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Abstract

The main goal of the research field of image quality is to create a computational model capable
of predicting the subjective visual quality of natural images and video. The model can be an
alternative for expensive quality evaluations by human assessors. This dissertation aligns with
this research field in the case of imaging systems, such as cameras, displays and printers.

The traditional approach to measuring the quality of imaging systems is based on test targets.
These targets primarily facilitate description of the performance of a system in terms of how it
reproduces and distorts simple test signals rather than measure the visual quality of natural
images captured or shown by an imaging system.

This dissertation primarily contributes novel methods and algorithms for measuring the
image quality attributes of natural images captured by cameras or printed by a printer. Both
methods utilize reference image data in the reduced-reference mode. The method and
algorithms developed for printers transform the printed natural test images into the form of the
reference image by using a high-quality reference camera and multiple exposures. The methods
and algorithms developed for camera images use a reference camera to capture scene
information. The scene information is used to help measure the attributes of natural images.
The main problem which needed to be solved concerns localization of areas in images from
which different attributes can be measured. The challenge arises from a multidimensional
distortion space in capture and display. The solution relies on low-level computational
understanding of images.

The methods were evaluated with subjective data. Compared with the state-of-the-art
computational or test target metrics, these methods were highly effective at predicting the
quality attributes of natural images captured by different cameras or printed on different
papers. According to the results, the proposed methods can replace test target methods and
even small-scale subjective tests in some situations.
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Tiivistelma

Kuvanlaatututkimuksen paétavoite on aikaansaada laskennallinen malli, joka ennustaa
luonnollisen kuvan tai videon visuaalista laatua. Laskennallinen malli korvaisi vaikeasti
jarjestettavat, aikaa vievit ja kalliit subjektiiviset kokeet. Tadma viitostutkimus sijoittuu
kuvanlaadun tutkimusalueelle ja keskittyy erityisesti kuvannussysteemien, kuten kameroiden
jatulostimien kuvanlaatumittauksen sovelluksiin.

Kuvannussysteemien laatua on perinteisesti méaritetty testikenttdmittauksilla.
Testikenttamittaus karakterisoi kuinka kuvannussysteemi toistaa tai vaaristaa yksinkertaisia
testisignaaleja. Testikenttdmittaukset eivit kerro miten kuvannussysteemilla kuvattu, esitetty
tai tulostettu luonnollinen kuva havaitaan visuaalisen laadun kriteereilla arvioituna.

Viitostutkimuksessa kehitettiin algoritmeja ja menetelmia sekd kameroille etta tulostetulla
kuvalle, jotka mittaa kuvanlaatuattribuutteja nimenomaan suoraan luonnollisista kuvista ja
joilla voidaan korvata testikenttdmittaukset. Kehitetyt menetelmét perustuu vihennetyn
referenssin periaatteeseen. Tulostetun kuvan sovelluksissa tulostettu luonnollinen kuva
digitoitiin kayttamalla korkealaatuista kameraa seki useaa valotusta. Digitoinnin jalkeen
alkuperiisen kuvan informaation avulla mitattiin tulostetuille luonnollisille kuville
laatuattribuutteja. Kameran kuvan sovellukset kiytti referenssikameraa, joka kaappasi
nakymaéan liittyvad informaatiota. Nakyméainformaation avulla eri kameroilla kuvatuista
luonnollisista kuvista mitattiin laatuattribuutteja.

Kehitettyjen menetelmien suorituskyky validioitiin subjektiivisella aineistolla. Verrattuna
testikenttdmittauksiin, kehitettyjen menetelmien suorituskyky oli korkea ennustettaessa
kameralla kuvattujen tai tulostimella tulostettujen luonnollisten kuvien laatua. Tulosten
perusteella ehdotetut menetelméit voivat korvata testikenttdmenetelmien lisédksi myos pienen
skaalan subjektiiviset testiasetelmat. Vaitostutkimus rajattiin kisittelemééin ainostaan
matalan tason laatuattribuutteja, kuten terdavyys, kohina ja virintoisto.
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Introduction

1.Introduction

11  Background

During the last few years, the number of consumer cameras has
significantly increased. The maturity of digital camera technology and the
integration of digital camera modules in mobile phones are the two main
reasons for this growth. The number of captured photographs has
increased at an even faster pace than the number of cameras, primarily
because digital sensors have replaced expensive and tedious films as the
image capture plane. Although more devices and methods of digitally
sharing images have become available, printing these images continues to
be a viable option.

Objective quality measurements used to characterize imaging systems
are the focus of this dissertation. The term “imaging system” denotes a
capture device, such as a digital camera, and a display device, such as a
printer or a screen. Image communication systems (i.e., streaming over a
network) are beyond of the scope of the associated problem areas. Figure 1
shows a generic imaging pipe where a camera captures a view and
processes the information to represent the view. Afterwards, the captured
information is transferred to the hard drive of a computer (or a network)

and printed on paper or shown on a screen.

LIGHT SOURCE

_ ADC_ 'mage processing / DAC _

Image transmission IMAGE PLANE VIEWER

OBJECT OPTICS  IMAGE PLANE Screen or print
\ Analog information \ Digital information Analog information |
| VIEW [ CAMERA | DISPLAY DEVICE [ HVS |

Figure 1. The information form in the imaging pipe is analog (view), digital (image
processing and transmission) and analog (display).

The fundamental challenge to developing image quality metrics and
methods for imaging systems arises from the analog-to-digital (ADC) and
digital-to-analog (DAC) conversions that take place in the imaging pipe.

The scene information captured by a camera is originally an analog signal



of an optical image. Before the captured information is digitally stored in a
camera, an ADC is performed. Before captured information is printed on a
paper or shown on a screen, DAC is required. That is, the form of the
original or reference signal (optical or digital image) is different from that
of the test signal (digital or optical image).

The research and development work on imaging systems in industrial
settings is continuous and cyclical and requires robust, feasible analysis
and validation methods. The development work on consumer and low-end
cameras is particularly challenging because of the cost and size limitations
of the devices. Cheap optics and small-sized sensors with small pixels
result in noise and unsharp raw images. Advanced signal processing is a
requirement for adequate image quality. In the future, new imaging
applications will bring new challenges and requirements. For example,
stereoscopic camera modules and different types of environment-sensitive
camera network systems will become common. In addition, consumer
cameras will implement new computational applications. Features such as
high dynamic range (HDR) imaging, face recognition and panorama
imaging are now basic features in many advanced consumer cameras. The
development work on quality metrics should also be continuous and
progressive. The new metrics and methods should be able to tackle the new
requirements that new functionalities bring.

The three main quality-of-experience factors for imaging systems are
usability, durability and image quality. Of these factors, image quality is
probably the most important. Imaging systems are characterized using
both subjective and objective methods. In this dissertation, the term
“subjective method” denotes a test performed on test participants. The
term “objective method” refers to an algorithm or a method based on the
computational processes applied to the test images. The output of an
objective method is a value related to the function of an imaging system or
the quality of an image that is captured, shown or printed by an imaging
system. In a subjective test, an observer rates test images based on the
overall quality or quality attributes. Quality attributes include sharpness,
graininess, naturalness, clarity, contrast and brightness. For example, in an
image quality hierarchy, naturalness and clarity are high-level attributes,
and sharpness and graininess are low-level attributes. The high-level
attributes are more subjective, and personal preferences affect them more
than the low-level attributes. The low-level attributes are more concrete
and easier to evaluate. An image quality hierarchy describes the levels and
relations among different quality attributes.

Subjective evaluations can function as the ground truth for image quality
as long as the tests are planned well and executed carefully. However,
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subjective measurements require a large number of assessors and are time-
consuming in nature. In addition, subjective measurements cannot be used
for applications that require real-time parametric control based on quality
data.

The field of objective image quality research has tried to develop methods
and models for predicting subjective quality and quality attributes as
accurately as possible. Traditionally, test targets are employed in objective
measurements of imaging systems. Test target data, however, do not
correlate well with perceived image quality. The test target measurements
primarily describe how imaging systems function rather than measure the
perceived quality of images captured and processed by imaging systems.

The perceived quality of images relates to attributes such as naturalness
and clarity. Both of these high-level quality attributes can only be assessed
from natural images. Test target images cannot be used. In this
dissertation, the term “natural image” refers to a picture taken from a
natural scene or from man-made objects. The term “test target image”
refers to a picture taken from known test fields, such as frequency-
modulated bar patterns or tone- and color-modulated patches. Test targets
allow us to determine how an imaging system distorts the known test

signals when captured or rendered on display or in print.

1.2 The goal of the dissertation

The goal of this dissertation is to construct and evaluate methods and
algorithms that measure quality attributes directly from natural images
and thus replace test target images. If we reach this goal, the performance
measurements of imaging systems can be streamlined because the tedious
process of capturing test target images under strict laboratory conditions
can be avoided. In addition, the same images can be used for subjective
measurements. If both objective and subjective measurements could be
performed from the same images, the relation between subjective and
objective data and the constructs of the subjective data would be easier to
establish. The ultimate goal is to replace subjective evaluations with
objective computational models.

The study focuses primarily on the functionality of the metrics rather
than specific imaging systems. With regard to the chronological order of
the research, we first addressed the image quality attributes that utilized
features from digital reference images. The application was printed images.
We then shifted our focus to the determination of image quality attributes
from the images captured by cameras. Specifically, we examined methods

that utilize the information from the scenes to be acquired as reference



data. Because the development process follows this chronological order,
the methods developed later for the camera measurements are more
advanced, and the weight and novelty of the dissertation lies more in the
camera measurements than in the printing measurements. However, the
fundamental principles underlying the developed methods allow us to
apply the methods with minor modifications to characterize any imaging
system.

1.3 Dissertation contributions

The contributions of this dissertation are concerned with the methods,
algorithms and metrics that allow us to use the reference approach to
measure image quality attributes directly from the natural images captured
by cameras or printed by printers. The proposed methods and metrics are
verified using the data from subjective studies developed and
accomplished by the research partner of University of Helsinki, as detailed
in the List of Publication and Author’s Roles on pages vi-vii. The six
contributions of the dissertation are as follows:

The first contribution of the dissertation concerns the method used to
digitize and transform printed test images into the format of a reference
image. The original image can be used as a reference file for measurements
of printed image quality. However, the form of the printed test image is
analog, and it should be digitized before it can be compared with the
reference image. Previous studies [17], [87] used a reflective scanner with a
standard ICC profile to digitize printed color images. In this dissertation, a
high-quality camera was characterized by colorimetric and spectral
methods, which turned it into a color-accurate digitization device. Because
the dynamic range of digital cameras (and reflective scanners) is the
limiting factor of their imaging performance, we used multiple exposures
to capture the sample images. Publications I and II presented the
digitization methods.

The second contribution concerns the attribute metrics that utilize a
reference image and compute the quality attributes for printed images.
Reduced-reference (RR) type metrics were developed for the color
contrast, sharpness and graininess attributes. The attributes were selected
based on a subjective study. The state-of-the-art Full-reference (FR) and
RR metrics compute the overall quality of an image instead of its attribute
values. Although the previously proposed no-reference (NR) metrics
compute the quality values of images distorted by a specific distortion,
these metrics are also sensitive to other distortions. With the proposed

method, we can compute attribute-specific values. In addition, as in the
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printed images, the proposed metrics can be used for the images with a
multi-dimensional distortion space. Publication I presented the proposed
RR metrics for printed images.

The reference image is not available for camera quality measurements.
The third contribution concerns a reference camera. Publication IV
examined the usage of a reference camera. The principle is that a reference
camera captures scene information in the form of a reference image. With
the aid of the information, we can compute the quality attributes of natural
images captured by cameras. The current practice computes the image
quality attributes of imaging systems from test targets.

The fourth contribution relates to the methods employed to compute the
sharpness, color noise and color difference of camera images. The
contribution relates to the method and algorithms used to locate the
optimal measurement positions from the captured scene. For the different
attributes, the method uses different maximizing functions. The sharpness
metric tries to find high energy areas, and the noise metric attempts to find
low energy areas. The color metric searches for the most extensive color
value set that can be captured from the scene. Publication III presented the
noise metric, Publication V presented the sharpness metric and Publication
VI presented the color difference metric.

The fifth contribution addresses the method and algorithms used to
search the corresponding areas between the reference and test images. The
method uses area descriptors to search the corresponding areas. We can
use the proposed method for camera images because the principle of
searching corresponding areas is local. The non-linear geometric
differences between the images captured by different cameras (i.e., those
without planar views and without constant shooting positions) create a set
of problems. However, we can avoid these problems by using the proposed
method. Publications V and VI described the method and algorithms in
detail.

The sixth contribution is associated with the use of color information
from natural images to compute image quality. We developed the RR type
metrics to compute color contrast, color noise and color difference. The
state-of-the-art algorithmic metrics do not utilize the color information of
the test images. The proposed color contrast metric presented in
Publication I is derived from the chromatic components of the CIELAB
color space. The proposed color noise metric presented in Publication III
utilized the components of the YCbCr color space to find the areas for
computing chromatic noise in the test images. The proposed color

difference metric presented in Publication VI expressed color in the



components of the CIELAB color space to compute the color value

differences between the test images and the test scene.

1.4 Dissertation structure

This summary of the dissertation includes two parts based on Publications
I-VI, which can be found in the appendixes.

The first part (Section 2) provides an overview of the previously proposed
definitions of image quality, reviews the state-of-the-art test target and
algorithmic methods and explains the different types of test images. In
particular, Section 2 discusses the lack and the problems related to
algorithmic methods, when applied to imaging systems.

The second part (Sections 3-5) covers the experimental part of the
dissertation. Section 3 describes the developed methods, Section 4 shows
and analyses the experimental results and Section 5 discusses the results
and the contributions of the dissertation.

As for the abbreviations and definitions, the reader is referred to the
respective sections at the beginning of the summary. Symbols are defined
in the context of the equations in which they occur.
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2.Survey of Image Quality
Measurements

2.1 Definitions of image quality

Both Keelan and Engeldrum have used the term “excellence of image” as a
definition of image quality. Keelan [50] stated, "The quality of an image is
defined to be an impression of its merit or excellence, as perceived by an
observer neither associated with the act of photography, nor closely
involved with the subject matter depicted”. Engeldrum’s [19] definition
states, “Image quality is the integrated perception of the overall degree of
excellence of an image”.

Janssen’s definition draws from the assumption that image quality is
related to two perceptual attributes. Janssen [48] described “the quality of
an image to be the degree to which the image is both useful and natural.
The usefulness of an image to be the precision of the internal
representation of the image, and the naturalness of an image to be the
degree of correspondence between the internal representation of the image
and knowledge of reality as stored in memory”.

This dissertation begins by pointing out that the image quality of an
imaging system is determined by the quality attributes. In addition, we
assumed that quality attributes can be classified into low- and high-level
groups and that an image quality hierarchy can be formed. The high-level
attributes are more subjective, and personal preferences affect the values
of these attributes more than those of the low-level attributes. In addition,
the meaning of image content is stronger with the high-level attributes
than with the low-level attributes. High-level attributes cannot be directly
related to an objective property of an image. The low-level attributes are
concrete and general.

Image quality hierarchy describes the levels and links of different quality
attributes in the construct of overall image quality. With the aid of an
image quality hierarchy, we can also present an image measurement
hierarchy. An image measurement hierarchy depicts the links and relations

among different image quality metrics. The following sub-sections present



the subjective image quality attributes of different imaging systems and

derive a general image quality hierarchy.

2.2 Subjective image quality attributes

The image quality of image processing and imaging systems has been
studied and analyzed using attributes and viewpoints that have clear
differences. The literature on image processing has often focused only on
transmission and compression distortions, such as JPEG and JPEG2000
compression artifacts, white noise or packet loss distortions. The study of
imaging systems appears to be a much more complex problem. For
example, Keelan [50] classified the quality attributes of photographs
(captured by a camera) into personal, aesthetic, preferential and artifactual
groups. The low-level attributes of sharpness and noise are artifactual
attributes. The low-level attributes of color balance, lightness and contrast
are preferential attributes. Aspects such as lighting quality and image
composition are aesthetic attributes. Features such as how an image
preserves a cherished memory and conveys the essence of a subject are
personal attributes. Keelan claimed that the classes describe how easy the
attribute is to evaluate. Compared with the aesthetic and personal
attributes, the artifactual and preferential attributes are straightforward to
estimate.

Different imaging systems need to be characterized in terms of device-
specific attributes and common attributes. Leisti et al. [59] and Pedersen et
al. [88] have studied the quality attributes in the print context. Based on
the results of a subjective interview test, Leisti et al. [59] claimed that the
most important low-level attributes for prints are brightness of color,
sharpness, graininess, brightness, color quality, gloss, contrast and
lightness. The high-level attributes used to determine the meanings of the
low-level attributes are realism, naturalness, clarity, depth and quality
associations. Based on a literature survey, Pedersen et al. [88] identified a
large set of attributes. The researchers compressed these attributes into six
low-level attributes: color, lightness, contrast, sharpness, artifacts and
physicality. The color attribute is related to hue, saturation and color
rendition. The artifacts attribute includes noise, contouring and banding.
The physicality attribute contains the physical parameters that affect image
quality, such as paper properties and gloss.

