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Symbols and abbreviations

�� effective mass of the flapper [kg]�� viscous damping force [N]�� coil force [N]�� flapper spring force [N]�� pressure force [N]	
�� prestage pressure [Pa]
 coil input voltage [V]�� voice-coil force factor [N/V]�� ambient temperature [K]���� voice-coil reference temperature [K]�������� voice-coil temperature coefficient	� supply pressure [Pa]�	����� flapper pressure force coefficient��������� effective area of pressure at the nozzle [m2]�
�� flow area of the fixed restrictor [m2]������� flow area of the nozzle [m2]�� mass flow [kg/s]� flow area [m2]� gas constant (287) [J/kgK]�� inlet pressure [Pa]�� inlet flow temperature [K] flow functionC! discharge coefficient�" outlet pressure [Pa]

� polytrophic constant (for an adiabatic process

with air � = 1.4).�� ��# net mass flow [kg/s]�� $� mass flow through the fixed restrictor [kg/s]� pressure [Pa]% volume [m3]
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�� moving surface area of the volume change [m2]& spool valve velocity [m/s]�� mass of the spool [kg]��� spool spring force [N]��� control pressure force [N]��� supply pressure force [N]�' diaphragm spring force [N]��� friction force in the spool [N](�� spool spring constant [N/m])� spool position [m])���� spool spring pretension [m]�'���� diaphragm coefficient�'��� spring force caused by diaphragm at the prestage

pressure end of the spool valve

[N]

�'� spring force caused by diaphragm at the spring

end of the spool valve

[N]

�� friction force [N]*% zero velocity region [m/s]���$� friction force when v � 0 [N]��#$�+ friction force when v = 0 [N]��
�� Coulomb friction force when v > 0 [N]��
�� viscous friction coefficient when v > 0F,-., stiction force when v > 0 [N]����/ Coulomb friction force when v < 0 [N]����/ viscous friction coefficient when v < 0����/ stiction force when v < 0 [N]�� external  resultant force driving the spool valve [N]�� effective total mass of the piston and other

moving parts

[kg]

��� spring force [N]��� friction force [N]��� actuator pressure force [N]�� load force [N]	�� actuator pressure [Pa]0 volumetric flow [m3/s]1� capacity coefficient2� pressure difference over the valve [bar]2�3 pressure difference over the valve when the valve

is closed

[bar]
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4	� pressure difference over the valve when it is fully

open

[bar]

H entropy

P probability

FDD fault detection and diagnosis

DUT device under test

stiction static friction

DAMADICS Development and Application of Methods for

Actuator Diagnosis in Industrial Control Systems

DCS Distributed Control System

MVH Multi-Variable Histogram
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1. Introduction

1.1 Background

Safer, more reliable, and more profitable are continuous development

topics in modern process plants. Therefore the early detection of faults and

other problems concerning the process are required. This detection is

usually performed by using fault detection and diagnosis (FDD) methods

implemented in a condition monitoring system.

Condition-based maintenance as part of predictive maintenance is one of

the tools used to increase productivity and reliability in the process

industry. This is done by minimising unscheduled shutdowns and loss of

product quality. Process plant performance and reliability cannot be

improved without revealing deviations or problems by means of a condition

monitoring system. This problem identification has to take place before

problems become too serious in order to prevent major repairs and

production breakdowns. Identification also has to take place online without

disturbing the process, so as to maintain the efficiency of the plant. For this

reason traditional offline performance tests are not feasible in real

industrial applications these days.

Condition monitoring systems are typically centralised monitoring

systems where intelligence is at the top level of the process plant, rather

than at the field device level, as in distributed systems. When this

centralised schematic is used, sensors also have to be installed to all the

primary variables of the field devices, in addition to the process variables, to

make field device faults observable. Otherwise these faults are not

observable as a result of the control loop inside the field device

compensating for them until some internal variable saturates and field

device performance is affected. After field device performance is affected by

the internal faults, these faults can also be detected through process

variables. But then the detection happens too late to keep process

performance at an optimal level and to have time to prepare repair work.

Installing additional sensors into the field devices leads to very complicated
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and expensive systems where deep expertise concerning the operation of

the device is required from monitoring system designers. As a result of the

complexity of these systems, faulty alarms are easily generated and

maintaining such a system requires a lot of resources.

Ideally, intelligent autonomous devices can be part of a centralised

condition monitoring system and can identify locally all the factors or the

problems limiting the efficiency of the local process. This approach reduces

the complexity of the condition monitoring system because the number of

sensors, wires, and diagnosis loops connected to the monitoring system is

reduced.

Manufacturers of intelligent devices have the best knowledge about these

devices and they know the problems the devices can meet during operation.

Therefore it is reasonable for device manufacturers to implement fault

detecting and diagnosis features in intelligent devices, as opposed to the

traditional top level-based condition monitoring systems.

As shown in Figure 1, process valves are fundamental components in the

process industry. In a process plant there can be tens of thousands of

manually operated valves and thousands of control valves. Many important

process variables, such as flows and pressures, are controlled through these

control valves. Therefore problems in control valves can cause significant

process disturbances and influence the quality of the final product.

Thus control valves, as the most common final control element in the

control loop in the process industry, have considerable potential to support

predictive maintenance. For this reason they have to have FDD capabilities.

Currently, valve controllers can detect some symptoms or faults, but not

diagnose them. At the moment more detailed control valve performance

analysis can be done by experts analysing offline test results such as

hysteresis and step response test results. This is not an effective method for

analysis, because the valve has to be isolated from the process to get these

test results and analysis done. A more effective method is to perform the

diagnosis online during the operation of the device without disturbing the

process. Hence there is a need to research online methods to detect and

diagnose typical control valve faults.
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Figure 1. Control valve in flow control loop as part of a unit process.

In this study fault detection means recognising that a fault has occurred,

while fault diagnosis means finding the cause and location of the fault.

Advanced fault detection methods are based on signal and process models

of the system. In these methods fault symptoms are generated through

system theory methods and system models. Fault diagnosis methods use,

among others, statistical decisions, artificial intelligence, and soft

computing methods to form causal symptom-fault relationships.

1.2 Research problem

Nowadays valve controllers can detect some symptoms from the control

valve without having the capability to pinpoint the real root cause of the

fault or localise the problem. Diagnosing a fault correctly is essential in

order to be able to allocate resources effectively to repair the cause of the

fault. On the other hand, only information on which module or submodule

has to be replaced to repair the problem is required when performing

maintenance actions.

Many advanced FDD methods are presented in the literature, but

implementing these methods in embedded systems is not possible in many

cases because of limited computing power. This computing power is

especially limited with valve controllers being installed in the intrinsically

safe zones in process plants. Therefore energy in these devices is extremely

limited in order to avoid the ignition of possible flammable gases in the
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operating environment. Another challenge when researching FDD methods

is getting data from the system being observed to develop and validate these

methods. If a real process is used for data collecting, many faults are

impossible to introduce in a system that is already running and fault

simulations are restricted by the wish not to disturb the operation of the

process. When a test bench in a laboratory is used to collect these data,

problems are faced when implementing faults on the test bench and

keeping the consequences of a fault repeatable over different test runs.

At the moment offline tests such as hysteresis and step response tests are

used to evaluate control valve performance. This is not an effective method

for analysis, because the valve has to be isolated from the process to run

these tests. A more effective method is to perform the diagnosis online

during the operation of the device without disturbing the process.

Finally, the research problem is to build an environment where fault

detection and diagnosis methods can be researched effectively and after this

to find or develop an online method to detect and diagnose specified control

valve faults before there is a severe impact on flow control loop

performance that is implementable in a valve controller.

1.3 Aim of the research

The objective of this research is online fault detection and diagnosis

methods that are implementable in valve controllers.

1.4 Scope of the research

The scope of the research is fault detection and diagnosis methods for

quarter-turn pneumatic control valves; sliding-stem valves are excluded.

This control valve type represents the typical quarter-turn control valve

used in the oil and gas industries.

When these methods are being researched, methods requiring low

computing power must be preferred. This is essential when implementing

these methods in embedded systems such as valve controllers. A low

computing power method means in this study, the structure of the code is

simple and amount of arithmetical operations are minimised. Especially

floating point operations requires much computing power and therefore

should be avoided.

Additionally, fault detection and diagnosis has to be done before there is a

severe impact of the fault on flow control loop performance. That gives time

to the maintenance organisation to schedule the maintenance actions that

are required to prevent production breakdowns and loss of final product

quality.
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Only online FDD methods are considered in this research to perform

diagnosis efficiently online during device operation without disturbing the

process.

A specified set of typical control valve faults presented in Table 1 is

considered in this research; for example, sensor faults are excluded from

this research.

Table 1. Faults.

Module Fault

Nozzle-

flapper

Obstruction in

fixed restrictor

Obstruction

in nozzle
Leakage

Spool valve Friction change

Actuator Friction change Leakage
Mechanism

backlash

Valve Friction change

1.5 Research methods

Literature related to the control valve modelling and the control valve fault

detection and diagnosis was studied for the State of the art section.

In the fault simulator, a physics-based analytical modelling was utilised to

make physical fault modelling and fault location in the model feasible.

Additionally, analytical modelling also gives knowledge about the system

and helps to understand the behaviour and characteristics of the system.

This is valuable when considering the fault detection and diagnosis

methods for the system. The derived models were fitted with some

nonlinear fitting parameters, such as position-related spring coefficients.

That required many experiments which were conducted in the laboratory to

get the estimation data from the system. The models were implemented in

the Matlab Simulink™ environment and solved with numerical methods.

Four different fault simulation schemes were run in the simulator with all

faults (presented in Table 1) to research the impact of faults on the system

in different valve use cases.

