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Glossary 

Adaptive local feature An image is divided into blocks with a 

predetermined initial order, and new positions 

are sought for the blocks by maximizing a 

feature-specific function. The feature vector 

includes the positions of the selected blocks. 

Candidate block A coarse block selected from the predetermined 

blocks. The blocks for actual measurements are 

selected from the group of candidate blocks. 

Clarity The easiness of distinguishing the content of the 

image. 

Contrast The magnitude of visual differences, global and 

local. 

Computational method An algorithmic method used to compute the 

quality or a feature from a digital image. 

Correspondence block A local block area in an image that equals the 

block area in the reference image. 

Full-reference metric A metric that requires a pixel-wise reference to 

compute the quality. 

Global feature A single feature value that is calculated from the 

all pixel values of a reference image. The feature 

vector includes the parameter set of image 

statistics or the no-reference metric value. 

Graininess/noise High- to mid-frequency unwanted random- or 

fixed-pattern intensity distortion on image. 

High-level attribute An abstract subjective criterion that cannot be 

directly related to an objective property of an 

image (e.g., naturalness). 

Image content The subject matter, objects and settings of an 

image. 
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Local feature An image is divided into blocks, and the quality 

attribute-specific sensitivity values are calculated 

from the blocks. The feature vector includes the 

block-specific sensitivity values. 

Low-level attribute A concrete attribute that is associated with an 

objective property of an image, such as 

graininess. 

Naturalness The level of correspondence between a picture 

and the anticipated view or the real view in the 

memory of an assessor. 

Natural image A picture taken from a natural scene or from 

man-made objects. 

No-reference metric A metric that operates without a reference image 

or any information from one. 

Overall quality The overall quality rating of (or the overall value 

of) an image that depends on all of quality-

related attributes of that image. 

Reduced-reference 

metric 

A metric that extracts features from the reference 

image and employs them as side information in 

the assessment. 

Reference image The original image that is considered to be of 

perfect quality or free of distortions (also called 

the anchor image in subjective tests). 

Sharpness The level of clarity of details and edges. 

Test image A digital or printed natural image used in 

subjective evaluations or objective 

measurements. 

Test target A target that contains one or several technical 

test fields. 
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1. Introduction 

1.1 Background 

During the last few years, the number of consumer cameras has 

significantly increased. The maturity of digital camera technology and the 

integration of digital camera modules in mobile phones are the two main 

reasons for this growth. The number of captured photographs has 

increased at an even faster pace than the number of cameras, primarily 

because digital sensors have replaced expensive and tedious films as the 

image capture plane. Although more devices and methods of digitally 

sharing images have become available, printing these images continues to 

be a viable option. 

Objective quality measurements used to characterize imaging systems 

are the focus of this dissertation. The term “imaging system” denotes a 

capture device, such as a digital camera, and a display device, such as a 

printer or a screen. Image communication systems (i.e., streaming over a 

network) are beyond of the scope of the associated problem areas. Figure 1 

shows a generic imaging pipe where a camera captures a view and 

processes the information to represent the view. Afterwards, the captured 

information is transferred to the hard drive of a computer (or a network) 

and printed on paper or shown on a screen.  

�
Figure 1. The information form in the imaging pipe is analog (view), digital (image 
processing and transmission) and analog (display). 
 

The fundamental challenge to developing image quality metrics and 

methods for imaging systems arises from the analog-to-digital (ADC) and 

digital-to-analog (DAC) conversions that take place in the imaging pipe. 

The scene information captured by a camera is originally an analog signal 
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of an optical image. Before the captured information is digitally stored in a 

camera, an ADC is performed. Before captured information is printed on a 

paper or shown on a screen, DAC is required. That is, the form of the 

original or reference signal (optical or digital image) is different from that 

of the test signal (digital or optical image). 

The research and development work on imaging systems in industrial 

settings is continuous and cyclical and requires robust, feasible analysis 

and validation methods. The development work on consumer and low-end 

cameras is particularly challenging because of the cost and size limitations 

of the devices. Cheap optics and small-sized sensors with small pixels 

result in noise and unsharp raw images. Advanced signal processing is a 

requirement for adequate image quality. In the future, new imaging 

applications will bring new challenges and requirements. For example, 

stereoscopic camera modules and different types of environment-sensitive 

camera network systems will become common. In addition, consumer 

cameras will implement new computational applications. Features such as 

high dynamic range (HDR) imaging, face recognition and panorama 

imaging are now basic features in many advanced consumer cameras. The 

development work on quality metrics should also be continuous and 

progressive. The new metrics and methods should be able to tackle the new 

requirements that new functionalities bring.  

The three main quality-of-experience factors for imaging systems are 

usability, durability and image quality. Of these factors, image quality is 

probably the most important. Imaging systems are characterized using 

both subjective and objective methods.  In this dissertation, the term 

“subjective method” denotes a test performed on test participants. The 

term “objective method” refers to an algorithm or a method based on the 

computational processes applied to the test images. The output of an 

objective method is a value related to the function of an imaging system or 

the quality of an image that is captured, shown or printed by an imaging 

system. In a subjective test, an observer rates test images based on the 

overall quality or quality attributes. Quality attributes include sharpness, 

graininess, naturalness, clarity, contrast and brightness. For example, in an 

image quality hierarchy, naturalness and clarity are high-level attributes, 

and sharpness and graininess are low-level attributes. The high-level 

attributes are more subjective, and personal preferences affect them more 

than the low-level attributes. The low-level attributes are more concrete 

and easier to evaluate. An image quality hierarchy describes the levels and 

relations among different quality attributes. 

Subjective evaluations can function as the ground truth for image quality 

as long as the tests are planned well and executed carefully. However, 
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subjective measurements require a large number of assessors and are time-

consuming in nature. In addition, subjective measurements cannot be used 

for applications that require real-time parametric control based on quality 

data. 

The field of objective image quality research has tried to develop methods 

and models for predicting subjective quality and quality attributes as 

accurately as possible. Traditionally, test targets are employed in objective 

measurements of imaging systems. Test target data, however, do not 

correlate well with perceived image quality. The test target measurements 

primarily describe how imaging systems function rather than measure the 

perceived quality of images captured and processed by imaging systems. 

The perceived quality of images relates to attributes such as naturalness 

and clarity. Both of these high-level quality attributes can only be assessed 

from natural images. Test target images cannot be used. In this 

dissertation, the term “natural image” refers to a picture taken from a 

natural scene or from man-made objects. The term “test target image” 

refers to a picture taken from known test fields, such as frequency-

modulated bar patterns or tone- and color-modulated patches. Test targets 

allow us to determine how an imaging system distorts the known test 

signals when captured or rendered on display or in print. 

1.2 The goal of the dissertation 

The goal of this dissertation is to construct and evaluate methods and 

algorithms that measure quality attributes directly from natural images 

and thus replace test target images. If we reach this goal, the performance 

measurements of imaging systems can be streamlined because the tedious 

process of capturing test target images under strict laboratory conditions 

can be avoided. In addition, the same images can be used for subjective 

measurements. If both objective and subjective measurements could be 

performed from the same images, the relation between subjective and 

objective data and the constructs of the subjective data would be easier to 

establish. The ultimate goal is to replace subjective evaluations with 

objective computational models. 

The study focuses primarily on the functionality of the metrics rather 

than specific imaging systems. With regard to the chronological order of 

the research, we first addressed the image quality attributes that utilized 

features from digital reference images. The application was printed images. 

We then shifted our focus to the determination of image quality attributes 

from the images captured by cameras. Specifically, we examined methods 

that utilize the information from the scenes to be acquired as reference 
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data. Because the development process follows this chronological order, 

the methods developed later for the camera measurements are more 

advanced, and the weight and novelty of the dissertation lies more in the 

camera measurements than in the printing measurements. However, the 

fundamental principles underlying the developed methods allow us to 

apply the methods with minor modifications to characterize any imaging 

system. 

1.3 Dissertation contributions 

The contributions of this dissertation are concerned with the methods, 

algorithms and metrics that allow us to use the reference approach to 

measure image quality attributes directly from the natural images captured 

by cameras or printed by printers. The proposed methods and metrics are 

verified using the data from subjective studies developed and 

accomplished by the research partner of University of Helsinki, as detailed 

in the List of Publication and Author’s Roles on pages vi-vii. The six 

contributions of the dissertation are as follows:  

The first contribution of the dissertation concerns the method used to 

digitize and transform printed test images into the format of a reference 

image. The original image can be used as a reference file for measurements 

of printed image quality. However, the form of the printed test image is 

analog, and it should be digitized before it can be compared with the 

reference image. Previous studies [17], [87] used a reflective scanner with a 

standard ICC profile to digitize printed color images. In this dissertation, a 

high-quality camera was characterized by colorimetric and spectral 

methods, which turned it into a color-accurate digitization device. Because 

the dynamic range of digital cameras (and reflective scanners) is the 

limiting factor of their imaging performance, we used multiple exposures 

to capture the sample images. Publications I and II presented the 

digitization methods. 

The second contribution concerns the attribute metrics that utilize a 

reference image and compute the quality attributes for printed images. 

Reduced-reference (RR) type metrics were developed for the color 

contrast, sharpness and graininess attributes. The attributes were selected 

based on a subjective study. The state-of-the-art Full-reference (FR) and 

RR metrics compute the overall quality of an image instead of its attribute 

values. Although the previously proposed no-reference (NR) metrics 

compute the quality values of images distorted by a specific distortion, 

these metrics are also sensitive to other distortions. With the proposed 

method, we can compute attribute-specific values. In addition, as in the 
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printed images, the proposed metrics can be used for the images with a 

multi-dimensional distortion space. Publication I presented the proposed 

RR metrics for printed images.   

The reference image is not available for camera quality measurements. 

The third contribution concerns a reference camera. Publication IV 

examined the usage of a reference camera. The principle is that a reference 

camera captures scene information in the form of a reference image. With 

the aid of the information, we can compute the quality attributes of natural 

images captured by cameras. The current practice computes the image 

quality attributes of imaging systems from test targets. 

The fourth contribution relates to the methods employed to compute the 

sharpness, color noise and color difference of camera images. The 

contribution relates to the method and algorithms used to locate the 

optimal measurement positions from the captured scene. For the different 

attributes, the method uses different maximizing functions. The sharpness 

metric tries to find high energy areas, and the noise metric attempts to find 

low energy areas. The color metric searches for the most extensive color 

value set that can be captured from the scene. Publication III presented the 

noise metric, Publication V presented the sharpness metric and Publication 

VI presented the color difference metric. 

The fifth contribution addresses the method and algorithms used to 

search the corresponding areas between the reference and test images. The 

method uses area descriptors to search the corresponding areas. We can 

use the proposed method for camera images because the principle of 

searching corresponding areas is local. The non-linear geometric 

differences between the images captured by different cameras (i.e., those 

without planar views and without constant shooting positions) create a set 

of problems. However, we can avoid these problems by using the proposed 

method. Publications V and VI described the method and algorithms in 

detail.  

The sixth contribution is associated with the use of color information 

from natural images to compute image quality. We developed the RR type 

metrics to compute color contrast, color noise and color difference. The 

state-of-the-art algorithmic metrics do not utilize the color information of 

the test images. The proposed color contrast metric presented in 

Publication I is derived from the chromatic components of the CIELAB 

color space. The proposed color noise metric presented in Publication III 

utilized the components of the YCbCr color space to find the areas for 

computing chromatic noise in the test images. The proposed color 

difference metric presented in Publication VI expressed color in the 
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components of the CIELAB color space to compute the color value 

differences between the test images and the test scene. 

1.4 Dissertation structure 

This summary of the dissertation includes two parts based on Publications 

I-VI, which can be found in the appendixes. 

The first part (Section 2) provides an overview of the previously proposed 

definitions of image quality, reviews the state-of-the-art test target and 

algorithmic methods and explains the different types of test images. In 

particular, Section 2 discusses the lack and the problems related to 

algorithmic methods, when applied to imaging systems.  

The second part (Sections 3-5) covers the experimental part of the 

dissertation. Section 3 describes the developed methods, Section 4 shows 

and analyses the experimental results and Section 5 discusses the results 

and the contributions of the dissertation. 

As for the abbreviations and definitions, the reader is referred to the 

respective sections at the beginning of the summary. Symbols are defined 

in the context of the equations in which they occur. 

�

� �
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2. Survey of Image Quality 
Measurements 

2.1 Definitions of image quality  

Both Keelan and Engeldrum have used the term “excellence of image” as a 

definition of image quality. Keelan [50] stated, ”The quality of an image is 

defined to be an impression of its merit or excellence, as perceived by an 

observer neither associated with the act of photography, nor closely 

involved with the subject matter depicted”. Engeldrum’s [19] definition 

states, “Image quality is the integrated perception of the overall degree of 

excellence of an image”. 

Janssen’s definition draws from the assumption that image quality is 

related to two perceptual attributes. Janssen [48] described “the quality of 

an image to be the degree to which the image is both useful and natural. 

The usefulness of an image to be the precision of the internal 

representation of the image, and the naturalness of an image to be the 

degree of correspondence between the internal representation of the image 

and knowledge of reality as stored in memory”. 

This dissertation begins by pointing out that the image quality of an 

imaging system is determined by the quality attributes. In addition, we 

assumed that quality attributes can be classified into low- and high-level 

groups and that an image quality hierarchy can be formed. The high-level 

attributes are more subjective, and personal preferences affect the values 

of these attributes more than those of the low-level attributes. In addition, 

the meaning of image content is stronger with the high-level attributes 

than with the low-level attributes. High-level attributes cannot be directly 

related to an objective property of an image. The low-level attributes are 

concrete and general. 

Image quality hierarchy describes the levels and links of different quality 

attributes in the construct of overall image quality. With the aid of an 

image quality hierarchy, we can also present an image measurement 

hierarchy. An image measurement hierarchy depicts the links and relations 

among different image quality metrics. The following sub-sections present 
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the subjective image quality attributes of different imaging systems and 

derive a general image quality hierarchy. 

2.2 Subjective image quality attributes 

The image quality of image processing and imaging systems has been 

studied and analyzed using attributes and viewpoints that have clear 

differences. The literature on image processing has often focused only on 

transmission and compression distortions, such as JPEG and JPEG2000 

compression artifacts, white noise or packet loss distortions. The study of 

imaging systems appears to be a much more complex problem. For 

example, Keelan [50] classified the quality attributes of photographs 

(captured by a camera) into personal, aesthetic, preferential and artifactual 

groups. The low-level attributes of sharpness and noise are artifactual 

attributes. The low-level attributes of color balance, lightness and contrast 

are preferential attributes. Aspects such as lighting quality and image 

composition are aesthetic attributes. Features such as how an image 

preserves a cherished memory and conveys the essence of a subject are 

personal attributes. Keelan claimed that the classes describe how easy the 

attribute is to evaluate. Compared with the aesthetic and personal 

attributes, the artifactual and preferential attributes are straightforward to 

estimate. 

Different imaging systems need to be characterized in terms of device-

specific attributes and common attributes. Leisti et al. [59] and Pedersen et 

al. [88] have studied the quality attributes in the print context. Based on 

the results of a subjective interview test, Leisti et al. [59] claimed that the 

most important low-level attributes for prints are brightness of color, 

sharpness, graininess, brightness, color quality, gloss, contrast and 

lightness. The high-level attributes used to determine the meanings of the 

low-level attributes are realism, naturalness, clarity, depth and quality 

associations. Based on a literature survey, Pedersen et al. [88] identified a 

large set of attributes. The researchers compressed these attributes into six 

low-level attributes: color, lightness, contrast, sharpness, artifacts and 

physicality. The color attribute is related to hue, saturation and color 

rendition. The artifacts attribute includes noise, contouring and banding. 

The physicality attribute contains the physical parameters that affect image 

quality, such as paper properties and gloss. 

Nyman et al. [83] and Radun et al. [92] studied the attributes of images 

captured by cameras. Nyman et al. [83] claimed that the important low-

level attributes for the still image are sharpness, noise, lightness and color. 

The important attributes for video images were related to the same image 
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properties (sharpness, noise, lightness and color). In addition, the high-

level attributes “good enough picture” and “distorted unnatural colors” 

were used for the video images. For the sound quality of the video images 

the attributes named as “good enough” and “noise” were used. Radun et al. 

[92] studied the image processing pipes of mobile camera phones. 

