
9HSTFMG*aeiicg+

ISBN 978-952-60-4882-6
ISBN 978-952-60-4883-3 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Information and Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 15

8
/2

012

The digital revolution means that there are
increasing amounts of text and speech
material in electronic format. This calls for
adaptive and data-driven approaches to
automatically process the continuously
accumulating data. A particular problem in
language processing is how to select the
lexical units (such as words, morphemes,
and phrases) for further modeling in
information retrieval, speech recognition,
and machine translation systems. The
systems themselves rely more and more on
machine learning techniques. However, the
unit selection problem is still commonly
solved by traditional rule-based approaches
that are limited in languages and domains.
Building on statistical machine learning
methods and the linguistic theory of
construction grammars, this thesis presents
new unsupervised and semi-supervised
algorithms for selecting lexical units. It also
presents new evaluation methods for the
units learned and examines various
approaches for utilizing them in speech
recognition and statistical machine
translation.

Sam
i V

irpioja
L

earning C
onstructions of N

atural L
anguage: Statistical M

odels and E
valuations

A
alto

 U
n
ive

rsity

Department of Information and Computer Science

Learning Constructions
of Natural Language:
Statistical Models and
Evaluations

Sami Virpioja

DOCTORAL
DISSERTATIONS

Aalto University publication series
DOCTORAL DISSERTATIONS 158/2012

Learning Constructions of Natural
Language: Statistical Models and
Evaluations

Sami Virpioja

A doctoral dissertation completed for the degree of Doctor of
Science in Technology to be defended, with the permission of the
Aalto University School of Science, at a public examination held at
the lecture hall TU1 of the school on 10 December 2012 at 12.

Aalto University
School of Science
Department of Information and Computer Science

Supervising professor
Prof. Erkki Oja

Thesis advisors
Doc. Mikko Kurimo
Dr. Krista Lagus

Preliminary examiners
Doc. Krister Lindén, University of Helsinki, Finland
Prof. Richard Wicentowski, Swarthmore College, USA

Opponents
Doc. Krister Lindén, University of Helsinki, Finland
Prof. Brian Roark, Oregon Health & Science University, USA

Aalto University publication series
DOCTORAL DISSERTATIONS 158/2012

© Sami Virpioja

ISBN 978-952-60-4882-6 (printed)
ISBN 978-952-60-4883-3 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-4883-3

Unigrafia Oy
Helsinki 2012

Finland

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Sami Virpioja
Name of the doctoral dissertation
Learning Constructions of Natural Language: Statistical Models and Evaluations
Publisher School of Science
Unit Department of Information and Computer Science

Series Aalto University publication series DOCTORAL DISSERTATIONS 158/2012

Field of research Computer and Information Science

Manuscript submitted 12 June 2012 Date of the defence 10 December 2012

Permission to publish granted (date) 4 October 2012 Language English

Monograph Article dissertation (summary + original articles)

Abstract
The modern, statistical approach to natural language processing relies on using machine learn-
ing techniques on the increasing amount of text and speech data in electronic format. Typi-
cal applications for statistical methods include information retrieval, speech recognition, and
machine translation. Many problems encountered in the applications can be solved without
language-dependent resources, such as annotated data sets, by the means of unsupervised
learning. This thesis focuses on one such problem: the selection of lexical units. It is the first
step in processing text data, preceding, for example, the estimation of language models or ex-
traction of vectorial representations. While the lexical units are often selected using simple
heuristics or grammatical rule-based methods, this thesis proposes the use of unsupervised
and semi-supervised machine learning. Advantages of the data-driven unit selection include
greater flexibility and independence from the linguistic resources that exist for a particular
language and domain.

Statistically learned lexical units do not always fit to the categories in traditional linguis-
tic theories. In this thesis, they are called constructions according to construction grammars, a
family of usage-based, cognitive theories of grammar. For learning constructions of a language,
the thesis builds on Morfessor, an unsupervised statistical method for morphological segmen-
tation. Morfessor is successfully extended to the tasks of learning allomorphs, semi-supervised
learning of morphological segmentation, and learning phrasal constructions of sentences. The
results are competitive especially for the morphology induction problems. The thesis also in-
cludes new techniques for using the sub-word constructions learned by Morfessor in statistical
language modeling and machine translation. In addition to its usefulness in the applications,
Morfessor is shown to have psycholinguistic competence: its probability estimates have high
correlations with human reaction times in a lexical decision task.

Furthermore, direct evaluation methods for the unit selection and other learning problems
are considered. Direct evaluations, such as comparing the output of the algorithm to existing
linguistic annotations, are often quicker and simpler than indirect evaluation via the end-user
applications. However, with unsupervised algorithms, the comparison to the reference data
is not always straightforward. In this thesis, direct evaluation methods are developed for two
unsupervised tasks, morphology induction and learning semantic vector representations of
documents. In both cases, the challenge is to find relationships between the pairs of features in
multidimensional data. The proposed methods are quick to use and they can accurately predict
the performance in different applications.

Keywords morpheme segmentation, morphology induction, construction grammar,
unsupervised learning, semi-supervised learning, probabilistic models, language
models, vector space models, machine translation, speech recognition

ISBN (printed) 978-952-60-4882-6 ISBN (pdf) 978-952-60-4883-3

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Espoo Location of printing Helsinki Year 2012

Pages 437 urn http://urn.fi/URN:ISBN:978-952-60-4883-3

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Sami Virpioja
Väitöskirjan nimi
Luonnollisen kielen rakenteiden oppiminen: tilastollisia malleja ja evaluaatiomenetelmiä
Julkaisija Perustieteiden korkeakoulu
Yksikkö Tietojenkäsittelytieteen laitos

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 158/2012

Tutkimusala Informaatiotekniikka

Käsikirjoituksen pvm 12.06.2012 Väitöspäivä 10.12.2012

Julkaisuluvan myöntämispäivä 04.10.2012 Kieli Englanti

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit)

Tiivistelmä
Luonnollisen kielen automaattinen käsittely pohjautuu yhä suuremmassa määrin tilastollis-
ten koneoppimismenetelmien käyttöön jatkuvasti lisääntyvälle elektroniselle teksti- ja puhe-
aineistolle. Tyypillisiä sovelluksia tilatollisille menetelmille ovat esimerkiksi tiedonhaku, pu-
heentunnistus ja konekäännös. Monet sovellusten osaongelmat ovat ratkaistavissa ilman kie-
liriippuvaisia resursseja, kuten annotoituja aineistoja, käyttämällä ohjaamatonta koneoppimis-
ta. Tämä väitöskirja keskittyy erityisesti yhteen tällaiseen ongelmaan: leksikaalisten perusyk-
siköiden valintaan. Käytettävien yksiköiden valinta on tekstiaineiston käsittelyn ensimmäinen
askel ja edeltää esimerkiksi kielimallien estimointia tai vektoriesitysten laskemista. Perinteisiä
ratkaisuja yksiköiden valintaan ovat yksinkertaiset heuristiikat sekä kieliopilliset sääntöpoh-
jaiset työkalut. Niiden sijaan tässä työssä esitetään datalähtöistä, ohjaamattomaan oppimiseen
perustuvaa lähestymistapaa yksiköiden valintaan. Sen etuina ovat joustavuus ja riippumatto-
muus siitä, mitä lingvistisiä resursseja halutulle kielelle ja sovellusalueelle on saatavilla.

Koska tilastollisesti opitut yksiköt eivät aina osu yhteen perinteisten kielitieteellisten perus-
luokkien kanssa, niitä kutsutaan tässä työssä konstruktioiksi. Termi pohjautuu konstruktio-
kielioppeihin, jotka ovat käyttöpohjaisia, kognitiivisia teorioita kielestä. Väitöskirjassa esitetyt
menetelmät konstruktioiden oppimiseen perustuvat Morfessor-nimiseen menetelmään, joka
mallintaa morfologista pilkontaa tilastollisesti ja ohjaamattomasti. Uudet menetelmät käsitte-
levät allomorfian oppimista, morfologisen pilkonnan osittain ohjattua oppimista sekä lauseta-
son konstruktioiden oppimista. Saadut tulokset ovat kilpailukykyisiä erityisesti morfologian
oppimisessa. Työssä esitellään myös uusia tekniikoita Morfessorin tuottamien morfologisten
konstruktioiden käyttöön tilastollisessa kielenmallinnuksessa ja konekäännöksessä. Käytän-
nön sovellusten ohella Morfessorin osoitetaan toimivan myös psykolingvistisen datan mallin-
nuksessa: sen todennäköisyysestimaatit sanoille korreloivat vahvasti ihmisten reaktioaikoihin
leksikaalisessa päätöksenteossa.

Lisäksi väitöskirjassa tutkitaan kielen ohjaamattoman oppimisen suoria evaluaatiomenetel-
miä. Suora evaluaatio, esimerkiksi algoritmin tulosten vertaaminen olemassa oleviin kielio-
pillisiin annotaatioihin, on usein nopeampaa ja yksinkertaisempaa kuin epäsuora evaluaatio
kielenkäsittelyn sovellusten toiminnan kautta. Ohjaamattoman oppimisen tapauksessa vertai-
lu annotoituun dataan ei kuitenkaan aina ole suoraviivaista. Tässä väitöskirjassa kehitetään
evaluaatiomenetelmiä erityisesti kahteen ongelmaan: sanojen morfologian oppimiseen ja vek-
torimuotoisten dokumenttiesitysten oppimiseen. Molemmissa on haasteena löytää moniulot-
teisesta datasta yhteydet eri piirreparien välille. Ehdotetut menetelmät ovat nopeita käyttää ja
ne ennustavat hyvin sovelluksista saatuja tuloksia.

Avainsanat morfeemipilkonta, morfologian oppiminen, konstruktiokielioppi, ohjaamaton
oppiminen, osittain ohjattu oppiminen, todennäköisyysmallit, kielimallit,
vektoriavaruusmallit, konekäännös, puheentunnistus

ISBN (painettu) 978-952-60-4882-6 ISBN (pdf) 978-952-60-4883-3

ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942

Julkaisupaikka Espoo Painopaikka Helsinki Vuosi 2012

Sivumäärä 437 urn http://urn.fi/URN:ISBN:978-952-60-4883-3

Preface

This work has been carried out in the Adaptive Informatics Research Centre
(AIRC) located at the Department of Information and Computer Science (Lab-
oratory of Computer and Information Science prior to January 2008) of Aalto
University (Helsinki University of Technology prior to January 2010). Apart
from AIRC, the department, and the university, I have been supported by two
graduate schools: the Graduate School of Language Technology in Finland (KIT)
funded my research between November 2007 and July 2011 and the Helsinki
Graduate School of Computer Science and Engineering (Hecse) provided a half
year funding for finalizing the thesis. Further external funding was provided by
the Academy of Finland via the projects “Learning efficient and cognitive rep-
resentations for natural language utterances” and “Computational modelling
of brain’s language”; Nokia Corporation and Tekes via the project “Search for
Personal Media Content”; and the European Community’s Seventh Framework
Programme via the Simple4All project and PASCAL2 Network of Excellence. I
am also very grateful for the personal grants provided by Tekniikan edistämis-
säätiö (TES) and Kaupallisten ja teknillisten tieteiden tukisäätiö (KAUTE).

While these institutions have provided me the valuable opportunity for doing
research, it is the people that have made my work truly successful and enjoyable.
It has certainly been a privilege to work with so many great people.

First, I would like to thank my supervisor, Prof. Erkki Oja, for his efforts to
make everything run smoothly and efficiently. As the head of AIRC, he created
an excellent environment for doing research. I am also grateful for his advice,
encouragement, and patience for the time it took me to write the thesis.

I would equally like to thank my two instructors, Doc. Mikko Kurimo and Dr.
Krista Lagus. Having two instructors and two research groups around me has
been a great advantage. Both Mikko and Krista arranged a significant part of
the funding for my work. Krista’s ideas have had a major influence on my re-
search topics and my views on language and cognition. She has also taught me
a lot on good research practices and how to present ideas elegantly and focus
on the central points. Mikko’s Speech Recognition research group and excellent
connections to research groups at other universities have made many collab-
orations and resources available to me. He has always been available for my
questions and given me a great amount of practical help and valuable advice.

Although not my official instructors, there are two more people who have pro-
vided me remarkable amount of advice and support: Dr. Mathias Creutz and
Doc. Timo Honkela. Mathias has been a great mentor and company since the
beginning of my research career, and he has been willing to answer my detailed
questions regarding Morfessor also when working elsewhere. I am also grateful

7

Preface

for his invitation to work at Nokia Research Center in 2008. Finally, by the time
I started working on the thesis overview, Mathias took a part-time job in the
department and became in practice my third instructor. Timo, as the leader of
the Computational Cognitive Systems research group, has arranged numerous
events and discussions that have introduced me to many interesting people and
ideas. I am grateful for his constant kindness and the opportunity to participate
in the activities of the Cog group.

Next, I wish to thank all my other co-authors. A large part of the research
in my thesis has been done in close collaboration with Oskar Kohonen, whose
ideas and clear insights on various topics have been essential for this thesis. I am
sincerely grateful to Prof. William Byrne, Prof. Riitta Salmelin, Dr. Adrià de Gis-
pert, Dr. Teemu Hirsimäki, Dr. Annika Hultén, Dr. Minna Lehtonen, Dr. Vesa
Siivola, Dr. Sebastian Spiegler, Dr. Abhishek Tripathi, Dr. Ville Turunen, Tiina
Lindh-Knuutila, Mari-Sanna Paukkeri, Markus Sadeniemi, and Jaakko Väyry-
nen for their contributions on the publications of this thesis.

Prof. Richard Wicentowski and Doc. Krister Lindén have acted as the prelimi-
nary examiners for this thesis. I greatly appreciate their effort and feedback that
has helped me to improve the thesis.

Apart from my supervisor, instructors, and the pre-examiners, I have received
feedback on different versions and parts of the manuscript of this thesis from
many people. Invaluable help was provided by Dr. Mathias Creutz, who was
the first one to read many parts of the text. I am also grateful to Dr. Ritabrata
Dutta, Oskar Kohonen, Tiina Lindh-Knuutila, Jaakko Väyrynen, and Teemu
Ruokolainen for pointing out my mistakes and suggesting improvements.

Furthermore, I would like to thank Dr. Graeme W. Blackwood, Dr. Arto Klami,
Mikaela Kumlander, Laura Leppänen, André Mansikkaniemi, Janne Pylkkönen,
and Tommi Vatanen for their collaboration on related research articles; Dr. Yoan
Miche for translating the abstract of the journal article published in TAL; and
the secretaries and other support personnel of the department for their practi-
cal help and efforts. Finally, an essential part of this work would not have been
possible without the enthusiastic researchers all over the world who have par-
ticipated in the Morpho Challenge competitions.

These years at the university have also included other things than research. I
have had a fun time having daily lunch and occasional dinners together; chat-
ting in the offices, coffee rooms and corridors; playing floorball and badminton;
skiing and skating in the winter, cruising to Tallinn in the spring, picking mush-
rooms in the fall. For this, I want to thank everyone whose company I have
enjoyed, and in particular all the former and present members of the Cog and
Speech groups. Special thanks to Jaakko, Marisa, Oskar, and Tiina—I consider
you friends as much as colleagues.

Finally, I wish to thank my family, relatives, and friends outside the univer-
sity. Especially I thank my parents Ritva and Veikko, who have supported me
and my education in many ways. Most of all, I thank Anna, who has not only
encouraged and supported my work, but also made sure it is not the most im-
portant thing in my life.

Espoo, November 5, 2012,

Sami Virpioja

8

Contents

Preface 7

Contents 9

List of publications 13

List of abbreviations 15

List of symbols and notations 17

1. Introduction 19
1.1 Machine learning in natural language processing 22
1.2 Contributions of the thesis . 25
1.3 Summary of publications and author’s contributions 27
1.4 Structure of the thesis . 29

2. Machine learning essentials 31
2.1 Random variables and distributions 32
2.2 Graphical models . 34

2.2.1 Directed graphical models 34
2.2.2 Undirected graphical models 35

2.3 Markov models and finite-state machines 36
2.3.1 Markov processes . 36
2.3.2 Markov model . 37
2.3.3 Hidden Markov models . 37
2.3.4 Conditional Markov models 38
2.3.5 Finite-state machines . 39

2.4 Information theory . 40
2.4.1 Quantities of information and uncertainty 40
2.4.2 Source coding theorem and Kraft’s inequality 41
2.4.3 Noisy channel coding theorem 42
2.4.4 Divergence of two distributions 43
2.4.5 Algorithmic information theory 44

2.5 Learning setups . 45
2.5.1 Supervised learning . 45
2.5.2 Unsupervised learning . 46
2.5.3 Semi-supervised learning 47
2.5.4 Multi-view learning . 48
2.5.5 Multi-task and transfer learning 49

9

Contents

2.5.6 Reinforcement learning . 49
2.6 Parametric machine learning . 50

2.6.1 Cost function . 50
2.6.2 Maximum-likelihood estimate 51
2.6.3 Overfitting and underfitting 51
2.6.4 Cross-validation . 52
2.6.5 Regularization . 52
2.6.6 Bayesian parameter estimation 52
2.6.7 Bayesian model selection 53
2.6.8 Minimum description length principle 54
2.6.9 Learning algorithms . 58

2.7 Non-parametric and semi-parametric models 59
2.7.1 Memory-based learning . 59
2.7.2 Kernel methods . 60
2.7.3 Mixture models . 60
2.7.4 Non-parametric Bayesian methods 61

2.8 Common unsupervised learning methods 62
2.8.1 Matrix decompositions . 62
2.8.2 Principal component analysis 63
2.8.3 Canonical correlation analysis 63
2.8.4 Hierarchical and K-means clustering 65
2.8.5 Expectation-maximization algorithm 66

3. Linguistic data and theories 67
3.1 Linguistic units and their relations 68

3.1.1 Distributions of the units 69
3.1.2 Meaning and form . 70
3.1.3 Syntagmatic and paradigmatic relations 71
3.1.4 Word forms and lexemes 72
3.1.5 Part-of-speech categories 73
3.1.6 Constituency . 74
3.1.7 Morphology . 74
3.1.8 Syntax . 78
3.1.9 Semantics and pragmatics 80

3.2 On theories of grammar . 83
3.2.1 Views on the scope of grammar 84
3.2.2 Poverty of the stimulus and universal grammar 85
3.2.3 Models of morphology . 86
3.2.4 Phrase structure grammar 88
3.2.5 Dependency grammars . 90
3.2.6 Context-sensitive grammars 91
3.2.7 Construction grammars . 91

4. Statistical language modeling 93
4.1 Evaluation methods and applications 95
4.2 N-gram models . 95

4.2.1 Smoothing . 96
4.2.2 Back-off and interpolation 98
4.2.3 Kneser-Ney smoothing . 99
4.2.4 Variable length n-grams . 101
4.2.5 Cluster n-grams . 104

10

Contents

4.2.6 Back-off graph and skipping 105
4.2.7 Factored models . 106

4.3 Beyond n-gram models . 106
4.3.1 Grammar-based language models 106
4.3.2 Maximum-entropy language models 107
4.3.3 Continuous-space language models 109
4.3.4 Models for domain adaptation 112

4.4 Kneser-Ney smoothing and pruned models 114
4.4.1 Kneser-Ney distributions for varigram models 115
4.4.2 Pruning and growing algorithms 116
4.4.3 Experiments . 118
4.4.4 Discussion . 120

4.5 Clustering of n-gram histories . 120
4.5.1 Context cluster model . 121
4.5.2 Clustering algorithm . 122
4.5.3 Model prior . 123
4.5.4 Experiments . 124
4.5.5 Discussion . 126

5. Representation learning 129
5.1 Vector space models . 130

5.1.1 Weighting . 131
5.1.2 Length normalization . 132
5.1.3 Dimensionality reduction 132

5.2 Probabilistic topic models . 134
5.3 Evaluation of representation learning 136

5.3.1 Application evaluations . 136
5.3.2 Direct evaluations . 138

5.4 Vector space model evaluation using CCA 138
5.4.1 Mathematical foundation 139
5.4.2 Evaluation setup . 140
5.4.3 Validation experiments . 142
5.4.4 Discussion . 144

6. Selecting lexical units 145
6.1 Problem definition . 145

6.1.1 Qualitative criteria for unit selection 147
6.1.2 Evaluating unit selection . 148

6.2 Comparison of linguistic units . 149
6.2.1 Letters and syllables . 149
6.2.2 Words . 150
6.2.3 Lexemes and stems . 151
6.2.4 Morphemes and morphs . 152
6.2.5 Phrases and phrasal constructions 154

6.3 Evaluations for learning morphology 156
6.3.1 Indirect evaluations . 157
6.3.2 Automatic linguistic evaluation 164
6.3.3 Psycholinguistic evaluation 178

6.4 MDL-inspired models for learning constructions 184
6.4.1 Morfessor . 184
6.4.2 Learning of allomorphy . 191

11

Contents

6.4.3 The effect of corpus size and word frequencies 200
6.4.4 Semi-supervised learning of morphology 204
6.4.5 Learning of phrasal constructions 208

7. Conclusions and future directions 215
7.1 Models for learning constructions 215
7.2 Direct evaluations . 217
7.3 Applications . 218

A. Appendices 221
A.1 Proof for optimal feature generators in linear bilingual document

model . 221
A.2 Morpho Challenge evaluation results 222
A.3 Examples of transformations extracted by Allomorfessor 232

Bibliography 235

Publications 267

12

List of publications

This thesis consists of an overview and of the following publications which are
referred to in the text by their Roman numerals. The numbering of the publica-
tions follows the order in which they are discussed in the overview.

I Vesa Siivola, Teemu Hirsimäki, and Sami Virpioja. On growing and pruning
Kneser-Ney smoothed n-gram models. IEEE Transactions on Audio, Speech and
Language Processing, 15(5):1617–1624, July 2007.

II Sami Virpioja and Mikko Kurimo. Compact n-gram models by incremen-
tal growing and clustering of histories. In Proceedings of 9th International Con-
ference on Spoken Language Processing (Interspeech 2006 — ICSLP), Pittsburgh,
Pennsylvania, USA, pages 1037–1040, September 2006.

III Sami Virpioja, Mari-Sanna Paukkeri, Abhishek Tripathi, Tiina Lindh-Knuu-
tila, Krista Lagus. Evaluating vector space models with canonical correlation
analysis. Natural Language Engineering, 18(03):399–436, July 2012.

IV Sami Virpioja, Jaakko J. Väyrynen, Mathias Creutz, and Markus Sadeniemi.
Morphology-aware statistical machine translation based on morphs induced
in an unsupervised manner. Proceedings of the Machine Translation Summit XI,
Copenhagen, Denmark, pages 491-498, September 2007.

V Adrià de Gispert, Sami Virpioja, Mikko Kurimo, and William Byrne. Mini-
mum Bayes risk combination of translation hypotheses from alternative mor-
phological decompositions. Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the Association for Com-
putational Linguistics, Companion Volume: Short Papers, Boulder, Colorado, USA,
pages 73-76, June 2009.

VI Sami Virpioja, Ville T. Turunen, Sebastian Spiegler, Oskar Kohonen, and
Mikko Kurimo. Empirical comparison of evaluation methods for unsuper-
vised learning of morphology. Traitement Automatique des Langues, 52(2):45–90,
2011.

VII Sami Virpioja, Minna Lehtonen, Annika Hultén, Riitta Salmelin, and Krista
Lagus. Predicting reaction times in word recognition by unsupervised learn-
ing of morphology. In Artificial Neural Networks and Machine Learning — ICANN
2011, Espoo, Finland, June 14–17, 2011, Proceedings, Part I, volume 6791 of Lec-
ture Notes in Computer Science, pages 275–282, June 2011.

13

List of publications

VIII Sami Virpioja, Oskar Kohonen, and Krista Lagus. Unsupervised morpheme
analysis with Allomorfessor. In Multilingual Information Access Evaluation I.
Text Retrieval Experiments: 10th Workshop of the Cross-Language Evaluation Fo-
rum, CLEF 2009, Corfu, Greece, September 30 – October 2, 2009, Revised Selected
Papers, volume 6241 of Lecture Notes in Computer Science, pages 609–616,
September 2010.

IX Sami Virpioja, Oskar Kohonen, and Krista Lagus. Evaluating the effect of
word frequencies in a probabilistic generative model of morphology. In Pro-
ceedings of the 18th Nordic Conference of Computational Linguistics (NODALIDA
2011), Riga, Latvia, pages 230–237, May 2011.

X Oskar Kohonen, Sami Virpioja, and Krista Lagus. Semi-supervised learning of
concatenative morphology. In Proceedings of the 11th Meeting of the ACL Special
Interest Group on Computational Morphology and Phonology, Uppsala, Sweden,
pages 78–86, July 2010.

XI Krista Lagus, Oskar Kohonen, and Sami Virpioja. Towards unsupervised
learning of constructions from text. In Proceedings of the Workshop on Extracting
and Using Constructions in NLP of the 17th Nordic Conference on Computational
Linguistics (NODALIDA), Odense, Denmark, SICS Technical Report T2009:10,
pages 16–21, May 2009.

14

List of abbreviations

ACC Accumulative context clustering
AI Artificial intelligence
AMM Aggregate Markov model
ASR Automatic speech recognition
BPR Boundary precision and recall (evaluation)
BSS Blind source separation
CCA Canonical correlation analysis
CFG Context-free grammar
CoMMA Co-occurrence-based metric for morphological analysis
CRF Conditional random field
DMM Distributed Markov model
EM Expectation-maximization (algorithm)
EMMA Evaluation metric for morphological analysis
EP Entropy-based pruning
FSA Finite-state acceptor
FST Finite-state transducer
GT Good-Turing (smoothing)
IA Item-and-arrangement (morphology)
IP Item-and-process (morphology)
IC Immediate-constituent
ICA Independent component analysis
IPA International phonetic alphabet
IR Information retrieval
HMM Hidden Markov model
HPY Hierarchical Pitman-Yor (model)
KN Kneser-Ney (smoothing)
KNG Kneser-Ney growing
KP Kneser pruning
LDA Latent Dirichlet allocation
LER Letter error rate
LSA Latent semantic analysis
LSV Letter successor variety
MAP Maximum a posteriori; mean average precision
MBR Minimum Bayes risk
MDL Minimum description length
ME Maximum entropy
MEMM Maximum-entropy Markov model
ML(E) Maximum likelihood (estimate)

15

List of abbreviations

MLP Multi-layer perceptron
MT Machine translation
NLP Natural language processing
OOV Out-of-vocabulary
PCA Principal component analysis
PCFG Probabilistic context-free grammar
PLSA Probabilistic latent semantic analysis
POS Part-of-speech
RBM Restricted Boltzmann machine
RKP Revised Kneser pruning
RNN Recurrent neural network
SMT Statistical machine translation
SOM Self-organizing map
SVD Singular value decomposition
TTS Text-to-speech
TWOL Two-level morphology
VSM Vector space model
WER Word error rate
WKP Weighted Kneser pruning
WP Word-and-paradigm (morphology)

16

List of symbols and notations

A, B, . . . Random variables or events; integers
A, B, . . . Domains of random variables
a, b, . . . Scalars
α, β, . . . Scalars
a, b, . . . Vectors
α, β, . . . Vectors
A, B, . . . Matrices
Λ, Σ, . . . Matrices
a, b, . . . Strings or other sequences
A, B, . . . Sets

G, H, . . . Random distributions
N Gaussian distribution
G, P, . . . Random processes
DP Dirichlet process
PYP Pitman-Yor process

|x| Absolute value of x
|x| �1-norm of x
‖x‖ �2-norm of x
|x| Length of x
|X| Size of X
d(x, y) Distance between x and y
sim(x, y) Similarity of x and y

I(A) Indicator function for A (one if A is true, zero otherwise)
p(A) Probability of A
p(x), q(x) Probability distributions for X
EX[f (x)] Expected value of f (x) over X
H(X) Entropy of X
I(X; Y) Mutual information between X and Y
Hq(X) Cross-entropy of X with distribution q
D(p ‖ q) Relative entropy between p and q
IRad(p ‖ q) Information radius between p and q
lC(x) Code/description length of x with coding C

17

List of symbols and notations

D Data set
N Number of samples in a data set
M Model
θ Model parameters
L(θ, D, . . .) Cost function

Σ Alphabet; vocabulary
V Alphabet or vocabulary size
w, v Units from vocabulary (e.g. words)
wj

i Sequence of units (wi, wi+1, . . . , wj)

c(w) Token count for w
c∗(w) Adjusted token count for w
t(•w) Type count for left contexts of w
t(w•) Type count for right contexts of w
t(•w•) Type count for surrounding contexts of w
h̄ Back-off context for h (h = vh̄ for some v)
γ(h) Back-off weight for h

L Model lexicon
G Model grammar
φ(t) Tokenization for string t
Φ(t) Set of tokenization parses for string t
φ−1(s) Detokenization for parse s

18

1. Introduction

Language is a system of complex communication, predominant for the human
species. The spoken, written, and sign languages, evolved for the need of com-
munication between humans, are referred to as natural languages to separate
them from artificially constructed languages (such as Lojban or Klingon) and
formal languages (such as programming languages).1

Language is often seen as a central reflection or even component of human
intelligence, separating us from other animals. Thus it is not a surprise that
one of the goals in artificial intelligence (AI), a subfield of computer science that
studies creating intelligent machines, is to get machines to understand and gen-
erate natural languages. One demonstration of this goal is the famous Turing
test (Turing, 1950), which considers a machine to be intelligent if a human judge
cannot distinguish it from a human during a real-time conversation. The an-
nual Loebner prize competition awards the programs that are judged to be most
human-like in the test.

While the Turing test is considered as a test for AI, the “chatterbots” that par-
ticipate in the Loebner prize competition actually use a large set of predefined
rules cleverly designed by their programmers. For example, the winner of the
2010 competition uses sophisticated pattern matching for the input sentences to
find an appropriate answer from a list of predefined cases (Wilcox, 2011). For
example, the following rule defines one answer to the input “What is your ear-
liest childhood memory?” as well as “Can you tell me some early memory of
yours?”:2

u: (« you [early childhood] memory ») I remember playing with an HO

railroad set.

To help with matching and answering, also a large number of concepts and
pieces of world knowledge are defined. For example, the following definition
tells that crew, personnel, staff, and team are terms for the concept staff_groups:

concept: ˜staff_groups (crew personnel staff team)

Similarly, the following definition gives seven examples for things that can have
orange color:

orange [orange marigold goldfish pumpkin cat carrot tangerine]

1 Some constructed international auxiliary languages based on natural languages, such
as Esperanto, can be considered almost natural especially if learned by a child as the
first language (Karlsson, 2008).
2 The examples are from the ChatScript software by Bruce Wilcox, available from http:
//sourceforge.net/projects/chatscript/.

19

Introduction

While this kind of approach is useful, for example, in computer games and re-
stricted natural language interfaces, where it is enough to communicate in a
way that looks intelligent, it is far from the long term goal of AI, that is, creat-
ing machines with human-like general intelligence (“strong AI”). A central part
in general intelligence, obviously missing from the chatterbot example, is learn-
ing. All syntactic and semantic knowledge of the language have to be explicitly
written out for the program. In contrast, humans learn language based on the
stimulus that they get from other humans and the environment.

The branch of AI that studies algorithms that allow computers to learn from
empirical data is called machine learning. Using machine learning on natural lan-
guage data is part of computational linguistics, an interdisciplinary subfield of lin-
guistics dealing with statistical and rule-based modeling of natural languages.
Computational natural language learning is an interesting research topic from
several viewpoints: (1) as a way to improve the computer applications that deal
with natural languages, (2) as a way to collect empirical evidence for theoretical
models in linguistics and cognitive science, and (3) as an ultimate challenge for
the machine learning research.

The main motivation for the work in this thesis is that machine learning can
provide improvements to many important applications in human-computer and
human-human interaction, such as automatic speech recognition, information
retrieval, and machine translation. The subfield in the intersection of AI and
computational linguistics that studies the computational aspects of these appli-
cations is called natural language processing (NLP). Developing hand-crafted tools
for the need of NLP applications would not be a major problem with a single
language, but the number of languages and dialects in the world is large: the es-
timates for the number of languages in the world usually vary from 4000 to 7000,
and separating different dialects increases the number to above 20000 (Karlsson,
2008). In contrast to writing out rules and other pieces of information, learn-
ing from data requires little human work, once the learning algorithms and data
sets are available. Unsupervised learning techniques, which try to find structure
from unannotated data, also obviate the need of manual annotation of data. In
addition to building applications for large, resource-rich languages, NLP also
provides tools for language documentation of small languages facing extinction
(Bird, 2009). Both supervised (cf. Palmer et al., 2009) and unsupervised (cf. Ham-
marström and Borin, 2011) methods may alleviate this vast and urgent task.

Machine learning can also contribute to the field of theoretical linguistics and
cognitive science, especially with respect to the questions on language acquisi-
tion. The debate on whether the language ability of humans is enabled by an in-
nate language-specific device (nativism) or just general-purpose learning mech-
anisms (empiricism), grounded already in the 17th-century philosophy, has been
going on since Noam Chomsky’s famous review article concerning the behavior-
ist psychology’s account on language (Chomsky, 1959). The strongest division
goes between the proponents of Chomskyan generative grammar, who believe
in the innateness of language ability, and connectionists, who argue that lan-
guage (among other mental and behavioral phenomena) can be modeled with
emergent processes of interconnected networks of simple units. While the kind
of neural networks proposed by connectionists are only one possible approach,
strong results for language learning with any kind of machine learning method
has implications on this debate (cf., e.g., Clark, 2001; Lappin and Shieber, 2007;
Hsu et al., 2011). If even machines can learn the grammar of a language from raw
data with little prior information, there is no reason why human brain would

20

Introduction

Table 1.1. Examples of English constructions of varying size and complexity. Adapted from Gold-
berg (2003).

Construction Form / Example Function

Morpheme anti-, pre-, -ing
Word avocado, anaconda, and
Complex word daredevil, shoo-in
Filled idiom going great guns
Partially filled idiom jog X’s memory
Covariational-conditional Form: the Xer the Yer Meaning: linked

construction “the more you think about it, independent and
the less you understand” dependent variables

Ditransitive construction Form: Subj V Obj1 Obj2 Meaning: transfer
“He baked her a muffin” (intended or actual)

Passive Form: Subj aux VPpp (PPby) Discourse function:
“The armadillo was hit make undergoer topical
by a car” and/or actor non-topical

need a separate “language acquisition device”.
What is it exactly that should be learned by a machine to understand and pro-

duce human languages? A common answer is the linguistic knowledge on dif-
ferent categories such as phonology, morphology, syntax, semantics, pragmat-
ics, and discourse (Jurafsky and Martin, 2008). However, a strict division into
these categories may not be necessary or even useful: a growing number of lin-
guistic theories (e.g., Lakoff, 1987; Langacker, 1987, 1991; Fillmore et al., 1988;
Goldberg, 1995, 2006; Croft, 2001; Feldman, 2006) propose that linguistic knowl-
edge is based on form-meaning pairs, called constructions, that may include all
of them. Some examples of different constructions are shown in Table 1.1. From
the perspective of machine learning, these theories provide both a single term
for what should be learned—constructions—and evidence of what kind of data
and type of learning are needed to learn them.

Even if the empiricist view on language acquisition is correct, natural lan-
guage data poses major challenges to the machine learning techniques. First,
the amount of available data varies a lot. For world languages and especially
those functioning as lingua franca, such as English, the amount of data in elec-
tronic form is huge, largely owing to the growth in communication via Internet.
For the most under-resourced languages, the only data sets might be those man-
ually collected by linguists. Second, the data is always sparse. The number of
ways to form meaningful utterances is so enormous, that no matter how large
a text corpus is collected, it covers only a small fraction of the language. For
morphologically rich languages, such as Finnish, even collecting all the possible
word forms is infeasible. Third, the data is not stationary but languages change,
often by adopting words and conventions from other languages. In addition
to the diachronic variation, there is variation between the speakers of the same
language (due to, e.g., dialects, social or socioeconomic classes, and age) and
variations reflecting the situation and the medium of communication (e.g., col-
loquial language, formal speech, academic writing). Ultimately, the complexity
of the language data is superior to most other types of data: a model that can
encompass all aspects of human language also has to attempt to be a model for
human minds.

21

Introduction

1.1 Machine learning in natural language processing

The ultimate goal of NLP is to get machines to understand and generate nat-
ural languages. However, this is often considered an “AI-complete” problem,
that is, something that requires all the other aspects of artificial intelligence to
be solved. In practice, most of the NLP research concentrates on improving spe-
cific applications that assist interaction either between humans and computers
or between humans that do not have a common language. The main appli-
cations include automatic speech recognition (ASR), speech synthesis (text-to-
speech, TTS), information retrieval (IR), machine translation (MT), text summa-
rization, and question answering. These are also components that can be com-
bined to produce more complex applications such as spoken document retrieval
(ASR+IR) or speech-to-speech translation (ASR+MT+TTS).

The modern, statistical approaches to the applications above rely heavily on
machine learning techniques. Problems specific to individual applications in-
clude, for example, constructing acoustic models in ASR, categorizing a set of
documents in IR, and finding the most probable translation candidate in sta-
tistical machine translation (SMT). However, there are also a few fundamental
machine learning problems that are more independent of the application. Two
easily identifiable problems are the following:

• Statistical language modeling: Given a certain fragment of written language,
determine how probable it is in proportion to all other fragments of the same
type. A typical example is the estimation of the probability mass function p(S)
for sentences S.

• Representation learning: Given a large collection of documents, encode their
semantic content so that the documents most similar to a given document can
be found quickly and accurately.

The former is needed, for example, in ASR or SMT for generating accurate and
fluent text, while the latter is needed for all kinds of retrieval and categorization
tasks. Both are inherently unsupervised learning problems: for efficient solu-
tions, the learner has to find the hidden structure in the data.

Regardless of which of the two is required by the application, there is one more
problem that precedes them:

• Selecting lexical units: Select the basic units of language that are used for fur-
ther processing. In statistical language modeling, the lexical units define the
set of possible values for the variables. For example, unigram models define a
categorical distribution p(W) over the units W, usually words. In representa-
tion learning, the lexical units define the set of variables that are modeled. For
example, a bag-of-words model examines the distributions of different words
over a set of documents.

The problem of unit selection has gained only limited attention. The main rea-
son is that for English, which is the dominant language in methodological and
empirical studies in the field, very simple heuristics work well enough. If the
problem is density estimation, the most common words are selected as the units.
If the problem is representation learning, inflected word forms are reduced to
their stems or base forms and hand-collected stop word lists are applied to de-
crease the number of the units. In consequence, the unit selection is often treated
as a trivial preprocessing task that has to be done before going into the actual

22

Introduction

problems.
However, the heuristic approach for unit selection is not as simple for some

other languages. In Chinese, words are not separated from each other by white
space, so selecting words as the lexical units requires non-trivial preprocess-
ing. In Finnish, the rich morphology results in a huge number of different word
forms, some of them too rare to use as units in statistical models. While both
problems can be solved by manual and rule-based approaches, they are more
costly for less resourced languages.

Recalling the notion of construction from above, the unit selection problem
can as well be called the problem of learning constructions. As the constructions
of a chunk of text encode all of its semantics, they are the best possible starting
point for learning any representations that try to encode semantic similarities.
Or as Goldberg (2006, p. 228) argues, “constructions are highly valuable both in pre-
dicting meaning, given the form, and in predicting form, given the message to be con-
veyed”. Moreover, because most of the complex constructions are unpredictable
(either in form or meaning) from their component parts or other existing con-
structions, they are relevant for estimating the probability of a text chunk. For
example, while the words “lion” or “sleeve” are unlikely to occur alone in po-
litical speech, the idioms “lion’s share” and “roll up [one’s] sleeves” are more
likely due to their metaphorical meaning.

Designing a method for one of the learning problems is only the first part of
the work. In one way or another, the method also needs to be evaluated. Eval-
uations can be coarsely divided into two types (cf. Jurafsky and Martin, 2008, p.
129). Evaluations, in which the performance is measured in the end-user NLP
applications, are called indirect, extrinsic, or in vivo evaluations. Evaluations
that try to measure the quality of a certain model or result independent of any
application are called direct, intrinsic, or in vitro evaluations.