An online fault detection and diagnosis method was developed that was

based on the fault simulation data. The method was verified with the

simulator and test bench runs (emulations).
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1.6 Contribution

The contributions of this study are:

� fault simulator for quarter-turn pneumatic control valve

� fault detection and diagnosis method implementable in a valve

controller

Compared to the other studies in these fields, the aspect of the valve

controller is considered in all related matters and the quarter-turn valve

design is utilised as the opposite of the sliding-stem design.

It has been possible to analytically model control valve dynamics, despite

their inherent nonlinearities for the fault simulator. These nonlinearities of

the system have been identified and estimated through selected fitting

parameters. The models that were derived have been verified with

measurements and the modelling error is found to be acceptable for the

fault simulations. Some typical control valve faults have been simulated and

impacts on the internal variables of the flow control loop and control

performance analysed. The fault simulator presented here can be used for

fault detection and diagnosis, as well as robust control research.

On the evidence of simulations and test bench test runs, it is possible to

detect and diagnose typical control valve faults before there is a severe

impact on flow control loop performance. This can be done with the online

method requiring low computing power that is introduced in this study.

This means the method is implementable in a valve controller and diagnosis

can take place without disturbing the process. The method introduced here

is based on the observation that the internal variable closest to the fault

compensates and reacts to the fault first when feedback control is utilised.

That leads to an operation point shift for all the internal variables before a

fault in the chain of internal variables in the system. This principle can be

utilised in all feedback-controlled mechatronic systems. The fault detection

and diagnosis method introduced here was verified with simulator and test

bench runs and found to be applicable to the detection and diagnosis of all

the faults that were tested.

1.7 Structure of the thesis

This thesis consists of six chapters. Their contents are briefly summarised

below.

Chapter 2 introduces literature related to this study. Section is divided

according to two main themes of this study, the control valve fault

simulator and the control valve fault detection and diagnosis.
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Chapter 3 explains in detail the control valve fault simulator.  It is based

on analytical models and is implemented in the Matlab Simulink™

environment. The simulator was verified with test bench measurements in

the laboratory. After this the simulator was used for fault simulations to

generate data for FDD research.

Chapter 4 presents an online fault detection and diagnosis method that

was based on fault simulation data. The method is implementable in

embedded systems and the method was verified with simulator and test

bench runs.

Chapter 5 concludes this study and presents next research steps.
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2. State of the art

This chapter introduces relevant literature related to this study. The section

is divided according to two main themes of this study, the control valve

fault simulator and the control valve fault detection and diagnosis.

2.1 Control valve fault simulator

The fault simulator presented in this study consists of the following models:

a valve controller (e.g. nozzle-flapper and spool valve), a pneumatic spring

return cylinder actuator, a segment-type process control valve, medium

flow in the process pipe, the flow control loop, and faults as shown in Figure

2. The fault simulator was introduced for the first time by the author in the

reference (Manninen T., 2011).

Figure 2. Control valve in flow control loop and modelled faults (red arrows).

All the modules of a quarter-turn control valve have been modelled to

varying degrees in the literature. Most of the research activities have been

in the field of pneumatic actuator models. A thermodynamic process

including heat exchange and friction has been the main topic in these

papers. There are no detailed valve controller models available, but models

of the pneumatic pre- and output-stage components (nozzle-flapper and

spool valve) of valve controllers are available. Process control valve

modelling has concentrated mainly on sliding-stem valves with linear-type
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actuators, as opposed to the quarter-turn designs that are the object of this

study. A detailed valve controller model is introduced in this study.

Next, references related to the fault simulator domain are briefly

introduced.

2.1.1 Prestage (nozzle-flapper) models

In the field of prestage modelling one of the early papers is (Burrows C. R.,

1977). In that paper a complete model of the nozzle-flapper is presented.

The paper concentrates on the effects of flow force for nozzle-flapper

dynamics and therefore an experimental flow force equation is presented in

the paper.

Another paper that considers the flow force in particular is introduced by

(Wang T., 2005). In that paper a complete model for the nozzle-flapper is

also presented.

(Kagawa, 1985) introduced a dimensionless flapper-nozzle model and the

effect of heat transfer in the nozzle-flapper is considered as well.

It should be noted that the construction of the nozzle-flapper in these

references includes nozzles on both sides of the flapper, while the

construction used in this study includes only one nozzle on one side of the

flapper.

2.1.2 Spool valve and actuator models

(Shearer, 1956) introduced the first pneumatic actuator and the spool valve

model as part of a complete pneumatic servo system model. In his

subsequent papers (Shearer, 1956) and (Shearer, 1957), load mass and

other nonlinearities such as Coulomb friction were added to the linear

model presented in the first paper.

A  spool  valve  model  based  on  the  ISO  6358  standard  (anon.,  1989)  is

presented by (Virvalo, 1995) as part of a pneumatic servo system model. In

the model the actuator model is based on the adiabatic process and an ideal

gas model.

Another spool valve model based on an ISO standard is introduced by

(Mare J.-C., 2000), again as part of a pneumatic servo system. In that

reference heat transfer and friction are especially considered in the actuator

model.

(Richer E., 2000) presented a detailed mathematical model of a dual-

action pneumatic actuator controlled by means of proportional spool

valves.  In  the  spool  valve  model  the  effects  of  nonlinear  flow  through  the

spool valve were researched. Air compressibility in the cylinder chambers,
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leakage between chambers, and time delay and attenuation in the

pneumatic lines were carefully considered in the actuator model as well.

An actuator model that took into account the real gas behaviour and the

thermal time constant for estimating heat transfer was introduced by

(Heras, 2003).

(Sorli M., 2009) investigated the effect of the heat exchange process on

the characteristics of pneumatic actuators and their pneumatic stiffness.

2.1.3 Control valve models

(Pyötsiä, 1991) introduced a nonlinear mathematical model of a quarter-

turn pneumatic control valve consisting of these models: a valve positioner,

actuator, process valve, and pipeline flow.

A sliding-stem control valve model is presented by (Bartys M., 2006). There

the same kind of fault simulator concept is used for fault detection and

diagnosis research as in this study.

2.1.4 Actuator friction models

(Schroeder L. E., 1993) researched sliding friction forces in a pneumatic

actuator. In this study seven different friction models were validated with

experiments.

The friction force between an elastomeric seal and a pneumatic cylinder

was evaluated by (Raparelli T., 1997) through experiments and numerical

simulations.

2.1.5 Process valve friction models

(Garcia, 2007) introduced a method for the offline identification of three

Karnopp friction model parameters and two system parameters for sliding-

stem control valves.

(Romano R. A., 2007) compared two Karnopp friction model parameter

estimation methods for sliding-stem control valves. The method was the

same as that presented in the previous reference (Garcia, 2007).

(Garcia, 2008) compared eight different friction model simulation results

to test bench results. Again, the tests and simulations were performed with

sliding-stem control valves.

2.1.6 Control valve static friction (stiction)

(Kano M., 2004) introduced a stiction model including two parameters.

(Choudhury  M.  A.  A.  S.,  2005)  proposed  a  definition  of  stiction  and

introduced a data-driven model for stiction.
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A stiction model accounting for valve input rate was presented by

(Srinivasan R., 2008).

(Zhi Xiang Ivan L., 2009) proposed a Hammerstein stiction model

including only one parameter.

2.2 Control valve fault detection and diagnosis

Valve controllers can detect some faults or symptoms, but cannot diagnose

them. This detection is usually based on simple methods such as limit or

trend checking. In steady state conditions these methods can be reliable,

but when the operating point of the system changes and an alarm limit is

set that is related to this operating point only, false alarms are easily

generated.

Fault detection methods have developed, starting from the limit and trend

checking-based methods to the advanced model-based algorithms including

analytical redundancy, parity equations, state observers, unknown input

observers, and parameter estimations. These advanced methods are based

on a model of the system being monitored. The goal within these methods is

to generate symptoms that react only to faults in the system being

monitored. These symptoms can be based, for example, on the difference

between the model outputs and corresponding measured sensor signals

from the system being monitored. A common requirement for all these

advanced methods is knowledge of the system and being able to model the

system. An additional requirement is the need for high computing power to

run these models or estimate model parameters. When symptoms such as

residuals or parameter/state variable changes react to the faults, the next

step is to find a method to diagnose the fault. These diagnosing methods

use, among others, statistical decision, artificial intelligence, and soft

computing methods to form causal symptom-fault relationships.

The most active research area in control valve diagnostics has been the

diagnosis and compensation of static friction (stiction), because stiction is a

common root cause of flow control loop oscillation in process plants.

Almost all the approaches to the diagnosis of stiction have been made from

the point of view of distributed control systems (DCS), not from field

devices. This means that only process variables are used for diagnosis and

methods are run on the DCS level.

The DAMADICS benchmark problem (Bartys M., 2006) has inspired

many papers in the field of control valve diagnostics. These papers mostly

deal with soft computing methods such as neural networks and fuzzy

systems or combinations of these.
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Next, references related to the domain of the detection and diagnosis of

control valve faults are introduced.

(Deibert, 1994) studied an observer-based FDD scheme in a flow control

loop that included a sliding-stem control valve. The faults considered in the

study were increased friction in the stuffing box and changes in the effective

flow area in the valve. Control performance indices and valve position-

based estimates were used as symptoms. Process variables were used as

inputs to the FDD strategy. The method was verified by simulations and

real process runs.

Typical control valve faults and failure rates are introduced by (McGhee

J., 1997). These typical faults in a sliding-stem valve are mentioned as

being, for example, internal and external leakage and scoring of the valve

plug and seat. Additionally, artificial neural networks were applied to

estimate actuator shaft output torque as a model-based fault detection

method.

(Sharif M. A., 1998) reviewed commercial diagnostic software with

simulation in the laboratory of actuator vent hole blocking and

crystallisation around the valve plug. The diagnostic software was not able

to diagnose these faults. All the diagnosis was carried out on the basis of

offline performance tests, such as hysteresis and step response tests. In the

study it was stated that by combining several separate test results, more

precise diagnostic results can be achieved. In his second paper, (Sharif M.