According to the results, the most important image quality dimensions 

were color shift, naturalness, darkness and sharpness. Radun et al. [92] 

claimed that the high-level attribute naturalness is a requirement for high-

quality images, whereas quality can fail for other reasons in low-quality 

images. For example, a low-quality image can be dark and unsharp. 

Murdoch et al. [77] studied the attributes of TV displays. They claimed 

that the important attributes for TV displays are brightness, contrast, 

color, sharpness and motion quality. Jumisko-Pyykkö et al. [49] studied 

the quality of mobile 3D video. According to the results, the quality of 

mobile 3D video experiences is related to classes such as visual depth, 

spatial and temporal properties, viewing experience, quality factors in 

general, audio quality, audiovisual quality and content.  

2.3 Attribute relationships 

The quality attributes interact with each other. If the application-specific 

attributes and links are known, the underlying causes explaining the 

subjective data are easier to find, and an objective overall quality model 

can be derived. For example, with the aid of the Bayesian networks derived 

by Eerola et al. [18], we can analyze the effects of quality attributes on the 

subjective overall quality of a printed image. The learnt networks connect 

the objective instrumental measurements of prints to the subjective 

opinion distribution of human observers. For example, according to the 

links of the network shown in Figure 2, the subjective high-level attribute 

naturalness affects the low-level attributes gloss, graininess and 

colorfulness. 

I3A association [40] published an initial image measurement hierarchy 

for camera phones. In the hierarchy, the subjective low-level attributes are 

uniformity-ness, sharpness, hue-chroma (color) reproduction-ness and 

brightness (tone) reproduction-ness. The high-level attributes are 

genuineness, naturalness and usefulness. The image measurement 

hierarchy of I3A also shows different levels for the objective 

measurements. The lowest level of the objective measurements shows the 

technology variables of cameras. The image processing pipe and sensor 

design affect those parameters. For example, sharpening, denoising, 

demosaicing, automatic white balancing and auto-exposure are related to 
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image processing pipe design. Column noise, pixel design, spectral 

sensitivity, stack height and other issues are related to sensor design. The 

mid-level of the objective measurements shows the basic test target 

measurements or low-level technical measurements of digital cameras. The 

highest level shows the objective perceptual measurements that consider 

not only test target data but also the properties of the human visual system 

(HVS). 

 

�
Figure 2. A Bayesian network structure found by Eerola et al. [18] for the quality attributes 
of a set of printed images (copied from Eerola et al. [18]). 
 

Engeldrum [86] proposed the famous concept of Image Quality Circle 

(IQC) to help clarify the structures, links and elements of image quality 

rating and technology variables. The image measurement hierarchy of I3A 

and the IQC closely resemble each other. The objective level includes low-

level technical properties (as technology variables), low-level technical 

measurements (as physical image parameters) and perceptual 

measurements (as customer perceptions). The subjective level includes 

low-level subjective attributes (as customer perception) and high-level 

subjective attributes (as customer image quality ratings). 

2.4 The general measurement hierarchy for imaging systems 

Figure 3 shows the image quality measurement hierarchy that served as 

the foundation of the metrics developed in this dissertation. The hierarchy 

is hypothetic and based on the above literature survey. The attributes of 

the hierarchy are based on their generality in the area of imaging systems. 
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Sharpness, contrast, noise, lightness and color are the low-level attributes. 

The color attribute is composed of attributes such as color balance, color 

accuracy and chroma. Color accuracy includes several metrics that 

characterize color difference. 

Our hypothesis is that the overall image quality of a captured or printed 

image is a combination of the high-level attributes of clarity and 

naturalness. Naturalness is concerned with the correspondence between a 

picture and the anticipated view or the real view in the memory of an 

observer. Clarity determines whether the content of an image is easy or 

difficult to distinguish.  

 

�
Figure 3. The image measurement hierarchy for imaging systems. 

2.5 Test target metrics 

There is a strong tradition of characterizing imaging systems by using test 

target metrics. In the case of printers, the measurements are performed by 

printing digital test target images and by using specific measurement 

devices to measure the reproduction from the printed paper. The 

measurement device can consist of, for example, a densitometer, a 

colorimeter or a spectrophotometer. Prior scholars have called the printer 

measurements “instrument measurements”. The data have been used to 

compute, for example, color reproduction and accuracy, print density, 

print gloss, sharpness, details and unevenness [90].  

The test targets of digital cameras are measured by capturing the printed 

test targets under specific types and levels of illumination and by 

computing the metrics from the acquired signal. The ISO (International 

Organization for Standardization) has published camera measurement 

standards for sharpness [43], noise [45], lens optical distortion [47], ISO-
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value [42], opto-electrical conversion function [44] and color [46] 

characterization and measurements. 

The camera sharpness is measured by computing the frequency response 

of sharp edges (SFR, spatial frequency response). First, the gradient is 

calculated from the edge, and the Fourier-transformation gives the 

frequency response. It is known beforehand that the edges in the test target 

are sharp and that an accurate reproduction requires a camera that does 

not filter high frequencies or add energy in the edges. Publication V used 

MTF50 value as a reference for the proposed sharpness metric, which was 

computed directly from natural images. MTF50 is the spatial frequency at 

which MTF = 50% (i.e., at which the contrast has fallen to half of its value 

at low spatial frequencies).  

The standard camera noise measurements are performed by determining 

the signal-to-noise-ratio (SNR) from the even patches. It is known 

beforehand that the patches are even in the test target and that the 

intensity variance calculated from the images captured by the camera 

exists because of noise. The annex of ISO 15739 standard [45] also 

introduces a visual noise (VN) test target metric. Publication III used the 

VN metric as a reference for the proposed color noise metric, which was 

computed directly from natural images. VN accounts for the properties of 

the HVS. The image data of each patch are converted to the spatial 

frequency domain by using a Fourier transform, which is applied to the 

color components of a uniform color space. The noise power spectra are 

weighted with the CSF, and the inverse Fourier transform is applied. The 

weighted sums of the three standard deviations for each axis in a uniform 

color space are calculated. 

The camera color measurements are performed using specific color patch 

targets [85]. The metrics include the luminance, chroma and/or hue 

difference between the measured values from the test target patches and 

the computed values from the captured images. The measurement device 

can be, for example, a spectroradiometer or a colorimeter. Publication VI 

used the color difference values as ground-truth data for the proposed 

color difference metric, which was computed directly from natural images.   

Initially, the camera test target metrics were designed for the manual 

cameras. Adaptive processing in modern cameras hinders the 

interpretation of measurement data. For example, signal sharpening does 

not add new details in an image, even though the spatial frequency 

response value that measures the detail reproduction increases as a result 

of the sharpening [84],[66]. Noise removal algorithms filter noise energy 

from the smooth areas of images, and the SNR value increases. The 

problem is that it is difficult to distinguish between the image structure 



�
Survey�of�Image�Quality�Measurements�

�

13�
�

and noise energy, and a noise removal algorithm can also filter image 

details. The SNR value of a camera can be high, but image quality is low 

because the noise removal algorithm has filtered out the image details. 

Instead of predicting the subjective quality, the data from the test target 

measurements can be used to characterize the devices. The 

characterization describes how an imaging system reproduces, distorts and 

manipulates those signals captured under ideal conditions. For example, 

how an edge, a smooth surface or a color patch is reproduced can be 

measured. The SFR can indicate whether the imaging system filters or 

amplifies frequencies. The SNR computes the smoothness of the even 

patches after capturing or printing the image. The color metrics depict how 

different combinations of color signals are interpreted. These factors do 

not determine how a complex view (natural image) is captured by a camera 

or how a subject would perceive the view if the image was shown on a 

display or printed on a paper. 

Figure 3 shows the image measurement hierarchy derived from the 

literature review and used in this dissertation. Figure 4 expands the image 

measurement hierarchy in Figure 3 by including the system-level 

characterizations for which test target images are used. The whole 

measurement hierarchy outlines the distinct processes or levels for 

imaging system benchmarking studies. These studies need both subjective 

and objective data. A strong link exists between the objective test target 

metrics and the characterization values. However, the link between the test 

target and the subjective data is weak. The device characterization process 

measures the reproduction of the test targets captured or printed by an 

imaging system. The subjective quality measurement process requires 

natural pictures that are captured or printed by an imaging system. Test 

target pictures cannot be used. Only natural pictures can express the 

naturalness or clarity captured by a camera or printed by a printer. Both 

subjective and objective processes are tedious and require time resources. 

For the subjective tests, natural pictures should be taken, and for the 

objective study, the test target pictures should be taken in a controlled 

laboratory environment. 



14�
�

�
Figure 4. The whole image measurement hierarchy for benchmarking studies of imaging 
systems. 

2.6 Algorithmic metrics 

Previous scholars have mainly developed algorithmic metrics for image 

processing applications. Their objective is to estimate the overall quality 

directly from natural images. 

Algorithmic metrics can be divided into three types: full-reference (FR), 

reduced-reference (RR) and no-reference (NR) metrics. The metrics are 

divided based on the availability or usage of a reference image. Figure 5 

shows the basic requirements for the three types of metrics. An FR metric 

requires a pixel-wise reference image. That is, the original or reference 

image should be available, and the test image should be free from 

nonlinear geometrical local distortions. The corresponding pixel positions 

that relate the reference and test images should be known, or it should be 

possible to find them. The term “reference image” refers to an image whose 

visual quality or information capacity is high compared with that of the test 

images.  
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An RR metric requires some information from the original or reference 

image. An RR metric often computes a feature vector for the reference and 

test images. Unlike FR metrics, most RR metrics do not need pixel-wise 

reference images. The feature vector is often based on global statistics. For 

example, the feature vector can be composed of the parameters of given 

statistical distributions.  

An NR metric does not need a reference or original image. The computed 

image quality metrics are based only on the information that is available 

from the test image. However, the performance of NR metrics is still 

limited. Traditionally, NR metrics are based on the assumption that a 

specific and known distortion type has distorted the image. NR metrics fail 

if the distortion space of the test image is multi-dimensional. NR metrics 

cannot handle test images with many concurrent distortion types, such as 

printed images or images captured by digital cameras. 

�

�
Figure 5. FR metrics require a pixel-wise reference image, RR metrics require a feature 
vector from the reference image and NR metrics require the distortion type as input data. 
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2.6.1 Full-reference metrics 
Most FR metrics are based on HVS modeling [36], [8], the structural 

similarity principle or natural scene statistics (NSS) [99]. The HVS metrics 

are computationally complex. A HVS metric can include the components 

for preprocessing, channel decomposition, error normalization, error 

values pooling and fidelity value calculation [99]. The preprocessing 

component filters the images based on the point spread function (PSF) of 

the human eye. The channel decomposition component divides the signal 

into the scale and orientation information channels. The error 

normalization component filters the image by using, for example, CSF and 

the known masking functions. Finally, the error pooling component sums 

the pixel-specific error values between the reference and test images into 

one scalar number. 

The recent FR metrics are mainly based on the structural similarity 

principle. The assumption is that the overall image quality relates strongly 

to the ease of image interpretation. These metrics are computationally 

simpler than the metrics based on the HVS. In addition, the performance 

of the metrics is comparable with that of the metrics based on the more 

complex approaches. For example, Sheikh et al. [101] used the LIVE image 

quality database to evaluate several FR algorithms whose codes were 

publicly available on the Internet or obtained from the authors. According 

to the results, the IFC, VIF, SSIM (MS) and JND metrics performed much 

better than the rest of the algorithms. The IFC and VIF are based on the 

NSS, the SSIM (MS) is based on image structure and the JND is based on 

the HVS.  

The first metric that used the structural similarity between the reference 

and test images was the SSIM (Structural Similarity Index) metric [113]. 

The SSIM computes luminance, contrast and structural similarity values 

between the reference and test images. The structural similarity is 

measured using the cross-correlation value. Later, the SSIM metric was 

extended in several ways. For example, past scholars have used the 

complex wavelet domain [97], the edge-finding approach [10], the image 

gradient [11], different image scales, the SSIM (MS) [119], the added 

equalization dimension [5] and visual attention model weights [28] to 

enhance the performance of the original SSIM. 

The SSIM metric has almost become the de facto standard for validating 

new image processing methods, such as image compression or super 

resolution. The idea is to show that a compression method does not change 

images or that a super resolution method can use low-resolution images to 

construct an image comparable with its high-resolution counterpart.    
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In addition to the SSIM metrics, past scholars have proposed many other 

structural FR metrics. For example, Zhang et al. [126] created the FSIM 

(feature similarity index metric), which includes two components. The 

components measure the significance and contrast of the images. Kim and 

Park [54] proposed the PQC (phase quantization code) metric, which is 

based on the phase difference. Later, Kim and Park [53] proposed the 

APQC (amplitude/phase quantization code) metric, which is an extended 

version of the PQC metric. In addition to the phase difference, the APQC 

metric calculates the amplitude difference. Kim et al. [51] proposed the 

GIQM (gradient information-based quality metric), which calculates the 

Harris response (HR) values from the gradient image. HR describes the 

structures of points in images. Shnayderman et al. [104] proposed a metric 

that compares the singular values of singular decomposition for the 

reference and test images. Narwaria and Lin [80] proposed a metric based 

on the singular vectors of singular decomposition. This metric assumes 

that the singular vectors have information related to the structural 

differences between the images. Ma et al. [68] proposed a metric that 

calculates the visual horizontal effect (HE) and the salience from the SSIM 

image. The HE quantifies the effect of image content, and the SSIM 

expresses the effect of the orientation of a stimulus. Han et al. [33] 

proposed a metric based on the U matrix diagonal values of LU 

factorization. This metric assumes that the U elements of the matrix relate 

to uniformity or homogeneity. Zhang et al. [127] proposed a metric that 

calculates the number of stable edge points for the reference and test 

images. This metric assumes that the number of edge points relates to the 

structural correctness. 

2.6.2 Reduced-reference metrics 
According to some estimations, the performance of FR metrics, in case of 

single distortion images, has reached a saturation point [60]; the 

predictions of state-of-the-art FR metrics are close enough to subjective 

evaluations. New extensions or modifications of the metrics will not 

significantly increase the performance. However, in the case of imaging 

systems, the applicability of FR metrics is limited because of the lack of 

pixel-wise reference images. Furthermore, the performance can be lower 

because of complex and multiple distortion sources [87]. Compared with 

the full-reference principle, the reduced-reference principle increases the 

number of use cases. For example, RR metrics can be used with video or 

image streaming applications where feature vectors are sent through the 

ancillary channel [114]. 

Several RR metrics are based on the NSS. Natural un-distorted images 

have certain statistical properties that hold across different contents. For 
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example, it is a known fact that the power spectrum of natural scenes can 

be modeled while assuming that the fractal law will hold (i.e., 

approximating the shape with dependency 1/fa, where f is frequency and a 

amplitude parameter) [26]. The amplitude parameter provides the shape 

of the power spectra. The NSS approach to RR metrics often models the 

marginal probability distributions of the coefficients of a transformation 

space. For instance, the Cheng and Cheng metric [14] fits the image 

gradient values to the generalized Laplace distribution model. Their metric 

calculates the Kullback-Leibler distance (KLD) and the variance difference 

between the distributions of the reference and test images. The Xue and 

Mou metric [122] and the Wang et al. metric [120] calculate the wavelet 

coefficients by using the steerable pyramid technology. The Xue and Mou 

metric [122] fits the wavelet coefficients to the Weibull distribution model: 
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where � describes the scale, � describes the shape of the distribution and w 

is a coefficient. The parameters � and � from different scales are the 

features of the reference image [122]. The Wang et al. metric [120] fits the 

wavelet coefficients to the Generalized Gaussian Density (GGD) model: 
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where (a) is the gamma function, � describes the scale and � describes the 

shape of the distribution. The parameters � and � and the error incurred 

while approximating the empirical coefficients of this distribution from the 

different subbands of the wavelet decomposition are the features of the 

reference image. The Li and Wang metric [61] fits the wavelet coefficients 

to the GGD after divisive normalization. Their metric computes the KLD, 

standard deviation, kurtosis and skewness between the reference and test 

images. Figure 6 shows a principle where the original or reference image 

statistics are modeled using a parametric model, and the parameters 

function as RR features (feature vector). Image quality is calculated by 

comparing the features of the original image and test image. 
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Figure 6. The main principle of many RR metrics is that a distortion modifies the known 
image statistics and that image quality is calculated using the feature vectors derived from 
the parameters of the statistical models. 
 

