in 

Figure 14. A qualitative analysis indicates that trends seen in the 

observational data during the dry snow are not apparent in the simulated 

brightness temperatures (e.g. the ~20 K increase of brightness temperature 

at 18.7 GHz H-polarization, or the drop of brightness temperature on March 

9th). This is not necessarily a fault of the model, but may rather reflect the 

incompleteness of the ground reference data. For example, the model input 

data did not include a measured component for the downwelling 

atmospheric contribution (reflected from the snow surface). This may carry 

a significant effect at higher frequencies (here, 37 and 94 GHz). Rather, the 

variability seen in simulated values is directly related to the variability of 

measured snow properties. Snow conditions remained stable during the 

simulated dry snow period, but the snow pit measurements used to drive 

simulations show e.g. a range of 52 to 61 mm in the bulk snow water 

equivalent.  Since 1) snow pits were not made directly in the footprints of 

the radiometer and 2) they were made from a different location each time, 

this variability reflects the magnitude of random errors related to the snow 

pit observations. 
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Figure 14: Time series of modeled and observed brightness 
temperatures from 5th to 12th March, 2008 at FMI-ARC Sodankylä site. 
Model values calculated using multiple layer adaptation. Dry snow 
conditions before March 10th. Night-time observations (calibrations) on 
March 8 and March 12 were not considered due to technical reasons. 
Two 36.5 H-pol observations between March 10 and 11 are likewise 
lacking due to a technical failure. Lemmetyinen et al. (2010) [P2].  
2010 IEEE. 

 

Figure 15 and Table 5 summarize simulations from both the NWT and 

Sodankylä sites relative to observations. For the Sodankylä data, the results 

represent simulations for the dry snow period until March 10th. The 

uncertainty of the observations, given in Figure 15 as error bars, was 

derived from the standard deviation of observations during that time 

period. The uncertainty of simulation was similarly obtained from the 

standard deviation of simulation results; the uncertainties are again 

depicted by error bars in the figure.  
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For the NWT dataset, using the multiple layer model was found to reduce 

error indicators at almost all of the investigated frequencies and 

polarizations. At the lower two frequencies the improvement is marginal, 

being between 0.8 to 3.9 K and 0.1 to 2.8 K for reduction of bias and RMS 

errors, respectively. At 37 and 90 GHz, however, the bias errors are reduced 

between 3.3 (37 GHz H) and 13.6 K (90 GHz V), and RMS errors between 

5.3 K (37 GHz H) and 12.7 K (90 GHz V). In particular, the attained bias 

errors are notably low compared to those of the one layer model. 

Considering individual sites, the sites with the largest SWE values (sites 7-

10) show the highest rate of improvement in simulation results. However, 

in particular for the lowest frequency band of 6.9 GHz, large errors 

remained especially over the lake sites (sites 4, 5 and 6). 

For the Sodankylä time series dataset, use of the multiple layer model 

adaptation generally improves modeling results at the higher frequencies of 

37 and 94 GHz for vertical polarization. However, the layered model 

induces an increase in bias and RMS errors at the lowest frequency of 18.7 

GHz. Also, simulation results for 36.5 GHz, H-pol are deteriorated, albeit 

marginally (by 1.1 K for bias and 0.9 K for RMS errors). Compared to the 

NWT dataset, also the simulation errors at vertical polarization remain 

large (8.4, -17.2 and -30 K compared to 5.3, -2.5 and -5.4 K for 18.7/19, 

36.5/37 and 89/94 GHz, respectively). The large errors may be due to the 

aforementioned protocol used for assessing the snowpack; the snow pit 

measurements were not made directly from the instrument footprint, and 

due to the nature of the measurements, had to be made from a different 

location each time.  

The HUT model does not account for wave coherence effects arising in 

thin layers with a thickness less than about half the observed wavelength. 

The ~3 mm ice lens present at the NWT sites (see Figure 13) was likely to 

induce coherent effects at the lower two observed frequencies, the half-

wavelength being 21.7 mm and 7.9 mm, respectively. Consequently, in the 

above analysis of the HUT model evaluation, observations made after 

manual removal of the ice lens were applied. Simulation results including 

the effect of the lens are included in [P2]; parts of the same dataset have 

also been applied by Rees et al. (2010), using MEMLS and the original HUT 

snow emission model. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 15: Scatterplots of simulation results in [P2] for Sodankylä and 

NWT datasets. Comparison of model estimates and observations for single 

layer model (left) and multiple layer model (right) for 19 GHz (a), (b); 37 

GHz (c), (d); and 90 GHz (e), (f). Results from [P4] applied. Errorbars 

show the standard deviation of observations and model simulations over 

the dry snow period in the Sodankylä dataset. 

 

  



 
 

92 

 

TABLE 5: SUMMARY OF SIMULATION ERRORS FROM NWT AND SODANKYLÄ SITES. 

BIAS, RMSE AND UNBIASED RMSE WHEN USING SINGLE AND MULTIPLE LAYER 

MODELS, AND CHANGE IN ERROR INDICATOR VALUES (MULTIPLE – SINGLE-LAYER 

MODEL ERRORS). 

 

 

6.2.3. Synthesis of HUT model modification for layered 
snowpacks 

 

The results indicate that the multiple layer modification of the HUT snow 

emission model produces improved results when compared to those from 

the original single-layer model, provided that the necessary ancillary 

information is available. For simulations representing sites in the Canadian 

tundra region, use of the multiple layer model was seen to decrease 

modeling RMS errors by 6 to 38 % for horizontally polarized channels and 1 

to 38 % for vertically polarized channels, depending on frequency. The 

overall bias errors were also reduced. Generally, higher frequencies and 

sites with the largest SWE values showed the highest level of improvement 

in simulation results. For the second dataset used for model evaluation, 

V H V H V H V H

Bias 4.3 6.1 4.5 12.3 -10.4 -4.9 -19 -11.4

RMSE 13.4 14.5 7.7 14.7 21.3 18.6 33.2 28.2

uRMSE 12.7 13.2 6.2 8.1 18.7 18 27.2 25.8

Bias - - 5.1 10 -25.7 -4.4 -35.2 -23.6

RMSE - - 6.3 12.2 26.5 7 37.1 26.1

uRMSE - - 3.8 7.1 6.4 5.4 11.8 11.3

V H V H V H V H

Bias 2.2 2.2 5.3 11.5 -2.5 1.5 -5.4 1.3

RMSE 10.6 12.9 7.6 13.8 14.5 13.3 20.5 18.8

uRMSE 10.4 12.7 5.5 7.6 14.3 13.2 19.7 18.7

Bias - - 8.4 15.8 -17.2 5.5 -30 -18.1

RMSE - - 9 17 18.3 7.9 31.6 20.5

uRMSE - - 3.3 6.1 6.1 5.7 10 9.6

V H V H V H V H

Bias -2.1 -3.9 0.8 -0.8 -7.9 -3.4 -13.6 -10.1

RMSE -2.8 -1.6 -0.1 -0.9 -6.8 -5.3 -12.7 -9.4

uRMSE -2.3 -0.5 -0.7 -0.5 -4.4 -4.8 -7.5 -7.1

Bias - - 3.3 5.8 -8.5 1.1 -5.2 -5.5

RMSE - - 2.7 4.8 -8.2 0.9 -5.5 -5.6

uRMSE - - -0.5 -1 -0.3 0.3 -1.8 -1.7

89/94 GHz

Difference of model errors (multiple - single layer model) (K)

Channel

6.9 GHz 19 GHz 37 GHz 89/94 GHz
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distributed 
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6.9 GHz 19 GHz 37 GHz

6.9 GHz 19 GHz 37 GHz

Channel

NWT 
distributed 

sites

Sodankylä 
site t ime 

series

Simulation agreement with observations for single layer model (K)
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results were somewhat more ambiguous. Simulations for the boreal forest 

site in Finland improved only for some of the examined channels when 

applying the multiple layer model. This may be related to the quality of the 

available in situ information, which was not collected directly at the 

footprint of the instrument. Moreover, snow layering was found to be much 

more complex than for the Canadian site; in situ measurements identified 

up to eight layers within the snowpack, while NWT sites produced a 

maximum of four distinct layers. Considering the variability of snow even at 

the short range (e.g. Sturm et al., 2004), it is uncertain if the layering was 

thus representative of the snow in the footprint of the radiometers. The 

simulations show that attempting to account for the effects of snow layering 

using the revised HUT snow emission model may in some cases deteriorate 

the model results, in particular if the determination of stratigraphy is 

uncertain. 

Nevertheless, the study confirms earlier findings and theory which state 

that the snow layering carries an increasing effect with increasing 

frequency, being also more prominent for horizontal polarization. It is 

demonstrated that these effects can be addressed on a point scale with a 

relatively simple stacked model representing the vertical stratigraphy of the 

snow. This has important implications for the use of the model in 

estimation of snow parameters; it is clear that use of the one layer model 

may produce erroneous results for cases where snow layering is distinct also 

at the satellite scale. However, small scale variability in the snowpack will 

make simulating the overall effect difficult. Special cases where this may be 

done may arise as with the case of ice lens formation consistent over a large 

region, as reported by Rees et al. (2008). By coupling the emission model 

with a thermodynamic model predicting snow states (e.g. Brun et al., 1989), 

the new model could be applied to potentially further improve retrieval of 

snow properties in model inversion schemes such as reported by Takala et 

al. (2011). One further potential application is the application of the model 

to account for the presence of snow covered lake ice within observed scenes, 

which significantly decreases estimation accuracy for lake rich areas. 

Frozen, snow-covered lakes form distinct layered systems which may be 

predicted with relative ease compared to snow layering on dry terrain. The 

application of the model for this purpose is presented in the following 

sections.  
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6.3. Brightness temperatures of frozen lakes 
 

In microwave radiometer observations of the Earth, water bodies form a 

distinct contrast in brightness temperature when compared to dry terrain 

throughout most of the microwave range. This contrast persists also in 

winter conditions for wavelengths able to penetrate the snow and ice 

overlying the lakes, creating a need to account for the diverse emission 

signatures when simulating the microwave emission of scenes with a 

significant fractional coverage of lakes. Studies in [P3] and [P4] apply the 

multiple layer forward model (section 5.2) for this purpose. In [P3] a 

dataset of airborne observations is used to verify model estimates, while in 

[P4] the simulations are extended to the scale of satellite observations. 

In both studies, several simplifications of the modeled physical ice-snow 

system are made. A schematic of the simulated structure of snow covered 

frozen lakes is presented in Figure 16, following Adams and Lasenby (1985). 