A., 1999) he studied the effects of several faults on the sliding-stem control

valve. The faults that were considered were: gradual blockage of the

actuator vent hole, a damaged valve stem, and damaged valve stem packing

rings. In the study external sensors were used to monitor the system. These

sensors measured pressure, mass flow, displacement, and temperature.

Diagnosis was done with a valve hysteresis test and signal-based methods.

The diagnosis results were verified with laboratory measurements. In his

third paper (Sharif M. A., 2000), he proposed an expert software system for

analysing the results obtained with commercial diagnostic software. The

results were based on offline valve hysteresis and step response tests, as in

his previous papers. In the study a sliding-stem control valve was used and

the effects of several faults at one time on control valve performance were

considered. The faults considered in the study were gradual blockage of the

actuator vent hole, a damaged valve stem, and damaged valve stem packing

rings.

(Kayihan A., 2000) introduced a state space sliding-stem control valve

model in order to utilise an advanced nonlinear model predictive control

strategy to compensate for the effects of friction. An observer-based fault

detector and fault diagnosis based on a fault tree are also discussed.
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Observer parameter estimation is used for diagnosis as well. This means

that the method can be run online. In the study it is stated that the method

that was developed is computationally too intensive to implement in a valve

controller.

(Balle P., 2000) studied FDD in a pilot plant in a flow control loop with six

faults.  The  faults  in  the  flow  control  loop  were  an  air  leak  in  the  pipe,

stuffing  box  friction,  a  flow  sensor  fault,  partial  clogging  of  the  valve,

erosion of the valve plug, and a fault in the valve position controller. The

FDD scheme that was utilised was based on fuzzy models and ran online.

Six symptoms were generated, such as output error in the model and real

process, control performance indices, and model parameter errors. These

symptoms were evaluated with a fuzzy classification tree. Only the process

flow control loop variables, such as flow set point, valve set point, and flow

measurement signal, were used as inputs in this FDD scheme.

(Karpenko M., 2003) researched sliding-stem control valve fault

detection. The faults that were considered were incorrect supply pressure,

actuator vent blockage, and diaphragm leakage. Fault detection and

diagnosis were performed by a neural network-based classifier. The above-

mentioned faults were experimentally introduced to the control valve and

data for classifier training were obtained directly from the standard

software that came with the control valve. All the faults that were being

researched with various levels of magnitude were detected and diagnosed.

The drawback of this method is that offline performance tests, such as valve

hysteresis and the step response test, have to be run to obtain input data for

the FDD method.

2.2.1 DAMADICS benchmark problem

Most of the FDD methods researched in academic papers require data from

faulty process states and these are not available for industrial

implementations. This was noticed and a new benchmark problem was

introduced to find methods for the industry to implement the methods

without having analytical knowledge of the actuator or system or faulty

states of the system. This benchmark is called DAMADICS (Development

and Application of Methods for Actuator Diagnosis in Industrial Control

Systems) and was introduced by (Bartys M., 2006). In the benchmark

problem three sliding-stem control valves were modified mechanically and

electronically to simulate faults in the sugar juice process in a sugar factory.

A total of 19 incipient or abrupt faults were introduced into the process and

a system model was built for the benchmark problem. These faults were

located in all the main modules of the system, including the process valve,

actuator, and positioner. For benchmarking purposes five measurements
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and one control signal are considered. These signals are the control valve

set point, valve inlet pressure, valve outlet pressure, valve stem

displacement, liquid flow rate, and liquid temperature. Only single fault

scenarios were considered in this benchmark.

This benchmark problem has inspired numerous FDD papers related to

sliding-stem control valves. These papers mostly deal with soft computing

methods such as neural networks and fuzzy systems. Other model-based

methods such as signal or process model-based methods have not been

widely researched. Neural networks or fuzzy methods are usually used to

avoid complex analytical nonlinear system modelling. When these black

box modelling methods are used the inner structure of the model cannot be

used for FDD purposes and the faults have to be taught to the monitoring

system. Additionally, these soft computing methods are computationally

intensive, preventing the implementation of these methods in valve

controllers to achieve the distributed monitoring system scheme discussed

earlier.

Next, references related to the DAMADICS benchmark problem are

briefly introduced.

(Calado J.M.F., 2006) introduced a fuzzy neural network-based FDD

method and several faults at a time were considered in the study. (Puig V.,

2007) proposed a nonlinear neural network model to implement a robust

fault detection method. Another robust approach was studied by (Mrugalski

M., 2008). There neural network model uncertainty is used to create robust

FDD.

A neuro-fuzzy FDD method using the system parameters as residuals was

presented by (Uppal F. J., 2002). Other neuro-fuzzy methods were

introduced by (Patton, 2005), (Uppal F. J., 2006), and (Korbicz J., 2007).

Fuzzy sets are used to describe the relationship of the current state of the

system to the normal or faulty state. This can be done through encoding

expert knowledge in verbal form using if-then rules to make the FDD

model.

(Bartys M. Z., 2002) introduced four fuzzy-based fault diagnosis methods

applicable for embedded systems in terms of a low computing power

requirement. The valve controller set point, control current of the EP

transducer, actuator pressure, stem displacement, and media flow rate were

used as inputs in these methods. (Várkonyi-Kóczy A. R., 2003) presented

an anytime fuzzy-based FDD approach. Anytime means the method can

provide FDD results regardless of the time and resources available for FDD

computation. This is an important factor when one is considering online

FDD methods implemented in embedded systems. Another computational
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cost-related reference is (Baranyi P., 2004). There the trade-off between the

fitting of the fuzzy model and computational cost was considered.

(Boc�nial� C. D., 2006) introduced a fuzzy-based FDD method. This

method was verified with all the faults introduced in the benchmark and

with 20 different strength levels. (Mendonca L.F., 2009) utilised fuzzy

models for fault detection and residuals for diagnosis.

In principal component analysis (PCA) the target is to extract correlated

variables to reduce the dimensionality of the system being monitored. This

approach to FDD was used by (Mina J., 2005).

(Ling B., 2007) proposed a signal model-based method. In this method

geometric features of measured signals are extracted and compared to the

features of the normal state of the system. The flow set point, flow, and

valve set point are used as input signals. The faults considered are dead-

band, backlash, leakage, and blocking. The method is utilised online and is

used in steady states.
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3. Control valve fault simulator

In this chapter is explained in detail developed control valve fault

simulator.  It is based on analytical models and is implemented in the

Matlab Simulink™ environment. The simulator is verified with the test

bench measurements done in the laboratory. After this the simulator was

used for fault simulations for generating data for FDD research.

The fault simulator consists of the following models: a valve controller

(nozzle-flapper and spool valve), a pneumatic spring return cylinder

actuator, a segment-type process control valve, medium flow in the process

pipe, and the flow control loop as seen in Figure 2. These analytical models

are fitted with some nonlinear fitting parameters, such as position-related

spring coefficients. A physics-based analytical model scheme was chosen to

make physical fault modelling and fault location in the model feasible.

Some relevant faults for each component are modelled to make fault impact

simulations possible. In the fault simulator different fault cases can be

simulated and their consequences analysed.

The simulator simulates the operation of a quarter-turn pneumatic

control valve. It consists of a valve controller (nozzle-flapper and spool

valve), a pneumatic spring return cylinder actuator, and a segment-type

process control valve as presented in Figure 3. In the figure, the internal

variables of the system and causalities of the variables are presented to

describe system operation.
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Figure 3. Control valve and its internal variables.

3.1 Control valve model

The analytical modelling scheme was chosen to make physical fault

modelling and fault location in the system easy. Additionally, analytical

modelling also gives knowledge about the system and helps to understand

the behaviour and characteristics of the system. This is valuable when

considering fault detection and diagnosis methods for the system.

In the modelling, the primary target was to model the main causalities

and the static and dynamic properties of the system. The target was not to

estimate all the parameter values or make a general model for all possible

control valves.

The submodels of the analytical control valve model are presented below.

3.1.1 Nozzle-flapper model

The nozzle-flapper is used as a prestage of the pneumatic system in the

control valve considered in this study. In the nozzle-flapper system

presented in Figure 4, the prestage pressure 	
�� can be controlled by

adjusting the flapper position, which controls the flow from the prestage

volume. This prestage pressure 	
�� controls the position of the spool valve.

An equation of motion for the flapper (1) is derived from Figure 4.

��)5 6 ��+ �� 6 �� 8 �� = 0 (1)
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Figure 4. Nozzle-flapper schematics.

Here �� is the effective mass of the flapper [kg], �� the viscous damping

force [N], �� the  coil  force  [N], �� the flapper spring force [N], and �� the

pressure force [N].��  is introduced in Equation (2). This force is linearly related to the coil

input voltage and is produced by a voice-coil which is attached to the

flapper.

�� : 
 ; �� ; ((�� 8 ����> ; �������� + 1) (2)

Here 
 is the coil input voltage [V], �� is the voice-coil force factor [N/V],�� is the ambient temperature [K], ���� is the voice-coil reference

temperature [K], and �������� is the voice-coil temperature coefficient.�� is introduced in Equation (3) and is caused by the effect of the prestage

pressure 	
�� through the nozzle and the flow adjacent to the flapper. 	�
[Pa] denotes the supply pressure in Figure 4.

�� : �	����� ; 	
�� ; ��������� (3)

Here �	�����  is the flapper pressure force coefficient, 	
�� is the prestage

pressure [Pa], and ��������� is the effective area of the prestage pressure at

the nozzle [m2].