The overview of the three machine learning problems defined above and their
evaluations are shown in Figure 1.1. The box in the middle of the diagram marks
the first problem, selecting the lexical units. It includes several subproblems,
such as morphological analysis or word segmentation. After that, it is possible to
go either to statistical language modeling (up) or learning new representations
(down). A few common end-user applications are shown on the right-hand side
of learning problems. Some applications might use either statistical language
modeling, representation learning, or both. For example, while information re-
trieval is often done with the latter (vector space models), also the former (statis-
tical language models) can be applied (Ponte and Croft, 1998). Moreover, some
machine learning methods solve several problems together. For example, prob-
abilistic models estimate the distribution of the data regardless of the main task
being representation learning (e.g., Hofmann, 1999a; Blei et al., 2003) or unit se-
lection (e.g., Brent, 1999; Goldwater et al., 2006; Creutz and Lagus, 2007).

Indirect evaluations are shown to the right of the applications in Figure 1.1.
While it can be argued that only the evaluation in an application indicates the
real usefulness of a method, it is often complicated and expensive in terms of
time and manual work required. In fact, evaluating a system for a certain ap-
plication is often a problem of its own. For example, how to measure the use-
fulness of an SMT-based translation service such as Google Translate?3 While
translations of single sentences are often far from perfect (at the present time), it
certainly helps browsing Web pages in languages unknown to the user.

3 Available from http://translate.google.com.

23

Introduction

Automatic
speech
recognition

Text prediction
- cross-entropy
- perplexity
...

- canonical correlation
between matched samples

Multilingual evaluations

- correlation to reaction times
in lexical decision task

- language acquisition patterns
...

Psycholinguistic evaluation

- segmentation boundary
evaluations

- isomorphic evaluations
Automatic linguistic evaluation

Information
retrieval

Text
categorization

Text
summarization

Speech
synthesis

Statistical
machine
translation

...

LEARNING
PROBLEMS

...

Representation learning

Statistical language modeling

...

Selecting lexical units

DIRECT
EVALUATIONS

...

Language tests

Behavioral tests

Manual evaluation

EVALUATIONS
INDIRECTAPPLICATIONS

WER

F-measure
...

MAP
...

Human ratings

Human ratings

User studies

BLEU

LER

...

...

User studies

Human ratings

...
ROUGE

Accuracy

F-measure

...

...

...

- whole sentence models
- probabilistic CFGs

- n-gram models

- vector space models

- probabilistic topic models

- shallow parsing

- word segmentation

- morphological analysis

- phrasal constructions

Figure 1.1. The main learning problems in statistical NLP and examples of the models, subtasks,
and evaluations. The contributions of this thesis concern the models, tasks, and eval-
uations that are emphasized.

The most expensive and thorough way of indirect evaluation are user stud-
ies, rarely used in the field except for commercial products. A simpler way is
to have people rate the performance of the application. However, extensive use
of human ratings is expensive, too, and thus mostly limited to yearly evalua-
tion campaigns. Quick and cheap evaluation is possible only by using automatic
metrics such as word error rate (WER) for ASR or mean average precision (MAP)
for IR. However, automatic metrics require reference results, which often require
manual work. The cost of the work varies depending on the time and the skills
required: while the transcriptions needed for ASR can be checked by almost
any literate person, accurate reference translations needed for SMT require pro-
fessional translators. In many cases, the indirect evaluations are restricted to a
limited number of published data sets.

Another problem in indirect evaluations is that as the whole systems often
require many components and steps, they may level out the differences or intro-
duce biases that give disadvantage to non-standard approaches. For example,
the full system may have to be redesigned to account for whether words or let-
ters are selected as the lexical units.

Examples of direct evaluations considered in this thesis are given in the left
side of Figure 1.1. As they are intended to be quicker and simpler than indirect
evaluations, the direct evaluations are important for advancing the research and
drawing contributions outside the NLP community. For example, researchers
from machine learning groups would have to use a considerable amount of time
to build an ASR system for application evaluation. While there is no guarantee
that the direct evaluation results related to intermediate goals will correlate with
the results of a specific application evaluation, using several well-designed di-

24

Introduction

rect evaluations is likely to give the correct idea on the quality of the evaluated
algorithm and give insight to its problems.

In some cases, direct evaluations are easy. A common example is calculating
cross-entropy for a new text with an n-gram model. In other cases, an intermedi-
ate goal, such as getting a morphological analysis close to a linguistic reference
analysis (“gold standard”), has to to be set. Moreover, if the learning method is
unsupervised, the comparison of the results and the reference analysis may be
non-trivial because of arbitrary labels. In yet other cases, there may not be any
reference data. For example, if the task is to learn document representations, it
is unclear how such representations could be evaluated in a direct manner.

1.2 Contributions of the thesis

The main hypothesis of this work is that instead of relying on word-based mod-
els and representations, there are essential benefits to using machine learning
to select the lexical units for natural language processing tasks. Moreover, in-
stead of learning how to predict classes or structures from data annotated by
linguistic experts (supervised learning), it is often more useful to try to find the
statistical regularities from unannotated data (unsupervised learning). With un-
supervised machine learning approaches, the process of unit selection can be
independent of the language as well as of the style and type of the text. In addi-
tion, the same unsupervised algorithm may provide units for multiple purposes,
in contrast to a rule-based tool optimized for a specific application. Of course,
this does not mean that linguistic expertise would be useless. Instead, it should
be applied in a manner that allows effortless adaptation to different languages
and applications. For example, language-universal knowledge should be used
when designing the structure and priors of the models, and language-specific
knowledge should be used to train the models in a semi-supervised manner.

It should be clear from the discussion of the previous section that testing the
above hypotheses requires both unsupervised methods for selecting lexical units
and methods for evaluating them. The contributions of this thesis include both.

Development of Morfessor. The family of methods for learning constructions
that is developed and tested in this thesis is called Morfessor. Morfessor was
originally developed by Creutz and Lagus (2002, 2004, 2005b,a, 2007) for un-
supervised learning of morphological segmentation. The most important ver-
sions of Morfessor are Morfessor Baseline (Creutz and Lagus, 2002, 2005b) and
Morfessor Categories-MAP (Creutz and Lagus, 2005a, 2007). Both are based on
probabilistic generative models that use sparse priors inspired by the minimum
description length (MDL) principle by Rissanen (1978).

This thesis presents three new extensions to Morfessor. The first extension
considers the phenomenon of allomorphy (Publication VIII). While the previous
versions of Morfessor only segment word forms, Allomorfessor captures ortho-
graphic variation in the surface forms of stem morphemes and thus reduces the
size of the lexicon.

One known problem in Morfessor is that the segmentation results are greatly
influenced by the size and type of the training data. A study of this effect is in-
cluded in this thesis (Publication IX). If a single parameter that affects the weight
of the data likelihood in the target function can be optimized for the evaluation
score, the results of the algorithm can be drastically improved. Moreover, Mor-

25

Introduction

fessor Baseline is extended to a complete semi-supervised setting, where a small
set of annotated data is available for training (Publication X). As only a few
hundred annotated words are enough to get a remarkable increase in the seg-
mentation accuracy, the method increases the applicability of Morfessor also for
poorly resourced languages.

Finally, Morfessor is extended outside the scope of morphological analysis. It
is shown that the same type of model can learn meaningful phrasal construc-
tions from sentence data (Publication XI).

Applications and evaluations for Morfessor. The main application for Mor-
fessor has been automatic speech recognition, for which it has improved the
results for several languages (Hirsimäki et al., 2006; Creutz et al., 2007; Hir-
simäki et al., 2009). As most language models for ASR have been developed for
words, it is important to find new solutions that may be better for other types of
units. This thesis introduces new language modeling techniques that are useful
for building compact models especially for sub-word units such as the morphs
found by Morfessor (Publications I and II).

Another contribution is testing Morfessor in a machine translation applica-
tion. Direct application of the morphs found by Morfessor Categories-MAP to
a phrase-based statistical machine translation system instead of words is shown
to produce relevant phrase pairs and reduce out-of-vocabulary words in trans-
lation (Publication IV). Moreover, if morph-based and word-based models are
combined, significant gains for the evaluation scores are obtained (Publication
V).

Finally, Morfessor has been evaluated on psycholinguistic data that has reac-
tion times of humans in a lexical decision task (Publication VII). The probability
estimates of Morfessor models, especially the Categories-MAP model, are found
to predict the reaction times with a high accuracy.

Evaluation methods for unsupervised natural language learning. While the
above contributions concerned Morfessor, the same evaluations can also be ap-
plied in other work on the same task. In fact, some of the work in this thesis
is closely intertwined with the Morpho Challenges, annual evaluations for unsu-
pervised morpheme analysis (Kurimo et al., 2010a). Morpho Challenges have
been organized in 2005, 2007, 2008, 2009 and 2010. The objective of the partici-
pants is to “design a statistical machine learning algorithm that discovers which
morphemes (smallest individually meaningful units of language) words consist
of” (Kurimo et al., 2008). All Morpho Challenges have included direct evalua-
tions that use linguistic reference analyses for several languages. In addition, the
first Morpho Challenge (Kurimo et al., 2006a) included speech recognition tasks
and the two next Challenges (Kurimo et al., 2008, 2009) included information re-
trieval tasks. The last two challenges (Kurimo et al., 2010c,b) have included both
information retrieval and machine translation tasks, and the machine translation
task was designed along the lines of Publications IV and V.

As mentioned in the previous section, comparing the results of an unsuper-
vised method with a linguistic reference analysis is not trivial, because the exact
correspondences of the predicted features and reference features is not known.
For example, in the case of unsupervised part-of-speech tagging, there is no di-
rect way to tell whether a certain predicted tag (“tag number 23”) matches the
reference tag (“adjective”). For multidimensional features, this problem is sub-
stantially more complex.

This thesis includes the first major empirical comparison of direct evaluation

26

Introduction

methods for the task of unsupervised learning of morphology (Publication VI).
The comparison is based on the database of results collected in Morpho Chal-
lenges. In addition to reviewing and studying the existing evaluation methods, a
few new methods are introduced. The best of the new direct evaluation methods
are quick, robust, and show reasonable correlations with the indirect evaluations
in IR and SMT.

In addition to the various evaluation methods for morphology induction, a
novel direct evaluation method for the learning of vector representations for
documents is presented (Publication III). Direct evaluation of such representa-
tions is seemingly impossible, as there are no “reference vectors” to which they
could be compared. This problem is circumvented by using a multilingual paral-
lel corpus: a document and its translation can be seen as two views for the same
underlying semantics, so high dependence between the features of the docu-
ment pairs indicates meaningful representations. The assignment of the two
sets of features is solved by an unsupervised learning technique called canonical
correlation analysis. The evaluation method provides a simple way to evaluate
both representation learning and the lexical units selected prior to it.

1.3 Summary of publications and author’s contributions

Publications I and II study statistical language modeling in large vocabulary
speech recognition tasks.

Publication I considers growing and pruning of n-gram models that use the
current state-of-the-art smoothing method, modified Kneser-Ney smoothing.
Improved algorithms for the growing and pruning of n-gram models based
on the modified Kneser-Ney smoothing are introduced. The algorithms allow
building very accurate models using less computational resources. The present
author participated in developing the new algorithms and designing the exper-
iments, and had minor contributions to the writing of the article.

Publication II introduces a cluster-based n-gram model that combines the pre-
dictive probability distributions of observed histories if the distributions are
similar enough, thus decreasing the number of parameters in the model. The
present author developed and implemented the proposed model and its train-
ing algorithm, designed and ran the experiments, and wrote the article.

Publication III proposes a new method for direct evaluation of vector space
models of documents. Using canonical correlation analysis (CCA) on the fea-
tures extracted for a set of documents and their translations to another language
finds linear transformations for the two sets of features so that the transformed
features are optimal with respect to correlations. In the simplest case, a corre-
lated feature may be a certain word in the first language and its translation in
the second language. It is argued that high correlations indicate that the repre-
sentations encode information regarding the meaning of the documents, not just
arbitrary features of the texts. The method is validated by a set of experiments
on sentence representations. The present author invented the idea of using CCA
as an evaluation method, and the details of the evaluation measure were devel-
oped by the author and Abhishek Tripathi. The experiments were designed by
all the authors. The present author implemented the method, ran all the experi-
ments except for the manual validation, and was the main writer of the article.

27

Introduction

Publications IV and V provide a setup for applying the unsupervised models
of morphology directly to existing statistical machine translation systems.

Publication IV proposes using Morfessor as a language-independent prepro-
cessing tool in a phrase-based statistical machine translation system. Using
the statistically extracted morphs as lexical units reduces the problem of out-
of-vocabulary units for morphologically complex languages. The experiments
were designed by all the authors. The present author performed most of the
experiments and wrote a major part of the article.

Publication V describes a strategy for combining translation hypotheses from
statistical machine translation systems that use different morphological decom-
positions. The idea is to first train several independent translation systems that
use different lexical units—such as words, morphological tags, or morphs found
in a unsupervised manner—and then improve the performance by selecting the
final translation using minimum Bayes risk (MBR) combination of the best trans-
lation hypotheses from all the systems. The present author was responsible for
designing, running, and reporting the Finnish–English translation experiments.

Publication VI considers the evaluation of unsupervised learning of morphol-
ogy. The article reviews the previous work on evaluating methods and intro-
duces new methods for linguistic evaluation based on co-occurrence analysis of
the words and morphemes. The new methods were developed by the present
author. The current author also performed all the experiments except for the
information retrieval experiments and the study of robustness with shared mor-
pheme padding, and was the main writer of the article.

Publication VII studies Morfessor as a model of morphological processing in
humans. The probabilities given by the model are compared with human reac-
tion times in a lexical decision task. The correlations are shown to be higher than
those for simple word statistics previously identified as important factors affect-
ing the recognition times. Moreover, it was found that both the type and the
size of the training data have considerable effect on the results. Designing the
experiments and interpreting the results was done jointly by all the authors. The
present author and Minna Lehtonen carried out the experiments. The present
author was also the main writer of the article.

Publications VIII, IX, X, and XI are continuations for the development of Mor-
fessor, a statistical method for unsupervised learning of morphology.

Publication VIII extends Morfessor to the case that the morphemes of the ana-
lyzed language have orthographic variants, allomorphs. In Morfessor, two allo-
morphs, such as “pretty” and “pretti” (in “prettier”), are either stored as sepa-
rate entries or segmented as spurious morphs (e.g., “prett + y”, “prett + i”). In
the proposed Allomorfessor model, there is a third option, encoding the vari-
ations with string edit operations. The results show that the MDL-type prior
favors linguistically sensible choices among these options.

Publication IX studies the effect of size and type of the training data for gener-
ative models of morphology, in particular for Morfessor. The size of the training
corpus has considerable effect on the resulting model. The effect can be simu-
lated by adding a weight function to the likelihood function, and optimizing the
parameters of the function for linguistic evaluation can have drastic effect on the
performance. It was found that using word frequencies may be useful if their
effect on the data likelihood is compensated by decreasing the relative weight of

28

Introduction

the likelihood compared with the prior.
In Publication X, Morfessor is extended to semi-supervised learning tasks.

With the proposed algorithm, a small annotated training set of words provides
large improvements to the results of linguistic evaluations.

The extensions of the model and the algorithms in Publications VIII–X were
developed jointly by the present author and Oskar Kohonen. All three pub-
lications used a new modular implementation of the Morfessor method, first
programmed by the present author and later extended also by Oskar Kohonen.
The present author and Oskar Kohonen also designed all the experiments and
were the main contributors for writing of the publications.

Finally, Publication XI applies a model similar to Morfessor to the problem of
unsupervised learning of phrasal constructions of sentences. The model was
tested on a small corpus of stories told by 1–7 year old Finnish children. The ex-
periments demonstrate that Morfessor can be extended to find also other types
of constructions than morphemes. The implementation of the method was based
on the Morfessor implementation started by the present author, and extended
for the new purpose by Oskar Kohonen. The present author also had minor
contributions in writing the publication.

1.4 Structure of the thesis

The publications of this thesis encompass many topics in the fields of natural
language processing and machine learning. The overview part of the thesis is
written as a coherent and rather extensive presentation of these topics and the
new contributions to them. It should be easy to follow without consulting the
attached publications. While the details of some experiments have been omitted
from the overview, it also provides details of some of the proposed methods that
have not been described in the publications.

The overview is divided into seven chapters. After this introduction, there
are two chapters that provide the central background information on machine
learning methodology (Chapter 2) and linguistics concepts and theories (Chap-
ter 3). The former is written from the viewpoint of NLP applications and the
latter from the viewpoint of machine learning, so that a researcher or a student
of only one of the fields can hopefully get a reasonable overview of the other
field. A reader familiar to both of the fields should be able to skip these two
chapters; the later chapters will frequently refer to the relevant sections in them.

The next three chapters discuss the three NLP problems on which this thesis
concentrates: statistical language modeling (Chapter 4), representation learning
(Chapter 5), and lexical unit selection (Chapter 6). In all three chapters, the first
sections will introduce the relevant background and prior work, while the last
sections will go through the main ideas and original results in the publications
of the thesis. In particular, a reader interested only in the new contributions of
this thesis should concentrate on Sections 4.4–4.5, 5.4, and 6.3–6.4.

Chapter 7 concludes the overview part of the thesis.

29

Introduction

30

2. Machine learning essentials

In this chapter, the essential topics of machine learning related to the work in
this thesis are presented. The presentation is based on several textbooks on ma-
chine learning and information theory (Alpaydin, 2004; Bishop, 2006; Cover and
Thomas, 2006; MacKay, 2003; Mitchell, 1997). The emphasis is on predictive
modeling, parametric models, and unsupervised learning.

There are two central objects in all machine learning settings: a learner and data.
After processing the data, the learner should provide some useful information
on it. This information should be useful either for describing the seen data, or
for predicting future data, or both. The type of data and the type of the learned
information varies in different settings.

In the context of this thesis, data is a collection of observations. Regardless of
the collection being a set (unordered) or a sequence (ordered), it is called data
set and denoted D. An observation, or sample, may have one or more than one
variables (features). Number of variables in a data denotes dimensionality of the
data. The basic types of data samples are scalars, vectors, labels, strings, and sets
(Table 2.1). A standard representation of a data set in Rd with n observations
(D = (x1, x2, . . . , xn)) is a matrix X ∈ Rd×n.

Many learning problems can be formalized as hypothesis selection problems,
where one selects a point hypothesis h out of the hypothesis class H based on ex-
plicit or implicit assumptions on the nature of the data D (Alpaydin, 2004, Ch.
2). The assumptions are generally called the inductive bias. The hypothesis class
is assumed to consist of one or more models M such that each model has the
same functional form (e.g., second degree polynomial, Gaussian distribution
N (μ, σ2), or categorical distribution p(xi |π) = πi). The point hypothesis is
then one instance of a particular model (e.g., a polynomial y = x2 − 2x + 2, a
Gaussian with zero mean and unit variance N (0, 1), or a categorical distribu-

Table 2.1. Basic data types for variable X and examples of actual data. Domain (X) is the set
of possible instances for the data type. Σ is an alphabet: a non-empty set of possible
labels. Σn denotes all strings of length n from the alphabet, Σ∗ all strings of any length
from the alphabet (Kleene closure of Σ), and 2Σ all the subsets of the alphabet (power
set of Σ).

Type Notation for instance Domain Examples of data

Scalar x R, Z, Z+ Time; temperature; grade
Vector x = (x1, x2, . . . , xd)

T Rd, Zd Coordinates; image; frequency spectrum
Label x Σ Letter; class label; product or person ID
String x = ab . . . z Σn, Σ∗ Word; sentence; DNA sequence
Set X = {a, b, . . . , z} 2Σ Set of labels or IDs

31

Machine learning essentials

tion with parameters π = (0.5, 0.4, 0.1)).

2.1 Random variables and distributions

This thesis will mostly focus on probabilistic (stochastic) models, which deter-
mine distributions over random variables. Random variables will be written us-
ing uppercase font (X) regardless of their type. An observation of X is denoted
as x and the set of possible observations as X , unless the type of the variable is
specified to be one of those present in Table 2.1. p(X) denotes the probability
distribution for X. Unless there is a risk of confusion, the probability p(X = x)
is written briefly p(x).

Using the standard notation, X | θ ∼ G(θ) (or briefly X ∼ G(θ)) means that
p(X) is determined by the named probability distribution G and its parame-
ters θ. There are two types of random variables and distributions: discrete and
continuous.

Discrete distributions. For a discrete variable X, p(X) is defined by a probabil-
ity mass function. Each p(X = x) gives the probability of the event that X has the
value x, and the sum ∑x∈X p(X = x) = 1.

Only a few particular distributions will be referred to in this thesis. The most
relevant discrete distribution is the categorical distribution. It is parametrized by
the probabilities of the finite number of elements in X . If X ∼ Categorical(π),

p(X = xi |π) = πi, (2.1)

where π = (π1, . . . , πk), ∑i πi = 1, is a vector of parameters. It is an extension of
the Bernoulli distribution, for which k = 2. Categorical distributions are applied
in many NLP models, the elements of X being, for example, characters or words.
The parameters πi are then their probabilities.

A multinomial distribution (or binomial if k = 2) gives the probability of the
outcome for n independent trials from a categorical distribution. If Xi is the
number of times event i occurred, the probability of the outcome x1, . . . , xk is

p(X1 = x1, . . . , Xk = xk |π; n) =

{
n!

x1!...xk ! π
x1
1 . . . πxk

k when ∑k
i=1 xi = n

0 otherwise.
(2.2)

If X ∼ Categorical(π) and Y is a random vector with Yi = I(X = xi), where I(·)
is a indicator function:

I(A) =

{
1, if A is true
0, if A is false

, (2.3)

then Y ∼ Multinomial(π; 1). Because of this relation, also the categorical distri-
bution is sometimes called multinomial.

Continuous distributions. For a continuous variable, p(X) is defined by a
probability density function. The probabilities are non-zero only if they refer to
intervals (e.g., p(x1 ≤ X ≤ x2) with x1 < x2). The integral of p(X) over X
equals one.

The most commonly used continuous distribution is the normal or Gaussian dis-
tribution. For a scalar variable x, it is denoted N (μ, σ2) for mean μ and variance

32

Machine learning essentials

σ2 and the density function is

p(X = x | μ, σ2) =
1√

2πσ2
exp

(
− (x − μ)2

2σ2

)
. (2.4)

A multivariate Gaussian distribution N (μ, Σ) for x ∈ Rk is parametrized by the
mean vector μ and the covariance matrix Σ. The probability density function is

p(X = x | μ, Σ) = (2π)−
k
2 |Σ|− 1

2 exp
(
− 1

2
(x − μ)TΣ−1(x − μ)

)
. (2.5)

A Dirichlet distribution (or beta distribution if k = 2) is a continuous multivariate
distribution with parameters α = (α1, . . . , αk). Its probability density function is

p(X1 = x1, . . . , Xk = xk | α) =
1

B(α)

k

∏
i=1

xi
αi−1, (2.6)

where xi ≥ 0 for all i, ∑k
i=1 xi = 1, and

B(α) = ∏k
i=1 Γ(αi)

Γ(∑k
i=1 αi)

. (2.7)

The Dirichlet distribution is relevant for NLP especially because the samples can
be used as the parameters of a categorical or multinomial distribution.

Joint distributions, independence, and marginalization. Consider a joint dis-
tribution p(A, B) of two variables A and B. The product rule states that the joint
distribution can be calculated as the product of the probability of one variable
and the conditional probability of the other given the first:

p(A, B) = p(A)p(B | A) = p(B)p(A | B) (2.8)

The variables are independent if p(A, B) = p(A)× p(B); then p(A | B) = p(A).
For a set of random variables X1, X2, . . . , Xn, using the product rule multiple

times gives

p(X1, . . . , Xn) =
n

∏
i=1

p(Xi | X1, . . . , Xi−1). (2.9)

This is also called the chain rule. The set of variables is independent and identically
distributed, briefly i.i.d., if (1) each Xi has the same probability distribution, and
(2) all are mutually independent. The independence assumption gives

p(X1, X2, . . . , Xn) =
n

∏
i=1

p(Xi). (2.10)

Marginalization refers to determining the distribution of a single variable p(A)

from a joint distribution of several random variables. Accordingly, p(A) is some-
times called the marginal distribution. Marginalization of dependent variables is
performed by applying the sum rule

p(A) = ∑
b∈B

p(A, B = b) = ∑
b∈B

p(B = b)p(A | B = b). (2.11)

If B is a continuous variable, the sums in Equation 2.11 are replaced by integrals.

33

Machine learning essentials

Bayes’ theorem. If one of the variables is known, the probability of the other
variable can be computed using the Bayes’ theorem:

p(A | B) =
p(A)p(B | A)

p(B)
=

p(A)p(B | A)

∑a∈A p(A = a)p(B | A = a)
(2.12)

The most important implication of the Bayes’ theorem is that given a prior belief
in A and likelihood of an observation b ∈ B given A, one can obtain an updated
posterior probability of A. In machine learning, a common setting is that the
parameters of the model are in A and the observed data in B. The Bayes’ theo-
rem then shows how the data should modify the probability distribution of the
parameters (Section 2.6.6).

An important concept for Bayesian modeling is that of the conjugate distribu-
tions. If

X | θ ∼ G(θ); θ | ξ0 ∼ H(ξ0) (2.13)

yields to θ | x, ξ0 ∼ H(ξ1) for some parameters ξ1 (based on ξ0 and x), then H
is a conjugate distribution for G. That is, using the conjugate distribution for
the prior p(θ) gives the same functional form for the posterior p(θ | x) (Bishop,
2006, Ch. 2). For example, Gaussian distribution, including the multivariate
Gaussian, is self-conjugate with respect to the mean parameter: if the prior of the
mean is Gaussian, then also the posterior is Gaussian. The Dirichlet distribution
is a conjugate distribution for the categorical and multinomial distributions, and
thus applied in various Bayesian models developed for language processing.

2.2 Graphical models

Graphical models are tools for representing the interactions between variables.1

The visualization of a model as a graph helps to analyze the structures of known
probabilistic models and design and motivate new ones. A graphical model
does not only visualize the structure, but strictly defines the independence as-
sumptions between the variables. Accordingly, some of the complex computa-
tions related to the inference problems in the models can be expressed by graph
manipulations.

2.2.1 Directed graphical models

Directed graphical models, also called Bayesian networks or belief networks, are com-
posed of vertices (nodes) V and directed edges (arcs) E. Each vertex corresponds
to one random variable. An edge from vertex X to vertex Y indicates that X has
direct influence on Y, specified by the conditional probability p(Y | X). X is then
parent of Y. An observed variable is marked by shading the vertex, as x in Fig-
ure 2.1(a). Figure 2.1(b) shows a model in which Z is parent of both X and Y.
Figure 2.1(c) illustrates a Markov model in which each Xi is parent of Xi+1 for
i < n (cf. Section 2.3).

The joint distribution of the variables can be factorized by observing the parents
pa(Xi) = {Xj : j ∈ V ∧ (i, j) ∈ E} of each node Xi:

p(X1, . . . , Xn) =
n

∏
i=1

p(Xi | pa(Xi)). (2.14)

1 For a complete overview, see, e.g., Chapter 8 of Bishop (2006).

34

Machine learning essentials

x y

(a)

z

x y

(b)

x1 x2

. . .

xn

(c)

Figure 2.1. Examples of directed graphical models: (a) Y conditioned on observed X, (b) observed
X and Y conditioned on Z, and (c) a first-order Markov model.

For example, the model in Figure 2.1(b) indicates

p(X, Y, Z) = p(Z)p(X | Z)p(Y | Z). (2.15)

Then X and Y are conditionally independent given Z:

p(X, Y | Z) =
p(X, Y, Z)

p(Z)
= p(X | Z)p(Y | Z). (2.16)

In general, finding conditionally independent sets of nodes in a directed model
requires a graphical test called d-separation.

2.2.2 Undirected graphical models

Undirected graphical models or Markov random fields have, again, variables as ver-
tices V and direct dependences of the variables as edges E. However, the edges
are undirected so that the direction of the influence is not specified. For any two
variables Xi and Xj for which {i, j} /∈ E, Xi is conditionally independent of Xj
given all its neighbors ne(Xi) = {Xk : k ∈ V ∧ {i, k} ∈ E}.

The joint distribution of an undirected model is factorized by maximal cliques,
sets of vertices for which there is an edge between every pair of vertex. Each
maximal clique C ⊆ V has its potential function φC : X |C| �→ R+, and the joint
distribution is defined by the product of the potential functions:

p(X1 = x1, . . . , Xn = xn) =
1
Z ∏

C
φC(xC), (2.17)

where xC is the set of variables in clique C. For example, the graph in Figure 2.2
has three maximal cliques {x1, x2}, {x2, x3, x4}, and {x4, x5} and is thus factored
by

p(x1, . . . , xn) =
1
Z

φ1,2(x1, x2)φ2,3,4(x2, x3, x4)φ4,5(x4, x5). (2.18)

The partition function
Z = ∑

x
∏
C

φC(xC) (2.19)

ensures that the distribution is correctly normalized. The need of explicit nor-
malization is a major drawback for undirected models: calculating the sum over
all combinations of states of all variables in the model is often infeasible.

The form of the potential functions is free, but due to the constraint on non-
negative values, they are commonly expressed as exponentials of energy func-
tions E(xC):

φC(xC) = exp
(− E(xC)

)
. (2.20)

35

Machine learning essentials

x2

x1 x3

x4

x5

Figure 2.2. Example of an undirected graphical model.

The joint distribution is then

p(x1, . . . , xn) =
1
Z

exp
(
− ∑

C
E(xC)

)
. (2.21)

The models of this form are referred to as exponential models. Exponential mod-
els can also be used for conditional distributions—including those in directed
graphical models—by making the partition function dependent on the observed
variables.

The energy functions can be arbitrary. However, an important family of mod-
els, log-linear models, have a linear energy function. A classic result by Jaynes
(1957) is that if all information from an unknown distribution p(X) are the ex-
pected values of functions f j(x), j = 1, . . . , N, the model that has the maximal
entropy (see Section 2.4) has the energy function:

E(x) =
N

∑
j=1

λj f j(x), (2.22)

where λj are constant parameters to be solved. Accordingly, this kind of log-
linear models are called maximum-entropy (ME, MaxEnt) models (Ratnaparkhi,
1996; McCallum et al., 2000; Rosenfeld et al., 2001). Some specific ME models
are discussed in Sections 2.3 and 4.3.2. The maximization of entropy means that
the model is as non-committal as possible with regard to missing information
(Jaynes, 1957). In other words, it satisfies the given constraints, but assumes
nothing else.

2.3 Markov models and finite-state machines

This section considers particular types of graphical models, Markov models,
that have many applications in NLP. Markov models assume a particular type
of a random process, in which a sequence of random variables have a very lim-
ited dependency structure. In addition to the standard Markov model, two im-
portant extensions, hidden Markov models and conditional Markov models are dis-
cussed. Markov models are also related to finite-state machines, behavioral com-
putational models with the Markov property.

2.3.1 Markov processes

Random (or stochastic) process is a sequence of random variables {Xi}, usually
indexed in time (Cover and Thomas, 2006, Ch. 4). An output of the process,
(x1, x2, . . . , xn) ∈ X n, can be considered as a time series, and each Xi is the state
of the process at time i. In a stationary process, the joint distribution of the vari-
ables is invariant with respect to shifts in the time index:

p(X1, . . . , Xn) = p(Xl+1, . . . , Xl+n) (2.23)

36

Machine learning essentials

yi−1 yi yi+1

xi−1 xi xi+1

.

Figure 2.3. Graphical representation of hidden Markov model.

for every length n and time shift l.
In general, the dependencies between the variables are arbitrary, and only the

chain rule can be applied to compute the joint distribution p(X1, . . . , Xn). The
other extreme is the i.i.d. assumption. Between these extremes, there are cases in
which each Xi has a limited dependence on the previous variables. One specific
case is the Markov process, for which each random variable Xi depends only on
the preceding variable Xi−1. In other words, the process is “memoryless”: the
future states depend only on the current state, not any states the preceded it.
This is called the Markov property. If the conditional probability p(Xi | Xi−1)

does not depend on i, the process is time invariant and stationary.
The standard Markov process can be extended to the kth order Markov process,

for which

p(X1, . . . , Xn) =
n

∏
i=1

p(Xi | Xi−k, . . . , Xi−1). (2.24)

In the case of a discrete X , the process is also called a Markov chain.

2.3.2 Markov model

The Markov model is a directed graphical model that assumes that the observed
variable is generated by a Markov process. A graphical representation of the
first-order Markov model is shown in Figure 2.1(c). A typical example of such a
model is the bigram language model, which predicts the next word in a text based
on the previously seen word (cf. Section 4.2). The parameters of a Markov model
include only the transition probabilities p(xi | xj) between all xi, xj ∈ X . The
estimation of the parameters is often simple, because the model does not have
any unobserved variables.

2.3.3 Hidden Markov models

The hidden Markov model (HMM) is an extension of the Markov model, in
which the state sequence Y1, . . . , Yn is not observed. Instead, each state yi emits
an observation xi according to the conditional distribution p(X |Yi). The joint
distribution of the observations is thus

p(X1, . . . , Xn) =
n

∏
i=1

p(Yi |Yi−1)p(Xi |Yi). (2.25)

Figure 2.3 shows the graphical representation of an HMM.
HMMs are popular for modeling sequential data such as speech and text.

There are two basic algorithms for using an HMM: the Viterbi algorithm (Viterbi,
1967; Forney, 1973) computes the most likely sequence of the hidden states for a

37

Machine learning essentials

yi−1 yi yi+1

xi−1 xi xi+1

.

(a)

yi−1 yi yi+1

xi−1 xi xi+1

.

(b)

Figure 2.4. Graphical models with hidden Markov model structure: (a) maximum-entropy
Markov model, and (b) linear-chain CRF.

sequence of observed events, and the forward algorithm computes the probability
of a sequence of observed events. Both are dynamic programming algorithms
that have time complexity of O(nM2), where n is the number of samples and
M is the number of states. If the training data includes both the states and the
observations, the parameters of an HMM can be estimated directly. If only ob-
servations are available, HMMs can be trained with the Baum-Welch algorithm
(Baum, 1972), which is an adaptation of the general expectation-maximization
(EM) algorithm described later in Section 2.8.5.

2.3.4 Conditional Markov models

During recent years, there has been an increasing amount of research on mod-
els that have the same structure as the HMM but estimate only the conditional
distribution p(Yi | Xi, Yi−1). The benefit of the conditional model is that if the
set of observations X is large, the model can use arbitrary feature functions
f j(xi, yi−1, yi) based on the observations and states, instead of using the obser-
vations xi themselves. For example, if x is a document, certain words of the
documents could be used as features, without making any assumptions on how
the documents are generated.

A directed graphical model for p(Yi | Xi, Yi−1) is shown in Figure 2.4(a). Using
an exponential model (Equation 2.21) with linear energy function gives

p(yi | xi, yi−1) =
1

Z(xi, yi−1)
exp

(N

∑
j=1

λj f j(xi, yi−1, yi)
)

. (2.26)

If the weight parameters λj are learned by maximizing the entropy of the model,
this is the maximum-entropy Markov model (MEMM), proposed by Ratnaparkhi
(1996) for POS tagging and McCallum et al. (2000) for document segmentation.

Lafferty et al. (2001) note that MEMMs suffer the property that all probabil-
ity mass arriving to a state has to be distributed to the successor states, in-
dependent of the observation from the state. This so-called label bias problem
is avoided using a family of undirected models called conditional random fields
(CRFs). The linear-chain CRF model in Figure 2.4(b) corresponds to the HMM
and MEMM models. It defines the probability for the complete sequences of
states y = (y1, . . . , yn)T given the sequence of observations x = (x1, . . . , xn)T:

p(y | x) =
1

Z(x)
exp

(n

∑
i=1

N

∑
j=1

λj f j(xi, yi−1, yi)
)

, (2.27)

where the transition and emission cliques for each time index i are modeled

38

Machine learning essentials

using one set of N feature functions f j(·). In contrast to MEMM, the partition
function is global.

CRFs have been applied to several sequential language processing tasks, in-
cluding POS tagging (Lafferty et al., 2001), shallow parsing (Sha and Pereira,
2003), and Chinese word segmentation (Peng et al., 2004). The conditional mod-
els can be estimated with general-purpose convex optimization techniques (see,
e.g., Sha and Pereira, 2003). The optimization involves estimating expected fre-
quencies of the features with dynamic programming algorithms similar to the
Baum-Welch algorithm used for HMMs.

2.3.5 Finite-state machines

The HMM is a special case of a weighted finite-state acceptor (WFSA), one type of
a finite-state machine.2 A non-weighted finite-state acceptor (FSA) has a set of
states Q, of which one is an initial state and one or more are final states. The set
of transitions E ⊆ Q × Q between the states are associated with labels from set
Σ. An FSA accepts a sequences of labels, if the transitions in some path from
the initial state to one of the final states produces the sequence. The set of se-
quences accepted by FSAs are also called regular languages; other types of formal
languages, context-free languages, are discussed in Section 3.1.8. Models that
generate accepted outputs of formal languages are often called generative gram-
mars.3

WFSA includes a weight for each state transition. The weights and their opera-
tions can be based on any algebraic structure called semiring (Roark and Sproat,
2007, p. 11); for an HMM, it is the probabilistic semiring (R,+,×, 0, 1). The
weight associated with a path is the product of an initial weight, weights of the
transitions, and a final weight. The weight associated with a sequence of labels
is the sum of the weights of all successful paths labeled with the sequence. Thus
WFSA provides a mapping from label sequences to weights. One common ap-
plication for WFSAs is to store the best output hypotheses from a speech recogni-
tion or machine translation system to an easily-accessible structure (called lattice
or confusion network) for further processing, such as re-ranking with computa-
tionally intensive models.

Finite-state transducers (FSTs) and weighted finite-state transducers (WFSTs) re-
place the single transition labels in FSAs and WFSAs by pairs of input and out-
put labels. A FST represents binary relations between the input and output se-
quences. That is, either the input–output pair is accepted or rejected. A WFST
associates these relations to weights. Figure 2.5 shows an example of a WFST
that maps between letters and phonemes of a word.

FSTs have been particularly successful in computational modeling of phonol-
ogy (Kaplan and Kay, 1994) and morphology (Koskenniemi, 1983; Karttunen
and Beesley, 2005). While FSTs are usually constructed from rules defined by
hand, WFSTs can be learned automatically similar to HMMs (Clark, 2002; Chi-
ang et al., 2010). WFSTs have been applied in many NLP problems, including
speech recognition (Mohri et al., 2002), word segmentation (Sproat et al., 1996),
machine transliteration (Knight and Graehl, 1998), and statistical machine trans-
lation (Kumar et al., 2006). Multiple finite-state acceptors and transducers can

2 For an introduction on finite-state machines, see, e.g., Chapter 1 by Roark and Sproat
(2007), or Chapter 2 by Jurafsky and Martin (2008).
3 Generative grammars should not be confused with probabilistic generative models
discussed later in this chapter.

39

Machine learning essentials

q0 q1 q2 q3 q4
d : /d/ 1.0

a : /eI/ 0.4

a : /æ/ 0.6

t : /R/ 0.8

t : /t/ 0.2

a : /@/ 1.0

Figure 2.5. Weighted finite-state transducer for different pronunciations of word data (example
from Mohri et al., 2002). Transitions are annotated with the label pair and the weight
(probability) of the transition. The pronunciations and the probabilities of the respec-
tive paths are /deIR@/ (p = 0.32), /deIt@/ (p = 0.08), /dæR@/ (p = 0.48), and /dæt@/
(p = 0.12).

be combined, for example, for speech-to-speech translation (Mathias and Byrne,
2006).