Nyman et al. [83] and Radun et al. [92] studied the attributes of images
captured by cameras. Nyman et al. [83] claimed that the important low-
level attributes for the still image are sharpness, noise, lightness and color.

The important attributes for video images were related to the same image
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properties (sharpness, noise, lightness and color). In addition, the high-
level attributes “good enough picture” and “distorted unnatural colors”
were used for the video images. For the sound quality of the video images
the attributes named as “good enough” and “noise” were used. Radun et al.
[92] studied the image processing pipes of mobile camera phones.
According to the results, the most important image quality dimensions
were color shift, naturalness, darkness and sharpness. Radun et al. [92]
claimed that the high-level attribute naturalness is a requirement for high-
quality images, whereas quality can fail for other reasons in low-quality
images. For example, a low-quality image can be dark and unsharp.

Murdoch et al. [77] studied the attributes of TV displays. They claimed
that the important attributes for TV displays are brightness, contrast,
color, sharpness and motion quality. Jumisko-Pyykko et al. [49] studied
the quality of mobile 3D video. According to the results, the quality of
mobile 3D video experiences is related to classes such as visual depth,
spatial and temporal properties, viewing experience, quality factors in
general, audio quality, audiovisual quality and content.

2.3  Attribute relationships

The quality attributes interact with each other. If the application-specific
attributes and links are known, the underlying causes explaining the
subjective data are easier to find, and an objective overall quality model
can be derived. For example, with the aid of the Bayesian networks derived
by Eerola et al. [18], we can analyze the effects of quality attributes on the
subjective overall quality of a printed image. The learnt networks connect
the objective instrumental measurements of prints to the subjective
opinion distribution of human observers. For example, according to the
links of the network shown in Figure 2, the subjective high-level attribute
naturalness affects the low-level attributes gloss, graininess and
colorfulness.

I3A association [40] published an initial image measurement hierarchy
for camera phones. In the hierarchy, the subjective low-level attributes are
uniformity-ness, sharpness, hue-chroma (color) reproduction-ness and
brightness (tone) reproduction-ness. The high-level attributes are
genuineness, naturalness and usefulness. The image measurement
hierarchy of I3A also shows different levels for the objective
measurements. The lowest level of the objective measurements shows the
technology variables of cameras. The image processing pipe and sensor
design affect those parameters. For example, sharpening, denoising,

demosaicing, automatic white balancing and auto-exposure are related to



image processing pipe design. Column noise, pixel design, spectral
sensitivity, stack height and other issues are related to sensor design. The
mid-level of the objective measurements shows the basic test target
measurements or low-level technical measurements of digital cameras. The
highest level shows the objective perceptual measurements that consider
not only test target data but also the properties of the human visual system
(HVS).
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Figure 2. A Bayesian network structure found by Eerola et al. [18] for the quality attributes
of a set of printed images (copied from Eerola et al. [18]).

\Cilour gamut)

Naturalness

Engeldrum [86] proposed the famous concept of Image Quality Circle
(IQC) to help clarify the structures, links and elements of image quality
rating and technology variables. The image measurement hierarchy of I3A
and the IQC closely resemble each other. The objective level includes low-
level technical properties (as technology variables), low-level technical
measurements (as physical image parameters) and perceptual
measurements (as customer perceptions). The subjective level includes
low-level subjective attributes (as customer perception) and high-level
subjective attributes (as customer image quality ratings).

24 The general measurement hierarchy for imaging systems

Figure 3 shows the image quality measurement hierarchy that served as
the foundation of the metrics developed in this dissertation. The hierarchy
is hypothetic and based on the above literature survey. The attributes of

the hierarchy are based on their generality in the area of imaging systems.
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Sharpness, contrast, noise, lightness and color are the low-level attributes.
The color attribute is composed of attributes such as color balance, color
accuracy and chroma. Color accuracy includes several metrics that
characterize color difference.

Our hypothesis is that the overall image quality of a captured or printed
image is a combination of the high-level attributes of clarity and
naturalness. Naturalness is concerned with the correspondence between a
picture and the anticipated view or the real view in the memory of an
observer. Clarity determines whether the content of an image is easy or
difficult to distinguish.

High-level attributes
Overall image quality

Naturalness Clarity

A &

Low-level attributes

Sharpness Contrast Noise Lightness Color

Figure 3. The image measurement hierarchy for imaging systems.

2.5 Test target metrics

There is a strong tradition of characterizing imaging systems by using test
target metrics. In the case of printers, the measurements are performed by
printing digital test target images and by using specific measurement
devices to measure the reproduction from the printed paper. The
measurement device can consist of, for example, a densitometer, a
colorimeter or a spectrophotometer. Prior scholars have called the printer
measurements “instrument measurements”. The data have been used to
compute, for example, color reproduction and accuracy, print density,
print gloss, sharpness, details and unevenness [90].

The test targets of digital cameras are measured by capturing the printed
test targets under specific types and levels of illumination and by
computing the metrics from the acquired signal. The ISO (International
Organization for Standardization) has published camera measurement

standards for sharpness [43], noise [45], lens optical distortion [47], ISO-
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value [42], opto-electrical conversion function [44] and color [46]
characterization and measurements.

The camera sharpness is measured by computing the frequency response
of sharp edges (SFR, spatial frequency response). First, the gradient is
calculated from the edge, and the Fourier-transformation gives the
frequency response. It is known beforehand that the edges in the test target
are sharp and that an accurate reproduction requires a camera that does
not filter high frequencies or add energy in the edges. Publication V used
MTF50 value as a reference for the proposed sharpness metric, which was
computed directly from natural images. MTF50 is the spatial frequency at
which MTF = 50% (i.e., at which the contrast has fallen to half of its value
at low spatial frequencies).

The standard camera noise measurements are performed by determining
the signal-to-noise-ratio (SNR) from the even patches. It is known
beforehand that the patches are even in the test target and that the
intensity variance calculated from the images captured by the camera
exists because of noise. The annex of ISO 15739 standard [45] also
introduces a visual noise (VN) test target metric. Publication III used the
VN metric as a reference for the proposed color noise metric, which was
computed directly from natural images. VN accounts for the properties of
the HVS. The image data of each patch are converted to the spatial
frequency domain by using a Fourier transform, which is applied to the
color components of a uniform color space. The noise power spectra are
weighted with the CSF, and the inverse Fourier transform is applied. The
weighted sums of the three standard deviations for each axis in a uniform
color space are calculated.

The camera color measurements are performed using specific color patch
targets [85]. The metrics include the luminance, chroma and/or hue
difference between the measured values from the test target patches and
the computed values from the captured images. The measurement device
can be, for example, a spectroradiometer or a colorimeter. Publication VI
used the color difference values as ground-truth data for the proposed
color difference metric, which was computed directly from natural images.

Initially, the camera test target metrics were designed for the manual
cameras. Adaptive processing in modern cameras hinders the
interpretation of measurement data. For example, signal sharpening does
not add new details in an image, even though the spatial frequency
response value that measures the detail reproduction increases as a result
of the sharpening [84],[66]. Noise removal algorithms filter noise energy
from the smooth areas of images, and the SNR value increases. The
problem is that it is difficult to distinguish between the image structure

12
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and noise energy, and a noise removal algorithm can also filter image
details. The SNR value of a camera can be high, but image quality is low
because the noise removal algorithm has filtered out the image details.

Instead of predicting the subjective quality, the data from the test target
measurements can be used to characterize the devices. The
characterization describes how an imaging system reproduces, distorts and
manipulates those signals captured under ideal conditions. For example,
how an edge, a smooth surface or a color patch is reproduced can be
measured. The SFR can indicate whether the imaging system filters or
amplifies frequencies. The SNR computes the smoothness of the even
patches after capturing or printing the image. The color metrics depict how
different combinations of color signals are interpreted. These factors do
not determine how a complex view (natural image) is captured by a camera
or how a subject would perceive the view if the image was shown on a
display or printed on a paper.

Figure 3 shows the image measurement hierarchy derived from the
literature review and used in this dissertation. Figure 4 expands the image
measurement hierarchy in Figure 3 by including the system-level
characterizations for which test target images are used. The whole
measurement hierarchy outlines the distinct processes or levels for
imaging system benchmarking studies. These studies need both subjective
and objective data. A strong link exists between the objective test target
metrics and the characterization values. However, the link between the test
target and the subjective data is weak. The device characterization process
measures the reproduction of the test targets captured or printed by an
imaging system. The subjective quality measurement process requires
natural pictures that are captured or printed by an imaging system. Test
target pictures cannot be used. Only natural pictures can express the
naturalness or clarity captured by a camera or printed by a printer. Both
subjective and objective processes are tedious and require time resources.
For the subjective tests, natural pictures should be taken, and for the
objective study, the test target pictures should be taken in a controlled

laboratory environment.
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Figure 4. The whole image measurement hierarchy for benchmarking studies of imaging
systems.

2.6 Algorithmic metrics

Previous scholars have mainly developed algorithmic metrics for image
processing applications. Their objective is to estimate the overall quality
directly from natural images.

Algorithmic metrics can be divided into three types: full-reference (FR),
reduced-reference (RR) and no-reference (NR) metrics. The metrics are
divided based on the availability or usage of a reference image. Figure 5
shows the basic requirements for the three types of metrics. An FR metric
requires a pixel-wise reference image. That is, the original or reference
image should be available, and the test image should be free from
nonlinear geometrical local distortions. The corresponding pixel positions
that relate the reference and test images should be known, or it should be
possible to find them. The term “reference image” refers to an image whose
visual quality or information capacity is high compared with that of the test

images.
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An RR metric requires some information from the original or reference
image. An RR metric often computes a feature vector for the reference and
test images. Unlike FR metrics, most RR metrics do not need pixel-wise
reference images. The feature vector is often based on global statistics. For
example, the feature vector can be composed of the parameters of given
statistical distributions.

An NR metric does not need a reference or original image. The computed
image quality metrics are based only on the information that is available
from the test image. However, the performance of NR metrics is still
limited. Traditionally, NR metrics are based on the assumption that a
specific and known distortion type has distorted the image. NR metrics fail
if the distortion space of the test image is multi-dimensional. NR metrics
cannot handle test images with many concurrent distortion types, such as

printed images or images captured by digital cameras.
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Figure 5. FR metrics require a pixel-wise reference image, RR metrics require a feature
vector from the reference image and NR metrics require the distortion type as input data.
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2.6.1 Full-reference metrics
Most FR metrics are based on HVS modeling [36], [8], the structural

similarity principle or natural scene statistics (NSS) [99]. The HVS metrics
are computationally complex. A HVS metric can include the components
for preprocessing, channel decomposition, error normalization, error
values pooling and fidelity value calculation [99]. The preprocessing
component filters the images based on the point spread function (PSF) of
the human eye. The channel decomposition component divides the signal
into the scale and orientation information channels. The error
normalization component filters the image by using, for example, CSF and
the known masking functions. Finally, the error pooling component sums
the pixel-specific error values between the reference and test images into
one scalar number.

The recent FR metrics are mainly based on the structural similarity
principle. The assumption is that the overall image quality relates strongly
to the ease of image interpretation. These metrics are computationally
simpler than the metrics based on the HVS. In addition, the performance
of the metrics is comparable with that of the metrics based on the more
complex approaches. For example, Sheikh et al. [101] used the LIVE image
quality database to evaluate several FR algorithms whose codes were
publicly available on the Internet or obtained from the authors. According
to the results, the IFC, VIF, SSIM (MS) and JND metrics performed much
better than the rest of the algorithms. The IFC and VIF are based on the
NSS, the SSIM (MS) is based on image structure and the JND is based on
the HVS.

The first metric that used the structural similarity between the reference
and test images was the SSIM (Structural Similarity Index) metric [113].
The SSIM computes luminance, contrast and structural similarity values
between the reference and test images. The structural similarity is
measured using the cross-correlation value. Later, the SSIM metric was
extended in several ways. For example, past scholars have used the
complex wavelet domain [97], the edge-finding approach [10], the image
gradient [11], different image scales, the SSIM (MS) [119], the added
equalization dimension [5] and visual attention model weights [28] to
enhance the performance of the original SSIM.

The SSIM metric has almost become the de facto standard for validating
new image processing methods, such as image compression or super
resolution. The idea is to show that a compression method does not change
images or that a super resolution method can use low-resolution images to

construct an image comparable with its high-resolution counterpart.
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In addition to the SSIM metrics, past scholars have proposed many other
structural FR metrics. For example, Zhang et al. [126] created the FSIM
(feature similarity index metric), which includes two components. The
components measure the significance and contrast of the images. Kim and
Park [54] proposed the PQC (phase quantization code) metric, which is
based on the phase difference. Later, Kim and Park [53] proposed the
APQC (amplitude/phase quantization code) metric, which is an extended
version of the PQC metric. In addition to the phase difference, the APQC
metric calculates the amplitude difference. Kim et al. [51] proposed the
GIQM (gradient information-based quality metric), which calculates the
Harris response (HR) values from the gradient image. HR describes the
structures of points in images. Shnayderman et al. [104] proposed a metric
that compares the singular values of singular decomposition for the
reference and test images. Narwaria and Lin [80] proposed a metric based
on the singular vectors of singular decomposition. This metric assumes
that the singular vectors have information related to the structural
differences between the images. Ma et al. [68] proposed a metric that
calculates the visual horizontal effect (HE) and the salience from the SSIM
image. The HE quantifies the effect of image content, and the SSIM
expresses the effect of the orientation of a stimulus. Han et al. [33]
proposed a metric based on the U matrix diagonal values of LU
factorization. This metric assumes that the U elements of the matrix relate
to uniformity or homogeneity. Zhang et al. [127] proposed a metric that
calculates the number of stable edge points for the reference and test
images. This metric assumes that the number of edge points relates to the

structural correctness.

2.6.2 Reduced-reference metrics
According to some estimations, the performance of FR metrics, in case of

single distortion images, has reached a saturation point [60]; the
predictions of state-of-the-art FR metrics are close enough to subjective
evaluations. New extensions or modifications of the metrics will not
significantly increase the performance. However, in the case of imaging
systems, the applicability of FR metrics is limited because of the lack of
pixel-wise reference images. Furthermore, the performance can be lower
because of complex and multiple distortion sources [87]. Compared with
the full-reference principle, the reduced-reference principle increases the
number of use cases. For example, RR metrics can be used with video or
image streaming applications where feature vectors are sent through the
ancillary channel [114].

Several RR metrics are based on the NSS. Natural un-distorted images

have certain statistical properties that hold across different contents. For
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example, it is a known fact that the power spectrum of natural scenes can
be modeled while assuming that the fractal law will hold (ie.,
approximating the shape with dependency 1/f2, where f is frequency and a
amplitude parameter) [26]. The amplitude parameter provides the shape
of the power spectra. The NSS approach to RR metrics often models the
marginal probability distributions of the coefficients of a transformation
space. For instance, the Cheng and Cheng metric [14] fits the image
gradient values to the generalized Laplace distribution model. Their metric
calculates the Kullback-Leibler distance (KLD) and the variance difference
between the distributions of the reference and test images. The Xue and
Mou metric [122] and the Wang et al. metric [120] calculate the wavelet
coefficients by using the steerable pyramid technology. The Xue and Mou
metric [122] fits the wavelet coefficients to the Weibull distribution model:

B(w - (~(wia)’)
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where a describes the scale, S describes the shape of the distribution and w
is a coefficient. The parameters a and g from different scales are the
features of the reference image [122]. The Wang et al. metric [120] fits the
wavelet coefficients to the Generalized Gaussian Density (GGD) model:
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where I'(a) is the gamma function, a describes the scale and S describes the
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shape of the distribution. The parameters a and £ and the error incurred
while approximating the empirical coefficients of this distribution from the
different subbands of the wavelet decomposition are the features of the
reference image. The Li and Wang metric [61] fits the wavelet coefficients
to the GGD after divisive normalization. Their metric computes the KLD,
standard deviation, kurtosis and skewness between the reference and test
images. Figure 6 shows a principle where the original or reference image
statistics are modeled using a parametric model, and the parameters
function as RR features (feature vector). Image quality is calculated by
comparing the features of the original image and test image.
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Figure 6. The main principle of many RR metrics is that a distortion modifies the known
image statistics and that image quality is calculated using the feature vectors derived from
the parameters of the statistical models.

The idea behind the NSS metric [14], [122], [120], [61] is that the
orientation responses of natural images are highly kurtotic. The probability
distribution of the responses of a natural image has a high peak and long
tails. The marginal distributions change in different ways for different
types of image distortions. Figure 7 shows the images captured by a high-
quality camera and a low quality-camera as well as the marginal
distributions of the wavelet coefficients (first scale vertical band) for the
images. The distributions of the images differ, and the difference can be
modeled. Compared with the distribution of the un-distorted image (high-
quality image), the distribution of low-quality images (solid line) has a flat
peak and short tails. For example, when g < 2 of the GGD (Equation 2), the
tails are heavier than they are in the normal distribution, and when g > 2,
the tails are lighter than normal. The tails may be heavy because of noise,
and the tails may be light because of blurriness.