In Figure 16a, a quasi-infinite water layer is considered to be covered by a 

layer of smooth congelation (black) ice, in turn covered by snow. This is a 

crude simplification of the properties of natural lakes; an important aspect 

considering the simulation of emission properties are, for example, slushing 

events, which cause water to surge above the ice level as the combined 

weight of accumulated snow and ice overcomes the buoyancy of the ice 

(Figure 16b). Refreezing of the water after these events results in the 

formation of a snow-ice (or: white ice) layer between the black ice and snow 

cover. The layer of white ice differs from congelation ice in terms of density 

and structure (Adams and Lasenby, 1978); thus, also the dielectric and 

scattering properties of white ice differ from those of congelation ice. The 

slushing events themselves drastically change the observed emission 

signature from the lake before the formation (refreezing) of the white ice 

layer.  
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(a) (b) 

Figure 16: Schematics of the structure of snow-covered lake ice 
(following Adams and Lasenby, 1985). Snow cover on top of newly 
formed congelation (black) ice (a). Slushing of water through cracks in 
congelation ice layer, and formation of snow ice (b). Lemmetyinen et al. 
(2011) [P4].  2011 IEEE. 

 

6.3.1. Simulations against airborne observations 
 

Experimental data collected in April 2008 over several lakes close to the 

Mackenzie River delta in the Canadian Northwest Territories provided the 

opportunity to assess the capability of the multiple layer extension of the 

HUT model for simulation of microwave emission from frozen lakes (Gunn 

et al., 2011 [P3]). Airborne radiometer data at 6.9, 19, 37 and 89 GHz 

together with in situ measurements of ice and snow on ice properties were 

gathered from a total of 25 sites. The sites were situated over both 

freshwater and brackish (saline) lakes; ten of the sites were at locations 

where backflow from the ocean introduces saline water in the lakes. The 

type of the lake was seen to have a clear influence on the measured 

brightness temperature at low frequencies (6.9 and 19 GHz). In the 

following, simulation results over the freshwater lakes are analyzed as these 

were of relevance regarding later phases of the study. 

A summary of simulation results for the freshwater lake ice sites is shown 

in Figure 17. For the lowest frequency examined (6.9 GHz in Figure 17a), it 

is notable that the model was unable to produce the full range of observed 

brightness temperatures; model simulations from all sites vary within 5 K 

for both polarizations, while observed values ranged from 160 to 220 K and 

156 to 194 K for vertical and horizontal polarization, respectively. This 

indicates variability in the ice or water conditions between the lake ice sites, 

which is not reflected by the available in situ information. The high 

penetration depth at 6.9 GHz in dry snow would suggest that the snow layer 

is not the origin of the observed variability. 
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For simulations at 19 GHz (Figure 17b), the range of brightness 

temperature variations is well represented, although model simulations 

show a slight overestimation (7.1 and 8.4 K bias error for all sites for 

vertical and horizontal polarizations, respectively). In contrast, the 37 GHz 

simulations in Figure 17c, most affected by snow conditions over the lakes, 

show an underestimation for almost all sites with a mean bias error of about 

-9 K for both polarizations. Considering the channel difference typically 

used for retrieval of snow water equivalent (19 - 37 GHz) this causes a 

strong positive bias as depicted in Figure 17d. Error statistics of the 

simulations are given in Table 6 in section 6.3.3. 

 

(a) (b) 

(c) (d) 

Figure 17: Agreement of simulated brightness temperatures relative to 
airborne measurements over fresh water lakes in Canada (data from 
[P3], Gunn et al., 2011). 

 

The simulation experiments in [P3] also examined the effect of several 

empirical parameterizations of the HUT model on accuracy of lake ice 

simulations. Regarding the simulations of emission from the ice and water 

layers, the parameter examined was the roughness of the ice/water 
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interface in simulations (see eq. (5.11)). This parameter was not measured 

in the field and was thus considered as an empirical correction parameter to 

the model. A similar roughness consideration could have been chosen, for 

example, for the ice/snow interface. However, as information on its physical 

roughness was equally unavailable, the ice/water interface with a large 

dielectric contrast was chosen. As can be expected, the parameterization for 

ice roughness most affects the lower two frequencies examined, as on the 

higher frequencies the modeled penetration depth into snow and ice is 

insufficient to be significantly affected by the reflection coefficient of the 

lowest interface between ice and water. In [P3], introducing a roughness 

element to the simulations (and thus effectively reducing the reflection 

coefficient) was found to reduce the error of estimates compared to 

simulations with a completely specular surface. The parameterization was 

of importance regarding later studies; a similar empirical correction was 

used in the satellite scale simulations and retrieval in [P4], as it was again 

noted that for a specular reflection consideration, the simulations produced 

a persistent underestimation compared to measured emissions, in 

particular on lower frequencies. 

 

6.3.2. Satellite scale simulations 

 

[P4] presents a forward modelling experiment examining the influence of 

lakes at the spatial scale of satellite observations. Simulations were made 

and compared to observations considering two scenarios: first, the 

influence of lakes was (1) excluded and (2) then included in the forward 

model of the satellite scene. In the first case, the lakes were modelled simply 

in the same way as non-vegetated dry ground. In the latter case, lakes were 

modelled following the method used in [P3] for point-scale simulations 

(however, taking into account also the influence of atmosphere). Input data 

to the forward modelling experiments were acquired from snow course 

observations, as well as measurements of ice thickness and the depth of 

snow on ice. The available spatially distributed measurements were kriging 

interpolated to cover the whole study area (see Isaaks and Srivastava, 

1989). The simulation results obtained were then compared to reference 

observations.  

 
This study applied EASE (Equal Area Scalable Earth) -gridded brightness 

temperature observations (Knowles et al., 2006) from AMSR-E/Aqua as a 

reference to model simulations. EASE grid cells with significant lake cover 

(>30%) from Finland were chosen to study the effect of lakes on simulation 

accuracy. Most of the selected grid cells were situated in the lake district of 
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central Finland (between latitudes 61 and 64°), and several over large lakes 

in northern parts of the country. Lake coverage was determined simply 

from land cover information over the nominal spatial extent of each cell. 

Kriging interpolated maps of snow depth, snow depth on ice and ice 

thickness, derived from in situ information, were used as the primary 

simulation input. The interpolated maps were calculated from a dataset of 

daily automated weather station observations of snow depth and air 

temperature, as well as periodic manual in situ observations of lake ice 

thickness and the depth of snow on lake ice. Several a priori model 

parameters (e.g. snow density, grain size, snow and ground temperature) 

were set as constant values; as with simulation comparisons to airborne 

observations in [P3], an empirical correction to the reflection coefficient of 

the ice/water interface was used (see eq. (5.11)). 

Figure 18 presents the results of the forward modelling experiment at the 

frequency combinations relevant for retrieval of SWE (the channel 

differences 18.7 – 36.5 GHz (V -pol) and 18.7 V – 18.7 H, as used by 

Pulliainen and Hallikainen, 2001). The figure demonstrates how, in this 

case, the inclusion of the effect of lakes improves overall simulation results 

of both channel differences. Notably, the 18.7 – 36.5 GHz channel 

difference is significantly overestimated when lake simulations are omitted. 

This is mainly due to the overestimation of the 18.7 GHz channel 

component. The inclusion of lakes in the simulation on average reduces the 

simulated 18.7 GHz channel brightness temperature, thus reducing also the 

channel difference. The change in the 36.5 GHz channel varies, depending 

mainly on estimated snow conditions over lakes.  

The bias in the 18.7 V – 18.7 H polarization difference similarly is reduced 

when lakes are included in the simulations; for lakes, the model considers 

the contrast of polarizations to be greater than over land; thus the inclusion 

of lakes raises the average polarization difference of a given grid cell. 

However, the dynamic range of the observed polarization differences is not 

captured by the model. Thus it can be assumed that either 1) the model is 

not sensitive enough to reported changes in ice and snow properties or 2) a 

key parameter affecting the polarization ratio is missing from the in situ 

information.  



 
 

99 

 

(a) 

(b) 

Figure 18: AMSR-E observations and simulated brightness temperature 

over lake-rich areas (lake fraction over 30 %) in Finland during winter 

season 2006-2007. Average of five EASE grid cells presented. Results 

shown for the channel differences 18.7 – 36.5 GHz (V -pol) and 18.7 V – 

18.7 H applied in retrieval. Effect of lakes omitted in simulation (a), and 

included (b). Lemmetyinen et al. (2011) [P4].  2011 IEEE. 

 

  



 
 

100 

 

6.3.3. Synthesis: simulation of microwave emission from 
frozen lakes 

 

Results for both the simulations of the airborne dataset in [P3] and the 

satellite scale simulations in [P4] are summarized in Table 6. The airborne 

results represent simulations made for freshwater lakes (the dataset in [P3] 

included measurements also over brackish lakes); the satellite scale results 

represent one winter period (2006-2007, as in Figure 18). 

Considering simulation errors of individual channels, the airborne data 

indicate bias errors below 10 K and (bias corrected) RMS errors of less than 

12 K for the investigated frequency range (with the exception of 19 K RMSE 

for the horizontally polarized 6.9 GHz channel). Satellite scale simulations 

accounting for lake cover provide even lower error values, being 

nevertheless of the same magnitude. In terms of modeling bias, the 

inclusion of lakes in the satellite scale generally reduces simulation errors 

compared to the case where lakes were simulated similarly to open terrain 

(with the exception of the horizontally polarized 37 GHz channel). In terms 

of RMSE errors, simulation results of all channels are improved. The 

studies in [P3] and [P4] clearly indicated that even the relatively simple 

forward modeling approach for lakes can be used to simulate the brightness 

temperature signatures of frozen lakes over a broad frequency range, and 

thus reduce simulation errors on a large scale, when lakes account only for a 

part of the modeled scene.  
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TABLE 6: BIAS, RMS AND UNBIASED RMS ERRORS9 OF SIMULATION ESTIMATES OF 

BRIGHTNESS TEMPERATURE AGAINST AIRBORNE AND AMSR-E OBSERVATIONS FOR 

GRID CELLS WITH LAKE FRACTION OVER 30%, INCLUDING COMPARISON OF 

SIMULATION ERRORS WHEN OMITTING AND INCLUDING EFFECT OF LAKES. 

 

 

However, it can be questioned whether the simplified model can 

accurately capture the varying emission signatures on lakes at the lower 

frequencies; this is clearly not the case for 6.9 GHz observations, which 

show a far larger variability than is captured by the simulations. Similar 

findings have been made also by e.g. Kontu et al. (2008). Also, at the 

satellite scale, either the model or the available in situ information was 

insufficient to account for the variability in observed brightness 

temperatures at the lower AMSR-E frequencies. At 19 GHz, simulation 

results were very sensitive to the empirical parameterization of the 

ice/water interface reflection coefficient, whereas at 37 GHz, the effect of ice 

properties on simulation results is of secondary importance compared to 

snow cover parameters. In this regard, it can be said that the model 

accurately reflects the observations, as little or no correlation with ice 

conditions and e.g. the underlying water type (freshwater or brackish water) 

can be found, for example, in the airborne observational data at 37 GHz in 

[P3]. A correlation with fractional lake cover at 37 GHz is reported in [P4], 

but this can be attributed to the aforementioned snow conditions (which, 

over lakes are typically different from those over dry terrain).  