The idea behind the NSS metric [14], [122], [120], [61] is that the 

orientation responses of natural images are highly kurtotic. The probability 

distribution of the responses of a natural image has a high peak and long 

tails. The marginal distributions change in different ways for different 

types of image distortions. Figure 7 shows the images captured by a high-

quality camera and a low quality-camera as well as the marginal 

distributions of the wavelet coefficients (first scale vertical band) for the 

images. The distributions of the images differ, and the difference can be 

modeled. Compared with the distribution of the un-distorted image (high-

quality image), the distribution of low-quality images (solid line) has a flat 

peak and short tails. For example, when � < 2 of the GGD (Equation 2), the 

tails are heavier than they are in the normal distribution, and when � > 2, 

the tails are lighter than normal. The tails may be heavy because of noise, 

and the tails may be light because of blurriness.  

Some RR metrics utilize the contrast sensitivity function (CSF) before 

calculating the overall image quality. For example, the Li et al. metric [62] 

applies the directional filter bank (DFB) to wavelet decomposition. The 

metric filters the wavelet coefficients by using the CSF and calculates the 

threshold value. The threshold value determines whether a wavelet 

coefficient is visually discriminative. The metric compares the numbers of 

visually discriminative coefficients between the reference and test images. 

In the study of Li et al. [62], the free parameter for the visual threshold 

equation was determined by empirical tests. The Tao et al. metric [109] 

uses the contourlet domain to calculate the RR feature. The coefficients are 

filtered using the CSF, and the visual threshold is calculated for different 

subbands of the wavelet decomposition. The metric compares the number 

of visually discriminative coefficients between the reference and test 

images in different subbands. The Ming et al. metric [73] is the same as the 

Tao et al. metric [109], but the former also calculates the average H and S 
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values in the HSV color space. The Maalouf et al. metric [70] uses the 

Grouplet domain to calculate the RR features. The Grouplet 

transformation is based on the group matching method, which classifies 

the points in the same neighborhood into groups and defines the image 

geometry. The metric calculates the difference in value between the 

coefficients of the reference and test images after using the CSF. The Gao et 

al. metric [25] uses multiscale geometric analysis (MGA), the CSF and the 

Weber JND to perform calculations. The MGA includes many different 

transformations, such as wavelets, curvelets, bandlets, contourlets, 

wavelet-based contourlets and directed filter banks. 

 

� �
(a) (b) 

(c) 

Figure 7. The image captured by the high-quality camera (a), the image captured by the 
low-quality camera (b) and the probability distributions of the wavelet coefficients for the 
high-quality (dashed line) and low-quality (solid line) images (c).  
 

2.6.3 No-reference metrics 
The literature has proposed many NR metrics, but finding quality 

measurements without having any knowledge of a reference is a difficult 

problem. Past scholars have often designed NR metrics to measure the 

distortion levels of images with a single distortion. The distortion is often 

JPEG or JPEG2000 image compression, blurriness or noise.  

Image blurriness is often measured by calculating the width of edges that 

can be found from the test image. For example, Marziliano et al. [71] found 

the edges by using the Sobel-operator and calculated the edge widths as 
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sharpness or blurriness is measured from the edge areas, the metric can 

interpret the noise energy of an imaging system or the block structure 

arising from the JPEG compression as an image structure. A noise metric 

can interpret the fine details of an image as noise energy. 

For example, Ciancio et al. [15] and Chen and Bovik [12] tested NR 

sharpness metrics on the blurred image database (BID [2]). The BID 

includes subjective data and real images captured by digital cameras. 

According to the results of both studies, the performance of the NR 

sharpness metrics is not high for camera images. The Chen and Bovik [12] 

metric had the highest correlation at 0.586. 

If the sharpness or blurriness of an image captured by a camera is 

measured, the intentionally unsharp background can also be a problem. 

The narrow depth of focus is a common method that photographers use to 

focus the viewer’s attention on the subject of the picture. The principle of 

the metric proposed by Narvekar and Karam [78] tries to compensate for 

the unsharp background problem. The metric computes the sharpness only 

from the areas that are defined (according to a threshold value) to be sharp 

enough. However, the metric cannot handle the noise energy, and the 

performance of the metric is not high for camera applications. Based on 

the study presented in Publication V, the performance of the metric [78] 

equals the performance of the standard sharpness metric based on edge 

widths [71]. 

Recently, the research on NR metrics has focused more on applications 

without a priori knowledge about the specific distortion type. The approach 

relies on learning models, which input the feature values computed from 

the test image. The goodness of the methods depends on the features and 

the data used for learning purposes. The features are e.g. based on DCT, 

wavelets, curvelet transformations or Gabor filters.  

For example, the Saad et al. metric [95] fits the DCT coefficients of the 

test image to the GGD model, and the features are derived from the 

parameters of the GGD model. The metric [95] was developed further by 

Saad et al. [94], who utilized statistical modeling and a different set of 

sample DCT statistics. Moorthy and Bovik [74] proposed a metric based on 

a framework with two phases. In the first phase, the probabilities for the 

different distortions are calculated. The probabilities are used as weighting 

factors for the second phase, when the quality values are calculated for the 

pre-determined distortion set. The GGD model parameters calculated from 

the wavelet coefficients function as features for both phases. The 

probabilities of the different distortions are modeled using the support 

vector machine (SVM). The image quality value is calculated using a 

support vector regression (SVR). Moorthy and Bovik [75] further 
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2.6.4 Color information 
Algorithmic metrics are usually applied only to the luminance or the 

intensity channel. This decision can be justified by the fact that the 

algorithmic metrics often determine the level of image deterioration in 

terms of the image structure. The HVS is more sensitive to changes in the 

luminance than to changes in the chrominance channels. However, some 

scholars have also suggested methods and metrics that utilize the 

components of the chromatic channels.    

A simple FR type metric is the color error, which is expressed as the 

Euclidean distance �E between the reference and test images in the 

CIELAB space. The performance has been increased by utilizing the 

properties of the HVS. For example, the S-CIELAB metric [128] accounts 

for the sensitivity of the HVS to spatial frequencies before the color error 

values are calculated. The Hong and Luo [37] metric assigns a higher 

weight to the dominant colors and to the color with a greater difference 

when calculating the color error values. 

If no reference image is available, the color metrics utilize the statistics of 

the images and different assumptions. For example, Yendrikhovskij [124] 

proposed a metric that computed the color naturalness of the image by 

using the mean and deviation values of the saturation component. Hasler 

and Süsstrunk [35] proposed a metric that computed the colorfulness of 

the image based on the mean and variation values of the chromatic 

components in the CIELAB space. The metric assumed that the perceived 

colorfulness of an image correlates with the mean and standard deviation 

in the chromatic plane. 

2.7 Test and reference image digitization 

In essence, test target measurements compare measured test signals with 

known reference signals. The main problem with the objective 

measurements of imaging systems using natural images is that these 

measurements are missing a reference signal (camera applications) or have 

different reference (digital) and test signal (analog) forms (printer 

applications). Table 1 lists the requirements for FR, RR and NR metrics 

when applied to camera and printer measurements. NR metrics can be 

used directly in the camera applications because the output of a camera is a 

digital image. FR and RR metrics always require a reference image. For the 

camera applications, reference images are missing. For the printer 

applications, a reference image is available because the original digital 

images can function as reference signals. The problem is that the printed 
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test images must be digitized before the test and reference signals can be 

compared. 

 

Table 1. Requirements for the FR, RR and NR measurements when applied to camera and 
printer quality measurements  
 

 Camera Printer 

FR Pixel-wise reference image Test image digitalization 

Pixel-wise image registration 

RR Reference image Test image digitalization 

NR - Test image digitalization 

�

A few studies have applied NR metrics to camera images [15], [12] or to 

printed images [30], [32]. In addition, prior scholars have proposed 

frameworks [17], [87] for applying FR metrics to printed images. 

Halonen et al. [30], [32] applied NR metrics to measure the quality of 

printed images. In the study [30], the researchers used a scanner to 

digitalize the sample. In the studies presented in [32], Halonen et al. used 

the digital images that were digitized using the method developed in this 

dissertation. The digitization system was based on a high-quality camera 

and is described in detail in Section 3.5. By comparing the results of the 

study [30] using a scanner with those of the studies [32] using the camera 

system, we can conclude that the performance of the proposed camera 

system is high compared with that of a scanner.  

Eerola et al. [17] and Pedersen et al. [87] proposed methods for applying 

FR metrics to printed images. Figure 11 shows the components of Eerola’s 

method [17]. The method digitizes the printed image (hardcopy) by using a 

scanner, descreens the scanned image by using a Gaussian low-pass filter 

(GLPF) and registers the original and test images. The registration 

accuracy of the method is less than a pixel between the reference and test 

images. Eerola et al. claimed that the inaccuracy is compensated for by 

low-pass filtering before the quality computation. Pedersen et al. [87] 

assumed that because FR metrics often include low-pass filtering, they 

compensate for the pixel-wise inaccuracy of the registration. 

In both studies [17] and [87], the researchers applied state-of-the-art FR 

metrics to measure the quality of printed images. In Eerola’s study [17], the 

performance of some FR metrics was high with the test image set, whereas 

in Pedersen’s study [87], the performance of FR metrics was low.  

Pedersen’s image set included fifteen images. The images were processed 

with two sRGB ICC profile versions (v2 and v4). In addition, the images 

were further processed to obtain eight different reproductions for each 
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original image. The images were printed, scanned and registered. The 

printed images were evaluated by 30 observers, and FR metrics were 

applied to the scanned and registered images. The Pearson correlation 

coefficients between the subjective evaluations and FR metrics were low 

for all of the implemented metrics. 

Eerola’s image set [17] included three images printed by ink-jet and 

electrophotography printers. The variation in images arose from the use of 

different grades of paper. The printed images were evaluated by 28 

observers, and the scanned and registered images were measured by FR 

metrics. The state-of-the-art FR metrics accurately predicted the subjective 

evaluations. The highest correlation coefficients were over 0.96 for the 

image set printed by the ink-jet printer and over 0.86 for the images 

printed by the electrophotography printer.  

Eerola’s registration method [17] was based on global image 

transformation. First, SIFT (Scale-Invariant Feature Transform) computes 

the corresponding points between the reference and test images. Then 

RANSAC (random sample consensus) is used to find the best 2D-

homography, and the test image is transformed into the reference image.  

Pedersen’s method is simpler, but it is more cumbersome to use than 

Eerola’s method. Pedersen’s method requires an image to be padded with a 

white border and equipped with four register marks before being printed. 

The method calculates a similarity transform based on the registration 

marks. Eerola’s method is free of registration marks. It finds the 

corresponding points between the reference and test images and makes the 

global image transformation based on the points. 

Both methods fail for those images that have been captured by different 

cameras. The methods cannot model the nonlinear geometrical 

transformations between the images. Eerola’s and Pederesen’s methods 

function only if the test images are captured from a planar surface (e.g., 

printed and scanned images). The methods fail to work for those images 

that have undergone geometrical distortions (e.g., camera images).   
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�
Figure 11. The structure of the Eerola et al. [17] framework and the data flow for 
computing full-reference image quality metrics for printed images. GLPF is Gaussian low-
pass filter. (copied from Eerola et al. [17]).  
  

2.8 Types of test images 

For the purposes of image quality research, scholars have developed 

different test images. The publicly available test images help to develop 

algorithms and image processing methods that predict subjective image 

quality or, in the case of image processing, help to improve quality. The 

general requirement for the test images is that they should reflect typical 

problems from real-world applications. The problems should be visible 

from the displayed, printed or captured test images and should 
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differentiate the imaging systems or image processing algorithms of 

interest. 

Table 2 groups the test image types into three categories: test image 

databases, digital test images and test image scenes. Each type serves 

different purposes. 

Test image databases include sets of test images that have undergone 

some type of distortion and subjective data. Test image databases are used 

to measure the performance of image quality algorithms. The algorithm 

can be a full-reference or reduced-reference algorithm only if the database 

also includes the undistorted images. Without the undistorted images, only 

NR metrics are applicable. 

Digital test images can be used to measure the performance of displays, 

printers and some image processing algorithms. These algorithms include 

image compression, image enhancement and tone-mapping methods. Test 

image scenes are used to measure the performance of camera systems. 

 

Table 2. Test image types for measurements of visual image quality 
 

 Image database Digital images Image scenes 

Measurement 
application 

Image quality 
algorithms 

Image 
processing 
algorithms, 
Displays and 
printers 
 

Camera systems 

References LIVE [101], TID 
[89], IVC[58], 
A57 [9], MICT 
[38], BID [2] 

Sony [106], 
Kodak [55], 
HDR images 
(Fairchild) 
[22] 

Image clusters 
(I3A) [40] 

�

Each test image type is associated with a distinct measurement 

procedure. A test image databases have been used for measuring the 

performance of image quality algorithms. First, an objective image quality 

algorithm computes the objective data. Then, for example, the correlation 

coefficients between the objective data and subjective data are used to 

evaluate the performance of the algorithm. 

The measurements of displays, printers or image processing algorithms 

cannot utilize a priori collected subjective data. The inputs are digital test 

images, and the differences between the inputs and outputs are measured. 

As a result, the subjective data of the output images need to be collected 

afterwards. With printers, the images are evaluated from prints. With 

displays and algorithms, the displayed images are evaluated. The objective 

data for displays and printers should be measured from the digitized 
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versions of the printed or displayed optical (analog) images. The objective 

data for processed images can be measured from the output image of an 

algorithm. Available test images are useful, because staging scenes and 

capturing processes can be avoided. In addition, if the same test images are 

used, the data from different measurement sets are more comparable.  

The camera measurement applications cannot utilize existing digital test 

images. The performance of a camera system should be measured based on 

the images captured and processed by the camera system. The traditional 

method captures physical test target images (see Section 2.1). The 

predefined test image scenes make the image acquisition process faster 

and easier. In addition, the verified test image scenes ensure that the 

captured test images measure the critical aspect of camera performance. 

The subjective data are gathered by showing the captured images on a 

display or as prints. Objective data can be computed from the digital 

images captured and processed by the test cameras. 

From the standpoint of this study, digital test images and test image 

scenes are relevant. Test image databases cannot be utilized for measuring 

the performance of imaging systems. 

2.8.1 Digital test images 
Some standard and general digital test image sets can be used to test image 

processing algorithms. The Sony sRGB standard image set [106] consists of 

two indoor images (portrait and party themes) and an outdoor image 

(picnic theme). The Kodak Lossless True Color Image Suit set [55] consists 

of twenty-two outdoor images and two indoor images. 

Fairchild [22] presented a high-dynamic-range (HDR) test image set that 

includes HDR images with the colorimetric and color appearance data 

from a scene. Kuhna et al. [57] made HDR test images available. The test 

images were designed to test the performance of tone-mapping algorithms. 

The researchers chose images that were similar to the photographs 

consumers typically take. 

Halonen et al. [31], [32] created test images for print quality evaluation 

purposes. The development work was started with three image contents 

(Figure 12). These images were chosen based on the presence of aspects 

important to image quality, such as memory colors (skin, sky and foliage), 

memory shapes (human face and cactus), different shades of natural green 

and areas with uniform colors and small details. Different types of surface 

materials ranging from shiny and smooth (e.g., porcelain and fabric) to 

detailed and textured (e.g., a zipper and rock) were also considered. The 

ultimate goal of Halonen et al. [31], [32] was to construct a single image for 

measuring all aspects of printed image quality. The development process 

included three test image versions. Figure 13a shows the first version of the 
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image, Figure 13b the second and Figure 13c the third. The first version of 

the image was highly engaging from a visual standpoint, the second version 

was highly colorful and the third version was the most natural [31]. 

In this dissertation, we used the image contents of Figure 12 to validate 

the proposed quality attribute metrics for printed images. The subjective 

measurement procedure and data are presented in Section 4. 

(a) (b) (c) 

Figure 12. Test images (i.e., man (a), cactus (b) and lake (c)) that include important 
aspects of image quality, such as memory colors, memory shapes, different shades of green 
and areas with uniform colors and small details. 
�

(a) (b) (c) 

Figure 13. Process of developing the test image to evaluate the print quality; first version 
(a), second version (b) and third version (c) [31]. 
 

2.8.2 Test image scenes 
One step in moving from test target views to natural image scenes in 

camera characterization is to embed test targets or patches into a natural 

scene. Koivisto [56] followed this approach when he designed a test scene 

with hidden color patches to measure the color reproduction of digital 

cameras. Color measurements were performed by comparing the color 

values of the patches, which were measured by a color-calibrated camera 

and calculated from the images captured by test cameras. Figure 14a shows 

the scene and the locations of the hidden patches. Figure 14b shows the 

colors of the patches. The method proved to be promising, but the color 

accuracy of the calibrated camera was inadequate. The inaccuracy caused 

errors when calculating the reference color values of the hidden patches, 

and the performance of the method was only mediocre.  