Some RR metrics utilize the contrast sensitivity function (CSF) before
calculating the overall image quality. For example, the Li et al. metric [62]
applies the directional filter bank (DFB) to wavelet decomposition. The
metric filters the wavelet coefficients by using the CSF and calculates the
threshold value. The threshold value determines whether a wavelet
coefficient is visually discriminative. The metric compares the numbers of
visually discriminative coefficients between the reference and test images.
In the study of Li et al. [62], the free parameter for the visual threshold
equation was determined by empirical tests. The Tao et al. metric [109]
uses the contourlet domain to calculate the RR feature. The coefficients are
filtered using the CSF, and the visual threshold is calculated for different
subbands of the wavelet decomposition. The metric compares the number
of visually discriminative coefficients between the reference and test
images in different subbands. The Ming et al. metric [73] is the same as the

Tao et al. metric [109], but the former also calculates the average H and S
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values in the HSV color space. The Maalouf et al. metric [70] uses the
Grouplet domain to calculate the RR features. The Grouplet
transformation is based on the group matching method, which classifies
the points in the same neighborhood into groups and defines the image
geometry. The metric calculates the difference in value between the
coefficients of the reference and test images after using the CSF. The Gao et
al. metric [25] uses multiscale geometric analysis (MGA), the CSF and the
Weber JND to perform calculations. The MGA includes many different
transformations, such as wavelets, curvelets, bandlets, contourlets,

wavelet-based contourlets and directed filter banks.

wavelet coefficient

(c)

Figure 7. The image captured by the high-quality camera (a), the image captured by the
low-quality camera (b) and the probability distributions of the wavelet coefficients for the
high-quality (dashed line) and low-quality (solid line) images (c).

2.6.3 No-reference metrics
The literature has proposed many NR metrics, but finding quality

measurements without having any knowledge of a reference is a difficult
problem. Past scholars have often designed NR metrics to measure the
distortion levels of images with a single distortion. The distortion is often
JPEG or JPEG2000 image compression, blurriness or noise.

Image blurriness is often measured by calculating the width of edges that
can be found from the test image. For example, Marziliano et al. [71] found

the edges by using the Sobel-operator and calculated the edge widths as
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pixels. Ferzli and Karam [24] proposed the just-noticeable blur (JNB)
concept. If the edge width is higher than the JNB, the probability that an
image is unsharp increases. Figure 8 provides an example where a

sharpness metric finds edges and calculates the width of the edges from the

edge profiles.
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Figure 8. Image sharpness can be estimated by calculating the width of the image’s edges.

Additionally, Liang et al. [63] and Caviedes and Gurbuz [77] proposed NR
metrics based on edges. Liang et al. [63] calculated the histogram of
vertical and horizontal gradient profiles. The shape of the histogram
describes the sharpness of the image. Caviedes and Gurbuz [7] calculated
sharpness values by using the kurtosis of the discrete cosine transform
(DCT) values from an edge neighborhood. Scholars have also used singular
values, eigenvalues and wavelet decomposition as sharpness metrics. Zhu
and Milanfar [129] measured sharpness by using the singular values of a
gradient image. Chen and Bovik [13] calculated sharpness by using the
distributions of the gradient and wavelet-decomposition values. Wee and
Paramesram [121] estimated sharpness by using the highest eigenvalues of
a normalized image. The researchers expected that the dominating
eigenvalues would relate to sharpness and that the less dominant
eigenvalues would relate to noise.

Image noise is difficult to measure from natural images, and the
literature shows only a few algorithms on this point. For example,
Immerkaer [41] proposed a noise metric that utilizes the variance of the
image filtered by the Laplace-operator. However, the method is also
sensitive for the fine image structures. Tai and Yang [107] presented a
noise metric that tries to compensate for the effect of edges on noise
measurements. The metric tries to filter out edges before the noise
calculations take place. The more general application area for the noise
measurements than the image quality is the noise removing. Noise
removing methods often need the threshold values for the algorithms
before the image is filtered.

The JPEG and JPEG2000 compression methods incur at least two
different types of image distortions. Both compression methods blur the
image. In addition, the JPEG compression causes blockiness, and the
JPEG2000 compression causes a ringing distortion. The blockiness

appears as an artificial discontinuity between the adjacent blocks in an
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image. The ringing distortion adds extra structural energy around the
edges of an image. The NR metrics for the JPEG distortion often measure
only the blockiness. The basic idea is that the block distortion forms a
regular error signal on top of the original image signal [115], [112]. The
error signal can be estimated, for example, from the peaks of the
autocorrelation function or from the harmonic frequency in the frequency
domain. Figure 9 shows an example where a method calculates the
horizontal gradient of the image and estimates the level of blockiness from

the autocorrelation function.

Horizontal gradient Autocorrelation

_—  ———
Figure 9. The block error signal can be estimated from the peaks of the autocorrelation
function.

The JPEG metric proposed by Wang et al. [117] computes two
components for the test image. The first measures the blockiness level, and
the second measures activity. The JPEG2000 metric by Zhang and Le [125]
measures the monotony of the pixels and the structure of the image
content. The idea is that the second component compensates for the
structural energy generated by a ringing distortion, whereas the other
component calculates blurriness. The components of the Liu et al. [65]
metric extract the regions that are likely to be impaired by a ringing
distortion and quantify the visibility of the distortion. The visibility is
measured by comparing the detected regions and the corresponding local
background. The Sheikh et al. [100] metric for JPEG2000 is based on the
joint distributions of the subbands of wavelet coefficients. The idea is to
measure to what degree the JPEG2000 compression changes the
distributions. The changes occur because of the signal quantization in the
compression process.

The metrics were developed for the images with a single distortion source
and for the applications with a known distortion type. The distortion space
of imaging systems is multidimensional and includes a variety of distortion
sources. The distortions of the images captured or printed by imaging
systems can be dependent or independent of each other. Some distortion
sources are known, but some are unknown. Because of the
multidimensional distortion space of imaging systems, the performance of

the NR metrics presented in the literature is low [15], [12]. For example, if
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sharpness or blurriness is measured from the edge areas, the metric can
interpret the noise energy of an imaging system or the block structure
arising from the JPEG compression as an image structure. A noise metric
can interpret the fine details of an image as noise energy.

For example, Ciancio et al. [15] and Chen and Bovik [12] tested NR
sharpness metrics on the blurred image database (BID [2]). The BID
includes subjective data and real images captured by digital cameras.
According to the results of both studies, the performance of the NR
sharpness metrics is not high for camera images. The Chen and Bovik [12]
metric had the highest correlation at 0.586.

If the sharpness or blurriness of an image captured by a camera is
measured, the intentionally unsharp background can also be a problem.
The narrow depth of focus is a common method that photographers use to
focus the viewer’s attention on the subject of the picture. The principle of
the metric proposed by Narvekar and Karam [78] tries to compensate for
the unsharp background problem. The metric computes the sharpness only
from the areas that are defined (according to a threshold value) to be sharp
enough. However, the metric cannot handle the noise energy, and the
performance of the metric is not high for camera applications. Based on
the study presented in Publication V, the performance of the metric [78]
equals the performance of the standard sharpness metric based on edge
widths [71].

Recently, the research on NR metrics has focused more on applications
without a priori knowledge about the specific distortion type. The approach
relies on learning models, which input the feature values computed from
the test image. The goodness of the methods depends on the features and
the data used for learning purposes. The features are e.g. based on DCT,
wavelets, curvelet transformations or Gabor filters.

For example, the Saad et al. metric [95] fits the DCT coefficients of the
test image to the GGD model, and the features are derived from the
parameters of the GGD model. The metric [95] was developed further by
Saad et al. [94], who utilized statistical modeling and a different set of
sample DCT statistics. Moorthy and Bovik [74] proposed a metric based on
a framework with two phases. In the first phase, the probabilities for the
different distortions are calculated. The probabilities are used as weighting
factors for the second phase, when the quality values are calculated for the
pre-determined distortion set. The GGD model parameters calculated from
the wavelet coefficients function as features for both phases. The
probabilities of the different distortions are modeled using the support
vector machine (SVM). The image quality value is calculated using a
support vector regression (SVR). Moorthy and Bovik [75] further
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developed the metric [74] and replaced the parameters of the GGD model
with 88 different features calculated from the wavelet coefficients. Figure
10 shows an example where the two-phase model is used to compute NR
quality. The first phase inputs features f; and calculates the probabilities of
the different learned distortions. The second phase applies the distortion-
specific metrics for the test image and calculates the overall image quality
by using the probabilities from the first phase as weighting factors.

pl
> Quality

1st p2 2nd value
phase [=——===>| phase

p3

Figure 10. A two-phase model estimates the overall image quality: the first phase
calculates the probabilities of different distortions, and the second phase calculates the
overall image quality value by using the probabilities as weighting factors. Fi denotes
feature values and px denotes the probabilities of the different distortions.

Shen et al. [103] proposed the HNR (hybrid no-reference) metric, which
is based on the hybrid of the curvelet, wavelet and cosine transforms. The
metric calculates the locations for the top coordinates of histograms. The
metric assumes that the different distortions locate the coefficients in
different clusters in the domain of the top coordinates. Li et al. [60]
proposed a metric based on a neural network that inputs the following
three features: phase congruency, image entropy and image gradient. Ye
and Doermann [123] proposed a metric based on local texture analysis. It
uses Gabor filters to capture statistics of image patches and a visual
codebook to link local statistical properties and visual quality.

Although the abovementioned metrics have been used to measure
different types of distortions from images, they do not solve the problem of
a multidimensional distortion space. The metrics can be highly effective at
predicting the effect of a single distortion, but the performance decreases if
the image concurrently includes more than one distortion. In addition, the
metrics have been used for specific distortion sets, such as the distortions
that can be found in the popular LIVE image set. If the parameters of the
model are learned, there should be knowledge of application-specific
distortions. In addition, there should be knowledge of the features
(metrics) that characterize the distortions. An image captured or printed
by an imaging system has many different types and sources of distortions
without any robust known features for characterizing these distortions.
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2.6.4 Color information
Algorithmic metrics are usually applied only to the luminance or the

intensity channel. This decision can be justified by the fact that the
algorithmic metrics often determine the level of image deterioration in
terms of the image structure. The HVS is more sensitive to changes in the
luminance than to changes in the chrominance channels. However, some
scholars have also suggested methods and metrics that utilize the
components of the chromatic channels.

A simple FR type metric is the color error, which is expressed as the
Euclidean distance AE between the reference and test images in the
CIELAB space. The performance has been increased by utilizing the
properties of the HVS. For example, the S-CIELAB metric [128] accounts
for the sensitivity of the HVS to spatial frequencies before the color error
values are calculated. The Hong and Luo [37] metric assigns a higher
weight to the dominant colors and to the color with a greater difference
when calculating the color error values.

If no reference image is available, the color metrics utilize the statistics of
the images and different assumptions. For example, Yendrikhovskij [124]
proposed a metric that computed the color naturalness of the image by
using the mean and deviation values of the saturation component. Hasler
and Siisstrunk [35] proposed a metric that computed the colorfulness of
the image based on the mean and variation values of the chromatic
components in the CIELAB space. The metric assumed that the perceived
colorfulness of an image correlates with the mean and standard deviation

in the chromatic plane.

2.7 Test and reference image digitization

In essence, test target measurements compare measured test signals with
known reference signals. The main problem with the objective
measurements of imaging systems using natural images is that these
measurements are missing a reference signal (camera applications) or have
different reference (digital) and test signal (analog) forms (printer
applications). Table 1 lists the requirements for FR, RR and NR metrics
when applied to camera and printer measurements. NR metrics can be
used directly in the camera applications because the output of a camera is a
digital image. FR and RR metrics always require a reference image. For the
camera applications, reference images are missing. For the printer
applications, a reference image is available because the original digital
images can function as reference signals. The problem is that the printed
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test images must be digitized before the test and reference signals can be

compared.

Table 1. Requirements for the FR, RR and NR measurements when applied to camera and
printer quality measurements

Camera Printer

FR Pixel-wise reference image Test image digitalization
Pixel-wise image registration
RR Reference image Test image digitalization

NR - Test image digitalization

A few studies have applied NR metrics to camera images [15], [12] or to
printed images [30], [32]. In addition, prior scholars have proposed
frameworks [17], [87] for applying FR metrics to printed images.

Halonen et al. [30], [32] applied NR metrics to measure the quality of
printed images. In the study [30], the researchers used a scanner to
digitalize the sample. In the studies presented in [32], Halonen et al. used
the digital images that were digitized using the method developed in this
dissertation. The digitization system was based on a high-quality camera
and is described in detail in Section 3.5. By comparing the results of the
study [30] using a scanner with those of the studies [32] using the camera
system, we can conclude that the performance of the proposed camera
system is high compared with that of a scanner.

Eerola et al. [17] and Pedersen et al. [87] proposed methods for applying
FR metrics to printed images. Figure 11 shows the components of Eerola’s
method [17]. The method digitizes the printed image (hardcopy) by using a
scanner, descreens the scanned image by using a Gaussian low-pass filter
(GLPF) and registers the original and test images. The registration
accuracy of the method is less than a pixel between the reference and test
images. Eerola et al. claimed that the inaccuracy is compensated for by
low-pass filtering before the quality computation. Pedersen et al. [87]
assumed that because FR metrics often include low-pass filtering, they
compensate for the pixel-wise inaccuracy of the registration.

In both studies [17] and [87], the researchers applied state-of-the-art FR
metrics to measure the quality of printed images. In Eerola’s study [17], the
performance of some FR metrics was high with the test image set, whereas
in Pedersen’s study [87], the performance of FR metrics was low.

Pedersen’s image set included fifteen images. The images were processed
with two sRGB ICC profile versions (v2 and v4). In addition, the images
were further processed to obtain eight different reproductions for each

26



Survey of Image Quality Measurements

original image. The images were printed, scanned and registered. The
printed images were evaluated by 30 observers, and FR metrics were
applied to the scanned and registered images. The Pearson correlation
coefficients between the subjective evaluations and FR metrics were low
for all of the implemented metrics.

Eerola’s image set [17] included three images printed by ink-jet and
electrophotography printers. The variation in images arose from the use of
different grades of paper. The printed images were evaluated by 28
observers, and the scanned and registered images were measured by FR
metrics. The state-of-the-art FR metrics accurately predicted the subjective
evaluations. The highest correlation coefficients were over 0.96 for the
image set printed by the ink-jet printer and over 0.86 for the images
printed by the electrophotography printer.

Eerola’s registration method [17] was based on global image
transformation. First, SIFT (Scale-Invariant Feature Transform) computes
the corresponding points between the reference and test images. Then
RANSAC (random sample consensus) is used to find the best 2D-
homography, and the test image is transformed into the reference image.

Pedersen’s method is simpler, but it is more cumbersome to use than
Eerola’s method. Pedersen’s method requires an image to be padded with a
white border and equipped with four register marks before being printed.
The method calculates a similarity transform based on the registration
marks. Eerola’s method is free of registration marks. It finds the
corresponding points between the reference and test images and makes the
global image transformation based on the points.

Both methods fail for those images that have been captured by different
cameras. The methods cannot model the nonlinear geometrical
transformations between the images. Eerola’s and Pederesen’s methods
function only if the test images are captured from a planar surface (e.g.,
printed and scanned images). The methods fail to work for those images

that have undergone geometrical distortions (e.g., camera images).
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Figure 11. The structure of the Eerola et al. [17] framework and the data flow for
computing full-reference image quality metrics for printed images. GLPF is Gaussian low-
pass filter. (copied from Eerola et al. [17]).

2.8 Types of test images

For the purposes of image quality research, scholars have developed
different test images. The publicly available test images help to develop
algorithms and image processing methods that predict subjective image
quality or, in the case of image processing, help to improve quality. The
general requirement for the test images is that they should reflect typical
problems from real-world applications. The problems should be visible
from the displayed, printed or captured test images and should
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differentiate the imaging systems or image processing algorithms of
interest.

Table 2 groups the test image types into three categories: test image
databases, digital test images and test image scenes. Each type serves
different purposes.

Test image databases include sets of test images that have undergone
some type of distortion and subjective data. Test image databases are used
to measure the performance of image quality algorithms. The algorithm
can be a full-reference or reduced-reference algorithm only if the database
also includes the undistorted images. Without the undistorted images, only
NR metrics are applicable.

Digital test images can be used to measure the performance of displays,
printers and some image processing algorithms. These algorithms include
image compression, image enhancement and tone-mapping methods. Test

image scenes are used to measure the performance of camera systems.

Table 2. Test image types for measurements of visual image quality

Image database  Digital images Image scenes

Measurement Image quality Image Camera systems
application algorithms processing
algorithms,
Displays and
printers
References LIVE [101], TID  Sony [106], Image clusters
[89], IVC[58], Kodak [55], (I3A) [40]
As7 [9], MICT HDR images
[38], BID [2] (Fairchild)
[22]

Each test image type is associated with a distinct measurement
procedure. A test image databases have been used for measuring the
performance of image quality algorithms. First, an objective image quality
algorithm computes the objective data. Then, for example, the correlation
coefficients between the objective data and subjective data are used to
evaluate the performance of the algorithm.