 

 

                                                                    
 

9 uRMSE ൌ 	ට∑ ሺ௙ሺ௫೔ሻି௫೔ି௕௜௔௦ሻమ
౤
౟సభ

୬
 

Channel 6.9V 6.9H 19V 19H 37V 37H 19V – 37V 19V - 19H

Bias [K] -5.1 -5.4 7.1 8.4 -8.8 -9.3 15.9 -1.2

RMSE [K] 18.9 10.5 7.9 9.7 12.0 11.9 17.0 4.3

uRMSE [K] 18.2 9.1 3.4 4.8 8.1 7.4 6.0 4.1

Channel 10V 10H 19V 19H 37V 37H 19V – 37V 19V - 19H

lakes omitted Bias [K] 10.9 18.9 6.7 15.5 -3.9 3.8 10.6 -8.8

RMSE [K] 15.3 22.9 12.7 20.7 11.8 13.7 12.3 10.4

uRMSE [K] 10.7 13 10.8 13.7 11.2 13.2 6.1 5.6

lakes included Bias [K] -8.4 -5.9 1.6 5.3 2.6 6.3 -1 -3.7

RMSE [K] 12.9 11.1 9.7 12.2 10.2 13.5 3.5 5.5

uRMSE [K] 9.8 9.3 9.5 11 9.8 11.9 3.4 4.1

Agreement of simulations relative to AMSR-E observations [P4]

Agreement of simulations relative to airborne observations [P3]
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6.4. Monitoring of soil freeze/thaw processes 
 

Areas affected by soil freezing cover more than 50 % of the total landmass 

of the Earth. This includes both areas with perennial and seasonal soil 

freezing, with permafrost areas covering approximately 24 % of the 

landmass (Smith and Brown, 2009). Seasonal freeze thaw cycles have a 

crucial impact on the energy and moisture balance of soils as well as 

transpiration of atmospheric gases. Soil freezing affects both the latent heat 

exchange and surface radiation balance, as well as hydrological factors such 

as hydraulic conductivity and infiltration of moisture. Information on soil 

freezing thus affects, for example, the precision of surface runoff estimates 

(e.g. Willis et al., 1961). A notable effect of soil freezing and thawing is on 

the exchange of different atmospheric gases such as CO2 and methane 

(Skogland et al., 1988; Zhang, 2003). 

The applicability of L-band microwave radiometry for monitoring the 

freeze/thaw properties of soil is studied in [P5]. An extensive dataset of co-

incident radiometer observations and in situ information on soil and snow 

properties are applied, as well as airborne observations and the first data 

collected by the SMOS satellite (see section 8.1). The objective of the study 

was to assess the potential of L-band in the monitoring of soil-freeze thaw 

processes, analyzing different factors affecting the microwave signature 

during the winter season. Finally, the overall aim is to extend the findings to 

observations with SMOS. Microwave radiometry has previously been 

applied to observe the soil freeze/thaw states from space (e.g. Zhang et al., 

2001), but L-band has the added advantage of increased penetration depth 

and low sensitivity to dry snow cover.  

In [P5], several features from the seasonal behavior of the microwave 

signal are indentified and discussed. The study also introduces a simple 

emission model for estimating the effect of progress of soil freezing on 

microwave emission at L-band. The model formulation is analogous to the 

one presented in [P2]. Model estimates, derived using the in situ 

information collected from the site, are compared to radiometer 

observations. The goal of the modeling efforts was to provide an 

explanation for the detected signal behavior during soil freezing, in 

particular the dynamic range of the signal from frozen and thawed soil.  
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6.4.1. Experimental data at L-band 
 

[P5] presents an experimental dataset collected using the L-band Elbara-II 

radiometer, developed as a reference radiometer for SMOS (Schwank et al., 

2010). The instrument was installed on a 5-m tower at a fixed location at 

the Finnish Meteorological Institute Arctic Research Centre in Sodankylä, 

Finland (Figure 19). The instrument was set to measure a range of incidence 

angles (30-70°) at regular intervals of 3 hours, and at a constant incidence 

angle of 50° between these elevation scans. The instrument was calibrated 

internally using a reference load at ambient temperature and an Active Cold 

Load (ACL) unit. The ACL noise temperature (30-50 K), in turn, was 

calibrated at regular intervals using a cold sky calibration. Instrument 

stability was monitored with regular observations of the cold sky (every 12 

hours).  

 

Figure 19: The Elbara-II radiometer (large conical horn) installed at the 

FMI Arctic Research Centre. Photo: K. Rautiainen, 2011. 

  

The radiometer observations were supported by extensive observations of 

soil, snow and atmospheric properties. Automated sensors were used to 

obtain the soil temperature and moisture profiles, which also serve as an 

indicator of soil freezing. These were complemented by regular manual 

measurements of the soil frost depth. Figure 20 presents a time series of 
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brightness temperatures for horizontal and vertical polarizations (a) against 

measured snow depth and the depth of soil frost (b) during the winter 

season of 2009-2010. Several seasonal features were identified in [P5]; 

these included 

 Rapid increase and saturation of L-band signal during autumn soil 

freezing 

 Stable signal level for vertical polarization during the cold winter 

period; slight variability in horizontally polarized signal 

 Rapid diurnal changes with spring melt/refreeze cycles of snow 

cover 

 

 
Figure 20: Time series measured brightness temperature from Elbara-II 

radiometer at H- and V polarizations, 50° incidence angle (a) against 

observed snow depth and soil frost depth (b). Rautiainen et al. (2011) 

[P5].  2011 IEEE. 

 

Of the identified seasonal features in the L-band signal, the strong change 

in emission signature with autumn soil freezing was seen as having 
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potential also considering coarse-scale satellite observations (i.e. SMOS). It 

was anticipated, however, that for differing land cover and soil types, the 

detected range of the change in emission signature would vary. In order to 

be able to anticipate the possible influence of soil types on the dynamic 

range of the signal, a simple emission model was formulated. Also, data 

from an airborne campaign over the study region were used to directly 

analyse the influence of land cover on the L-band signatures during the 

freezing period. These results are discussed in the next sections. 

 

6.4.2. Simulation of soil freezing effects at L-band 
 

In [P5], the detected changes L-band brightness temperature during 

freeze/thaw processes were considered mainly to originate from (a) changes 

in the dielectric constant of the frozen soil layer, (b) changes in the 

dielectric constant of unfrozen soil below the frozen soil layer and (c) 

changes in the snow layer conditions above the ground  

An emission model to simulate the effect of soil freezing on emitted 

brightness temperature was formulated following these considerations. A 

simplified planar structure to describe the soil freezing process was adopted 

– the soil was considered to include a discrete layer of frozen soil of varying 

thickness, covering a quasi-infinite layer of thawed soil (Figure 21).  

In the model, the frozen layer was characterized in terms of layer 

thickness, roughness of the top surface and permittivity. The unfrozen soil 

beneath was characterized in terms of permittivity and roughness of the 

interface of frozen and thawed soil. In [P5], an empirical model was applied 

to calculate the soil permittivity for the thawed portion of the soil following 

Dobson et al. (1985), using in situ data on soil moisture and temperature as 

model inputs. The permittivity of frozen soil was derived by fitting the soil 

emission model to peak winter season observations. During the cold winter 

period, the soil was considered frozen beyond the penetration depth of the 

radiometer (~10 cm) and the model fitting could be performed by 

considering the entire soil layer to be frozen with a uniform permittivity. 

Vertically polarized observations were used, due to their smaller sensitivity 

to layering effects in the snow. The derived dielectric constant varied from 

3.3 –j0.8 to 3.8 -j0.95, with an average value of 3.6-j0.9.  
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Figure 21: Schematic of applied soil emissivity model. Each layer 

(snow, frozen soil, thawed soil) is characterized by the reflection 

coefficient ࢘ሾܕܝܑ܌܍ܕሿ, loss factor ࢒ሾܕܝܑ܌܍ܕሿ, temperature ࢀ૙,ሾܕܝܑ܌܍ܕሿand 

thickness ࢊሾܕܝܑ܌܍ܕሿ . The resulting up- and downwelling brightness 

temperatures  ۰ࢀ,ሾܕܝܑ܌܍ܕሿ,↑ and  ۰ࢀ,ሾܕܝܑ܌܍ܕሿ,↓ are applied to solve the 

observed brightness temperature ܛ܊ܗ,۰ࢀ. The model is analogous to 

the multiple layer adaptation of the HUT snow emission model, 

presented in section 5.2. Rautiainen et al. (2011) [P5].  2011 IEEE. 

 

Figure 22 presents modelled behaviour against observed brightness 

temperatures with increase in frost depth. There is a clear analogy between 

measured values and model estimates. The incoherent two-layer model 

explains the increasing brightness temperature as a function of soil frost 

and the saturation of the measured signal. Compared to observations, the 

model estimates the saturated brightness temperature value well, with 

brightness temperatures around 240 K and 260 K for H- and V-

polarization, respectively. In addition, the simulated dynamic range of 

brightness temperatures is reasonable, being 15 K (for H-pol.) and 10 K (for 

V-pol.). However, the modelled brightness temperatures reach their 

saturation values already with a frost depth of ca. 10 cm, arising from the 

penetration depth at L-band for frozen ground, whereas the observations 

would seem to indicate that the saturation occurs only after a frost depth of 

30 cm is reached.  
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(a) 

 
(b) 

Figure 22: Measured ELBARA-II brightness temperature as a function of 

soil frost depth obtained from manual measurements during the rapid 

freezing period in early winter 2009 (a). Model prediction using in-situ 

data as input (b). Rautiainen et al. (2011) [P5].  2011 IEEE. 

 

 

It is acknowledged in [P5] that the emission model applied is a 

simplification of the freezing process, as the simulation does not account for 

a transition (tapering) zone. Residual unbound water within the frozen soil 

(supported by in situ observations) results in a transition zone with a 

mixture of soil in frozen and thawed state (Schwank et al., 2004). 

Furthermore, radiative transfer within the frozen portion of the soil is 

considered through absorption only (no volume scattering effects are 

considered), which is nevertheless a reasonable approximation at L-band 

frequencies. A further simplification is the omission of an organic layer in 

the simulation: the frozen portion of soil is considered homogeneous in 

terms of soil structure and density, thus again decreasing the accuracy of 

the permittivity calculation. 



 
 

108 

In addition, the model omits coherent effects possibly arising for layers 

which are thin compared to the wavelength. Regarding the goals of the 

study in [P5], this was considered to be a sufficient approximation. 

Furthermore, it may be difficult to predict the total influence of coherent 

effects even with a suitable model, as these are also influenced by non-

idealities in the layer interfaces (roughness and height variations), which 

may be significant especially as the observation footprint increases. 

Indications of such effects have been reported in localized measurements of 

freezing soils by Schwank et al. (2004). However, in that study the 

penetration of soil frost was less prominent than in the case of the 

Sodankylä test site. 