Equations (4) and (5) are used to model mass flows through the fixed

restrictor �
��  and the nozzle ������� shown in Figure 4. These equations

are based on an adiabatic process, ideal gas law, and zero upstream velocity.

m� : ����C!@ "ABD (4)
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Here ��  is the mass flow [kg/s], � the flow area [m2], � the gas constant

287 J/kgK, �� the inlet pressure [Pa], �� the inlet flow temperature [K],  
the flow function, and C! the discharge coefficient.   is given by Equation

(5) and depends on the pressure ratio
EGEH .

� =
IJK
JLMN OOP� QR�S�DTSU 8 R�S�DTDVUU WX, �S�D  > R "O\�T UU]D , ^_`^abcde�fag

R "O\�T DU]D @ OO\� , �S�D h R "O\�T UU]D  , dia(�2e�fag
j (5)

Here �" is the outlet pressure [Pa] and � the polytrophic constant (for an

adiabatic process with air, � = 1.4).

The net mass flow �� ��# to the prestage volume is introduced in Equation

(6) and builds up the pressure 	
��  shown in Figure 4.

�� ��# : �� $� 8 �� �k# (6)

Here �� ��# is the net mass flow [kg/s], �� $� is the mass flow through the

fixed restrictor [kg/s], and �� �k# is the mass flow through the nozzle [kg/s].�� $� and �� �k#  are based on Equations (4) and (5).

Equation (7) is used to model the pressure 	
��. In this equation an

adiabatic process and ideal gas law are also assumed.

�� = Ol (�� ��3 8 ���&) (7)

Here � is the pressure [Pa], % the volume [m3], �� the surface area of the

volume change [m2], and & the velocity [m/s] of ��. In this case m�   = �� ��#.

3.1.2 Spool valve model

A spool valve is used as an output stage of the pneumatic system in the

control valve considered in this study. The position of the spool valve is

controlled by the prestage pressure 	
�� formed in the nozzle-flapper

system. The spool valve adjusts the actuator pressure and in this way the

position of the process valve.

An equation of motion (8) for the spool is derived from

Figure 5.

��)5 6 ��� 6 ��� + �' 6 ��� 8 ��� = 0 (8)
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Figure 5. Spool valve schematics.

Here �� is  the  mass  of  the  spool  [kg], ��� the  spool  spring force  [N], ���
the control pressure force [N], ��� the  supply  pressure  force  [N], �' the

diaphragm spring force [N], and ��� the  friction  force  [N].  E  stands  for

Exhaust, C for Cylinder, and S for Supply in the figure. Flow forces are not

considered in this model.

The spool spring force ��� is introduced in (9).

��� : (�� ; o)� 6 )����) (9)

Here (�� is the spool spring constant [N/m], )� is the spool position [m],

and )���� is the spool spring pretension [m].

 The diaphragm spring force �' is introduced in Equation (10).

�' : �'���� ; o�'��� 8 �'�) (10)

Here �'���� is the diaphragm coefficient, �'��� is the spring force [N]

caused by the diaphragm at the prestage pressure end of the spool valve,

and �'� is the spring force [N] caused by the diaphragm at the spring end of

the spool valve.

The friction model is an extended Karnopp model (11). In the original

Karnopp  model  (Karnopp,  1985)  parameters  are  common  for  both

directions of movement. The extended model applied in the present work

uses separate parameters for both directions of movement. Adding separate

parameters was essential to achieve sufficient model fitting in the actuator

model. There especially the Coulomb forces were notably different for the

negative and positive directions of movement.

�� =
IJK
JL ���$� = p��
�� 6 ��
��&, & q *%8����/ 6 ����/&, & h *%j

��#$�+ = Q min(��t ��
��)maxv��t 8����/w |&| y *%, �� q 0�� h 0 jj (11)
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Here �� is the friction force [N], & is the spool valve velocity [m/s], *% is

the zero velocity region [m/s], ���$� is the friction force [N] when &�� 0, and��#$�+ is the friction force [N] whene& = 0. ��
�� is the Coulomb friction force

[N] when & > 0. ��
�� is the viscous friction coefficient when & > 0, F,-., is

the stiction force [N] when & >  0. ����/, ����/, and ����/ are  the

corresponding forces for negative spool velocity. �� is the external resultant

force [N] driving the spool valve. Inside the *% region the velocity is

assumed to be zero and the friction force holds the spool valve in position

until breakaway friction is overtaken.

Mass  flow  through  the  spool  valve  is  modelled  with  the  same  mass  flow

equations (4) and (5) as within the nozzle-flapper. Leakage flow over the

spool is not considered in this model.

3.1.3 Pneumatic spring return actuator model

The  equation  of  motion  (12)  for  the  actuator  piston  is  derived  from

Figure 6.

��)5 6 ��� 6 ���+ �� 8 ��� = 0 (12)

      Figure 6. Pneumatic spring return actuator schematics.

Here �� is the effective mass of the piston and other moving parts [kg],��� the spring force [N], ��� the friction force [N], ��� the actuator pressure

force [N], and e�� the load force caused by the process valve [N]. The friction

force model is the same extended Karnopp model (11) as used with the

spool valve. The actuator pressure 	��  producing ��� is  modelled with the

same equation (7) as in the nozzle-flapper. Leakage flow over the piston is

not considered in this model.
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3.1.4  Segment process control valve model

A process valve is fitted to the actuator with its shaft attached to the

actuator hub, as shown in Figure 3. Consequently a separate equation of

motion for the valve is not implemented and only the moment of inertia

and friction are considered in the valve model. The friction model utilised is

the same extended Karnopp model (11) as used with the spool and with the

actuator.

3.1.5 Controller models

A cascade control scheme was implemented in the valve controller model.

The outer loop controls the process valve position and the inner loop the

spool valve position. The process valve position feedback control was

implemented as proportional control, while the inner slave loop was

implemented as PID control.

3.1.6 Medium flow in process pipe model

Flow through the process valve is modelled with Equation (13).

0 = 0.865 ; 1��2� (13)

Here 0 is the volumetric flow [m3/s], 1� is the capacity coefficient, and 2�
the pressure difference over the valve [bar]. 2�  is obtained from Equation

(14) (Driskell, 1983). This equation models the pump and pipe

characteristics by approximating both the characteristics of a centrifugal

pump and the pressure drop in a pipe resulting from turbulent flow. This

equation is only valid for liquids.

2� : 2�3 �
��
�\o�P�
�>��S (14)

Here 2�3 is the pressure difference [bar] over the valve when the valve is

closed and 4	� the pressure difference [bar] over the valve when it is fully

open.

3.1.7 Flow control loop model

The flow controller shown in Figure 2 is modelled as a PI feedback

controller. In a real application the set point of this controller would come

from the process control system.
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3.1.8 Modelled faults

Eight typical control valve faults presented in Table 1 were modelled in the

flow control loop model shown in Figure 2. The faults are clarified in more

detail below.

� An obstruction in the fixed restrictor reduces flow through the fixed

restrictor.

The fault was modelled as a blockage coefficient affecting mass flow

through the fixed restrictor.

� An obstruction in the nozzle reduces flow through the nozzle.

The fault was modelled as a blockage coefficient affecting mass flow

through the nozzle.

� A nozzle-flapper leakage (prestage pressure leakage) fault causes a

reduction in the net mass flow to the prestage volume.

The fault was modelled as a leakage path to the environment from the

prestage volume.

� A spool valve friction change fault causes an increase in Coulomb,

viscous, and static friction in the spool valve.

The fault was modelled as a friction fault coefficient affecting the

nominal friction parameter values.

� An actuator friction change fault causes an increase in Coulomb,

viscous, and static friction in the actuator.

The fault was modelled as a friction fault coefficient affecting the

nominal friction parameter values.

� An actuator leakage fault causes a reduction in the net mass flow to the

actuator.

The fault was modelled as a leakage path to the environment from the

actuator cylinder.

� An actuator mechanism backlash fault affects the actuator mechanism,

transforming linear piston movement to rotary valve movement.

The fault was modelled with a standard Simulink™ backlash block

affecting the actuator piston movement before the transformation

block.

� A valve friction change fault increases Coulomb, viscous, and static

friction in the valve.

The fault was modelled as a friction fault coefficient affecting the

nominal friction parameter values.
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3.2 Parameter estimations and model verification

The models presented above were implemented in the Matlab Simulink™

environment, as shown in Figure 7, and solved with numerical methods.

Most of the parameters were fixed but some were chosen as fitting

parameters. The fitting parameters were estimated manually for one model

module  (e.g.  flapper  equation  of  motion)  at  a  time.  With  this  approach

possible nonlinearities of the fixed parameters will also be included in the

fitting parameter. This is acceptable, because the motivation for the

simulator is to model system causalities and performance, not to estimate

exact parameter values.

Figure 7. Implemented Simulink™ model.

Ramps as excitation signals were used to estimate the static properties of

the module in its input-output domain, shown in Figure 8. Dynamic

properties were estimated in the time domain with step-like excitation

signals, as also shown in Figure 8. All the estimations were performed at

three different supply pressure levels, for example, 0,3, 0,5, and 0,8 MPa, to

obtain supply pressure-related nonlinearities in the model.

Figure 8. Flapper’s input-output domain (left) and time domain (right).
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The control valve was instrumented as shown in Figure 9 to measure the

internal variables presented in Figure 3 in order to get data for parameter

estimations and model verification. All internal variables except the net

mass flow to the prestage volume were available through the dSPACE™

environment. In Figure 9 the labelled sensors are: (1) the laser sensor used

to measure the flapper position; (2) the pressure sensor used to measure

the prestage pressure; (3) the laser sensor used to measure the spool valve

position; (4) the mass flow meters (two in number) used to measure the

mass flow to and from the cylinder; (5) the pressure sensor used to measure

the actuator pressure; (6) the strain gauge used to measure the valve load

torque, and (7)  the incremental encoder used to measure the process valve

position, while label (8) stands for the valve seal loading device used for

increasing the valve load.

Figure 9. Test bench and external sensors.