The measurements of displays, printers or image processing algorithms
cannot utilize a priori collected subjective data. The inputs are digital test
images, and the differences between the inputs and outputs are measured.
As a result, the subjective data of the output images need to be collected
afterwards. With printers, the images are evaluated from prints. With
displays and algorithms, the displayed images are evaluated. The objective
data for displays and printers should be measured from the digitized
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versions of the printed or displayed optical (analog) images. The objective
data for processed images can be measured from the output image of an
algorithm. Available test images are useful, because staging scenes and
capturing processes can be avoided. In addition, if the same test images are
used, the data from different measurement sets are more comparable.

The camera measurement applications cannot utilize existing digital test
images. The performance of a camera system should be measured based on
the images captured and processed by the camera system. The traditional
method captures physical test target images (see Section 2.1). The
predefined test image scenes make the image acquisition process faster
and easier. In addition, the verified test image scenes ensure that the
captured test images measure the critical aspect of camera performance.
The subjective data are gathered by showing the captured images on a
display or as prints. Objective data can be computed from the digital
images captured and processed by the test cameras.

From the standpoint of this study, digital test images and test image
scenes are relevant. Test image databases cannot be utilized for measuring

the performance of imaging systems.

2.8.1 Digital test images
Some standard and general digital test image sets can be used to test image

processing algorithms. The Sony sRGB standard image set [106] consists of
two indoor images (portrait and party themes) and an outdoor image
(picnic theme). The Kodak Lossless True Color Image Suit set [55] consists
of twenty-two outdoor images and two indoor images.

Fairchild [22] presented a high-dynamic-range (HDR) test image set that
includes HDR images with the colorimetric and color appearance data
from a scene. Kuhna et al. [57] made HDR test images available. The test
images were designed to test the performance of tone-mapping algorithms.
The researchers chose images that were similar to the photographs
consumers typically take.

Halonen et al. [31], [32] created test images for print quality evaluation
purposes. The development work was started with three image contents
(Figure 12). These images were chosen based on the presence of aspects
important to image quality, such as memory colors (skin, sky and foliage),
memory shapes (human face and cactus), different shades of natural green
and areas with uniform colors and small details. Different types of surface
materials ranging from shiny and smooth (e.g., porcelain and fabric) to
detailed and textured (e.g., a zipper and rock) were also considered. The
ultimate goal of Halonen et al. [31], [32] was to construct a single image for
measuring all aspects of printed image quality. The development process

included three test image versions. Figure 13a shows the first version of the

30



Survey of Image Quality Measurements

image, Figure 13b the second and Figure 13c the third. The first version of
the image was highly engaging from a visual standpoint, the second version
was highly colorful and the third version was the most natural [31].

In this dissertation, we used the image contents of Figure 12 to validate
the proposed quality attribute metrics for printed images. The subjective

measurement procedure and data are presented in Section 4.

(©

Figure 12. Test images (i.e., man (a), cactus (b) and lake (c)) that include important
aspects of image quality, such as memory colors, memory shapes, different shades of green
and areas with uniform colors and small details.

Figure 13. Process of developing the test image to evaluate the print quality; first version
(a), second version (b) and third version (c) [31].

2.8.2 Testimage scenes
One step in moving from test target views to natural image scenes in

camera characterization is to embed test targets or patches into a natural
scene. Koivisto [56] followed this approach when he designed a test scene
with hidden color patches to measure the color reproduction of digital
cameras. Color measurements were performed by comparing the color
values of the patches, which were measured by a color-calibrated camera
and calculated from the images captured by test cameras. Figure 14a shows
the scene and the locations of the hidden patches. Figure 14b shows the
colors of the patches. The method proved to be promising, but the color
accuracy of the calibrated camera was inadequate. The inaccuracy caused
errors when calculating the reference color values of the hidden patches,

and the performance of the method was only mediocre.

31



37038 39 40 41 22
a3 M 45 . 47 48
(a) (b)

Figure 14. A test image scene with embedded color patches (a) and the colors
of the patches (b) [56].

The objective camera quality measurements of this dissertation were
performed based on the images captured from natural test scenes. The test
scenes were designed and selected to meet the benchmarking requirements
of camera phones. The author of this dissertation was the main developer
of the scenes.

The starting point of the scenes was the photospace approach described
by I3A [40]. According to I3A, the photospace statistically describes the
picture-taking frequency as a function of the subject illumination level L
and the subject-to-camera distance D: PSD(L, D). The PSD is defined as a
probability distribution: “the probability that an image is taken within a
certain range of subject illumination and within a certain range of subject-
camera distance” [40].

Segur [98] distinguished the photospaces of photographic utilization and
photographic motivation. The photographic utilization space relates to a
graph that describes where the camera users take photographs. The
photographic motivation space relates to a graph that describes where the
camera users would take photographs if possible. For example, compared
with the range of a mobile phone camera, the operating range of a high-
quality SLR camera is extensive; with the telephoto lens of SLRs, it is
possible to photograph distant objects that could not be captured by
camera phones. The test scenes used in this dissertation represent the
photospace of photographic utilization.

In addition to I3A, Hultgren and Hertel [39] presented a photospace for
camera phones. The study [39] drew its material from five cameras and
480 photos. According to the results, low illumination and short shooting

distances dominate the probability distribution.
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The photospace is also an interesting concept for video cameras. For
example, Sddmanen et al. [96] used it to define the concept of videospace
by extending the photospace concept to three dimensions: scene lighting,
subject-camera distance and object motion.

The photospace defined by I3A was divided into six parts, which are
called clusters. Table 3 presents the definitions of the clusters [40]. A
cluster defines the subject illuminance, subject-camera distance and scene
descriptions for a typical scene captured by a mobile phone camera.

Table 3. Camera phone clusters defined by I3A [40]

Cluster Subject Subject- Typical scene description
illuminance camera
(Lux) distance
(m)
1 <50 =1 Close-up in dim-dark lighting
conditions (indoor/outdoor)
2 50-100 =1 Close-up in typical indoor
lighting conditions
(indoor/outdoor)
3 <50 >4 Small group in dim-dark
lighting conditions
(indoor/outdoor)
4 50-100 >4 Small group in typical indoor
lighting conditions
(indoor/outdoor)
5 > 3400 0.5-2 Small group in cloudy bright
to sunny lighting conditions
(outdoor)
6 > 3400 >7 Scenic landscape/large

groups in cloudy bright to
sunny lighting conditions
(outdoor)

33



We staged the scenes that are currently being used in ongoing projects
and that were used in this dissertation with the following objectives in
mind:

e be difficult to capture for typical camera phones,
e be able to differentiate camera phones,
e reveal camera-specific problems and
e represent views that typical camera phone users might capture
with their cameras.
Table 4 shows the descriptions and two images per cluster as examples.

The images in Cluster 1 simulate a bar or restaurant image. They are
close-up photos in dark lighting conditions. The illuminance is 2 lux, and
the images are mainly exposed by camera flash. The short shooting
distance sets the requirements for flash and signal gain tuning.

Clusters 2 and 3 simulate a living room environment. Cluster 2 is a close-
up photo in typical indoor lighting conditions, and Cluster 3 is a photo of a
small group in dim lighting conditions. The illuminance levels are 100 lux
and 10 lux, respectively. In particular, Cluster 3 sets the requirements for
flash power because the illuminance is low and the shooting distance is
long (4 m).

Cluster 5 simulates a tourist image, and Cluster 6 simulates a landscape
image. Cluster 5 is a photo of a small group in cloudy to sunny lighting
conditions. Cluster 6 is a typical landscape photo. Cluster 4 is a studio
image that device manufacturers use to make signal-processing
adjustments or other measurements. Clusters 1, 2, 3, 5 and 6 are views that
mobile phone users might be expected to capture with their cameras.

In this dissertation, the image scenes of Table 4 were used to validate the
proposed quality attribute metrics for camera images. The subjective
measurement procedure and gathered data are presented in Section 4.
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Table 4. The illuminances, shooting distances and scene descriptions for the camera
quality measurement clusters

Cluster

Subject
illuminance
(lux)

Subject-
camera
distance

(m)

Scene
description

2

100

10

1000

> 3400

> 3400

0.50

1.50

1.50

> 50

Close-up in
dark
lighting
conditions

Close-up in
typical
indoor
lighting
conditions

Small
group in
dim
lighting
conditions

Studio
image

Small
group in
cloudy
bright to
sunny
lighting
conditions

Landscape
image in
cloudy
bright to
sunny
lighting
conditions
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3.Reference Image Quality
Measurement Methods for Imaging
Systems

This dissertation is grounded on the argument that the objective quality
measurements of imaging systems can be simpler and the accuracy with
which subjective quality is predicted can be higher if two conditions are
met: 1) a reference image is available; and 2) instead of test targets, natural
images are used. The next few sections summarize the methods proposed
in Publications I-VI to enable the use of natural images.

Figure 15 shows the proposed image quality measurement framework.
The illustration shows two applications of the framework: 1) camera
measurements and 2) printing and display measurements. The inputs of
camera measurements are the images captured by reference and test
cameras, whereas the inputs of printing/display measurements are digital
images.

The two main components of the framework are “characterization of
image” and “computation of image quality”. In addition, the application of
printing/display measurements uses a component called “digitization of
print/displayed image”. The boxes with gray backgrounds describe the
devices under study. In the camera measurement test, the cameras output
digital test images for the “computation of image quality” component. With
the printing/display measurement, the printed or displayed test images are
digitized and fed to the “computation of image quality” component. The
output of the framework is the value of an image quality attribute.

The inputs of the “characterization of image” component are reference
images and the specification of a quality attribute. A reference image is
used to compute a feature vector that can help compute the quality
attributes of natural images.

The reference image in camera measurements is an image captured by a
reference camera from the same test scenes used for the test images. The
reference image for print/display measurements is a high-quality digital
test image. The quality of the reference images should be high enough to
compute robust features for the image quality metrics. For example, in this
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dissertation, we took the reference images by using a high-quality
professional SLR camera with a high-quality lens.

In this dissertation, we focused on the reduced-reference approach. With
camera measurements full-reference approach can be problematic,
because of non-linear geometric differences (perspective and lens
distortions) between reference and test images (i.e., those without planar
views and without constant shooting positions). For example pixel-wise
reference images are missing. Section 3.3 further explains the problem.
With printing measurements, the full-reference approach is feasible.
Eerola et al. [17] and Pedersen et al. [87] have proposed methods for
applying FR metrics to printed images. In this dissertation, we developed
novel methods for applying RR methods for printed images. We wanted to
study if it is possible to measure quality attributes without computational
complex transformations between reference and test images and pixel-wise
comparisons. Our reduced-reference approaches are simpler than the full-
reference approaches proposed earlier.

Section 3.1 describes the function of the “characterization of image”
component. Section 3.2 describes the attribute metrics that were developed
and integrated into the “computation of image quality” component. Section

3.4 describes the “digitization of print/displayed image” component.

! camera measurements i i printing/display measurements

Test cameras | | Reference camera Digital {—s»t Printing/

image display
_ Test Reference Reference | Test
Images image image Images
Quality Y
attribute Digitization
----------- D Characterization of image of print/
displayed image
Feature vector,
reference image
\

Computation of image quality

l Value of attribute

Figure 15. Image quality measurement framework for imaging systems (cameras and
printing/display): the camera measurement application inputs reference image and test
images captured by reference and test cameras, the printing/display measurement
application inputs digital images and the output is the value of an image quality attribute.
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3.1  Characterization of image

The “characterization of image” component extracts reduced reference
information from the reference images. This dissertation applied three
different characterization principles to the reference images. The principles
are called the global feature, local feature and adaptive local feature.

Table 5 summarizes the metrics used in the dissertation. We classified
the metrics according to the characterization principle. The metrics that
were tested for printed images use the global feature or the local feature
principles, whereas the metrics tested for cameras use the global feature or
the adaptive local feature principles.

Figure 16a illustrates the global feature principle. In this principle, a
single global feature is computed from all of the pixel values of a reference
image. The global feature can be a parameter set of image statistics or the
value of a no-reference metric. Figures 16b and 16¢ show the local feature
and adaptive local feature principles. Both principles take advantage of a
reference image’s local values. Under the local feature principle, an image
is divided into blocks, and quality attribute-specific sensitivity values are
calculated for the blocks. The feature vector is fed to the “computation of
image quality” component.

The adaptive local feature principle seeks new positions for the
predetermined initial blocks by maximizing a quality attribute-specific
sensitivity function. The process consists of two phases. First, the
candidate blocks are found. Second, the blocks to be measured are selected
from the group of candidate blocks. A feature vector includes the positions
of the selected blocks. The feature vector and reference image are fed to the

“computation of image quality” component.

Table 5. The metrics proposed in Publications I-VI grouped according to the
characterization principles

Characterization  Attribute Metrics Publication Section

principles

Global feature Overall image quality  Ds, D,, Ds v 3.2.1
Color contrast CC I

Local feature Graininess G I 3.2.2
Sharpness S, I

Adaptive local Color noise N 111 3.2.3

feature Sharpness S, \%
Color difference AL,AC,AH VI
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Feature vector
(e.g. parameter set of image
statistics of NR metric values

|
I H Feature vector
(b) & - > (e.g. block-specific sensitivity values)
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(e.g. positions for
the selected blocks)

Figure 16. The RR features from reference images were calculated using three different
principles: global feature (a), local feature (b) and adaptive local feature (c).

3.2 Computation of image quality

The next several sub-sections present the metrics and methods used to
compute the quality metrics in Publications I-VI. The metrics are classified
according to the principle of image characterization (Table 5).

3.2.1 Global feature characterization
The metrics defined in this sub-section are based on the principle of global

feature characterization. The global feature principle computes the feature

vector from all of the reference image’s pixels (see Figure 16a).

Overall image quality metrics

The RR metrics from the literature cannot be applied to digital cameras
because of the lack of reference images. Publication IV proposed to capture
the reference images by using a high-quality reference camera. Three state-
of-the-art RR metrics were implemented in the “computation of image
quality” component. Two of the implemented metrics [120], [61] are based
on the NSS approach. The third metric [20] is based on the simple NR
metrics and their baseline values calculated from the reference image.

The first implemented metric was the Wang et al. RR metric [120]. It
decomposes images into three scales and four orientations by using the
steerable pyramid technology. The wavelet coefficients from the subbands
of the reference and test images are fitted using the GGD model (see
Equation (2)). The parameters a and g of the GGD model from the
different subbands of the wavelet decomposition are the features of the

reference image. Wang et al. compute image quality D, by Equation (3):

1 2 o )
D, = log(n[cjzmd’(p' || q’>j 3
0 /) i=l
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where p' and ¢' are the probability functions of the i-th subband in the
reference and test images estimated by the parameters a and $ of the GGD
model, respectively; kid' is the estimate of the Kullback-Leibler distance
(KLD) between p’ and ¢; and C, is a constant used to control the scale of
the metric.

The second implemented metric was the Li and Wang RR metric [61].
The metric computes features by using divisive normalization (DN). Li and
Wang claimed that DN accurately models the local behavior of the HVS.
The metric performs the DN transformation for the wavelet coefficients.
The wavelet decomposition in our implementation included three scales

and four orientations. For the wavelet coefficient w,, the new normalized

value W, is calculated by Equation (4):

wo=w,/z (4)
z="C,'Y/N)*? 5
where the covariance matrix Cy = E[UUT] is estimated from all of the
subbands before the local z is calculated. N is the length of vector Y. Vector
Y includes thirteen wavelet coefficients: nine coefficients are from the
neighborhood of the wavelet coefficients w,, including the coefficient w,;
one coefficient is from the parent band; and three coefficients are from the
other orientation bands. The normalized wavelet coefficients from the
subbands of the reference and test images are fitted using the GGD model.
The image quality D, is computed using Equation (6):

12 1 o :
D, = Z‘Og(l + [C]kld’(p’ ") (d2)™(d)™ (df)‘”J (6)

i=1 0

where C, is a positive constant, p’ and ¢’ are the probability functions of the
i-th subband in the reference and test images estimated by the parameters
a and S of the GGD model, kid' is the estimate of the Kullback-Leibler
distance (KLD) between p’ and ¢’ and

da = ‘GR _O-T‘

(7)
d. = ‘KR —KT‘ (8)
d, = ‘SR _ST‘ )

where og, kg, sk and or, k7, sy are the standard deviation, kurtosis and
skewness values computed from the reference and test image, respectively.
The metric D, has five parameters, &, &, &, & and C,, which should be
learned from the data.

The third metric used in this dissertation was proposed by Engelke et al.
[20]. It is based on five features fi. Feature f; measures blockiness and uses
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the NR metric [117]. Feature f, measures blurriness and uses the NR-type
edge width metric [71]. Features f; and f, measure the ringing distortion
and use the NR-type image activity metrics [27]. Feature f; measures the
intensity masking and lost block distortion by using image histograms. The

image quality D; is calculated by Equation (10):

D, = {iki” ,,} (10)

where k; is the weighting factor, f;r is the value of feature i in the reference

fi,R - fi,T

image and f;r is the value of feature i in the test image. The metric D has
one parameter, p, which should be learned from the data.