 

6.4.3. Considerations of applicability to coarse-scale 
(SMOS) observations 

 

The study in [P5] implies the usability of L-band in the detection of the 

onset of soil freezing, and potentially also for the indirect monitoring of soil 

frost depth. In the experimental dataset, also a clear indication of snow 

melt-off is seen. However, the soil thawing processes are largely masked out 

by the effect of melting snow. Considering the applicability of L-band to soil 

freeze/thaw monitoring on a satellite scale, the coarse spatial resolution of 

the observations again pose particular problems. The experimental dataset 

in [P5] was collected over relatively dry mineral soil. As the satellite 

footprint on the scale of SMOS (~50 km) will include several land cover 

types, the behavior of the L-band signature should be verified also over 

these. In particular, lakes and wetlands such as bogs may cause a problem 

in this respect as the resulting change in emission during freezing may not 

follow that of dry soil in same area; therefore, the fractional amount of lakes 

and wetlands in a satellite scene will influence the overall dynamics of the 

signal, an important aspect considering typical simple change detection 

algorithms (as the one proposed by Zhang et al., 2001). Also, the freezing 

process may advance temporally at a differing pace over wetlands and dry 

soil. The differing spectral response to freezing is confirmed by airborne 

measurements conducted using the interferometric HUT2D radiometer 

(Rautiainen et al., 2008) during two flight campaigns over the Sodankylä 

test site. Figure 23 illustrates the 1st Stokes parameter10 calculated over 

several incidence angles over the dominant land cover types of the test area. 

The measurements were made on Oct 1st and Oct 12th 2009; during the first 
                                                                    
 

10 ሺ ுܶ ൅ ௏ܶሻ/2 
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flight, the top soil of the ground was partially frozen up to a depth of several 

centimeters, however with patches of thawed soil present. Lakes and bogs 

were in an unfrozen state. During the second flight, soil freezing was more 

uniform (albeit the frost depth had not advanced beyond 5 cm) and a 

shallow snow cover was present. A partial thin ice cover was present over 

lakes and open bogs. Over the three land cover categories, the detected 

brightness temperature is increased due to the onset of cold temperatures 

and subsequent freezing of soil and water surfaces. However, the detected 

change in terms of absolute brightness temperature is most prominent over 

lakes (30 K), and the smallest effect is seen over forested dry land (8 K), 

with bogs exhibiting a level of change between these (22 K). In order to 

define a change detection algorithm for satellite scale observations, the 

differing response of land cover should be taken into account; else, the large 

difference e.g. in the microwave emission of open and frozen lakes and 

other water bodies is likely to cause an overestimation of the soil freezing 

process in areas with significant lake cover. 

 

Figure 23. The measured 1st Stokes parameter (divided by 2) for the three 

main soil types and land cover within the test lines. The results have been 

averaged for incidence angles from 6 to 25º ( 0.5). Standard deviation 

varied from 20 K to 35 K. Rautiainen et al. (2011) [P5].  2011 IEEE. 
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7. Retrieval of snow water equivalent 
over lake-rich areas 

 

 

Areas with significant lake cover present a problematic environment for the 

application of passive microwave instruments for detection of snow cover 

parameters. The penetration depth of microwaves at wavelengths typically 

applied for snow cover detection is sufficient for a significant amount of 

detected emission to originate from beneath the snow cover. Due to the 

dielectric contrast compared to dry ground, the differing emissivity of lakes 

and other water surfaces confound the interpretation of the observed 

emission over heterogeneous scenes. This applies both to inversion 

algorithms based on linear regression (e.g. Chang et al., 1987, Kelly et al., 

2003) and to methods based on inversion of a forward emission model (e.g. 

Pulliainen and Hallikainen, 2001). 

The study in [P4] presents a novel retrieval scheme of snow water 

equivalent based on inversion of the HUT snow emission model. The 

general retrieval methodology follows the one introduced by Pulliainen and 

Hallikainen (2001); however, the forward emission model is updated to 

include simulation of snow-covered lake ice. The layered emission model, 

presented in [P2], is adaptable for this purpose. The forward modelling 

concept for lakes and validation results using the model were presented in 

section 6.3. The study applies the model in the retrieval scheme, aiming to 

improve retrieval accuracy of snow water equivalent over lake-rich areas. 

Ancillary data were used to define some model input parameters, including, 

for example, the thickness of ice on lakes.  

 

 

7.1. Revised retrieval method 
 

The retrieval experiment in [P4] follows the statistical model inversion 

method described in section 5.3, and applied previously in conjunction with 

the HUT snow emission model by Pulliainen and Hallikainen (2001). 

However, a revised forward model is applied, in an attempt to compensate 
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for the effect of lakes in the satellite scene. As for the forward modeling 

experiment, distinctive land cover types  are accounted for in the 

simulations so that ௜݂ሺܠሻ  is a sum of the fractional components of the 

different land cover types, with the result 

௜݂ሺܠሻ ൌ ௜݂
௧௢௧ሺܹ, ݀଴ሻ ൌ ෍ߚఓ ௜݂൫ ఓܹ, ݀଴,ఓ൯

ெ

ఓୀଵ

, (7.1) 

 

where ఓܹ is the snow water equivalent, ݀଴,ఓ the reference grain size and   

the fractional coverage of land cover type . Note that W  and ,0d  can be 

set to be respective of their land cover types, or assigned as common values. 

The cost function (see (5.14)) then takes the form 

௧ܹ ൌ min
ௐ,ௗబ

൝෍
ሾݕ௜ െ ௜݂ሺܠሻሿଶ

varሺߝ௜ሻ

ே

௜ୀଵ

൅
݀଴,௥௘௙ െ ݀଴
var൫݀଴,௥௘௙൯

ൡ 

ൌ min
ௐ,ௗబ

൝෍
ሾݕ௜ െ ௜݂ሺ ௧ܹ, ݀଴ሻሿଶ

var൫ߝ௜,௧൯

ே

௜ୀଵ

൅
݀଴,௥௘௙ െ ݀଴
ௗబ,ೝ೐೑ߣ
ଶ ൡ	, 

(7.2) 

 

where ݕ௜ is the observed brightness temperature of channels i, and ௜݂ሺܠሻ is 

the modeled response of the same channels as a function of parameters x. 

The parameters in x are ௧ܹ (snow water equivalent) and ݀଴ (grain size). ߝ௜,௧ 

is the sum of model and observation errors, and ௗబ,ೝ೐೑ߣ	
ଶ  the estimated 

variance of the reference grain size value.  

 

 

7.2. Results of SWE retrieval 
 

In [P4], the geographic area of Finland was chosen as a test area for 

assessing the applicability of the revised retrieval scheme, which takes 

account of the relatively large amount of lakes, and the ready availability of 

in situ information on snow and lake ice properties. The SWE retrievals 

were conducted using daily AMSR-E observations of the test area (Knowles 
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et al., 2006) for three winter periods (2005-2006, 2006-2007, 2008-

2009). Ancillary data on vegetation properties as well as measured 

properties of lakes (ice depth) were applied. 

 

7.2.1. A priori settings 
 

The retrieval scheme requires a priori information on, for example, snow 

density, as well as ground, snow and air temperatures. These were derived 

partly based in available in situ data as for the forward model experiment, 

and partly by using approximated, best-guess values. The kriging 

interpolated fields of ice thickness were the same as were used in forward 

modeling (section 6.3.2). Naturally, the snow depth data were not used as 

this was the object of the inversion process. However, in the iterative 

inversion, a fixed ratio between snow over land and over lakes was assigned. 

Based on available in situ data, the snow water equivalent over lakes was 

always considered to be half of that over land. The large difference in SWE 

is explained by the relatively dense vegetation over land surfaces, which 

reduces wind effects. For open regions such as tundra, the differences of 

SWE between snow on lakes compared to dry terrain may be less prominent 

– for example, Derksen et al. (2009) have reported values of 119 mm SWE 

over land versus 100 mm over lakes in Canadian tundra regions. In the 

inversion tests the model and observation errors 
 ti ,  were estimated to be 

1 K, and the variance of the effective grain size ߣௗబ,ೝ೐೑
ଶ  0.1 mm. The reference 

effective grain size refd ,0  was set to be 1 mm, following a parameter fit 

performed in the forward modeling experiment. The variance of the 

reference grain size was in this case a purely arbitrary value; in practice, the 

set value of 0.1 mm allows the value of the grain size to fluctuate slightly 

when performing the retrieval. The remaining fixed a priori parameters are 

summarized in Table 7. 
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TABLE 7: FIXED VALUES USED IN THE SIMULATIONS FOR ALL THE TARGET AREAS. 

VEGETATION DATA FROM NATIONAL LAND COVER INFORMATION. 

Parameter Value 

Grain size 1.0 mm 

Snow density on land 0.2 g/cm3 

Snow density on lakes 0.2 g/cm3 

Ice density 0.916 g/cm3 

Snow moisture 0 % 

Temperature of ice -5 °C 

Temperature of water 0 °C 

Temperature of ground -5 °C 

Temperature of vegetation -5 °C 

Vegetation volume (from 0…142 m^3/ha 

Permittivity of frozen soil 6-1j 

Rms height variation of 3 mm 

Rms height variation of 1 mm 

Water salinity (lakes) 0 psu 

Ice salinity (lakes) 0 psu 

 

Figure 24 shows an example of SWE estimates obtained over Finland in 

the two test cases for a single date (Jan 1st, 2006). In Figure 24a, the 

estimate is performed without accounting for lakes in the forward model 

simulation, whereas in Figure 24b the influence is included. The depicted 

SWE value corresponds to the value estimated over dry land (thus not as an 

average value of SWE over land and lakes). The difference between the two 

retrievals is portrayed in Figure 24c. A qualitative visual examination of the 

depicted data would indicate that the presence of large lakes has influenced 

the retrieval result in Figure 24a, with very low SWE values obtained over 

areas with significant lake coverage; the largest apparent differences Figure 

24c are evident in the lake districts over southern and central Finland as 

well as over several larger lakes in the north. 
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(a) (b) 

 

(c) 

Figure 24. Gridded maps of SWE estimates [mm] for January 1st, 2006, 

by (a) ignoring lakes in simulations and (b) applying lake simulations in 

the retrieval algorithm. Difference between estimates in (a) and (b) is 

depicted in (c). Lemmetyinen et al. (2011) [P4]. 

 

7.2.2. Validation of revised retrieval scheme 
 

In order to determine whether the retrieval results were improved in the 

experiment, the retrieved SWE for the three test years was compared to 

manually measured snow course observations on snow depth and water 

equivalent. Histograms depicted in Figure 25 show the detected overall 

improvement of derived SWE estimates, when comparing these to ground 

measurements in the two test cases. Positive values indicate improvement, 

while negative values indicate cases where the accuracy of estimates has 
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deteriorated. Figure 25 separates the estimated grid cells into three 

categories according to their lake cover fraction; those with a lake cover 

fraction of 5 to 15 %, 15 to 30 % and over 30 %. On average, the retrieval 

result was improved in all categories, but the improvement was most 

prominent in the category with the lowest lake cover fraction both in terms 

of cases of improvement and the average improvement of the bias error in 

mm. In terms of numbers of cases improved, the least improvement was 

found in the category with the largest fractional lake cover. This may 

indicate either the insufficiency of the available in situ data driving the 

forward model, or failings in the modeling approach for lakes. Firstly, the 

point-wise data used to initialize the lake ice thickness may not be 

representative over large areas. Secondly, the assumption taken of lakes 

having half of the water equivalent compared to dry land areas may not be 

valid beyond the available scarce in situ information from the region. 