2.4 Information theory

Information theory was developed by Claude Shannon (1916–2001) for finding
the limits in data compression (source coding theorem) and transmitting data over
an imperfect communication channel (noisy channel coding theorem). The main
ideas were presented in 1948. Shannon proposed a number of measures to cal-
culate the amount of uncertainty in random variables, including entropy, which
was before that applied in statistical mechanics and thermodynamics. These
basic measures are defined next, followed by brief descriptions of Shannon’s
coding theorems, a presentation of information theoretic measures for calculat-
ing divergences between two distributions, and finally a short introduction to
algorithmic information theory. While all the measures can be defined both for
discrete and continuous variables, only the discrete versions are given here.4

2.4.1 Quantities of information and uncertainty

Let X be a random variable. The Shannon information content or self-information
of a single sample x of X is

I(x) = log(
1

p(x)
) = − log p(x). (2.28)

The larger the probability of x is, the less information is gained from it; if p(x) =
1, the result is already known and there is no gain of information. The en-
tropy (or self-information) of X can be defined as the expected value of the self-
information over the possible outcomes X :

H(X) = EX[I(X)] = − ∑
x∈X

p(x) log p(x). (2.29)

Entropy is usually measured in bits, if using two as the base of the logarithm, or
nats, if using the natural logarithm. By defining 0 log 0 ≡ 0, the value is always
non-negative.

Next, consider two variables X and Y. The joint entropy of X and Y is

H(X, Y) = − ∑
x∈X ,y∈Y

p(x, y) log p(x, y). (2.30)

4 For more complete descriptions on the topics of information theory, see MacKay (2003)
or Cover and Thomas (2006).

40

Machine learning essentials

H(Y)H(X)

H(X, Y)

H(Y | X)H(X |Y) I(X; Y)

Figure 2.6. A Venn diagram illustrating the relations between individual entropies H(X) and
H(Y), joint entropy H(X, Y), conditional entropies H(X |Y) and H(Y | X), and mu-
tual information I(X; Y).

The joint entropy equals the sum of the individual entropies H(X) + H(Y) only
if the two variables are independent; otherwise it is less than H(X) + H(Y).
Conditional entropy is the expected entropy of X given Y:

H(X |Y) = − ∑
y∈Y

p(y) ∑
x∈X

p(x | y) log p(x | y)

= − ∑
x∈X ,y∈Y

p(x, y) log
p(x, y)
p(y)

. (2.31)

Conditional entropy equals the difference H(X, Y) − H(Y). It is always non-
negative and zero only if X and Y are fully dependent.

The difference of joint entropy to the sum of the marginal entropies is called
mutual information:

I(X; Y) = H(X) + H(Y)− H(X, Y)

= H(Y)− H(Y | X)

= H(X)− H(X |Y)

= ∑
x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.32)

Mutual information measures the amount of information that X contains about
Y and vice versa. It is zero only if the two variables are independent, and grows
both with the degree on dependence and the entropy of the variables. Trivially,
the mutual information I(X; X) equals the self-information H(X).

The relations between the individual entropies, joint entropy, conditional en-
tropies, and mutual information are analogous to the relations between two sets,
their union, differences, and intersection, respectively. This is illustrated by the
Venn diagram in Figure 2.6.

2.4.2 Source coding theorem and Kraft’s inequality

The basic motivation for the definitions of self-information and entropy is that
they measure how well the outcome of a random source can be compressed.
Consider a source p(X) that generates instances of a variable X over a finite set
X . A code C : X �→ Y maps each x ∈ X into a sequence y ∈ Y ; the process is
called encoding. The target sequence y is usually set to be binary: Y ⊆ {0, 1}∗.
The code length for x, lC(x) = |C(x)|, is then measured in bits. In lossless en-
coding, C has an inverse code C−1 : Y �→ X such that x = C−1(C(x)). The
process of mapping from Y back to X is called decoding. Lossless source coding
is illustrated in Figure 2.7.

41

Machine learning essentials

Source p(X) Encoder: C Decoder: C−1x y = C(x) x

Figure 2.7. Lossless source coding.

Given an i.i.d. random source that generates a sequence x1, x2, . . . , xN , Shan-
non’s source coding theorem (Shannon, 1948) states that for any ε > 0 and a
large enough N, there exists a lossless source coding such that the sequence
can be encoded in N × (H(X) + ε) bits. Conversely, there is no recoverable
source coding that can compress the sequence to fewer than N × (H(X) + ε)

bits. Thus entropy determines the average number of bits required to encode
the outcome of the random variable using the optimal coding Ĉ, which uses code
lengths lĈ(x) = − log2 p(x). For example, the result of an 8-sided dice can be
optimally encoded in −8 × 1

8 log2
1
8 = 3 bits.

Encoders and decoders should consider not only single items x but sequences
x1, . . . , xn (n < N). The extension C(n) of code C maps a sequence (x1, . . . , xn) ∈
X n into C(x1) . . . C(xn) ∈ Y∗. If the mapping by the extension C(n) is invertible
for any n, the code C is uniquely decodable. The inequality theorem by Kraft (1949)
states that for any uniquely decodable code C with alphabet size V,

∑
x∈X

V−lC(x) ≤ 1. (2.33)

The converse is also true: for any given set of natural numbers l1, l2, . . . , ln such
that ∑n

i=1 V−li ≤ 1, there exists a uniquely decodable code over an alphabet of
size V. With strict equality, the code is called complete. The optimal coding for
any given distribution p(X) is complete: ∑x∈X 2−lĈ(x) = ∑x∈X 2log2 p(x) = 1.
Note that this means not only that we can associate coding lengths with any
probability distribution (Shannon’s source coding theorem) but also that we can
associate a probability distribution with any uniquely decodable code (Kraft’s
inequality). The probability distribution, however, may be defective (∑x∈X p(x) <
1) if the code is not complete. The relation of complete codes and probability dis-
tributions connects the minimum description length principle (Section 2.6.8) to
probabilistic model selection and parameter estimation methods.

In practice, the codes are usually limited to prefix codes that use a set of se-
quences (code words) in which there is no valid sequence in the system that is
a prefix of any other valid sequence in the set. The advantage of prefix codes is
that a sequence of code words C(x1)C(x2) . . . C(xn) can be decoded without any
marker between the code words. That is, prefix codes are uniquely decodable.
The well-known algorithm by Huffman (1952) gives the optimal binary prefix
code for a given distribution. For Huffman codes, the expected code length
EX[lC(x)] < H(X) + 1.

2.4.3 Noisy channel coding theorem

Noisy channel model (Figure 2.8) considers the case where an encoded signal is
exposed to random noise during the transmission. A message from a informa-
tion source is encoded into signal x, and then transmitted over the noisy channel.
The received signal y corrupted by the channel noise is decoded back into the
original message.

Shannon’s (1948) noisy channel coding theorem states that the maximal chan-
nel capacity C = supp(X) I(X; Y). That is, for information transmitted at rate R,
if R < C, there exists codes that allow the probability of error at decoding to be

42

Machine learning essentials

Information
source

Encoder:
p(X)

Noisy channel:
p(Y|X = x)

Decoder:
p(X|Y = y) Destination

Noise source

x y

Figure 2.8. Noisy channel model.

arbitrarily small. However, if R > C, an arbitrarily small probability of error is
not achievable, and the errors increase with the rate R.

Selecting the x that maximizes p(X = x |Y = y) for a given y is called the
decoding problem. As many NLP problems can be viewed as decoding problems,
they are often illustrated with the noisy channel model. For example, in speech
recognition, Y would be the speech signal and X would be a transcription of the
speech (see Chapter 4).

2.4.4 Divergence of two distributions

The quantities above consider one probability distribution per each variable.
However, in many machine learning problems, one has to consider many dif-
ferent distributions for one set of variables (e.g., one distribution per each point
hypothesis). There exist several information theoretic measures that provide
means of determining how similar or dissimilar two distributions are. The mea-
sures of dissimilarity for probabilities are called divergences.

First, a common situation is that the true distribution p(x) is often approx-
imated by another distribution q(x). The cross-entropy of q(x) is its expected
self-information given the true distribution:

Hq(X) = EX[− log q(x)] = − ∑
x∈X

p(x) log q(x). (2.34)

In other words, it measures the number of bits required to encode the outcome
of p(x) with a coding based on q(x). Obviously, Hq(X) ≥ H(X) and equal only
if p(x) = q(x) for all x. Moreover, it reaches infinity for any x such that p(x) > 0
and q(x) = 0.

Relative entropy or Kullback–Leibler divergence is the difference between the cross-
entropy and the true entropy of p(x):

D(q || p) = − ∑
x∈X

p(x) log q(x) + ∑
x∈X

p(x) log p(x)

= EX

[
log

p(x)
q(x)

]
(2.35)

That is, it measures how many more bits are required on average if q(x) is used
to model the data generated by p(x). Similar to cross-entropy, it is asymmetric,
non-negative, and zero only if q(x) = p(x) for all x.

Finally, information radius or Jensen–Shannon divergence is defined as the mean
of the relative entropies between the two distributions and their average distri-
bution 0.5 × (p(x) + q(x)):

IRad(p ‖ q) =
1
2

D
(

p
∥∥∥ p + q

2

)
+

1
2

D
(

q
∥∥∥ p + q

2

)
=

1
2 ∑

x∈X

[
p(x) log

2p(x)
p(x) + q(x)

+ q(x) log
2q(x)

p(x) + q(x)

]
. (2.36)

43

Machine learning essentials

In contrast to relative entropy, information radius is bounded (0 ≤ IRad ≤ 1)
and symmetric with respect to the two distributions.

Because both cross-entropy and relative entropy measure how efficiently new
data from p(x) can be compressed and communicated with q(x), they are the-
oretically well-motivated cost functions for a density estimation task (Ghahra-
mani, 2004). However, the real distribution p(x) is seldom known, and empirical
estimates of the divergences have to be applied instead.

A simple way to estimate the divergences is to give an equal weight for every
observed data sample xi. For example, the empirical cross-entropy for distribu-
tion q(x) given data D is

H̃q(D) = − 1
n

n

∑
i=1

log q(xi), (2.37)

where n = |D| is the number of samples. The complement of this measure is av-
erage log-likelihood. A related measure, applied commonly in statistical language
modeling, is perplexity:

Perpq(D) = 2H̃q(D) =
(n

∏
i=1

q(xi)
)− 1

n
. (2.38)

It can be interpreted as the average branching factor for the model. For example,
if the data samples are throws of a 6-sided dice, there are six possible choices for
each sample. For the correct model, perplexity is 6, and any incorrect model will
give a perplexity larger than that because Hq(X) ≥ H(X).

2.4.5 Algorithmic information theory

Algorithmic information theory combines the ideas from Shannon’s informa-
tion theory with the computability theory by Alan Turing (1912–1954). Instead
of random variables and their distributions, it concerns the encoding of arbitrary
data sets with general-purpose computer programs—programs that can simu-
late a Turing machine, a theoretical symbol-manipulation device described by
Turing (1936).

The central notion in algorithmic information theory is algorithmic complexity,
also known as Kolmogorov complexity, developed by Solomonoff (1964a,b) Kol-
mogorov (1965), and Chaitin (1969). The algorithmic complexity K(D) of data
D is defined as the number of bits required for the shortest universal Turning
machine (i.e., computer program) that writes the data and then halts. This can
be seen as compression: D is encoded into the program, and decoding means
simply running the program code.

For completely random data, K(D) cannot be any shorter than the data itself.
However, very regular data, such as a long sequence of the same symbol, can
be encoded very efficiently (e.g., by storing the symbol and the length of the
sequence).

The algorithmic complexity can be used to assign probabilities to arbitrary
data sets (Vitanyi and Li, 2000): Consider data D as a random variable. The
probability of a data set can be defined by the probability of producing the
shortest program code that generates the data. Probability of one bit is 1

2 , so
p(D) = (1

2)
K(D) = 2−K(D). If the codes are prefix-free—a universal Turing ma-

chine with this property exists—Kraft’s inequality confirms that the sum over
all codes does not exceed one.

44

Machine learning essentials

Algorithmic complexity is not directly applicable to learning problems, since it
is impossible to design an algorithm that computes the Kolmogorov complexity
of a given data set. Still, it has served as foundation for other methods such
as the minimum description length principle (discussed in Section 2.6.8) and
normalized compression distance (Li et al., 2004). Using a coding scheme less
general than one based on a programming language provides the assumptions
(inductive bias) needed for learning.

2.5 Learning setups

The problems in machine learning can be divided into different types according
to what kind of data samples the learner gets and what it should do with them.
The basic division is between supervised and unsupervised learning. Both semi-
supervised and reinforcement learning problems can be seen to be the middle of
the two, but while the former can be solved with relatively straightforward ex-
tensions of unsupervised and supervised learning algorithms, the latter requires
a very different approach. In multi-view learning, there are two or more inde-
pendent sets of features, views, of the same data, while the task may be either
supervised, semi-supervised, or unsupervised. Multi-task learning and transfer
learning concern setups in which there are multiple tasks to consider together.

2.5.1 Supervised learning

In supervised learning, the learner gets input–output pairs (x, y) and should
learn to predict the output y given the input x. The two main types of supervised
learning problems are regression, where the output is a numeric scalar or vector,
and classification, where the output is a categorical label.

For supervised learning problems, there are two approaches, generative and
discriminative modeling. The former approach is to build a model that is as-
sumed to generate the observed data, that is, both the inputs and outputs. The
latter approach is to solve the task (regression or classification) directly and ne-
glect the aspect of data generation. In probabilistic models, the distinction is
illustrated by whether there is a model for the joint distribution p(X, Y) (gen-
erative models) or only for the conditional distribution p(Y | X) (discriminative
models).

Unlike generative modeling, discriminative modeling does not need to be
probabilistic. A standard non-probabilistic approach is to find a function f :
X �→ Y , where X is the input space and Y is the output space. In multivari-
ate linear regression f (x) = wTx + b, where weight vector w and bias term b
are determined from the data. A linear binary classifier of the same functional
form can be considered as a very simple artificial neural network, perceptron
(Rosenblatt, 1958). More complicated models include, for example, multi-layer
perceptrons (MLP) that combine multiple perceptrons with non-linear activation
functions. MLPs work as universal approximators (Hornik et al., 1989): they can
approximate arbitrary functions from X to Y .

Another common non-probabilistic approach for discriminative modeling is
to learn decision trees (e.g., Quinlan, 1986). Decision trees divide the input space
X into equivalence classes that predict the same output y by making consecutive
questions on the features of x. Each question forms a new branch in the tree, and

45

Machine learning essentials

the leaf nodes correspond to different outcomes y.

2.5.2 Unsupervised learning

In the case of unsupervised learning, there are no samples of the desired out-
put available. Instead, the learner has to assume some statistical regularities in
the input data and use them to create a new representation for the input. The
representation may then be used to predicting new inputs, communicating or
compressing the observed input, or as an intermediate result for other learning
problems. In other words, the desired output is the representation, and different
goals for the representation lead to different unsupervised learning problems.

The learned representation can also be seen as a model of the data. In the case
that the model is probabilistic, that is, it gives an estimate for the distribution
p(X) of the input variable X, the task is called density estimation. If the type of
the probability distribution is known, the goal is simply to find the best-fitting
parameters of the distribution. All probabilistic generative models do density
estimation by definition. This includes many types of directed and undirected
graphical models, as well as neural network inspired models such as deep belief
networks (Hinton, 2009). The majority of density estimation in NLP is based on
Markov and hidden Markov models of various order due to their low compu-
tational complexity. However, there are also some successful experiments with
more complicated models such as log-linear models (Rosenfeld et al., 2001) and
neural networks (Bengio et al., 2003; Hinton and Salakhutdinov, 2011).

Another typical case of unsupervised learning is clustering. The set of input
samples X are assumed to have such a structure that within disjoint subsets
Ci ⊂ X, where Ci ∩ Cj = ∅ ∀i �= j, the samples are more similar than the
samples in different subsets. The desired output is the subsets C1, C2, . . . , CK.
Equivalently, the output space Y can be defined as a set of arbitrary cluster la-
bels and the algorithm should return one y ∈ Y per each input sample, similarly
to a supervised classification problem. The number of clusters K may be given
beforehand or has to be determined from the data. Two very common clustering
algorithms, hierarchical clustering and K-means, are described in Section 2.8.4.
Clustering can be used for lossy compression: vector quantization refers to replac-
ing the individual samples vectors by the mean vector over all samples in the
same cluster.

A third large set of unsupervised problems are those of blind source separation
(BSS) (for overviews, see, e.g., Cardoso, 1998; Hyvärinen et al., 2001). In BSS,
the input variables Xj are assumed to be mixed signals of the k original source
signals y1, . . . , yk:

xj = gj(y1, . . . , yk). (2.39)

If the mixing functions gj(·) are linear, then

xj =
k

∑
i=1

ajiyi. (2.40)

The goal is to identify the source signals and sometimes the number of sources
k. The separation of the sources is possible by assuming that they have certain
properties. For example, the sources are assumed to be uncorrelated in princi-
pal component analysis (PCA), and independent in independent component analysis
(ICA). The standard way to calculate PCA by eigenvalue or singular value de-
composition is described in Section 2.8.2. A popular fixed-point algorithm for

46

Machine learning essentials

ICA was presented by Hyvärinen and Oja (1997). Both PCA and ICA can also be
solved by simple neural network models (Oja, 1982; Hyvärinen and Oja, 1996).

Equation 2.40 can be equivalently written as X = AY, where X ∈ Rd×n and Y ∈
Rk×n are input and output matrices, respectively. This task combines with matrix
factorization methods. Especially if X is positive, it is useful also to restrict one or
both of the factors to be non-negative (Paatero and Tapper, 1994; Lee and Seung,
1999). If A ∈ Rd×k is non-negative, its rows can be considered as membership
degrees for xj belonging to each yi, or conditional probabilities p(yi | xj) if the
rows sum up to one. The task is then soft or fuzzy clustering in contrast to the
hard clustering discussed above.

To solve Equation 2.40, one should find W such that Y = WX. If k = d and A
is invertible, W = A−1. When k < d, the mapping from X to Y can been seen
as dimensionality reduction. The applications of PCA and ICA to dimensionality
reduction for vector space models of language is discussed later in Section 5.1.

The general task in dimensionality reduction is to find a function f (·) that
maps the original samples into a low-dimensional space while preserving the
pairwise distances of the samples:

f : X �→ Y s.t. dx(xi, xj) ≈ dy(f (xi), f (xj)), (2.41)

where dx(·, ·) and dy(·, ·) are distance or similarity functions. For non-linear
dimensionality reduction, it is assumed that the data samples are in a low-
dimensional manifold that is non-linearly embedded within the high-dimen-
sional space. Finding the manifold requires non-linear dimensionality reduc-
tion, also known as manifold learning. Many linear methods such as PCA have
non-linear variants; they can, for example, be extended with kernel functions
(Section 2.7.2).

One type of artificial neural networks suited for non-linear dimensionality re-
duction is the self-organizing map (SOM) by Kohonen (1982, 1995). The SOM
is usually constructed as a two-dimensional, one layer network. Each neuron,
called map unit, is connected to adjacent map units thus forming its neighbor-
hood. The map is trained with competitive learning, while having local co-
operation between neighboring units. As a result, adjacent units model similar
data samples and the samples appear close to each other in the map. The SOM
has been applied to several NLP applications and problems, including syntactic
and semantic categorization of words (Honkela et al., 1995), speech recognition
(Kurimo, 1997, 2002), text retrieval and mining (Kaski et al., 1998; Kohonen et al.,
2000; Lagus et al., 2004), statistical language modeling (Kurimo and Lagus, 2002;
Lagus and Kurimo, 2002), and word sense disambiguation (Lindén and Lagus,
2002; Lindén, 2003).

2.5.3 Semi-supervised learning

Obviously, there are settings between the fully supervised and unsupervised
cases. These are called either semi-supervised or partially supervised settings.
In the most common setting, the learner gets input–output pairs for a part of
the training data, but only the input values for the rest. The first part is often
called labeled and the second part unlabeled, regardless of the type of the output
variable. Usually the amount of labeled data is remarkably smaller than the
amount of unlabeled data, so that supervised algorithms do not have enough
data for high accuracy. The algorithms for the semi-supervised problems are

47

Machine learning essentials

z

x y

Figure 2.9. Graphical model for two-view learning and canonical correlation analysis.

usually extensions of either supervised or unsupervised ones (see, e.g., Zhu,
2005).

In the setting above, the data samples were separated into known (labeled)
and unknown (unlabeled) samples. In contrast, there can also be a situation in
which a part of the output is known for all training samples, but another part
is not. For example, the training data for a task of learning morphology may
include stems of the words as input, but the output should include also all the
prefixes and suffixes of the words. To distinguish between these two cases, here
the term “semi-supervised” is used only for the former, and the term “partially
supervised” for the latter.

2.5.4 Multi-view learning

Multi-view learning refers to a setup where observed data is from multiple in-
dependent views from the same source. Such sources could, for example, be the
speech signal and video of the lip movements of a speaker.

Consider two data matrices X ∈ Rdx×n and Y ∈ Rdy×n. The data samples are
assumed to be dependent on Z, which is the desired output. Furthermore, X
and Y are independent conditioned on Z, as shown by the graphical model in
Figure 2.9. The question is how to best combine the information in the observed
data. A naive approach is to concatenate the features to obtain T ∈ R(dx+dy)×n.
In the supervised case, the relevance of the different views can be evaluated di-
rectly by the classification or regression accuracy: for example, the classifier can
simply discard any features irrelevant to the task. However, for semi-supervised
and unsupervised learning, it becomes essential to take the conditional indepen-
dence into account.

Co-training was developed by Blum and Mitchell (1998) for semi-supervised
learning on multiple views. The idea is to use the views to learn two models,
hx on X and hy on Y. First, both are trained on a small amount of labeled data.
Then a random part of unlabeled data is sampled and the models are used for
labeling it. The results from hx are used as new training for hy, and vice versa.
Thus any learned information from one view can help learning from the second
view. A similar approach was earlier proposed by Yarowsky (1995) for word
sense disambiguation: the different views for a word were its local context and
document it occurred in. Theoretical justification for the method has been pre-
sented by Dasgupta et al. (2001).

In unsupervised multi-view learning, there is no teaching signal that indicates
what is relevant in X and Y. Instead, the assumption is that what is shared by
X and Y is relevant, and what is not shared is irrelevant. This leads to maximiz-
ing the statistical dependence between the views (for an overview, see Tripathi,
2011).

The information theoretic measure for the statistical dependence between the
data sets is mutual information (Equation 2.32). However, it is possible to calcu-

48

Machine learning essentials

late only for very simple distributions.
Pearson’s product-moment correlation coefficient (Pearson, 1896) is a measure of

linear dependence for two scalar variables:

ρXY =
cov(X, Y)

σxσy
(2.42)

where cov(X, Y) = E[(X − μx)(Y − μy)] is the covariance of the variables and
σx and σy are their standard deviations. The value of ρ is in [−1,+1]. It is zero
for uncorrelated variables and high absolute values of ρ indicate strong asso-
ciation. While correlation is always zero for independent variables, ρ = 0 in-
dicates independence only for normally distributed variables. Moreover, for
Gaussian variables, correlation is is related to mutual information by I(X; Y) =
− log(1 − ρxy

2)/2. If the variables are not Gaussian, correlation measures only
the linear part of the dependence.

Another common measure for bivariate dependence is Spearman’s rank correla-
tion coefficient (Spearman, 1904). It is a non-parametric measure, which assesses
how well the relationship between two variables can be described using the best-
fitting monotonic function. The actual values of X and Y are replaced by their
ranks, and a formula similar to Equation 2.42 is used to obtain the coefficient for
the ranks. Using ranks instead of the actual values makes the measure robust
for outliers. However, this kind of monotonic dependence is harder to interpret
than linear correlation.

In multi-view learning, the variables X and Y have generally high dimension-
ality, and there is no known matching between their dimensions. Canonical cor-
relation analysis (CCA; see Section 2.8.3) can be used to find the linear projections
that maximize Pearson’s correlations between the projected variables. For mea-
sures of non-linear dependence, CCA can be extended with non-linear kernel
functions (see, e.g., Gretton et al., 2005).

2.5.5 Multi-task and transfer learning

In multi-task learning (Caruana, 1997) and transfer learning (Thrun, 1995), there
are two or more related tasks, and the question is how to use the information
from learning one task in the other tasks. Multi-task learning concerns using a
shared representation for a set of subtasks, while transfer learning concerns how
to use knowledge learned from one problem to another problem.

As an example of transfer learning from the area of NLP, Sutton and McCallum
(2005) consider transfer learning with CRFs, undirected graphical models. Their
main task is annotating a set of e-mails that announce seminars at a university.
As it involves finding location and person names, named-entity tagging is a
related task. A basic approach is to cascade the two tasks so that the tagged
named-entities are used as features for the main task. Training a joint model for
both tasks is usually expensive in computation time and requires joint training
data. Instead, they train cascaded CRF models separately, but combine them for
making new predictions.

2.5.6 Reinforcement learning

Reinforcement learning is concerned with a setting that differs from those men-
tioned above. It requires an active learner, called agent, that performs actions
in some real or simulated environment. The outputs of the learner are thus ac-

49

Machine learning essentials

tions. Input data for the agent are the state of the environment and a reward.
Instead of having direct answers for which single output is desirable and which
is undesirable (as in supervised learning), the learner has to first perform sev-
eral actions, and only later it is either rewarded or penalized for them. In the
extreme case, the reward is given only when the agent reaches its goal. Thus the
agent has to learn a sequence of actions, a policy, that enables it to reach the goal
state, by trial and error. In the more complex and realistic settings, the state of
the environment is only partially observable. There may also be multiple agents
that should learn to interact and co-operate or compete. The applications of re-
inforcement learning to NLP have been limited, but include dialogue systems
(Singh et al., 1999) and mapping instructions to actions (Branavana et al., 2009).

2.6 Parametric machine learning

This section gives an overview of the components required by a parametric ma-
chine learning method: a model, a cost function, and a learning algorithm. Par-
ticular emphasis is given to the questions of parameter estimation and model
selection.5

The selection of a point hypothesis in parametric methods can be formalized
as choosing a finite-dimensional parameter θ ∈ Θ, where Θ is the parameter space
of the model M. The model defines the collection of all possible outcomes of the
learning, and θ defines which of the possible outcomes is in use. The advantage
of the methods is that the problem of learning reduces to the estimation of a
usually small number of model parameters (for example, the mean and variance
of a Gaussian distribution). However, if the selected model does not fit the data,
the bias may result in large errors.

2.6.1 Cost function

The point hypothesis is generally selected by minimizing a cost function (also
called loss or objective function) L(θ, D,M) that depends on the parameters,
model, and the data set. In a simple case of predicting one observed variable
y based on another observed variable x, the cost may simply be the number of
errors the predictions give for the data set.

Selecting the parameters θ ∈ Θ for a fixed model M is called parameter es-
timation. When there are several choices of parameters that minimize the cost
function for the given data, the optimization problem is ill-posed (Alpaydin, 2004,
p. 32). For example, fitting a third degree polynomial to three data points has
an infinite number of solutions. In this typical example, the model is too com-
plex for the data. In order to get a unique solution, additional bias has to be
entered either into the model (e.g., accept only second degree polynomials) or
the cost function (e.g., give smaller cost to polynomials in which the high-degree
coefficients are zeros).

If the hypothesis class is not restricted to a single model, the cost function will
depend on both the model and its particular choice of parameters. For example,
one might have H = M(1) ∪ M(2) ∪ . . ., where M(k) denotes the kth degree
polynomials. A set of models that differ only in a limited manner (e.g., the

5 Textbook introductions on parametric learning are found, for example, from Alpaydin
(2004, Ch. 4) and Bishop (2006, Ch. 1).

50

Machine learning essentials

degree of the polynomial) is usually referred to as model family. The term model
selection refers to the selection of one model M ⊂ H from a model family or a
collection of model families in H.

While parameter estimation and model selection are often considered sepa-
rately, they are related in that both can be dealt within the choice of the cost
function. The difference between the two is that in parameter estimation, there
is one model with a fixed number of parameters, and in model selection, there
is a model family or collection among which the number of parameters differ.
However, the division is less clear if one strives, for example, for a sparse repre-
sentation, in which most of the parameters should be close to zero.

2.6.2 Maximum-likelihood estimate

For a model that defines the density function for the training data, the simplest
choice of cost function is the inverse of the data likelihood:

L(θ, D) ∝
1

p(D | θ)
(2.43)

That is, the goal is to select the model that maximizes the likelihood; hence the
result is called maximum-likelihood estimate (MLE). To simplify the notation in the
case of parameter estimation only, the model M is excluded from the formulae.
Moreover, the best choice of parameters for a cost function L is denoted briefly
θ̂L(D) = arg minθ L(θ, D). The MLE can be written also by using log-likelihood:

θ̂ML(D) = arg min
θ

{− log p(D | θ)
}

, (2.44)

as the logarithm is a monotonic function. In regression tasks, assuming Gaus-
sian distributed error and maximizing the likelihood of the model corresponds
to minimizing the sum of squared errors.

2.6.3 Overfitting and underfitting

Usually the model should be able to predict new data, not just describe or visu-
alize the observed data set. Then the learner has to generalize the observed data
set to be able to predict the output for such input that was not present in the set.
For evaluation purposes, available data is divided into two independent parts:
training data set Dtrain and test data set Dtest. First, the training set is used to learn
the model parameters by minimizing the value of the cost function:

θ̂ = arg min
θ

L(θ,M, Dtrain). (2.45)

Then the test set is used to calculate the cost with the learned parameters: Ltest =

L(θ̂,M, Dtest). A much higher cost on the test data than on the training data is
an indication of overfitting: the model was able to describe the training data
accurately, but not to generalize to new data samples. Again, this is often due to
permitting models that are more complex than the function underlying the data.
The opposite, too simple a model, results in underfitting and shows in high cost
for both the training and the test data.

The cost functions derived from MLE are concerned only with how accurately
the training samples can be modeled. Combined with complex models and a
limited number of training samples, the model is easily overfitted, as the best

51

Machine learning essentials

option is to select such a complex model that it fits the training data perfectly.
This is especially problematic if the training data has noise that should not be
modeled.

2.6.4 Cross-validation

Cross-validation is a method for finding the model of optimal complexity while
using a cost function based on maximum likelihood. The original training data
set is divided into two distinct sets: a new training set Dtrain and a validation set
Dvalid. The former is used for training the model, and the latter for calculating
the cost for unseen data. Increasing the model complexity decreases the cost for
training data, but as soon as the increased complexity results in overfitting, the
cost for the validation set stops decreasing and may even start to increase. This
point corresponds to the optimal level of complexity.

The drawback of cross-validation is that it requires a large number of data
samples. This can be alleviated by k-fold cross-validation: the training data is
divided into k subsets, of which one at a time is used as a validation set and the
others as training set. Thus all the data samples are used both for training and
validation. Obviously, k-fold cross-validation requires that the model is trained
k times for each set of parameters, making it computationally burdensome.

2.6.5 Regularization

Regularization is a common heuristic for parameter estimation or model selec-
tion. The cost function is augmented to give a penalty for complex models.
Given a function C(·) that evaluates how complex the model is for the current
model parameters, the augmented cost function is

L̂(θ, D) = L(θ, D) + λC(θ), (2.46)

where λ gives a weight for the penalty. The weight can be optimized using cross-
validation. For numerical parameters, typical choices of C(·) are the number
of non-zero parameters (�0 regularization), the sum of the absolute values (�1

regularization) or squared values of the parameters (�2 regularization). The �0

and �1 regularizations strive for sparse parameters, but the cost function is easier
to optimize with �2 regularization: for �1, the function is not differentiable, and
for �0, the function is not even continuous.

In structural risk minimization (Vapnik, 1999), the complexity of a binary classi-
fier is measured by the Vapnik–Chervonenkis (VC) dimension of the model. In
brief, VC dimension is the largest number of data points for which the classifier
learns any binary labeling without errors. For example, the VC dimension of a
linear classifier y = sign(wTx + b) is three.

2.6.6 Bayesian parameter estimation

Bayesian inference provides a theoretically rigorous way to derive the cost func-
tion given that the model is correct and the learner has a prior belief in the model
parameters. From Bayes’ theorem, we can say that the probability of parameters
θ given the data D, called the posterior probability, is

p(θ | D) =
p(θ)× p(D | θ)

p(D)
. (2.47)

52

Machine learning essentials

That is, the posterior probability of θ is the product of the prior p(θ) and data
likelihood p(D | θ) up to a normalization term that does not depend on θ.

To proceed, one option is to use a cost function that maximizes the posterior
probability; for example

L(θ, D) ∝
1

p(θ | D)
(2.48)

This gives the maximum a posteriori (MAP) estimate for the parameters:

θ̂MAP = arg max
θ

p(θ | D) = arg max
θ

{
p(θ)× p(D | θ)

}
(2.49)

Another possibility, called the Bayes estimator, is to take an average over all θ

weighted by their posterior probabilities:

θ̂Bayes = arg max
θ

∫
p(θ | D)θdθ. (2.50)

However, instead of selecting a point estimate of the parameters, the Bayesian
approach supports using directly the posterior distribution, if the form of its
density function is tractable. The probability of a sample x can then be calculated
by marginalizing over the parameters:

p(x | D) =
∫

p(x | θ)p(θ | D)dθ. (2.51)

This is sometimes referred to as the full Bayesian approach. A practical problem
with this approach is that the integral often cannot be derived in analytical form,
and approximation methods are required (see, e.g., Bishop, 2006, Ch. 10).

The Bayesian approaches are dependent on the selection of the prior probabil-
ity, which may sometimes be hard to come up with. Non-informative priors are
intended to have as little influence on the posterior distribution as possible. For
example, if a discrete parameter has K possible values, the prior of each value
can be simply set to 1/K. Such priors have little effect on the cost function when
the number of parameters is fixed.

2.6.7 Bayesian model selection

The Bayesian approach can also be applied to model selection. Consider a set of
models M(1), . . . ,M(n). The Bayesian marginal likelihood for M(k) is

p(D |M(k)) =
∫

p(θ(k) |M(k))p(D | θ(k),M(k))dθ(k). (2.52)

Bayesian model selection favors the model with the largest p(D |M(k)). When
comparing two models, the so-called Bayes factor

K =
p(D |M(1))

p(D |M(2))
(2.53)

can be used to decide which of the models has more evidence. The Bayesian
information criterion (BIC) by Schwarz (1978) approximates the integrals of the
marginal likelihoods to obtain

BIC = −2 ln p(Dtrain|θ) + k ln n, (2.54)

53

Machine learning essentials

where k is the number of free parameters to be estimated and n is the number
of observed data samples. A smaller BIC score is favored. The Akaike informa-
tion criterion (AIC) gives a similar result with an information theoretic approach
(Akaike, 1974).

If model priors p(M(k)) can be defined, an alternative to selecting a single
model is model inference:

p(M(k) | D) =
p(M(k))p(D |M(k))

∑n
i=1 p(M(i))p(D |M(i))

, (2.55)

Similar to Equation 2.51, p(x | D) can be obtained by marginalizing over the
models; this is called Bayesian model averaging (Hoeting et al., 1999).

The model priors can also be applied to get a point hypothesis h = (θ(i),M(i))

with the MAP estimate

p(θ(i),M(i) | D) ∝ p(θ(i),M(i))p(D | θ(i),M(i))

= p(M(i))p(θ(i) |M(i))p(D | θ(i),M(i)). (2.56)

It is more or less arbitrary which differences between two point hypotheses are
considered to originate from different models and which from different param-
eters: one can always do reparametrization that eliminates the difference (e.g.,
φ = (i, θ(1), . . . , θ(n)), M̄ =

⋃n
i=1 M(i)). Still, it is often clearer to set a prior

first for M(i) and then for θ(i) given M(i). A model prior that gives a higher
probability the simpler the model is may help with overfitting, even when non-
informative priors are used for the parameters. This approach is very similar to
the minimum description length principle, discussed next.

2.6.8 Minimum description length principle

The minimum description length (MDL) principle by Rissanen (1978, 1989) is
an information-theoretic approach to model selection. It has several variants
as well as closely related approaches. The basic motivation that is common to
them is the following: Learning is finding regularities in the data. As any regu-
larity in the data can be used to compress it, learning can be viewed as compression.
Other philosophical views endorsed by MDL developers are that models are
languages (or less universally, codes) describing useful properties of the data,
and that in practice there is no “true” model that could be identified from the
hypothesis class. Accordingly, a learning method should have an interpretation
which depends only on the data, as MDL does.

Given an arbitrary data set, the shortest imaginable code length is provided by
a universal machine: the algorithmic complexity of the data. As the complexity
cannot be calculated, this is called ideal MDL in contrast to the “practical” MDL
versions discussed next.

The first version of MDL introduced by Rissanen (1978) is the two-part coding
scheme, referred to as crude MDL by Grünwald (2005). It can be explained in the
terms of source coding (Figure 2.7, page 42): the goal is to encode a set of data D
from source p(X) with the minimum possible number of bits so that it can still
be recovered by the decoder. The encoding is based on a point hypothesis h from
the selected hypothesis class H. Each hypothesis is associated with a probability
distribution p(X | h). While the hypothesis class is assumed to be known to both
encoder and decoder, the point hypothesis is not. Thus first the hypothesis is
encoded, using description length of l(h) bits, and then the data is encoded with

54

Machine learning essentials

the help of the hypothesis, using description length of lh(D) bits. The sum of the
two lengths is the total code length:

l(D, h) = l(h) + lh(D). (2.57)

The best point hypothesis h minimizes this sum, and the best model M ∈ H is
the smallest model containing the selected h.

To apply MDL, the description lengths for both the hypothesis and the data
given the hypothesis have to be decided. The latter is evident: The optimal
coding (cf. Section 2.4.2, page 41) associated with the distribution p(D | h) gives
the minimum coding length: lh(D) = − log2 p(D | h). However, the two-part
coding does not give guidelines for choosing a code for the hypothesis other
than that (1) the decoder has to be able to define p(D | h) based on it, and (2) the
code length should be somehow minimal.

For a single parametric model M, the parameters θ wholly encode the point
hypothesis:

l(D, θ) = l(θ)− log2(D | θ). (2.58)

By setting l(θ) = − log2 p(θ), this is equivalent to the MAP estimate with the
prior p(θ). However, there is a corresponding (non-defective) prior distribution
only if a complete code is used in the two-part coding. That is, MAP estimation
is a special case in two-part MDL.

The theory of the MDL principle is only concerned with code lengths, not the
actual codes. However, in applications such as language modeling, there is often
a trade-off between the model size and its accuracy also in practice, and one
might want to use the real encoding of the model also for the model selection.

Example. Consider a categorical source distribution p(X) with parameters
π1, . . . , πk, ∑i πi = 1. A naive coding for this model is to encode the parameters
as decimal numbers with fixed precision of P bits6, providing coding length

l(D, θ) = k × P − log2 p(D | θ). (2.59)

Assume each xi has been observed ci times in total n samples. As k × P is a
constant, minimizing the total length is equivalent to MLE and π̂i ≈ ci/n. The
approximation error depends on P and increases the description length of the
data. The more accurately the parameters are described, the more l(θ) increases,
but at the same time − log2 p(D | θ) decreases. Thus the optimal P must make a
compromise between the two parts.

A more clever two-part coding stores directly the counts ci. Then πi = ci/ ∑i ci
gives the exact MLE solution. Encoding integers 0 ≤ ci ≤ n requires log2(n + 1)
bits, as there are n + 1 possible values to choose from. First, however, n has to
be encoded, as it is not known to the decoder. Positive integers can be encoded
with a complete code of log2 c + log2 n + log2 log2 n + . . . bits, where c ≈ 2.865 is
constant and the sum involves only finite non-negative terms (Rissanen, 1983).
While the overall coding is valid for decoding, the code for the counts ci is still
defective:

∑
x∈X n

2−k log2(n+1) =

(
n + k − 1

n

)
(n + 1)−k < 1. (2.60)

6 For example, binary encoding π̂i = 1 − ∑P
j=1 bj2−j, bj ∈ {0, 1}, gives 0 < π̂i ≤ 1. The

decoder may have to normalize the probabilities π̂i so that they sum up to one.

55

Machine learning essentials

The factor (n+k−1
n) gives the number of possible data sets of length n.7 This

observation indicates a design for a complete code: each possible combination
for the parameters is given its own log2 (

n+k−1
k) bit code. The corresponding

prior can be considered non-informative: each θ ∈ Θ has an equal probability.
Figure 2.10 illustrates code lengths for a k-dimensional categorical model with

different parameter encodings discussed above: fixed precision codings for P ∈
{2, 4, 8} bits, integer coding, and combinatorial coding. For the graphs in the top
row, the number of samples n in the training data varies from 10 to 500. The left-
side graph shows how the model coding length for integer and combinatorial
coding increases with n. Using more bits to encode parameters estimated on
larger number of samples makes sense, as with a small number of samples, the
parameters will not be accurate anyway. Combinatorial coding is clearly more
efficient than the integer coding.