�
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(a) (b) 

�Figure�14.�A�test�image�scene�with�embedded�color�patches�(a)�and�the�colors�
of�the�patches�(b)�[56].�

�

The objective camera quality measurements of this dissertation were 

performed based on the images captured from natural test scenes. The test 

scenes were designed and selected to meet the benchmarking requirements 

of camera phones. The author of this dissertation was the main developer 

of the scenes. 

The starting point of the scenes was the photospace approach described 

by I3A [40]. According to I3A, the photospace statistically describes the 

picture-taking frequency as a function of the subject illumination level L 

and the subject-to-camera distance D: PSD(L, D). The PSD is defined as a 

probability distribution: “the probability that an image is taken within a 

certain range of subject illumination and within a certain range of subject-

camera distance” [40]. 

Segur [98] distinguished the photospaces of photographic utilization and 

photographic motivation. The photographic utilization space relates to a 

graph that describes where the camera users take photographs. The 

photographic motivation space relates to a graph that describes where the 

camera users would take photographs if possible. For example, compared 

with the range of a mobile phone camera, the operating range of a high-

quality SLR camera is extensive; with the telephoto lens of SLRs, it is 

possible to photograph distant objects that could not be captured by 

camera phones. The test scenes used in this dissertation represent the 

photospace of photographic utilization.  

In addition to I3A, Hultgren and Hertel [39] presented a photospace for 

camera phones. The study [39] drew its material from five cameras and 

480 photos. According to the results, low illumination and short shooting 

distances dominate the probability distribution.  
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The photospace is also an interesting concept for video cameras. For 

example, Säämänen et al. [96] used it to define the concept of videospace 

by extending the photospace concept to three dimensions: scene lighting, 

subject-camera distance and object motion. 

The photospace defined by I3A was divided into six parts, which are 

called clusters. Table 3 presents the definitions of the clusters [40]. A 

cluster defines the subject illuminance, subject-camera distance and scene 

descriptions for a typical scene captured by a mobile phone camera. 

 

Table 3. Camera phone clusters defined by I3A [40] 
 

Cluster Subject 
illuminance 
(Lux) 

Subject-
camera 
distance 
(m) 

Typical scene description 

1 < 50 � 1 Close-up in dim-dark lighting 
conditions (indoor/outdoor) 
 

2 50-100 � 1 Close-up in typical indoor 
lighting conditions 
(indoor/outdoor) 
 

3 < 50 > 4 Small group in dim-dark 
lighting conditions 
(indoor/outdoor) 
 

4 50-100 > 4 Small group in typical indoor 
lighting conditions 
(indoor/outdoor) 
 

5 > 3400 0.5-2 Small group in cloudy bright 
to sunny lighting conditions 
(outdoor) 
 

6 > 3400 > 7 Scenic landscape/large 
groups in cloudy bright to 
sunny lighting conditions 
(outdoor) 
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We staged the scenes that are currently being used in ongoing projects 

and that were used in this dissertation with the following objectives in 

mind: 

� be difficult to capture for typical camera phones, 

� be able to differentiate camera phones, 

� reveal camera-specific problems and 

� represent views that typical camera phone users might capture 

with their cameras. 

Table 4 shows the descriptions and two images per cluster as examples. 

The images in Cluster 1 simulate a bar or restaurant image. They are 

close-up photos in dark lighting conditions. The illuminance is 2 lux, and 

the images are mainly exposed by camera flash. The short shooting 

distance sets the requirements for flash and signal gain tuning. 

Clusters 2 and 3 simulate a living room environment. Cluster 2 is a close-

up photo in typical indoor lighting conditions, and Cluster 3 is a photo of a 

small group in dim lighting conditions. The illuminance levels are 100 lux 

and 10 lux, respectively. In particular, Cluster 3 sets the requirements for 

flash power because the illuminance is low and the shooting distance is 

long (4 m). 

Cluster 5 simulates a tourist image, and Cluster 6 simulates a landscape 

image. Cluster 5 is a photo of a small group in cloudy to sunny lighting 

conditions. Cluster 6 is a typical landscape photo. Cluster 4 is a studio 

image that device manufacturers use to make signal-processing 

adjustments or other measurements. Clusters 1, 2, 3, 5 and 6 are views that 

mobile phone users might be expected to capture with their cameras. 

In this dissertation, the image scenes of Table 4 were used to validate the 

proposed quality attribute metrics for camera images. The subjective 

measurement procedure and gathered data are presented in Section 4. 
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Table 4. The illuminances, shooting distances and scene descriptions for the camera 
quality measurement clusters 
 

Cluster 

Subject 
illuminance 
(lux) 

Subject-
camera 
distance 
(m) 

Scene 
description Images 

1 2 0.50 Close-up in 
dark 
lighting 
conditions 
  

2 100 1.50 Close-up in 
typical 
indoor 
lighting 
conditions 
 

 

3 10 4.0 Small 
group in 
dim 
lighting 
conditions 
 

 

4 1000 1.50 Studio 
image 

 
5 > 3400 3.0 Small 

group in 
cloudy 
bright to 
sunny 
lighting 
conditions 
 

 

6 > 3400 > 50 Landscape 
image in 
cloudy 
bright to 
sunny 
lighting 
conditions 

�

�
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3. Reference Image Quality 
Measurement Methods for Imaging 
Systems 

This dissertation is grounded on the argument that the objective quality 

measurements of imaging systems can be simpler and the accuracy with 

which subjective quality is predicted can be higher if two conditions are 

met: 1) a reference image is available; and 2) instead of test targets, natural 

images are used. The next few sections summarize the methods proposed 

in Publications I-VI to enable the use of natural images. 

Figure 15 shows the proposed image quality measurement framework. 

The illustration shows two applications of the framework: 1) camera 

measurements and 2) printing and display measurements. The inputs of 

camera measurements are the images captured by reference and test 

cameras, whereas the inputs of printing/display measurements are digital 

images. 

The two main components of the framework are “characterization of 

image” and “computation of image quality”. In addition, the application of 

printing/display measurements uses a component called “digitization of 

print/displayed image”. The boxes with gray backgrounds describe the 

devices under study. In the camera measurement test, the cameras output 

digital test images for the “computation of image quality” component. With 

the printing/display measurement, the printed or displayed test images are 

digitized and fed to the “computation of image quality” component. The 

output of the framework is the value of an image quality attribute. 

The inputs of the “characterization of image” component are reference 

images and the specification of a quality attribute. A reference image is 

used to compute a feature vector that can help compute the quality 

attributes of natural images. 

The reference image in camera measurements is an image captured by a 

reference camera from the same test scenes used for the test images. The 

reference image for print/display measurements is a high-quality digital 

test image. The quality of the reference images should be high enough to 

compute robust features for the image quality metrics. For example, in this 
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dissertation, we took the reference images by using a high-quality 

professional SLR camera with a high-quality lens. 

In this dissertation, we focused on the reduced-reference approach. With 

camera measurements full-reference approach can be problematic, 

because of non-linear geometric differences (perspective and lens 

distortions) between reference and test images (i.e., those without planar 

views and without constant shooting positions). For example pixel-wise 

reference images are missing. Section 3.3 further explains the problem. 

With printing measurements, the full-reference approach is feasible. 

Eerola et al. [17] and Pedersen et al. [87] have proposed methods for 

applying FR metrics to printed images. In this dissertation, we developed 

novel methods for applying RR methods for printed images. We wanted to 

study if it is possible to measure quality attributes without computational 

complex transformations between reference and test images and pixel-wise 

comparisons. Our reduced-reference approaches are simpler than the full-

reference approaches proposed earlier. 

Section 3.1 describes the function of the “characterization of image” 

component. Section 3.2 describes the attribute metrics that were developed 

and integrated into the “computation of image quality” component. Section 

3.4 describes the “digitization of print/displayed image” component. 

�

�
 
Figure 15. Image quality measurement framework for imaging systems (cameras and 
printing/display): the camera measurement application inputs reference image and test 
images captured by reference and test cameras, the printing/display measurement 
application inputs digital images and the output is the value of an image quality attribute.  
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3.1 Characterization of image 

The “characterization of image” component extracts reduced reference 

information from the reference images. This dissertation applied three 

different characterization principles to the reference images. The principles 

are called the global feature, local feature and adaptive local feature. 

Table 5 summarizes the metrics used in the dissertation. We classified 

the metrics according to the characterization principle. The metrics that 

were tested for printed images use the global feature or the local feature 

principles, whereas the metrics tested for cameras use the global feature or 

the adaptive local feature principles. 

Figure 16a illustrates the global feature principle. In this principle, a 

single global feature is computed from all of the pixel values of a reference 

image. The global feature can be a parameter set of image statistics or the 

value of a no-reference metric. Figures 16b and 16c show the local feature 

and adaptive local feature principles. Both principles take advantage of a 

reference image’s local values. Under the local feature principle, an image 

is divided into blocks, and quality attribute-specific sensitivity values are 

calculated for the blocks. The feature vector is fed to the “computation of 

image quality” component. 

The adaptive local feature principle seeks new positions for the 

predetermined initial blocks by maximizing a quality attribute-specific 

sensitivity function. The process consists of two phases. First, the 

candidate blocks are found. Second, the blocks to be measured are selected 

from the group of candidate blocks. A feature vector includes the positions 

of the selected blocks. The feature vector and reference image are fed to the 

“computation of image quality” component. 

 

Table 5. The metrics proposed in Publications I-VI grouped according to the 
characterization principles 
 

Characterization 
principles 

Attribute Metrics Publication Section 

Global feature Overall image quality D1, D2, D3 IV 3.2.1 

 Color contrast CC I 

 

 

Local feature Graininess G I 3.2.2 

 Sharpness S1 I 

 

 

Adaptive local 
feature 

Color noise N III 3.2.3 

Sharpness S2 V  

Color difference �L, �C, �H VI  

�
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(a) 

�

 

(b) 

 

(c) 

 
Figure 16. The RR features from reference images were calculated using three different 
principles: global feature (a), local feature (b) and adaptive local feature (c). 

3.2 Computation of image quality 

The next several sub-sections present the metrics and methods used to 

compute the quality metrics in Publications I-VI. The metrics are classified 

according to the principle of image characterization (Table 5). 

3.2.1 Global feature characterization 
The metrics defined in this sub-section are based on the principle of global 

feature characterization. The global feature principle computes the feature 

vector from all of the reference image’s pixels (see Figure 16a). 

 

Overall image quality metrics 

The RR metrics from the literature cannot be applied to digital cameras 

because of the lack of reference images. Publication IV proposed to capture 

the reference images by using a high-quality reference camera. Three state-

of-the-art RR metrics were implemented in the “computation of image 

quality” component. Two of the implemented metrics [120], [61] are based 

on the NSS approach. The third metric [20] is based on the simple NR 

metrics and their baseline values calculated from the reference image. 

The first implemented metric was the Wang et al. RR metric [120]. It 

decomposes images into three scales and four orientations by using the 

steerable pyramid technology. The wavelet coefficients from the subbands 

of the reference and test images are fitted using the GGD model (see 

Equation (2)). The parameters � and � of the GGD model from the 

different subbands of the wavelet decomposition are the features of the 

reference image. Wang et al. compute image quality D1 by Equation (3): 
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where pi and qi are the probability functions of the i-th subband in the 

reference and test images estimated by the parameters � and � of the GGD 

model, respectively; kldi is the estimate of the Kullback-Leibler distance 

(KLD) between pi and qi; and C0 is a constant used to control the scale of 

the metric. 

The second implemented metric was the Li and Wang RR metric [61]. 

The metric computes features by using divisive normalization (DN). Li and 

Wang claimed that DN accurately models the local behavior of the HVS. 

The metric performs the DN transformation for the wavelet coefficients. 

The wavelet decomposition in our implementation included three scales 

and four orientations. For the wavelet coefficient wc, the new normalized 

value cw~  is calculated by Equation (4): 

zww cc /~ 	 � � � � � � � � ����������(4) 

5.01 )/( NYCYz U
T 
	

� � � � � � ����������(5)�

where the covariance matrix CU = E[UUT] is estimated from all of the 

subbands before the local z is calculated. N is the length of vector Y. Vector 

Y includes thirteen wavelet coefficients: nine coefficients are from the 

neighborhood of the wavelet coefficients wc, including the coefficient wc; 

one coefficient is from the parent band; and three coefficients are from the 

other orientation bands. The normalized wavelet coefficients from the 

subbands of the reference and test images are fitted using the GGD model. 

The image quality D2 is computed using Equation (6): 
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where C0 is a positive constant, pi and qi are the probability functions of the 

i-th subband in the reference and test images estimated by the parameters 

� and � of the GGD model, kldi is the estimate of the Kullback-Leibler 

distance (KLD) between pi and qi and 

TRd ��� 
	
� � � � � � � ����������(7)�

TRd ��� 
	
�� � � � � � � ����������(8)�

TRs ssd 
	
� � � � � � � � ����������(9)���

where �R, �R, sR and �T, �T, sT are the standard deviation, kurtosis and 

skewness values computed from the reference and test image, respectively. 

The metric D2 has five parameters, �1, �2, �3, �4 and C0, which should be 

learned from the data. 
The third metric used in this dissertation was proposed by Engelke et al. 

[20]. It is based on five features fi. Feature f1 measures blockiness and uses 
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the NR metric [117]. Feature f2 measures blurriness and uses the NR-type 

edge width metric [71]. Features f3 and f4 measure the ringing distortion 

and use the NR-type image activity metrics [27]. Feature f5 measures the 

intensity masking and lost block distortion by using image histograms. The 

image quality D3 is calculated by Equation (10): 
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where ki is the weighting factor, fi,R is the value of feature i in the reference 

image and fi,T is the value of feature i in the test image. The metric D3 has 

one parameter, p, which should be learned from the data. 

We implemented the Wang et al. metric [120] into the proposed image 

quality measurement framework because it is a well-known metric in the 

RR research field, and its algorithm code was available from [118]. The Li 

and Wang metric [61] was selected because it is the state-of-the-art metric. 

This metric determines the non-linear weighting of the wavelet coefficients 

before the KLD. The metric was implemented by adding the non-linear 

weighting component in the Wang et al. metric. The Engelke et al. metric 

[20] was selected because it uses the five distinct NR-type image features 

instead of the global statistic approach. These features were either easy to 

implement, or their algorithm codes were available [116]. 

 

Color contrast metric 

Publication I proposed a metric for measuring the color contrast of 

images. The proposed metric assumes that natural images contain one or 

more objects with specific hues. The object is perceived as more colorful 

and brighter if the contrast of its texture is high. If the contrast of the 

texture is low, the object is perceived to be pale or dim. The idea behind the 

metric is to redirect the axes of the color space to the direction of an 

image’s dominant color and to calculate the standard deviation of the color 

points. 

The proposed metric computes the first principal component for the 

reference image data in the CIELAB space, and two color clusters are 

defined. The first principal component shows the direction of the 

maximum deviation of the color data in the color space, and the hue of the 

dominant color can be described. The first color cluster includes the 

neighborhood points of the principal component. The second color cluster 

includes all of the other points. The neighborhood points of the first 

principal component should fulfill the following conditions: 

� – �th
 < �point < � + �th and � – �th < � < � – �th, 
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where � and � are the angles of the principal component and �th and �th 

are the threshold angles (Figure 17b). The values of the threshold angles 

were chosen based on the empirical study. Next, the principal component 

is also calculated for color cluster 2. The data of the two principal 

components define the feature vector. 

The coordinates of the calculated principal components describe the 

directions of an image’s two main color hues. For example, for the image of 

the lake (Figure 17a), the principal component of the first cluster describes 

the color contrast of the blue sea and sky, and the principal component of 

the second cluster describes the color contrast of the green foliage (Figure 

17c).  

�

(a) 

(b) (c) 

Figure 17. Test image “lake” (a), the points of the first cluster are the neighborhood points 
of the first principal component (b), the color contrast metric is based on the standard 
deviations calculated for the directions of two principal components (c). 
�

The “computation of image quality” component of the image quality 

measurement framework (Figure 15) transforms the pixel values of a test 

image into the new space defined by the feature vector. The axes of the new 

space are composed of the principal components calculated in the 

“characterization of image” component. The color contrast metric CC is 

calculated by Equation (11): 

2
2

2
1 ppCC �� �	 � � � � � � � ���������(11)�

where �p1 and �p2 are the standard deviations along the first and second 

dimensions of the new space, respectively. 
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3.2.2 Local feature characterization 
To compute the metrics defined in this sub-section, we divide the images 

into adjacent blocks, and the block-specific sensitivity values are calculated 

(see Figure 16b). The value of the feature vector is derived from the 

sensitivity values. 