3.2.1 Nozzle-flapper

The first estimated parameter in the flapper equation (1) was the flapper

spring force ��, representing the flapper spring coefficient. This lookup table

was estimated by driving the flapper without supply pressure to introduce

all the nonlinearities of the flapper spring force �� and the voice coil force ��
(2). The simulated flapper spring force is shown in Figure 10. The red line
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��������� : � ; o��������\3���"�;(��������P��������))S
� (15)

The estimated ��������� agrees well with the result presented in the

reference (Burrows C. R., 1977), where the pressure effect area can vary,

depending on whether the area is calculated on the basis of the inner or

outer diameter of the nozzle.

Estimated �	����� lookup tables are shown in Table 2. The lookup table

presented in Figure 10 is an average of the estimated tables shown in the

table below.

Table 2. Estimated prestage pressure force coefficient lookup tables. 'N/A' means not
available because of flapper movement range in the conditions being considered.

Flapper
Position

[mm]
0 0.0350 0.0525 0.0700 0.1050 Range

[mm]

0,2MPa 0.9539 0.5846 0.4000 0.2550 N/A
0.005-
0.075

0,5MPa 1.0462 0.6769 0.5046 0.3525 0.0492
0.015-
0.100

0,8MPa N/A 0.7076 0.5538 0.4000 0.0308 0.030-
0.105

In Figure 10 the force coefficient is clearly linearly correlated with the

flapper position. This can be noticed by comparing the linear

approximation (red line) and table data in the figure. Therefore in fault

simulator-type models the linear approximation can be considered to

simplify the model.

In the references (Burrows C. R., 1977) and (Wang T., 2005) flow forces in

nozzle-flappers are considered, but their construction differs from that used

in this study. In these references the construction includes nozzles on both

sides of the flapper, as opposed to the one nozzle on one side of the flapper

construction used in this study. Therefore the estimated pressure force

(flow force) results cannot be compared to the results presented in these

references.

The estimation parameters in the mass flow model (6) were the discharge

coefficients in Equations e�� $� ande�� �k# . For e�� $�  the estimation parameters

were estimated with data captured from the test setup shown in Figure 12

with three different supply pressures, 0,3, 0,5, and 0,7 MPa.

Figure 12. Fixed restrictor test setup (right).
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In the measurements the supply pressure was kept constant and the outlet

pressure was linearly reduced to the ambient pressure and then increased

back to the supply pressure. The device under test (DUT) was just the fixed

restrictor, not the complete flapper-nozzle assembly. The results can be

seen in Table 3.

Table 3. Fixed restrictor discharge coefficients.

Supply Pressure 0,3MPa 0,5MPa 0,7MPa

Discharge
Coefficient

0.92 0.90 0.89

Figure 13 shows one of the estimation data sets used for the discharge

coefficient estimation.  The discharge coefficient Cd was estimated to be

0.90 when the average was calculated from the results presented in Table 3.

The critical pressure ratio
EGEH for choked flow was fixed to the ideal value of

0.528. In this case, this agrees well with the measurements, as can be seen

from Figure 13.

Figure 13. Fixed restrictor mass flow
estimation data.

The prestage pressure equation (7) and e�� �k# in Equation (6) were fitted

with the nozzle discharge coefficient lookup table presented in Figure 14. In

the measurements the flapper position ramps were run up and down with

three different supply pressures, 0,2, 0,5, and 0,8 MPa. The device under

test was the entire valve controller. Estimated nozzle discharge coefficient

lookup tables are presented in Table 4.
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Table 4.  Estimated nozzle discharge coefficient lookup tables. 'N/A' means not
available as a result of flapper movement range in the conditions being
considered.

Flapper
Position

[mm]
0 0.0350 0.0700 0.1050

Range
[mm]

0,2MPa 0.9500 0.9800 0.7800 N/A
0.005-
0.075

0,5MPa 0.9500 0.9800 0.8500 0.7000 0.015-
0.100

0,8MPa N/A 0.8800 0.7900 0.7000
0.03-
0.105

One of the nozzle discharge coefficient estimation data sets and the

average nozzle discharge coefficient lookup table calculated from Table 4

are shown in Figure 14. The flow area in the nozzle is equal to the fixed

restrictor in the case where the discharge coefficient starts to decrease

noticeably in the discharge coefficient lookup table in the figure. This might

indicate that the outlet pressure is not the ambient pressure as a result of

restricting elements in the flow path after the nozzle. Other reasons for this

kind of discharge coefficient shape might be a poorly modelled nozzle flow

area and/or prestage volume.

Discharge coefficient estimation results were not available from other

references, but in reference (Wang T., 2005) it was mentioned that the

sonic conductance is proportional to the gap between the nozzle and the

flapper.

Figure 14. Nozzle discharge coefficient lookup table (left) and prestage pressure (right).
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considered. Therefore the diaphragm spring forces were measured

separately by driving plain unpressurised diaphragms back and forth

through a force sensor. The diaphragms were assembled in their nominal

position in the spool valve assembly for the measurements. A model for the

diaphragms was obtained that was based on the measurements. These

measurement data and estimated model outputs are presented in Figure 15.

Figure 15. Diaphragm spring forces, spring end (left) and prestage end (right).

The diaphragm models are based on linear spring models defined in

specific spool movement ranges. The models take account of both spool

valve movement directions to achieve a measured hysteresis in spool valve

movement. Because the diaphragm models were estimated without

pressure affecting the stiffness of the diaphragms, a separate fitting

parameter �'���� in (10) was needed to apply the effects of pressure to the

stiffness of the diaphragm. The estimated diaphragm coefficient is shown in

Figure 16. As can be seen from the figure, the pressure and length of the

stretching of the diaphragm have an effect on the stiffness of the

diaphragms. It should be noted that the diaphragm diameters are different

and the supply pressure acts directly on one diaphragm when the prestage

pressure is acting on another one.

Figure 16. Spool spring coefficient (left) and diaphragm coefficient (right).

0 1 2 3 4

1

2

3

4

5

6

Spring End Diaphragm Spring Coefficient

Fo
rc

e 
[N

]

Spool Position [mm]

Measured
Simulated

0 1 2 3 4
0

5

10

Prestage End Diaphragm Spring Force

Fo
rc

e 
[N

]

Spool Position [mm]

Measured
Simulated

0 1 2 3 4
0

2

4

6

8

10

12

Spool Spring Coefficient

Fo
rc

e 
[N

]

Spool Position [mm]

Measured
Simulated

2
4

6
8

0
2

4

x 10-3

0.6

0.8

1

Supply Pressure [barg]

Diaphragm coefficient

Spool Position [m]

D
ia

ph
ra

gh
m

 C
oe

ffi
ci

en
t



43

The spool spring constant (�� in Equation (9) was also estimated by

driving just the spring back and forth through the same force sensor as was

used with the diaphragms. The spring was added to the spool valve

assembly in its nominal place for measurements. The results of the

measurements and simulations can be seen in Figure 16. As can be seen

from the figure, the spring acts very linearly and therefore the linear spring

model can be applied in the model.

When the static properties of the whole spool valve assembly were tested,

elastomer-based hysteresis from the diaphragms completely explains the

measured hysteresis in spool movement and can be seen in Figure 17.

Figure 17. Spool valve static (left) and dynamic (right) estimation data.

The dynamic properties of the spool valve model were estimated with

spool valve friction force parameters. One of the estimation data sets is

shown in Figure 17. All the friction model parameters were used as

estimation parameters. Friction forces were found to be negligible

compared to other forces affecting spool movement and therefore are not

presented in this study.

The mass flow model (6) through the spool valve was fitted with discharge

coefficients, as in the prestage model.

The mass flow filling the actuator cylinder was measured with a mass flow

meter with the test setup shown in Figure 12 with three supply pressures,

0,3, 0,5, and 0,8 MPa, and three different spool valve openings, 0.6, 0.8,

and 1 (on a  scale of 0-1). In the measurements the supply pressure was kept

constant and the outlet pressure of the DUT was linearly reduced to the

ambient pressure and then increased back to the supply pressure. The DUT

in the experiment was the valve controller. Estimated discharge coefficient

lookup tables are shown in Table 5, Table 6, and Table 7.
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Table 5.  Estimated coefficient lookup tables showing the mass flow discharge to
the cylinder with 0,3 MPa supply pressure.  Rows are for different spool
positions [0-1].

P2/p1 0 0.25 0.50 0.75 1

0.6 0.43 0.43 0.42 0.35 0.30

0.8 0.58 0.58 0.57 0.52 0.47

1 0.58 0.58 0.57 0.52 0.47

Table 6. Estimated coefficient lookup tables showing the mass flow discharge to
the cylinder with 0,5 MPa supply pressure.  Rows are for different spool
positions [0-1].

P2/p1 0 0.25 0.50 0.75 1

0.6 0.43 0.43 0.42 0.35 0.30

0.8 0.63 0.63 0.62 0.55 0.50

1 0.63 0.63 0.62 0.55 0.50

Table 7.  Estimated coefficient lookup tables showing the mass flow discharge to
the cylinder with 0,8 MPa supply pressure.  Rows are for different spool
positions [0-1].

P2/p1 0 0.25 0.50 0.75 1

0.6 0.43 0.43 0.42 0.35 0.30

0.8 0.63 0.63 0.62 0.55 0.50

1 0.63 0.63 0.62 0.55 0.50

One of the estimation data sets and the estimated fill-in discharge

coefficient  lookup  table  are  shown  in  Figure  18.  This  lookup  table  is  an

average lookup table calculated from Table 5, Table 6, and Table 7.

Figure 18. Fill-in mass flow estimation data (left) and flow coefficient (right).
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The fixed value of 0.528 for the critical pressure ratio
EGEH was again used.