0 100 200 300 400 500
Number of samples n

0

10

20

30

40

50

60

70

80

90

l m
(θ
)

Model code length

0 100 200 300 400 500
Number of samples n

0

10

20

30

40

50

60

70

80

90

l m
(θ
,D

)
−
l M

L
E
(D

)

Total code length difference to MLE

0 100 200 300 400 500
Number of samples n

1.80

1.85

1.90

1.95

2.00

2.05

2.10

H
m
(X

)

Cross-entropy to source distribution

0 10 20 30 40 50
Number of categories k

0

50

100

150

200

250

300

350

400

450

l m
(θ
)

Model code length

0 10 20 30 40 50
Number of categories k

0

50

100

150

200

250

300

350

400

450

l m
(θ
,D

)
−
l M

L
E
(D

)

Total code length difference to MLE

0 10 20 30 40 50
Number of categories k

0

1

2

3

4

5

6

H
m
(X

)

Cross-entropy to source distribution

fixed 2-bit fixed 4-bit fixed 8-bit integer combinations

Figure 2.10. Comparison of different coding schemes for model parameters of categorical distri-
bution. Each point is average results over 20 distributions, for which the parameters
were generated from a Dirichlet distribution with α = (1, 1, . . . , 1). In the top row,
the number of samples n is varied and the number of the categories k = 5. In the bot-
tom row, n = 400 and k is varied. Left: model code length lm(θ). Middle: difference
between the total code length lm(θ, D) and the data cost lMLE(D) for the maximum-
likelihood parameters. Right: cross-entropy Hm(X) of the model and original source
distribution. The cross-entropies of the fixed 8-bit and integer coding are not shown,
as they are almost equal to those of the combinatorial coding.

The difference between total code lengths and the MLE data code length is
shown in the middle of Figure 2.10. The approximation error clearly increases
the total code lengths of 2 and 4 bit fixed precision encodings, but not anymore
the length of the 8-bit encoding. On the right, cross-entropy of the models for the
original distribution shows that 8 bits is indeed required to get as good accuracy
as with exact ML estimates.

While the fixed 8-bit coding seems to be a very good option for this model
if n > 250, the situation is different if the number of categories is increased.
The bottom-left graph of Figure 2.10 shows that the model code length grows

7 The number of ways to choose k non-negative integers that sum up to n is (n+k−1
n).

56

Machine learning essentials

linearly for the integer and fixed-precision codings, but only sub-linearly for the
combinatorial coding. Thus the combinatorial coding obtains a small lm(θ) even
for large k and n while having the best possible lm(D | θ).

Theoretically optimal codes, such as the combinatorial coding above, are often
impractical to implement. Thus it may sometimes be more useful to apply a
defective code that follows the real implementation of the model—for example
using a fixed number of bits to store each real-valued parameter as a floating
point number. Then the model instance that minimizes the total code length
will be optimal for the corresponding compression task.

2.6.8.1 Refined MDL

Refined MDL (Rissanen, 1996; Barron et al., 1998) differs from crude MDL in
that it tries to directly select the best model instead of first finding the best point
hypothesis. In the parametric case, the model parameters are not explicitly en-
coded. This results in one-part codes, which are theoretically shorter than the
two-part codes.

A central concept in refined MDL is universal coding. Consider a set of can-
didate codes H. The encoder cannot directly select the best h ∈ H based on
the observed data D and send the data compressed by h, as then the decoder
would not know which of the codes was used. Thus there cannot be a coding
that would yield a code length equal to or smaller than minh∈H lh(D) for all data
sets D. However, universal codes can do almost as well: a code u that is univer-
sal relative to the candidate codes H is able to compress every data sequence so
that the regret

R(u) = lu(D)− min
h∈H

lh(D) (2.61)

grows sublinearly in the number of samples n. As the data code length typically
grows linearly in n, a universal code can do in practice as well as the best choice
of hypothesis for a large enough data set.

If the number of candidate codes is finite (H = {h1, h2, . . . , hM}), there is a
simple universal two-part code. First, encode which code to use, taking log2 M
bits, and then encode the data with selected code. The resulting code length

l2-p(D) = min
h∈H

lh(D) + log2 M (2.62)

does not depend on the number of samples, so the coding is universal. For
another concrete example, consider the k-dimensional categorical distribution
with combinatorial parameter encoding discussed above. The ML estimate is
optimal among the model instances. Using an upper bound for the binomial
coefficient,

l2-p(D) = − log2 p(D | θ̂ML) + log2

(
n + k − 1

n

)
+ log2 n + O(log2 log2 n)

≤ − log2 p(D | θ̂ML) + log2
(n + k − 1)k

k!
+ log2 n + O(log2 log2 n).

(2.63)

As the model code length increases sublinearly in n, the coding is universal.
The optimal universal code should minimize the maximal regret

Rmax(u) = max
D∈X n

{
lu(D)− min

h∈H
lh(D)

}
, (2.64)

57

Machine learning essentials

which measures the additional number of bits needed to encode the data com-
pared with the best h in the worst case. For a parametric model M, the minmax
regret is

min
q

max
D∈X n

{
− log2 q(D)− [− log2 p(D | θ̂ML(D))

]}
, (2.65)

where θ̂ML(D) denotes the ML estimate of parameters for given data D. The dis-
tribution q that uniquely achieves this is called the normalized maximum-likelihood
distribution, proposed by Shtarkov (1987):

pnml(D) =
p(D | θ̂ML(D))

∑D′∈X n p(D′ | θ̂ML(D′))
=

p(D | θ̂ML(D))

COMPn(M)
. (2.66)

The denominator is the larger the more there are different data sets that have
high probabilities with the respective ML estimates. As complex models are
more likely to accomplish in this than simple models, it is called model complex-
ity. It has several interpretations (Grünwald, 2005). One is that it measures the
number of distinguishable distributions in the model. If the parameter set is finite
(Θ = {θ1, . . . , θM}), the complexity converges to log2 M as n → ∞, showing that
two-part code with a uniform prior on the parameter space is asymptotically op-
timal in the sense of Equation 2.65. A similar result holds for Bayesian model
selection with certain non-informative priors for the models of the exponential
family.

While being theoretically motivated, refined MDL has many computational
problems: COMPn(M) may be infinite, in which case the pnml is undefined.
Even if finite it may be impossible to calculate, as the number of possible data
sets often grows exponentially with n. For example, if n = 100 and X has k = 10
distinct items, the number of possible data sets is 10100. Even if restricted to
the first-order Markov models, there are (100+102−1

100) ≈ 1058 data sets that give
different ML estimates. Different types of extensions are required to deal with
infinite model complexity as well as non-parametric inference. In the present
work, only the two-part codes is applied.

2.6.8.2 Minimum message length principle

An approach that has many similarities to MDL is the minimum message length
(MML) principle (Wallace and Boulton, 1968; Wallace and Freeman, 1987). Both
MML and MDL are inspired by the notion of algorithmic complexity, study
learning in the terms of encoding, and set the goal to minimizing the total code
length of the data and model. The main differences are the following (Wallace
and Dowe, 1999; Grünwald, 2005): First, the goal of MML is to select the best
point hypothesis, whereas MDL is designed for model selection. Consequently,
the one-part codings studied in refined MDL are not relevant for MML. Second,
MML is fully Bayesian and assumes subjective priors, while MDL uses non-
informative priors and codes that do not always give proper probabilities.

2.6.9 Learning algorithms

If there is no analytical solution for calculating the parameters that minimize the
selected cost function, a learning algorithm, or optimization procedure, is needed
(Alpaydin, 2004, p. 36). The complexity of the algorithm, in both time and

58

Machine learning essentials

space, should be low enough for the processing power and memory in use. The
complexity is often analyzed as a function on the properties of the data, such as
the number and dimensionality of the data samples, as well as the number of
parameters in the model.

The goal of the learning algorithm is to find the global optimum of the cost
function, minθ L(θ,M, Dtrain). However, global optimization is often impossi-
ble in practice. The only general way, brute force search, requires that all possible
choices of parameters are tested, and the number of choices tends to be huge,
if not infinite, as in any continuous parameter space. Often one has to settle for
finding a local optimum, with no guarantee of how close it is to the global opti-
mum. Greedy algorithms search for a local optimum by making locally optimal
changes to the parameters at each step. A simple way to improve the situation
with many local optima is to run the search algorithm several times with dif-
ferent starting conditions, and select the best overall result. Another common
heuristic is simulated annealing (Kirkpatrick et al., 1983), in which non-optimal
choices are made during the search with a probability that decreases in time.

2.7 Non-parametric and semi-parametric models

Non-parametric machine learning differs from the general parametric setup de-
scribed above. The term non-parametric is sometimes misleading, as the mod-
els may still have parameters. However, the parameters are more flexible in
some manner: they either coincide directly with the training data samples, grow
with the number of samples, or the parameter vector may be very high or infi-
nite dimensional, so that it is not possible to estimate and store it directly. The
term semi-parametric is used for models that have both parametric and non-
parametric components.

2.7.1 Memory-based learning

Memory-based or instance-based learning algorithms are strictly non-parametric:
instead of selecting parameters based on the training samples, they directly store
the samples. The prediction on a new sample is then based on those stored sam-
ples that are most similar to it. The basic assumption required by this approach
is that the similar inputs have similar outputs. The advantage is that the model is
trivial to adapt when new samples are observed, without the need to re-estimate
any parameters. The model complexity grows automatically with the amount of
data. A drawback is that the worst case memory and time complexities are at
least O(n) for n samples.

One of the oldest and most popular non-parametric methods is the histogram
estimator. A histogram estimates probability density function p(X) by dividing
the input space into equal-sized intervals called bins, and gives each point in the
input space a probability proportional to the number of training samples in the
corresponding bin. Kernel density estimators are extensions of histograms that use
smooth regions of influence for the training samples.

Another simple, memory-based algorithm is k-nearest neighbors (KNN) classi-
fication. For a given sample x, the k most similar stored samples are searched.
The prediction y is based on majority vote of the classes of the nearest samples.

Memory-based learning has been studied for several supervised tasks in lan-

59

Machine learning essentials

guage processing (Daelemans and van den Bosch, 2005). Daelemans et al. (1999)
argue that keeping exceptional training instances in memory is beneficial for
generalization accuracy. One practical application for the approach is example-
based machine translation (van den Bosch et al., 2007).

2.7.2 Kernel methods

Kernel methods are a class of non-parametric extensions for various types of
learning methods. One of the first and most popular algorithms using kernels
is the support vector machine (SVM) by Cortes and Vapnik (1995). SVM is used in
classification and regression problems, but kernel methods can also be applied,
for example, in dimensionality reduction and multi-view learning.

Consider a function φ(·) that projects the data samples into a feature space Z
of high or infinite dimensionality. If φ(·) is non-linear, even a very simple algo-
rithm applied in Z can solve complicated, non-linear problems. Kernel methods
provide a way to do that in practice.

If the cost function used by the algorithm can be written in a form that includes
only scalar products xT

i xj, often referred to as the dual form, it is possible to apply
a kernel function. The kernel function k : X ×X �→ R defines the product of two
vectors xi and xj in Z :

k(xi, xj) = φ(xi)
Tφ(xj) (2.67)

Valid kernel functions, for which this decomposition exists, are finitely positive
semi-definite, and the corresponding space Z is called reproducing kernel Hilbert
space (Shawe-Taylor and Cristianini, 2004, Ch. 3). Typical kernels for real-valued
data include polynomial kernels and Gaussian kernels. Kernels can also be de-
vised for discrete data such as sets or strings. For example, Lodhi et al. (2002)
use string kernels for text classification.

Replacing the scalar product xT
i xj with a kernel function is called kernel sub-

stitution or kernel trick. The kernel function has to be calculated over all pairs
of training samples. For n samples, this gives an n × n matrix K, where Kij =

k(xi, xj). As n is usually larger than the original dimension of the data, the kernel
trick comes at the cost of increased computational complexity.

2.7.3 Mixture models

Mixture models can be seen as semi-parametric density estimators (Alpaydin,
2004, Ch. 7). Instead of using a single parametric distribution or a non-paramet-
ric histogram based on the observed samples, a set of parametric distributions
are fitted into the space according to the location of the samples.

Mathematically, the samples x are assumed to come from a mixture of K in-
dependent mixture components cj. Each component is associated with a density
p(x | cj, θ) of a parametric distribution. The mixture density is

p(x | θ) =
K

∑
j=1

p(cj | θ)p(x | cj, θ), (2.68)

where θ includes the prior probabilities p(cj | θ) and parameters of the compo-
nent distributions. The number of parameters in θ is finite and independent of
the data samples. However, in order to estimate the parameters of the model,
there has to be a way to decide which data samples are generated from which

60

Machine learning essentials

mixture components. The assignment can be considered as a hidden variable
Y, where y ∈ {1, . . . , K} assigns sample x to mixture component cy. The dimen-
sionality of the parameter vector y grows with the number of the samples, which
justifies the categorization to semi-parametric methods. The EM algorithm used
for learning the parameters is described in Section 2.8.5.

2.7.4 Non-parametric Bayesian methods

Non-parametric Bayesian methods apply models that have potentially infinitely
many parameters (Müller and Quintana, 2004). As in frequentist non-parametric
methods such as histograms, they try to avoid parametric assumptions. For ex-
ample, infinite mixture models (Rasmussen, 2000) estimate an arbitrary number of
mixture components, and infinite hidden Markov models (Beal et al., 2002) estimate
an arbitrary number of states.

The non-parametric Bayesian models are usually based on stochastic processes
such as the Dirichlet process (Ferguson, 1973) and its generalization, the Pitman-
Yor process (Pitman and Yor, 1997), whose domains are themselves random dis-
tributions. That is, the input of a random process P is a base distribution G0 and
optionally some parameters θ, and its output is a new distribution G:

G | G0, θ ∼ P(G0, θ) (2.69)

Both the Dirichlet process (DP) and the Pitman-Yor process (PYP) implement a
“rich gets richer” phenomenon. Thus they are suitable for modeling power-law
distributed data such as language (Goldwater et al., 2006; Teh, 2006; Huang and
Renals, 2010a). In consequence, some details are provided here.

Goldwater et al. (2006, 2011) describe language models based on DP or PYP
as two-stage models. At the first stage, a sequence l = (l1, . . . , lK) of K discrete
lexical items is generated by a generator G. Each li is generated independently,
which means that there may be repetitions. At the second stage, adaptor P gen-
erates a sequence of n integers z, where 1 ≤ zi ≤ K. The output of the two-stage
process TwoStage(P, G) is then the sequence w = (w1, . . . , wn), where wi = lzi .

The adaptor for DP is a Chinese restaurant process (CRP) and the adaptor for PYP
is Pitman-Yor Chinese restaurant process (PYCRP) (Goldwater et al., 2011). The
names originate from the analogy of a restaurant that has an infinite number
of tables with infinite number of seats. The current seating arrangement for i
customers is zi

1 = (z1, . . . , zi). When the (i + 1)th customer enters the restaurant,
she selects the kth table with a probability that depends on how many people are
already sitting at the table, denoted ck(zi

1). In PYCRP,

p(zi+1 = k | zi
1, d, θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ck(zi

1)− d
θ + i

if 1 ≤ k ≤ t(zi
1)

θ + dt(zi
1)

θ + i
if k = t(zi

1) + 1

, (2.70)

where t(zi
1) is the total number of occupied tables, and 0 ≤ d < 1 and θ > 0 are

parameters of the process. When d = 0, PYCRP is equivalent to the CRP process,
in which the probability of an occupied table is proportional to the number of
customers seated and the probability of a new table is proportional to θ.

In TwoStage(PYCRP(d, θ), G) or PYP(G, d, θ), the kth table is labeled according
to the lexical item lk generated by G. The probability that the outcome wi+1 is w

61

Machine learning essentials

is given by

p(wi+1 = w | zi
1, l(zi

1), d, θ, G) =
t(zi

1)

∑
k=1

I(lk = w)
ck(zi

1)− d
θ + i

+
dt(zi

1) + θ

θ + i
G(w)

=
cw(wi

1)− dtw(zi
1)

θ + i
+

θ + dt(zi
1)

θ + i
G(w), (2.71)

where l(zi
1) are the labels for the tables in zi

1, tw(zi
1) is the number of tables

labeled with w, and cw(wi
1) is the number of occurrences of word w in wi

1. The
new outcome w may then be generated either by any of the current tables labeled
by w (the first term of Equation 2.71) or from the base distribution G (the second
term). The two-stage language models are further discussed in Section 4.2.3 and
Section 6.4.3.

2.8 Common unsupervised learning methods

This last section on machine learning describes a few common unsupervised
learning methods and algorithms that are relevant for the rest of the thesis.

2.8.1 Matrix decompositions

Let X be a square n × n matrix. Eigenvectors of the matrix are non-zero vectors
that either remain proportional to the original vector when multiplied by the
matrix, or become zero. The corresponding eigenvalues are the factors by which
the eigenvectors change when multiplied by the matrix. That is, for eigenvector
v and eigenvalue λ,

Xv = λv. (2.72)

If X has n linearly independent eigenvectors (i.e., there is no eigenvector vi such
that vi = ∑j �=i ajvj), X can be factorized as

X = VDV−1, (2.73)

where V is square matrix of the eigenvectors vi and D is the diagonal matrix of
the eigenvalues. This is called eigenvalue decomposition. If none of the eigenvalues
are zero, X is non-singular and has the inverse X−1 = V−1D−1V.

Singular value decomposition (SVD) of matrix X ∈ Rm×n is

X = UDVT, (2.74)

where the orthogonal matrices U ∈ Rm×m and V ∈ Rn×n contain the left and
right singular vectors of X and the diagonal m×n matrix D contains the respective
singular values. SVD is related to eigenvalue decompositions of XXT and XTX:

XXT = UDVTVDUT = UD2UT; (2.75)

XTX = VDUTUDVT = VD2VT. (2.76)

That is, U and V are the eigenvectors of XXT and XTX, respectively, and the
diagonal of D2 has the corresponding eigenvalues.

Truncated SVD, where only the k highest singular values and the correspond-
ing singular vectors are selected to obtain X̂ = UkDkVk

T gives the best rank k
solution for

min
X̂

‖X − X̂‖F, (2.77)

62

Machine learning essentials

where ‖A‖F =
√

∑i ∑j a2
ij is the Frobenius norm. A k-dimensional representa-

tion for the samples can be obtained by projecting X̂ into the space spanned by
the left singular vectors corresponding to the k largest singular values:

Y = Uk
TX̂ (2.78)

The same projection can be used for any new samples x ∈ Rm.

2.8.2 Principal component analysis

Principal component analysis, first proposed by Pearson (1901), is the projection
of a d-dimensional variable x into the space spanned by the orthogonal compo-
nents of the largest variance. The first principal component is

w1 = arg max
‖w‖=1

Var[wTx] = arg max
‖w‖=1

E[(wTx)2]− (wTE[x])2. (2.79)

The subsequent components are maximized similarly but with the restriction
that they are uncorrelated with the previous components.

Let X̄ be a centered data matrix, where the sample mean vector μ of the data
is subtracted from each column of X. PCA can be calculated by eigenvalue de-
composition of the sample covariance matrix

Cx =
1

N − 1
X̄X̄T, (2.80)

or equivalently, singular value decomposition of X̄ (cf. Equation 2.75). The first
k eigenvectors or left singular vectors give the k first principal components W.
The projected data is obtained by

Y = WTX̄. (2.81)

The projection is called the Karhunen-Loève transform. If X has a zero mean, it
coincides with the truncated SVD projection in Equation 2.78. The new features
are orthogonal. The whitening transformation Z = D−1Y, where D is the matrix
of singular values, converts the covariance matrix further into identity matrix I.

2.8.3 Canonical correlation analysis

Canonical correlation analysis, originally proposed by Hotelling (1936), is a lin-
ear method for finding relationships between two sets of variables. It finds linear
projections for each set of variables so that the correlation between the projec-
tions is maximized (Borga, 1998; Bach and Jordan, 2003; Hardoon et al., 2004).

Consider two column vectors of random variables x = (x1, . . . , xDx)
T and y =

(y1, . . . , yDy)
T with zero means. For each variable pair, we want to find linear

transformations into scalars, u1 = aTx and v1 = bTy, so that the correlation
between the scalars is maximized:

ρ1 = max
a,b

corr(u1, v1) = max
a,b

E[aTxyTb]√
E[aTxxTa]E[bTyyTb]

. (2.82)

Correlation ρ1 is the first canonical correlation and u1 and v1 are the first canoni-
cal variates. The subsequent canonical variates ui and vi are set to be maximally
correlated as in Equation 2.82 with the restriction that they are uncorrelated with

63

Machine learning essentials

all the previous variates. That is, E[uiuj] = E[vivj] = E[uivj] = 0 for all i �= j. In
total, there can be D = min(Dx, Dy) canonical variates and correlations.

There is a simple relationship between canonical correlation and mutual infor-
mation for Gaussian random variables (Bach and Jordan, 2003). If x and y are
Gaussian, the mutual information I(x; y) can be written as

I(x; y) = −1
2

ln
(|C|
|Cxx||Cyy|

)
, (2.83)

where | · | denotes the determinant of a matrix and

C =

(
Cxx Cxy

Cyx Cyy

)
≈ 1

N − 1

(
X
Y

)(
X
Y

)T

. (2.84)

is computed from observation matrices X ∈ RDx×N and Y ∈ RDy×N . Cxy = Cyx
T

is a between-sets covariance matrix and Cxx and Cyy are within-sets covariance
matrices. If Cxx and Cyy are invertible, the product of the eigenvalues ρi is equal
to the ratio of determinants in Equation 2.83. Consequently, mutual information
can be written in terms of canonical correlations (Kay, 1992):

I(x; y) = −1
2

D

∑
i=1

ln(1 − ρi
2). (2.85)

To calculate the canonical correlations from observed data, the expectations in
Equation 2.82 are replaced by sample-based estimates:

ρ1 = max
a,b

aTCxyb√
aTCxxa

√
bTCyyb

. (2.86)

Since the solution is not affected by re-scaling a or b, the maximization problem
is equal to maximizing the numerator subject to

aTCxxa = bTCyyb = 1. (2.87)

As reviewed for example by Bach and Jordan (2003), CCA reduces to solving the
following generalized eigenvalue problem:(

0 Cxy

Cyx 0

)(
a
b

)
= ρ

(
Cxx 0

0 Cyy

)(
a
b

)
. (2.88)

The results is Dx + Dy eigenvalues {ρ1,−ρ1, . . . , ρD,−ρD, 0, . . . , 0}, such that
ρ1 ≥ ρ2 ≥ · · · ≥ ρD. The eigenvectors A = (a1, . . . , aD)

T and B = (b1, . . . , bD)
T

corresponding to D non-zero canonical correlations are the basis vectors for the
canonical variates U = (u1, . . . , uD)

T = ATX and V = (v1, . . . , vD)
T = BTY.

In order to get decent estimates, the sample size N has to be large enough
compared with the dimensionalities Dx and Dy. A standard condition in CCA
is N/(Dx + Dy) � 1. If the ratio is small, the sample covariance matrix Cxy

may become ill-conditioned for the eigenvalue problem, leading to an overfit-
ted CCA solution with canonical correlation of exactly one. Furthermore, the
sample covariance matrices Cxx and Cyy may also be singular or near singular,
leading to unreliable estimates of their inverses. This problem can be alleviated
by using regularization in the constraints of Equation 2.87 (Leurgans et al., 1993;
De Bie and De Moor, 2003; Hardoon et al., 2004). In practice, a small positive
value is added to the diagonal of Cxx and Cyy in the eigenvalue problem.

64

Machine learning essentials

The applicability of classical CCA is restricted by its reliance on a linear de-
pendence measure. Several authors (Lai and Fyfe, 2000; Akaho, 2001; Melzer
et al., 2001) have presented a CCA extension that enables nonlinear transforma-
tions using kernel functions. In kernel canonical correlation analysis (KCCA),
the data is projected into a feature space of high dimensionality using kernel
functions, and CCA is computed in the kernel space. Because of the high di-
mensionality in the kernel space, KCCA overfits without proper regularization
(Bach and Jordan, 2003; Hardoon et al., 2004).

2.8.4 Hierarchical and K-means clustering

There are two basic approaches to hard clustering: hierarchical clustering and
partitional clustering. Hierarchical clustering builds a hierarchy of clusters called
dendrogram based on the distances d(·, ·) between the samples. In the top of the
hierarchy, all samples are in one cluster, and in the bottom, all are in their own
clusters. In between, there exists a threshold t such that all pairs of clusters have
d(Ci, Cj) > t, where the distance function is extended to distances between clus-
ters. There are several options for the extension, including average of the cluster
samples, minimum distance between the samples (single-linkage), or maximum
distance between the samples (complete-linkage).

Hierarchical clustering may start with all samples in their own cluster and
proceed by combining two nearest clusters at a time (agglomerative or bottom-up
clustering), or start with all samples in one cluster and proceed by finding the
split that gives the largest distance between the two resulting clusters (divisive or
top-down clustering). One step of agglomerative clustering requires N2 compar-
isons for N clusters, while an exhaustive search for divisive clustering requires
2N−1 comparisons for a cluster of N samples, making the latter approach infea-
sible for large N.

Partitional clustering directly attempts to find the best single partition of the
samples into a set of clusters. The standard partitional clustering problem, intro-
duced by MacQueen (1967), is called K-means and formulated as follows: Given
the set of n points X in Rd and an integer K, select a set of cluster centers or
centroids M = {μ1, . . . , μK} that minimize the potential function

φ(M; X) = ∑
x∈X

min
μ∈M

‖x − μ‖2. (2.89)

Assignment of the samples to the closest centroids describes a partitioning of the
samples into the clusters as well as a partitioning of the data space into a Voronoi
diagram. Finding the solution with minimum potential has an exponential time
complexity. The standard K-means algorithm for finding a local minimum for
the problem was first proposed by Lloyd (1982): In one iteration, each sample
is assigned to its nearest centroid, and centroids are moved to the mean of their
data points. This two-step process is repeated unit convergence. After each
iteration, the potential is guaranteed not to increase, so the algorithm will always
converge.

The two obvious problems are how to select the number of clusters and their
initial positions. The former is a model selection problem, and a common pro-
cedure is to cluster with different values of K and then select one using cross-
validation or regularization heuristics. For initialization, the K-means++ method
developed by Arthur and Vassilvitskii (2007) has both a theoretical bound on ac-
curacy and good performance in practice compared with other methods.

65

Machine learning essentials

2.8.5 Expectation-maximization algorithm

The expectation-maximization (EM) algorithm (Dempster et al., 1977) solves
maximum-likelihood problems in which the likelihood is assumed to depend
on latent (hidden) variables. The most common application of EM is in mix-
ture models, where the observed variables are assumed to be generated by a
mixture of latent variables. For Gaussian mixture models, EM can be seen as
a probabilistic extension to the K-means algorithm: the centroids in K-means
are replaced by Gaussian distributions, and the assignment of the data points is
soft instead of hard. EM can also be applied to find the parameters of a hidden
Markov model. In this case it is also known as the forward-backward or Baum-
Welch algorithm (Baum, 1972).

In maximum-likelihood estimation, one tries to find model parameters θ that
would maximize the probability of the observed data X. In latent variable mod-
els, the observed data is incomplete, that is, it does not contain the instances of
the latent variable Y. Let the complete data set be Z = (X, Y). The joint distribu-
tion for Z can be calculated from

p(z | θ) = p(x, y | θ) = p(x | θ)p(y | x, θ), (2.90)

and the complete likelihood function is p(X, Y | θ).
In the EM algorithm, the first step (E-step) is to find the expected value of the

complete-data log-likelihood log p(X, Y | θ) with respect to the unknown data Y,
seen as a random variable, given the observed data X and the current parameter
estimates θi−1. The expectation can be written as a function Q:

Q(θ, θi−1) = EY
[

log p(X, Y | θ) |X, θi−1]
=
∫

y∈Y
log p(X, y | θ)p(y |X, θi−1)dy, (2.91)

The second step (M-step) is maximization of the expectation computed in the
first step, that is:

θi = arg max
θ

Q(θ, θi−1) (2.92)

After each iteration, the log-likelihood is guaranteed to increase until the algo-
rithm converges.

In mixture models (Section 2.7.3), the samples come from a mixture of K inde-
pendent sources cj with priors πj. To apply the EM algorithm, the latent variable
Y is set to give the assignments of the samples to the components: yi = j, if ith

sample xi was generated by the source cj. Given the values, the complete-data
log-likelihood becomes

log p(X, y | θ) =
n

∑
i=1

log(p(yi)p(xi | yi)) =
n

∑
i=1

log(πyi p(xi | cyi , θ)). (2.93)

To be able to use Equation 2.91, also the marginal distribution for Y is required.
For an instance of y = (y1, . . . , yn),

p(y |X, θ) =
n

∏
i=1

p(yi | xi, θ) =
n

∏
i=1

πyi p(xi | cyi , θ)

∑K
j=1 πj p(xi|cj, θ)

. (2.94)

Calculating p(yi = j | xi, θ) for each component cj and sample xi is the E-step of
the algorithm. The next step is to derive new parameters that maximize Q; see
Bilmes (1998) for details.

66

3. Linguistic data and theories

This thesis concerns mainly written language and its representation, text. Most
of the language data stored in electronic form is text, which makes it the most
important type of input for NLP applications. There are two main reasons for the
dominance of text: First, text is a very suitable representation for one-way com-
munication because reading is, in many cases, faster than listening to speech.
Second, encoding text in computers is much more efficient than encoding au-
dio. The current memory capacity of computers enables storing large amounts
of both uncompressed and compressed text. For example, an English corpus
of one million sentences and 24 million word forms takes 127 megabytes in
raw ASCII format, and 51 megabytes when encoded by the all-round compres-
sor gzip. In comparison, with medium-quality audio compression that uses 64
kbit/s, fifty megabytes is enough for less than two minutes of speech data.

The high amount of information per byte already indicates that the text rep-
resentation is very compact. As a matter of fact, text can be considered as a
compact, symbolic representation for speech. While it is also easy to think the
other way around—that is, speech signal as a medium for transferring the dis-
crete symbols of the language—speech is the original and richer representation.
Spoken languages, as well as sign languages, predate written languages, and
each of us has learned to speak (or sign) before reading or writing. Moreover,
stress and tone of the speech can certainly contain relevant information, which
is usually disregarded in the text form.1

Text data, as any other data, can be considered from two viewpoints related
to statistical modeling. First, one can look into the basic properties of the data:
What kind of units does it have? What are the distributions of the units? What
kind of visible structure is there? Second, one can look into how the data has
been generated: What kind of hidden variables affect the distributions and struc-
tures? What are the underlying processes of generation?

The first view is that of a machine learning researcher who gets a new data
set but knows nothing of its structure or origins. To build a model for unknown
data is hard. Evidently, the more knowledge of the data we have, the better
chances we have to build a good model. This gets us to the second point of
view. As Wintner (2009) argues, computational linguistics should not be only a
branch of applied statistics:

Surely there’s something unique to the strings that our systems manipulate, something
that can be theorized about and can be scientifically investigated.

1 Of course, neither does the speech signal alone contain all aspects of the act of com-
munication, such as expressions and gestures of the speaker.

67

Linguistic data and theories

Language is a special kind of data in a way that we all use it in an effortless
manner for our communication purposes. Unfortunately, it is neither easy to
describe how we understand language nor to tell what are the actual cognitive
mechanisms that provide us the understanding. This is why input from both
linguistics and cognitive sciences is important for NLP.

Many conceptual distinctions and ideas were brought to linguistics by Ferdi-
nand de Saussure (1857–1913), identified as the founder of the school of struc-
turalism. First, he distinguished the abstract language system (langue in French)
from its external manifestation, which includes the concrete acts of speech (pa-
role) and those who participate in the communication. Second, he separated syn-
chronic and diachronic axes from the study of languages. The former considers
language as a complete system at a given point of time, while the latter considers
the historical development of languages.

Following the structuralist tradition, the synchronic study of language is di-
vided according to different structures and phenomena of language. Commonly
identified subfields include phonetics (study of speech production and percep-
tion), phonology (study of sounds as abstract elements), morphology (study of in-
ternal structure of words), syntax (study of how words are combined to form
sentences), semantics (study of meaning of words, word combinations, and sen-
tences), pragmatics (study of how utterances are used in communicative acts con-
sidering the role of context and non-linguistic knowledge), and discourse (study
of language use in texts larger than a single sentence). While some of the di-
visions have been questioned, they are useful at least for defining the different
aspects of languages.

In addition to pure linguistics, this chapter considers a few results from the
subfields of cognitive science: Psycholinguistics studies how language is acquired,
comprehended, remembered, and produced by humans. Evidence for psycholin-
guistic theories are collected from experiments that record reaction times of hu-
mans, neuropsychological studies, and computer simulations (Harley, 1995).
The subfield that especially studies the neural mechanisms that control the lan-
guage-related processes in the human brain is called neurolinguistics.

This chapter is divided into two sections. The first one starts from the “raw”
properties of the language data, and gradually moves towards more complex
phenomena that can be observed in different levels of language. Special empha-
sis is given to morphology, which is one of the central topics of the thesis. The
second section provides an overview of some influential linguistic theories and
grammars, and considers them from the perspective of machine learning and
statistical modeling. The descriptions of the linguistic phenomena and theories
are based on several textbooks on linguistics (Karlsson, 2008; Leino, 1999; Levin-
son, 1983; Matthews, 1991; Saeed, 1997), psycholinguistics (Harley, 1995), and
natural language processing (Manning and Schütze, 1999; Jurafsky and Martin,
2008; Roark and Sproat, 2007). Earlier attempts to describe central linguistic phe-
nomena from the point of view relevant for statistical modeling include Honkela
(1997), Lagus (2000), and Creutz (2006).

3.1 Linguistic units and their relations

In contrast to many other types of natural data (such as measurement of po-
sition, temperature, brightness or price) text is discrete—there is a finite set of

68

Linguistic data and theories

possible items to observe—and symbolic—the items are not comparable as such
but refer to some external object. In electronic format, the basic low-level repre-
sentation of text is a string, a finite sequence of symbols (characters) chosen from
a fixed alphabet (character set, such as ASCII, ISO 8859-1 or UTF-8).

Unlike other common types of symbolic data (such as records of products
bought by the customers of a shop, answers to multiple-choice questions in a
questionnaire, or DNA sequences) language is symbolic on multiple levels. We
already mentioned letters, which exist in phonemic writing systems and more
or less correspond to the phonemes in speech.2 But the letters are not the only
symbols in text. Written language is often structured as sequences of letters sep-
arated from each other by empty space, and those sequences, words, are symbols
themselves.

For some Asian languages, such as Chinese and Japanese, the writing system
is logosyllabic and the boundaries of words are not marked in text. In logosyllabic
systems, the characters are not symbols for phonemes but morphemes or syllables.
While syllables are purely phonological units (acceptable phoneme sequences),
morphemes are yet another type of symbols. They are the smallest meaning-
bearing parts of words, and can be identified in most of the languages regardless
of the writing system. For example, birds has two morphemes, stem bird and
suffix s, which refers to multiple objects. The average number of morphemes per
word form indicates the morphological complexity of the language. Morphemes
and word formation are discussed in more detail in Section 3.1.7.

3.1.1 Distributions of the units

Given the multi-symbolic nature of written language, it can be studied as a se-
quence of letters, words, or some other units. The choice of units has a remark-
able effect on the observed distribution. The alphabet size for letters is small
(typically 20–40), and while there are differences in the frequencies of the letters,
all of them are likely to occur at least once in a document of a reasonable size.
The number of characters in logosyllabic systems can be several thousands, and
even a person considered literate may not know all of them. The size of the set
of different words, called vocabulary or lexicon, is at least tens of thousands, but
can reach millions. If we consider all the possible sentences of a language, the
number of unique items is practically infinite.

The lexicon stores all distinct types of linguistic units. An occurrence of a unit
in a fragment of text or utterance is called a token. Thus the sentence “The dog
chased the cat that chased the mouse” has six word types (the, dog, chased, cat,
that, mouse) and nine word tokens. Considering the sentence as a corpus, the
word the has count three and frequency 1/3, the word chased count two and
frequency 2/9, and the rest of the word types have count one and frequency
1/9. However, the term frequency is quite commonly used also for the (unnor-
malized) counts.

A well-known observation by Zipf (1932, 1949) is that the numbers of occur-
rences of words follow a power-law distribution. Zipf’s law, in its simplest form,
says that the kth most common word among the words of a language has a fre-
quency that is inversely proportional to k. For example, if the rank of a word
is 100, it would occur about once in a text of one hundred words. This means

2 For direct encoding of phonemes, there are specific alphabets such as the International
Phonetic Alphabet, IPA. For example, the phonetic representation for English bird is
[’b3:d], while Finnish lintu is pronounced as [’lintu].

69

Linguistic data and theories

that few words are frequent and many words are very infrequent, and results in
sparsity of the data: given a document, even a large one, only a small fraction of
possible words occur in it.

Figure 3.1 demonstrates a practical problem with sparsity, namely the high
out-of-vocabulary (OOV) rates. Assume that we are scanning through a corpus,
and collecting all linguistic units (here words or characters) that we encounter
into a vocabulary. Given a new chunk of the corpus, we can calculate the ratio
of the number of units that we have not encountered before to the total num-
ber of units in the chunk. This is the OOV rate. To compare the OOV rates
between different languages, a multilingual corpus for which some chunks of
text are aligned between languages is required. On the left side of Figure 3.1, we
observe a small corpus containing the Universal Declaration of Human Rights.
For English, even by the end of the corpus, more than one third of the words
encountered in the last lines are previously unseen. For morphologically more
complex languages, Finnish and Turkish, the OOV rate is almost 50%. Using
characters as units, the OOV rates drop to zero after twenty lines for all lan-
guages written with Latin alphabets. For Chinese and Japanese written with
logograms, the rate is still about 5% by the end of the corpus.

On the right side of Figure 3.1, the rates in a larger corpus of 2000 sentences are
shown for Finnish, German, and English. While the OOV rates drop below 10%
for English and below 30% for Finnish by the end of the corpus, the decrease be-
comes slower all the time. This means that the size of the vocabulary is growing
almost linearly with the size of the corpus.

0 10 20 30 40 50 60 70
Lines of corpus read

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

O
O

V
ra

te
fo

rt
he

ne
xt

20
lin

es

Out-of-vocabulary rate for the UDHR corpus

Finnish
Turkish
German

English
Japanese (Nihongo)
Chinese (Mandarin)

0 500 1000 1500 2000
Lines of corpus read

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

O
O

V
ra

te
fo

rt
he

ne
xt

20
lin

es

Out-of-vocabulary rate for the WPT05 corpus

Finnish German English

Figure 3.1. Out-of-vocabulary rates for running text for a set of languages. Solid lines show the
rates for words and dashed lines for characters. Left: Universal Declaration of Human
Rights corpus (Vatanen et al., 2010) aligned by articles. Right: WPT05 corpus (Koehn
and Monz, 2005) aligned by sentences.

3.1.2 Meaning and form

Despite the evident problem of sparsity and potentially high OOV rates, most
work on natural language processing is based on words. Of course, the words
are usually easy to extract from text, but the fundamental reason for their use-
fulness is different: while the letter b and the word bird are both technically
symbols, only the latter refers directly to something that is useful for under-
standing what the text is about. To describe this more formally, some ideas and

70

Linguistic data and theories

terminology are needed from semantics (see, e.g., Saeed, 1997).
Saussure considered language as a symbolic system and separated the form

of the symbols from their meaning. The forms and meanings are combined in
linguistics units called signs. A basic example of a sign is a single word such
as bird. The signifier is the abstract acoustic image of the word, and signified is
the concept the sign refers to: a feathered, winged, egg-laying, vertebrate ani-
mal. An important aspect in languages is the arbitrariness of the sign, meaning
that there is no specific reason why a particular sign is attached to a particular
concept.3 This is demonstrated by the different forms for the same meaning in
different languages: for example, bird is lintu in Finnish, fågel in Swedish, and
oiseau in French.