Furthermore, complex structures in the lake ice system, such as the 

presence of a white ice layer and water between the ice and snow layers, 

complicate the microwave emission especially for larger lakes, which the 

relatively simple modeling approach is not able to capture.  

Regardless of the above shortcomings, the retrieval of water equivalent 

was seen to improve with the upgraded forward modeling approach. In 

principle, the approach could be expanded to cover other types of 

heterogeneous sceneries and naturally layered structures, such as coastlines 

(sea ice) and other wetland areas, which pose similar problems to coarse 

scale passive microwave retrieval as do freshwater lakes. The formulation of 

a forward emission model, and a priori initialization of the model inputs, 

however, may prove to be considerably more challenging than in the case of 

lake ice. 
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 (a)  (b) 

 

(c) 

Figure 25. Histograms of the improvement of the SWE estimate in 

individual grid cells with lake fraction of 5 to 15 % (a), 15 to 30 % (b) and 

over 30 % (c) for three winter periods (2005 – 2008). Positive value 

indicates improvement (reduction) of error. Lemmetyinen et al. (2011) 

[P4]. 

 

 

7.3. Considerations for practical applications 
 

The successful use of an emission model to account for lake effects in a 

practical retrieval scheme requires initialization of the status of lake 

freezing (freezing date, ice thickness, ice type); the application of in situ 

data in this respect is not practical for global retrieval approaches, as such 

data are rarely available. Therefore, applying the presented method would 

require, for example, coupling of the emission model with a thermodynamic 

model that would give a priori information on the lake ice state where 

required. Lake ice models (e.g. Duguay et al., 2003) have been shown to 

predict ice growth in freshwater lakes to a good accuracy when adequate 

forcing data is available (through direct measurements or e.g. atmospheric 

reanalysis).  



 
 

118 

In situ data (e.g. Derksen et al., 2008) shows significant differences 

between snow conditions over lakes compared to land surfaces. The 

difference is due to wind effects affecting snow distribution, which are more 

prominent over level ice than even relatively open terrain such as tundra. In 

order to improve the accuracy of the model inversion, a priori knowledge of 

the relation of snow conditions (in terms of typical snow depth, density and 

grain size relations) between snow on lakes and snow on dry terrain is 

needed, as these cannot be separated implicitly from the observations. 

One possibility in this respect is the application of high resolution SAR 

(Rott et al., 2009) for deriving lake ice properties, including lake freeze up, 

and possibly ice thickness and snow depth on ice. However, for 

hemispherical applications this would require a large amount of SAR data, 

which is currently not operationally available at the temporal resolution 

needed. 
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8. SMOS calibration subsystem 
 

 

The SMOS (Soil Moisture and Ocean Salinity) satellite mission of the 

European Space Agency, successfully launched in 2009, is the first satellite 

mission deploying an aperture interferometric aperture synthesis 

radiometer in space. The method had been applied previously in the field of 

radio astronomy; applying interferometry for remote sensing of the Earth 

was originally proposed by Ruf et al. (1988). The single payload of SMOS, 

the MIRAS (Microwave Imaging Radiometer Using Aperture Synthesis) 

instrument, is an L-band aperture synthesis radiometer. As indicated by the 

name of the mission, the MIRAS specifications and the SMOS measurement 

configuration are optimized for the detection of sea surface salinity and soil 

moisture variations from space. Applying the L-band for measuring ocean 

salinity was originally proposed by Swift et al. (1983). In addition, the 

mission is expected to contribute to cryosphere studies, including detection 

of shallow sea ice thickness (Kaleschke et al., 2012) and soil freezing and 

thawing (Rautiainen et al., 2011, [P5]).  

Interferometric radiometry presents particular challenges also for 

instrument calibration. In this chapter, a short overview of the SMOS 

mission is given, including the calibration principle of MIRAS. Calibration 

of MIRAS requires the provision of two accurately known signal noise levels 

to each of the multiple receivers of the interferometer; this is the task of the 

Calibration subsystem (CAS). A rigorous ground characterization campaign 

was conducted in order to characterize CAS performance in orbit, including 

a temperature –dependant model for the output level of the delivered 

calibration signals. A description of the Calibration subsystem and its 

characterization are included as a part of this thesis work [P6].  

 

 

8.1. The SMOS mission 
 

Originally proposed in 1998, SMOS was the second satellite to be developed 

in the series of Earth Explorer Opportunity missions of the European Space 
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Agency. The purpose of the mission is to provide global maps of ocean 

salinity and soil moisture – critical parameters in climate research studies 

as well as short-term weather forecasts. Soil moisture is a key variable in 

the hydrological cycle of the Earth, influencing water uptake of vegetation, 

evaporation and infiltration processes, and the water and energy fluxes 

between the soil and atmosphere. Ocean salinity, on the other hand, can be 

used to track ocean circulation processes, which offer further understanding 

of the behavior of, for example, ocean/atmosphere heat transfer in tropical 

areas. (Barré et al., 2008). 

 

8.1.1. Mission concept 
 

The SMOS satellite (Figure 26) is positioned in a sun-synchronous orbit 

with a mean altitude of 750 km and an orbital inclination of 98.4°. In 

nominal operating mode, this provides an imaging swath width of 1050 km 

on the Earth surface, with a spatial resolution of 50 km (Barré et al., 2008). 

Due to the imaging concept, each resolution cell is imaged with a wide 

range of incidence angles during the satellite overpass. The temporal 

coverage in the nominal operating mode is 3 days on the equator, with a 

repetition of the exact same orbit every 149 days. 

The mission specifications defined for SMOS called for 4 % volumetric 

accuracy in the detection of soil moisture (in regions with a biomass of less 

than 4kg/m^2) at the nominal spatial resolution of the instrument. 

Similarly, for the detection of ocean salinity variations, the instrument was 

expected to deliver salinity maps with an accuracy of 3 to 5 psu (practical 

salinity units) at the nominal spatial resolution. The salinity maps can be 

aggregated to grid of 200 km at repeat periods of 10 days to provide maps 

with accuracy better than 0.1 psu (McMullan et al., 2008). A detailed 

description of the SMOS mission is given by Barré et al. (2008). 
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Figure 26. An artist’s conception of the SMOS satellite. Image: ESA. 

 

8.1.2. Payload 
 

The payload of SMOS, MIRAS, is comprised of multiple radiometers 

operating in the L-band. These are arranged geometrically in a Y-shape to 

provide a synthetic aperture significantly larger than that of individual 

antennas (see Figure 27). Each receiver, called LICEF (for Light-Weight 

Cost eFfective), measures the apparent scene brightness temperature 

through a wide-beam patch antenna in the frequency band of 1400-1427 

MHz. The frequency band was selected due to its sensitivity to both soil 

moisture and sea surface salinity, as well as for being the lowest protected 

frequency band (reserved for radio astronomy). 

The imaging concept of MIRAS is based on the measurement of cross-

correlations of interferometric pairs, or baselines, formed by the multiple 

receivers. The measured correlations are used to synthesize the so-called 

visibility function (see section 3.2). An inverse Fourier transform of the 

visibility function then gives the brightness temperature of the measured 

scene (Corbella et al., 2004). A comprehensive description of the payload is 

given by McMullan et al. (2008).  
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Figure 27. Distribution of LICEF receivers, NIRs and CAS units on MIRAS. 
Each arm segment includes 6 LICEF receivers, 1 Noise Source unit and 1 
Power Divider unit. The hub includes 12 LICEF receivers, 3 NIR receivers, 1 
Noise Source unit and 3 Power Divider units. Courtesy of EADS-CASA 
Espacio. 
 

LICEF receivers 

MIRAS houses 66 individual LICEF receivers, distributed in the three arms 

of the instrument as well as the central hub. The LICEF are Dicke-type 

receivers with downconversion from the nominal 1400-1427 MHz 

observation band. The downconverted signal is divided into I (In-phase) 

and Q (Quadrature) components and digitized at the signal output. The 

amplitude of the I-branch signal is measured by the LICEF PMS (Power 

Measurement System), giving the overall level of detected power. The 

receivers are fed through wide-beam patch antennas at two selective 

polarizations (termed X and Y). In addition, a front-end switch allows 

measurements of an internal terminated load (U-load), and a calibration 

signal of correlated noise (C), delivered by the calibration subsystem.  

In addition, three Noise Injection Radiometers (NIR, see below), 

consisting of two LICEF units coupled to a common antenna, are included 

in the hub. Thus the total number of radiometers in the satellite is 69, with 

a total of 72 LICEF receivers.  

 

Noise Injection Radiometers (NIR) 
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In addition to the standard LICEF units, MIRAS includes three precise 

Noise Injection Radiometers, housed in the central hub. The main task of 

the NIR units is to measure the average scene brightness temperature with 

high precision. As stated above, the NIR units are in fact a combination of 

two LICEF units coupled to a common antenna; this enables simultaneous 

measurements on both polarizations.  

In the calibration process of MIRAS, the NIR units are used to perform 

two crucial tasks: 1) to calibrate the absolute brightness temperature of the 

measured scene and 2) to calibrate the two levels of correlated noise signal 

delivered by the Calibration subsystem (CAS), which is, in turn, used to 

calibrate the LICEF receivers. During normal operations, the NIR units act 

as other LICEF receivers, forming a part of the multiple baselines measured 

by the instrument. The NIR units themselves are calibrated periodically 

using the cold sky as reference; during this process, the entire satellite is 

turned to face the radiometrically cold sky. A comprehensive description of 

NIR design and operation is given by Colliander et al. (2007). 
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Calibration subsystem (CAS) 

The SMOS Calibration subsystem (CAS) is designed to deliver a correlated 

calibration noise temperature to LICEF receivers at two known power levels 

(nominally 75 and 1200 K, known as the “warm” and “hot” levels, 

respectively). This enables a standard two-point calibration of receiver gain 

and offset. CAS is based on distributed noise injection, comprising of ten 

Noise Source (NS) units, one in the MIRAS hub (HNS) and three in each 

arm (ANS), ten 2-to-6 Power Divider (PD) units, and adjacent coaxial 

cabling. A block diagram of the CAS configuration in the hub and one 

adjacent arm is shown in Figure 28. During calibration, the absolute level of 

the CAS output is determined by the three NIR units in the instrument hub 

(fed by the hub NS unit). The distributed scheme allows tracking of the 

signal level phase and amplitude throughout the network, as remaining 

receivers are each connected to two NS units in adjacent segments (with the 

exception of LICEF units in arm segment 3). 

 

 

Figure 28. A block diagram of CAS configuration in the MIRAS’ hub and 
one arm. The outputs to MIRAS’ receivers are on the right, the NIR 
reference plane is indicated at the top and the LICEF reference plane to the 
right. Kainulainen et al., (2009).  2009 IEEE. 
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8.2. Calibration of the SMOS payload 
 

The calibration scheme of MIRAS relies both on instrument 

characterization measurements performed before launch (on-ground 

characterization), and regular calibration measurements performed during 

mission operations. The aim of the calibration procedure is to produce 

calibrated visibilities (see section 3.2), enabling later translation of these as 

brightness temperatures of the apparent scene using image reconstruction 

(Camps et al., 1997).  