This  is  an  acceptable  assumption,  as  shown  in  Figure  18.  It  has  to  be

noticed that in this case the estimated discharge coefficient includes several

other factors that have an effect, such as secondary pressure losses resulting

from the filter regulator, device housing, actuator piping, and connectors. A

significant drop in the discharge coefficient within the small spool valve

opening might indicate that the spool valve overlap is poorly modelled and

therefore the actual flow area is much smaller than that modelled. The

lookup table shows that the spool position and the pressure ratio
EGEH are

equally important factors in defining the discharge coefficient.

In references (Shearer, 1956) and (Richer E., 2000) the fill-in discharge

coefficients are estimated to be 0.89 for the spool valves.

The discharge mass flow from the cylinder was measured with a mass flow

sensor in the test setup shown in Figure 19.

Figure 19. Cylinder discharge mass flow test setup.

 In the measurements three spool valve openings, 0, 0.2, and 0.4 (on a

scale of 0-1), were used and the differential pressure over the DUT was

increased linearly from the ambient pressure to the supply pressure and

then reduced linearly back to the ambient pressure. All measurements were

performed with three supply pressures, 0,2, 0,5, and 0,8 MPa. The DUT in

the experiments was the valve controller. The results of the estimations can

be seen in Table 8.

Table 8.  Coefficient lookup tables showing the mass flow
discharge from the cylinder with 0,2 MPa supply
pressure.  Rows are for different spool positions [0-1].

Differential
Pressure [MPa]

0 0,2 0,5 0,8

0 0.1 0.58 0.60 0.60

0.2 0.1 0.66 0.80 0.80

0.4 0.60 0.70 0.80 0.95

One of the estimation data sets and the estimated discharge coefficient are

shown in Figure 20. In the lookup table the cylinder pressure is the

determining factor for the discharge flow coefficient, while the effect of the
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spool position is minor. The decreasing discharge coefficient related to the

increasing spool position might indicate secondary pressure losses, such as

the connectors affecting the discharge coefficient in larger spool openings.

In references (Shearer, 1956) and (Richer E., 2000) the discharge

coefficients from the cylinder are estimated to be 0.84 for the spool valves.

Figure 20. Discharge mass flow (left) and discharge coefficient (right).

3.2.3 Actuator

The actuator model equation (12) was fitted with friction force (11)

parameters, especially with the estimated Coulomb friction force

parameters shown in Figure 21. These parameters were estimated by

driving step series and ramps with an actuator, as shown in Figure 22.

Three different supply pressures, 0,35, 0,5, and 0,8 MPa, were used and the

estimation results are presented in Table 9 and Table 10.

Table 9. Estimated actuator Coulomb friction forces [N] in positive velocity.

Actuator
Position [m]

0 0.0194 0.0388 0.0582 0.0776

0,35MPa 110 100 170 150 130

0,5MPa 110 100 150 130 130

0,8MPa 110 90 130 110 110

Table 10. Estimated actuator Coulomb friction forces [N] in negative velocity.

Actuator
Position [m]

0 0.0194 0.0388 0.0582 0.0776

0,35MPa 600 600 550 590 590

0,5MPa 580 580 540 580 580

0,8MPa 580 580 540 580 580

As can be seen from Figure 21, the Coulomb friction force values are

notably different. That was the main reason for extending the Karnopp
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friction model by adding separate friction parameters for both directions of

movement. The Coulomb friction force with positive velocity is correlated

with the cylinder pressure, while the negative velocity cylinder pressure can

be neglected within the Coulomb friction force.

Figure 21.  Actuator Coulomb friction forces: for positive velocity (left) and for negative
velocity.

It should be noted that the estimated friction forces in this case include

several friction forces affecting the system. These are contact friction forces

between the piston and cylinder and shaft and sealing, and friction forces

acting in joints in the linkage.

In reference (Wang T., 2005) it is also noted that the Coulomb forces are

different for positive and negative piston velocities and the cylinder

pressure has an influence on the Coulomb friction force.

Figure 22. Actuator static and dynamic estimation data.
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contact between the valve seal and the closing element and are multiplied

by the sealing force to obtain the Coulomb friction forces. The sealing force

is a load force where the seal is pushing against the closing element. During

the estimation test runs the valve seal was loaded through a force sensor to

determine the correlation of the seal load with the Coulomb friction force

with two different seal loads.

Figure 23. Valve Coulomb friction coefficients.

3.3 Control valve model validation

All the model modules introduced above were connected together to form

the complete control valve model. The control valve model was validated

first  without  the  valve  controller  module  with  step  series  and  ramps.  The

validation results are seen as control valve’s submodule’s input-output plots

in Figure 24, Figure 25, and Figure 26. They show sufficient agreement

between the simulated internal variables and the measured results. That

confirms the model is capable of describing all the main nonlinearities and

causalities of the system being modelled and that it can be used for fault

simulation purposes.

Figure 24. Open loop validation: flapper position (left) and prestage pressure (right)
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Figure 25. Open loop validation: spool position (left) and spool mass flow (right).

Figure 26. Open loop validation: cylinder pressure (left) and valve position (right).

Then the control valve model was validated with the controller module in

place. Some closed loop set point signals and the valve position responses

are shown in Figure 27. These figures confirm that the simulator is capable

of describing the real behaviour of the control valve and can be used for

fault simulation purposes.

Figure 27. Closed loop set points and responses.
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3.4 Fault simulations

Four different fault simulation schemes were run with all faults (presented

in Table 1) to research the impact of faults on the system in different valve

use cases. These were open loop simulations without any controllers (spool,

valve, or flow controller), control valve simulations, and two different flow

control loop simulations as presented in Figure 28

Figure 28.  Fault simulations: open loop (yellow), control valve (green), and flow control

loop (red).

The simulation results were analysed to research how different faults

affect the internal variables and performance of the system. The target was

to keep the sizes of the faults small enough to maintain system performance

on a good level.

First, open loop simulations were run with ramps and series of steps as a

control signal, as shown in Figure 29.

Figure 29. Spool position during open loop simulations (prestage leakage).
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was to find out the impacts of faults on a system which did not have

controllers compensating for the faults. The variables related to the impacts

of the faults that were analysed were all control valve internal variables in

the time domain and flow control loop submodule’s input-output domain.

Examples of these are presented in Figure 30.

Figure 30. Open loop prestage pressure leakage simulations, flapper position in time
domain (left) and module’s input-output domain, flapper position vs. prestage
pressure (right).

The faults cause operation point changes to the internal variables. With

additive faults, such as leakages, this can be seen in the time domain figures

and in the module‘s input-output plots in Figure 30. These figures show

how prestage leakage affects the flapper position through the net mass flow

to the prestage volume and prestage pressure. The internal variables of the

system and variable causalities were presented earlier, in Figure 3.

As a result of the open loop simulations it can be stated that the operation

points of the internal variables after the location of a fault in the chain of

internal variables are affected by the fault. This is illustrated in Figure 31,

where the actuator leakage affects the net mass flow to the actuator and all

the operation points of the internal variables after this net mass flow are

shifted as a result of the fault. The magnitude of the shift in the operation

point shift is related to the size of the fault. The bars in the figure represent

the averages of the internal variables during simulations with different

quantities of actuator leakage. The averages are scaled to no-fault

simulation averages, i.e. zero corresponds to the no-fault situation.
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Figure 31. Operation points of the internal variables of the system. The variables in the
figure are (from left to right) control signal, flapper position, net mass flow to
prestage volume, prestage pressure, spool position, net mass flow to cylinder,
cylinder pressure, actuator torque, and valve position.

Second, the control valve simulations were run. These simulated typical

offline performance tests performed in process plants and service centres

during the servicing of control valves. Therefore separate simulations were

run again for different fault magnitudes and ramps and series of steps were

used as a control signal, as shown in Figure 32.

Figure 32. Valve positions during control valve simulations (prestage leakage).
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faults on a system which has controllers compensating for the faults. The
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the control valve internal variables in the time domain and flow control

loop submodule’s input-output domains. Examples of these are shown in

Figure 33. As can be seen in Figure 33, the effects of the faults on the
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operation points of the variables were the same as in the open loop

simulations.

Figure 33. Control valve prestage pressure leakage simulations, flapper position (left), and
flapper position vs. prestage pressure (right).

As a result of the control valve simulations it can be noticed that the

operation points of the internal variables before the location of a fault in the

chain of internal variables are affected by the fault. This is illustrated in

Figure 34, where prestage leakage affects the net mass flow to prestage

volume and all the operation points of the internal variables before this net

mass flow are shifted as a result of the feedback controller trying to

compensate for the fault. Compensation for the fault without loss of

performance is possible until one of the internal variables saturates.

Figure 34. The operation points of the internal variables of the system in flow control loop
simulations. The variables in the figure are (from left to right) valve set point,
spool set point, control, flapper position, net mass flow to prestage volume,
prestage pressure, spool position, net mass flow to cylinder, cylinder pressure,
actuator torque, and valve position.

Finally, flow control loop simulations were run. These simulated control

valve operation during two separate use cases. These use cases were fast

switching and flow control use cases. In the fast switching application the

control valve switches between an open and a closed position on a regular
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basis, as shown in Figure 35. In the flow control application the control

valve can be in a certain position for long periods instead. In the flow

control simulations the control valve was only in the same position for short

periods so that the simulations could be run through faster.

Figure 35. Flow during flow loop simulations, fast switching (left) and flow control (right).

The results from these simulations were consistent with the control valve

simulation results presented before. This illustrates that in a feedback

control scheme the controllers try to compensate for the fault and this

changes in the operation points of the internal variables.

3.5 Discussion

As noted before, it proved possible to analytically model control valve

dynamics, despite their inherent nonlinearities. These nonlinearities of the

system were estimated through selected fitting parameters. Within this

approach the possible nonlinearities of the fixed parameters will also be

included in the fitting parameter. This is acceptable, because the motivation

for the simulator was to model the system causalities and performance, not

to estimate exact parameter values. For this reason, measurement or

estimation uncertainty assessments are not performed for the estimated

parameters. In other references no comparable results related to the

estimated parameters were available and therefore a comparison cannot be

performed.