While each word has its own capacity for reference, the whole set of words in
a language, lexicon, is connected, and the meaning of one word is not indepen-
dent of the meanings of the other words. The semantic scope of a word is defined
by the related words. For example, English sheep and French mouton both re-
fer to the same animal, but English has a separate word, mutton, for the meat of
the animal. Chinese has a word for the color that covers both the colors called
blue and green in English. Some languages, such as Arabic, have dual forms in
addition to singular and plural, which means that the scope of the Arabic plural
differs than the scope of the English plural.

3.1.3 Syntagmatic and paradigmatic relations

From the machine learning perspective, the arbitrariness of the word symbols
prevents using similarity functions that can be defined between the two se-
quences of letters. For example, consider the string edit distance that is the least
number of insert, delete, and replace operations required to transform one string
to another. Distance d between two words with a very different meaning, such
as talk and walk, can be smaller (d = 1) than that of two words of similar mean-
ing, such as talk and chat (d = 4).

Clearly, it is not possible to estimate how close two symbols are with respect to
their meaning based solely on their forms. Can then anything related to mean-
ing be extracted from text data alone? Structuralists such as Leonard Bloomfield
(1887–1949) and Zellig S. Harris (1909–1992) found a positive answer by a dis-
tributional approach. In linguistics, the distribution of a unit is all the contexts
(such as sentences or neighboring words) in which it can occur. Comparing the
distributions or co-occurrences of two units gives information on the relation of
their meaning.

Already Saussure had identified two basic types of relations between the signs:
syntagmatic relation exists between units that co-occur in a sequence (called syn-
tagm), while paradigmatic relation exists between units that are interchangeable
in the sequence. A set of units that have paradigmatic relations form a paradigm.
These relations are not present only between words, but also between many dif-
ferent linguistic units, as shown by the examples in Figure 3.2.

Harris (1955) found that the positions of morpheme and word breaks could
be located surprisingly well from a continuous phoneme sequence by observ-
ing the syntagmatic relations of the phonemes. He studied how many different
phonemes can occur after the first n phonemes of test utterances. This measure

3 As an exception from arbitrariness, one may consider onomatopoeic words such as
bang or meow; the equivalent words in Finnish are pamaus and naukua or maukua.

71

Linguistic data and theories

...
...

...

well

nicely

poorly

badly

...

book

speech

review
editorial
thesis

article

Pa
ra

di
gm

at
ic

re
la

ti
on

s

∅

walk

point

turn
consider

talk

listen

ing

s

ed

(b) Morphology

h

s

t
v

m

p

(a) Phonology

eal The was written.

Syntagmatic relationsSyntagmatic relations Syntagmatic relations

(c) Syntax and semantics

Figure 3.2. Syntagmatic and paradigmatic relations for different units of language. (a) Several
consonants appearing before the phoneme sequence [i:l] (“eal”) show a phonologi-
cal paradigm. (b) A set of verbs and their inflectional suffixes form a morphological
paradigm. (c) A set of nouns and a set of adverbs have internal paradigmatic relations
and syntagmatic relations with the other words in the sentence.

is commonly called letter successor variety (LSV). A high LSV value indicates that
there are many possible continuations of the observed sequence. Harris demon-
strated that a peak in the LSV indicates a boundary of a semantic unit. While
he did not have the tools to use his method on large data sets, Hafer and Weiss
(1974) later confirmed the practical applicability of the method. LSV is still one
of the most common approaches to unsupervised segmentation of words (Sec-
tion 6.2.4).

Also finding paradigmatic and syntagmatic relations of words from a large
corpus is relatively simple (see, e.g., Rapp, 2002). Words that occur in similar
context have paradigmatic relations. The contexts of word i can be encoded in
co-occurrence vector xi, where each element gives the number of times a certain
other word has occurred in a certain position with respect to word i (e.g., how
many times the word well is immediately before written, or how many times
book is three words to the left from written). Limiting the set of contexts words
and the positions to the near context provides a finite-dimensional vector that
can be compared with the vectors of other words. In effect, two words that
have similar context vectors have paradigmatic relations. Finding syntagmatic
relations is even simpler: two words that occur close to each other more often
than by chance usually have syntagmatic relations.4 The use of co-occurrence
vectors is the basic idea of vector space models of language, discussed later in
Chapter 5. Indeed, the distributional approach for language has given the basis
for many statistical and machine learning approaches for language processing,
including statistical language modeling (Chapter 4) and lexical unit selection
(Chapter 6).

3.1.4 Word forms and lexemes

The term “word” actually has at least three different senses (Matthews, 1991,
Ch. 2). The first is that word is a concrete sequence of letters (or, in spoken
language, a sequence of phonemes). When referring specifically to this sense,
the term word form is used.

The second sense is used if the word forms bird and birds or run and ran are
4 However, statistical tests for the co-occurrences return also word pairs that have
paradigmatic relations (Rapp, 2002). For example, hot and cold can co-occur in a sen-
tence such as “Is it hot or cold?”.

72

Linguistic data and theories

considered as instances of the same word. When looking into a dictionary, they
are indexed under the same “dictionary form” of the word. The specific term for
this sense is lexeme. Each lexeme is an abstract class of word forms; a standard
convention is to mark them with the dictionary form using small capital letters
(e.g. RUN, BIRD).

Third, when the word form is analyzed according to its grammatical categories
(see below), one can say that the word birds is plural of the noun BIRD. This
sense can be referred to as grammatical word.

For a more complex example, consider the word form matches. It is an ex-
ample of an ambiguous form. At least three different lexemes can be found for
it: MATCH1 as in “He won the match”, MATCH2 as in “He had to strike two
matches”, and MATCH3 as in “Our system matches with theirs”. The grammat-
ical word can be identified either as the plural of the noun MATCH1, plural of the
noun MATCH2, or third person singular of the verb MATCH3.

3.1.5 Part-of-speech categories

Part-of-speech (POS) categories, identified already by scholars of the ancient In-
dian and Greek cultures, are a central concept in syntactic as well as morpho-
logical analysis. Considering the paradigmatic relations introduced earlier, a set
of words in one POS category are those that have their lexemes in a (theoretical)
paradigmatic relation based purely on syntactic restrictions of the language.

Some of the POS categories are open, that is, they accept new morphemes and
words. The open categories are nouns (e.g., book, house), verbs (walk, take),
adjectives (red, compelling), adverbs (well, easily), and interjections (bye, oh).
In contrast, closed categories contain usually a fixed set of words. Typical closed
categories are pronouns (e.g., I, them), prepositions (in, without), conjunctions
(and, but), determiners (a, that). Words in closed categories are considered to be
more at the core of the syntax, while words in open categories usually carry the
primary semantic content in a sentence.

The set of part-of-speech categories varies depending on the language and
the granularity of the classification. For example, in addition to prepositions,
there can be postpositions; pronouns can be divided into subcategories such as
possessive pronouns (mine, its) and personal pronouns (I, you, he); determiners
into articles (a, an, and the) and quantifiers (all, some); and nouns into singular
and plural nouns. Thus the number of different tags in the POS tagsets vary
from few dozens to more than one thousand (Jurafsky and Martin, 2008, Ch. 5).

Due to their importance in syntactic analysis, classifying words into their POS
categories is a common task in NLP. The methods include rule-based taggers, su-
pervised hidden Markov model taggers, as well as unsupervised taggers based
on clustering methods.

However, regardless of the importance of the part-of-speech categorization for
linguistic description, the existence of such grammatical categories of words in
the human mind is controversial. A recent review by Vigliocco et al. (2011) on
psycho- and neurolinguistic studies of verbs and nouns concludes that while
object words (nouns) and action words (typically verbs) have clear neural sepa-
rability and different processing demands, grammatical category is not likely to
be an organizational principle of knowledge in the brain. Instead, the observed
categories can emerge from the semantic and pragmatic differences of the words
and distributional cues in language.

73

Linguistic data and theories

3.1.6 Constituency

Constituency is a basic notion in the structuralist approach to syntax (Schöne-
feld, 2006). Two or more words that act like a single unit in a sentence are called
constituents. There are two simple ways of identifying words that form con-
stituents: they can be substituted by another constituent of the same type (i.e.,
with a paradigmatic relation), or sometimes permuted within the sentence. For
example, in “The book was well written.”, the phrase “The book” can be sub-
stituted by “His new book” or “The book I read yesterday”. Thus it is a con-
stituent of the sentence. The sentence “By all means you can ask me again.”
can be permuted by moving the phrase “by all means” to the middle (“You can,
by all means, ask me again.”) or to the end (“You can ask me again by all
means.”).

The procedure of stepwise segmentation of a sentence to its smaller constituents
is called immediate-constituent (IC) analysis (Wells, 1947). For example, in the fol-
lowing, the constituents of a sentence are marked with square brackets (called
bracketing):

[[The book] [I [read yesterday]]] [was [well written]]

As the structure is hierarchical, it can also be drawn as a tree. Whenever con-
stituents are grouped together, they make up a construction. The top-level con-
struction is the sentence itself.

Similar to paradigmatic relations, constituency is not observed only for syntax,
but also for morphology. While permutation tests rarely apply because of strict
morphotactic rules, substitution tests can identify morphological constructions.
Several constituents and constructions can be observed in a complex word form
such as unfeignedness. A reasonable IC analysis for it would be [[un [feign
ed]] ness], in which each construction can occur as a word and the constituents
are replaceable. For example, feign could be replaced with affect, feigned with
aware, and unfeigned with mad.

3.1.7 Morphology

The internal structure of words can be looked at from several viewpoints. The
first one is to consider the different ways that word forms can be related. The
second is to study the linguistic units that occur within word forms. Moreover,
different languages can be categorized according to the morphological phenom-
ena that is observed in them.

3.1.7.1 Inflection, derivation, and compounding

The set of word forms that have the same lexeme (e.g., bird and birds or run,
runs, ran, and running) are called inflections of the lexeme. The dictionary
form—usually the simplest form such as singular bird and present tense run—
is called lemma of the lexeme. The sets of lexemes that are inflected in a similar
manner form inflectional paradigms. The so-called word-and-paradigm model,
described below, is a description of these paradigms. However, inflection of a
lexeme is not the only reason for two word forms to be related.

First, consider matching in “I cannot find a matching pair of socks” and un-
matched in “He has unmatched talent”. Both word forms are related to the

74

Linguistic data and theories

lexeme MATCH3 in Section 3.1.4 above, but they are not verbs but adjectives.
Moreover, in most dictionaries, they have their own entries. Also the adjectives
matched and unmatched are related, but are word forms of different lexemes
because of their difference in meaning. A more complex lexeme (such as un-
matched) is called a derivation of the simpler lexeme (matched).

Second, consider matchbox and matchmaker. They have compound lexemes
MATCHBOX and MATCHMAKER, which are related to simple lexemes MATCH2

and BOX, and MATCH3 and MAKER, respectively. Also matchbox paper can be
considered as a compound lexeme of MATCHBOX and PAPER, although the two
words are not written together. The formation of new, complex lexemes from
more than one simple or compound lexemes is called compounding.

Derivation and compounding together are called word formation in contrast to
inflection. However, the distinction between inflections and derivations is not
always evident (Matthews, 1991, Ch. 3).

3.1.7.2 Inflectional paradigms

The oldest and the most well-known approach to morphology is called word-
and-paradigm (WP) (Hockett, 1954). As it is a description for inflectional mor-
phology, word formation is not considered. The goal is to generalize the pat-
terns that occur when inflecting individual words. For example, in English,
the verbs MATCH and WAIT have analogous inflections: match/wait (infini-
tive), matches/waits (3rd person present tense), matching/waiting (present
participle), matched/waited (past tense), and matched/waited (past partici-
ple). This can be named as verb paradigm I. Most of the verbs for which the infi-
nite form ends with an e, for example BAKE, are members of the verb paradigm
II: bake–bakes–baking–baked–baked. Next we have irregular verbs that are
inflected similar to CUT (paradigm III), similar to TELL (paradigm IV), and sim-
ilar to WRITE, and so on. Any new lexeme that is a verb belongs to one of the
paradigms; nouns and adjectives have their own paradigms. Thus the compo-
nents of the WP model are, as suggested by the name, the words (lexemes) and
the inflectional paradigms.

3.1.7.3 Morphemes

An alternative way to look at the structure of word forms is to observe mor-
phemes, the smallest meaning-bearing units of the language, and study how they
are combined to form words. For a complex example, consider again the word
unfeignedness. It consists of a number of segments that (a) occur frequently
in other English word forms, and (b) add something to the meaning of the full
word form: un, feign, ed, and ness. Any other segment of the word does not
fulfill both of these criteria. Using the Saussurean terminology, the segments
above are the signifiers of some signs. Depending of the exact theory, the mor-
phemes are either these minimal forms, their meanings, or the form–meaning
pairs (signs). The terminology used in this thesis is that the phonetic or ortho-
graphic surface forms (signifiers) are called morphs, and morphemes refer to the
more abstract combinations of form and meaning. Similarly to lexemes, mor-
phemes will be marked with small capital letters. For example, walked has two
morphs, walk and ed, corresponding to abstract morphemes that refer to the
meaning of walking (WALK) and past tense (+PAST), respectively.

Morphemes are called free or bound depending on whether they can occur in-

75

Linguistic data and theories

dependently as a word form or not. For example, FEIGN and WALK are free
morphemes, while UN+, +NESS and +PAST are bound morphemes. Bound mor-
phemes are either affixes or so called fossilized or “cranberry” morphemes (con-
sider cran in cranberry) that cannot be assigned a clear meaning or a grammat-
ical function. The part of the word that a bound morpheme attaches to is called
stem. A stem may correspond to a complex lexeme, whereas root is the minimal
part of the stem that corresponds to a single simple lexeme. For example, build-
ings has the stem building and the root build. Affixes are divided into prefixes,
suffixes, infixes, and circumfixes, depending on whether they occur before, after,
in between, or both after and before the stem, respectively.

As morpheme-based approaches consider also derivation and compounding,
they are more detailed than the word-and-paradigm model. Two particular
morpheme-based models, called item-and-arrangement and item-and-process, are
discussed in Section 3.2.3.

3.1.7.4 Allomorphy and syncretism

In general, there is no one-to-one correspondence (bijection) between morphemes
and morphs. Sometimes one morpheme can correspond to several morphs, and
sometimes one morph can be a realization of many potential morphemes.

Two or more morphs that are the formal variants of the same morpheme are
called allomorphs. Often the allomorphs of the same morpheme occur in comple-
mentary distributions: if one variant occurs in some context, the other variants
will not occur in the same context.5 For example, the allomorph d of +PAST can
occur only after verbs that end with an “e”, while ed can occur only if the verb
does not end with an “e”.

A common reason for allomorphy are the phonological processes that occur
at morph or word boundaries, called sandhi. The processes include assimilation
(invite +ed → invited; wife +s → wives), as well as insertion (fish +s → fishes).
Some other morphophonological phenomena that produce allomorphic variants
include the following:

• In consonant gradation, the consonants of the stem alternate between various
grades. Finnish examples: takka (fireplace), taka+n (fireplace + possessive
case); sade (rain), satee+ssa (rain + inessive case).

• In vowel harmony, the vowel in a suffix is changed to match some property
(e.g., height, backness, roundedness) of a vowels in the stem. Finnish example:
alu+ssa (beginning + inessive case), äly+ssä (intelligence + inessive case).

• In apophony or ablaut, vowels (or sometimes consonants) alternate in inflec-
tions. English example: sing–sang–sung; Swedish example: flyga (fly), flög
(fly + past tense), flugit (fly + present/past participle).

The case in which distinct morphological forms of a word have the same sur-
face realization is called syncretism. In one type of syncretism, the grammatical
category of a word does not show in the form. For example, the pronoun YOU

has the same form independent of the grammatical case, whereas SHE or HE

have distinct nominative and accusative forms (“you saw her”; “she saw you”),

5 An example of allomorphs in non-complementary distribution are the third person pos-
sessive suffixes +an and +nsa in Finnish. For instance, “in his car” can be either
auto+ssa+an or auto+ssa+nsa (Karlsson, 2008, p. 95). The style of the latter form is
more colloquial.

76

Linguistic data and theories

and the verb PUT has the same form regardless of the tense, unlike most of the
other verbs. In another type of syncretism, two morphemes have the same sur-
face forms. That is, they are homographs (in written language) or homophones (in
spoken language). An example is English plural and 3rd person singular, which
are both realized either by the suffix s or es.

Syncretism is one cause for morphological ambiguity of the word form. For
example, bites may either be a noun in plural form or a verb in 3rd person
singular form. However, the full word form can be ambiguous even without
syncretism. For example, the Finnish word istuin may refer either to the noun
“seat” or the verb “sit” in 1st person past tense (“I sat”). The context of the word
is required to solve the potential ambiguity.

3.1.7.5 Morphological typology

The richness and type of morphological phenomena vary between different lan-
guages. Specifically, some languages are analytic or isolating, where each word
is a single morpheme, and some are synthetic, where there may be several mor-
phemes per word. Polysynthetic languages have particularly many bound mor-
phemes per word, to the extent that the difference between words and sentences
is not evident. The number of morphemes per word, or index of synthesis, mea-
sures this dimension. In the one extreme, isolating languages include, for ex-
ample, Vietnamese (index of synthesis 1.06).6 In the other extreme, there are
polysynthetic languages such as Eskimo languages (index 3.72). English is usu-
ally considered a mixed type; its index of synthesis is 1.68. Synthetic languages
include Russian (index 3.33), Turkish (index 2.86), and Uralic languages such as
Finnish.

Synthetic languages can furthermore be divided into agglutinative (concatena-
tive) and fusional languages depending on the typical processes of derivation and
inflection. In the former case, the morphs of a word are clearly separable from
each other. In the latter case, the surface form does not have separable morphs
that would correspond to the morphemes, as it is the case with several irregular
verbs in English. However, most languages are mixed types also in this dimen-
sion. The index of fusion measures the ratio of morphemes and morphs: it is
low for agglutinative and high for fusional languages. Apart from the irregular
inflections, English is mostly agglutinative. Strongly fusional languages include
French and Russian. Another type of non-concatenative process is transfixation,
present for example in Arabic languages, where consonantal roots are modified
by vowel patterns.

3.1.7.6 Psycholinguistic results

Psycholinguistic studies on morphology concentrate on the question of how
morphologically complex words are processed (Harley, 1995, pp. 287–288). One
line of research focuses on properties of words that affect the processing laten-
cies of the test subjects. Such properties include cumulative base frequency, i.e.,
the summative frequency of all the inflectional variants of a single stem (Taft,
1979; Baayen et al., 1997; Bertram et al., 2000), surface frequency of the whole
word form (Alegre and Gordon, 1999; Sereno and Jongman, 1997; Baayen et al.,
1997; New et al., 2004; Laine et al., 1995), and morphological family size, i.e., the

6 The mentioned numbers for the indexes of synthesis are from Karlsson (2008, p. 118).

77

Linguistic data and theories

number of derivations and compounds in which the stem occurs as a constituent
(Bertram et al., 2000).

The fact that the surface frequency of a complex word is predictive for pro-
cessing times, independently of the frequencies of its constituents indicates ei-
ther separate independent representations for the complex words or storage of
the probabilities of the co-occurrences of the constituents (Baayen, 2007). How-
ever, studies of Finnish word recognition have associated a processing cost (i.e.,
long reaction times and high error rates) with inflected Finnish nouns in com-
parison to matched monomorphemic nouns (Niemi et al., 1994; Lehtonen and
Laine, 2003), which indicates the existence of morphological decomposition for
most Finnish inflected words. A possible exception are very high frequency in-
flected nouns (Soveri et al., 2007). The correlations of entropy-based measures
of paradigmatic complexity with processing times (Kostić, 1991; Moscoso del
Prado Martín et al., 2004; Milin et al., 2009) give further evidence that probabili-
ties play a strong role in human processing of morphology.

3.1.8 Syntax

In the study of syntax, the largest linguistic form considered is a sentence, which
is seen as an independent linguistic form that is not included in any larger lin-
guistic form. There are several types of syntactic and sentence analyses; a few
common approaches are mentioned here. The word order varies between lan-
guages, which causes problems for certain computational approaches to syntax.
Another common problem for computational models are the long-distance de-
pendencies between the words.

3.1.8.1 Phrase categories

In syntactic constituency, constituents that are grouped around words of cer-
tain POS categories form phrases that are categorized according to that part-of-
speech. For example, noun phrases (NP) contain at least one noun or pronoun
and occur in similar distributions as single nouns. Other typical phrase cate-
gories are adjective phrases (AP), adverb phrases (ADVP), pre- and postposi-
tional phrases (PP), and verb phrases (VP).

The immediate-constituent (IC) analysis of a sentence commonly includes clas-
sification of the constituents by their grammatical features, such as parts-of-
speech and phrase categories:

[[[TheDet bookNoun]NP [IPron [readVerb yesterdayAdv]VP]PP]NP

[wasVerb [wellAdv writtenAdj]AP]VP]S

The above notation can also be represented as a tree. If the category labels and
words are considered as nodes, the tree of this form is a parse tree from a phrase
structure grammar, discussed later in Section 3.2.4.

3.1.8.2 Sentence elements

Traditional sentence analysis divides the words in a sentence into different sen-
tence elements. The following two examples illustrate the main elements:

[The book]subject [was]predicate [good]predicative

78

Linguistic data and theories

[She]subject [kicked]predicate [the ball]object [hard]adverbial

In contrast to the IC analysis, this type of analysis is flat except for possible divi-
sion into subject and predicate parts of the sentence. For many languages, a sub-
ject and a predicate are also the minimum number of elements that a sentence
contains.7 The predicate determines the minimum number of the elements; in
addition to subject and object it may require other arguments. These compli-
mentary parts, such as good in the first example, are called predicatives or comple-
ments. The non-complimentary parts, such as the adverbial hard in the second
example, are called modifiers. The terminology from sentence analysis is often
used in dependency grammars (Section 3.2.5).

3.1.8.3 Word order

A considerable amount of information in a sentence may be encoded by the or-
der of the words. In most languages, the word order has several functions. First,
for each word, it can mark the sentence element in which the word belongs to.
At the same time, it can distinguish between different sentence types (declara-
tive, interrogative, exclamatory, or imperative). Outside syntax, it has discourse,
thematic, and pragmatic functions.

The order in which subject (S), object (O), and verb (V) occur in simple, declar-
ative sentences determines the basic word order of the language. Of the six
theoretical options, the three most common are SOV, SVO, and VSO, in this or-
der. All of the three have subject before object. These word orders are used in
over 90% of the world’s languages. VOS order is less common than any of the
three, and OVS and OSV are very rare.

Only few languages have a free word order, meaning that there is no single
dominating word order even in declarative sentences. One such exception is
Basque. A more common case is that there is a standard order, but it can change
according to discourse and pragmatic functions, as in Finnish. In both cases,
the grammatical functions of the words have to be determined by other means,
usually by morphological marking.

3.1.8.4 Agreement and government

A typical syntactic phenomenon is that a word changes its form depending on
the other words to which it relates. This is called agreement or concord. Common
agreements are grammatical person (I am versus he is) grammatical number
(one book versus pile of books), grammatical gender (Mary blamed herself
versus John blamed himself), and grammatical case (I met her versus she met
me).

In government or rection, a head word affects the selection of grammatical fea-
tures for a set of dependent words. A typical example is case government, in
which the case inflections in a noun or adjective phrase are determined by the
governing verb. In English, government shows in how a certain verb requires
a certain preposition. For instance, the Finnish verb puhua requires the elative
case, while the English speak requires either the preposition about or the prepo-
sition of:

Finnish: he puhuivat autoista

7 In Finnish, a sentence may have only a predicate, as in “Sataa.” (“It rains.”).

79

Linguistic data and theories

English: they spoke about cars or they spoke of cars

The government is inherited by derived words (puhe autoista, speech about
cars). It can affect also several words in the dependent phrase: “he puhuivat
vanhoista autoista ja junista” (“they spoke about old cars and trains”).

3.1.8.5 Long-distance dependencies

There are various syntactic phenomena that result in direct dependencies be-
tween words that occur far apart in a sentence. A simple example is the combi-
nation of a noun phrase that includes long modifiers, such as a relative clause,
and agreement between subject and verb: The man who talked to the police
officers was blaming himself. That is, the man, was, and himself match in
grammatical number, person, and gender.

Also free word order can easily induce long-distance dependencies. In the
Finnish sentence “He puhuivat monta päivää autoista.” (“They spoke for many
days about cars.”), the adverbial phrase monta päivää (for many days) separates
the governing verb from the affected noun. In “Töistä kotiin hän juoksee joka
päivä.” (“From work to home he runs every day.”), the non-standard word
order for the arguments of the verb emphasizes the direction or path of the run.
At the same, objects of the sentence have moved far away from the predicate.

Wh-movement locates the object of an interrogative sentence to the beginning of
the sentences, while the verb on which it is dependent is in the end. For example,
in the declarative sentence “He read a book”, the object follows the predicate,
while in the question “What book did he read?” the object comes first.

Long-distance dependencies are problematic especially for models that as-
sume that only nearby words are dependent, such as the n-gram models dis-
cussed in Section 4.2. If the word w has a strong dependency on the word v (i.e.,
p(w | v) � p(w) or p(w | v) � p(w)), such a model cannot use the dependency
if the observed sequence vhw has an arbitrary long sequence of units h between
v and w.

3.1.9 Semantics and pragmatics

When building a model based solely on text data, there is no direct semantic in-
formation available: there are the signifiers (forms) but not the signified (mean-
ings). However, semantics evidently has a strong effect on the distributions of
the forms.

Traditionally, semantics studies meaning of language “abstracted away from
the users” (Saeed, 1997): it considers the meaning of the sentence, phrase, or
word as an abstract unit, not the meaning that the particular speaker or writer
intended for it. The part of meaning that depends on a specific listener or reader
is then considered in pragmatics. Pragmatics also considers how linguistic con-
texts longer than one sentence affect the meaning, thus including discourse and
text analysis.

If we start by considering a meaning of single words or morphemes, it is obvi-
ous that the grammatical categories of the words reflect their meaning. Nouns
refer to individual or groups of objects, verbs to actions, and adjectives to prop-
erties of objects or actions. This kind of meaning that exists without reference
to any sentence is called lexical meaning. In contrast, for many closed category
words, such as prepositions or conjunctions, meaning is harder to describe with-

80

Linguistic data and theories

out the context of the occurrence. The same applies to many inflectional and
derivational bound morphemes. They have only a grammatical meaning. Along
this division, morphemes (and words) are called lexical or content morphemes
(words) and grammatical or function morphemes (words).

3.1.9.1 Lexical semantics

Lexical semantics considers the meaning of individual words, or more specifi-
cally, lexemes. The knowledge about a certain lexeme is sometimes separated
into linguistic knowledge and encyclopedic or world knowledge. Linguistic knowl-
edge provides whatever is needed to use the word in a sentence, whereas ency-
clopedic knowledge is about the way the world is. For example, a person may
say “I saw whales yesterday” without knowing whether a whale is a fish or
a mammal, and another person can understand the sentence even if his world
knowledge on such issues differs from the speaker.

One approach to linguistic knowledge is to consider what the lexical relations
between words are. As we have already seen (Section 3.1.4), a single word form
can have multiple senses. In homonymy, there are two unrelated senses of the
same word (e.g., bank account versus bank of river). In polysemy, the word has
multiple related senses (e.g., branch of tree and branch of a company). The dis-
tinction is not always clear, and sometimes the term polysemy is used to refer to
both. Lexical field is an abstract categorization for a group of lexemes which be-
long to a specific area of knowledge. For example, BANK1 can belong to the field
of economy together with LOAN, and BANK2 to the field of geography together
with SWAMP. The task of identifying the correct sense of the word instance based
on its context is called word sense disambiguation.

Other commonly considered lexical relations include synonymy, where differ-
ent words have an identical or almost identical meaning (e.g., buy and pur-
chase), and antonymy, where two words have opposite meanings, hyponymy and
hypernymy that are relations of inclusion (e.g., sparrow is a hyponym of bird;
equivalently bird is a hypernym of sparrow), and meronymy, which means part-
whole relationship (e.g., wheel is a meronym of car). The lexical relations are
commonly used in various ontologies and lexical databases. One of the most
popular ones is WordNet (Miller, 1995; Fellbaum, 1998), which collects glosses,
synonyms and antonyms, as well as hyponymy and meronymy relations for
English words. Because the relations indicate similarity, the databases provide
means for direct evaluation of representation learning (Section 5.3).

3.1.9.2 Reference, sense, and concepts

The previous subsection considered the kind of knowledge of words that is re-
quired to write a dictionary. From the cognitive science point of view, the central
question of semantics is what is a meaning. This question has been approached
from two directions.

In the first approach, called reference or denotation, the word names individ-
uals (objects or persons), sets of individuals, actions, or their properties in the
real world. While this is intuitive enough for many words, it has problems ex-
plaining for example function words, fictional and non-existing objects, abstract
terms, as well as expressions that denote the same thing while having a clear
difference in meaning.

The other dimension of the meaning is called sense. A typical assumption

81

Linguistic data and theories

is that the sense of a word is its mental representation in the speakers mind.
The representations are called conceptual elements or simply concepts. Concepts
that correspond to a single word are called lexicalized concepts. The traditional,
logic-based approach for concepts is to define them by necessary and sufficient
conditions. For example, one may define the concept WOMAN by listing a set of
attributes that are necessary and sufficient for some x being a woman; for exam-
ple x is human, x is adult, and x is female. In practice, such definitions are often
problematic, and speakers are likely to neither agree on the set of conditions,
nor even know all characteristics of the objects they are speaking of. A modern,
influential theory on concepts is the prototype theory based on the work by Rosch
(1973, 1975). Her psycholinguistic experiments showed that people tend to give
graded categorization for objects. For example, most people consider CHAIR to
be a better example of FURNITURE than BED let alone PIANO, and SPARROW to be
a better example of BIRD than PENGUIN is. The central members of each category
are called its prototypes.

The attachment of a symbol to a certain meaning (either by reference or by
concept formation) is called symbol grounding. Without solving the problem of
symbol grounding, a machine can only learn relations between words, not the
relations between the words and the world.

3.1.9.3 Compositional semantics

Compositional semantics study how the meaning of single linguistic units are
combined, from two-word terms to phrases and complete sentences and even
larger units.

The traditional approach to compositional semantics is to infer propositions
from sentences. Propositions are descriptions of states of affairs. Two different
sentences can indicate the same proposition:

(1) Shakespeare is the author of Hamlet.
(2) Shakespeare wrote Hamlet.

Such two sentences can be considered synonymous. Other types of sentence
relations include entailment, presupposition, tautology and contradiction.

Sentence meanings are considered mostly in formal semantics (see Saeed, 1997,
Ch. 10). Formal semantics uses logical languages, such as lambda calculus, to
represent the meanings. Computational approaches for formal semantics are
described by Jurafsky and Martin (2008, Ch. 17–18). There are two main prob-
lems in formal semantics: non-compositionality of language and non-literal use of
language.

The problem of non-compositionality refers to that the meaning of a linguis-
tic unit is often not compositional: the meaning of the whole cannot be strictly
predicted from the meaning of its parts (Manning and Schütze, 1999, p. 110).
When a fixed sequence of words (such as strong coffee) is dominantly utilized to
convey a certain meaning instead of semantically close alternatives (?powerful
coffee), the sequence is called a collocation. Collocations are mostly composi-
tional in meaning. However, there is often an additional semantic component
that cannot be predicted. For example, white refers to very different colors in
white paper, white skin, and white wine (cf. Gärdenfors, 2000). Idioms are ex-
pressions or phrases for which the meaning is completely non-compositional,
such as kick the bucket as an informal euphemism for dying. Individual words
of the idiom may also cease to have independent meanings, as kith in kith and

82

Linguistic data and theories

kin. Non-compositionality is one of the main reasons to use lexical units that
encompass multiple words in NLP (Section 6.2.5).

Apart from being non-compositional, many idioms are examples of use of non-
literal or figurative meaning. When someone is told in Finnish “Voit heittää sillä
vesilintua” (“you can throw it at a waterbird”), the object in concern is consid-
ered useless, not that it is useful for waterfowl hunting. Figurative expressions
are common also outside idioms. Instead of “I’m hungry”, one can say “I’m
starving” or “I could eat a horse” (Saeed, 1997, p. 15), and neither of the lat-
ter are taken literally. A common source of non-literal expressions, including
idioms, are metaphors (Saeed, 1997, Ch. 11). A metaphor uses a concept from
one domain (source domain) to describe something in another domain (target
domain) by analogy. For example, a recent economy news article stated that “if
the euro fails, bank lending would freeze worldwide, stock markets would
likely crash and Europe’s economies would crater”. Here the stock markets
and economies are seen as flying objects and bank lending as a stream of wa-
ter. Lakoff and Johnson (2003) demonstrate the pervasiveness of metaphors in
ordinary language and argue that conceptual metaphors are an important factor
in organization of human experience. Thus dealing with metaphors is a crucial
challenge for any task that involves natural language understanding.

3.1.9.4 Pragmatics and discourse

The field of pragmatics studies how the speakers’ knowledge of the world inter-
acts with the use of language. However, the division between pragmatics and
semantics is often vague and there is a diversity of possible definitions (cf. Levin-
son, 1983, Ch. 1). Especially non-literal meanings, short-hands, metaphors,
metonymy (concept is called by a name of something associated to it), and
synecdoches (the name of a part is used to refer to the whole) are on the bor-
der of semantics and pragmatics. While traditionally left to pragmatics, they are
emphasized in the theories of cognitive semantics.

Another area of study in pragmatics is discourse. Practical problems of dis-
course that have been studied in language processing include discourse segmen-
tation and reference resolution (see Jurafsky and Martin, 2008, Ch. 21). In the
former, a document is separated into a sequence of sections or topics. Finding
the changes of topics within a document is relevant, for example, in informa-
tion retrieval (Chapter 5) and language model adaptation (Section 4.3.4). In the
latter, the task is either finding expressions that refer to the same entity (coref-
erence resolution) or simply the single preceding entity that a pronoun refers to
(anaphora resolution). Reference resolution is relevant for dialogue systems and
applications such as question answering and text summarization.

3.2 On theories of grammar

While the number of utterances in one language is practically infinite, there are
strong restrictions on how the units of the language can be combined. For exam-
ple, consider the sentence “The _ was well written” from Figure 3.2(c) (page 72).
Two types of restrictions can be identified for the second word. Neither the word
compelling nor books fit into the place because the preceding article and the fol-
lowing verb require that the word is a singular noun. The word fireplace does

83

Linguistic data and theories

not fit into the place because the sentence makes sense only if the first word
is something that can be written. The former restriction is syntactic, while the
latter is semantic. Moreover, there are similar restrictions for morphological re-
lations. The list of stems in Figure 3.2(b) cannot include wish due to phonolog-
ical restrictions (wishes, not ∗wishs), and the suffixes cannot include -ly due to
morphotactic restrictions. There are also morphosyntactic restrictions, in which
morphology and syntax interact. For example, in “He walk_ home”, walk has
to be followed by either suffix s or ed.

A large part of linguistic theories concentrate on explaining these restrictions.
The speakers of the language have to know them, and the knowledge is at least
partially unconscious. Depending on the linguistic theory, this mental knowl-
edge, grammar, is thought to be encoded as rules, constraints, patterns, or con-
structions. Usually also the lexicon of words or morphemes is considered to
be part of the grammar, and part of the knowledge may be stored within the
lexicon.

3.2.1 Views on the scope of grammar

The structuralist tradition has excluded semantics from the grammar. The rea-
son is quite obvious: to explain what is the difference between fireplace and
book requires information on the real-world objects that they refer to, whereas
the difference between books and book can be explained with one attribute
(number of objects). For instance, Bloomfield (1935) considered that the study of
meanings is best left to sciences other than linguistics. In addition to semantics,
also phonetics and pragmatics are often excluded from grammar, which is then
used to refer to the set of syntactic, morphosyntactic, and morphotactic rules.

Chomsky (1965) made a fundamental distinction between the knowledge of
language, called competence, and the actual use of language in concrete situa-
tions, called performance. In this view, competence is tied with the notion of
grammaticalness: a sentence is called grammatical if the generative grammar
of the language can produce it. A grammatical sentence may not make sense
semantically—as in the famous example “colourless green ideas sleep furi-
ously” (Chomsky, 1957, p. 15)—or be easily interpretable—as in “the man who
the boy who the students recognized pointed out is a friend of mine” (Chom-
sky, 1965, p. 11). For separating whether sentences are likely to be really used
or not, Chomsky (1965) uses the term acceptability, and considers it to belong to
the study of performance.

Chomsky also considered syntax as the core area of grammar. While he pro-
posed that there are three main components in the grammar—syntactic, phono-
logical, and semantic—he argued that the other two rely on the syntactic com-
ponent (Chomsky, 1965, p. 16):

Consequently, the syntactic component of a grammar must specify, for each sentence,
a deep structure that determines its semantic interpretation and a surface structure that
determines its phonetic interpretation. The first of these is interpreted by the semantic
component; the second, by the phonological component.

Such a view that identifies intermediate layers of representation in the language
processing is called multistratal (multilayered, derivational) opposed to monos-
tratal (non-derivational).

The structuralist and Chomskyan views have been challenged by cognitive lin-

84

Linguistic data and theories

guists. The cognitive theories of grammar differ from the traditional structural-
ist and generative approaches in multiple ways (Lakoff, 1987; Croft and Cruse,
2004; Goldberg, 2006):

• Competence and performance: Cognitive grammars are often usage-based:
The properties of the use of grammatical expressions, in particular their mean-
ing and frequency, affect the representation of the expressions. Thus compe-
tence and performance cannot be separated.

• Grammar and cognition: Grammar is not a separate module independent
from the rest of the cognition.

• Rules and lexicon: Grammatical constructions are not epiphenomena arising
from the use of generative rules but have a real cognitive status. Grammar
and lexicon are not separate but form a continuum. Linguistic processing is
monostratal.

• Role of semantics: Semantics is a core part of the grammar, inseparable from
syntax and morphology. Cognitive semantics, including mental spaces and
metaphoric models, are required to describe the meanings of grammatical con-
structions. Grammars use prototype-based categorization. The concept of mo-
tivation is needed to account for the regularities of grammar. Many syntactic
properties of grammatical constructions are consequences of their meanings.
Syntactic categories are neither autonomous nor completely predictable from
semantic considerations, but their central subcategories are predictable, and
the non-central subcategories are motivated extensions of the central subcate-
gories. The meanings of grammatical constructions cannot be computed from
the meanings of their constituents, but they are motivated by the meanings of
the constituents.

Construction grammars, described in Section 3.2.7, provide an example of cog-
nitive theories.

3.2.2 Poverty of the stimulus and universal grammar

Children’s ability to learn their first language in an effortless manner, based only
on the utterances that they hear and the related situational contexts, is a central
question of interest for linguists. One specific question has been whether hu-
mans have an innate language-acquisition device that allows for quick language
learning (Harley, 1995, Ch. 10).

The main argument for the nativist view is called the poverty of the stimu-
lus. The argument is that given only the limited data available to children, the
grammar of the language is unlearnable without some innate linguistic capacity.
Specifically, the data is limited in the sense that there is only positive evidence, that
is sentences that are grammatically correct, and no negative evidence, that is sen-
tences that are not grammatical. The theoretical ground for the argument was
provided by Gold (1967), who proved that any formal language that includes
infinite recursion is unlearnable from positive evidence alone.

The innate knowledge of language was formulated by Chomsky as a universal
grammar. The universal grammar includes the rules of the grammar that all
possible natural languages have, in some manner “hard-wired” into the brain.
In terms of machine learning, the universal grammar can be thought of as a
parametric model of language. The parameters are learned from the positive

85

Linguistic data and theories

evidence that the child acquires. When the parameters are learned, one point
hypothesis is picked up from the hypothesis class of the universal grammar,
which is the set of all potential human languages.

Obviously, empiricists also agree that there are some limitations on the kind
of language that humans can learn or even that the language ability is innate.
The disagreement is on whether the innateness or the limitations are due to a
language-specific devise or the general cognitive apparatus of humans.