Publication I proposed the graininess and sharpness metrics by using the 

principle of local feature characterization. The block-specific energy values 

g are computed from the reference image by Equation (12) for the 

graininess metric, and the parameter � values are computed by Equation 

(13) for the sharpness metric: 
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	 � � � � ���������������������(13).�

Equation (12) is power function and wi is the wavelet coefficient in the 

block. M is the number of wavelet coefficients in the block. Equation (13) is 

the GGD model.  is the gamma function and � and � are the parameters of 

the GGD. 

The energy values g are calculated for the wavelet coefficients of the first 

scale and the � values of the second scale. We used the first scale for g 
because we assumed that the perceived graininess is high-frequency 

energy. We computed the parameter � values for the second scale to 

compensate for the graininess energy of the first scale. The assumption is 

that the perceived sharpness relates to the reproduction of mid-frequency 

energy. Because the metric uses the second scale and handles only the mid-

frequency energy, it is non-sensitive to high-frequency graininess.  

Figure 18 shows the g values, and Figure 19 shows the � values for the 

following test images: man (a), cactus (b) and lake (c). If the intensity of 

the block is low (dark blocks), the block is well suited for the metrics. A low 

g value refers to a low energy block that is appropriate for the graininess 

metric, and a low � value refers to a high-energy block that is appropriate 

for the sharpness metric. 
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(a) (b) (c) 

Figure 18. Graininess is calculated from the low-energy pixel blocks (dark regions): test 
images of man (a), cactus (b) and lake (c) shown in Figure 12. The low-energy block 
indicates a smooth area that is appropriate for graininess measurements. 
 

(a) (b) (c) 

Figure 19. Sharpness is calculated from the high-energy blocks (dark regions): test images 
of man (a), cactus (b) and lake (c) shown in Figure 12. The high-energy block indicates a 
texture area that is appropriate for sharpness measurements. 

 

Figure 20a shows the g values and Figure 20b the � values of the blocks 

for the reference image and a set of test images sorted in ascending order. 

The graininess and sharpness of the test images are calculated from the n 

blocks, whose values are small. The feature vector includes the value of n 

calculated from the reference image. The n for the graininess metric is the 

point where the value of g for the reference image starts to increase. The n 

for the sharpness metric is the point where � = 0.5. The value of � is based 

on an empirical study (Publication I). 

The “computation of image quality” component of the image quality 

measurement framework (Fig 15) calculates the graininess value G by 

using Equation (14) and the sharpness value S1 by using Equation (15): 
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where ghi, gd1i, gvi and gd2i are the g values in the horizontal, first diagonal, 

vertical and second diagonal directions from block i of the group of n 
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lowest g-valued blocks. �hi, �d1i, �vi and �d2i are the � values in the 

horizontal, first diagonal, vertical and second diagonal directions from 

block i of the group of n lowest �-valued blocks. 

�

(a) 

�

(b) 

Figure 20. The number of low energy blocks for the graininess metric is the point where 
the value of g for the reference image starts to increase (a); the number of high-energy 
blocks for the sharpness metric is the point of the empirically determined threshold (� = 
0.5) (b). 

3.2.3 Adaptive local feature characterization 
The metrics defined in this sub-section seek new positions (candidate 

blocks) for the predetermined blocks by maximizing the sensitivity 

function (see Figure 16c). The blocks to be measured are selected from the 

candidate blocks. 

 

Color noise metric 

Publication III presented a color noise metric by using the adaptive local 

feature principle. The blocks are selected based on three features: the 

chromatic energy, achromatic energy and brightness of the block. The 

chromatic energy of the blocks should be low. The blocks can have 

achromatic structural energy, but this structure should be composed 
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primarily of random textures rather than edges. Random textures in a 

scene can be beneficial to noise measurements for two reasons. The first 

reason is that achromatic texture-like surfaces in scenes are sensitive to 

color noise in digital camera images. The second and more important 

reason is that texture-like surfaces present challenges for noise reduction 

algorithms in cameras. If the structure is edge-like, then a noise reduction 

method can easily filter the noise away from the neighboring smooth area 

of the edges. If the structure is a random texture, then it is difficult to 

separate the noise energy from the energy of the image structure by using 

computational methods. 

In addition, the intensity of the selected blocks should not be too low or 

high. If a block is too bright, then it becomes saturated for images 

produced by low-end cameras. If the block is too dark, then a low-end 

camera may not detect its structural energy, and the camera image-

processing software may apply strong noise reduction to the block. 

We applied the method in the YCbCr space. With an opponent color 

space, we can separate achromatic information from chromatic 

information. The method operates on the principle that the blocks are 

initially located in the reference image (Figure 21a). The method searches 

for new locations for the blocks across a limited neighborhood in the Cb 

and Cr channels by maximizing Equation (16): 
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where the co-occurrence energy feature COE is calculated within the block. 

P�,d(I1,I2) describes the probability that two pixels with intensity levels I1 

and I2 appear in the window separated by a distance d in direction �. The 

more homogeneous the block is, the higher the value of COE on a scale 

from 0 to 1. The homogeneity metric COE is calculated as an average of its 

values at 0, 45 and 90 degrees. The blocks in the new locations are called 

candidate blocks. The aim is to find the homogeneous areas in the 

chromatic Cb and Cr channels. The function dist() sets a distance 

constraint between the initial and candidate points (IP and CP). The IP are 

the center coordinates for the predetermined blocks (Figure 21a), and the 

CP are the center coordinates for the candidate blocks (Figure 21b). 

�
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(a) (b) 

(c) 

Figure 21. The reference image with the blocks in a predetermined symmetric order (a), 
the reference image with the blocks when the homogeneous metric was maximized for the 
Cb channel (b) and the reference image with the most homogeneous blocks (n = 6) for the 
Cb channel (c). 
 

Next, the “characterization of image” component selects n blocks from 

the group of candidate blocks with the highest COE values for the Cb and Cr 

components (Figure 21c shows the candidate blocks for the Cb component 

when n = 6). Equations (18) and (19) depict the texture and brightness, 

respectively, of the Y component from the selected candidate blocks: 
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where M is the number of pixels in block i. The co-occurrence feature 

COIDM is calculated as an average of its values at 0, 45 and 90 degrees. The 

aim is to find both the smooth and textured achromatic areas. Feature 

COIDM obtains a higher value on the scale ranging from 0 to 1 if the block 

pixel intensity values are close to each other. That is, if the COIDM value is 

small, the intensity structure in the block is more texture-like than smooth 

and vice versa. The two blocks with the lowest and highest COIDM values 

from the n blocks with B values between the Bmin and Bmax levels are then 

chosen as the selected blocks. 

The pixel locations of the selected blocks in the reference image are fed to 

the “computation of image quality” component. In the next step, the blocks 

that correspond to the selected blocks should be found in the test images. 
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These blocks are called correspondence blocks. The search for the 

correspondence area is described in detail in Section 3.4. 

The “computation of quality metrics” component calculates the color 

noise values N for a test image by using Equation (20): 

ts noisenoiseN �	 � � � � � � � �������(20)�

hcrstdhcbstdystds wkwkwnoise ,,2,,1, ��	 � � � ��������(21)�

lcrstdlcbstdt wkwknoise ,,2,,1 �	
� � � �

�        (22)�

where noises is the smooth area component, noiset is the texture area 

component and ki represent the weighting factors. wstd,cb,l and wstd,cr,l are the 

standard deviations of the wavelet coefficients for the Cb and Cr blocks 

with the lowest COIDM values (texture blocks), and wstd,y, wstd,cb,h and wstd,cr,h 

are the standard deviations of the wavelet coefficients for the block with 

the highest COIDM value (smooth blocks). The wavelet coefficients for the 

Cb and Cr components are calculated from the second scale of the wavelet 

decomposition, and the wavelet coefficients for the Y component are 

calculated from the first scale. 

Figure 22 summarizes the scheme of the proposed metric. First, the 

candidate blocks that maximize the homogeneity metric are sought for the 

Cb and Cr channels. Next, the smooth and textured blocks are selected 

from the candidate blocks based on the texture and brightness metrics 

applied to the Y channel. The correspondence blocks of the reference 

camera are searched from the test camera images and the texture and 

smooth area noise components are calculated. 

�

�
Figure 22. Block diagram for the proposed color noise metric. The dashed boxes show the 
components of the image quality measurement framework. 
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Sharpness metric 

Publication V presented the sharpness metric using the adaptive local 

feature principle. First, the candidate blocks are located by Equation (23): 
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Equation (23) maximizes the standard deviation (STD) of the wavelet 

coefficients w within the block. M is the number of pixels in block. Figure 

23a shows the IP points for the local characterizations, and Figure 23b 

shows the locations of the CP points. The “characterization of image” 

component selects the m highest valued candidate blocks by using 

Equation (24). Figure 24 shows the selected blocks for five image contents 

when m = 5. The effects of block size and the number of m were studied in 

Publication V. The performance was highest when the block size was 100 x 

100 pixels and the number of m ranged from 5 to 8. 

 

�

(a) (b) �

Figure 23. The reference image with the blocks in a predetermined symmetric order (a); 
the reference image with blocks when the sharpness function for the blocks is maximized 
(b). 
 

�

 
Figure 24. Five reference images with the selected blocks (m = 5). 
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The locations of the selected blocks are fed to the “computation of image 

quality” component. The correspondence areas between the reference and 

test images are searched. The sharpness value S2 for a test image is 

computed by Equation (25): 
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where the (j, k) are the pixel coordinates in a correspondence block, M is 

the size of the correspondence block, b is a parameter for the reduced 

measurement area and wi,j,k is the wavelet coefficient. The parameter b is 

used to compensate for the fact that the edge areas of the correspondence 

blocks can include structures from outside of the original candidate block’s 

area. If the candidate block’s size is M pixels, the measurement area in the 

test camera image is (M0,5-b)2 pixels. 

Figure 25 summarizes the scheme of the proposed sharpness metric. 

First, the candidate blocks that maximize the standard deviation of the 

wavelet coefficients are sought for the Y component of the reference image. 

Next, the m highest energy blocks are chosen for the group of selected 

blocks. The sharpness values are calculated from the correspondence 

blocks of the test camera images. 

 

�

Figure 25. Block diagram for the proposed sharpness metric. The dotted boxes show the 
components of the image quality measurement framework. 
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Color difference metric 

Publication VI presented color difference metrics by using the adaptive 

local feature principle. The color difference values of cameras should be 

measured using a color sample set that is as extensive as possible. The 

method uses a two-phase process to select the blocks from a scene 

captured by a color-calibrated reference camera for the sample set. First, 

the method seeks the candidate blocks by maximizing the average chroma 

and minimizing the standard deviation of the hue angle when (initially 

located) blocks are moved within a limited neighborhood by using 

Equation (26): 
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where Cave is mean chroma and Hstd is the standard deviation of the hue 

angle in the block. The constant k is a weighting factor. Figure 26a shows 

an example of initial blocks, and Figure 26c shows an example of candidate 

blocks. 

Second, m measure blocks are selected from the candidate blocks. The 

measure blocks are selected from the candidate blocks by using an iterative 

search. First, a histogram of m equal-width bins is formed for the average 

hue angle values of the candidate blocks. The next iteration rounds 

decrease the bin width until m bins have at least one data point each. The 

term “data point” refers to an average chroma and hue value pair of a 

candidate block. From the bins containing more than one data point, the 

point with the highest chroma value is selected. 

Figure 27 shows an example in which the chroma values of the candidate 

blocks are shown as a function of the hue angle values. The selected blocks 

(m = 18) are from different bins, and their chroma values are the highest 

ones in the bin. Figure 26e shows the selected blocks on a scene. 

Figures 26b and 26d show how the candidate block selection spreads the 

color values on the ab-plane of the CIELAB color space because the chroma 

values of the blocks are maximized by Equation (26). Figures 26d and 26f 

show how the iterative search decreases the number of data points while 

maintaining an extensive color value set. 

Next, the coordinate values of the selected blocks are fed to the 

“computation of image quality” component, the corresponding blocks are 

located (as described in Section 3.3) and the color difference values are 

calculated by comparing the color values of the reference and test images. 
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The results for the luminance �L, hue �H, and chroma �C difference 

metrics were presented in Publication VI. 

 

�
�

(a) (b) 

�
�

(c) (d) 

�

�
(e) (f) 

Figure 26. The pixel blocks are initially located on a regular grid arrangement (a). The 
initial candidate blocks are searched for within a limited neighborhood (c). m measuring 
blocks are selected from within the initial candidate areas (e). The color values of the initial 
blocks, initial candidate blocks and selected measuring blocks are shown on ab-planes (b), 
(d) and (f), respectively. 
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�

Figure 27. Chroma values of the candidate blocks are shown as a function of the hue angle 
values. The candidate block with the highest chroma value in the hue angle bin is selected 
for the sample set of the color measurement. 

 

Figure 28 summarizes the scheme of the proposed color metric. First, the 

candidate blocks that maximize the average chroma and that minimize the 

standard deviation of the hue are sought using the CIELAB color space. 

Next, the most extensive color value set as possible (selected blocks) is 

searched using a method based on the hue value histogram. The color 

difference values are calculated by comparing the color values of the 

measuring blocks between the reference and test camera images. 

 

�
Figure 28. Block diagram for the proposed color difference metric. The dotted boxes show 
the components of the image quality measurement framework. 

3.3 Search for correspondence blocks  

If the adaptive local feature principle (described in Section 3.2.3) is used to 

characterize the reference image, the corresponding blocks should be 

found in the test images. In the schemes for the proposed methods 

(Figures 22, 25 and 28) the component of the correspondence blocks 

searching shows the point of which the searching process is done. Figure 
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a test camera image. In the first step, the correspondence points are 

located from an image pair of the reference and test cameras by matching 

the area descriptors. Next, the vectors starting from the n nearest 

correspondence points are directed to the center point of the measuring 

block on the reference image. The center point in the test camera image is 

estimated by calculating the angles and lengths of the vectors between the 

center point and the correspondence points in the reference image. The 

center point of a measuring block in the test camera image is the average of 

the vector endpoints from the correspondence points. 

(a) (b) 

 
Figure 31. The center points of the correspondence areas from the reference image (a) and 
test image (b) are approximated by calculating the mean point of the vector heads from the 
correspondence feature points. The lines denote the vectors whose lengths and directions 
are calculated from the reference image. The points denote the correspondence-feature 
points. The crosses denote the correspondence-area centers. 
 

Publication VI presented the performance comparison between SIFT and 

SURF when applied in the camera image measurement framework. The 

performance metric was the pixel distance between the ground truth and 

the predicted center point of the measuring block. The ground truth data 

were collected manually by utilizing the “cpselect” function in MATLAB. 

The prediction error was studied as a function of the threshold values of 

th1 (interest point detection) and th2 (descriptor matching). The 

remaining parameter values of the implemented SIFT and SURF codes 

were set at their default values. 

For the SIFT, the threshold of the interest point is related to the contrast 

values of key points. For the SURF, the threshold of an interest point is 

related to the value of the Hessian’s determinant. For the SIFT, a higher 

value yields fewer points, whereas for the SURF, a higher value gives more 

points. The threshold value of the descriptor matching relates to the 

distance between descriptors D1 and D2. The nearest-neighbor distance-

ratio matching strategy was used for both methods. A descriptor D1 is 

matched to a descriptor D2 only if the distance dist(D1, D2) between them 

is smaller than the distance of D1 to all of the other descriptors divided by 

the threshold.  
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Figures 32a and 32b show the average pixel errors for the SIFT and 

SURF, respectively, as functions of th1 and th2. The pixel error is the 

average value for the scene in Figure 26, which was captured by eight 

different cameras. Six cameras were mobile phone cameras, one was a 

consumer compact camera and one was an SLR camera. The reference 

camera was a Canon 5D with a Canon EF 24-70/2.8 L USM lens. Before 

the pixel error calculations, the images were all scaled to a size of 1200 × 

900 pixels. 

 

(a) 

(b) 

Figure 32. Average pixel error values between the predicted and ground truth as a 
function of the interest point and descriptor-matching threshold values for SIFT (a) and 
SURF (b). 
 