We implemented the Wang et al. metric [120] into the proposed image
quality measurement framework because it is a well-known metric in the
RR research field, and its algorithm code was available from [118]. The Li
and Wang metric [61] was selected because it is the state-of-the-art metric.
This metric determines the non-linear weighting of the wavelet coefficients
before the KLD. The metric was implemented by adding the non-linear
weighting component in the Wang et al. metric. The Engelke et al. metric
[20] was selected because it uses the five distinct NR-type image features
instead of the global statistic approach. These features were either easy to

implement, or their algorithm codes were available [116].

Color contrast metric

Publication I proposed a metric for measuring the color contrast of
images. The proposed metric assumes that natural images contain one or
more objects with specific hues. The object is perceived as more colorful
and brighter if the contrast of its texture is high. If the contrast of the
texture is low, the object is perceived to be pale or dim. The idea behind the
metric is to redirect the axes of the color space to the direction of an
image’s dominant color and to calculate the standard deviation of the color
points.

The proposed metric computes the first principal component for the
reference image data in the CIELAB space, and two color clusters are
defined. The first principal component shows the direction of the
maximum deviation of the color data in the color space, and the hue of the
dominant color can be described. The first color cluster includes the
neighborhood points of the principal component. The second color cluster
includes all of the other points. The neighborhood points of the first
principal component should fulfill the following conditions:

6 — O < Opoint <O+ Oy and @ — @i < @ < @ — Py
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where 6 and ¢ are the angles of the principal component and 0y and @m
are the threshold angles (Figure 17b). The values of the threshold angles
were chosen based on the empirical study. Next, the principal component
is also calculated for color cluster 2. The data of the two principal
components define the feature vector.

The coordinates of the calculated principal components describe the
directions of an image’s two main color hues. For example, for the image of
the lake (Figure 17a), the principal component of the first cluster describes
the color contrast of the blue sea and sky, and the principal component of
the second cluster describes the color contrast of the green foliage (Figure
17¢).

Principal component__ %
of cluster 1

principal
componen

rincipal component
of cluster 2

(b) (©

Figure 17. Test image “lake” (a), the points of the first cluster are the neighborhood points
of the first principal component (b), the color contrast metric is based on the standard
deviations calculated for the directions of two principal components (c).

The “computation of image quality” component of the image quality
measurement framework (Figure 15) transforms the pixel values of a test
image into the new space defined by the feature vector. The axes of the new
space are composed of the principal components calculated in the
“characterization of image” component. The color contrast metric CC is

calculated by Equation (11):

CC=\o, +0,, (11)

where 0, and o). are the standard deviations along the first and second

dimensions of the new space, respectively.
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3.2.2 Local feature characterization
To compute the metrics defined in this sub-section, we divide the images

into adjacent blocks, and the block-specific sensitivity values are calculated
(see Figure 16b). The value of the feature vector is derived from the
sensitivity values.

Publication I proposed the graininess and sharpness metrics by using the
principle of local feature characterization. The block-specific energy values
g are computed from the reference image by Equation (12) for the
graininess metric, and the parameter f values are computed by Equation

(13) for the sharpness metric:
1
8=~ >

p(w;a, )

p
wi

(12),

_ s e—(‘wl‘/a)/’
2aT(1/ B)

Equation (12) is power function and w; is the wavelet coefficient in the

(13).

block. M is the number of wavelet coefficients in the block. Equation (13) is
the GGD model. I is the gamma function and a and Bare the parameters of
the GGD.

The energy values g are calculated for the wavelet coefficients of the first
scale and the g values of the second scale. We used the first scale for g
because we assumed that the perceived graininess is high-frequency
energy. We computed the parameter g values for the second scale to
compensate for the graininess energy of the first scale. The assumption is
that the perceived sharpness relates to the reproduction of mid-frequency
energy. Because the metric uses the second scale and handles only the mid-
frequency energy, it is non-sensitive to high-frequency graininess.

Figure 18 shows the g values, and Figure 19 shows the g values for the
following test images: man (a), cactus (b) and lake (c). If the intensity of
the block is low (dark blocks), the block is well suited for the metrics. A low
g value refers to a low energy block that is appropriate for the graininess
metric, and a low S value refers to a high-energy block that is appropriate

for the sharpness metric.
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(a) (b) (©

Figure 18. Graininess is calculated from the low-energy pixel blocks (dark regions): test
images of man (a), cactus (b) and lake (c) shown in Figure 12. The low-energy block
indicates a smooth area that is appropriate for graininess measurements.

(a)

Figure 19. Sharpness is calculated from the high-energy blocks (dark regions): test images
of man (a), cactus (b) and lake (c) shown in Figure 12. The high-energy block indicates a
texture area that is appropriate for sharpness measurements.

Figure 20a shows the g values and Figure 20b the [ values of the blocks
for the reference image and a set of test images sorted in ascending order.
The graininess and sharpness of the test images are calculated from the n
blocks, whose values are small. The feature vector includes the value of n
calculated from the reference image. The n for the graininess metric is the
point where the value of g for the reference image starts to increase. The n
for the sharpness metric is the point where = 0.5. The value of fis based
on an empirical study (Publication I).

The “computation of image quality” component of the image quality
measurement framework (Fig 15) calculates the graininess value G by
using Equation (14) and the sharpness value S, by using Equation (15):

D8+ Ga + 8+ &

G: i=1 1
2 (14)

n
Z By + Bai + B + B
i=1

S, = (15)

4
where g, g, g and g, are the g values in the horizontal, first diagonal,
vertical and second diagonal directions from block i of the group of n
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lowest g-valued blocks. fhi, fui, fi and fai are the g values in the
horizontal, first diagonal, vertical and second diagonal directions from

block i of the group of n lowest S-valued blocks.

5 T T T T T
45+ Threshold value of B
4| fow energy blocks (n)\é Reference image )
i Small energy values ; -
g 3 (graininess energy) =
S s
B
=
s 2
=
Was
1
05§
00 80 100° 160 200 250 300
Pixel block number, n
(a)
3 T T T — T T T T T
Threshold value of 2
high energy blocks {(n)  :
28y i Reference image
2 -
@ High energy values
% (sharpness energy)
> 15
~
B | st
o o
1r. B
05} 1
0 : L, 1 1 L 1 L

= - )
0 107" 200 30 40 50 60 70 80 90
Pixel block number, n

(b)

Figure 20. The number of low energy blocks for the graininess metric is the point where
the value of g for the reference image starts to increase (a); the number of high-energy
blocks for the sharpness metric is the point of the empirically determined threshold (8 =
0.5) (b).

3.2.3 Adaptive local feature characterization
The metrics defined in this sub-section seek new positions (candidate

blocks) for the predetermined blocks by maximizing the sensitivity
function (see Figure 16c¢). The blocks to be measured are selected from the
candidate blocks.

Color noise metric

Publication III presented a color noise metric by using the adaptive local
feature principle. The blocks are selected based on three features: the
chromatic energy, achromatic energy and brightness of the block. The
chromatic energy of the blocks should be low. The blocks can have

achromatic structural energy, but this structure should be composed
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primarily of random textures rather than edges. Random textures in a
scene can be beneficial to noise measurements for two reasons. The first
reason is that achromatic texture-like surfaces in scenes are sensitive to
color noise in digital camera images. The second and more important
reason is that texture-like surfaces present challenges for noise reduction
algorithms in cameras. If the structure is edge-like, then a noise reduction
method can easily filter the noise away from the neighboring smooth area
of the edges. If the structure is a random texture, then it is difficult to
separate the noise energy from the energy of the image structure by using
computational methods.

In addition, the intensity of the selected blocks should not be too low or
high. If a block is too bright, then it becomes saturated for images
produced by low-end cameras. If the block is too dark, then a low-end
camera may not detect its structural energy, and the camera image-
processing software may apply strong noise reduction to the block.

We applied the method in the YCbCr space. With an opponent color
space, we can separate achromatic information from chromatic
information. The method operates on the principle that the blocks are
initially located in the reference image (Figure 21a). The method searches
for new locations for the blocks across a limited neighborhood in the Cb
and Cr channels by maximizing Equation (16):

(CP,,CP.)=argmax (CO;,)

yo

CP,,CP, (16)
when dist(IP,CP)<T
COE:ZP¢2,d(117]2) (17)
a,b

where the co-occurrence energy feature COy is calculated within the block.
P4a(1,,I.) describes the probability that two pixels with intensity levels I,
and I. appear in the window separated by a distance d in direction ¢. The
more homogeneous the block is, the higher the value of COr on a scale
from 0 to 1. The homogeneity metric COg is calculated as an average of its
values at 0, 45 and 90 degrees. The blocks in the new locations are called
candidate blocks. The aim is to find the homogeneous areas in the
chromatic Cb and Cr channels. The function dist() sets a distance
constraint between the initial and candidate points (IP and CP). The IP are
the center coordinates for the predetermined blocks (Figure 21a), and the
CP are the center coordinates for the candidate blocks (Figure 21b).
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Figure 21. The reference image with the blocks in a predetermined symmetric order (a),
the reference image with the blocks when the homogeneous metric was maximized for the
Cb channel (b) and the reference image with the most homogeneous blocks (n = 6) for the
Cb channel (c).

Next, the “characterization of image” component selects n blocks from
the group of candidate blocks with the highest COg values for the Cb and Cr
components (Figure 21c shows the candidate blocks for the Cb component
when n = 6). Equations (18) and (19) depict the texture and brightness,

respectively, of the Y component from the selected candidate blocks:

A
o, @dy= Y Leatlel2) .
a.biazb ‘1] —[2‘
N i z ) (19)

where M is the number of pixels in block i. The co-occurrence feature
COmu is calculated as an average of its values at 0, 45 and 9o degrees. The
aim is to find both the smooth and textured achromatic areas. Feature
COmy obtains a higher value on the scale ranging from o to 1 if the block
pixel intensity values are close to each other. That is, if the COpy value is
small, the intensity structure in the block is more texture-like than smooth
and vice versa. The two blocks with the lowest and highest COpy values
from the n blocks with B values between the Bmin and Bma levels are then
chosen as the selected blocks.

The pixel locations of the selected blocks in the reference image are fed to
the “computation of image quality” component. In the next step, the blocks

that correspond to the selected blocks should be found in the test images.
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These blocks are called correspondence blocks. The search for the
correspondence area is described in detail in Section 3.4.
The “computation of quality metrics” component calculates the color

noise values N for a test image by using Equation (20):

N =noise +noise (20)
noise s = Wsld Y + klwxld RN + k2wsld ,cr L h (21)
noise r = kl W,std,cb A + k2wstd,cr,l (22)

where noises is the smooth area component, noise; is the texture area
component and k; represent the weighting factors. wy,»; and wy,,,., are the
standard deviations of the wavelet coefficients for the Cb and Cr blocks
with the lowest COpy values (texture blocks), and wyuy, Wadenn and Wy e
are the standard deviations of the wavelet coefficients for the block with
the highest COpym value (smooth blocks). The wavelet coefficients for the
Cb and Cr components are calculated from the second scale of the wavelet
decomposition, and the wavelet coefficients for the Y component are
calculated from the first scale.

Figure 22 summarizes the scheme of the proposed metric. First, the
candidate blocks that maximize the homogeneity metric are sought for the
Cb and Cr channels. Next, the smooth and textured blocks are selected
from the candidate blocks based on the texture and brightness metrics
applied to the Y channel. The correspondence blocks of the reference
camera are searched from the test camera images and the texture and

smooth area noise components are calculated.
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ir-rESaSte blocks in test i Smooth area noise
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: searching i Texture noise
,ﬁ

i Computation of image quality

Figure 22. Block diagram for the proposed color noise metric. The dashed boxes show the
components of the image quality measurement framework.
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Sharpness metric

Publication V presented the sharpness metric using the adaptive local
feature principle. First, the candidate blocks are located by Equation (23):
(CP,,CP.) =argmax(STD)

" cr,.c, (23),
when dist(IP,CP)<T

1 J<CPANM 2 k<CP4[M /2
SID=— > D W (24).

CP—~M/2<j CP—IM/2<k
Equation (23) maximizes the standard deviation (STD) of the wavelet
coefficients w within the block. M is the number of pixels in block. Figure
23a shows the IP points for the local characterizations, and Figure 23b
shows the locations of the CP points. The “characterization of image”
component selects the m highest valued candidate blocks by using
Equation (24). Figure 24 shows the selected blocks for five image contents
when m = 5. The effects of block size and the number of m were studied in
Publication V. The performance was highest when the block size was 100 x

100 pixels and the number of m ranged from 5 to 8.

] I
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Figure 23. The reference image with the blocks in a predetermined symmetric order (a);
the reference image with blocks when the sharpness function for the blocks is maximized

(b).

Figure 24. Five reference images with the selected blocks (m = 5).

49



The locations of the selected blocks are fed to the “computation of image
quality” component. The correspondence areas between the reference and
test images are searched. The sharpness value S. for a test image is
computed by Equation (25):

m 1 J<(NM=b12) k<(NM-b/2)

> _;(m—b)z ,,;2 gb/:z s (2
where the (j, k) are the pixel coordinates in a correspondence block, M is
the size of the correspondence block, b is a parameter for the reduced
measurement area and w;;, is the wavelet coefficient. The parameter b is
used to compensate for the fact that the edge areas of the correspondence
blocks can include structures from outside of the original candidate block’s
area. If the candidate block’s size is M pixels, the measurement area in the
test camera image is (M"’-b)’ pixels.

Figure 25 summarizes the scheme of the proposed sharpness metric.
First, the candidate blocks that maximize the standard deviation of the
wavelet coefficients are sought for the Y component of the reference image.
Next, the m highest energy blocks are chosen for the group of selected
blocks. The sharpness values are calculated from the correspondence
blocks of the test camera images.

Selected
H Candidate blocks blocks in
Reference : YCbCr (high energy blocks | m highest reference
image ! Color image . in'Y channel) valued |cameraimage !
T transformation —>{ Energy metric candidate |=——— !
i blocks
Selected
i blocks in
Test ¢ test camera
images: Correspondence image Sharpness Sharpnes’s
: blocks searching metric
i Computation of image quality

Figure 25. Block diagram for the proposed sharpness metric. The dotted boxes show the
components of the image quality measurement framework.
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Color difference metric

Publication VI presented color difference metrics by using the adaptive
local feature principle. The color difference values of cameras should be
measured using a color sample set that is as extensive as possible. The
method uses a two-phase process to select the blocks from a scene
captured by a color-calibrated reference camera for the sample set. First,
the method seeks the candidate blocks by maximizing the average chroma
and minimizing the standard deviation of the hue angle when (initially
located) blocks are moved within a limited neighborhood by using
Equation (26):

(1-k)
(CP,.,CPj):argmax{kC + ,

ave,ij
CP..CP; H

(26)

std ,ij

when  dist(IP,CP)<T

where Cgu. is mean chroma and Hgq is the standard deviation of the hue
angle in the block. The constant & is a weighting factor. Figure 26a shows
an example of initial blocks, and Figure 26¢ shows an example of candidate
blocks.

Second, m measure blocks are selected from the candidate blocks. The
measure blocks are selected from the candidate blocks by using an iterative
search. First, a histogram of m equal-width bins is formed for the average
hue angle values of the candidate blocks. The next iteration rounds
decrease the bin width until m bins have at least one data point each. The
term “data point” refers to an average chroma and hue value pair of a
candidate block. From the bins containing more than one data point, the
point with the highest chroma value is selected.

Figure 27 shows an example in which the chroma values of the candidate
blocks are shown as a function of the hue angle values. The selected blocks
(m = 18) are from different bins, and their chroma values are the highest
ones in the bin. Figure 26e shows the selected blocks on a scene.

Figures 26b and 26d show how the candidate block selection spreads the
color values on the ab-plane of the CIELAB color space because the chroma
values of the blocks are maximized by Equation (26). Figures 26d and 26f
show how the iterative search decreases the number of data points while
maintaining an extensive color value set.

Next, the coordinate values of the selected blocks are fed to the
“computation of image quality” component, the corresponding blocks are
located (as described in Section 3.3) and the color difference values are

calculated by comparing the color values of the reference and test images.
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The results for the luminance AL, hue AH, and chroma AC difference

metrics were presented in Publication VI.
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Figure 26. The pixel blocks are initially located on a regular grid arrangement (a). The
initial candidate blocks are searched for within a limited neighborhood (c). m measuring
blocks are selected from within the initial candidate areas (e). The color values of the initial
blocks, initial candidate blocks and selected measuring blocks are shown on ab-planes (b),
(d) and (), respectively.
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Figure 27. Chroma values of the candidate blocks are shown as a function of the hue angle
values. The candidate block with the highest chroma value in the hue angle bin is selected
for the sample set of the color measurement.

Figure 28 summarizes the scheme of the proposed color metric. First, the
candidate blocks that maximize the average chroma and that minimize the
standard deviation of the hue are sought using the CIELAB color space.
Next, the most extensive color value set as possible (selected blocks) is
searched using a method based on the hue value histogram. The color
difference values are calculated by comparing the color values of the
measuring blocks between the reference and test camera images.

Characterization of image H
: Candidate blocks Selected blocks !

Reference

CIELAB (chromatic and in reference !
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image i | Correspondence | test camera image Color i values
blocks ! difference
searching metrics

Computation of image quality

Figure 28. Block diagram for the proposed color difference metric. The dotted boxes show
the components of the image quality measurement framework.