The soundness of the poverty of the stimulus has been questioned from several
viewpoints. For the premises of the argument, it is not clear that humans are ca-
pable of infinite recursion even without considering limitations in the working
memory. Such constraints are certainly present in data: Karlsson (2007) found
the maximal degree of center-embedding (see Section 3.2.4) in seven European
languages to be three. Moreover, indirect negative evidence may be available as
forms of absence of some language patterns that would be considered probable
if they were grammatical. On the issue of learnability, recent work on machine
learning has shown that some context-free languages can be learned in an unsu-
pervised manner (Clark, 2001; Clark et al., 2008, 2010). Finally, there are theoret-
ical results showing that learning from positive evidence alone is possible given
a probabilistic reformulation of the learning problem (Hsu et al., 2011).

3.2.3 Models of morphology

For a grammatical description of morphology, there are two types of morphemic
approaches that are frequently contrasted: item-and-arrangement (IA) and item-
and-process (IP) (Hockett, 1954; Matthews, 1991).

In its simplest form, item-and-arrangement morphology considers the words
to consists of a set of morphs and their arrangement. The arrangement is deter-
mined by morphotactic constructions that tell which items may occur together.

The first problem in this approach is that the phonological rules of the lan-
guage may produce different morphs for the same morpheme, discussed in Sec-
tion 3.1.7. To include allomorphy, the items of the IA model can be considered
as morphemes that have each their own set of surface forms (allomorphs). Thus
the words consist of sequences of arranged morphemes. The surface form of
each morpheme is determined by morphophonemic rules of the language based
on the context in which it occurs.

The second problem of IA, which also applies to the revised model, are in-
flections such as take–took. In this case, there is no suffix corresponding to the
morpheme +PAST. Possible solutions include at least the following (Hockett,
1954):

1. Analyze took as a single morpheme TOOK.

2. Analyze took as a portmanteau morph of two morpheme sequence TAKE and
+PAST.

3. Analyze took as one allomorphs of TAKE, and introduce a zero or null morph
as one allomorph of +PAST.

4. Analyze took as a discontinuous allomorph /t. . .k/ (t-k-) of TAKE plus infixed
allomorph /U/ (-oo-) of +PAST.

5. Analyze took as take plus a replacive morph /U/←/eI/.

86

Linguistic data and theories

Hockett (1954) considers only the fourth option acceptable. He finds the first
option unacceptable as it controverts the parallelism between took and other
past tense forms, the second option arbitrary as the similarity between take and
took is no different to that between bake and baked, the third option arbitrary
as one could as well define took as an allomorph of +PAST and the null morph as
allomorph of TAKE, and the fifth option as inconsistent with that morphs should
be composed of phonemic material.

As the above example demonstrates, the IA morphology is most suited to ag-
glutinative languages. Fusion and other processes that break the one-to-one
correspondence between morphs and morphemes make the description of the
model more complicated. Most work on the unsupervised learning of morphol-
ogy, including the publications of this thesis, is based on segmentation and thus
implicitly assume an IA type of a model.

The item-and-process approach is more general than IA and can deal with
both fusion and transfixation. In the IA models, all types of morphemes are of
the same standing, whereas in the IP models, the first item of a word is always a
free morpheme that is the root of the word. Instead of constructions, new word
forms are formed by inflectional, derivational, and compounding processes. The
processes are, in principle, operations that take one or several items (words or
morphemes) as input, and return a new item (word form). The representation
of the items is a list of features. For example, the representation for bird could
be: [

Singular
BIRD

]
Noun

The lexicon stores the phonemic or orthographic representations for lexemes.
Substituting the orthographic8 root for the lexeme above gives:[

Singular
bird

]
Noun

An example of a derivational process for English is

[X]Verb → [X + er]Noun,

which takes a verb such as walk as X and returns the noun walker. The suffix er
is called the marker of the process. Similarly, one type of compounding process
can be defined by

[X]Adj + [Y]Noun → [X + Y]Noun.

For example, X = black and Y = bird yields blackbird.
Regular inflection to plural adds s as a suffix:[

Plural
X

]
Noun → X + s

The processes can have arbitrary restrictions on the forms. For the phonological
change in take–took, we might have⎡⎣ Past tense

E
C1/eI/C2

⎤⎦
Verb → C1/U/C2

8 Since the topic of this chapter is written language, orthographic representations are
applied whenever applicable.

87

Linguistic data and theories

where C1 and C2 are arbitrary consonants and E is the class of words that can be
inflected with the process, including TAKE and SHAKE. See Matthews (1991) for
a complete description and more examples.

More recently, the models of morphology have been further divided into lex-
ical or inferential models, depending on whether morphosyntactic features are
associated with morphemes or rules, and incremental or realizational models, de-
pending on whether morphemes or rules always add information when they
are applied or the forms are licensed by morphosyntactic features (Stump, 2001;
Roark and Sproat, 2007). IA is an example of lexical–incremental and IP of
inferential–realizational approach, and they are still considered the extremes of
the categorization. Roark and Sproat (2007, Ch. 3) show that for the computa-
tional perspective, IA and IP are actually equivalent: both can be implemented
by finite-state transducers. To be specific, they are different refactorizations of
the same FST.

A different formalism developed for phonology and morphology is optimality
theory (OT) by Prince and Smolensky (1993). In OT, the selection of the surface
form of a word given its morphemes is solved as a constraint satisfaction prob-
lem. Karttunen (1998) shows that also the OT constraints can be modeled by
finite-state transducers; further discussion from the computational viewpoint is
again provided by Roark and Sproat (2007, Ch. 4).

3.2.4 Phrase structure grammar

The notion of constituency has played an important role in the development
of the modern grammars. The most straightforward application of immediate-
constituent analysis to syntax is phrase structure grammar.

Consider the IC analysis of the sentence “The book I read yesterday was well
written” given in Section 3.1.6. It can also be represented by a tree graph such
as the one in Figure 3.3. A parent node and its child nodes, such as NP with
Det and Noun in the left, form a grammatical construction with child nodes as
constituents.

AdvVerb

VP

NP

NP

yesterdayread

was

APVerb

VP

S

Adj

written

Adv

PP

Pron

I

Noun

bookthe

Det

well

Figure 3.3. Parse tree for the sentence “The book I read yesterday was well written”.

Alternatively, the relation between the three nodes can be explained by a re-
write rule [NP → Det Noun], meaning that the symbol NP may generate the pair
of symbols Det and Noun. To include the generation of words, rules such as
[Noun → book] can be included. Grammars that are made up entirely of re-

88

Linguistic data and theories

Table 3.1. A phrase structure grammar that can generate the parse tree in Figure 3.3. The vertical
bar indicates optional rewrite rules for a single input symbol.

S → NP VP
NP → Det Noun | NP PP
PP → Pron VP
VP → Verb Adv | Verb AP
AP → Adv Adj

Adj → written | good | . . .
Adv → yesterday | well | really | . . .
Det → the | a | an
Noun → book | article | . . .
Pron → I | you | she | . . .
Verb → read | was | took | . . .

write rules of phrase and part-of-speech categories are called phrase structure
grammars. The set of rules (grammar) needed for the analysis in Figure 3.3 are
shown in Table 3.1. The symbols that occur only on the right side of the rules (i.e.
words) are the terminals of the grammar, and all other symbols are non-terminals.
If the left side of each rule may contain only a single non-terminal symbol, the
grammar is a context-free grammar (CFG).

An important property of phrase structure grammars and many other gram-
mars based on rewrite rules is recursivity. A rule such as [NP → NP PP] that has
the same non-terminal both in the input and output, can be applied arbitrarily
many times. The same applies to any combination of two rules. For example,
alternating between [NP → NP PP] and [PP → Prep NP] gives sequence NP Prep
NP Prep NP . . . Prep NP. A few recursions are possible even in practice: con-
sider, for example, [contracts for [the employees at [the marketing department
of [the company]NP]NP]NP]NP. This recursive center-embedding introduces long-
distance dependencies between the words. For example, the decision of using
was or were after the top-level NP (subject-verb agreement) depends not on the
previous noun (company) but the first one (contracts).

Given a CFG, there are two ways to use it. First, it can be used for deriving new
sentences. The derivation starts from the initial symbol S and each rule is read
as “rewrite the symbol on the left with the string of symbols on the right”. For
example, derivation of the sentence “an article was really good” with the CFG
in Table 3.1 is as follows:

S → NP VP
→ Det Noun VP
→ Det Noun Verb AP
→ Det Noun Verb Adv Adj
→ an article was really good

The sentences that can be derived using a CFG are referred to as grammatical,
and all the other sentences are referred to as ungrammatical according to the
grammar. Thus CFG defines a formal language that is the set of its grammatical
sentences.

Second, CFG can be used to find a parse tree for a given grammatical sentence.
This is called syntactic parsing. The search can be done either top-down, starting
with the symbol S and applying such rules that can lead to the target words, or
bottom-up, applying the rules backwards to the target words and the resulting
symbols, trying to reach a single S symbol. The algorithms for automatic pars-
ing, such as Cocke-Younger-Kasami (CYK) (Kasami, 1965; Younger, 1967), use
dynamic programming techniques (see Jurafsky and Martin, 2008, Ch. 13).

CFGs can be automatically extracted from a treebank: a corpus, in which each
sentence is manually annotated with a parse tree. Treebanks have been impor-

89

Linguistic data and theories

the book I read yesterday was well written

det sbj
vmodnmod

amod

predadj

sbj

Figure 3.4. Dependency relations for the sentence “The book I read yesterday was well written”.
Arrows point from heads to dependents. The labels of the relations are suggestive.

tant to the development of CFGs within NLP especially because unsupervised
learning of CFGs has proven to be a difficult problem. A major problem is that
there are infinitely many grammars that can generate a set of sentences. While
there has been progress in learning some restricted types of generative gram-
mars (see Clark et al., 2008, 2010), they have not yet been applied to real natural
language data sets.

For statistical language modeling, a relevant extension of CFGs are proba-
bilistic context-free grammars (PCFGs) (see Jurafsky and Martin, 2008, Ch. 14).
PCFGs introduce a probability for each rewrite rule X → Y so that ∑Y∈Σ∗ p(X →
Y) = 1, where Σ is the combined set of terminals and non-terminals. PCFGs are
discussed more in the context of statistical language models in Section 4.3.1.

Languages with relatively free word order are problematic for phrase structure
grammars. A pair of rule such as [S → NP VP] and [VP → Verb NP] assume the
SVO word order: the subject occurs before the verb and the object after the verb,
as in “dog chased cat”. In Finnish, the object is determined by morphological
change in the word (e.g. partitive case suffix a in kissa+a). Accordingly, the OSV
order (“kissaa koira jahtasi” = “cat+[PTV] dog chased”) is equally grammatical
to SVO (“koira jahtasi kissaa” = “dog chased cat+[PTV]”), although the OSV
order adds emphasis on the object compared with the default SVO order.

3.2.5 Dependency grammars

Dependency grammars show an alternative way to look at the organization of
sentences. Instead of studying constituency and phrase structure rules, they
study syntactic dependency relations between words. A dependency relation con-
siders two words: one is dependent and the other is head of the relation. The
relations may either be unnamed or labeled. In the latter case, the terms from
traditional sentence analysis, such as subjects, objects and predicates are ap-
plied, but again, different tagsets can be applied.

The main verb of a sentence is assumed to be the root of the sentence. That is,
it is not dependent on anything else. Subject and objects are then dependent on
the main verb, adjectives and determiners on the nouns that they modify, and
so on. Figure 3.4 shows a typed dependency parse for our example sentence.
In this graphical representation, the arrows point from heads to dependents;
sometimes they are drawn in the opposite direction. The dependency parse can
also be drawn as a tree, starting with the root in the top. Every node in the tree
except for the root node corresponds to one word in the sentence.

Dependency grammars have two advantages over CFGs. First, the depen-
dents also have a strong statistical dependence on their heads: knowing the
verbs help deciding both how many subjects and objects there are and which
nouns there are likely to be. Second, the grammars can easily handle languages

90

Linguistic data and theories

with free word order. Dependency grammars can be extracted from dependency
treebanks, but also from CFG treebanks, or directly using a CFG or some other
suitable grammar. Kübler et al. (2009) give a recent overview on dependency
grammars and their parsing algorithms.

3.2.6 Context-sensitive grammars

Phrase structure grammar is restricted to context-free rules, which is a problem
if the syntax of natural languages is context-sensitive. While the assumption
that the natural languages are not context-free is popular—one widely accepted
proof is provided by Shieber (1985)—the question is still controversial (Pullum
and Gazdar, 1982; Pullum and Rawlins, 2007).

The first widely influential attempt to increase the descriptive power of phrase
structure grammars was the transformational grammar by Chomsky (1965, 1957).
Consider the following pairs of sentences (Karlsson, 2008, p. 181):

(1a) The State of California executed Caryl Chessman.
(1b) Caryl Chessman was executed by the State of California.
(2a) That the hunters shot made me sick.
(2b) The shooting of the hunters made me sick.

The sentences (1a) and (1b), as well as (2a) and (2b) have approximately the
same meaning. In the first case, the sentence has been transformed from active
to passive. In the second case, the subordinate clause has been transformed to
a noun phrase. The basic idea in transformational grammar is to identify one
core sentence from a set of related sentences, and describe the other sentences
by transformation rules or transformations from the core sentence. The transfor-
mations are context-sensitive and may delete, substitute and insert the elements
of a phrase structure. The language is then context-sensitive even if the core
sentences were derived by a CFG.

Unification grammars extend context-free grammars by adding feature struc-
tures to the constituents. The features can, for example, specify the grammatical
person and number for the word. The operation of unification tries to match
the feature structures of different constituents. The possibility of failure of the
unification operation imposes constraints on the derivation or parsing.

In lexicalized grammars, phrase structure rules are replaced by a small number
of combination rules. Instead, the information on how to combine constituents
are encoded in lexical categories. For example, tree-adjoining grammars (TAGs)
have only two rules, substitution and adjunction, but the combined elements
are trees instead of symbols.

Both unification grammars and lexicalized grammars have computational im-
plementations for parsing. For details, see Roark and Sproat (2007, Ch. 9) or
Jurafsky and Martin (2008, Ch. 15).

3.2.7 Construction grammars

Construction grammars is a family of cognitive theories of grammar that share a
number of key ideas. Important contributions have been made by Lakoff (1987),
Langacker (1987, 1991), Fillmore et al. (1988), Goldberg (1995, 2006), and Croft
(2001). A short overview on construction grammars is given by Goldberg (2003).

While construction grammars are generative in the sense that they try to ac-

91

Linguistic data and theories

count for all grammatical expressions of language, they differ from Chomskyan
generative grammars in many other aspects. Similar to most theories of cog-
nitive linguistics, construction grammars posit no language-specific modules in
the brain and assume that language acquisition can be explained by general cog-
nitive mechanisms. Instead of separating lexicon and syntax (such as symbols
and rules in phrase structure grammar), construction grammars describe all as-
pects of language by form-meaning pairs (signs), which are called constructions.
All the linguistic knowledge of a user of the language is stored in her construc-
tion lexicon (sometimes called constructicon). The construction lexicon is often
considered to be a network that stores the relations of the constructions (such as
inheritance) in addition to their forms and meanings.

As the meanings and forms are intertwined in the constructions, they are not
independent as in traditional generative grammars. The meaning component of
a construction can have semantic, pragmatic, or discourse function. The form
component can be anything from a morpheme to an abstract sentence construc-
tion (see Table 1.1, page 21).

The different versions of construction grammars have some variation regard-
ing whether a construction has to be (1) complex pattern (i.e., not a morpheme),
and (2) whether there has to be some aspect of the form or function of the con-
struction that is not strictly predictable from its component parts or from other
constructions recognized to exist (Schönefeld, 2006). Using terminology from
Kohonen et al. (2009b), the first criterion divides the constructions into compound
and non-compound constructions, and the second criterion divides the construc-
tion lexicon into minimal and redundant constructions.

There are several reasons why construction grammars are interesting both
from the view of machine learning and NLP. For example, they predict that all
levels of language, from morphology to discourse, can be learned by the same
general learning mechanisms of cognition. No intermediate representation is
assumed, but learning can be seen as direct mapping from forms to meanings.
The task of grammar inference can be simply set as finding a sufficient construc-
tion lexicon that contains at least all the minimal constructions in the data, but
can also include redundant constructions (Kohonen et al., 2009b).

By discarding pragmatics and concentrating on syntax, Chomskyan genera-
tive grammars are commonly limited to the description of frequent, central pat-
terns of language. Given such a grammar, finding non-grammatical sentences
from any large corpus is rather a rule than an exception—as Sapir (1921) put it,
“all grammars leak”. In contrast, constructionist studies are often interested in the
periphery of the language (Fried and Östman, 2004), making them relevant for
anyone who wants to cover as much of the linguistic data as possible. Moreover,
most of the construction grammars are usage-based theories, and thus compati-
ble with probabilistic account of language.

However, as criticized by Bod (2009a), the current constructionist theories
leave open all details for a computational implementation: How the construc-
tions should be encoded, what kind of operations should be used to combine dif-
ferent constructions, and how the constructions are acquired from the observed
utterances? Nevertheless, construction grammars have both inspired and are
compatible with several computational models of language learning (e.g., Steels,
2004; Borensztajn et al., 2009). Within this thesis, Publication XI presents a MDL-
based method for learning phrasal constructions. The publication and related
work are discussed in Chapter 6.

92

4. Statistical language modeling

This chapter considers the problem of statistical language modeling, highlighted
in the overview diagram of Figure 4.1. After a short introduction to the prob-
lem, Section 4.1 summarizes the typical applications and evaluation methods
for language modeling. The next two sections give an overview on the mod-
eling techniques: Section 4.2 on n-gram models and Section 4.3 on other types
of models. The last two sections address the contributions of this thesis related
to language modeling techniques. Section 4.4 considers the specific problem
of building variable-order n-gram models with Kneser-Ney smoothing. New
methods for this problem have been developed and evaluated in Publication I.
Section 4.5 discusses the new clustering algorithm for n-gram models developed
in Publication II.

Statistical language modeling refers to density estimation of the distribution
p(S) over some fragments of text S. The fragments are usually either words,
utterances, sentences, or documents. Defining such a probability distribution is
an essential part of many applications where the output of the system is text.
A prototypical example is automatic speech recognition. Given acoustic speech
signal a, the goal of the system is to transfer it to text s. Using the noisy channel
model (see Section 2.4), the original message s is encoded into speech a, which
we try to decode. To minimize the probability of errors, such an estimate ŝ
should be selected that

ŝ = arg max
s

p(S = s | A = a) = arg max
s

p(S = s)p(A = a | S = s). (4.1)

The conditional probability p(A | S) is estimated by an acoustic model and the
probability p(S) by a statistical language model. Similarly in statistical machine
translation, p(A | S) is estimated from a translation model.

Although this chapter will concentrate on generative language models that
define the distribution p(S), it is not the only option. Instead of using the noisy
channel model, it is possible to directly estimate the conditional distribution
p(S | A)—or just unnormalized scores for the candidate sentences given the in-
put utterance. This kind of discriminative language models has been studied, for
example, by Roark et al. (2004, 2007). The discriminative models are typically
linear or log-linear and their predictions are based on features selected from the
pairs (s, a). In practice, the utterance a is defined by a lattice or n-best list gen-
erated by a baseline recognizer, and the first feature is the log-likelihood given
by the baseline recognizer (Roark et al., 2007). The rest of the features are based
solely on the sentence s. The benefit of the discriminative modeling is that arbi-
trary features can be applied. A supervised training algorithm (e.g. perceptron)
can select only a small set of relevant features from the huge number of potential

93

Statistical language modeling

Automatic
speech
recognition

Text prediction
- cross-entropy
- perplexity
...

LEARNING
PROBLEMS

...

Representation learning

Statistical language modeling

...

Selecting lexical units

DIRECT
EVALUATIONS

...

Language tests

Behavioral tests

Manual evaluation

EVALUATIONS
INDIRECTAPPLICATIONS

WER

F-measure
...

MAP
...

Human ratings

Human ratings

User studies

BLEU

LER

...

...

User studies

Human ratings

...
ROUGE

Accuracy

F-measure

...

...

...

- whole sentence models
- probabilistic CFGs

- n-gram models

- vector space models

- probabilistic topic models

- shallow parsing

- word segmentation

- morphological analysis

- phrasal constructions

Information
retrieval

Text
categorization

Text
summarization

Speech
synthesis

Statistical
machine
translation

...

- correlation to reaction times
in lexical decision task

- language acquisition patterns
...

Psycholinguistic evaluation

- segmentation boundary
evaluations

- isomorphic evaluations
Automatic linguistic evaluation

- canonical correlation
between matched samples

Multilingual evaluations

Figure 4.1. Statistical language modeling in the overview diagram.

features to select the best candidate. A drawback is that a discriminative model
is dependent on the baseline recognizer (or some other application-specific de-
coder) and the acoustic and language models utilized by it.

Estimating the density p(S) from given samples s1, s2, . . . , sN is an unsuper-
vised learning task. However, as the samples s are sequences of discrete units
(e.g., characters or words) w ∈ Σ, the problem can be reformulated as a set of su-
pervised learning tasks by using the chain rule of probabilities for the sequences:

p(s) =
|s|
∏
i=1

p(wi |wi−1
1), (4.2)

where wj
i (i ≤ j) is a shorthand notation for (wi, wi+1, . . . , wj). Now, for each

point i, the task is to predict the units wi given the history h = wi−1
1 . Given train-

ing data for each history, this is a standard classification task p(W = wi | H =

wi−1
1). As a matter of fact, such conditional probabilities are required by the de-

coders of ASR or SMT systems: generating whole sentences based on the acous-
tic or translation model before using the language model would be a waste of
computational resources. Models that cannot provide conditional probabilities
are typically used only for re-ranking the N-best list or lattice of sentences gen-
erated by the decoder.

The main problem in statistical language modeling is that the language data
is sparse. While it is simple enough to estimate the probability of the first unit,
p(w1), for large enough i, a particular wi−1

1 is unlikely to be present in the train-
ing data and thus p(wi |wi−1

1) cannot be estimated directly. The various types of
language models differ on how they approach the problem of sparsity.

94

Statistical language modeling

4.1 Evaluation methods and applications

Statistical language models are usually evaluated directly by calculating empir-
ical cross-entropy or perplexity on test data (Equations 2.37 and 2.38, page 44).
Goodman (2001b) shows that the decrease in cross-entropy generally reflects
more accurately the potential decrease in error rate in speech recognition than
perplexity. In contrast to the likelihood of the test data, entropy and perplexity
values are normalized by the size of the data set. The normalization is typically
based on the number of the lexical units w in the test data. However, when
comparing models based on different units such as words and morphemes, the
normalization factor has to be the same (Hirsimäki et al., 2006). For example,
word-based cross-entropy can be defined as

H̃q(D) = − 1
WD

log p(D | θ,M), (4.3)

where WD is the number of words in D, regardless of which kind of units are
applied when determining p(D | θ,M).

The most common indirect evaluation for language models is via automatic
speech recognition, which is their oldest application. The output of ASR sys-
tems is typically evaluated by word error rate (WER). WER is the Levenshtein
edit distance between the reference transcription t and the output of the recog-
nizer r normalized by the number of words in the reference. The edit distance
calculates the total number of insertion, deletion and substitution operations
required to convert r to t (or vice versa). Because WER does not differentiate be-
tween partially and fully equal word forms, letter error rate (LER) is sometimes
used for morphologically complex languages.

Another common application is statistical machine translation. While WER
can also be used to evaluate machine translation output, is not very suitable for
the task. Because there is not a single correct translation, the evaluation mea-
sure should consider several reference translations whenever available, and not
penalize for rephrasing the sentence. For example, edit distance between “Af-
ter you are ready, visit my office” and “Visit my office after you are ready”
is six (if punctuation and upper-case letters are ignored) although the semantic
content is (almost) the same. One of the most popular MT evaluation scores
is BLEU (Papineni et al., 2002), which counts how many n-grams (usually for
n = 1, . . . , 4) the proposed translation has in common with the reference transla-
tions and calculates a similarity score based on this. Although the BLEU scores
may sometimes differ greatly from human evaluation (Culy and Riehemann,
2003; Callison-Burch et al., 2006), they are still considered to be good enough for
comparison of similar types of machine translation systems as well as discrimi-
native training of the translation models.

Other applications for statistical language models include optical character
recognition, text correction (Kukich, 1992), and language identification (Beesley,
1988; Dunning, 1994). Some language models—unigram and topic models—are
also used in IR and text categorization tasks (Section 5.2).

4.2 N-gram models

N-gram models try to solve the problem of data sparsity by making an assump-
tion that the probability of the ith unit wi depends only on the previous n − 1

95

Statistical language modeling

wi−3 wi−2 wi−1 wi

Figure 4.2. Graphical representation for a 4-gram model. Only those vertices that wi depends on
and the corresponding edges are drawn in the figure.

units. In other words, all histories that have the same n − 1 most recent units are
combined into one equivalence class:

p(wi |wi−1
1) ≈ p(wi |wi−1

i−n+1). (4.4)

For a relatively small n, this alleviates the data sparsity essentially. The se-
quences wi

i−n+1 of n units are called n-grams, or for specific values of n uni-
grams (n = 1), bigrams (n = 2), and trigrams (n = 3). An n-gram model is also
an (n − 1)th order Markov model. Figure 4.2 illustrates a model that is based on
the 4-gram assumption.

Using the product rule, the conditional n-gram probability is:

p(wi |wi−1
i−n+1) =

p(wi
i−n+1)

p(wi−1
i−n+1)

. (4.5)

Let c(wj
i) be the number of occurrences of the sequence wj

i in the training data
of size N. The ML estimate for p(wi |wi−1

i−n+1) is then

pML(wi |wi−1
i−n+1) =

c(wi
i−n+1)/(N − n + 1)

c(wi−1
i−n+1)/(N − n)

≈ c(wi
i−n+1)

c(wi−1
i−n+1)

(4.6)

for N � n.
The ML estimate has two problems. First, a non-zero probability cannot by

assigned to any n-gram that does not exist in the training data. This applies
also for any individual unit w in the set of out-of-vocabulary units Σoov = {w ∈
Σ : c(w) = 0}. The proportion of unseen n-grams is significant even for a large
corpus because linguistic units occur according to a power-law distribution (Sec-
tion 3.1.1) and the number of possible n-grams grow exponentially in n.

Second, when we estimate the ML probability for a certain rare n-gram using
only a small number of occurrences, it is likely that the probability is overesti-
mated. This can be reasoned as follows: Consider a single text corpus of size N.
As noted above, all possible n-grams of the language cannot occur in the corpus.
For those n-grams that have a small probability (e.g. p = 1

2N), some do occur in
the corpus (pML ≥ 1

N) and some do not (pML = 0). Thus the probability mass of
those that do not occur in the corpus is accumulated to those that do.

There are two ways to alleviate the two problems: smoothing the maximum-
likelihood distribution and combining n-gram estimators of different lengths n.
The term smoothing technique is sometimes used to refer to the combination of
the two. An extensive overview of the techniques is provided by Chen and
Goodman (1999).

4.2.1 Smoothing

The basic idea of smoothing is to move probability mass from n-grams that oc-
curred only few times to those that did not occur at all. As the probabilities of

96

Statistical language modeling

the seen n-grams are decreased, another name for this is discounting.
A common way to describe smoothing methods is to define adjusted counts

c∗(·) to use for the numerator of the ML estimate:

psmoothed(wi |wi−1
i−n+1) =

c∗(wi
i−n+1)

c(wi−1
i−n+1)

(4.7)

Another way is to determine a discount d(wi
i−n+1) = c∗(wi

i−n+1)/c(wi
i−n+1) so

that psmoothed(wi |wi−1
i−n+1) = d(wi

i−n+1)× pML(wi |wi−1
i−n+1).

Let h = wi−1
i−n+1. If c∗(hw) = 0 for any c(hw) = 0, the probability mass left

over after smoothing is

γ(h) =
∑w:c(hw)>0

(
c(hw)− c∗(hw)

)
c(h)

=
∑w:c(hw)>0 c(hw)

(
1 − d(hw)

)
c(h)

. (4.8)

This missing probability mass can be evenly distributed for the unseen units {w ∈
Σ : c(hw) = 0} so that ∑w∈Σ psmoothed(w | h) = 1.

One of the oldest smoothing methods is Laplace’s law, also referred to as
adding one. It makes the assumption that every seen or unseen event is already
seen once. Thus the smoothed n-gram probability is

padd-1(wi |wi−1
i−n+1) =

c(wi
i−n+1) + 1

c(wi−1
i−n+1) + V

, (4.9)

where V = |Σ| is the size of the vocabulary. Manning and Schütze (1999, p. 203)
demonstrate that Laplace’s law reduces the probability of frequent n-grams too
much. An extension is additive smoothing (or Lidstone’s law), in which a constant
0 < λ ≤ 1 is added to the frequencies:

padd(wi |wi−1
i−n+1) =

c(wi
i−n+1) + λ

c(wi−1
i−n+1) + λV

. (4.10)

Witten-Bell smoothing (Witten and Bell, 1991) uses one discount for each history
h. Then d(h) = 1 − γ(h). The idea is to find such γ(h) that it estimates the
probability that a previously unseen unit w occurs after h. There are t1+(h•) =
|{w ∈ Σ : c(hw) ≥ 1}| unique unit types that follow h in the training data. The
probability of a new type is approximated by normalizing t1+(h•) by the sum
of types t1+(h•) and tokens c(h). Accordingly, the discount is set to

dWB(h) = 1 − t1+(h•)
t1+(h•) + c(h)

=
c(h)

t1+(h•) + c(h)
. (4.11)

Good-Turing (GT) estimate, proposed by Good (1953) for estimating population
frequencies of species for a random sample, replaces the observed frequencies r
with modified frequencies R:

Rn(r) = (r + 1)
Nn,r+1

Nn,r
. (4.12)

Nn,r = |{w ∈ Σn : c(w) = r}| is the number of n-grams that occurred r times
(i.e., frequency of frequency r). The Good-Turing formula is based on the as-
sumption that the frequencies of the sample are binomially distributed. For
non-zero counts, the adjusted count is simply

c∗(wi
i−n+1) := Rn(c(wi

i−n+1)) (4.13)

97

Statistical language modeling

and the missing mass for items which did not occur in the training data is
γ(wi−1

i−n+1) = Nn,1/N. In practice, Rn(r) cannot be applied to large counts.
Given the power-law distributions, Nn,r is sparse for large frequencies r, and
thus Nn,r+1 may easily be zero. This can be circumvented by using curve fitting
to estimate the values of Nn,r (Gale and Sampson, 1995), but as the MLE is any-
way reliable for large frequencies, it is simpler to use smoothing only if r < k for
some constant k.

Absolute discounting, first proposed by Ney et al. (1994), subtracts a fixed dis-
count D > 0 from the counts that are larger than D:

c∗(wi
i−n+1) := c(wi

i−n+1)− D if c(wi
i−n+1) > D. (4.14)

The missing probability mass for history h is then

γ(h) =
|{w ∈ Σ : c(hw) > D}| × D

c(h)
. (4.15)

Absolute discounting may be extended so that the discount depends on the orig-
inal count r = c(wh) and the n-gram order. A common setup proposed by Chen
and Goodman (1999) is to have separate discounts for r = 1, r = 2, and r ≥ 3:

c∗(wi
i−n+1) :=

⎧⎨⎩
c(wi

i−n+1)− D1 if c(wi
i−n+1) = 1

c(wi
i−n+1)− D2 if c(wi

i−n+1) = 2
c(wi

i−n+1)− D3+ if c(wi
i−n+1) ≥ 3

(4.16)

and

γ(h) =
t1(h•)× D1 + t2(h•)× D2 + t3+(h•)× D3+

c(h)
, (4.17)

where

tr(h•) = |{w ∈ Σ : c(hw) = r}| (4.18)

tr+(h•) = |{w ∈ Σ : c(hw) ≥ r}| (4.19)

give how many types of n-grams of a certain frequency follow the given history.
The optimal discounts can be estimated analytically from the training data via
deleted estimation (see, e.g., Chen and Goodman, 1999) or numerically from the
development data.

4.2.2 Back-off and interpolation

Consider the smoothed n-gram distribution psmoothed(w |wi−1
i−n+1). Using the

missing probability mass γ(wi−1
i−n+1) for giving equal probabilities to all unseen

w is sensible only if there is no better information. If n > 1, it makes sense to use
a smoothed lower-order distribution psmoothed(w |wi−1

i−n+2) instead.
There are two basic ways to combine the distributions. In back-off models,

a lower order estimator is applied only if the current order cannot provide an
estimate. If h = wi−1

i−n+1 with n > 1, let us denote a backed-off history wi−1
i−n+2 by

h̄. That is, h = wh̄ for some w ∈ Σ. For unigram distributions, h̄ may also be an
empty sequence. A recursive formulation for a back-off model is:

pbo(w | h) =

{
c∗(hw)

c(h) if c(hw) > 0
γ(h)× pbo(w | h̄) otherwise.

(4.20)

98

Statistical language modeling

In contrast, interpolated models use linear interpolation of all estimators of dif-
ferent order:

pint(w | h) =
c∗(hw)

c(h)
+ γ(h)× pint(w | h̄). (4.21)

Sometimes the back-off or interpolation include a zero-gram distribution, which
is a uniform distribution over the known units: p0(w) = 1/V.

In practice, the models are usually stored in the back-off format, as they are
more efficient to use. Any interpolated model can be represented as a back-off
model (Jurafsky and Martin, 2008), but the converse is not always possible.

In addition to combining n-gram estimators of different order, linear interpola-
tion is commonly used to combine different types of models. Given two models
pa and pb and interpolation weight 0 < λ < 1, the interpolated probability is:

pcombined(w | h) = λ × pa(w | h) + (1 − λ)× pb(w | h). (4.22)

The interpolation weights can be estimated using the EM algorithm or selected
by maximizing likelihood of some held-out data. A more flexible way of com-
bining models is general linear interpolation, in which the interpolation weights
depend on the history h (Manning and Schütze, 1999). However, this drastically
increases the number of free parameters.

4.2.3 Kneser-Ney smoothing

Back-off and interpolation, as defined above, make the assumption that the
probability distribution psmoothed(w | h̄) is independent of psmoothed(w | h). In
some cases, this is clearly wrong. Consider, for example, the bigram “San Fran-
cisco”. The probability psmoothed(Francisco |San) is evidently quite high: esti-
mated from the Google n-gram corpus (Brants and Franz, 2006), the ML estimate
pML(Francisco |San) is 1.2 × 10−3. The unigram probability pML(Francisco) =
4.2 × 10−5 is reasonable if the previous word is not known. However, if we
know that wi−1 �= San, then it is overestimated because it includes the small but
significant part of the occurrences where Francisco is preceded by San.

Kneser-Ney (KN) smoothing improves the estimates of (n − 1)th order distri-
butions by using type counts instead of token counts. Kneser and Ney (1995)
derived the type-based formulas by constraining the marginal distributions of
the model probabilities to their empirical estimates:

∑
v

pKN(vhw) = pML(hw) =
c(hw)

N
. (4.23)

In their derivation, Kneser and Ney (1995) used a back-off model and required
some approximations. A simpler derivation was shown by Chen and Goodman
(1999). They used an interpolated model with absolute discounting:

pKN(w | vh) =
max(c(vhw)− D, 0)

c(vh)
+ γ(vh)× pKN(w | h). (4.24)

In both cases, Equation 4.23 can be solved for

pKN(w | h) =
t(•hw)

t(•h•) , (4.25)

where t(•hw) = |{v ∈ Σ : c(vhw) ≥ 1}| gives the number of distinct left
contexts in which hw occurs and t(•h•) = ∑w∈Σ t(•hw).

99

Statistical language modeling

The constraint on the marginal distribution of an n-gram model has a theoret-
ical motivation: Goodman (2001b) shows that any smoothing method that does
not preserve the marginal distributions cannot be optimal. Moreover, Goodman
(2004) notes that Kneser-Ney smoothing is an approximation to a maximum-
entropy model with an exponential prior. In fact, maximum-entropy language
models, discussed later in Section 4.3.2, satisfy exactly all known marginal con-
straints.

Informally, the approach can be motivated by the view that only such a unit
that occurs in many different contexts is likely to occur in a new context. In the
example above, pKN(Francisco) = 7.1 × 10−6, which is one order of magnitude
smaller than the token-based estimate.

While no longer motivated by the marginal constraints, the type-based distri-
butions are applied also for the distributions of order k < n − 1. Let t∗(·) be
the type count t(·) adjusted by smoothing analogously to c(·) and c∗(·). For
interpolated Kneser-Ney smoothed model of order n,

pKN(w | h) =

⎧⎪⎨⎪⎩
pKN(w | h̄) if |hw| > n.
c∗(hw)

c(h) + γ(h)× pKN(w | h̄) if |hw| = n
t∗(•hw)
t(•h•) + γ(h)× pKN(w | h̄) if |hw| < n.

(4.26)

Modified Kneser-Ney interpolation by Chen and Goodman (1999) is often consid-
ered as the state-of-the-art smoothing method. It uses Kneser-Ney smoothing,
interpolation, and absolute discounting with three discounts (Equations 4.16–
4.17).

4.2.3.1 Relation to Pitman-Yor process and power-law discounting

Goldwater et al. (2006, 2011) and Teh (2006) have noticed a correspondence be-
tween interpolated Kneser-Ney models and the Pitman-Yor process used in non-
parametric Bayesian models (Section 2.7.4, page 61). According to Teh (2006), a
Kneser-Ney model can be interpreted as a particular type of approximate infer-
ence for their hierarchical Pitman-Yor (HPY) language model. In HPY language
models, several Pitman-Yor processes (Equation 2.71, page 62) are combined so
that the base distribution for each p(w | h) is p(w | h̄):

Gh(w) ∼ PYP(Gh̄(w), d|h|, θ|h|) (4.27)

The base distribution for the empty history is the uniform distribution over the
vocabulary: G0(w) = 1/V.

Teh (2006) reports only small and statistically insignificant differences in per-
plexity for the HPY language models and the interpolated Kneser-Ney models.
Huang and Renals (2010a) use a parallel training algorithm in order to use larger
amounts of training data, and test the models in a conversational speech recog-
nition task. They obtain small but statistically significant improvements for the
HPY language model over n-gram models with modified KN interpolation, both
for perplexity and word error rate. However, both Teh (2006) and Huang and
Renals (2010a) compare only 3-gram models.

Using the relation to Pitman-Yor process language models, Huang and Renals
(2010b) introduce a power-law discounting, which is similar to modified Kneser-
Ney interpolation, but introduces strength parameter θ and multiplies the ab-
solute discount by a power-law term c(h, w)D. This term approximates tw(zi

1),

100

Statistical language modeling

the number of tables labeled with word w, in Equation 2.71. The power law
smoothing is defined by:

ppow(w | h) =
max(c(hw)− Dc(hw)D, 0)

θ + c(h)
+ γ(h)× ppow(w | h̄); (4.28)

γ(h) =
θ + D ∑v∈Σ c(hv)D

θ + c(h)
. (4.29)

The lower-order distributions are then set to

ppow(w | h̄) = ∑v∈Σ c(vh̄w)D

∑w′∈Σ ∑v∈Σ c(vh̄w′)D
, (4.30)

which again satisfies the marginal constraint. Evidently, the result of Equa-
tion 4.30 approaches the type-based estimate when D → 0.

In their experiments, Huang and Renals (2010b) use 3-gram models, θ = 0, and
D = n1/(n1 + 2n2), where n1 and n2 are the total numbers of n-grams with ex-
actly one or two counts (deleted estimation). The perplexities of the power-law
discounted models outperform modified Kneser-Ney interpolation and have no
statistically significant differences to perplexities of the Pitman-Yor process lan-
guage models while being computationally more efficient.

4.2.4 Variable length n-grams

If all observed n-grams are included in the model, the size of the model grows
quickly with respect to the model order n and available training data. As lim-
iting either of those often reduces the accuracy of the model, it is common to
restrict the number of n-grams included in the model based on some other cri-
teria.