The complete calibration scheme of SMOS is described by Brown et al. 

(2008) and Corbella et al. (2005). The in-orbit calibration consists of 

several procedures to calibrate different elements of the system; the 

frequency of these procedures varies, being a trade-off between the 

expected stability of the element and other mission requirements (i.e. 

scientific observation time versus time spent for calibrations). The 

procedures can be divided into internal and external calibrations. The 

internal calibration procedures give a regular measure and correction 

parameters for the instrument’s stability during operations, the main 

parameter affecting stability being the thermal state of the receivers. 

Internal calibration is performed at the receiver reference plane, thus 

excluding the effect of antennas. The external calibrations, performed 

likewise regularly but at less frequent intervals, are used to derive absolute 

calibration parameters for the instrument. 

The in-orbit calibration procedures are divided into five groups (Oliva et 

al., in press) 

 Long calibration procedure (internal calibration):  

o calibration of PMS gain and offset of all receivers;  

o calibration of Fringe-washing functions of baselines; 

o  calibration of visibility offsets  

 Calibration of only PMS offsets (internal calibration) 

 Local oscillator calibrations (internal calibration) 

 NIR absolute calibrations (external calibration) 

 Flat Target Transformation (external calibration) 

For external calibration (i.e. at the antenna reference frame) the satellite 

is rotated to face the radiometrically cold sky. As the cold sky is the only 

external calibration target readily available, the process is essentially a one-

point calibration, relying on a priori knowledge of the sky brightness 
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temperature and characteristics of the instrument derived on-ground. The 

absolute calibration of NIR and the Flat Target Response (FTR) are 

measured by this method. The internal noise injection signal of NIR is 

calibrated using the cold sky and on the other hand, the NIR internal 

(passive) load as references. The calibrated NIR then serves to act as the 

absolute reference of the visible brightness temperature scene; it is also 

used to calibrate the noise signal from the distributed noise injection 

network (i.e. CAS) during the long internal calibration, which is then used 

to calibrate the remaining LICEF receivers. Careful on-ground 

characterization of NIR is required to compensate e.g. for in-orbit 

temperature effects in the systems parameters (Colliander et al., 2007).  

The Flat Target Response is used to correct for non-idealities in the 

antenna beam patterns (Martin-Neira et al., 2008). In principle, the 

instrument is used to measure a known flat (homogeneous) target; the non-

ideal instrument response is then transferred to all other observations of 

diverse scenes. The FTR was first measured prior to launch in an anechoic 

chamber. However, it was noted during the commissioning phase of SMOS 

that the FTR had changed slightly from the one measured on ground. The 

change can possibly be attributed to small variations in the beam patterns 

of LICEF antennas. Therefore, the current calibration procedure calls for a 

regular update of the FTR.  

The long calibration procedure is of most relevance concerning this thesis 

work, as in this the SMOS Calibration subsystem [P6] is applied. In essence, 

the purpose of the long calibration is to provide parameters for calibrating 

the normalized complex correlation coefficients measured by MIRAS, to 

correspond to the visibility function defined in section 3.2 (Corbella et al., 

2005).  

From (3.8), it can be seen that in order to retrieve the visibilities Vkj, the 

system noise temperatures and the value of the fringe-washing function at 

the origin must be known. The system noise temperatures of the receivers 

can be obtained by calibrating the gain and offset of the PMS in the 

corresponding receiver; calibration of the fringe-washing function at the 

origin, in turn, requires knowledge of the phase imbalance between 

receivers (Corbella et al., 2005). Determining both of these factors is done 

by injecting two levels of correlated noise to the receivers through the 

distributed noise injection network. As will be shown in the following 

sections, the accuracy of the calibration then depends on how accurately the 

level and phase of the correlated noise delivered to LICEF receivers is 

known. This, in turn, depends on the accuracy of CAS ground 

characterization (measurement of S-parameters over temperature), 
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accuracy of temperature measurements of the instrument, and possible 

drifts after characterization (Corbella et al., 2000).  

 

Calibration of PMS gain and offset 

Calibration of the measured visibilities requires knowledge of the system 

noise temperatures of the receiver pairs; thus, in order to determine ௦ܶ௬௦,௝, 

the gain and offset of the PMS must be calibrated. This is done using 

correlated noise injection from the calibration network; the four-point 

calibration scheme proposed by Piironen et al., (2002) is applied. This is an 

extension of the standard two-point method, allowing the receiver offset to 

be calibrated independently of the input noise temperatures; this essentially 

reduces systematic errors of the calibration. The LICEF PMS have an in-

built-in selective attenuator, that allow the two-level calibration signal to be 

further separated into four PMS readings for each receiver, so that four 

levels of calibration signal can be measured. The receiver offset can then be 

determined implicitly from measured voltages, without knowledge of the 

calibration noise injection levels (see [P6] Appendix and Piironen, 2002). 

For determining the system gain, however, accurate determination of the 

input noise levels TC is required. The accuracy at which the calibration noise 

signals are known effectively determines the accuracy of the PMS 

calibration, as the measurement of LICEF voltages can be considered to be 

ideal. 

In the first step of the calibration sequence the three NIR units in the hub 

section measure the level of TN for the two noise injection levels. NIR, on 

the other hand, is calibrated at regular intervals using the cold sky as the 

external calibration reference. A detailed description of the calibration of 

the CAS noise level is given by Colliander et al. (2007). Using the S-

parameters of CAS characterized on-ground, the noise level can be 

calculated to other output planes adjacent to TN. The PMS gain of the hub 

section receivers can then be determined from (see [P6]) 

௝ܩ ൌ
௝ଵݒ െ ௝ଶݒ

หܵே௬ห
ଶ

ห ௝ܵ௬ห
ଶ ൫ ேܶ,௝

஼ଵ െ ேܶ,௝
஼ଶ൯

, 
(8.3) 

 

where ேܶ,௝
஼ଵ െ ேܶ,௝

஼ଶ  is the noise level difference measured by NIR at CAS 

outputs during hot and warm noise injection, and ܵே௬  and ௝ܵ௬  are S-

parameter gains of the network from the hub noise diode y to the NIR input 
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plane and the input plane of receivers j, respectively. As pointed out above, 

the offset can be determined directly from the measured voltages (Piironen, 

2002). The system noise temperature at the input plane of receivers j is 

simply  

௦ܶ௬௦,௝ ൌ
௝ݒ െ ௢௙௙,௝ݒ

௝ܩ
. (8.4) 

 

Due to the overlapping nature of the calibration network, the gain of the 

receivers in the following Arm segment of MIRAS can then be determined 

with an equation analogous to (8.3). 

 

Calibration of Fringe washing function 

Following (3.8), the fringe-washing function at origin must be determined 

in order to retrieve the visibilities from the correlations measured by 

MIRAS. Only the value of the fringe washing function at the origin is 

required; the complete fringe-washing function shape is needed, however, 

in the image reconstruction process (Corbella et al., 2005). For calibration 

of the fringe washing function at the origin, it is required to correct for the 

phase difference of the noise distribution network paths between the two 

receivers forming the baseline under scrutiny (Corbella et al., 2000). The 

phase difference of the signal paths is obtained from the ground 

characterization of CAS. 

When measuring the same CAS Noise Source with receivers k and j, the 

obtained offset and quadrature corrected correlations obtained can be 

formulated so that ([P6], Corbella et al., 2000): 

௞௝ܯ ൌ หܯ௞௝ห݁
௝൫ఏೖೕ

ᇲ ൯ ൌ ௞௝ሺ0ሻݎ̃
หܵ௞௤หห ௝ܵ௤ห ௌܶ௤

ඥ ௦ܶ௬௦,௞ ௦ܶ௬௦,௝
݁௝ቀఏೖೕି൫ఏೕ೜ିఏೖ೜൯ቁ , (8.5) 

 

where	 ௌܶ௤ is the noise temperature of Noise Source q connected to output k, 

ܵ௞௤  and ௝ܵ௤ are the total attenuation from Noise Source q to outputs k and j, 

respectively, kq and jq  are the arguments of the S-parameters of CAS from 

Noise Source q to receivers k and j, respectively, and ߠ௞௝
ᇱ  is the measured 

phase of the correlation coefficient between receivers k and j. In the 

exponential term of (8.5), the actual phase imbalance ߠ௞௝  between the 
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receiver pair is the parameter requiring calibration. This can be solved 

using the measured imbalance of the CAS transmission paths from source 

q, so that: 

௞௝ߠ ൌ ௞௝ߠ
ᇱ െ ൫ߠ௞௤ െ ௝௤ߠ ൯ . (8.6) 

 

Using knowledge of the phase of each signal path of CAS, the phase 

difference between two paths can be tracked. By this principle the relative 

phases between all receivers can be solved, allowing calibration of ̃ݎ௞௝ሺ0ሻ for 

all baselines.  

 

 

8.3. On-ground characterization of the SMOS calibration 
subsystem 

 

Characterization is the measurement of instrument performance and 

properties in specific conditions. In order for the calibration concept to 

succeed, the Calibration Subsystem (CAS) of the instrument had to undergo 

a rigorous on-ground characterization. The purpose of CAS, as explained in 

section 8.2, is to deliver a correlated noise signal to LICEF receivers for 

internal calibration. The main purpose of the characterization of CAS was to 

provide a mathematical model for calculating and correcting for deviations 

in the signal distribution network, so that the amplitude and phase of the 

correlated noise signals could be accurately determined at outputs of the 

network in varying environmental conditions. While in orbit, the 

characteristics of the network vary mainly due to temperature changes 

induced by orbital conditions and, for example, spacecraft attitude (Brown 

et al., 2008). The design and characterization of CAS is described in the 

following. 

 

8.3.1. CAS components 
 

CAS is a distributed noise injection network formed by noise sources, power 

dividers and coaxial cabling connecting the CAS units to LICEF receivers 

(see 8.1.2, Figure 28). A simplified block diagram of the CAS Hub section 

noise source design is shown in Figure 29. The units in the MIRAS arm 

segments are otherwise identical, but with only two output connectors. 
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Figure 29. Simplified block diagram of the CAS Hub Noise Source unit. 
Lemmetyinen et al. (2007) [P6].  2007 IEEE. 
 

Using two RF switches in series, two distinct noise temperature levels can 

be generated at the NS output; the “hot” and “warm” levels (approx. 65000 

and 5000 K, respectively). Reduced to the output of the CAS subsystem 

(i.e., the input of individual receivers), the correlated hot and warm noise 

levels (thermal noise subtracted) are approximately 1200 K and 75 K, 

respectively. In addition to this, the output includes the (uncorrelated) 

noise of the distribution network itself. A test input was included to allow 

characterization (i.e. measurement of S-parameters) of the different 

transmission paths inside the units. 

The Power Divider units include a Wilkinson type power combiner 

followed by three cascaded stages of Wilkinson dividers. This results in 23 = 

8 signal outputs; two of the outputs are internally terminated. A 4 dB 

attenuator is attached to each output port of a PD unit in order to improve 

isolation between ports. A photograph of one NS and one PD unit is shown 

in Figure 30. 