3.3 Search for correspondence blocks

If the adaptive local feature principle (described in Section 3.2.3) is used to
characterize the reference image, the corresponding blocks should be
found in the test images. In the schemes for the proposed methods
(Figures 22, 25 and 28) the component of the correspondence blocks

searching shows the point of which the searching process is done. Figure
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29 shows an example where three example measuring areas were found in
the reference image (left) and the corresponding areas were located in a
test image (right).

Figure 29. The measuring areas from the reference image (left) and the corresponding
areas from the test image (right).

Locating the corresponding areas from the camera images is not a
straightforward process. Figure 30 shows an example where the pixel
regions were cropped from the images produced by different cameras. The
images were captured such that they are as similar as possible. The image
regions were cropped using the same pixel coordinates for each image.
Clearly, searching for correspondence blocks while using only pixel-

coordinate values does not work.

The image region of the reference image
,

Figure 30. The image regions of the reference and the four test images are cropped using
the same pixel coordinates. It is apparent that searching the correspondence blocks by
using only the pixel-coordinate values generates inaccurate results.

Publications III, V and VI proposed a method to search for
correspondence blocks by using local area descriptors (e.g., SIFT [67] (I1I,
V) or SURF [29] (VI)). Figure 31 shows an example where correspondence
points (n = 8) are used for searching the center point of measuring block in
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a test camera image. In the first step, the correspondence points are
located from an image pair of the reference and test cameras by matching
the area descriptors. Next, the vectors starting from the n nearest
correspondence points are directed to the center point of the measuring
block on the reference image. The center point in the test camera image is
estimated by calculating the angles and lengths of the vectors between the
center point and the correspondence points in the reference image. The
center point of a measuring block in the test camera image is the average of
the vector endpoints from the correspondence points.

Figure 31. The center points of the correspondence areas from the reference image (a) and
test image (b) are approximated by calculating the mean point of the vector heads from the
correspondence feature points. The lines denote the vectors whose lengths and directions
are calculated from the reference image. The points denote the correspondence-feature
points. The crosses denote the correspondence-area centers.

Publication VI presented the performance comparison between SIFT and
SURF when applied in the camera image measurement framework. The
performance metric was the pixel distance between the ground truth and
the predicted center point of the measuring block. The ground truth data
were collected manually by utilizing the “cpselect” function in MATLAB.
The prediction error was studied as a function of the threshold values of
th1 (interest point detection) and th2 (descriptor matching). The
remaining parameter values of the implemented SIFT and SURF codes
were set at their default values.

For the SIFT, the threshold of the interest point is related to the contrast
values of key points. For the SURF, the threshold of an interest point is
related to the value of the Hessian’s determinant. For the SIFT, a higher
value yields fewer points, whereas for the SURF, a higher value gives more
points. The threshold value of the descriptor matching relates to the
distance between descriptors D1 and D2. The nearest-neighbor distance-
ratio matching strategy was used for both methods. A descriptor D1 is
matched to a descriptor D2 only if the distance dist(D1, D2) between them
is smaller than the distance of D1 to all of the other descriptors divided by
the threshold.
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Figures 32a and 32b show the average pixel errors for the SIFT and
SURF, respectively, as functions of thi1 and th2. The pixel error is the
average value for the scene in Figure 26, which was captured by eight
different cameras. Six cameras were mobile phone cameras, one was a
consumer compact camera and one was an SLR camera. The reference
camera was a Canon 5D with a Canon EF 24-70/2.8 L USM lens. Before
the pixel error calculations, the images were all scaled to a size of 1200 x

900 pixels.
9
8.5 |
§ E \ 0
(> = |
s —e—th, =0.005 -
7.5/~ th,=0.0025 |
—o—th,=0.00125
° lh1=0.UUDB
T T 1 L
1.5 2 2.5 3
Descriptor matching (th,)
(@)
6.5 ; .
‘o-th, =500
gl| @ th =600 |
--u-—-(h1=700
555 —o—th, =800 ]
& | -¢-th=900
[ 3
& 91 4
ast N |
e
4 1 L L L 1
1 15 2 2.5 3
Descriptor matching (th,)
(b)

Figure 32. Average pixel error values between the predicted and ground truth as a
function of the interest point and descriptor-matching threshold values for SIFT (a) and
SUREF (b).

The lowest average pixel error for the SIFT was 7.4 pixels (th1 = 0.00125
and th2 = 2.5), with a standard deviation of 1.5 pixels between the cameras.
The lowest average pixel error for the SURF was 4.2 pixels (th1 = 600 and
th2 = 1.5), with a standard deviation of 1.0 pixels. The sizes of the
measuring areas in the studies described in Section 4 ranged from 25 x 25

pixels to 125 x 125 pixels. The image size was 1200 x 900 or 1600 X 1200
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pixels. According to these dimensions, the pixel errors of 4.2 or 7.4 pixels
were small, and the locations of the measuring blocks on the test images

were sufficiently accurate.

3.4 Digitization of print

Before the quality of printed (/displayed) images can be measured using an
algorithmic metric, the test samples should be digitized. Eerola [17] and
Pedersen [87] used an ICC-profiled scanner to digitize their samples. The
digitization process proposed in Publications I and II uses a high-quality
camera system instead of a scanner to digitize a sample. Digital camera
RAW-imaging enables fully manual settings. In addition, the lighting
environment can be adjusted and characterized, which is impossible or
difficult to do with a scanner.

Figure 33 shows the structure of the “digitization of print” component.
The component captures n exposures, compensates for the photometric
distortion of the camera, makes color space transformation from camera
RGB to the CIELAB color space by using the colorimetric (Publication I) or
spectral-based (Publication II) camera characterization and forms the high

dynamic Lab image.

HDR image
(Lab values)

'

> Photometric
compensation
Colorimetric / Color space
spectral -3 transformations
transformations - XYZ to Lab
-RGB to XYZ - radiance to XYZ to Lab
- RGB to spectral radiance

Figure 33. Sample digitization component captures n exposures, compensates for the
photometric distortion of the camera, makes color space transformation from camera RGB
to the CIELAB color space by using colorimetric or spectral-based camera characterizations
and forms the high dynamic Lab image.

The study reported in Publication I used the colorimetric camera
characterization. The transformation from multi-exposure RGB image to

XYZ image was based on the 3x5 transformation matrix W:
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where [x y z] represents absolute XYZ values, [r g b] represents the
corresponding camera linear raw response and p; are the fitting
parameters for the transformation matrix.

Publication II proposed a multi-exposure method for spectrally
characterizing the camera. The transformation matrixes were calculated
based on the method proposed by Shen and Xin [102]. They assumed that
the training samples w; that are closer to a testing sample u are usually
more reliable and should thus contribute more to the estimation of the
transformation matrix Wshen. The researchers calculated the weights «; for

u; as:
a, =) g, [ exp[—;(ui —u)' =g (u, —u)} (28)

where Yuu is the covariance matrix of u;. By incorporating the weighting,
the mean square error between the measured and the predicted spectra
can be formulated as:

(29)

ZHW»M%"I

and the transformation matrix Wihen can be estimated.

To evaluate the performance of the multi-exposure method, we
compared it to the traditional single-exposure method. The 180 colour
patches of the Gretag Macbeth DC test target were used as training
samples, and the 24 colour patches of the Gretag Macbeth CC test target
were used as testing samples. The digital test target images were printed on
six paper grades (p1-p6). We photographed the samples by using a Canon
EOS 5D camera. The multi-exposure method produced an RGB image by
selecting the intensity values from the exposures ex and e; (1 < k,I < n). The
single-exposure method used only exposure €] to produce the RGB image.
Exposure e was the optimal value of the lighting environment computed
by the camera processing.

We measured the ground truth spectral data of the printed samples by
using the Photo Research PR-670 spectroradiometer. The measured values
of the DC test target were used to calculate the weighting factors «; for
Equation (29) when the CC test target patch-specific transformation

matrixes were estimated.
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Figure 34a shows the CIEDE2000 mean color error values of different
paper grades using single-exposure and multi-exposure methods for the
testing samples. Figure 34b shows the maximum color error values of the
different paper grades. Figure 35 shows the CIEDE2000 color error values
for paper p3 ordered in ascending order by the measured luminance of the
patches. According to the results, the multi-exposure method improves
mostly the reconstruction performance of the dark patches. This result was
expected. The multi-exposure method detects the lower luminance levels

more linearly than the single-exposure method does.
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Figure 34. CIEDE2000 mean (a) and maximum (b) colour error values of different paper
grades using single-exposure and multi-exposure methods for the testing samples.
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Figure 35. CIEDE2000 colour error values for paper p3 ordered in ascending order by
measured luminance of patches.

59



4.Experiments

The experimental results in Publications I-VI fall into two groups. The
overall quality of the images was measured in Publications I and IV and the
quality attributes were measured in Publications III, V and VI. Publication
I presented the simple quality model of printed images, which is composed
of the color contrast, graininess and sharpness attributes (CC, G and S,).
Publication IV presented the results when three RR metrics of overall
quality (D;, D, and Ds;) were implemented into the image quality
measurement framework (Figure 15). Publications III, V and VI
determined the quality attributes (N, AL, AC, AH and S.) of images
captured by digital cameras.

The experimental results for the overall quality measurements and for
the quality attributes are reviewed in Sections 4.2 and 4.3, respectively.
Section 4.1.1 and Section 4.1.2 present and analyze the subjective data for
the printed samples and camera samples, respectively. Table 6 lists the

metrics and shows the grouping.

Table 6. The experimental results of the dissertation are presented in two sections: Section
4.2 presents the results for the overall quality metrics, and Section 4.3 presents the results
for the attribute metrics. Section 4.1 presents the subjective data

Attribute Section Publication Metrics Application

Overall quality 4.2 I CC, Equation (11)  Printed image
G, Equation (14)
S, Equation (15)

v D,, Equation (3) Camera
D., Equation (6)
D,, Equation (10)

Noise 4.3 111 N, Equation (20) Camera
Sharpness A% S., Equation (25) Camera
Color difference VI AL, AC, AH Camera

60



Experiments

41  Subjective experimental data

4.1.1 Subjective quality data for printed images
In this dissertation, the image contents of Figure 12 were used to test the

proposed quality attribute metrics in the context of digitally printed
images. The images include small details, uniform areas and colors. The
variation in printed images arose from the use of different grades of paper
(fifteen electrophotographic (EPG), six multipurpose and fifteen ink-jet
(1J) papers). The size of the printed images was 10 cm x 15 cm. The EPG
papers were printed using an electrophotographic printer, the IJ papers
were printed by an ink-jet printer and the multipurpose papers were
printed with both methods. For more details on the printing process, see
[30].

The subjective tests consisted of a quality evaluation task and self-report
using the IBQ (Interpretation Based Quality) method [91]. The observers
(n = 27) were university students and naive as regards to image quality.
The image samples were presented on a table covered with a gray
tablecloth. The illuminance level was 2200 lux, and the color temperature
was 5000 K. The quality evaluation task provided information about the
experienced quality of the images (mean opinion score values, MOS). The
observers were asked to select the best sample (IQ = 5) and the worst
sample (IQ = 1). Afterwards, the observers rated the samples on a scale
from 1 to 5. The purpose of the self-report was to obtain information about
the relevant subjective attributes that influenced the visual quality
evaluation. In practice, the observers were asked to provide the reasons
behind their evaluations. For more details on the subjective tests, see [32].

We used the self-report data to select the quality attributes for the
printed image quality measurements of this dissertation. The MOS data
was used to test the performance of the proposed metrics. Figure 36 shows
the MOS values for the IJ and EPG samples sorted in ascending order. The
error bars added in the figures show the 95 % confidence intervals. The
MOS data of the multipurpose papers fall within the dashed circles. The
quality of the multipurpose papers was lower than the quality of the
dedicated IJ or EPG papers. In addition, the quality differences between
the multipurpose and dedicated IJ papers (Fig. 36a) were higher than the
quality differences between the multipurpose and dedicated EPG papers
(Fig. 36b). Two or three compact clusters can be distinguished in the
subjective MOS data of the IJ samples. In contrast, the data of the EPG

samples are more coherent.
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Figure 36. The subjective MOS values for the IJ (a) and EPG (b) samples sorted in
ascending order.

Table 7 presents the ten image quality attributes most frequently used to
describe the printed samples. Sharp, unsharp and grainy were the three
most used attributes for the IJ samples, regardless of the image content.
These attributes were also the most frequently used for the EPG samples,
but there were some differences between the image contents. With the test
image of the cactus (of the EPG samples), the attribute “sharp” was the
fourth most used, and the attribute “unsharp” was not in the group of the
ten most used attributes. In contrast, with the test images of the man and

the lake, “sharp” was the most frequently used attribute.
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Table 7. The ten subjective attributes most frequently used to describe the printed
samples; the data represent the number of times an attribute was mentioned.

Man Cactus Lake
EPG 1 EPG N} EPG N}
Sharp 97 Unsharp 109 |Grainy 90 Grainy 114 |Sharp 97 Sharp 121
Grainy 85 Sharp 107 |Faded 83 Sharp 110 [Unsharp 81 Unsharp 116
Unsharp 67 Grainy 98 |[Good colors 83 Unsharp 94 |Good colors 71 Grainy 92
Good colors 62 Faded colors 95 |Sharp 62 Faded colors 83 [Grainy 64 Faded colors 88
Faded colors 62 Faded 82 [Faded colors 50 Clear 76 |Streaking 63  Unclear 83
Clear 50 Unclear 81 |Dark 47  Deep colors 75 |Faded colors 63 Good colors 70
White dots 46 Good colors 65 [White dots 44 Unclear 74 |Unclear 40 Deepcolors 61
Streaking 38 Deep colors 63 |Uniform print 41  Good colors 73 [Not uniform print 39 Faded 56
Unclear 35 Clear 54 |Clear 41 Faded 63 [White dots 39 Clear 48
Faded 34 White dots 46 |Gray 40 Contrast good 39 |Deep colors 39 Matt 35

With the IJ samples, the fourth most used attribute was “faded colors”,
regardless of image content. With the EPG samples, “faded colors” was the
fifth or sixth most used attribute. With the EPG samples, “good colors” was
the third or fourth most frequently used attribute. With the IJ samples,
“good colors” was in the group of the ten most used attributes. The third
most frequently used color attribute was “deep colors”. In the case of the 1J
samples, it was used relatively often.

The attribute “good colors” relates to the overall color quality. The other
color attributes characterize more specific color properties. We assume
that the attributes “deep color” and “faded color” comprise a bipolar
dimension. Deep color is the positive pole and faded color is the negative
pole of this dimension. In addition, we assume that the attribute “faded”
has an effect on this dimension.

The subjective frequencies of the attributes suggest that the dimensions
of sharpness, graininess and color contrast can be used to evaluate the
quality of printed images. The dimension of sharpness is composed of the
attributes “sharp” and “unsharp”. The dimension of graininess is composed
of the attributes “grainy” and “white dots”. The dimension of color contrast
is composed of the attributes “deep colors”, “faded colors” and “faded”.

The context of this space is the natural image, which is printed at the size
of 10 cm x 15 cm. The proposed metrics for the dimensions were presented
in Section 3.3.

4.1.2 Subjective quality data for camera images
We validated the objective metrics for camera applications proposed in this

dissertation by using two Data sets. The test images for Data set I were
captured in autumn (left-side images in Table 4), and those for Data set 11
were captured in winter (right-side images in Table 4). The most notable
differences between the images of the data sets can be found in the outdoor
Clusters 5 and 6. The differences between Clusters 1, 2 and 3 relate only to

the persons in the images and their clothes. Cluster 4 is identical for the
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two sets. Data set I was used to evaluate the performance of the proposed
metrics described in Sections 4.2.2, 4.3.1, 4.3.2 and 4.3.3. Data set II was
used for the study described in Section 4.3.1.

The images of both data sets were captured by test cameras and a high-
quality reference camera. The quality levels of the test cameras ranged
from low to moderate; the cameras consisted of low-, moderate- and high-
quality mobile phone cameras and moderate-quality compact cameras. The
pixel counts of the cameras ranged from 3 to 12 Mpix. The reference
camera was a Canon EOS 5D with a Canon EF 24-80 mm lens. The
performance (e.g., signal-to-noise ratio and detail reproduction) of the
reference camera was considerably higher than that of the cameras to be
tested. This difference was a required and sufficient condition.

The images were scaled to a 1600 x 1200 pixel size for the subjective
tests. In addition, we added black borders around the images to match the
image file resolution with the display resolution (1920 x 1200). The test
setup included two Eizo ColorEdge CG241W displays and a small display.
The test image was shown on one display, and the reference image (Data
set I) or several reference images (Data set II) were shown on the other.
The user interface of the observer was on the small display.

The observers first rated the overall quality of a test image before
evaluating the values of the quality attributes. Test images representing
one cluster at a time were shown. The order of the images and clusters
were randomized for the observers. The viewing distance was
approximately 80 cm, and the ambient illuminance was 20 lux. The
displays were calibrated based on the sRGB standard.