An n-gram model can be stored as a tree where the node for the sequence wj
i

is a child for wj−1
i and the parent–child edge is labeled with the identity of wj

(Kneser, 1996). A leaf n-gram is not a prefix of any (n + 1)-gram in the model.1

In a full model of order M, all leaf n-grams are at the depth M. If some of the
n-grams are excluded from the model, the maximal history length may vary in
different contexts. For example, removing vhw for all v ∈ Σ from a (|h| + 2)-
gram model means that the model order is decreased to (|h|+ 1) in the context
h. These kinds of models are called variable length n-gram or varigram models.
Figure 4.3 illustrates a varigram model that uses a maximum n-gram length of
three.

For an n-gram history h, let Ah• = {w ∈ Σ : c(hw) > 0} be the set of all
observed n-grams, Ih• ⊆ Ah• those that are included in the model, and Eh• =

Ah• \ Ih• those that are excluded (pruned). All n-grams longer than n can be
considered as pruned n-grams. A varigram model that uses adjusted counts
c∗(·) and linear interpolation can be defined by

ppruned(w | h) =

{
c∗(hw)

c(h) + γ(h)× ppruned(w | h̄) if hw ∈ Ih•
0 + γ(h)× ppruned(w | h̄) if hw ∈ Eh•

. (4.31)

1 It is also possible to build the tree in such manner that each parent is the suffix of its
children, not prefix. However, prefix trees (tries) are more convenient as for each n-gram
hw, also γ(h) has to be stored.

101

Statistical language modeling

p(w3)

p(w2 |w3)

p(w1 |w3)
p(w3 |w3w1)

p(w2 |w3w1)

p(w2)

p(w3 |w2)

p(w1 |w2)

p(w1)

p(w3 |w1) p(w2 |w1w3)

p(w2 |w1)
p(w3 |w1w2)

p(w1 |w1w2)

p(w1 |w1)

Figure 4.3. Example of a variable length n-gram model arranged in a tree structure.

The interpolation weights γ(h) are modified to include the probability mass
from the removed n-grams:

γ(h) =
∑g∈Ih•(c(g)− c∗(g)) + ∑g∈Eh• c(g)

c(h)
. (4.32)

The need to store the interpolation or back-off weights γ limits which n-grams
can be pruned. If for any v ∈ Σ, n-gram hwv is in the model, then pruning hw
is not likely to be useful, as γ(hw) has to be stored in any case. Moreover, if
the n-grams are stored in the tree structure similar to that of Figure 4.3, hw will
automatically have a node in the tree.

There are two basic approaches for selecting the n-grams of the model: Pruning
refers to starting with a full model that contains all observed n-grams up to a
given order, and then removing some according to a pruning criterion. Growing
refers to starting with a unigram model and adding new n-grams to it, usually
one order at a time, again with a suitable criterion. Growing has two advantages
over pruning: there is no need to store the full model, which may be significantly
larger than the final model, and the model order does not have to be decided
beforehand. However, a growing algorithm may never even consider adding
some n-grams of the full model that might have been useful. For example, if the
tree in Figure 4.3 was grown one order at a time, and p(w1 |w3) was not added,
its children p(w2 |w3w1) and p(w3 |w3w1) would not be considered.

4.2.4.1 Pruning algorithms

The simplest way to prune n-grams is to use count cutoffs: all n-grams that occur
fewer than T times in the training data are excluded from the model. Formally
Ih• = {g ∈ Ah• : c(g) ≥ T}. Because c(h) ≥ c(hw) and c(h) ≥ c(wh) for
any w ∈ Σ, cutoffs remove complete subtrees from the model. According to
Goodman and Gao (2000), low cutoff thresholds T do not increase cross-entropy
of the model significantly. However, if a low T is not enough for the desired
model size, more sophisticated methods give better results.

While cutoff pruning is a simple heuristic, the more sophisticated pruning
methods try to estimate the difference between the original model (p) and the
pruned model (ppruned) when considering whether to prune a single n-gram hw.
That is, if ppruned(w | h) is effectively the same as p(w | h), little information is
lost by pruning hw.

102

Statistical language modeling

One early example of such an pruning method is the weighted difference method
by Seymore and Rosenfeld (1996). The n-grams hw are ranked according to the
criterion

dWD(hw) := c∗(hw)× log
p(w | h)

ppruned(w | h)
, (4.33)

where c∗(hw) is the adjusted count of the n-gram and

ppruned(w | h) = γ(h)p(w | h̄) (4.34)

is the probability estimate from a model without the n-gram hw. After ranking,
n-grams are removed in increasing order of dWD until the desired model size is
reached. Seymore and Rosenfeld (1996) use the weighted difference pruning for
Good-Turing smoothed back-off models.

Kneser (1996) describes a pruning method for Kneser-Ney smoothed models
stored in a prefix tree. In this Kneser pruning, the cost of pruning a leaf n-gram is

dKP(hw) := p(hw)× log
p(w | h)

ppruned(w | h)
. (4.35)

If a non-leaf n-gram hw is pruned, the complete subtree is pruned (i.e., all n-
grams that have hw as a prefix are also pruned). For non-leaf n-grams, the cost
is the average of dKP(g) over all the n-grams g that have hw as prefix, including
the n-gram itself. The costs are first calculated for every n-gram and then the
n-grams with the lowest costs are pruned until the desired number of n-grams
is reached. Kneser (1996) also defines a back-off distribution that approximately
keeps the marginal constraints in the Kneser-Ney smoothing. The relation of
Kneser-Ney smoothing and varigram models is considered in more detail in
Section 4.4 and Publication I.

The logarithmic ratios in Equations 4.33 and 4.35 resemble that of the relative
entropy (Equation 2.35, page 43), but consider only the effect of a single proba-
bility p(W = w | h) instead of the whole distribution p(W | h). The entropy-based
pruning by Stolcke (1998) uses a pruning criterion based directly on relative en-
tropy:

dRE(hw) := D(p || ppruned) = ∑
v∈Σ

p(hv)× log
p(v | h)

ppruned(v | h)
(4.36)

All n-grams that have a lower relative entropy than a threshold ε are pruned.
Similar to the weighted difference pruning and Kneser pruning, interactions be-
tween different n-grams are not considered. Apart from using a theoretically
sound measure, an advantage of entropy-based pruning is that it does not need
the original counts from the data. Thus it can be used to prune any existing
model.

In contrast to the above methods, Bonafonte and Mariño (1996) proposes prun-
ing whole histories instead of individual n-grams. When a history h is pruned,
all n-grams {hw : w ∈ Σ ∧ c(hw) > 0} are removed and the back-off history
h̄ is used for prediction. As pruning criterion, they use both count cutoff for
c(h) and threshold for the relative entropy between the distributions p(w | h)
and p(w | h̄).

4.2.4.2 Algorithms for growing n-grams

Various algorithms for growing varigram models (e.g. Ristad and Thomas, 1995;
Niesler and Woodland, 1996b; Siu and Ostendorf, 2000; Siivola and Pellom, 2005)
can be compared at least in three aspects.

103

Statistical language modeling

The first aspect is whether the model is grown by adding individual n-grams
hw or full distributions {hw : w ∈ Σ ∧ c(hw) > 0}. The former is used by
Ristad and Thomas (1995) and Siivola and Pellom (2005), the latter by Niesler
and Woodland (1996b, 1999) and Siu and Ostendorf (2000). In the latter case, it
is naturally possible to reduce the model further by pruning individual n-grams
after the growing phase.

The second aspect is whether the n-grams g are grown forward to gw or back-
ward to wg. If the n-grams are stored in a prefix tree such as the one in Figure 4.3,
it is natural to grow forward to avoid adding extra n-grams to the tree. This ap-
proach is taken by Siivola and Pellom (2005). Niesler and Woodland (1996b,
1999) and Siu and Ostendorf (2000) use an alternative tree structure, in which
each node represents a history of the model and stores the conditional distribu-
tion p(w | h) as well as γ(h). The root of the tree represents empty history and
stores the unigram distribution. If the parent of h is its suffix h̄, the path from a
leaf node to the root node encompasses all the nodes that are needed to calculate
the probability of a given n-gram.

Finally, as in pruning, a criterion that determines which n-grams or histories
to include and which to exclude is required. Including everything that increased
the log-likelihood of the training data would result in overlearning. In princi-
ple, any of the general model selection methods described in Section 2.6 can be
applied. Ristad and Thomas (1995) use two-part MDL and observe the change
in the sum of the description length of the model and description length data
given the model. A new n-gram is added only if the total code length decreases.
Also Siivola and Pellom (2005) use a MDL-based criterion, but with a scheme
that follows the practical encoding of the model instead of tighter combinato-
rial coding such as the one used by Ristad and Thomas (1995). Niesler and
Woodland (1996b, 1999) derive a criterion based on the log-likelihoods in leave-
one-out cross-validation. Siu and Ostendorf (2000) compare several criteria, in-
cluding relative entropy, log-likelihood difference, and MDL, and settle on using
log-likelihood difference with leave-one-out smoothed estimates.

4.2.5 Cluster n-grams

Making the n-gram assumption is the basic approach for collapsing the histories
into equivalence classes. However, it is sometimes combined with other ap-
proaches. One popular idea is to cluster the units and make the n-gram predic-
tions on the clusters. For example, for a group of words that have paradigmatic
relations, each individual word can be replaced by the index of the group. Triv-
ial examples of groups are similar types of numbers (integers, decimal numbers,
dates) and groups of names (days of the week, month names, names of people).

The first cluster n-gram model, proposed by Brown et al. (1992), assumed that
the probability of the current unit wi depends only on its cluster ci, and ci de-
pends only on the previous clusters:

pBrown(wi |wi−1
i−n+1) = p(wi | ci)× p(ci | ci−1

i−n+1). (4.37)

A graphical model of the Brown clustering for n = 4 is shown in Figure 4.4.
Let π : Σ �→ Π be a function that maps the words in Σ to the clusters in Π. For

selecting π, a direct way is to maximize the likelihood of the data for a simple
enough model using a local, greedy algorithm. For example, Brown et al. (1992)
derived that maximizing the average mutual information of adjacent classes also
maximizes the likelihood for a bigram model, and used agglomerative cluster-

104

Statistical language modeling

ci−3 ci−2 ci−1

ci

wi

Figure 4.4. Graphical representation for a cluster 4-gram model by Brown et al. (1992). Only the
variables that have a direct effect on wi or ci are shown.

ing. Niesler et al. (1998) found that a similar approach outperformed clustering
based on part-of-speech tags. Gao et al. (2002) were able to get improvements
by using different clusters for the same word when (1) the word is in the history
and (2) the word is to be predicted.

The predictions from a cluster n-gram model are usually combined with those
from a standard n-gram model. Goodman (2001b) studied various other ways
of using word clusters. For example, the current word may depend also on
the previous clusters ci−1

i−n+1 or the current cluster on previous words. The best
performing technique for trigram models with large training corpus was the
“fullibmpredict” model:

pfullibmpredict(wi |wi−1
i−n+1) =

[
λp(ci |wi−1

i−n+1) + (1 − λ)p(ci | ci−1
i−n+1)

]×[
μp(wi |wi−1

i−n+1, ci) + (1 − μ)p(wi | ci
i−n+1)

]
. (4.38)

First, the current cluster is predicted using interpolation of two models, and then
the current word is predicted, again interpolating two different models.

Publication II of this thesis introduces another type of n-gram model based
on clustering. In this model, presented later in Section 4.5, the histories h are
clustered instead of single units w.

4.2.6 Back-off graph and skipping

In standard back-off or interpolation models, the probability p(wi |wi−1
i−n+1) is

estimated by combining n-gram estimators that use gradually shorter histories.
The sequence

wi−1
i−n+1 → wi−1

i−n+2 → . . . → wi−1
i−2 → wi−1 → ε,

can be called back-off path of the model, where ε denotes empty history (uni-
gram model). Evidently, there are many other back-off paths that could be used.
For example, “write her a letter” should be useful for estimating the probabil-
ity p(letter |write Mary a), but standard back-off cannot use wi−3 = write to
predict wi = letter without taking both wi−2 and wi−1 into account.

The different choices of order in which the units can be removed from the his-
tory can be illustrated by a back-off graph (Bilmes and Kirchhoff, 2003). Figure 4.5
shows a back-off graph for a 4-gram model. The standard back-off path is the
leftmost one. Models that use nodes of the graph that are not in the standard
path are called skipping models, as they skip the dependence of some wj from
the middle of the initial history.

There are a large number of paths that could be applied, and it is not clear
which skipping estimators would be useful. In consequence, it makes sense to

105

Statistical language modeling

wi−3wi−2wi−1

wi−3wi−1wi−2wi−1 wi−3wi−2

wi−1 wi−2 wi−3

ε

Figure 4.5. The back-off graph of a 4-gram model (Bilmes and Kirchhoff, 2003).

combine a set of different skip models together by interpolation. Such models
can improve results if there is only small and intermediate amounts of training
data available and longer n-grams cannot be used (Goodman, 2001b).

4.2.7 Factored models

The standard “oldest-first” back-off order is very sensible for models based on
variables that are ordered in time. However, already the cluster n-gram mod-
els had two variables at each time step: the word wi and its cluster ci. In this
case, the best back-off order is not evident. For example, Niesler and Woodland
(1996a) propose a combined word and category model, which backs off from
word-level history to category-level history if there is no estimate available in
the word-level.

A general extension to this direction is the factored n-gram model (Bilmes and
Kirchhoff, 2003; Duh and Kirchhoff, 2004), where each word is equivalent to a
set of K factors: wi ≡ f 1

i . . . f K
i . The factors of a word may, for example, consist of

its stem, root and part-of-speech tag, as well as the word form itself. Given a set
of factors for each position in the n-gram history, it is not evident whether, for
example, the previous word form should be dropped before or after the part-
of-speech of the word before that. For a 3-gram model with three factors, the
number of possible back-off paths is (3 × 3)! = 362 880.

As a solution Bilmes and Kirchhoff (2003) proposes generalized parallel back-off
that uses multiple paths of the back-off graph simultaneously. The paths can
either be defined by hand or learned automatically from the training data (Duh
and Kirchhoff, 2004).

4.3 Beyond n-gram models

While n-gram models are the most popular models for various language model-
ing tasks, they have their obvious drawbacks. This section reviews some models
that either do not make the n-gram assumption or that move the discrete prob-
lem into a continuous domain.

4.3.1 Grammar-based language models

N-gram models have problems with syntactic long-distance dependencies (see
Section 3.1.8) that can be handled with, for example, context-free grammars (Sec-

106

Statistical language modeling

tion 3.2.4)2 or dependency grammars (Section 3.2.5). In consequence, there have
been various attempts to use grammatical parsers in language modeling.

In principle, any stochastic syntactic parsing method can be used for density
estimation. Let Zs be the set of possible parses for sentence s and p(s, z) the
probability of parse z ∈ Zs. The probability of the sentence is then:

p(s) = ∑
z∈Zs

p(s, z). (4.39)

Of course, the probability of the whole sentence is problematic to use in decod-
ing. For PCFGs, there are also efficient parsing algorithms that calculate prefix
probabilities p(wi

1), where i < |s| (e.g. Stolcke, 1995; Stolcke and Segal, 1994).
Using prefix probabilities, it is possible to calculate the conditional probabilities

p(wi |wi−1
1) =

p(wi
1)

p(wi−1
1)

(4.40)

that are often required by ASR and SMT decoders. Jurafsky et al. (1995) show
that a hand-crafted PCFG used with Stolcke’s (1995) algorithm outperforms a
bigram model in a medium-vocabulary speech recognition task.

More recent work is often based on lexicalized parsers that condition the prob-
abilities of the rules by the lexical content (i.e. words) of the sentence. For exam-
ple, Roark (2001) uses probabilistic top-down parsing to directly define the con-
ditional probabilities of words. Another example is the structured language model
by Chelba and Jelinek (2000). This model resembles n-gram models in that it
defines a conditional probability of a word given a fixed number of words in the
context. However, the context words are not the two immediate predecessors,
but previous headwords defined by the parser.

Charniak (2001) uses an immediate-head parsing method that cannot derive
prefix probabilities, as probability of events below a constituent depend on its
head that may occur after the constituent. While this complicates the usage of
the model, the perplexities of the model are lower than those of Chelba and
Jelinek (2000) and Roark (2001).

A major problem of grammar-based models is that parsing is a computation-
ally heavy operation. This hinders the applicability of the models, as decoders
need probability estimates for a large number of different sentences to decide
on each single output. Another limitation is that annotated corpora are required
for training the parsers.

4.3.2 Maximum-entropy language models

Using clusters, factors, or skips in n-gram models can be considered as having
different groupings of the language model histories h. As discussed above, these
models are often combined with linear interpolation to improve the results. The
advantages of linear interpolation are that it is very general, easy to implement,
and guaranteed to be no worse than any of its components. However, as the
interpolation weights are optimized globally, it makes suboptimal use of the
component models and violates their consistency (see Rosenfeld, 1996).

Maximum-entropy (ME) language models provide an alternative way to com-
bine different knowledge sources into a single model. As described in Sec-
tion 2.2.2, maximum-entropy models are log-linear models based on feature

2 Although either highly granular non-terminals or lexicalized rules are required to
model, for example, grammatical agreement; see Jurafsky and Martin (2008, Ch. 14).

107

Statistical language modeling

functions f j(x). In the standard language modeling approach, the goal is to
define the conditional distribution p(w | h). This leads to a conditional ME model
of the following form (Rosenfeld et al., 2001):

pME(w | h) =
1

Z(h)
p0(w | h) exp

(N

∑
j=1

λj f j(h, w)
)

, (4.41)

where p0(S) is an arbitrary initial distribution. The consistency of the model is
ensured by constraining the expected values of the features f j to their empirical
expectations in the training data:

∑
h,w

pME(hw) f j(h, w) =
1
N

N

∑
i=1

f j(hi, wi). (4.42)

The parameters are optimized to minimize the relative entropy D(p || p0), which
is equivalent to maximum-entropy models if p0(w | h) is uniform. The models
can be trained with the generalized iterative scaling algorithm by Darroch and
Ratcliff (1972).

Rosenfeld (1996) uses the ME framework to combine n-gram features (n = 2,
n = 3), skip n-gram features at distance two, and long-distance trigger features
that predict p(wa |wb ∈ h) for wb in any position in the current document. Sig-
nificant perplexity improvements over standard 3-gram models are obtained at
the expense of computational burden of the training algorithm. One reason for
the high computational burden of the conditional ME models is that the parti-
tion function Z(h) has to be computed separately for each h by looping over
the vocabulary. Techniques that speed up the training process include hierarchi-
cal factorization of the model by clustering the vocabulary (Goodman, 2001a)
and using the nested structure of n-grams (Wu and Khudanpur, 2002). Alumäe
and Kurimo (2010) provide an implementation that applies some of the recent
speed-ups and show that they make it possible to use large training corpora with
reasonable computation time and memory requirements.

Similar to n-gram models, the empirical expectations of rare features are often
overestimated. Chen and Rosenfeld (2000) study different smoothing methods
for conditional ME models. A simple and efficient smoothing is obtained by set-
ting zero-mean Gaussian priors for the weights λi. However, Goodman (2004)
shows that an exponential prior, which leads to smoothing by absolute discount-
ing, is better motivated and improves the results also in practice.

Another maximum-entropy approach to statistical language modeling is the
whole-sentence ME model by Rosenfeld et al. (2001):

pME(s) =
1
Z

p0(s) exp
(N

∑
j=1

λj f j(s)
)

. (4.43)

An advantage of the whole-sentence ME model is the possibility to incorporate
global sentence features. Moreover, unlike in the conditional models, the par-
tition function Z is a constant. While the value of Z is infeasible to calculate,
the model can be applied without normalization for selecting the most likely s
or re-scoring N-best lists or lattices. A more serious problem is that the feature
expectations over all possible sentences are required to train the model. While it
is not feasible to calculate the exact values, the problem can be circumvented by
sampling from p(S) and using sample estimates. However, also the sampling is
non-trivial and computationally intensive.

108

Statistical language modeling

wi−1 wi

z

(a) AMM

b1 b2 . . . bk

wi−1 wi

(b) DMM

Figure 4.6. (a) Aggregate Markov model by Saul and Pereira (1997). (b) Distributed Markov
model by Blitzer et al. (2005).

4.3.3 Continuous-space language models

The models discussed so far are based on discrete representations of words: clus-
ters, factors, or the words themselves. As mentioned in Section 3.1.3—and dis-
cussed further in Chapter 5—it is also possible to obtain continuous represen-
tations for linguistic units and their collections. The main advantage of contin-
uous representations is that generalization and smoothing can simply be based
on similarity measures.

Continuous-space models frequently use the n-gram assumption, which limits
the history h to n− 1 previous words. The essential part of the models is that the
history is mapped to a continuous space using shared representations of words,
meaning that each occurrence of the same word has the same representation
regardless of the position of the word or its context. While the cluster n-gram
models discussed in Section 4.2.5 also use shared representations, there each
representation was a single discrete symbol selected in a deterministic manner.

4.3.3.1 Latent variable models

The first model that can be considered as a continuous-space language model is
the aggregate Markov model (AMM) by Saul and Pereira (1997). It simply extends
the hard clustering in the cluster bigram model in Brown et al. (1992) to soft
clustering:

p(wi |wi−1) = ∑
z∈Z

p(wi | z)p(z |wi−1). (4.44)

While the hidden variable z is still discrete, the distributions p(z |wi−1) can
be interpreted as continuous |Z|-dimensional representations for the words wi.
The model, illustrated in Figure 4.6(a), is in essence the same as the PLSA model
(Hofmann, 1999a) discussed later in Section 5.2. However, it predicts the joint
distribution of the preceding word and the next word instead of the joint distri-
bution of the current document and the next word. The parameters of the AMM
can be estimated with the EM algorithm. In order to use longer histories, Saul
and Pereira (1997) combine similar models with different skips with general lin-
ear interpolation.

Blitzer et al. (2005) extend the aggregate Markov model to vectors of latent
variables b = (b1, b2, . . . , bm). The single variables bi are assumed to be binary
and conditionally independent given h. The probabilities p(w | b) are defined
by a conditional maximum-entropy model and the bigram distribution is

p(w |wi−1) = ∑
b∈B

[m

∏
i=1

p(bi |wi−1)× 1
Z(b)

exp
(m

∑
i=1

ψ(bi, w)
)]

, (4.45)

109

Statistical language modeling

where ψ(bi, w) is an arbitrary real-valued function. A graphical representation of
the model, called distributed Markov model (DMM), is shown in Figure 4.6(b). As
a mixture of |B| = 2m components, the model requires only O(m) parameters,
while AMM requires O(m) parameters for m components. In addition, Blitzer
et al. (2005) extend the model to longer histories by having a new latent vector
for each word in the history. They show that a 3-gram DMM outperforms a
Kneser-Ney smoothed 3-gram model.

4.3.3.2 Neural network models

The number of free parameters in an n-gram model, Vn, grows exponentially in
n unless further independence assumptions are made. The largest part of the
parameters, Vn−1, are due to the different combinations of the n-gram history
h. Many continuous-space models use shared representations of words in order
to have only a linear growth. Let the representation of word wj be r j ∈ Rm. To
represent a history hi = wi−1

n−i+1, the distributed vectors are concatenated into an
(n − 1)m-dimensional vector:

xi =
(
rT

n−i+1rT
n−i+1 . . . rT

i−1
)T (4.46)

The context vector xi is often projected into K dimensions using a matrix W =(
WT

1 . . . WT
n−1

)T ∈ R(n−1)m×K. Some equations below will use the notation

WTxi =
i−1

∑
j=n−i+1

WT
j RTvj, (4.47)

where R is a V × m matrix containing the shared vectors and vj ∈ {0, 1}V is an
index vector that has one in the wj

th position and zeros elsewhere.
Various approaches have been proposed to obtain the probabilities p(w | xi).

So far the most popular approach has been the neural language model by Bengio
et al. (2001, 2003). It uses a feedforward MLP network to first project x into a
K-dimensional space using the hyperbolic tangent activation function:

z = tanh
(
WTx + bh

)
, (4.48)

where bh ∈ RK is a bias vector. Next, z is projected into a V-dimensional vector
by y = UTz + bu, where U ∈ RK×V and bu ∈ RV . The probabilities pi of the
following words wi are given by the softmax normalization:

pi =
exp(yi)

∑V
j=1 exp(yj)

. (4.49)

The network is trained with the standard back-propagation algorithm for MLPs.
The computational complexity of calculating a single probability estimate is
O(K(nm+V)), dominated by the size of the vocabulary V. To make it feasible to
train the model with millions of examples and use it in real applications, many
optimization techniques are required (cf. Bengio et al., 2003; Schwenk, 2007).

The neural language model has been applied in large vocabulary ASR systems
by Schwenk and Gauvain (2002) and Schwenk (2007). It outperforms standard
Kneser-Ney smoothed n-gram models both in terms of perplexity and word
error rate. Further improvements are obtained by linear interpolation of the
models. Neural language models have also been combined with other language

110

Statistical language modeling

modeling techniques. For example, Emami et al. (2003) use an MLP with struc-
tured language models and Alexandrescu and Kirchhoff (2006) extend the neu-
ral language model with factored word representations.

Mnih and Hinton (2007) propose a similar model that is based on restricted
Boltzmann machine (RBM) instead of an MLP network. RBMs are undirected
graphical models. They have a set of observed variables and a set of binary
hidden variables, and there are connections only between the observed and the
hidden variables. The energy function (see Section 2.2.2) is

E(wi, z; wi−1
i−n+1) =

(i

∑
j=i−n+1

vT
j RWj

)
z + bT

h z + bT
r Rvi + bT

v vi. (4.50)

The vector z ∈ {0, 1}K contains the configuration of the hidden units and bh, br,
and bv are bias vectors. Similarly to ME language models, the partition function
Z is conditional on the history wi−1

i−n+1, and normalization requires summing
over V terms. Mnih and Hinton (2007) report that the mixture of a standard
5-gram model and a factored RBM language model with n = 6 obtains lower
perplexity than the mixture of a 5-gram model and the neural language model
by Bengio et al. (2003) with n = 6.

4.3.3.3 Log-bilinear model

Log-bilinear language model is another continuous-space model by Mnih and
Hinton (2007). It is an undirected model similar to the RBM language model,
but without the hidden variables. Instead, the model predicts the feature vector
of the next word by computing a linear function of the feature vectors of the
context words. The model can also be considered as an undirected analogue of
the standard n-gram model in Figure 4.2. The energy function is defined by:

E(wi; wi−1
i−n+1) =

(i−1

∑
j=i−n+1

vT
j RWj

)
RTvi + bT

r RTvi + bT
v vi, (4.51)

where Wi have weights and br and bv bias terms. A similar model was earlier
proposed by Bengio et al. (2003), but with an MLP network instead of the bi-
linear energy function. With respect to training, the log-bilinear model is much
simpler than the RBM model. In the experiments of Mnih and Hinton (2007), it
outperformed both the neural language model and the RBM model. Mnih and
Hinton (2008) speed up the training using the hierarchical clustering technique
proposed by Goodman (2001a) for ME models and Morin and Bengio (2005) for
neural language models. Mnih et al. (2009) consider extensions with different
types of non-linear interactions between the context words. Their best models
significantly outperform the original log-bilinear model in terms of perplexity.

4.3.3.4 State-space models

Increasing the model order n in a neural or RBM language model increases the
number of parameters linearly. This is a clear improvement to the exponential
growth in n-gram models. However, in neural network models, it is also possi-
ble to add dependencies from the previous hidden states to the following states.
This kind of state-space models can potentially take advantage of indefinitely long
contexts.

111

Statistical language modeling

si−1 si

wiwi−1wi−2wi−3

Figure 4.7. Directed state-space model by Siivola and Honkela (2003) and Mikolov et al. (2010).
Mikolov et al. (2010) use only the previous state and word for predicting the next state
(solid lines); Siivola and Honkela (2003) use the previous state and the n − 1 previous
words (dashed lines, here n = 4). The temporal factored RBM model by Mnih and
Hinton (2007) is an undirected model with a similar structure.

Siivola and Honkela (2003) study a direct graphical model that predicts the
next state si from the previous state si−1 and distributed representations of the
words in the observed history h. A graphical representation of the model is
shown in Figure 4.7. The word wi is predicted from si using the softmax function
after a linear transform. The model is trained with an EM-like algorithm with
numerical approximations. It is tested only for letter prediction and it does not
outperform standard n-gram models in this task.

Recently, Mikolov et al. (2010) have proposed a very similar state-space model
called recurrent neural network (RNN) language model. The main differences are
that Mikolov et al. (2010) apply a sigmoid activation function when determining
si, use only the previous word for predicting the new state (i.e., n = 2), and train
the model with the back-propagation algorithm. In addition to static models
whose parameters stay fixed after the training phase, they consider a dynamic
model that is updated also when processing the test data. The perplexity and
speech recognition experiments of Mikolov et al. (2010) show that both the static
and dynamic RNN models outperform Kneser-Ney smoothed 5-gram model,
and linear interpolation of the three models improve the results further. Using a
mixture of several RNNs that differ in the initialization of weights and the size
of the hidden layer yields additional improvements. The extensive comparison
of advanced language modeling techniques by Mikolov et al. (2011) show that
a mixture of twenty RNN language models outperform many other state-of-
the-art models—including the structured language model, ME language model,
feedforward neural network model, and log-linear language model.

Promising results for state-space modeling were obtained also by Mnih and
Hinton (2007). Their temporal factored RBM model is an extension of the RBM
language model above. It includes direct connections between the previous state
of the hidden vectors zi−1 and the next state zi. The training of the model is
demanding, but it is shown to outperform the standard RBM 2-gram model,
as well as a log-bilinear 5-gram model when both are interpolated with a KN
smoothed 6-gram model.3

4.3.4 Models for domain adaptation

Grammar-based language models, maximum-entropy models, as well as con-
tinuous-space language models can improve on n-gram models by taking into
account long-distance dependencies between the words in the same sentence.

3 The temporal factored RBM model is not included in the comparison by Mikolov et al.
(2011), but as its results seem to be very close to those of the log-bilinear model, it is not
likely to outperform the RNN model.

112

Statistical language modeling

However, with the exception of the dynamic state-space model by Mikolov et al.
(2010), they assume that the data is stationary: the probability distribution p(S)
is not expected to change over time. In practice, of course, different corpora as
well as parts of the same corpus have different authors, topics, genres, styles,
and so on. Their configurations are called domains, and approaches to deal with
the changes in domain is called domain adaptation.

Rosenfeld (1996) identifies three types of adaptation. In within-domain adapta-
tion, a heterogeneous source of language is considered as a mixture of multiple
topics or domains. On-line adaptation is needed for dealing with the changes in
the text. In cross-domain adaptation, test data comes from a different domain than
the training data. The latter is called source domain and the former is called
target domain. As there is no target domain data available before training, the
model has to be adapted on-line also in this case.

Finally, in limited-domain adaptation, there is a limited amount of data available
from the target domain for training in addition to a large source domain corpus.
There are three basic approaches for this setup: combining the data sets and
training a single model on the pooled data, training separate models for source
and target domains and interpolating between them, or merging the source and
target domain counts at the level of individual n-grams. In all cases, target and
source domains can be weighted using optimal weights for held-out data. Bac-
chiani and Roark (2003) show that interpolating and count merging can be in-
terpreted as MAP estimates with different Dirichlet priors on the categorical
distribution of the model. They found that count merging slightly outperforms
interpolation in speech recognition experiments.

Maximum-entropy language models can be adapted by setting a prior based
on the source domain corpus for the parameters of the target domain model,
either in a heuristic (Chelba and Acero, 2004; Daumé III, 2007) or more princi-
pled (Finkel and Manning, 2009) manner. Alumäe and Kurimo (2010) show that
the hierarchical Bayesian adaptation by Finkel and Manning (2009) outperforms
linear interpolation of domain-specific ME language models both in terms of
perplexity and error rate in speech recognition.

Considering specific models for within-domain and cross-domain adaptation,
there are two popular model types: cache models and topic models. In most cases,
they are combined with standard models trained on the source domain data.
In addition to linear interpolation, common combination methods include log-
linear interpolation and unigram rescaling (see e.g. Broman and Kurimo, 2005).

Cache language models (Kuhn and De Mori, 1990) are based on the obser-
vation that recently occurred words are likely to re-occur. The models store
the data observed in the current document so far, and use n-gram models es-
timated on this data for new predictions. The cache models are usually uni-
gram models. If the occurrences of the K previous words are stored as ccache(wi),
pcache(wi | h) ≈ ccache(wi)/K. Clarkson and Robinson (1997) propose using ex-
ponential decays to decrease the effect of the words observed further away in
the history. Frequent words, which are likely to be function words, can be ex-
cluded from the cache using count cut-offs (Rosenfeld, 1994; Iyer and Ostendorf,
1999). Rosenfeld (1994, 1996) has incorporated cache modeling in the maximum-
entropy language models.

Topic language models are trained on document collections that can be di-
vided into several topics (or domains). The model has one component for pre-

113

Statistical language modeling

dicting words for each topic tj:

p(wi | h) =
K

∑
j=1

p(tj | h)p(wi | tj, h) (4.52)

The first topic models were mixtures of standard n-gram models such that each
model was trained on a subset of the training corpus (Clarkson and Robin-
son, 1997; Iyer and Ostendorf, 1999). Weights of the models p(tj | h) were as-
signed based on the observed history h using the EM algorithm. More recent
approaches apply the vector space models and probabilistic topic models used
in IR and text categorization tasks (see Chapter 5). Usually p(wi | tj, h) is set to be
a unigram model and thus independent on h. Accordingly, the model concen-
trates on the domain-level information and does not incorporate sentence-level
dependencies. Thus it is always interpolated with a standard n-gram model.
Methods used for topic language models include LSA (Coccaro and Jurafsky,
1998; Bellegarda, 2000), PLSA (Gildea and Hofmann, 1999), non-negative matrix
factorization (Novak and Mammone, 2001), SOM (Lagus and Kurimo, 2002),
and LDA (Tam and Schultz, 2005).

Cache models and topic models can be combined for better performance in
adaptation tasks. Apart from standard combining techniques such as linear
interpolation (Clarkson and Robinson, 1997), one can use topic-specific caches
(Iyer and Ostendorf, 1999) or develop models that incorporate the main ideas of
both approaches (Chueh and Chien, 2010).

4.4 Kneser-Ney smoothing and pruned models

Compared with the grammar-based language models, maximum-entropy lan-
guage models, continuous-space language models, as well as Bayesian Pitman-
Yor language models, the standard n-gram models with Kneser-Ney smooth-
ing still offer an excellent trade-off between model performance and simple and
quick training and prediction. Kneser-Ney smoothed models have been trained
with data sets up to 1011 words (Brants et al., 2007), an amount much larger than
what is easily available for most languages. The only major problem, exponen-
tial growth of model parameters with respect to the n-gram length n, can be
alleviated by pruning and growing techniques.

However, the use of model pruning and growing for the type-based distribu-
tions used in Kneser-Ney (KN) smoothing (Kneser and Ney, 1995) raises some
non-trivial problems. Recall from Section 4.2.3 that lower-order distributions of
the KN model p(w | h̄), |h̄| < n, are based on the assumption that the higher-
order distributions p(w | h) could not predict the word, that is, c(hw) = 0. Now
if c(hw) > 0 but the n-gram hw is pruned, this assumption does not hold. To
use the example from Section 4.2.3, if San Francisco is pruned, then p(Francisco)
should be affected by the count c(San Francisco), not only by t(•Francisco), that
is, the number of distinct contexts Francisco has appeared in.

While the first known solution to this issue was introduced already by Kneser
(1996), it was not systematically studied until Publication I of this thesis. The
revised Kneser pruning proposed in Publication I shows clear experimental im-
provements over previous approaches, including the original Kneser pruning.
Also a third version of Kneser-Ney smoothing for varigram models will be dis-
cussed. It was applied—but not adequately described—in Publication II.

114

Statistical language modeling

In addition to presenting the Kneser-Ney formulas, this section will summa-
rize the pruning and growing algorithms and cross-entropy and speech recog-
nition experiments of Publication I.

4.4.1 Kneser-Ney distributions for varigram models

Let A•hw = {vhw : v ∈ Σ ∧ c(vhw) > 0} be the observed n-grams that have
hw as a suffix, E•hw ⊆ A•hw be the subset of the n-grams that are pruned, and
I•hw = A•hw \ E•hw be the subset of the n-grams that are included in the model.
Now consider pKN(w | h̄) in the case that h̄w is not pruned. Neglecting inter-
polation and smoothing, the probability of an interpolated Kneser-Ney model
(Equation 4.26) can be written as

pKN(w | h̄) ∝

⎧⎪⎨⎪⎩
c(h̄w) = ∑ v∈Σ:

c(vh̄w)>0
c(vh̄w), if I•h̄w = ∅

t(•h̄w) = ∑ v∈Σ:
c(vh̄w)>0

1, if E•h̄w = ∅
.

For proper subsets I•hw ⊂ A•hw, the probability should evidently be somewhere
between these two extremes of the token-based estimate and the type-based es-
timate.

Kneser (1996) derives modified counts for a pruned Kneser-Ney smoothed
model using the marginal constraint in Equation 4.23. In Kneser pruning (KP),
the lower-order distribution is defined by

pKP(w | h̄) ∝ c(h̄w)− ∑
v∈Σ:

vh̄w∈Ivh̄•

[
c(vh̄w)− D|vh̄|

]
= ∑

v∈Σ:
vh̄w∈E•h̄w

c(vh̄w) + D|vh̄| × ∑
v∈Σ:

vh̄w∈I•h̄w

1. (4.53)

A practical problem in this formula is that it includes the discounting constant:
the lower-order distribution is dependent on the discount D|vh̄| of the higher
order distribution. Having multiple discounts per order would complicate the
dependency issues further. Moreover, it is not evident which one of the multiple
discounts should be applied in Equation 4.53.

In the revised Kneser pruning (RKP) presented in Publication I, the probability
pKN(w | h̄) is set proportional to the sum

pRKP(w | h̄) ∝ ∑
v∈Σ:

vh̄w∈E•h̄w

c(vh̄w) + ∑
v∈Σ:

vh̄w∈I•h̄w

1. (4.54)

That is, each included n-gram vh̄w increases the lower-order count by one and
each pruned n-gram increases the lower-order count by the count of the n-gram.
The only difference between KP and RKP is that the former weights the second
term of the sum by the discount D|vh|. Usually D < 1 and thus type counts have
a larger effect on the probability in RKP than in KP.

A slightly different approach for combining the token and type-based esti-
mates was used in Publication II. Here, it will be called weighted Kneser pruning
(WKP). The formula is derived from the observation that backing off from h to
h̄ means that the longer context h was either not observed (h /∈ A•h̄) or it was
observed but not included in the model (h /∈ I•h̄). By simply using the rules of

115

Statistical language modeling

probability calculus,

pWKP(w | h̄; h /∈ I) = p(w; h /∈ A | h̄; h /∈ I) + p(w; h ∈ A | h̄; h /∈ I)

= p(h /∈ A | h̄; h /∈ I)× p(w | h̄; h /∈ I ∧ h /∈ A) +

p(h ∈ A | h̄; h /∈ I)× p(w | h̄; h /∈ I ∧ h ∈ A)

= p(h /∈ A | h̄; h /∈ I)× p(w | h̄; h /∈ A) +

p(h ∈ A | h̄; h /∈ I)× p(w | h̄; h ∈ E) (4.55)

To simplify the notation, the subscripts of I, E, and A have been excluded. The
first term p(w | h̄; h /∈ A) can be approximated by going through the training
data and observing how many times h̄ occurs in a new context:

p(w | h̄; h /∈ A) =
|E|

|E|+ ∑v:vh̄∈E c(vh̄)
(4.56)

A similar type of estimate is used in the Witten-Bell smoothing (Equation 4.11).
Of course, if E is empty, p(h /∈ A | h̄; h /∈ I) = 1. The second term p(w | h̄; h /∈ A)

is simply the type-based Kneser-Ney estimate (Equation 4.25). The third term
p(w | h̄; h ∈ A) = 1 − p(w | h̄; h /∈ A). Finally, p(w | h̄; h ∈ E) means that w is
generated by one of the pruned histories. Accordingly,

p(w | h̄; h ∈ E) =
∑v:vh̄∈E c(vh̄w)

∑v:vh̄∈E c(vh̄)
. (4.57)

Substituting the terms in Equation 4.55 for the estimates above,

pWKP(w | h̄; h /∈ I) =
|E|

|E|+ ∑v:vh̄∈E c(vh̄)
× t(•h̄w)

t(•h̄•) +
∑v:vh̄∈E c(vh̄w)

|E|+ ∑v:vh̄∈E c(vh̄)
.