Straightforward models based on an adiabatic process, ideal gas law, and

zero upstream velocity were used to keep the model simple and effective.

For the same reason, many features were not modelled at all, such as the

flow forces acting on the spool valve and leakage flows over the spool valve

and cylinder piston.
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The only environmental conditions taken into account during the

experiments were those related to supply pressure, by using several

different supply pressures, while all parameter estimations were made only

for data captured at room temperature. The effects of the ambient

temperature were only considered within the modelling in some submodels,

not within all models. Therefore in future the effects of the ambient

temperature on the internal variables have to be researched in more detail.

During the estimations two unexpected findings occurred; the first was

the large diaphragm forces in the spool valve assembly, while the second

was that there were different Coulomb forces for negative and positive

velocity in the pneumatic actuator.

Large diaphragm forces are consequences of robust diaphragm design,

but these forces are not a setback for device performance, since the spool

valve feedback control loop easily compensates for these kinds of

nonlinearities. But consequently diaphragm forces have to be considered in

models of this type in the future.

When the Coulomb friction forces are as different as estimated in this

study, it is essential to use a proper friction model structure to get sufficient

model fitting. In this study the original Karnopp friction model was

extended to meet this requirement. The Coulomb friction force was notably

greater in the failsafe direction of the actuator. This might indicate that the

spring in the actuator pushes the piston in a somehow eccentric manner

and the piston does not move so smoothly as in another direction when

pressure is pushing the piston.

The models that were derived have been verified with measurements and

the modelling error was found to be acceptable for the fault simulations.

This means the simulator was capable of representing the causalities and

performance of the system being modelled.

Some typical control valve faults have been simulated and their impacts

on the internal variables of the flow control loop and control performance

analysed. The fault simulator introduced here can be used for fault

detection and diagnosis, as well as robust control research. Robust control

is an interesting topic in those cases where a fault is diagnosed, but it

cannot be fixed before the next planned shutdown, which might be 4 years

hence. Then performance should be maintained at an acceptable level

within the robust control schematic.
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4. Fault detection and diagnosis
method for a control valve

As already noted, nowadays valve controllers can detect some symptoms

from the control valve without having the capability to pinpoint the real

root cause of the fault. This detection is usually based on simple methods

such as limit or trend checking. In steady state conditions these methods

can be reliable, but when the operation point of the system changes and an

alarm limit is set that is related to this specific operation point only, faulty

alarms are easily generated. Diagnosing faults correctly and reliably is

essential in order to allocate resources effectively to repair the cause of the

fault. On the other hand, only information about which module or

submodule  has  to  be  replaced  to  repair  the  problem  is  required  when

performing maintenance activities.

Many advanced FDD methods are presented in the literature, as was seen

in the State of the art section, but implementing these methods in

embedded systems is not possible in many cases, because of limited

computing power.

At the moment offline tests such as hysteresis and step response tests are

used to evaluate control valve performance. This is not an effective method,

because the valve has to be isolated from the process for these tests to be

run. A more effective method is to perform the diagnosis online during the

operation of the device without disturbing the process.

As a conclusion the requirements for a modern FDD method

implementable in a valve controller can be listed: system operation point

changes should be compensated for, fault localisation should be done at

least to sub-modules, diagnosis should be performed online and before the

fault has a severe impact on system performance, and finally, the method

should require minimal computing power. In the literature review such a

method that fulfilled the requirements was not found and therefore it was

necessary to develop a new method.

The pneumatic process control valve fault simulator presented earlier

makes fault detection and diagnosis research for control valves efficient. In
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the fault simulator different fault cases can be simulated, their

consequences analysed, data generated for fault detection and diagnosis

research, and FDD methods verified.

A new FDD method based on findings related changes in the operation

points of the internal variables during fault simulations was developed. In

this method the faults can be detected through detecting changes in the

operation points of the internal variables. That was observed by analysing

the behaviour of the internal variables and submodule’s input-output

domains of the system during fault simulations. Operation point shifts are

the consequences of faults, since feedback control tries to compensate for

them. All the internal variables before the location of the fault that has an

impact in the chain of internal variables are part of the compensation

performed by the controller, as shown in Figure 34. That mechanism

enables faults to be localised by detecting the last internal variable affected

by the fault. The size of the operation point shift is proportional to the fault

size, as also shown in Figure 34. This method was introduced for the first

time by the author in the reference (Manninen, 2012).

Figure 34 showed in Chapter 3 how the operation points of the internal

variables are shifted by the prestage pressure leakage presented in Figure

36. In the event of this type of fault, the feedback controller compensates

for the leakage by moving the flapper closer to the nozzle in the nozzle-

flapper system. This reduces the mass flow though the nozzle and maintains

the required prestage pressure and spool valve position.

Figure 36. Nozzle-flapper schematics including
prestage leakage.

Other system input variables (e.g. set point, supply pressure, temperature)

than the faults can also affect the operation points of the internal variables.

Therefore the relations between these system input variables and the

internal variables have to be modelled in order to separate the effects of
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other input variables from the faults. In this case the pneumatic control

valve is a highly nonlinear system related to the system input variables.

That can be seen from Figure 37, where the effect of the supply pressure

and valve set point on the flapper operation point is presented. Therefore

nonlinear models should be used for the relations between the input and

the internal invariables.

The operation point of the system also has to be taken into account within

the diagnostic variables, as shown in Figure 37, where the load factor varies

as a function of the valve position, while the actual valve load remains the

same all the time. The load factor is a simple diagnostic variable

representing the process valve load. If this operation point-related variation

is not modelled, the load can triple in small valve openings without a fault

being detected, because the high alarm limit is set so high in order to avoid

alarms during fault-free operation at all operating points. If the alarm limit

is adjusted for one operation point only, faulty alarms are generated when

the operation point of the system is changed.

Figure 37. System nonlinearities (left) and the effect of the operation point on the
diagnostic variable (right).

In the method introduced here nonlinear relations are modelled through

multi-variable histograms.

4.1 Multi-variable histogram models

Multi-variable histogram models are simple statistical nonlinear models of

variable relations. The advantages of multi-variable histogram models are

their simplicity, ease of learning, and nonlinearity (Friman M., 2007).

As the name of the modelling scheme indicates, Multi-Variable Histogram

(MVH) models are based on histograms. As is known, a histogram is a

simple way to represent, for example, the distribution of a continuous

signal. Basically, an MVH model takes account of the operation point of the
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system with the explanatory variables and the model output is the

distribution of the variable being observed.

Figure 38 shows an example of a multi-variable model where the

relationship between the daily average temperature and observation month

is presented. In the model, the month is the explanatory variable for the

variable being observed (the temperature) and therefore it indicates the

operation point of the system. The output of the model is a temperature

histogram in relation to an operation point such as ‘in January’ (number 1

on the month axis). This temperature distribution also represents the

probability distribution of the temperature in the month under

consideration. As can be seen from the figure, the most probable average

temperature in January is 0 °C and the average temperature typically varies

between 5 °C and -20 °C.

Figure 38. Multi-variable histogram model about outdoor temperature
and month. (Friman M., 2007)

When the MVH model includes two explanatory variables, the model is

based on schematics where account is taken of the system operation point

within the operation point plane, as shown in Figure 39. There the system

input variables (Valve Set Point and Supply Pressure) as explanatory

variables define the operation point for the variable being observed. As

shown in the figure, the operation point plane is divided into 64 bins in this

case. One bin represents one operation point of the system and includes a

unique histogram as the model output for this operation point.
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Figure 39. Operation point plane for MVH
model including two explanatory
variables.

When the effects of other system input variables than faults are taken into

account within multivariable histogram model-based schematics, faults can

be seen as distribution changes (operation point changes), as presented in

Figure 40. In the figure, flapper position distribution is shifted by prestage

pressure leakage, as explained earlier.

Figure 40. Histogram models at one operation point.

It is essential to research which input variables are the most

representative explanatory variables for the variables being observed. It is

reasonable to include in the model only those variables which explain the

majority of the variation in the variable being observed in order to keep the

model structure as simple as possible.

In this study the most representative explanatory variables were searched
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means that the input variables producing the largest change in the entropy

of the variable being observed were searched for with Equation (16).

i : 8 � �$fa�"o�$)$ (16)

Here h is entropy and �$ is the probability, which is estimated from the

histogram of the variable by dividing it by the total number of observations.

More information about information entropy can be found in, among other

references, (Hlavácková-Schindler, 2007).

In this case, the most representative system input variables for each

variable being observed are seen in Table 11.

Table 11. Explanatory input variables for variables being observed.

Internal Variable Explanatory input variables

 Spool SP Valve SP

Control Temperature Valve SP

Flapper Position Supply Pressure Valve SP

Prestage Pressure Supply Pressure Valve SP

Spool Position Valve SP

Cylinder Pressure Valve SP

Valve Load Torque Valve SP

Valve Position Valve SP

Flow Valve SP

Basically, MVH model training puts the observations into the bins defined

by the explanatory variables, as in the outdoor temperature example where

the January observations were put into the January histogram. Usually

forgetting is used to implement adaptation to the normal system variations.

The MVH model can also be obtained from the simulation results if the

model has to be ready when the device is first operated. When the MVH

model is obtained during operation, faults are not allowed to be present in

the system to achieve a proper model for FDD applications.

As noted before, the model outputs are distributions. This makes it

possible to use a statistical approach for alarm limit generation. In the FDD

method introduced here, alarm limits are generated from MVH model

distributions. For example, high and low alarm limits can be calculated as

limits where 90% of the samples of the distribution are covered around the

average of the distribution. Then it can be assumed that the moving average

of the variable being observed stays between these limits during fault-free
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operation. When these alarm limits are generated for all the histograms

located in all the bins in the operation point space, the adaptation of the

alarm limit to the system operating point is achieved.