The lowest average pixel error for the SIFT was 7.4 pixels (th1 = 0.00125 

and th2 = 2.5), with a standard deviation of 1.5 pixels between the cameras. 

The lowest average pixel error for the SURF was 4.2 pixels (th1 = 600 and 

th2 = 1.5), with a standard deviation of 1.0 pixels. The sizes of the 

measuring areas in the studies described in Section 4 ranged from 25 × 25 

pixels to 125 x 125 pixels. The image size was 1200 × 900 or 1600 x 1200 
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pixels. According to these dimensions, the pixel errors of 4.2 or 7.4 pixels 

were small, and the locations of the measuring blocks on the test images 

were sufficiently accurate. 

3.4 Digitization of print 

Before the quality of printed (/displayed) images can be measured using an 

algorithmic metric, the test samples should be digitized. Eerola [17] and 

Pedersen [87] used an ICC-profiled scanner to digitize their samples. The 

digitization process proposed in Publications I and II uses a high-quality 

camera system instead of a scanner to digitize a sample. Digital camera 

RAW-imaging enables fully manual settings. In addition, the lighting 

environment can be adjusted and characterized, which is impossible or 

difficult to do with a scanner.  

Figure 33 shows the structure of the “digitization of print” component. 

The component captures n exposures, compensates for the photometric 

distortion of the camera, makes color space transformation from camera 

RGB to the CIELAB color space by using the colorimetric (Publication I) or 

spectral-based (Publication II) camera characterization and forms the high 

dynamic Lab image. 

�

�
Figure 33. Sample digitization component captures n exposures, compensates for the 
photometric distortion of the camera, makes color space transformation from camera RGB 
to the CIELAB color space by using colorimetric or spectral-based camera characterizations 
and forms the high dynamic Lab image. 
 

The study reported in Publication I used the colorimetric camera 

characterization. The transformation from multi-exposure RGB image to 

XYZ image was based on the 3x5 transformation matrix W: 
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where [x y z] represents absolute XYZ values, [r g b] represents the 

corresponding camera linear raw response and pij are the fitting 

parameters for the transformation matrix.  

Publication II proposed a multi-exposure method for spectrally 

characterizing the camera. The transformation matrixes were calculated 

based on the method proposed by Shen and Xin [102]. They assumed that 

the training samples ui that are closer to a testing sample u are usually 

more reliable and should thus contribute more to the estimation of the 

transformation matrix Wshen. The researchers calculated the weights �i for 

ui as: 
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where �UU is the covariance matrix of ui. By incorporating the weighting, 

the mean square error between the measured and the predicted spectra 

can be formulated as: 
2
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and the transformation matrix Wshen can be estimated. 

To evaluate the performance of the multi-exposure method, we 

compared it to the traditional single-exposure method. The 180 colour 

patches of the Gretag Macbeth DC test target were used as training 

samples, and the 24 colour patches of the Gretag Macbeth CC test target 

were used as testing samples. The digital test target images were printed on 

six paper grades (p1-p6). We photographed the samples by using a Canon 

EOS 5D camera. The multi-exposure method produced an RGB image by 

selecting the intensity values from the exposures ek and el (1 � k,l � n). The 

single-exposure method used only exposure el to produce the RGB image. 

Exposure el was the optimal value of the lighting environment computed 

by the camera processing. 

We measured the ground truth spectral data of the printed samples by 

using the Photo Research PR-670 spectroradiometer. The measured values 

of the DC test target were used to calculate the weighting factors �i for 

Equation (29) when the CC test target patch-specific transformation 

matrixes were estimated. 
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Figure 34a shows the CIEDE2000 mean color error values of different 

paper grades using single-exposure and multi-exposure methods for the 

testing samples. Figure 34b shows the maximum color error values of the 

different paper grades. Figure 35 shows the CIEDE2000 color error values 

for paper p3 ordered in ascending order by the measured luminance of the 

patches. According to the results, the multi-exposure method improves 

mostly the reconstruction performance of the dark patches. This result was 

expected. The multi-exposure method detects the lower luminance levels 

more linearly than the single-exposure method does. 

(a) (b) 

Figure 34. CIEDE2000 mean (a) and maximum (b) colour error values of different paper 
grades using single-exposure and multi-exposure methods for the testing samples. 

�
Figure 35. CIEDE2000 colour error values for paper p3 ordered in ascending order by 
measured luminance of patches.  
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4. Experiments 

The experimental results in Publications I-VI fall into two groups. The 

overall quality of the images was measured in Publications I and IV and the 

quality attributes were measured in Publications III, V and VI. Publication 

I presented the simple quality model of printed images, which is composed 

of the color contrast, graininess and sharpness attributes (CC, G and S1). 

Publication IV presented the results when three RR metrics of overall 

quality (D1, D2 and D3) were implemented into the image quality 

measurement framework (Figure 15). Publications III, V and VI 

determined the quality attributes (N, �L, �C, �H and S2) of images 

captured by digital cameras. 

The experimental results for the overall quality measurements and for 

the quality attributes are reviewed in Sections 4.2 and 4.3, respectively. 

Section 4.1.1 and Section 4.1.2 present and analyze the subjective data for 

the printed samples and camera samples, respectively. Table 6 lists the 

metrics and shows the grouping. 

 
Table 6. The experimental results of the dissertation are presented in two sections: Section 
4.2 presents the results for the overall quality metrics, and Section 4.3 presents the results 
for the attribute metrics. Section 4.1 presents the subjective data 
 

Attribute Section Publication Metrics Application 

Overall quality 4.2 I CC, Equation (11) 

G, Equation (14) 

S1, Equation (15) 

 

Printed image 

  IV D1, Equation (3) 

D2, Equation (6) 

D3, Equation (10) 

 

Camera 

Noise 4.3 III N, Equation (20) 

 

Camera 

Sharpness 

 

 V S2, Equation (25) Camera 

Color difference  VI �L, �C, �H 

 

Camera 

�
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4.1 Subjective experimental data 

4.1.1 Subjective quality data for printed images 
In this dissertation, the image contents of Figure 12 were used to test the 

proposed quality attribute metrics in the context of digitally printed 

images. The images include small details, uniform areas and colors. The 

variation in printed images arose from the use of different grades of paper 

(fifteen electrophotographic (EPG), six multipurpose and fifteen ink-jet 

(IJ) papers). The size of the printed images was 10 cm x 15 cm. The EPG 

papers were printed using an electrophotographic printer, the IJ papers 

were printed by an ink-jet printer and the multipurpose papers were 

printed with both methods. For more details on the printing process, see 

[30]. 

The subjective tests consisted of a quality evaluation task and self-report 

using the IBQ (Interpretation Based Quality) method [91]. The observers 

(n = 27) were university students and naïve as regards to image quality. 

The image samples were presented on a table covered with a gray 

tablecloth. The illuminance level was 2200 lux, and the color temperature 

was 5000 K. The quality evaluation task provided information about the 

experienced quality of the images (mean opinion score values, MOS). The 

observers were asked to select the best sample (IQ = 5) and the worst 

sample (IQ = 1). Afterwards, the observers rated the samples on a scale 

from 1 to 5. The purpose of the self-report was to obtain information about 

the relevant subjective attributes that influenced the visual quality 

evaluation. In practice, the observers were asked to provide the reasons 

behind their evaluations. For more details on the subjective tests, see [32]. 

We used the self-report data to select the quality attributes for the 

printed image quality measurements of this dissertation. The MOS data 

was used to test the performance of the proposed metrics. Figure 36 shows 

the MOS values for the IJ and EPG samples sorted in ascending order. The 

error bars added in the figures show the 95 % confidence intervals. The 

MOS data of the multipurpose papers fall within the dashed circles. The 

quality of the multipurpose papers was lower than the quality of the 

dedicated IJ or EPG papers. In addition, the quality differences between 

the multipurpose and dedicated IJ papers (Fig. 36a) were higher than the 

quality differences between the multipurpose and dedicated EPG papers 

(Fig. 36b). Two or three compact clusters can be distinguished in the 

subjective MOS data of the IJ samples. In contrast, the data of the EPG 

samples are more coherent. 
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(a) 

(b) 

Figure 36. The subjective MOS values for the IJ (a) and EPG (b) samples sorted in 
ascending order. 
 

Table 7 presents the ten image quality attributes most frequently used to 

describe the printed samples. Sharp, unsharp and grainy were the three 

most used attributes for the IJ samples, regardless of the image content. 

These attributes were also the most frequently used for the EPG samples, 

but there were some differences between the image contents. With the test 

image of the cactus (of the EPG samples), the attribute “sharp” was the 

fourth most used, and the attribute “unsharp” was not in the group of the 

ten most used attributes. In contrast, with the test images of the man and 

the lake, “sharp” was the most frequently used attribute. 
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Table 7. The ten subjective attributes most frequently used to describe the printed 
samples; the data represent the number of times an attribute was mentioned. 
 

Man Cactus Lake 
EPG IJ EPG IJ EPG IJ 

Sharp 97 Unsharp 109 Grainy 90 Grainy 114 Sharp 97 Sharp 121
Grainy 85 Sharp 107 Faded 83 Sharp 110 Unsharp 81 Unsharp 116
Unsharp 67 Grainy 98 Good colors 83 Unsharp 94 Good colors 71 Grainy 92 
Good colors 62 Faded colors 95 Sharp 62 Faded colors 83 Grainy 64 Faded colors 88 
Faded colors 62 Faded 82 Faded colors 50 Clear 76 Streaking 63 Unclear 83 
Clear 50 Unclear 81 Dark 47 Deep colors 75 Faded colors 63 Good colors 70 
White dots 46 Good colors 65 White dots 44 Unclear 74 Unclear 40 Deep colors 61 
Streaking 38 Deep colors 63 Uniform print 41 Good colors 73 Not uniform print 39 Faded 56 
Unclear 35 Clear 54 Clear 41 Faded 63 White dots 39 Clear 48 
Faded 34 White dots 46 Gray 40 Contrast good 39 Deep colors 39 Matt 35 

�

With the IJ samples, the fourth most used attribute was “faded colors”, 

regardless of image content. With the EPG samples, “faded colors” was the 

fifth or sixth most used attribute. With the EPG samples, “good colors” was 

the third or fourth most frequently used attribute. With the IJ samples, 

“good colors” was in the group of the ten most used attributes. The third 

most frequently used color attribute was “deep colors”. In the case of the IJ 

samples, it was used relatively often. 

The attribute “good colors” relates to the overall color quality. The other 

color attributes characterize more specific color properties. We assume 

that the attributes “deep color” and “faded color” comprise a bipolar 

dimension. Deep color is the positive pole and faded color is the negative 

pole of this dimension. In addition, we assume that the attribute “faded” 

has an effect on this dimension. 

The subjective frequencies of the attributes suggest that the dimensions 

of sharpness, graininess and color contrast can be used to evaluate the 

quality of printed images. The dimension of sharpness is composed of the 

attributes “sharp” and “unsharp”. The dimension of graininess is composed 

of the attributes “grainy” and “white dots”. The dimension of color contrast 

is composed of the attributes “deep colors”, “faded colors” and “faded”. 

The context of this space is the natural image, which is printed at the size 

of 10 cm x 15 cm. The proposed metrics for the dimensions were presented 

in Section 3.3. 

4.1.2 Subjective quality data for camera images 
We validated the objective metrics for camera applications proposed in this 

dissertation by using two Data sets. The test images for Data set I were 

captured in autumn (left-side images in Table 4), and those for Data set II 

were captured in winter (right-side images in Table 4). The most notable 

differences between the images of the data sets can be found in the outdoor 

Clusters 5 and 6. The differences between Clusters 1, 2 and 3 relate only to 

the persons in the images and their clothes. Cluster 4 is identical for the 
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two sets. Data set I was used to evaluate the performance of the proposed 

metrics described in Sections 4.2.2, 4.3.1, 4.3.2 and 4.3.3. Data set II was 

used for the study described in Section 4.3.1. 

The images of both data sets were captured by test cameras and a high-

quality reference camera. The quality levels of the test cameras ranged 

from low to moderate; the cameras consisted of low-, moderate- and high-

quality mobile phone cameras and moderate-quality compact cameras. The 

pixel counts of the cameras ranged from 3 to 12 Mpix. The reference 

camera was a Canon EOS 5D with a Canon EF 24-80 mm lens. The 

performance (e.g., signal-to-noise ratio and detail reproduction) of the 

reference camera was considerably higher than that of the cameras to be 

tested. This difference was a required and sufficient condition. 

The images were scaled to a 1600 x 1200 pixel size for the subjective 

tests. In addition, we added black borders around the images to match the 

image file resolution with the display resolution (1920 x 1200). The test 

setup included two Eizo ColorEdge CG241W displays and a small display. 

The test image was shown on one display, and the reference image (Data 

set I) or several reference images (Data set II) were shown on the other. 

The user interface of the observer was on the small display.  

The observers first rated the overall quality of a test image before 

evaluating the values of the quality attributes. Test images representing 

one cluster at a time were shown. The order of the images and clusters 

were randomized for the observers. The viewing distance was 

approximately 80 cm, and the ambient illuminance was 20 lux. The 

displays were calibrated based on the sRGB standard. 

Data set I included seventy-eight test images (13 cameras x 6 clusters), 

and Data set II had eighty-four test images (14 cameras x 6 clusters). All 

observers were naïve with respect to image quality (n = 25 for Data set I, 

and n = 30 for Data set II). With Data set I, the subjective reference image 

was shown on one display during the test, and the test images were shown 

on the other display. The image-quality value of the subjective reference 

image was set to be 90 on a scale ranging from 0 to 100. The subjective 

reference image functioned as a high-quality anchor image. The quality 

value of 90 out of 100 left some latitude for the observers in the case of 

high-quality test images. The chosen quality value of the anchor image is 

not critical. 

With Data set II, before a single test image of a given content was shown, 

all of the test images of the clusters in question were shown to the observer 

as a slide show. This process was repeated before each test image was 

evaluated. In addition, the observers were instructed to give the lowest 

rating and highest rating in every cluster. The differences between the 
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subjective data in Data sets I and II are analyzed in greater detail in 

Publication V. 

Figure 37 shows the MOS scores and the 95% confidence intervals of 

Data set I sorted in ascending order. We can observe that there are clear 

differences in the scales between the clusters. The scales for Clusters 1 and 

3 are wider than the scales for the other clusters. This difference is 

attributable to the illuminance levels. The illuminance levels of Clusters 1 

and 3 are low, and the quality differences between the images are clear. 

The impact of the flash power can be seen by comparing the values 

between Clusters 1 and 3. The shooting distance was longer for Cluster 3 

than for Cluster 1. The mid-level MOS values are lower for Cluster 3 than 

for Cluster 1 because low-power LED flash cameras have an exposure 

power that is too low for longer distances. Cluster 4 shows that the image 

quality of a modern low-end camera saturates if the structure of the view is 

simple and the illuminance level is sufficiently high. The observers had 

difficulty seeing the differences between the images. The images for Cluster 

4 were sharp, the noise level was low and the colors were balanced because 

of the easy content. 
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Cluster 1 Cluster 2 

Cluster 3 Cluster 4 

Cluster 5 Cluster 6 

Figure 37. Subjective MOS on the vertical axis with 95% confidence intervals sorted in 
ascending order (on the horizontal axis) for clusters 1-6 with 13 cameras (Data set I). 

4.2 Performance of objective methods for computing overall 
image quality 

4.2.1 Camera images 
Publication IV examined the overall quality of camera images from the 

standpoint of predicting subjective quality. The aim was to determine the 

benefits of a reference camera for camera image quality measurements. 

The six test image views (clusters) were photographed by different digital 

cameras (Table 4). Section 2.5.2 described the views, and Section 4.1.2 

outlined the experimental procedure for gathering subjective data. More 

details about the subjective tests can be found in Publication IV. We 

implemented three state-of-the-art RR metrics for the image quality 

measurement framework depicted in Figure 15. The metrics D1, D2 and D3 

are defined by Equations (3), (6) and (10), respectively. 

Before the analyses, we fitted the values of the metrics by using the three-

parameter logistic function: 
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where pi are the fitting parameters of the model, Dpred is the predicted 

image quality and xi is the metric value for image i. The fitting parameters 

were obtained by calculating the minimum least-squares, non-linear 

regression using the fminsearch function in MATLAB. 