 

Test input 1

Outputs 
1, 2 & 3

L

L

Test input 2
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Figure 30. The Arm Noise Source (left) and the Power Divider (right) units 
of CAS. Photograph: Ylinen Electronics Oyj. 
 

8.3.2. Measurement of S-parameters 
 

The main task of CAS characterization consisted of characterizing the S-

parameters of the noise distribution, i.e. defining the transmission and 

insertion losses and phase shifts in different paths of the network. The 

network S-parameters had to be characterized over a range of temperatures, 

as it was anticipated that changes in ambient temperature in orbit would 

change these from the base values measured at room temperature. The 

effect was estimated to be the largest in the long connection cables from 

noise sources to the power divider units, as well as in the cables connecting 

power dividers to LICEF receivers. Furthermore, it was anticipated 

temperature gradients could form over the network; i.e. parts of the 

network would be at differing temperature. As this would form an infinite 

number of temperature conditions to characterize, segments of the network 

had to be characterized individually. The goal was to build a mathematical 

model for calculating an approximation of the total change in S-parameters 

of CAS, allowing for temperature differences over the network. The 

characteristics (noise level and relative phase) at the outputs of the whole 

CAS subsystem were retrieved by combining the characteristics of all 

individual components in a signal path as a function of temperature, so that 
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ܵ௞௤ ൌෑܵ௡௤
்೛೓೤ೞ

ே

௡ୀଵ

, (8.7) 

 

where ܵ௡௤
்೛೓೤ೞ  is the transmission S-parameter of unit or cable n at 

temperature ௣ܶ௛௬௦ . The total transmission loss is composed of four 

components: (1) S-parameters of the signal path inside the Noise Source, 

(2) S-parameters of the cables connecting Noise Source to a Power Divider, 

(3) S-parameters of the Power Divider, and finally, (4) S-parameters of the 

cable connecting the Power Divider to a receiver input. In practice, only the 

relative S-parameters between CAS paths are required (see section 8.2); the 

value for (1) can thus be acquired directly from the measurement of S-

parameters from the NS test input to outputs (see Figure 29) although this 

does not reflect the entire signal path from the noise diode.  

The accuracy of the model was verified at room temperature by 

comparing the S-parameters of the assembled CAS to those given by (8.7). 

The Hub noise source unit, one Arm noise source unit and one Power 

Divider Unit were assembled on a mechanical mock-up of the satellite’s 

Hub and one Arm segment, including interconnecting coaxial cables. Note 

that the complete CAS was not measured in this way due to the limited 

amount of connector matings allowed for the system during testing. The S-

parameters of the complete noise transmission path were measured from 

the NS test ports to the LICEF input plane. The measured S-parameters 

were compared to those predicted by the model based on measurements of 

individual segments of CAS, taking also into account the physical 

temperature of the assembled network. The ambient temperature of the 

network was measured from the PD and NS unit casings; with these 

readings, it was also possible to estimate the physical temperatures of the 

connecting cables.  



 
 

133 

 

Figure 31. The Hub section Noise Source and Power Divider units and 
coaxial cabling connected to a mechanical mock-up of MIRAS for 
measurement of S-parameters. Photograph: Ylinen Electronics Oyj. 
 

The calculated transmission loss (S21) for one CAS signal path as a 

function of temperature is shown in Figure 32; error bars reflect the 

expected uncertainty of the calculation.  

Based on comparison of the modeled and measured S-parameters of the 

assembled CAS, it was estimated that any individual baseline can be 

characterized with an uncertainty of 0.044 dB (1.02%) in relative amplitude 

and 1.41° in relative phase. The errors arise from non-repeatability of SMA 

connection matings, bending of the cables during the final assembly of CAS 

(affecting in particular the phase characteristics), and the calibration error 

of the vector network analyzer used to measure the parameters. Also, the 

non-ideality of port input matching causes multiple reflections from cable-

to-unit connections; technically, the input matching of unit and cable ports 

was measured during the test campaign, but applying these in the 

calculation of system S-parameters in (8.7) did not improve the comparison 

of modeled and measured S-parameters, and thus these were omitted from 

the calculations. 
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Figure 32. Total calculated change of S21 with temperature for amplitude 
(above) and phase (below) of a typical CAS transmission path, from NS 
unit’s test input to the output of CAS. Lemmetyinen et al., (2007) [P6].  
2007 IEEE. 
 

In addition to the characterization of S-parameters over temperature, also 

the stability of the noise source output noise level over temperature was 

characterized. This information is not, however, currently required for the 

calibration process itself as the CAS output is considered stable during the 

30-second period between the calibration of the signal level by NIR units 

and correlated noise injection to the last LICEF units. As a part of the test 

campaign, CAS also underwent rigorous environmental testing including 
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mechanical vibration and shock tests, thermal vacuum tests and sensitivity 

to electromagnetic interference. 

 

8.3.3. Propagation and effects of characterization errors 
 

As pointed out in the previous section, the characterization of CAS involves 

errors in the noise distribution network phase and amplitude originating 

from the uncertainty of the S-parameter model. These errors induce 

uncertainties in the calibration of LICEF PMS voltages through (8.3) and 

definition of the fringe washing factor at origin by using phase differences 

of CAS signal paths (8.6), which in turn induce errors to the calibrated 

visibilities of MIRAS. Due to the cascaded nature of the characterization 

process, this error increases as more measured values (CAS S-parameters) 

are required to determine the transmission loss and phase of the network, 

relative to the calibrated value measured by the NIR receivers located in the 

Hub (see section 8.2). The propagation of the error is analyzed in [P6] and 

in the follow-on study by Kainulainen et al. (2009); a brief summary is 

given here as this has a major impact on the overall calibration of MIRAS. 

In the first phase of the PMS calibration, the calibration noise signal is 

measured using the NIR receivers. In order to reduce measurement 

uncertainty, the current calibration protocol uses an average of the 

temperatures measured by the six receivers housed by the three NIRs. The 

PMS gain of the four LICEF receivers j in the Hub section (see Figure 28) is 

then  

௝ܩ ൌ
௝ଵݒ െ ௝ଶݒ

ห ௝ܵ௬ห
ଶ

ܰ ∑
൫ ேܶ,௝

஼ଵ െ ேܶ,௝
஼ଶ൯

หܵ௡௬ห
ଶ

ே
௡ୀଵ

, 
(8.8) 

 

where N = 6. Similarly to the amplitude calibration, averaging can be used 

to reduce the accumulation of error when calculating the phase imbalance. 

Using (8.6), the imbalance of receivers in sections j and l, separated by 

receivers k, is  

௝௟ߠ ൌ
1
ܰ
෍ൣߠ௞௝

ᇱ െ ൫ߠ௞௡௤ െ ௝௤ߠ ൯ ൅ ௞௟ߠ
ᇱ െ ൫ߠ௞௡௬ െ ௟௬൯൧ߠ

ே

௡ୀଵ

. (8.9) 
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Averaging can be similarly used when measuring the PMS gain of 

receivers in the following section, now using noise signals measured by the 

four calibrated LICEF units as a reference. Considering both the NIR-

measured system noise temperatures ேܶ,௝ and the LICEF PMS voltages and 

internal attenuator transmission losses (vkn and L1) to be ideal, and 

furthermore assuming uncertainties of the measured S-parameter gains to 

be independent of one another, the uncertainty of ܩ௝ can be calculated using 

the standard propagation of errors (Kainulainen et al., 2009): 

Δܩ௝ ൌ ඩቆ
௝ܩ߲
߲ ௝ܵ௬

Δ ௝ܵ௬ቇ
ଶ

൅ ෍ ቆ
௝ܩ߲
߲ܵே௬

Δܵே௬ቇ
ଶ଺

ேୀଵ

. (8.10) 

 

Errors in the measurement of ܩ௝ thus consist solely of errors caused by the 

determination of the S-parameters of CAS (Δ ௝ܵ௬, Δܵே௬). Similarly, the phase 

error is dependent on the errors in measured phases of the two baselines. 

The uncertainty can again be alleviated using averaging over the common 

reference receivers k as given by Kainulainen et al., 2009: 

Δߠ௞௣ ൌ ඨ൫Δߠ௝௤൯
ଶ
൅ ൫Δߠ௟௬൯

ଶ
൅
൫Δߠ௞௡௤൯

ଶ

ܰ
൅
൫Δߠ௞௡௬൯

ଶ

ܰ
. (8.11) 

 

However, for the following arm sections the uncertainty of the 

determination of the gain introduces an error to the determination of TSYS,C. 

Now, an added uncertainty is already present in (8.10), increasing the total 

error when proceeding towards the last section. Similarly, the uncertainty of 

the phase is increased when the number of steps required to calculate the 

relative phases of CAS transmission paths increases. 

The impact of the errors on the visibility amplitude and phase calibration 

was first analyzed numerically; the propagation of error was determined by 

simulating the calibration of LICEF units in different sections using 

equations (8.8) and (8.9), using actual measured values for the S-

parameters of CAS. Furthermore, a Gaussian distributed error with a 

variance of 0.05 dB was introduced to measured S21 values of CAS signal 

paths. The resulting uncertainty to Tsys was simulated, calculating the sum 

of squares error between receivers in all MIRAS baselines. The results, 

plotted on the MIRAS baseline visibility chart are presented in Figure 33. 

Using a common system noise temperature value of Tsys = 300 K, the 
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resulting errors range from less than 1 K in the footprint centre of the chart 

to 8 K near baselines at the edges. 

 

Figure 33. Simulated propagation of error in system noise temperature on 
MIRAS baseline chart. Lemmetyinen et al., (2007) [P6].  2007 IEEE. 
 

The accumulated error of the calibrated phase was simulated similarly to 

the amplitude error, by introducing a Gaussian distributed error with 1 

variance to all measured values of the phase of CAS’ signal path when 

calculating the calibrating the phase difference of receivers analogously to 

(8.9). The resulting error plotted on the MIRAS footprint chart is shown in 

Figure 34. The smallest errors of 1.4 are located in the center of the 

footprint, increasing to close to 2 near the edges. 

 

Figure 34. Simulated propagation of error in CAS phase correction on 
MIRAS baseline chart. Lemmetyinen et al. (2007) [P6].  2007 IEEE. 
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In a follow-on study to [P6], an analytical method for analysing the 

propagation of the errors induced by CAS was presented by Kainulainen et 

al. (2009).  

Figure 35 demonstrates the calculated propagation of error by baselines 

between receivers in different sections (see Figure 28). As a percentage of 

the visibility amplitude, the errors range from 0.8 % for the shortest 

baselines (i.e. receivers in the same sections) to 1.3 % for receivers in the 

same arms but at the last segment. It is notable that these errors were 

estimated to be larger than those induced by CAS for receivers at the ends 

of opposing arms. This is due to receivers in one arm being subject to a 

common bias, originating from the first PMS gain calibration. Similarly, 

subsequent calibrations add to the error in the same direction for each 

receiver. However, receivers in opposing arms are subject to differing 

errors, as the first and subsequent PMS calibrations differ. Thus these 

biases accumulate quadratically, and the resulting total error is smaller than 

for receivers situated in the same arm (Kainulainen et al., 2009).  