Data set I included seventy-eight test images (13 cameras x 6 clusters),
and Data set II had eighty-four test images (14 cameras x 6 clusters). All
observers were naive with respect to image quality (n = 25 for Data set I,
and n = 30 for Data set II). With Data set I, the subjective reference image
was shown on one display during the test, and the test images were shown
on the other display. The image-quality value of the subjective reference
image was set to be 90 on a scale ranging from 0 to 100. The subjective
reference image functioned as a high-quality anchor image. The quality
value of 90 out of 100 left some latitude for the observers in the case of
high-quality test images. The chosen quality value of the anchor image is
not critical.

With Data set II, before a single test image of a given content was shown,
all of the test images of the clusters in question were shown to the observer
as a slide show. This process was repeated before each test image was
evaluated. In addition, the observers were instructed to give the lowest
rating and highest rating in every cluster. The differences between the
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subjective data in Data sets I and II are analyzed in greater detail in
Publication V.

Figure 37 shows the MOS scores and the 95% confidence intervals of
Data set I sorted in ascending order. We can observe that there are clear
differences in the scales between the clusters. The scales for Clusters 1 and
3 are wider than the scales for the other clusters. This difference is
attributable to the illuminance levels. The illuminance levels of Clusters 1
and 3 are low, and the quality differences between the images are clear.
The impact of the flash power can be seen by comparing the values
between Clusters 1 and 3. The shooting distance was longer for Cluster 3
than for Cluster 1. The mid-level MOS values are lower for Cluster 3 than
for Cluster 1 because low-power LED flash cameras have an exposure
power that is too low for longer distances. Cluster 4 shows that the image
quality of a modern low-end camera saturates if the structure of the view is
simple and the illuminance level is sufficiently high. The observers had
difficulty seeing the differences between the images. The images for Cluster
4 were sharp, the noise level was low and the colors were balanced because
of the easy content.
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Figure 37. Subjective MOS on the vertical axis with 95% confidence intervals sorted in
ascending order (on the horizontal axis) for clusters 1-6 with 13 cameras (Data set I).

4.2 Performance of objective methods for computing overall
image quality

4.2.1 Camera images
Publication IV examined the overall quality of camera images from the

standpoint of predicting subjective quality. The aim was to determine the
benefits of a reference camera for camera image quality measurements.
The six test image views (clusters) were photographed by different digital
cameras (Table 4). Section 2.5.2 described the views, and Section 4.1.2
outlined the experimental procedure for gathering subjective data. More
details about the subjective tests can be found in Publication IV. We
implemented three state-of-the-art RR metrics for the image quality
measurement framework depicted in Figure 15. The metrics D;, D, and D4
are defined by Equations (3), (6) and (10), respectively.

Before the analyses, we fitted the values of the metrics by using the three-
parameter logistic function:
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P

(30)
1+exp(—p, ('xi — D3 )

Dpred =P -

where p; are the fitting parameters of the model, Dp.eq is the predicted
image quality and x; is the metric value for image i. The fitting parameters
were obtained by calculating the minimum least-squares, non-linear
regression using the fminsearch function in MATLAB.

We measured the performance as the Pearson linear correlation (LCC)
and Spearman rank-ordered correlation (ROCC) between the
computational metrics and the subjective data (MOS). Additionally, we
used the outlier-ratio (OR) metrics. Table 8 shows the results. Boldface
indicates the best performer. Based on the LCC and ROCC values, the
performances of the D, [120] and D, [61] metrics were slightly better than
the performance of the Dj; [20] metric. The image -cluster-specific
performance analyses can be found in Publication IV.

Table 8. Performance of the RR metrics when applied to the proposed camera
measurement framework. Boldface indicates the best performer.

OR OR
(>2%0mos)  (>1*Omos)
D,, (Wanget al.[120]) 0.8030 0.7982 0.0641 0.1539

Metric LCC ROCC

D,, (Li & Wang [61]) 0.8159 0.7916 0.0513 0.2179
Ds, (Engelke et al. [20]) 0.7753 0.7671  0.0513  0.3077

4.2.2 Printed images
The aim of Publication I was to determine the applicability of a reference

image to printed image quality measurements. In addition, the aim was to
find the quality space of printed images. Section 4.1.1 described the
experimental procedure for gathering the subjective data. The test images
are shown in Figure 12. Based on the subjective interview data (Table 7),
we developed metrics for the sharpness, graininess and color contrast
attributes. Section 3.2 described the metrics in detail. The printed images
were digitized using the method described in Section 3.4. Equation (27)
was used for the camera characterization. Because the MOS values for the
image contents were always scaled to the interval 1-5, we normalized the
attribute metric values to a common scale [0-1]. For the sake of simplicity,
the overall value of image quality IQ is predicted by a linear model:
_k(1-CC)+k,G +k;S,
3

where £; are the weighting factors and CC, G and S, are the color contrast,

10 (31

graininess and sharpness values calculated by Equations (11), (14) and (15),
respectively.
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We estimated the weighting factors &; for the IJ and EPG samples by
using the fmincon function in MATLAB to maximize the LCC between the
MOS and IQ. For the 1J samples, the maximum LCC was 0.989 when k; =
1.90, k; = 1.07 and k; = 0.01. For the EPG samples, the maximum LCC was
0.906 when k; = 0.28, k; = 0.73 and k; = 1.95. The weighting factors show
that the color contrast highly influenced the overall image quality of the 1J
samples, whereas the sharpness metric highly influenced the overall image
quality of the EPG samples.

However, if the weighting factors are set as constant values (k; = 1), the
LCC is 0.980 for the IJ samples and 0.883 for the EPG samples. Because of
the generalization capability, we executed the performance analysis below
by using constant weighting factor values (; = 1). By using the constants
weighting factors we can prove that the IQ metric described by Equation
(31) has a generalization capability over different sample sets.

We measured the performance of the proposed method with the LCC,
ROCC and root-mean-square-error (RMSE) metrics (Table 9). The
reference metric was the D, proposed by Wang et al. [120] and defined in
Equation (3). Before the performance comparison, we fitted the data (of
proposed metric and the D,) by using the five-parameter logistic function
[101]. The values of the LCC, ROCC and RMSE show that the proposed IQ
metric was more effective than the D, at predicting printed image quality.

Figure 38 shows the subjective MOS values as a function of the predicted
MOS (proposed metric and the D,). Figures 38a and 38b show the results
for the EPG samples, and Figures 38c¢ and 38d show the results for the IJ
samples. The performance of the proposed IQ was especially high
compared with that of the D, for the IJ samples. The reason for the
difference is the color contrast term included in the model of the proposed
IQ defined in Equation (31). According to the studied attribute weighting
factors k;, the color contrast highly influenced the overall image quality of
the 1J samples. The D, metric used only the luminance information of the
images and could not find differences between the 1J images as clear as
those found by the proposed I1Q.
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Table 9. LCC, ROCC and RMSE values for the EPG and 1J samples. Boldface indicates the
best performer.

Content Metric EPG 1J
LCC ROCC RMSE LCC ROCC RMSE
All Proposed IQ 0.884 0.727 0.353 0.981 0.962 0.196
D:; (Wanget al. [120]) 0.797 0.631 0.419 0.898 0.830 0.408
Man Proposed IQ 0.875 0.748 0.351 0.977 0.973 0.208
D; (Wanget al. [120]) 0.859 0.680 0.416 0.836 0.762 0.591
Cactus Proposed IQ 0.878 0.772 0.426 0.988 0.969 0.163
D; (Wang et al. [120]) 0.772 0.617 0.475 0.926 0.871 0.326
Lake Proposed IQ 0.932 0.636 0.283 0.977 0.945 0.218

D; (Wanget al. [120]) 0.866 0.721 0.366 0.954 0.932 0.307
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Figure 38. Subjective MOS as a function of the predicted MOS: the proposed metric for
EPG (a) and for IJ (c) and the Wang et al. [120] metric D, for EPG (b) and for 1J (d).
Figure 39 shows the RMSE values for the subjective data as a function of
the number of observers. The subjective RMSE values were calculated by
comparing the average of n observer values with the mean values for all of
the observers. For example if n = 3, the mean value of 3 observers was
compared with the mean of all observers. We randomly selected different
observer combinations from the group of all 27 observers, and the
subjective RMSE was the average value for all combinations. The RMSE
values of the proposed IQ for all of the contents were added in the figures.
The comparison between the subjective RMSE and the RMSE for objective
IQ indicates that the accuracy of the proposed IQ metric is higher than the
accuracy of five randomly selected observers for the IJ samples and three

randomly selected observers for the EPG samples.
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Figure 39. Subjective RMSE as a function of the number of observers for the IJ samples
(a) and EPG samples (b).

To determine which differences between the proposed metric and D, are
statistically significant, we performed the variance test. The test is the
same as the one used in previous studies [17], [101]. The assumption is that
the residuals (the difference between the MOS and the predicted MOS
values) are normally distributed. We tested the normality by using a
Kurtosis-based criterion, according to which the residuals are Gaussian if a
kurtosis is between 2 and 4 [101]. The F-test was used to test whether the
variances of the residuals are identical, i.e. whether the two sample sets
come from the same distribution. The null hypothesis is that the residuals
of both metrics are expressions from the same distribution and are

statistically indistinguishable with 95% confidence.
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According to the variance test, there is significant difference between the
proposed metric and the metric D, with respect to the IJ samples. The
difference is not significant for the EPG samples with 95% confidence.
According to the Kurtosis-based criterion, the assumption of Gaussian
residuals is not met for the EPG samples assessed by the D, metric.

We also compared the overall computational complexity of the proposed
metric and D,. Table 10 lists the time (in seconds) taken to compute the
metrics for an image of resolution 1500 x 1000 on a 3.0 GHz dual-core PC
with 4 GB of RAM. The total computation time is divided between the
reference and test images. It is clear that D, outperforms the proposed
metric in terms of computational complexity. In this study we have used
unoptimized MATLAB implementations and computational complexity
can therefore be reduced if needed. The computational complexity of the
proposed IQ is the sum of S;, G and DC. Table 11 lists the times taken to
compute the S;, G and DC metrics, respectively.

Table 10. Computational complexity analysis of the proposed metric and D

Metric Reference image Test image Total
time (s) time (s) time (s)

Proposed IQ* 92.3 56.6 148.9

D, 13.7 5.2 18.8

*sum of the S, G and DC metrics

Table 11. Computational complexity analysis of the S;, G and DC metrics.

Metric  Reference image  Test image Total Percentage
time (s) time (s) time (s) of time (%)
S: 49.1 20.3 69.4 46.6
G 21.4 21.2 42.6 28.6
DC 21.7 15.1 36.8 24.7
148.9 100
Data reliability

The subjective MOS scores and the prediction of overall quality of the
printed samples correlated strongly with one another. The LCC was 0.98
for the IJ samples and 0.88 for the EPG samples. The proposed
application-specific metric was compared with the state-of-the-art generic
RR metric, which was implemented into the proposed image quality
measurement framework. The performance of the proposed metric was
higher than that of the RR metric. For the IJ samples, the performance
difference between the proposed metric and the state-of-the-art metric was
also statistically significant.

From the perspective of data reliability, the number of observers (n = 28)

and the number of samples (n = 21) were high enough. However, the low
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number of different image contents (n = 3) can decrease the data
reliability. We stress that three contents cannot validate the general image
quality metrics, even if the selection of the contents were based on aspects
strongly related to image quality. However, with the contents, we can and
have proven that the proposed metrics and image quality measurement

framework for printed images are promising.

4.3 Performance of objective methods for computing image
quality attributes

4.3.1 Sharpness
Publication V examined the sharpness attribute of digital cameras. The

sharpness metric S. was defined in Equation (25). The method was tested
using two data sets (Data set I and Data set II). Section 4.1.2 described the
experimental procedure for gathering subjective data. More details for the
subjective tests can be found in Publication V.

The proposed sharpness metric S, was compared with the state-of-the-
art NR and RR metrics as well as the test-target metrics. The NR sharpness
metrics were from Marziliano et al. [71], Ferzli and Karam [24] and
Narvekar and Karam [78]. The RR metric was the D, metric proposed by
Wang et al. [120]. In addition, we captured the Mica test-target [110]
images under laboratory conditions and calculated the MTF50 test target
values. Before the analyses, the values of the metrics were fitted using the
three-parameter logistic function defined in Equation (30).

Table 12 shows the LCC values, and Table 13 presents the coefficients of
determination R2 for the metrics. The results suggest that the performance
of the S, is higher than the performance of the reference metrics. When we
fitted the data over all of the clusters, the LCC and R2 of the proposed
metric S, were the highest. The cluster-specific performance of the S, was
the highest except for Clusters 4 and 5 in Data set I and Cluster 5 in Data
set II. In these cases, the performance of the D, metric or the test-target
MTF50 was the best.

Figure 40 shows the subjective sharpness values as a function of the
proposed metric and D,. Figure 40 shows that Data set I (Figure 40a and
40b) was easier for both metrics than Data set II (Figure 40c and 40d).
Compared with the performance of the application-specific sharpness
metric proposed here, the performance of the generic image quality metric
D, was particularly low for Data set II.

According to the R2 values, S, can explain 72% and 69% of the total
variation in the subjective sharpness values of Data sets I and II,

respectively. We cannot account for the remaining 28% and 31% of the
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total variation in subjective sharpness values in Data sets I and II,

respectively.

Table 12. The Pearson linear correlation coefficients LCC of the Marziliano et al.
[71], Ferzli and Karam [24], Narvekar and Karam [78] and Wang et al. (D,) [120]
metrics and of the proposed metric S, (M = 100x100, m = 5) with subjective

sharpness

DatasetI

Marziliano Ferzli Narvekar D, MTF50 S,
Cluster 2 0.676 0.500 0.488 0.618 0.629 0.840
Cluster 3 0.489 0.432 0.494 0.886 0.547 0.898
Cluster 4 0.676 0.254 0.498 0.782 0.545 0.748
Cluster 5 0.683 0.105 0.296 0.361 0.788 0.684
Cluster 6 0.845 0.471  0.425 0.775  0.554 0.920
Overall 0.733 0.477 0.563 0.786  0.650 0.848

Data set 11

Marziliano Ferzli Narvekar D1 MTF50 S2
Cluster 2 0.443 0.415  0.240 0.410 0.600 0.770
Cluster 3 0.142 -0.045 -0.057 0.664 0.595 0.880
Cluster 4 0.774 0.574  0.725 0.051 0.752 0.805
Cluster5 0.793 0.716  0.723 0.815 0.800 0.761
Cluster 6 0.820 0.886 0.655 0.681  0.696 0.931
Overall 0.589 0.511  0.404 0.538 0.669 0.828

Table 13. The coefficients of determination [%] of the Marziliano et al. [71], Ferzli
and Karam [24], Narvekar and Karam [78] and Wang et al. (D) [120] metrics and
of the proposed metric S, (M = 100x100, m = 5) with subjective sharpness

Data set I

Marziliano Ferzli  Narvekar D, MTF50 S,
Cluster 2 45.698 25.000 23.814 38.192  39.564 70.560
Cluster 3 23.912 18.662 24.404 78.500 29.921  80.640
Cluster 4 45.698 6.452 24.800 61.152 20.703  55.950
Cluster 5 46.649 1.103 8.762 13.032 62.094 46.786
Cluster 6 71.403 22.184 18.063 60.063 30.692 84.640
Overall 53.729 22,753 31.697 61.780 42.250 71.910

Data set I1

Marziliano Ferzli  Narvekar D, MTF50 S,
Cluster2 19.625 17.223  5.760 16.810 36.000 59.290
Cluster 3 2.016 0.203  0.325 44.000 35.403  77.440
Cluster 4 59.908 32.048 52.563 0.260 56.550 64.803
Cluster5 62.885 51.266 52.273 66.423 64.000 57.912
Cluster 6 67.240 78.500 42.903 46.376  48.442 86.676
Overall 34.692 26.112 16.322 28.944 44.756 68.558

73



8

Subjective sharpness

Subjective sharpness
8 8 8 8 83 3 8 8

3

o

20 40 60 80 100 .
Predicted sharpness (proposed metric) Predicted sharpness (D,

(a) )

Subjective sharpness
Subjective sharpness

20 40 Ll 80 100 20 40 60 80 100
Predicted sharpness (proposed metric) Predictd sharpness (D,)

(© (d
Figure 40. Subjective sharpness as a function of predicted sharpness: the proposed metric
S. for Data set I (a) and for Data set II (c) and the Wang et al. [120] metric D, for Data set I
(b) and for Data set II (d).

We tested the independence of the image contents by using a cross-
validation method. Both Data sets I and II were divided into five groups,
each of which represented one image cluster. We estimated the fitting
parameters of the logistic function by using data from the other four
groups. These four groups functioned as the training data. The fifth group
was used as the testing data. Thus, the testing was performed five times.
All of the groups (clusters) functioned once as testing data. Table 14 shows
the mean LCC, ROCC and RMSE values of S, and D, for the training and
testing groups. Table 14 clearly demonstrates that the performance of the
proposed metric was also high for the testing data. The mean performance
was clearly higher than the performance of the generic image quality

metric D,.