We measured the performance as the Pearson linear correlation (LCC) 

and Spearman rank-ordered correlation (ROCC) between the 

computational metrics and the subjective data (MOS). Additionally, we 

used the outlier-ratio (OR) metrics. Table 8 shows the results. Boldface 

indicates the best performer. Based on the LCC and ROCC values, the 

performances of the D1 [120] and D2 [61] metrics were slightly better than 

the performance of the D3 [20] metric. The image cluster-specific 

performance analyses can be found in Publication IV. 

 

Table 8. Performance of the RR metrics when applied to the proposed camera 
measurement framework. Boldface indicates the best performer. 
 

Metric LCC ROCC 
OR 

(>2*�mos) 
OR 

(>1*�mos) 
D1, (Wang et al. [120]) 0.8030 0.7982 0.0641 0.1539 

D2, (Li & Wang [61]) 0.8159 0.7916 0.0513 0.2179 

D3, (Engelke et al. [20]) 0.7753 0.7671 0.0513 0.3077 

�

4.2.2 Printed images 
The aim of Publication I was to determine the applicability of a reference 

image to printed image quality measurements. In addition, the aim was to 

find the quality space of printed images. Section 4.1.1 described the 

experimental procedure for gathering the subjective data. The test images 

are shown in Figure 12. Based on the subjective interview data (Table 7), 

we developed metrics for the sharpness, graininess and color contrast 

attributes. Section 3.2 described the metrics in detail. The printed images 

were digitized using the method described in Section 3.4. Equation (27) 

was used for the camera characterization. Because the MOS values for the 

image contents were always scaled to the interval 1-5, we normalized the 

attribute metric values to a common scale [0-1]. For the sake of simplicity, 

the overall value of image quality IQ is predicted by a linear model: 

3
)1( 1321 SkGkCCk

IQ
��


	 �� � � � ����������         (31)�

where ki are the weighting factors and CC, G and S1 are the color contrast, 

graininess and sharpness values calculated by Equations (11), (14) and (15), 

respectively. 
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We estimated the weighting factors ki for the IJ and EPG samples by 

using the fmincon function in MATLAB to maximize the LCC between the 

MOS and IQ. For the IJ samples, the maximum LCC was 0.989 when k1 = 

1.90, k2 = 1.07 and k3 = 0.01. For the EPG samples, the maximum LCC was 

0.906 when k1 = 0.28, k2 = 0.73 and k3 = 1.95. The weighting factors show 

that the color contrast highly influenced the overall image quality of the IJ 

samples, whereas the sharpness metric highly influenced the overall image 

quality of the EPG samples. 

However, if the weighting factors are set as constant values (ki = 1), the 

LCC is 0.980 for the IJ samples and 0.883 for the EPG samples. Because of 

the generalization capability, we executed the performance analysis below 

by using constant weighting factor values (ki = 1). By using the constants 

weighting factors we can prove that the IQ metric described by Equation 

(31) has a generalization capability over different sample sets. 

We measured the performance of the proposed method with the LCC, 

ROCC and root-mean-square-error (RMSE) metrics (Table 9). The 

reference metric was the D1 proposed by Wang et al. [120] and defined in 

Equation (3). Before the performance comparison, we fitted the data (of 

proposed metric and the D1) by using the five-parameter logistic function 

[101]. The values of the LCC, ROCC and RMSE show that the proposed IQ 

metric was more effective than the D1 at predicting printed image quality. 

Figure 38 shows the subjective MOS values as a function of the predicted 

MOS (proposed metric and the D1). Figures 38a and 38b show the results 

for the EPG samples, and Figures 38c and 38d show the results for the IJ 

samples. The performance of the proposed IQ was especially high 

compared with that of the D1 for the IJ samples. The reason for the 

difference is the color contrast term included in the model of the proposed 

IQ defined in Equation (31). According to the studied attribute weighting 

factors ki, the color contrast highly influenced the overall image quality of 

the IJ samples. The D1 metric used only the luminance information of the 

images and could not find differences between the IJ images as clear as 

those found by the proposed IQ. 
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Table 9. LCC, ROCC and RMSE values for the EPG and IJ samples. Boldface indicates the 
best performer. 
 

Content Metric EPG IJ 

LCC ROCC RMSE LCC ROCC RMSE 

All Proposed IQ 0.884 0.727 0.353 0.981 0.962 0.196 

D1 (Wang et al. [120]) 0.797 0.631 0.419 0.898 0.830 0.408 

Man Proposed IQ 0.875 0.748 0.351 0.977 0.973 0.208 

D1 (Wang et al. [120]) 0.859 0.680 0.416 0.836 0.762 0.591 

Cactus Proposed IQ 0.878 0.772 0.426 0.988 0.969 0.163 

D1 (Wang et al. [120]) 0.772 0.617 0.475 0.926 0.871 0.326 

Lake Proposed IQ 0.932 0.636 0.283 0.977 0.945 0.218 

D1 (Wang et al. [120]) 0.866 0.721 0.366 0.954 0.932 0.307 

�

(a) (b) 

(c) (d) 

Figure 38. Subjective MOS as a function of the predicted MOS: the proposed metric for 
EPG (a) and for IJ (c) and the Wang et al. [120] metric D1 for EPG (b) and for IJ (d).  
 

Figure 39 shows the RMSE values for the subjective data as a function of 

the number of observers. The subjective RMSE values were calculated by 

comparing the average of n observer values with the mean values for all of 

the observers. For example if n = 3, the mean value of 3 observers was 

compared with the mean of all observers. We randomly selected different 

observer combinations from the group of all 27 observers, and the 

subjective RMSE was the average value for all combinations. The RMSE 

values of the proposed IQ for all of the contents were added in the figures. 

The comparison between the subjective RMSE and the RMSE for objective 

IQ indicates that the accuracy of the proposed IQ metric is higher than the 

accuracy of five randomly selected observers for the IJ samples and three 

randomly selected observers for the EPG samples.   



70�
�

 
(a) 

(b) 
 
Figure 39. Subjective RMSE as a function of the number of observers for the IJ samples 
(a) and EPG samples (b). 
 

To determine which differences between the proposed metric and D1 are 

statistically significant, we performed the variance test. The test is the 

same as the one used in previous studies [17], [101]. The assumption is that 

the residuals (the difference between the MOS and the predicted MOS 

values) are normally distributed. We tested the normality by using a 

Kurtosis-based criterion, according to which the residuals are Gaussian if a 

kurtosis is between 2 and 4 [101]. The F-test was used to test whether the 

variances of the residuals are identical, i.e. whether the two sample sets 

come from the same distribution. The null hypothesis is that the residuals 

of both metrics are expressions from the same distribution and are 

statistically indistinguishable with 95% confidence.  
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According to the variance test, there is significant difference between the 

proposed metric and the metric D1 with respect to the IJ samples. The 

difference is not significant for the EPG samples with 95% confidence. 

According to the Kurtosis-based criterion, the assumption of Gaussian 

residuals is not met for the EPG samples assessed by the D1 metric. 

We also compared the overall computational complexity of the proposed 

metric and D1. Table 10 lists the time (in seconds) taken to compute the 

metrics for an image of resolution 1500 x 1000 on a 3.0 GHz dual-core PC 

with 4 GB of RAM. The total computation time is divided between the  

reference and test images. It is clear that D1 outperforms the proposed 

metric in terms of computational complexity. In this study we have used 

unoptimized MATLAB implementations and computational complexity 

can therefore be reduced if needed. The computational complexity of the 

proposed IQ is the sum of S1, G and DC. Table 11 lists the times taken to 

compute the S1, G and DC metrics, respectively. 

 
Table 10. Computational complexity analysis of the proposed metric and D1 
 

Metric Reference image 
time (s) 

Test image 
time (s) 

Total 
time (s) 

Proposed IQ* 92.3 56.6 148.9 

D1 13.7 5.2 18.8 

� *sum of the S1, G and DC metrics 

Table 11. Computational complexity analysis of the S1, G and DC metrics. 
 

Metric Reference image 
time (s) 

Test image 
time (s) 

Total 
time (s) 

Percentage 
of time (%) 

S1 49.1 20.3 69.4 46.6 

G 21.4 21.2 42.6 28.6 

DC 21.7 15.1 36.8 24.7 

   148.9 100 

 

Data reliability 

The subjective MOS scores and the prediction of overall quality of the 

printed samples correlated strongly with one another. The LCC was 0.98 

for the IJ samples and 0.88 for the EPG samples. The proposed 

application-specific metric was compared with the state-of-the-art generic 

RR metric, which was implemented into the proposed image quality 

measurement framework. The performance of the proposed metric was 

higher than that of the RR metric. For the IJ samples, the performance 

difference between the proposed metric and the state-of-the-art metric was 

also statistically significant. 

From the perspective of data reliability, the number of observers (n = 28) 

and the number of samples (n = 21) were high enough. However, the low 
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number of different image contents (n = 3) can decrease the data 

reliability. We stress that three contents cannot validate the general image 

quality metrics, even if the selection of the contents were based on aspects 

strongly related to image quality. However, with the contents, we can and 

have proven that the proposed metrics and image quality measurement 

framework for printed images are promising.    

4.3 Performance of objective methods for computing image 
quality attributes  

4.3.1 Sharpness 
Publication V examined the sharpness attribute of digital cameras. The 

sharpness metric S2 was defined in Equation (25). The method was tested 

using two data sets (Data set I and Data set II). Section 4.1.2 described the 

experimental procedure for gathering subjective data. More details for the 

subjective tests can be found in Publication V. 

The proposed sharpness metric S2 was compared with the state-of-the-

art NR and RR metrics as well as the test-target metrics. The NR sharpness 

metrics were from Marziliano et al. [71], Ferzli and Karam [24] and 

Narvekar and Karam [78]. The RR metric was the D1 metric proposed by 

Wang et al. [120]. In addition, we captured the Mica test-target [110] 

images under laboratory conditions and calculated the MTF50 test target 

values. Before the analyses, the values of the metrics were fitted using the 

three-parameter logistic function defined in Equation (30). 

Table 12 shows the LCC values, and Table 13 presents the coefficients of 

determination R2 for the metrics. The results suggest that the performance 

of the S2 is higher than the performance of the reference metrics. When we 

fitted the data over all of the clusters, the LCC and R2 of the proposed 

metric S2 were the highest. The cluster-specific performance of the S2 was 

the highest except for Clusters 4 and 5 in Data set I and Cluster 5 in Data 

set II. In these cases, the performance of the D1 metric or the test-target 

MTF50 was the best. 

Figure 40 shows the subjective sharpness values as a function of the 

proposed metric and D1. Figure 40 shows that Data set I (Figure 40a and 

40b) was easier for both metrics than Data set II (Figure 40c and 40d). 

Compared with the performance of the application-specific sharpness 

metric proposed here, the performance of the generic image quality metric 

D1 was particularly low for Data set II.     

According to the R2 values, S2 can explain 72% and 69% of the total 

variation in the subjective sharpness values of Data sets I and II, 

respectively. We cannot account for the remaining 28% and 31% of the 
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total variation in subjective sharpness values in Data sets I and II, 

respectively. 

 

Table 12. The Pearson linear correlation coefficients LCC of the Marziliano et al. 
[71], Ferzli and Karam [24], Narvekar and Karam [78]  and Wang et al. (D1) [120] 
metrics and of the proposed metric S2 (M = 100x100, m = 5) with subjective 
sharpness 
 

 Data set I 

 Marziliano Ferzli Narvekar D1 MTF50 S2 

Cluster 2 0.676 0.500 0.488 0.618 0.629 0.840 

Cluster 3 0.489 0.432 0.494 0.886 0.547 0.898 

Cluster 4 0.676 0.254 0.498 0.782 0.545 0.748 

Cluster 5 0.683 0.105 0.296 0.361 0.788 0.684 

Cluster 6 0.845 0.471 0.425 0.775 0.554 0.920 

Over all 0.733 0.477 0.563 0.786 0.650 0.848 

       

 Data set II 

 Marziliano Ferzli Narvekar D1 MTF50 S2 

Cluster 2 0.443 0.415 0.240 0.410 0.600 0.770 

Cluster 3 0.142 -0.045 -0.057 0.664 0.595 0.880 

Cluster 4 0.774 0.574 0.725 0.051 0.752 0.805 

Cluster 5 0.793 0.716 0.723 0.815 0.800 0.761 

Cluster 6 0.820 0.886 0.655 0.681 0.696 0.931 

Over all 0.589 0.511 0.404 0.538 0.669 0.828 

 
Table 13. The coefficients of determination [%] of the Marziliano et al. [71], Ferzli 
and Karam [24], Narvekar and Karam [78] and Wang et al. (D1) [120] metrics and 
of the proposed metric S2 (M = 100x100, m = 5) with subjective sharpness 
 

 Data set I 

 Marziliano Ferzli Narvekar D1 MTF50 S2 

Cluster 2 45.698 25.000 23.814 38.192 39.564 70.560 

Cluster 3 23.912 18.662 24.404 78.500 29.921 80.640 

Cluster 4 45.698 6.452 24.800 61.152 29.703 55.950 

Cluster 5 46.649 1.103 8.762 13.032 62.094 46.786 

Cluster 6 71.403 22.184 18.063 60.063 30.692 84.640 

Over all 53.729 22.753 31.697 61.780 42.250 71.910 

 

 

Data set II 

 Marziliano Ferzli Narvekar D1 MTF50 S2 

Cluster 2 19.625 17.223 5.760 16.810 36.000 59.290 

Cluster 3 2.016 0.203 0.325 44.090 35.403 77.440 

Cluster 4 59.908 32.948 52.563 0.260 56.550 64.803 

Cluster 5 62.885 51.266 52.273 66.423 64.000 57.912 

Cluster 6 67.240 78.500 42.903 46.376 48.442 86.676 

Over all 34.692 26.112 16.322 28.944 44.756 68.558 
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(a) (b) 

(c) (d) 

Figure 40. Subjective sharpness as a function of predicted sharpness: the proposed metric 
S2 for Data set I (a) and for Data set II (c) and the Wang et al. [120] metric D1 for Data set I 
(b) and for Data set II (d).  
 

We tested the independence of the image contents by using a cross-

validation method. Both Data sets I and II were divided into five groups, 

each of which represented one image cluster. We estimated the fitting 

parameters of the logistic function by using data from the other four 

groups. These four groups functioned as the training data. The fifth group 

was used as the testing data. Thus, the testing was performed five times. 

All of the groups (clusters) functioned once as testing data. Table 14 shows 

the mean LCC, ROCC and RMSE values of S2 and D1 for the training and 

testing groups. Table 14 clearly demonstrates that the performance of the 

proposed metric was also high for the testing data. The mean performance 

was clearly higher than the performance of the generic image quality 

metric D1. 

 
Table 14. The mean validation performance values for the Wang et al. [120] RR metric D1 
and the proposed metric S2 (M = 100x100, m = 5) 
 

 Metric ROCC LCC RMSE 

Training Testing Training Testing Training Testing 

Data set 

I 

S2 0.838 0.781 0.843 0.811 8.812 10.241 

D1 0.766 0.551 0.774 0.411 10.153 10.902 

Data set 

II 

S2 0.821 0.785 0.836 0.807 12.318 13.460 

D1 0.577 0.635 0.630 0.576 16.407 19.195 

�
�
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Figure 41 shows the RMSE values for the subjective data as a function of 

the number of observers. Different observer combinations were randomly 

selected from the group containing all 25 observers for Data set I and the 

group containing all 30 observers for Data set II. The subjective RMSE is 

the average value of the combinations. The RMSE values of the proposed 

sharpness metric S2 for the validation data (see Table 14) were added in 

Figure 41. The figure shows that the accuracy of the proposed metric is 

higher than the accuracy of two randomly selected observers.  

 
Figure 41. Subjective RMSE as a function of the number of observers for Data sets I and 
II. 

 

To ascertain which differences between the proposed sharpness metric 

and the D1 metric (Eq. (3)) proposed by Wang et al. [120] are statistically 

significant, we executed the variance test. According to the variance test, 

there is a significant difference between the proposed metric and D1 with 

respect to the Data set II samples. The difference is not significant for the 

Data set I samples with 95% confidence. 

We also compared the overall computational complexity between the 

proposed S2 metric and the D1. Table 15 lists the time (in seconds) taken to 

compute the metrics for an image of resolution 1600 x 1200 on a 3.0 GHz 

dual-core PC with 4 GB of RAM. The total computational time is divided 

between the reference and test images. It is clear that D1 outperforms the 

proposed metric in terms of computational complexity. In this study we 

used unoptimized MATLAB implementations and computational 

complexity can therefore be reduced if needed. The computational 

complexity of the proposed S2 is the sum of the blocks shown in Figure 25. 
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Table 16 lists the times taken to compute the blocks of “Energy metric”, “m 

highest candidate blocks”, Correspondence block search” and “Sharpness 

metric” . 