 

Figure 35. Calculated propagation of error of the visibility amplitude. Error 

bars at the left side shows the case of receivers located in the same arm of 

the instrument, and the bars at the right the case of receivers located in 

different arms of the instrument. Kainulainen et al. (2009).  2009 IEEE. 

 

A similar chart for the propagation of visibility phase error is shown in 

Figure 36. Now, most baselines in the same arm of the instrument can be 

seen to match the value of 1.41° (quadratic sum of 1° errors, assumed for 

single baseline). This result is intuitive, as baselines in the same arm can be 

related to one another via a maximum of two adjacent baselines. For 
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receivers at end segments m of opposing arms, however, a maximum of 

seven adjacent baseline calculations are required. 

 

Figure 36. Calculated propagation of visibility phase error. Error bars at the 

left side shows the case of receivers located in the same arm of the 

instrument, and the bars at the right the case of receivers located in 

different arms of the instrument. Kainulainen et al.(2009).  2009 IEEE. 

 

In [P6] and the follow-on study by Kainulainen et al. (2009) the final 

impact of the CAS characterization errors on MIRAS visibilities was 

analyzed using the SMOS End-to-End Simulator, SEPS (Camps et al., 

2003). SEPS was first applied to simulate visibilities considering an ideal 

characterization of CAS and other parts of the instrument for several scenes 

(a homogeneous sea surface, a homogeneous land surface, and two mixed 

land/ocean scenes). The visibilities, in turn, were inverted into ideal 

brightness temperature scenes, or snapshots. Next, a set of visibility 

amplitude errors was created, following the statistical probability of errors 

over different baselines as depicted in Figure 35 and 36. Errors were created 

separately for amplitude and phase characterization errors of CAS. Lastly, 

these errors were added to the ideal visibilities, and the image inverted to 

brightness temperatures using SEPS. The resulting images were then 

compared to the ideal images, allowing some insight into the effect of CAS 

characterization uncertainty on the obtained brightness temperature 

images. 

Figure 37 (from Kainulainen et al., 2009) shows SEPS simulations for two 

of the scenes, an open sea scenario and a scenario of mixed land and ocean 

signatures. The top row displays the brightness temperatures as would be 

measured by an ideal instrument, including an ideally characterized CAS. In 

the middle row images, an error is introduced to the CAS amplitude 
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characterization following the methodology described above. The displayed 

images depict the difference between the ideal image and the obtained 

“erroneous” brightness temperature map. Similar error maps for the phase 

characterization uncertainty are shown in the bottom row of Figure 37. For 

both scenarios, the resulting standard deviation of errors is less than 0.5 K 

for the impact of amplitude errors, and less than 0.8 K for the impact of 

phase errors. The amplitude uncertainty introduces a positive bias ranging 

from 0.02 to 0.61 K depending on the test scenario, while the phase 

uncertainty introduces a small negative bias error (under 0.1 K in all cases, 

Kainulainen et al., 2009, Table IV). The flat ocean signature exhibits, in 

general, smaller errors than do the mixed scenes. Also, a clear qualitative 

correlation can be found between the brightness temperature contrasts of 

the mixed scenery map (Figure 37 top row) and the distribution of phase 

and amplitude errors, indicating the strong dependence of the errors on the 

measured scene. 
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Figure 37. Simulated test scenarios of MIRAS brightness temperatures using 

SEPS, including effect of CAS characterization errors. Open sea scenario (left 

column) and mixed land/ocean scenario (right column). Top row images 

simulated using an ideal instrument, including an ideally characterized CAS. 

Middle row: Error introduced by the CAS’ S-parameter gain uncertainty in 

ground characterization (1% per signal path). Bottom row: Error introduced 

by the CAS’ S-parameter phase uncertainty in ground characterization (1° per 

signal path). Limits of alias-free field of view indicated with black arcs. 

Kainulainen et al., 2009.  2009 IEEE. 
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9. Conclusions 
 

 

This thesis work brings together several studies concerning remote sensing 

methods of the cryosphere by applying microwave remote sensing. The 

presented studies contribute to the understanding of microwave signatures 

of complex natural environments through extensive experimental datasets 

over the Northern Hemisphere, including tundra, boreal forests, wetlands 

and lake ice ([P1], [P2], [P3]). This is necessary in order to explore ways to 

improve the accuracy of current retrieval methods of snow parameters from 

spatially coarse radiometer observations (e.g. Kelly et al., 2003, Takala et 

al., 2011). Moreover, the study looks into the calibration method devised for 

a novel type of radiometer instrument, an imaging interferometric 

radiometer using aperture synthesis. 

 

 

9.1. Contribution of work to remote sensing of the cryosphere 
 

The modeling of microwave emission is an important aspect in attempting 

to understand the factors affecting the detected signatures. This thesis work 

presents extensive modeling efforts for various aspects of the cryosphere, 

including snow-covered terrain ([P1]), lake ice ([P1], [P3], [P4], and the 

effects of soil freezing and thawing ([P5]). The work included the revising of 

an existing snow emission model (Pulliainen et al., 1999) to simulate the 

emission from vertically stacked layers of snow and ice.  

The work also indicates possibilities for the application of the revised 

forward model in the retrieval of snow characteristics from space-borne 

radiometer observations. The study in [P4] demonstrates an increase of 

retrieval accuracy using the revised model, by means of a method 

compensating for the deteriorating effect of water bodies in the satellite 

scene. The method can be applied to potentially improve the accuracy of 

present retrieval algorithms based on inversion of physical forward models 

(e.g. Takala et al., 2011).  
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Furthermore, the study presented in [P5] indicates interesting 

possibilities for the monitoring of soil freeze/thaw processing using L-band 

microwave remote sensing. Methods based on existing operational satellites 

with higher frequency channels have been presented in the literature (e.g. 

using SSM/I channels at 10.65, 19 and 37 GHz in Zhang et al., 2001), but 

the L-band offers in this case the unique opportunity of being relatively 

insensitive to the presence of dry snow cover. With the launch of the SMOS 

satellite in 2009, L-band observations are now also available globally at 

regular intervals.  

 

 

9.2.  Contribution of work to the SMOS mission 
 

The study presented in [P6] represents a major effort in the design, 

development and characterization of the SMOS calibration subsystem, CAS. 

The characterization test campaign of CAS was a particularly important 

aspect, as careful characterization was a prerequisite for the calibration of 

MIRAS to within mission requirements. The main goal of the 

characterization, i.e. the ability to calculate the effect of the CAS network on 

the correlated noise signals delivered to LICEF receivers was met; the 

relative phases and amplitudes of different signal paths can also be 

determined over a range of possible in-orbit temperatures. The analysis 

presented of the effects of CAS errors was significant in broadening the 

understanding of the impact of characterization errors on the final 

brightness temperature product given by MIRAS; this aids to further 

determine the overall uncertainty of the MIRAS observation, and also 

contributes to the design of possible future instruments. The matter of error 

propagation was further explored in a continuation study by Kainulainen et 

al. (2009); in the study, the impact of CAS characterization uncertainties 

was confirmed to be strongly dependant on the observation baseline, i.e. the 

physical location of the receiver pair. After launch, the calibration 

subsystem, as well as the MIRAS radiometer as a whole, has been proven to 

function to within specifications (Corbella et al., 2011; Oliva et al., in press). 
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Summary of appended papers 

 
 
[P1]  

The study compares microwave signatures of snow covered terrain in the 

boreal forest regions of Finland and Northern Canada. The study makes use 

of an extensive dataset of airborne microwave radiometer observations in 

the two regions, comparing these with in situ measurements of snow 

properties. The main goals of the study were to (1) compare snowpack 

physical properties in the boreal forest zones of Finland and Canada (2) 

Indentify the influence of land cover and vegetation effects on the 

microwave signature ion the two regions (3) asses the quality of a forward 

emission model in detecting these variations. The study underlines the 

effects of diverse land cover on the microwave signature, specifically the 

differing signatures from snow covered lake ice and other wetlands when 

compared to surrounding dry terrain.  

 

[P2]  

This paper describes a modification to an existing snow emission model, 

accounting for the influence of multiple horizontal layers of snow, each with 

differing dielectric properties. The study presents the theoretical 

background of the model, and analyses the influence of snow layering 

through simulation. Available experimental datasets are then applied to test 

the model performance, comparing also to the original model configuration 

simulating the snowpack as a homogeneous single layer. The study shows 

forward modeling results can be improved by applying the layered model, in 

particular in the case of clear dielectric contrasts in the snowpack, such as 

ice lenses. The developed model also allows the simulation of e.g. snow 

covered lake ice, which is applied in [P3].  

 

[P3]  

The paper presents an analysis of simulations performed using the modified 

emission model developed in [P2], compared to airborne observations over 

frozen lakes in Canada. The model simulations are supported by extensive 

in situ information on lake ice properties; reference observational data are 
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available over a range of frequencies. The effect of different a priori 

assumptions of lake ice and snow properties on modeling accuracy is 

analyzed. The study shows that microwave emission from lake ice can be 

simulated with reasonable accuracy using the applied forward model; 

however some discrepancies in the lower frequency spectrum are noted.  

 

[P4]  

The study presents a technique to mitigate for the influence of snow covered 

lakes in snow parameter retrieval applications relying on passive microwave 

observations. The effect of lakes and other wetlands on the microwave 

signature was noted in [P1], and the forward model allowing the simulation 

of these was developed in [P2]. The paper first presents a forward modeling 

experiment, where available in situ information on snow, land cover and 

lake ice properties are used to simulate whole sceneries as observed from a 

space-borne radiometer. Two model configurations are compared, first in 

the default configuration of ignoring the differing emission from lakes, and 

secondly by introducing lakes in the simulation. Next, an inversion 

technique to retrieve snow information from satellite observations is 

applied using the same forward model configurations. The improvement of 

estimate accuracy is analyzed using independent reference data on snow 

properties.  

 
[P5]   

The study concerns the monitoring of soil freeze/thaw processes using 

microwave radiometry. The brightness temperature signatures of soil 

processes are analyzed by applying a season-long experimental dataset of L-

band radiometer observations and related reference in situ information on 

soil and snow cover properties. A simple emission model to predict the 

effect of progress of soil freezing on the detected emission is presented, and 

the model estimates are compared to observations. The experimental 

dataset is also compared to available airborne L-band passive microwave 

data from the region, as well as the first available data from the SMOS 

satellite.  

 
[P6]  

This paper presents the design, testing and performance analysis of a 

distributed calibration network system for the Soil Moisture and Ocean 

Salinity (SMOS) satellite mission, launched in 2009. The purpose of the 
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network was to provide an accurate calibration reference signal for the 

different receivers of the SMOS payload, the MIRAS (Microwave Imaging 

Radiometer using Aperture Synthesis) instrument. In the paper, the 

operating principle and design of the network are presented. The paper 

describes characterization tests performed on the system, as well as 

analyses the effect of characterization inaccuracies on the final performance 

of the MIRAS instrument.  
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