The effect of the operating point on the alarm limits obtained in the way

presented above can be seen from Figure 41. In the figure the red lines are

alarm limits and the blue line is the moving average of the variable being

observed. The figure also shows how prestage leakage affects the flapper

position.

Figure 41.  Moving average of flapper position and
alarm limits (upper) and prestage
leakage path diameter (lower) during
prestage leakage simulation.

4.2 FDD method evaluation

The method introduced here was evaluated with fault simulator-generated

data, including the 8 different faults shown in Figure 2. Some of the faults

were also simulated in a real control valve test bench in the laboratory.

 As shown in Figure 42, a noisy stepwise excitation signal was used in the

flow control loop simulations during the evaluation. During the simulation

environmental variables such as supply pressure and temperature were

varied as sinusoidal signals to simulate variations in the real operating

environment and therefore verify the robustness of the method that was

introduced.
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Figure 42. Flow control loop simulation (uppermost), supply pressure
(middle) and ambient temperature (lowest).

Every fault (presented in Table 1) that was tested was simulated as a

linearly increasing fault. The size of the fault was kept small enough to

maintain system performance on a good level. Figure 43 presents the

results of prestage leakage simulation as an example. Moving average

values of internal variables can be seen in the uppermost figure. Averages

are scaled in such a way that the value 0.5 means the variable is close to the

average histogram value. As noted before, the flapper compensates for

prestage leakage and this can also be seen in the figure when the flapper

position deviates strongly from the average position of the histogram. The

alarms generated during the simulation by the FDD method introduced

here are presented in the middle figure and the size of the fault in the lowest

figure.
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Figure 43. Flow control loop prestage leakage simulation data,
internal variable’s moving averages (upmost),
alarms (middle) and fault size (lowest).

Table 12 shows the results of all the fault simulations run in the fault

simulator or in the test bench in the laboratory. The markings in the table

are listed below.

� On the left-hand side of the table the internal variables of the system are

listed (from top to bottom): spool valve set point, control signal, flapper

position, net mass flow to prestage volume, prestage pressure, spool

valve position, net mass flow to cylinder, cylinder pressure, valve load

torque, and valve position.

� The green area in the table presents the internal variables which should

compensate for the fault according to the FDD principle presented

before.

� The variables marked in grey were not used in fault detection and

diagnosis.

� Simulated faults are listed at the top of the table. The faults behind the

numbers are clarified in Table 13.

� The number one stands for the triggered high limit and minus one for

the low limit alarm.

� ± means the high and low limit alarms are alternating. This is typical for

multiplicative faults, which are related to the sign of the variable being

observed.
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Table 12.  Results of flow control loop fault simulations.

Table 13 clarifies the fault markings presented in Table 12. The notification

'REAL' in the table means the data were gathered from the real control

valve tests run in the laboratory.

Table 13. Fault numbers in Table 12.

Fault

1 Fixed restrictor blockage

2 Nozzle block

3 Prestage leakage

3.1 Prestage leakage, REAL

4 Spool valve friction

5 Actuator leakage

5.1 Actuator leakage, REAL

6 Actuator friction

7 Actuator backlash

8 Valve friction

8.1 Valve friction, REAL

9 Actuator leakage and Valve friction

9.1 Actuator leakage and Valve friction, REAL

10 Prestage leakage and Valve friction

As can be seen from Table 12, all the faults can be detected and diagnosed

to the main modules of the system. Generally, the internal variable closest

to the fault reacts to the fault. Therefore the fault can be detected and

diagnosed through detecting the internal variables that are affected. The

results from the real control valve test bench for three faults that were

tested (faults 3.1, 5.1, and 8.1 in Table 12) are consistent with the simulator

results. It should also be noticed that some common mode failures (faults 9

and 10 in Table 12) were tested and both faults in these cases were also

detected and diagnosed.

Faults

Spool SP
Control
Flapper Pos
Pre Mass Flow
Pre Pressure
Spool Pos
C2 Mass flow
C2 Pressure
Load Torque
Valve Pos

-1
±1 ±1 ±1 ±1 ±1

1 -1
1 1 -1 1 1

±1 ±1 -1 -1

1 -1 1 1 1 1 1
-1 1 -1 -1 -1 1 -1

8 8.1 9 9.1 10

1 1 1 -1 1 1

1 2 3 3.1 4 5 5.1 6 7
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4.3 Discussion

On the basis of simulations and test bench test runs, it is possible to detect

and diagnose some typical control valve faults before there is a severe

impact on flow control loop performance. Anyhow, it should be noticed that

some other typical faults, such as sensor faults, are not tested within the

method introduced in the simulator. This might not be a problem when it is

not necessary to train the method in the faults and it reacts to all possible

faults as a result of the principle presented earlier in this study.

Fault detection and diagnosis can be performed with the online method

introduced in this study, which requires low computing power. This means

the method is implementable in a valve controller and diagnosis can be

performed without disturbing the process. The method introduced here has

not so far been implemented in an embedded system, but at the moment no

obstacles are seen which might prevent that implementation. As shown in

Figure 44, one problem with online methods might be the very restricted

operating range of the device, meaning that the device can be at the same

operation point for months. Therefore it is impossible to detect problems

where, for example, the valve load is increased as a result of corrosion in

another movement range than that which is now being operated.

Figure 44. Process control valve set point during a two-year period in the refinery; the
upper figure is the daily averages of the valve set points and the lower figure is
the valve set points for last three days.

The method introduced here is based on the observation that the internal

variable closest to the fault compensates and reacts first to the fault when

feedback control is utilised. That leads to an operation point shift for all the

internal variables before a fault in the chain of the internal variables in the

system. This principle can be utilised in all feedback-controlled

mechatronic systems. However, it should be noted that the internal

variables and causalities of the system being monitored should be known.

Internal mechanical feedbacks should also be recognised from the system in
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order to ensure reliable fault detection and diagnosis. When some of the

advanced control schematics are utilised, in many cases adaptive models

are basic features of the control scheme and therefore a separate model-

based FDD model is not needed. But, as stated many times earlier, these

advanced methods might be computationally too intensive and therefore

not applicable in all embedded systems.

The fault detection and diagnosis method introduced here was verified

with  simulator  and  test  bench  runs  and  found  to  be  applicable  to  the

detection and diagnosis of all the faults that were tested. This verification

was done only with one control valve combination, while the range of

products that are supported covers hundreds of different combinations.

However, the assumption is that the method introduced here is scalable for

different combinations as a result of its universality and adaptation to the

system that was monitored. It should also be noted that the method

localises the fault naturally rather than diagnosing exactly which fault there

is in the system. This is an important aspect when it is impossible to

consider all the possible faults which might affect the system being

monitored in this kind of very complicated application.

When diagnosis is performed, the prognosis will help to plan maintenance

measures. In this case prognosis means a prediction about how a fault or

problem will develop in the future. The FDD method developed here might

also support this requirement. Because faults affect the operation point of

the internal variable and when the physical limits of the internal variable

are known, prognosis can be performed by predicting when the internal

variable will reach its physical limits and therefore saturate. After

saturation system performance will be affected, because the controller

cannot compensate for the fault.
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5. Conclusions and future research

A fault simulator for a quarter-turn pneumatic control valve is introduced

in order to explore the impacts of faults on control valve performance in the

flow-controlling loop. The simulator consists of the following models: a

valve controller; a pneumatic spring return cylinder actuator; a segment-

type process control valve, the flow in the process pipe, and the flow control

loop. These analytical models are fitted with some nonlinear fitting

parameters, such as position-related spring coefficients. The impacts of

some faults on control valve and flow control loop performance are

introduced to illustrate the functioning of the simulator. The fault simulator

presented here makes possible the research and development of control

valve fault diagnosing methods.

In the second part of dissertation a simple fault detection and diagnosis

method is introduced. This model-based method is especially suitable for

embedded systems because the need for computing power is minimal. In

this method, the static model scheme is utilised to model inherent system

nonlinearities. When the explanatory variables are specified, the model is

obtained during system operation. Knowledge of the model structure or

fault learning is not needed. The method introduced here is applicable for

all systems where feedback control is utilised and some of the system's

internal variables are measurable.

In this method the faults can be detected through detecting changes in the

operation points of the internal variables. These operation point changes

are consequences of the faults, since feedback control tries to compensate

for them. All the internal variables in the chain of internal variables before

the impact of the location of the fault are part of the compensation

performed by the controller. That mechanism enables faults to be localised

by detecting the last internal variable affected by the fault. The size of the

change in the operation point is proportional to the fault size. Other system

input variables (e.g. set point, supply pressure, temperature) than the faults

can also affect the operation points of the internal variables. Therefore the

relations of these input variables to the internal variables have to be

modelled to differentiate the effects of other input variables from the faults.
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In this case these relations are modelled by multi-variable histograms.

Multi-variable histograms are simple statistical nonlinear models of

variable relations.

Eight typical faults, such as leakages, friction changes, and backlash for

the process control valve, were simulated in the process control valve fault

simulator and the proposed method was tested. The results show that all

faults (presented in Table 1) can be detected and diagnosed before there is a

severe impact on the control performance of the system. Some of the faults

were also tested on a real process control valve in the laboratory. The

results in the real environment are consistent with the simulator results.

The next research steps might be:

� the effects of ambient temperature on the internal variables,

because the ambient temperature might be the explanatory

variable for many internal variables;

� optimisation of the quantity of the operation point space bins and

the histogram sections;

� optimisation of the observed variables needed to localise the faults

to the required accuracy;

� verification of the method with other control valve combinations,

because there are numerous different actuator and valve types and

sizes in the range of products that are supported;

� the sensor faults and how these are detected within the method

introduced here;

� Can prognosis done after the fault has been detected and

diagnosed;

� robust control after the fault has been detected and diagnosed.
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