 

Table 15. Complexity analysis of the proposed S2 and D1 metrics 
 

Metric Reference image 
time (s) 

Test image 
time (s) 

Total 
time (s) 

Sharpness, S2 31.7 83.9 115.6 

D1 14.9 8.0 23.0 

�

Table 16. Complexity analysis of the blocks of the proposed S2 metric 
 

Image type Block (see Figure 25) Time 
(s) 

Percentage of 
time (%) 

Reference  image Energy metric 31.4 27.1 

m highest candidate blocks 0.3 0.3 

Test image Correspondence block search 83.9 72.6 

Sharpness metric 0.0 0.0 

  115.6 100 

 

4.3.2 Color noise 
Publication III studied the color noise attribute of digital cameras. 

Equation (20) calculates the total noise metric N, and Equations (21) and 

(22) estimate the texture and smooth area noise components, respectively. 

Cluster 2 in Table 4 was used to validate the method. University students 

were used as the observers (n = 25). More details of the subjective tests can 

be found in Publication III. The prediction accuracy of N was compared 

with the visual noise test target metric [45] and the NR noise metric 

proposed by Immerkaer [41]. The visual noise was measured using the 

Gretag Macbeth test target under the lighting conditions of Cluster 2. 

Table 17 shows the LCC and ROCC values for the metrics. The 

performance of the texture noise component was only moderate, but the 

performances of the smooth area component and total noise component 

were rather high compared with those of the reference noise metrics. 

Figure 42 shows the subjective noise as a function of the proposed total 

noise metric and the visual noise test target metric. Compared with the 

visual noise test target metric, the proposed total noise metric accurately 

predicts the subjective noise of the samples. One clear outlier is evident. 

The proposed total noise predicts low noise value for that sample.    
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Table 17. The LCC and ROCC values of the proposed texture, smooth and total noise 
metrics and visual noise test target and Immerkaer’s NR noise metrics 
 

Metric LCC ROCC 

Proposed texture noise metric, noiset -0.635 -0.676 

Proposed smooth noise metric, noises  -0.837 -0.775 

Proposed total noise metric, N -0.800 -0.786 

Visual noise test target metric [45] -0.471 -0.709 

Immerkaer’s NR noise metric [41] -0.144 -0.115 

�

(a) (b) 

Figure 42. Subjective noise as a function of predicted noise: the proposed total noise 
metric N (a) and the test target visual noise metric (b).  

4.3.3  Color difference metrics 
Publication VI presented the study on the color difference metrics of digital 

cameras. Figure 26 shows how the selected blocks were located. The color 

difference values were measured from the images captured by eight 

cameras using the scenes 1 and 2 shown in Figure 43. 

The ground-truth test-target data were measured using the Gretag 

Macbeth CC test target under the lighting conditions of scenes 1 and 2. The 

color values of the test target were measured by the spectroradiometer, and 

the target was photographed by the cameras to be tested. Three basic test-

target color difference values were calculated: luminance, chroma and hue 

differences (�L, �C and �H, respectively). 

The LCC and ROCC between the proposed and (ground-truth) test target 

color difference values are shown in Table 18. Some of the correlations are 

significant for the luminance and chroma metrics, but the correlations of 

the hue metric are weak. Based on the t-test, the correlation value of 0.62 

is significant (df = 6, p = 0.05). 

One reason for the low correlation of the hue metric may be that the hue 

difference is highly dependent on the sample set. Because the proposed 

method selects the color samples based on the scene, the selected samples 
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were different from the Gretag Macbeth CC color patches. As more global 

values, the luminance and chroma are less dependent on the sample set. 

When comparing the correlations calculated for the different scenes, we 

found it notable that Scene 2 differed from the test target more than Scene 

1 did. The reason for this difference may be that Scene 1 was easier for 

color calibration of the reference camera because of its higher illuminance 

level. 

�

(a) (b) 

Figure 43. The proposed method was applied to scenes 1 (a) and 2 (b). 
�

Table 18. The linear correlation (LCC) and rank-ordered correlation (ROCC) coefficients 
between the proposed method and the test target method 
 

Color metric Scene 1 Scene 2 

LCC ROCC LCC ROCC 

�L 0.73 0.81 0.61 0.52 

�C 0.80 0.55 0.64 0.60 

�H 0.14 0.17 -0.08 0.31 

�

4.3.4 Data reliability 
The evaluation of the proposed sharpness metric for camera images 

according to the block diagram of Figure 25 constituted the most extensive 

part of the dissertation. According to the results, the performance of the 

sharpness metric is high compared with those of the state-of-the-art 

metrics that are applicable to camera images. In Data set II, the differences 

were also statistically significant. 

The proposed color noise metric was evaluated using a single cluster. 

According to the results, the metric is promising. Only one image cluster 

was used in the test, and it decreased the reliability of the results. The color 

difference method was evaluated using two views. The evaluation was 

based only on the objective data. The assumption was that the test target 

data represent the ground truth.  

The correlation coefficients of the proposed camera image methods were 

lower than the correlation coefficients of the corresponding methods 
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proposed for printed images. The main reason for this difference is that the 

camera image application is more difficult to measure than the printed 

image application. The reference images of the printed image application 

are simpler to reproduce and use than those of the camera image 

application. The form of an original reference image for the printed image 

application is digital, and test samples that should be digitized are planar 

(papers). In the case of cameras, the reference images (scenes) are 

captured by projecting 3D scenes onto a 2D plane (image sensor). In 

addition, the different optical properties of test cameras create perspective 

differences between test images. 

� �
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5. Discussion 

The proliferation of digital cameras and the growth of digital image and 

video applications have caused the issue of image quality to continue to be 

a lively research theme. Within this field, computing the quality of imaging 

systems with analog-digital and digital-analog conversions is a sub-field 

that has received less attention than the computation of quality distortions 

arising from, for instance, image compression or transmission.  

The main goal of this dissertation was to create methods and algorithms 

that characterize imaging systems in a user-relevant manner by directly 

measuring relevant and objective image quality attributes from natural 

images. The traditional approach to measuring the quality of imaging 

systems uses test targets. However, the overall quality of the images 

captured, printed or displayed is perceived through high-level attributes. 

These attributes can only be evaluated from natural images. High-level 

attributes such as naturalness and clarity are not relevant concepts in the 

case of test target images. 

In principle, reference-free (NR) algorithms would be ideal for 

computing the quality of imaging systems. However, the performance of 

NR metrics is low for imaging systems because even the state-of-the-art 

NR metrics can handle only images with one type of distortion [75], [94]. 

An image captured by a camera or printed by a printer can suffer from 

several types of distortions. For example, a NR metric for a blurriness 

distortion can interpret the noise energy in a blurry image as the image 

structure and assess the image as sharp. 

If quality is computed from a natural image captured or printed by an 

imaging system rather than an all-digital image communication system, 

the type (or lack) of the reference image gives rise to the main problem. For 

the printer applications, a digital reference image is available, but printed 

images (i.e., test images) are in analog (optical) form. Test images should 

be digitized before the measurements are taken. For example, a previous 

study [17] proposed a framework for digitizing test images by using a 

scanner. Compared with this method [17], the digitization device in this 

dissertation was a high-quality camera, and the method was based on 

multiple exposures. A device of the proposed method could be a fully-
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manual scanner, but with a camera e.g. lighting environment is easier to 

control. Because the study [17] applied state-of-the-art FR algorithms to 

the framework, precise registration between the reference and test images 

was a requirement. The proposed reduced-reference (RR) metrics for 

printed images are registration-free in principle. These metrics compute a 

feature vector for the reference image and utilize it if the attribute values 

are computed from test images digitized from prints. 

For camera applications, the reference images are missing. The proposed 

methods use a high-quality reference camera to capture reference images. 

The performance of the reference camera should be high enough. Noise 

energy and image structure should be differentiable under all image-

capturing conditions. In addition, an accurate color calibration should be 

possible. The areas for measurements are searched from the reference 

images, and the corresponding areas are located from the images captured 

by cameras. The search method is based on the correspondence points 

computed by the area descriptors in the neighborhood of the reference 

image’s measurement areas. Only the corresponding points in the 

neighborhood of the measurement areas are used. A traditional image 

registration approach is based on a global principle. The image 

homography is computed by covering all of the images’ pixel areas. 

Because the proposed method is based on a local principle, it compensates 

for the geometrical distortions and perspective differences between the 

images captured by different cameras. The local principle of the method 

eliminates the need for camera-specific optical calibrations. 

Traditional full-reference (FR) metrics compute error maps between 

reference and test images. Overall quality is often computed as an average 

value of the map. The quality attributes computed by the proposed RR 

metrics are more suited for research and development work on imaging 

systems with many types of distortions than metrics that express quality 

with a single number. The attributes were selected based on a literature 

review and a subjective study of printed images. We developed sharpness, 

graininess and color contrast metrics for printing applications and 

sharpness, color noise and color difference metrics for camera 

applications. In particular, the color contrast metric played an important 

role in predicting the overall quality of the printed samples in this 

dissertation. The state-of-the-art computational image quality metrics for 

natural images use only luminance information and bypass color 

information.  

In the dissertation, different methods were presented for camera and 

printer applications. Because of the order and progress of the research, the 

metrics for camera applications use a more advanced method to select the 
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local blocks to be measured. By applying the so-called corresponding 

blocks approach also in the printed image methods, the performance of the 

computational metrics would inevitably increase, because only the relevant 

regions would be used for measurements. The same most optimal blocks 

approach can also be applied to display measurements. The test images 

shown on a screen could be digitized by a high-quality camera, and the 

quality attributes can be computed accordingly. 

According to the results, the performance of the proposed methods was 

promising in most cases, and the goal of the dissertation was achieved. To 

support this point, we compared the proposed methods and the data from 

the test target measurements, the state-of-the-art algorithmic metrics and 

the subjective tests. By comparing the accuracy of the proposed methods 

with that of the test target-based methods, we showed that considerable 

advances were made in comparison with the traditional approach to 

measuring the image quality attributes of imaging systems. The correlation 

coefficients between the subjective data and the objective metrics indicated 

that the performance of the proposed sharpness and noise metrics 

exceeded the performance of the MTF50 and visual noise test target 

metrics (see Tables 12 and 17). In addition, the proposed color metrics 

correlate with the color metric values measured from the physical color 

patches (Table 18). 

By comparing the accuracy of the proposed metrics with that of the 

general-purpose algorithmic metrics from the field of image processing, we 

revealed that the proposed methods reached higher performance levels in 

the context of imaging systems than the state-of-the-art metrics (see 

Tables 9, 14 and 17). For example, according to the coefficients of 

determination, the proposed sharpness metric for camera applications 

explained more of the subjective data than the state-of-the-art metrics. 

This finding supports the notion that imaging system-specific algorithms 

need to be developed.  

One of the long-term goals of the research area for this dissertation is to 

make time-consuming routine subjective evaluations by test participants 

obsolete. By comparing the prediction uncertainty of the proposed 

methods with the variations of the subjective data, we found that the 

proposed methods are sufficiently accurate and can replace small-scale 

subjective tests (See Figures 39 and 41). The RMSE values for the 

subjective and objective data showed that the proposed objective methods 

can predict a mean opinion score more accurately than a random observer 

for the images used in this dissertation. 

The proposed methods measured the sharpness, color contrast, 

graininess, color noise and color difference attributes. In addition, it is 
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possible to compute the attributes of lightness and luminance contrast by 

using the same methods. Luminance contrast can be measured e.g. from 

local edge areas that can be found in a reference image. In addition, the 

values computed by the proposed sharpness metrics correlate strongly with 

subjective contrast. Lightness can be measured by, for example, comparing 

the global or local mean lightness values of reference and test images. 

The proposed methods can be modified to measure video quality as well. 

A reference video can be captured by a high-quality video camera, and the 

areas suitable for computing quality attributes can be located from this 

video by using the proposed methods. In the future, most consumer 

cameras will include features such as HDR and stereoscopic 3D-imaging. 

The proposed methods, which are based on the reference images captured 

by a high-quality camera, can also be modified to assess HDR and 

stereoscopic images. For example, HDR images can be measured by using 

a reference camera calibrated for lightness, and stereoscopic images can be 

measured by using, for example, two calibrated reference cameras. 

However, NR methods and high-level attributes and factors are the next 

main research topics in the research field of image quality. The use cases of 

the proposed reduced-reference methods for imaging systems are limited 

mostly to the field of research and development. The applications of image 

processing pipe tuning and imaging system benchmarking can utilize 

methods that require some information from a reference image. However, 

a wide range of real-life consumer applications, such as image retrieval or 

organizing systems, can apply only reference-free metrics. In addition, the 

applications of assisted photography would benefit from robust NR 

metrics. The goal can be to assist users to take better photographs by 

providing feedback such as framing instructions, which are based on object 

detection and quality algorithms.  

The high-level attributes of naturalness and clarity require more 

advanced methods than the low-level attributes studied here. 

Computational image understanding and better models for human viewing 

of images are vital. For example, in a previous study [81], we showed that 

the performance of a reference-free method is high if the metrics are 

computed from the face areas in camera-captured images. 

In addition, the theoretical constructs and relations of the quality 

attributes should be studied. The relations between low- and high-level 

attributes must be better understood before comprehensive methods can 

be constructed. Moreover, the difference between the quality evaluations of 

low- and high-quality images should be studied because it is known that 

the quality perceptions of low- and high-quality images are based on 

different attributes and aspects [82]. For example, the high-quality image 
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is sharp and noiseless, and the quality evaluation is probably based 

primarily on the reproduction of memory colors, texture and/or 

perspective rather than global sharpness or noise.   

� �
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6. Conclusions 

Image quality is a key performance indicator of digital cameras, displays 

and printers. As a research area, a major challenge arises from the shift in 

interest from characterizing the performance of devices to computationally 

predicting the quality of images and video as they are perceived and 

experienced by users. This dissertation addresses this challenge by 

focusing on quality attributes, particularly low-level attributes. These 

attributes are components in the constructs of high-level quality attributes 

and in judgments of overall quality as well.  

The goal of the dissertation was to create algorithms, verify their 

performance and apply them to methods of determining quality attributes 

directly from natural images. This approach contrasts with the standard 

practice of measuring imaging system performance based on test targets. 

The study lies at the intersection of the imaging and signal-processing 

traditions of image quality research. 

The key quality computation issues that differentiate imaging systems 

from image communication systems are the analog-to-digital and digital-

to-analog conversions, which are part of the imaging pipelines. A variety of 

nonlinear distortions and artifacts are generated in the conversions. This 

has the implication that it is feasible to try to apply other principles of 

quality computation than the full-reference principle successfully 

employed in the signal-processing research tradition. This study focuses on 

the reduced-reference principle and uses reference images for image 

attribute metrics.  

The contributions of the dissertation concern both the analog-to-digital 

conversions and reference image metrics for imaging systems. As the 

methods proved to predict subjective attribute scores more accurately than 

test target methods, we can conclude that the proposed methods facilitate 

computation of the quality attributes of natural images. In terms of the 

correlation coefficients between the objective data and subjective data, the 

performance of the objective methods also exceeded that of the state-of-

the-art algorithms. This suggests that the methods of this dissertation are 

applicable to research on the constructs of high-level attributes. Also they 

can be employed to replace small scale subjective tests. 
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In the course of the research carried out in this dissertation several 

possibilities for further research have been identified. For instance, the 

proposed methods can be modified to measure video, HDR and 

stereoscopic imaging quality. Proposed methods can be extended to 

measure high-level attributes such as naturalness and clarity for printed or 

camera images. This requires, however, more advanced methods than the 

ones we used with the low-level attributes in this dissertation. 

Computational image understanding and more advanced models for 

human viewing or even human behaviour should be developed and 

implemented in the proposed image quality measurement framework. 

A restriction of the proposed methods is the need for reference images. 

The measurements of printed images require a digital original image, and 

the measurements of camera images require reference images captured by 

a high-quality camera. However, progress in reference-free methods 

requires new and more advanced understanding of images from both 

objective and subjective standpoints. 
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Errata 

Publication I 

 

In Subsection 3.3, the image sharpness metric S should be 
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Publication V 

 

In Subsection 4.1, ‘Dataset 14 cameras’ should be ‘Dataset II 14 cameras’. 
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