Table 14. The mean validation performance values for the Wang et al. [120] RR metric D;
and the proposed metric S. (M = 100x100, m = 5)

Metric ROCC LCC RMSE

Training Testing Training Testing Training Testing

Data set S, 0.838 0.781 0.843 0.811 8.812 10.241
I D, 0.766 0.551 0.774 0.411 10.153 10.902

Data set S, 0.821 0.785 0.836 0.807 12.318 13.460
II D, 0.577 0.635 0.630 0.576 16.407 19.195

74



Experiments

Figure 41 shows the RMSE values for the subjective data as a function of
the number of observers. Different observer combinations were randomly
selected from the group containing all 25 observers for Data set I and the
group containing all 30 observers for Data set II. The subjective RMSE is
the average value of the combinations. The RMSE values of the proposed
sharpness metric S, for the validation data (see Table 14) were added in
Figure 41. The figure shows that the accuracy of the proposed metric is
higher than the accuracy of two randomly selected observers.
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Figure 41. Subjective RMSE as a function of the number of observers for Data sets I and
1I.

To ascertain which differences between the proposed sharpness metric
and the D, metric (Eq. (3)) proposed by Wang et al. [120] are statistically
significant, we executed the variance test. According to the variance test,
there is a significant difference between the proposed metric and D; with
respect to the Data set IT samples. The difference is not significant for the
Data set I samples with 95% confidence.

We also compared the overall computational complexity between the
proposed S, metric and the D,. Table 15 lists the time (in seconds) taken to
compute the metrics for an image of resolution 1600 x 1200 on a 3.0 GHz
dual-core PC with 4 GB of RAM. The total computational time is divided
between the reference and test images. It is clear that D, outperforms the
proposed metric in terms of computational complexity. In this study we
used unoptimized MATLAB implementations and computational
complexity can therefore be reduced if needed. The computational
complexity of the proposed S. is the sum of the blocks shown in Figure 25.
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Table 16 lists the times taken to compute the blocks of “Energy metric”, “m
highest candidate blocks”, Correspondence block search” and “Sharpness

metric” .

Table 15. Complexity analysis of the proposed S: and D; metrics

Metric Reference image Test image Total
time (s) time (s) time (s)

Sharpness, S 31.7 83.9 115.6

D, 14.9 8.0 23.0

Table 16. Complexity analysis of the blocks of the proposed S» metric

Image type Block (see Figure 25) Time  Percentage of
(s) time (%)
Reference image  Energy metric 31.4 27.1
m highest candidate blocks 0.3 0.3
Test image Correspondence block search 83.9 72.6
Sharpness metric 0.0 0.0
115.6 100

4.3.2 Color noise
Publication III studied the color noise attribute of digital cameras.

Equation (20) calculates the total noise metric N, and Equations (21) and
(22) estimate the texture and smooth area noise components, respectively.
Cluster 2 in Table 4 was used to validate the method. University students
were used as the observers (n = 25). More details of the subjective tests can
be found in Publication III. The prediction accuracy of N was compared
with the visual noise test target metric [45] and the NR noise metric
proposed by Immerkaer [41]. The visual noise was measured using the
Gretag Macbeth test target under the lighting conditions of Cluster 2.

Table 17 shows the LCC and ROCC values for the metrics. The
performance of the texture noise component was only moderate, but the
performances of the smooth area component and total noise component
were rather high compared with those of the reference noise metrics.

Figure 42 shows the subjective noise as a function of the proposed total
noise metric and the visual noise test target metric. Compared with the
visual noise test target metric, the proposed total noise metric accurately
predicts the subjective noise of the samples. One clear outlier is evident.

The proposed total noise predicts low noise value for that sample.
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Table 17. The LCC and ROCC values of the proposed texture, smooth and total noise
metrics and visual noise test target and Immerkaer’s NR noise metrics

Total noise

(@

Metric LCC ROCC
Proposed texture noise metric, noise; -0.635 -0.676
Proposed smooth noise metric, noises -0.837 -0.775
Proposed total noise metric, N -0.800 -0.786
Visual noise test target metric [45] -0.471  -0.709
Immerkaer’s NR noise metric [41] -0.144 -0.115
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Figure 42. Subjective noise as a function of predicted noise: the proposed total noise
metric N (a) and the test target visual noise metric (b).

4.3.3 Color difference metrics
Publication VI presented the study on the color difference metrics of digital

cameras. Figure 26 shows how the selected blocks were located. The color
difference values were measured from the images captured by eight
cameras using the scenes 1 and 2 shown in Figure 43.

The ground-truth test-target data were measured using the Gretag
Macbeth CC test target under the lighting conditions of scenes 1 and 2. The
color values of the test target were measured by the spectroradiometer, and
the target was photographed by the cameras to be tested. Three basic test-
target color difference values were calculated: luminance, chroma and hue
differences (AL, AC and AH, respectively).

The LCC and ROCC between the proposed and (ground-truth) test target
color difference values are shown in Table 18. Some of the correlations are
significant for the luminance and chroma metrics, but the correlations of
the hue metric are weak. Based on the t-test, the correlation value of 0.62
is significant (df = 6, p = 0.05).

One reason for the low correlation of the hue metric may be that the hue
difference is highly dependent on the sample set. Because the proposed
method selects the color samples based on the scene, the selected samples
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were different from the Gretag Macbeth CC color patches. As more global
values, the luminance and chroma are less dependent on the sample set.

When comparing the correlations calculated for the different scenes, we
found it notable that Scene 2 differed from the test target more than Scene
1 did. The reason for this difference may be that Scene 1 was easier for
color calibration of the reference camera because of its higher illuminance
level.

(@ (b)

Figure 43. The proposed method was applied to scenes 1 (a) and 2 (b).

Table 18. The linear correlation (LCC) and rank-ordered correlation (ROCC) coefficients
between the proposed method and the test target method

Color metric Scene 1 Scene 2

LCC ROCC LCC ROCC
AL 0.73 0.81 0.61 0.52
AC 0.80 0.55 0.64 0.60
AH 0.14 0.17 -0.08 0.31

4.3.4 Data reliability
The evaluation of the proposed sharpness metric for camera images

according to the block diagram of Figure 25 constituted the most extensive
part of the dissertation. According to the results, the performance of the
sharpness metric is high compared with those of the state-of-the-art
metrics that are applicable to camera images. In Data set II, the differences
were also statistically significant.

The proposed color noise metric was evaluated using a single cluster.
According to the results, the metric is promising. Only one image cluster
was used in the test, and it decreased the reliability of the results. The color
difference method was evaluated using two views. The evaluation was
based only on the objective data. The assumption was that the test target
data represent the ground truth.

The correlation coefficients of the proposed camera image methods were

lower than the correlation coefficients of the corresponding methods
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proposed for printed images. The main reason for this difference is that the
camera image application is more difficult to measure than the printed
image application. The reference images of the printed image application
are simpler to reproduce and use than those of the camera image
application. The form of an original reference image for the printed image
application is digital, and test samples that should be digitized are planar
(papers). In the case of cameras, the reference images (scenes) are
captured by projecting 3D scenes onto a 2D plane (image sensor). In
addition, the different optical properties of test cameras create perspective
differences between test images.
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5.Discussion

The proliferation of digital cameras and the growth of digital image and
video applications have caused the issue of image quality to continue to be
a lively research theme. Within this field, computing the quality of imaging
systems with analog-digital and digital-analog conversions is a sub-field
that has received less attention than the computation of quality distortions
arising from, for instance, image compression or transmission.

The main goal of this dissertation was to create methods and algorithms
that characterize imaging systems in a user-relevant manner by directly
measuring relevant and objective image quality attributes from natural
images. The traditional approach to measuring the quality of imaging
systems uses test targets. However, the overall quality of the images
captured, printed or displayed is perceived through high-level attributes.
These attributes can only be evaluated from natural images. High-level
attributes such as naturalness and clarity are not relevant concepts in the
case of test target images.

In principle, reference-free (NR) algorithms would be ideal for
computing the quality of imaging systems. However, the performance of
NR metrics is low for imaging systems because even the state-of-the-art
NR metrics can handle only images with one type of distortion [75], [94].
An image captured by a camera or printed by a printer can suffer from
several types of distortions. For example, a NR metric for a blurriness
distortion can interpret the noise energy in a blurry image as the image
structure and assess the image as sharp.

If quality is computed from a natural image captured or printed by an
imaging system rather than an all-digital image communication system,
the type (or lack) of the reference image gives rise to the main problem. For
the printer applications, a digital reference image is available, but printed
images (i.e., test images) are in analog (optical) form. Test images should
be digitized before the measurements are taken. For example, a previous
study [17] proposed a framework for digitizing test images by using a
scanner. Compared with this method [17], the digitization device in this
dissertation was a high-quality camera, and the method was based on

multiple exposures. A device of the proposed method could be a fully-
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manual scanner, but with a camera e.g. lighting environment is easier to
control. Because the study [17] applied state-of-the-art FR algorithms to
the framework, precise registration between the reference and test images
was a requirement. The proposed reduced-reference (RR) metrics for
printed images are registration-free in principle. These metrics compute a
feature vector for the reference image and utilize it if the attribute values
are computed from test images digitized from prints.

For camera applications, the reference images are missing. The proposed
methods use a high-quality reference camera to capture reference images.
The performance of the reference camera should be high enough. Noise
energy and image structure should be differentiable under all image-
capturing conditions. In addition, an accurate color calibration should be
possible. The areas for measurements are searched from the reference
images, and the corresponding areas are located from the images captured
by cameras. The search method is based on the correspondence points
computed by the area descriptors in the neighborhood of the reference
image’s measurement areas. Only the corresponding points in the
neighborhood of the measurement areas are used. A traditional image
registration approach is based on a global principle. The image
homography is computed by covering all of the images’ pixel areas.
Because the proposed method is based on a local principle, it compensates
for the geometrical distortions and perspective differences between the
images captured by different cameras. The local principle of the method
eliminates the need for camera-specific optical calibrations.

Traditional full-reference (FR) metrics compute error maps between
reference and test images. Overall quality is often computed as an average
value of the map. The quality attributes computed by the proposed RR
metrics are more suited for research and development work on imaging
systems with many types of distortions than metrics that express quality
with a single number. The attributes were selected based on a literature
review and a subjective study of printed images. We developed sharpness,
graininess and color contrast metrics for printing applications and
sharpness, color noise and color difference metrics for camera
applications. In particular, the color contrast metric played an important
role in predicting the overall quality of the printed samples in this
dissertation. The state-of-the-art computational image quality metrics for
natural images use only luminance information and bypass color
information.

In the dissertation, different methods were presented for camera and
printer applications. Because of the order and progress of the research, the
metrics for camera applications use a more advanced method to select the
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local blocks to be measured. By applying the so-called corresponding
blocks approach also in the printed image methods, the performance of the
computational metrics would inevitably increase, because only the relevant
regions would be used for measurements. The same most optimal blocks
approach can also be applied to display measurements. The test images
shown on a screen could be digitized by a high-quality camera, and the
quality attributes can be computed accordingly.

According to the results, the performance of the proposed methods was
promising in most cases, and the goal of the dissertation was achieved. To
support this point, we compared the proposed methods and the data from
the test target measurements, the state-of-the-art algorithmic metrics and
the subjective tests. By comparing the accuracy of the proposed methods
with that of the test target-based methods, we showed that considerable
advances were made in comparison with the traditional approach to
measuring the image quality attributes of imaging systems. The correlation
coefficients between the subjective data and the objective metrics indicated
that the performance of the proposed sharpness and noise metrics
exceeded the performance of the MTF50 and visual noise test target
metrics (see Tables 12 and 17). In addition, the proposed color metrics
correlate with the color metric values measured from the physical color
patches (Table 18).

By comparing the accuracy of the proposed metrics with that of the
general-purpose algorithmic metrics from the field of image processing, we
revealed that the proposed methods reached higher performance levels in
the context of imaging systems than the state-of-the-art metrics (see
Tables 9, 14 and 17). For example, according to the coefficients of
determination, the proposed sharpness metric for camera applications
explained more of the subjective data than the state-of-the-art metrics.
This finding supports the notion that imaging system-specific algorithms
need to be developed.

One of the long-term goals of the research area for this dissertation is to
make time-consuming routine subjective evaluations by test participants
obsolete. By comparing the prediction uncertainty of the proposed
methods with the variations of the subjective data, we found that the
proposed methods are sufficiently accurate and can replace small-scale
subjective tests (See Figures 39 and 41). The RMSE values for the
subjective and objective data showed that the proposed objective methods
can predict a mean opinion score more accurately than a random observer
for the images used in this dissertation.

The proposed methods measured the sharpness, color contrast,
graininess, color noise and color difference attributes. In addition, it is
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possible to compute the attributes of lightness and luminance contrast by
using the same methods. Luminance contrast can be measured e.g. from
local edge areas that can be found in a reference image. In addition, the
values computed by the proposed sharpness metrics correlate strongly with
subjective contrast. Lightness can be measured by, for example, comparing
the global or local mean lightness values of reference and test images.

The proposed methods can be modified to measure video quality as well.
A reference video can be captured by a high-quality video camera, and the
areas suitable for computing quality attributes can be located from this
video by using the proposed methods. In the future, most consumer
cameras will include features such as HDR and stereoscopic 3D-imaging.
The proposed methods, which are based on the reference images captured
by a high-quality camera, can also be modified to assess HDR and
stereoscopic images. For example, HDR images can be measured by using
a reference camera calibrated for lightness, and stereoscopic images can be
measured by using, for example, two calibrated reference cameras.

However, NR methods and high-level attributes and factors are the next
main research topics in the research field of image quality. The use cases of
the proposed reduced-reference methods for imaging systems are limited
mostly to the field of research and development. The applications of image
processing pipe tuning and imaging system benchmarking can utilize
methods that require some information from a reference image. However,
a wide range of real-life consumer applications, such as image retrieval or
organizing systems, can apply only reference-free metrics. In addition, the
applications of assisted photography would benefit from robust NR
metrics. The goal can be to assist users to take better photographs by
providing feedback such as framing instructions, which are based on object
detection and quality algorithms.

The high-level attributes of naturalness and clarity require more
advanced methods than the low-level attributes studied here.
Computational image understanding and better models for human viewing
of images are vital. For example, in a previous study [81], we showed that
the performance of a reference-free method is high if the metrics are
computed from the face areas in camera-captured images.

In addition, the theoretical constructs and relations of the quality
attributes should be studied. The relations between low- and high-level
attributes must be better understood before comprehensive methods can
be constructed. Moreover, the difference between the quality evaluations of
low- and high-quality images should be studied because it is known that
the quality perceptions of low- and high-quality images are based on
different attributes and aspects [82]. For example, the high-quality image
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is sharp and noiseless, and the quality evaluation is probably based
primarily on the reproduction of memory colors, texture and/or

perspective rather than global sharpness or noise.
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6.Conclusions

Image quality is a key performance indicator of digital cameras, displays
and printers. As a research area, a major challenge arises from the shift in
interest from characterizing the performance of devices to computationally
predicting the quality of images and video as they are perceived and
experienced by users. This dissertation addresses this challenge by
focusing on quality attributes, particularly low-level attributes. These
attributes are components in the constructs of high-level quality attributes
and in judgments of overall quality as well.

The goal of the dissertation was to create algorithms, verify their
performance and apply them to methods of determining quality attributes
directly from natural images. This approach contrasts with the standard
practice of measuring imaging system performance based on test targets.
The study lies at the intersection of the imaging and signal-processing
traditions of image quality research.

The key quality computation issues that differentiate imaging systems
from image communication systems are the analog-to-digital and digital-
to-analog conversions, which are part of the imaging pipelines. A variety of
nonlinear distortions and artifacts are generated in the conversions. This
has the implication that it is feasible to try to apply other principles of
quality computation than the full-reference principle successfully
employed in the signal-processing research tradition. This study focuses on
the reduced-reference principle and uses reference images for image
attribute metrics.

The contributions of the dissertation concern both the analog-to-digital
conversions and reference image metrics for imaging systems. As the
methods proved to predict subjective attribute scores more accurately than
test target methods, we can conclude that the proposed methods facilitate
computation of the quality attributes of natural images. In terms of the
correlation coefficients between the objective data and subjective data, the
performance of the objective methods also exceeded that of the state-of-
the-art algorithms. This suggests that the methods of this dissertation are
applicable to research on the constructs of high-level attributes. Also they

can be employed to replace small scale subjective tests.
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In the course of the research carried out in this dissertation several
possibilities for further research have been identified. For instance, the
proposed methods can be modified to measure video, HDR and
stereoscopic imaging quality. Proposed methods can be extended to
measure high-level attributes such as naturalness and clarity for printed or
camera images. This requires, however, more advanced methods than the
ones we used with the low-level attributes in this dissertation.
Computational image understanding and more advanced models for
human viewing or even human behaviour should be developed and
implemented in the proposed image quality measurement framework.

A restriction of the proposed methods is the need for reference images.
The measurements of printed images require a digital original image, and
the measurements of camera images require reference images captured by
a high-quality camera. However, progress in reference-free methods
requires new and more advanced understanding of images from both

objective and subjective standpoints.
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Errata

Errata

Publication I

In Subsection 3.3, the image sharpness metric S should be

2B+ B+ B+ B
S — i=i

4

Publication V

In Subsection 4.1, ‘Dataset 14 cameras’ should be ‘Dataset II 14 cameras’.
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