(4.58)

This is a weighted sum of the type and token based probabilities. The weight
of the type-based estimate varies between 0.5 (if c(vh̄) = 1 ∀vh̄ ∈ E) and one.
The essential difference to KP and RKP is that WKP considers only pruning of
complete histories vh̄, not individual n-grams vh̄w.

4.4.2 Pruning and growing algorithms

Using the modified counts b(h̄w), the full Kneser-Ney / RKP model can be writ-
ten as:

pRKP(w | h) =

{
b(hw)−D|h|

s(h) + γ(h)× pRKP(w | h̄), if hw ∈ Ih•
0 + γ(h)× pRKP(w | h̄), if hw ∈ Eh•

, (4.59)

where

b(h̄w) = ∑
v∈Σ:

vh̄w∈E•h̄w

c(vh̄w) + ∑
v∈Σ:

vh̄w∈I•h̄w

1 (4.60)

s(h) = ∑
v∈Σ

b(hv) (4.61)

γ(h) =
|Ih•|D|h| + l(h)

s(h)
(4.62)

l(h) = ∑
g∈Eh•

c(g). (4.63)

116

Statistical language modeling

ADDGRAM(hw)
1 b(hw) ← c(hw)
2 s(h) ← s(h) + c(hw)
3 if b(h̄w) > 0
4 b(h̄w) ← b(h̄w)− c(hw) + 1
5 s(h̄) ← s(h̄)− c(hw) + 1

PRUNEGRAM(hw)
1 l(h) ← l(h) + b(hw)
2 if b(h̄w) > 0
3 b(h̄w) ← b(h̄w) + b(hw)− 1
4 s(h̄) ← s(h̄) + b(hw)− 1
5 b(hw) ← 0

Figure 4.8. Algorithms for adding and pruning n-grams for Kneser-Ney smoothed models used
by revised Kneser pruning and Kneser-Ney growing.

The main issue in the implementation is to keep track of the modified count
b(hw) in Equation 4.60, their sums s(h) in Equation 4.61, and the sum of the
counts of the pruned n-grams l(h) in Equation 4.63. The necessary updates
when an individual n-gram hw is added or pruned are shown by the ADDGRAM

and PRUNEGRAM algorithms in Figure 4.8.
The proposed pruning algorithm processes the higher order n-grams before

lower order n-grams and considers a single n-gram at a time. Thus in contrast to
the pruning algorithms in Section 4.2.4, the decision on a certain n-gram may af-
fect the later decisions. The algorithm for pruning one order, PRUNEORDER(k, ε),
is shown in Figure 4.9. The pruning criterion is based only the log-probability
pRKP(w | h) of the pruned n-gram hw, similarly to weighted difference pruning
and Kneser pruning. The probability is weighted by the actual count c(hw). If
the decrease in the log-probability is smaller then a chosen constant ε, the n-
gram is pruned.

The proposed growing algorithm (GROWORDER(k, δ) in Figure 4.9) is called
Kneser-Ney growing. It adds one distribution {hw : w ∈ Σ∧ c(hw) > 0} at a time.
The histories are grown forward: h is considered only if b(h) > 0. There are two
reasons for this: First, the n-grams are stored in a prefix tree (see Section 4.2.4)
to allow later pruning of single n-grams. Second, growing backward has a prob-
lem noted already by Ristad and Thomas (1995): If the distributions p(w | h) and
p(w | vh) are very similar, the latter is unlikely to be added to the model. Then
the distribution p(w | uvh) is never considered even if it might change the esti-
mates remarkably.4 When the model is grown forward, p(w | uvh) is more likely
to be added, because also p(w | u), p(w | uv), and so forth are likely to be useful
for the model.

The growing criterion of the algorithm is based on two-part MDL and follows
the coding scheme proposed by Siivola and Pellom (2005). Assuming the prefix
tree structure for n-grams and a fixed number of bits, α, to store the parameters
of a single n-gram, the change in model cost is

Δl(θ) = α(Nnew − Nold) + Nnew log2 Nnew − Nold log2 Nold, (4.64)

where Nold and Nnew are the numbers of n-grams in the model before and after
growing, respectively. The model coding is obviously defective, but practical, as
it follows the actual implementation of the model (cf. Section 2.6.8). If δ × Δl(θ),

4 Consider, for example, u = government, v = did, h = not confirm.

117

Statistical language modeling

BUILDVARIGRAM(δ, ε)
1 k ← 1
2 while new n-grams are added do
3 GROWORDER(k, δ)
4 k ← k + 1
5 while k > 1 do
6 k ← k − 1
7 PRUNEORDER(k, ε)
8 re-estimate all discount parameters Di

GROWORDER(k, δ)
1 for {h : |h| = k − 1 ∧ b(h) > 0} do
2 size0 ← |{g : b(g) > 0}|
3 logprob0 ← ∑w∈Σ:c(hw)>0 c(hw) log2 pRKP(w | h)
4 for w ∈ Σ : c(hw) > 0 do
5 ADDGRAM(hw)
6 size1 ← |{g : b(g) > 0}|
7 logprob1 ← ∑w∈Σ:c(hw)>0 c(hw) log2 pRKP(w | h)
8 sizecost ← α · (size1 − size0) + size1 log(size1)− size0 log(size0)
9 if logprob1 − logprob0 ≤ δ · sizecost

10 undo previous ADDGRAM(hw) for each w
11 re-estimate all discount parameters Di

PRUNEORDER(k, ε)
1 for {hw : |hw| = k ∧ b(hw) > 0} do
2 logprob0 ← c(hw) log2 pRKP(w | h)
3 PRUNEGRAM(hw)
4 logprob1 ← c(hw) log2 pRKP(w | h)
5 if logprob1 < logprob0 − ε
6 undo previous PRUNEGRAM

Figure 4.9. Kneser-Ney growing and revised Kneser pruning algorithms for building varigram
models.

where δ > 0 is a constant, is smaller than the increase in the log-likelihood of
the training data, the candidate distribution is added to the model.

Figure 4.9 also shows a simple way to combine the growing and pruning:
the algorithm BUILDVARIGRAM(δ, ε) first grows the model one order at a time,
starting from the unigram distribution. When the model stops growing, the al-
gorithm prunes single n-grams starting from the highest order and stopping at
unigrams. Optimally, the growing parameter δ should be as large as the avail-
able memory and computation time allows, and the pruning parameter ε should
be selected so that the desired model size is reached after pruning.

4.4.3 Experiments

The algorithms of Publication I were tested on cross-entropy evaluations and in
a Finnish speech recognition task. Because of the synthetic and agglutinative
morphology of Finnish, Morfessor Baseline (Creutz and Lagus, 2005b) was used
to split the words into morphs prior to language model training. The 150 million
word training data had 460 million morph tokens and 8 428 morph types. A
part consisting of 110 000 morph tokens was taken as a held-out set and 510 000
tokens as a test set. The audio data consisted of clean speech by adult speakers.
There were 26 h of data from 207 speakers for training, 1 h of data from 20 new

118

Statistical language modeling

Table 4.1. N-gram and varigram models compared in Publication I.

Abbreviation Smoothing Growing / max. n Pruning

EP (GT) Good-Turing 5 entropy-based
EP (KN) modified Kneser-Ney 5 entropy-based
KP Kneser-Ney 5 Kneser
RKP modified Kneser-Ney 5 revised Kneser
KNG modified Kneser-Ney Kneser-Ney growing revised Kneser

speakers for development, and 1.5 h of data from 31 new speakers for testing.
The applied speech recognizer is described by Kurimo et al. (2006b).

The two proposed algorithms—revised Kneser pruning (RKP) and Kneser-
Ney growing (KNG)—were compared with three other approaches that used
combinations of Kneser-Ney and Good-Turing smoothing and entropy-based
and Kneser pruning. The approaches are summarized in Table 4.1. The KNG
model was grown to the same size as the full 5-gram models prior to pruning.
Then all models were pruned to three different sizes (large, medium, small).
The sizes were measured by the number of n-grams in the models. Pairwise
one-sided signed-rank Wilcoxon test was performed to evaluate the statistical
significance (p < 0.01) of the differences.

The cross-entropies of the models, normalized to bits per word, are shown in
Figure 4.10(a). The results show that (1) KN smoothing is better than GT for the
full model, and (2) neither EP nor KP works well for pruning the KN smoothed
models. In consequence, both KNG and RKP outperformed the other models
for large and medium model sizes. Moreover, KNG outperformed RKP (and all
other models) except for the smallest model size.

The speech recognition results are shown in Figure 4.10(b). Again, KN smooth-
ing is the best option for the full model and neither EP (KN) nor KP works well.
However, in this case there was no statistically significant difference between
the results of EP (GT), KNG and RKP except for the full models, for which the
Good-Turing smoothed model was significantly worse than the others.

8192

11585

16384

23170

32768

46341

W
or

d
pe

rp
le

xi
ty

10
6

10
7

10
8

13

13.5

14

14.5

15

15.5

C
ro

ss
−

en
tr

op
y

(b
its

 /
w

or
d)

Model size (number of n−grams)

small

medium
large full

5g EP (KN)
5g KP
5g EP (GT)
5g RKP
KNG

(a)

10
6

10
7

10
8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Le
tte

r−
er

ro
r

(%
)

Model size (number of n−grams)

small

medium

large full

5g EP (KN)
5g KP
5g EP (GT)
5g RKP
KNG

(b)

Figure 4.10. Comparison of the entropy-based pruning (EP), Kneser pruning (KP), revised Kneser
pruning (RKP), and Kneser-Ney growing (KNG) in Publication I: (a) cross-entropy
and perplexity on a Finnish corpus and (b) LER in a Finnish speech recognition task.
EP has been run both for Kneser-Ney smoothed (KN) and Good-Turing smoothed
(GT) models.

119

Statistical language modeling

4.4.4 Discussion

While the lower order distribution for Kneser pruning (Equation 4.53) is very
similar to that of the revised Kneser pruning (Equation 4.54), the experiments
show a significant difference for the results of the two algorithms. The main rea-
son is that Kneser pruning, similarly to entropy-based pruning, makes all prun-
ing decisions independently and at the same time. In contrast, revised Kneser
pruning makes one decision at a time and updates the lower-order statistics
every time an n-gram is pruned. Another difference is that RKP prunes only
leaf n-grams or complete subtrees, while preliminary experiments indicated that
excluding this restriction improves the results. Preliminary experiments also
showed that if the RKP pruning algorithm was used with the lower order dis-
tribution defined in KP, the results were close to RKP, but not any better. Thus,
while satisfying the marginal constraint is theoretically motivated, it is some-
times restricts the n-gram models too much.

The benefit of the Kneser-Ney growing compared with the revised Kneser
pruning is illustrated by Figure 4.11 that shows how the n-grams included in
the models are distributed on different n-gram orders. For small and medium
models, KNG and RKP have similar distributions, but for larger sizes, KNG
uses considerably longer histories. For the largest models trained with RKP,
most of the n-grams are 5-grams, which clearly indicates too low a model or-
der. In contrast, the n-gram distributions obtained with KNG are very similar
to those reported by Mochihashi and Sumita (2008), who use a non-parametric
Bayesian approach to select the n-gram lengths for hierarchical Pitman-Yor lan-
guage models.

1 5 10
0

20

40

60

small

n−
gr

am
s

(%
)

1 5 10

medium

1 5 10

large

1 5 10

full

 n−gram order

5g RKP
KNG

Figure 4.11. Distribution of the n-gram lengths in pruned 5-gram models (RKP) and grown mod-
els (KNG) with increasing model size (Publication I).

4.5 Clustering of n-gram histories

In addition to varigram models, the size of the n-gram models can be reduced by
clustering (e.g., Brown et al., 1992; Gao et al., 2002). The combination of both the
extensions is shown to be useful, for example, by Niesler and Woodland (1999)
and Blasig (1999). The standard cluster n-grams are, however, easily applicable
only to models that have a large vocabulary to begin with. This contrasts with
varigram models that are able to determine the model order from the data and
thus can be based on very short units, such as morphemes, syllables or charac-
ters. Context-independent clustering of a very small number of lexical units is
not a promising approach.

An alternative clustering approach, studied in Publication II, is to cluster the

120

Statistical language modeling

n-gram histories h instead of the individual units w. This is feasible for any type
of units. The approach can be motivated by that paradigmatic relations exist
not only between single units of the same type, but between many sequences of
different types and lengths. For example, the following distributions are likely
to be similar:

• p(W |U.S. military officials said that) and p(W |Pentagon said that)

• p(W | in spite of) and p(W | regardless of)

• p(W |un finish ed <w>) and p(W |not <w> finish ed <w>)

• p(W | s h o r t e) and p(W | l o n g e)

In the third example, the model is based on morphs, and <w> is a word bound-
ary token. In the last example, the model is based on characters.

4.5.1 Context cluster model

For an n-gram model of order n, let Ω ⊆ ε ∪ Σ ∪ Σ2 ∪ . . . ∪ Σn−1 be the set of
histories h in the model, including the empty history ε. The model proposed in
Publication II assigns the histories h ∈ Ω to clusters Π = {c1, . . . , cK}. Assuming
that the next unit w depends only on the cluster of the history, not on the history
itself, and that each history is assigned to belong to exactly one cluster by the
surjection π : Ω �→ Π, the conditional probability is

p(w | h) ≈ p(w |π(h)). (4.65)

This probability can be estimated simply by accumulating the observed counts
within the cluster. With absolute discounting and interpolation between differ-
ent context lengths,

pACC(w |π(h)) =

{
max(b(π(h),w)−D,0)

s(π(h)) + γ(π(h))× pACC(w |π(h̄)), if h ∈ Ω
pACC(w |π(h̄)), if h /∈ Ω

(4.66)
where

b(c, w) = ∑
g∈c

c(gw), (4.67)

s(c) = ∑
w∈Σ

b(c, w), (4.68)

γ(c) =
D × v(c)

s(c)
, (4.69)

and v(c) = |{w ∈ Σ : b(c, w) > 0}| is the number of non-zero estimates in a
cluster. In this thesis, this approach will be called accumulative context clustering
(ACC). In theory, the ACC model is able to (1) reduce the number of parameters
by storing only one distribution instead of all distributions of the contexts in the
cluster, (2) increase the number of training samples per each distribution, and
(3) generalize the predictive distributions.

Using Kneser-Ney smoothing for the ACC model during the training phase
is problematic, as adding a new history would affect the distributions of many
clusters. However, the distributions can also be modified afterwards. In Pub-
lication II, absolute discounting of the standard ML estimates (Equation 4.66)

121

Statistical language modeling

was used during training. Then the weighted Kneser pruning described in Sec-
tion 4.4.1 was applied to each history to obtain pWKP(w | g) (Equation 4.58), and
the counts b(c, w) of the cluster were set to pseudo-counts

b∗(c, w) = ∑
g∈c

c(g)pWKP(w | g). (4.70)

Regardless of the changes of the individual predictive distributions within each
cluster, this ad-hoc smoothing still improved the cross-entropy of the model.

The problems of using the Kneser-Ney smoothing during model training can
be circumvented if the histories of order n are clustered only when it is known
which (n + 1)-grams are included in the model. This approach was tested later
together with the revised Kneser pruning, and as mentioned in Publication I,
was found to improve the results further.

4.5.2 Clustering algorithm

If the number of histories in the model is M and the number of clusters is K,
there are KM−K ways to divide the histories into clusters assuming at least one
history per cluster. Evidently, brute force search is not possible. The algorithm
proposed in Publication II uses a greedy, incremental search. It resembles the
varigram growing algorithms that add one distribution at a time to the model
(Niesler and Woodland, 1999; Siu and Ostendorf, 2000). The difference is that
there are now more options for each new h: leave it out, create a new cluster for
it, or merge it with one of the existing clusters.

The selection criterion is based on maximizing the posterior probability p(θ | D)

∝ p(θ)p(D | θ). Similarly to the pruning and growing algorithms, the change in
likelihood is approximated by including only the likelihood of the directly mod-
ified distributions. These are all distributions in the candidate cluster c and the
new h. Their part of the log-likelihood is

logprobh,c = ∑
w

c(hw) log pACC(w |π(h)) + ∑
g∈c

∑
w

c(gw) log pACC(w |π(g)).

(4.71)

The prior p(θ) should give a smaller probability for more complex models. The
exact prior is described in the next section.

For a large number of clusters Π, testing each possible target cluster is too slow,
even though it is done only once per history. For example, the log-likelihood
above would ultimately be calculated over all histories in the model. This prob-
lem is avoided by testing only the cluster cmin that has the most similar maxi-
mum-likelihood distribution pML(W | c) to the observed distribution pML(W | h).
The similarity is measured by the information radius (Equation 2.36, page 43).

The training algorithm is outlined in Figure 4.12. The parameter α ≥ 0 modi-
fies the effect of the prior: larger models will be built with smaller α. The func-
tion MERGECLUSTERS(c1, c2) simply moves all histories in c1 to c2, modifies the
counts b(c2, w) accordingly, and removes c1. For lexicon size V and M added
histories, the time complexity of the algorithm is O(M2V). However, using the
information radius to preselect the candidate cluster improves the practical effi-
ciency. As the distributions are sparse and the summation over V can be stopped
whenever the current minimum IRad is reached, V calculations are rarely nec-
essary.

122

Statistical language modeling

BUILDCLUSTEREDVARIGRAM(α)
1 k ← 1
2 while new histories are added do
3 GROWANDCLUSTERORDER(k, α)
4 k ← k + 1
5 re-estimate cluster distributions and discount parameters

GROWANDCLUSTERORDER(k, α)
1 for {h : |h| = k − 1 ∧ ∃ g ∈ Ω, v ∈ Σ : h = gv ∨ h = vg} do
2 cmin ← arg minc∈Π IRad

(
pML(W | h) || pML(W | c)

)
3 logprob0 = α log2 p(θ) + ∑w c(hw) log2 pACC(w |π(h))
4 +∑g∈cmin ∑w c(gw) log2 pACC(w |π(g))
5 cnew ← new cluster
6 π(h) ← cnew
7 logprobnew = α log2 p(θ) + ∑w c(hw) log2 pACC(w |π(h))
8 +∑g∈cmin ∑w c(gw) log2 pACC(w |π(g))
9 MERGECLUSTERS(cnew, cmin)

10 logprobmerge = α log2 p(θ) + ∑g∈cmin ∑w c(gw) log2 pACC(w |π(g))
11 if logprobmerge < logprobnew
12 undo MERGECLUSTERS(cnew, cmin)
13 if logprobnew < logprob0
14 remove cnew
15 else
16 if logprobmerge < logprob0
17 undo MERGECLUSTERS(cnew, cmin)
18 remove cnew

Figure 4.12. Algorithm of Publication II for training an ACC model.

The alternative approach that first grows an order and then clusters the histo-
ries of the previous order, is outlined in Figure 4.13. GROWORDER is shown in
Figure 4.9. Of course, sizecost on line 8 should now be estimated from the model
prior p(θ). CLUSTERORDER is similar to GROWANDCLUSTERORDER but does
not have the option to remove the history. The algorithm also includes pruning
of individual n-grams from the cluster distributions p(W | c) (PRUNECLUSTER).
Pruning affects only the cluster distributions. That is, the counts of individual
histories are not updated.

4.5.3 Model prior

Publication II does not provide the details of the model prior p(θ). This section
describes the exact form of the prior that was applied in the experiments.

The parameters θ of the model include the histories Ω, clusters Π, and fre-
quency distributions of the clusters B, where bij = b(ci, wj). Let V = |Σ|,
M = |Ω|, K = |Π|, and N be the number of units in the training data. The prior
for the parameters is defined using an MDL-inspired coding scheme. First, the
number of histories is encoded using the universal prior by Rissanen (1983):

p(M) ≈ 2− log2 2.865−log2 M−log2 log2 M−.... (4.72)

Each history is one of the existing histories preceded or followed (two options)
by a single unit (V options). Starting from the shortest history and proceeding

123

Statistical language modeling

BUILDCLUSTEREDVARIGRAM(α, ε)
1 k ← 1
2 while new histories are added do
3 GROWORDER(k, α)
4 if k > 1
5 CLUSTERORDER(k − 1, α)
6 k ← k + 1
7 CLUSTERORDER(k, α)
8 for c in model do
9 PRUNECLUSTER(c, ε)

10 re-estimate discount parameters

Figure 4.13. Outline of an algorithm for growing, clustering, and pruning an ACC model.

to longer ones,

p(Ω | M) =
M

∏
i=1

1
2Vi

. (4.73)

The number of clusters is limited by the number of histories. Thus p(K | M) =

1/M. The histories are divided into K clusters, so there are KM possible combi-
nations. Giving equal probability to each combination,

p(Π | M, K) = K−M. (4.74)

Finally, a prior for B is has to be specified. The frequency distribution of each
cluster is encoded independently and only non-zero entries are stored. First, s(c)
and v(c) are selected uniformly from N and V options, respectively. There are

V!
(V−v(c))! ways to select the units with non-zero counts, and v(c) positive integers

that sum up to s(c) can combined in (s(c)−1
v(c)−1) ways. Thus

P(B |Ω, Π) = ∏
c∈Π

[
NV

V!
(V − v(c))!

(
s(c)− 1
v(c)− 1

)]−1
. (4.75)

Evidently, the described encoding of the parameters is not the best possible. For
example, the constraints that each cluster should have at least one history or that
the counts in B should sum up to N are not applied. However, the defectiveness
of the prior is not a problem, as its goal is only to prevent overfitting, to not
provide an optimal description length. The prior is in any case modified by the
weight parameter α.

4.5.4 Experiments

The proposed ACC model was tested on Finnish data using both cross-entropy
evaluations and in a speech recognition task. The training data contained sev-
eral books and magazines, 8 600 000 words in total. A morph lexicon of 2 113
units was estimated from the training data using Morfessor Baseline (Creutz
and Lagus, 2005b). A few language models were trained on a larger set of 150
million words (mostly newspaper text) for reference. The speech recognizer is
described by Kurimo et al. (2006b). The ASR test data was an audio book read
by one female speaker. Of the total 13 h of speech, an acoustic model was trained
using the first 11 hours, and 2 hours were used as test data. The cross-entropy
evaluations were performed on text data from the same book (50 000 words) and

124

Statistical language modeling

another data set including one year of articles from a tabloid magazine (100 000
words).

The proposed ACC model was compared with two baselines: n-gram models
(n = 1, 2, 3) trained with modified Kneser-Ney interpolation (“baseline”), and
varigram models built with the growing algorithm by Siivola and Pellom (2005)
(“growing”). Pruning was not applied to any of the models. Cross-entropies
and word error rates were compared with the sizes of the models. The sizes
were approximated by the number of the n-grams (for baseline and growing) or
sum of the number of histories and numbers of the units predicted directly by
each cluster (for ACC).

The results are shown in Figure 4.14. The morph-based cross-entropies, in Fig-
ure 4.14(a-b), are very similar for the growing and ACC (“clustered” in the fig-
ures) models of similar size. Baseline 2-gram and 3-gram models are also close to
the varigram models of the similar size. The larger data set actually gives larger
entropies for the growing model than the smaller data set—the domain of the
smaller data set is evidently more similar to the test sets. The ASR results in Fig-
ure 4.14(c) show that for the models of about 200 000 parameters, both varigram
models yield much smaller error rates than the baseline 2-gram (over 10% ab-
solute). For both 200 000 and 5 000 000 parameters, the ACC model outperforms
the standard varigram model by about 2% absolute. Statistical significances of
the differences were not studied.

0 2 4 6 8 10

x 10
5

4

4.5

5

5.5

6

6.5

7

7.5

Model size (parameters)

E
nt

ro
py

 (
bi

ts
)

Entropy vs. size / Book

Baseline (n = 1 ... 3)
Growing (varigram)
Clustered (varigram)
Growing, 150M data

(a)

0 2 4 6 8 10

x 10
5

4

4.5

5

5.5

6

6.5

7

7.5

Model size (parameters)

E
nt

ro
py

 (
bi

ts
)

Entropy vs. size / Tabloid

Baseline (n = 1 ... 3)
Growing (varigram)
Clustered (varigram)
Growing, 150M data

(b)

2 4 6 8 10

x 10
5

10

15

20

25

30

35

40

Model size (parameters)

W
or

d
er

ro
r

(%
)

WER vs. size / Book

Baseline (n = 2 ... 3)
Growing (varigram)
Clustered (varigram)

(c)

Figure 4.14. Comparison of the baseline n-grams, growing algorithm by Siivola and Pellom
(2005), and incremental clustering algorithm in Publication II in (a) cross-entropy on
a Finnish book data, (b) cross-entropy on a Finnish tabloid data, and (b) word error
rate in a Finnish speech recognition task.

In the preliminary experiments mentioned in Publication I, revised Kneser
pruning was applied to the ACC model. The ACC models trained with the
new “first-grow-then-cluster” algorithm (Figure 4.13) were compared with the
original ACC model, standard Kneser-Ney smoothed n-grams, and varigram

125

Statistical language modeling

models trained with the Kneser-Ney growing algorithm of Publication I. This
time, models up to 3 500 000 parameters were trained, although the ACC mod-
els were limited to two million parameters due to long training times. Also
pruning was applied: RKP for the varigram models and entropy-based prun-
ing (EP) for the baseline models. The results on the tabloid test data are shown
in Figure 4.15. The alternative algorithm for the ACC models outperforms the
original one even without pruning (solid lines). With pruning (dashed lines),
the difference is much larger. For the smallest models, ACC has a slightly lower
entropy than KNG, but the difference may not be statistically significant. More-
over, the differences between ACC and KNG even out already with two million
parameters.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
6

13

13.5

14

14.5

15

15.5

16

16.5

Size (parameters)

W
or

d
en

tr
op

y
(b

its
)

Cross−entropy vs. estimated size

KN baseline (n = 3, 4) & EP
Original ACC growing
Kneser−Ney growing & RKP
Alternative ACC growing & cluster pruning

Figure 4.15. Comparison of the ACC models, baseline 3-gram and 4-gram models, and KNG
models. The points connected with solid lines indicate the unpruned models with
varying model order or growing threshold. Each of them was pruned with varying
pruning threshold, as indicated by the dashed lines. For example, the baseline 3-
gram and 4-gram models are connected with a solid red line, and dashed red lines
show how EP pruning affects the two models.

4.5.5 Discussion

There are only few prior studies for the n-gram context clustering approach of
Publication II. The closest related work is probably that of Siu and Ostendorf
(2000), who consider a conversational speech recognition task with varigram
models. As mentioned in Section 4.2.4, Siu and Ostendorf (2000) use a suffix tree
to store the history nodes. They consider two types of restricted cases of context
clustering. In the first case, the node h may be combined with h−j, where the jth

word of h is removed (skipped). This helps in modeling the fillers (e.g. uh, um)
and repetitions in conversational speech. In the second case, the sibling nodes
vh and wh may be combined. Here, in addition to combining the predictive dis-
tributions, all subtrees of the nodes are merged. For example, merging sort of
and kind of will also merge the histories was sort of and was kind of. For the
context clustering, they obtain 8% reductions in parameter size with insignifi-
cant increase in perplexity and word error rate.

Another approach that resembles the n-gram context clustering is decision tree
(DT) language modeling (Bahl et al., 1989; Potamianos and Jelinek, 1998; Xu and

126

Statistical language modeling

Jelinek, 2004). For the language modeling task, decision trees cluster the histo-
ries into equivalence classes by making questions on the elements in the history.
In contrast to the above methods, clustering is divisive. The questions usually
consider identity of the word vi in the ith position of h. For binary trees, there are
up to 2V − 1 possible way to split the histories for each i, which means that only
greedy search is possible. While divisive clustering increases the computational
complexity of the task, DT models are more flexible than the n-gram models.
To prevent overlearning, Xu and Jelinek (2004) uses partially random splits and
train a collection of decision trees, called random forest. They also use Kneser-
Ney smoothing and back-off distributions for the distributions in the leaf nodes.
While a single 3-gram DTs still have higher entropy than standard KN smoothed
3-gram, Xu and Jelinek (2004) show that the linear interpolation over the trees in
the random forest yields considerable improvements both in terms of perplexity
and word error rate of an ASR task.

While not as flexible as the DT models in terms of forming the equivalence
classes, the accumulative context clustering proposed in Publication II is still a
very general approach: it can be applied to any model that collects predictive
distributions p(W | h) for a large number of contexts h, including skip n-gram
models and standard word cluster models. In fact, word clustering should make
ACC easier to apply, as the lexicon size is reduced. Different context clusterings
could be used in different components of a model. For example,

p(w | h) = ∑
t

p(t | h)p(w | t, h)

≈ ∑
t

p(t |π1(h))p(w | t, π2(h)) (4.76)

applies one ACC model to predict the next word cluster t and another to predict
the word among the words in t.

The results of the experiments show that the ACC model can improve both
perplexity and word error rate over non-clustered varigram models, without
interpolation with standard n-gram models. However, the advantage seems to
hold only for very small model sizes. Moreover, computational complexity of
the algorithm makes it hard to use large training data sets.

A possible extension for the ACC model would be to use soft clustering of the
histories. With K clusters, the the conditional probability would be

p(w | h) =
K

∑
i=1

p(w | ci)p(ci | h). (4.77)

The corresponding graphical model for n = 4 is shown in Figure 4.16. In fact,
it is an extension of the aggregate Markov model by Saul and Pereira (1997) (cf.
Figure 4.6(a), page 109). While Saul and Pereira (1997) as well as Blitzer et al.
(2005) extend the order of their models by having separate hidden variable(s)
for every word in the history, the context cluster model predicts a single hidden
variable based on all of them.

For any clustering of the histories it is essential that the distributions p(W | h)
are not too sparse on average: otherwise the clustering would not be able to
reduce the number of parameters. The sparsity can be defined by 1 − t(h•)/V.
Figure 4.17 shows the proportion of n-grams hw in histories ordered by t(h•) in
a morph-based varigram model trained with the Kneser-Ney growing algorithm
(Section 4.4.2). The histogram shows that most of the n-grams are indeed in very
sparse distributions. The median value of t(h•) is 31. The graph of cumulative

127

Statistical language modeling

wi−3 wi−2 wi−1 wi

ci

Figure 4.16. Graphical representation for the context clustering model in Publication II.

proportion indicates that about 25% of the n-grams are in distributions with over
200 non-zero entries. This is certainly enough for the context clustering to be
feasible—as confirmed by the experiments above—but also indicates that large
improvements are not likely even with a more sophisticated clustering method.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

2

4

6

8

10
x 10

5 Histogram of n−grams hw in histories h

Number of n−gram types t(h•)

N
um

be
r

of
 n

−
gr

am
s

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

20

40

60

80

100
Cumulative proportion of n−grams hw in histories h

Number of n−gram types t(h•)

C
um

ul
at

iv
e

pr
op

or
tio

n
(%

)

Figure 4.17. The proportion of n-grams in histories of different distribution sparsity for a morph-
based varigram model of 2 million n-grams. The vocabulary size is 2080. Top: his-
togram of the number of n-grams. Bottom: cumulative proportion of the n-grams.

128

5. Representation learning

In this chapter, the problem of representation learning, highlighted in Figure 5.1,
is considered in more detail. The first two sections review the standard methods
used for linguistic data: vector space models (Section 5.1) and probabilistic topic
models (Section 5.2). Section 5.3 discusses various ways for evaluating represen-
tation learning methods. Finally, Section 5.4 describes the main contribution of
this thesis for the representation learning problem: the novel evaluation method
proposed in Publication III.

Consider the random variable S representing fragments of a language and a set
of samples s1, s2, . . . , sN from S. There are several NLP applications in which the
similarities between the given samples are important, but the generation of the
individual samples is not relevant. A typical example is an information retrieval
(IR) task, where the search engine should return those of the known documents
si that are closest to the given search query q. If the similarity function sim(x, y)
directly used the string representations of the texts, for example by calculating
the string edit distance, the computational complexity would be too high for any
large-scale application. In other tasks, the samples may also be words, in which
case there is no way to calculate similarities based directly on the strings. Thus
there is a need for efficient representations that encode the semantic similarities
between the samples.

In information retrieval systems (see, e.g., Manning et al., 2008; Blanken and
Hiemstra, 2007), documents are indexed by terms that describe the content of
the documents. The index may be filled manually by specialists, sometimes
from a catalog that is a prescribed list of terms. On large-scale and open domain
systems, however, terms are usually defined more or less automatically. Usually
they are the words (or stems) that occur in the documents. Function words are
often excluded using a manually collected stop word list.

The traditional boolean models of IR are based on the logic operators AND,
OR, and NOT. Given a query, such as “learning AND unsupervised AND NOT
clustering”, the system returns the set of all documents for which the boolean
expression evaluates true. Often the models are extended with proximity search-
ing of terms that are adjacent or nearby in the document, and wildcards that
are used to match the terms only partially. While they are still widely used,
the boolean models have problems with such common lexical relations as syn-
onymy and homonymy. Optimally, the system should know that car and auto-
mobile have the same or at least very similar meaning. Representation learning
is useful for finding such relations automatically from large text corpora.

129

Representation learning

Automatic
speech
recognition

Text prediction
- cross-entropy
- perplexity
...

- canonical correlation
between matched samples

Multilingual evaluations

LEARNING
PROBLEMS

...

Representation learning

Statistical language modeling

...

Selecting lexical units

DIRECT
EVALUATIONS

...

Language tests

Behavioral tests

Manual evaluation

EVALUATIONS
INDIRECTAPPLICATIONS

WER

F-measure
...

MAP
...

Human ratings

Human ratings

User studies

BLEU

LER

...

...

User studies

Human ratings

...
ROUGE

Accuracy

F-measure

...

...

...

- whole sentence models
- probabilistic CFGs

- n-gram models

- vector space models

- probabilistic topic models

- shallow parsing

- word segmentation

- morphological analysis

- phrasal constructions

Information
retrieval

Text
categorization

Text
summarization

Speech
synthesis

Statistical
machine
translation

...- segmentation boundary
evaluations

- isomorphic evaluations
Automatic linguistic evaluation

- correlation to reaction times
in lexical decision task

- language acquisition patterns
...

Psycholinguistic evaluation

Figure 5.1. Representation learning in the overview diagram.

5.1 Vector space models

Vector space models are a standard way to represent documents or words as
numerical vectors of features. Thus they provide a solution to the problem of
representing symbolic information in numerical form for computational pro-
cessing. In a vector space, similar items are close to each other, and the closeness
can be measured using vector similarity measures.

Vector space models can be characterized by a feature generator F(·; ·) and
similarity function sim(·, ·). Trained with a data set S, the feature generator
provides a vector xi = F(si; S) for each sample si. The similarity function returns
a scalar similarity value sim(xi, xj) for two vectors xi and xj.

Let S be a set of N documents, V the number of different word types in S and
c(i, j) the number of occurrences of word wi in document sj. A common vector
space model sets the representation of document sj to

xj = F(sj; S) =
(

c(1, j), c(2, j), . . . , c(V, j)
)T

∈ RV . (5.1)

In this kind of representations, the word order information is discarded, and
hence they are called bag-of-words representations. The bag-of-words approach
is trivial to extend to other lexical units, such as morphemes, index terms, or
phrases. The bag-of-words and related representations are useful for encoding
topics of long documents, but poor for determining meaning of individual sen-
tences, where a single word such as the negation “not” may change the meaning
to its opposite.

The matrix X = F(S; S) ∈ RV×N that consists of the vectors xj is called a
word-document matrix. At the same time as the column vectors of X describe

130

Representation learning

documents as bags-of-words, the column vectors of the document-word matrix
XT describe words in terms of the documents in which they occur. For word
representations, it is common to also use smaller contexts than documents, such
as sentences or fixed-width windows in running text. Accordingly, X can more
generally be called a feature-context matrix.

The word-document matrix contains the occurrences of the words in their con-
texts and thus represents first-order similarity. In contrast, second-order similarities
can be observed by collecting a word-word matrix, where the values are co-
occurrences of words within some contexts, or a document-document matrix,
where the values define how many common features the documents have. The
second-order matrices can be obtained, for example, by computing XXT for a
word-word matrix or XTX for a document-document matrix. Using short con-
text windows, first-order similarities often provide syntagmatic associations and
second order similarities paradigmatic associations (Rapp, 2002; see also Sec-
tion 3.1.3).

The most common similarity function for vector space models is the cosine
similarity, which is equal to the cosine of the angle between the vectors:

cos(x, y) =
xTy

‖x‖‖y‖ . (5.2)

Thus cosine similarity does not depend on the lengths of the vectors. If ‖x‖ =

‖y‖ = 1, the cosine similarity has a linear relation to the squared Euclidean
distance: ‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2xTy = 2(1 − cos(x, y)).

5.1.1 Weighting

Plain word-document co-occurrence data emphasizes the most frequent words
in the document collection. This is in contrast to intuition: a rare word like eco-
tourism should clearly be more informative than a common word like agree-
ment, not vice versa. To improve the performance of the models, different
weighting schemes are commonly utilized. They aim to give more weight to
such index terms that better represent the semantic content of the document.

The schemes can be divided into global and local weighting schemes. Global
weights indicate the overall importance of a term in the collection and they are
applied to each term in all the documents, whereas local weights are applied to
each term in one document. The final weight is usually the product of the global
and local weights.

5.1.1.1 Local weighting

The frequency of the term in a document (term frequency, tf) indicates the saliency
of a term. However, the effect of a raw count c(i, j) is often too large. One option
is simply to discard the frequencies and use binary local weights. However,
a more popular approach is to dampen the term frequency with a logarithmic
function f (x) = 1+ log x (x > 0) or f (x) = log(1+ x). This is called logarithmic
term frequency (log-tf).

5.1.1.2 Global weighting

Global weighting is used for emphasizing those terms that occur only in few
documents and de-emphasizing those that occur in most of the documents.

131

Representation learning

Table 5.1. Some global weightings for index terms. N is the number of documents in a document
collection, c(i, j) is the frequency of term i in document j, g(i) = ∑j c(i, j) is the global
frequency of term i in the whole collection, d(i) = |{j : c(i, j) > 0}| is the document
frequency for term i, and σi

2 is the sample variance for the frequencies of term i.

Weighting Coefficient for feature i

Logarithmic idf log N
d(i)

Entropy weighting 1 − ∑j
pij log pij

log N , where pij =
c(i,j)
g(i)

Variance normalization σi
−1 = (1

N−1 ∑j(c(i, j)− g(i)
N)2)− 1

2

Common global weighting schemes are presented in Table 5.1. The most pop-
ular global weighting scheme, inverse document frequency (idf), assigns a high
weight to terms that occur only in few documents and thus refer to very spe-
cific concepts. For term i, idf is the total number of documents N divided by
the number of documents the term i occurs in. To dampen the effect of the
weight, usually logarithmic idf (log-idf) is applied (Spärck Jones, 1972). Entropy
weighting assigns the minimum weight to terms for which the distribution over
documents is close to uniform and the maximum weight to terms which are con-
centrated in a few documents (Dumais, 1991). Finally, one can simply normalize
variances of the features to one, as it is often done for continuous features.

5.1.2 Length normalization

The length of the obtained vectors varies across the documents. The length de-
pends both on how many words there are in each document and on the applied
local and global weightings. The similarities between the documents are of-
ten calculated with cosine similarity measure, which neglects the vector lengths
(Salton and Buckley, 1988). However, if some other distance measure is applied,
the vectors can be explicitly normalized using, for example, �1 or �2 norms.

5.1.3 Dimensionality reduction

The dimensionality of a feature-context matrix X ∈ RV×N may be very high due
to a large number of features M (e.g., words or index terms) or a large number
of contexts N (e.g., documents, sentences, or neighboring words). To reduce the
computational cost of calculating the similarities in the vector space, it is com-
mon to use dimensionality reduction (see Section 2.5.2). The methods for reduc-
ing the dimensionality can be divided into two families of approaches: feature
selection and feature extraction (Schütze et al., 1995; Alpaydin, 2004, Ch. 6). A
comprehensive review on different feature selection and extraction methods for
vector space models is given by Sebastiani (2002).

5.1.3.1 Feature selection

In feature selection, the task is to choose K dimensions out of the V original
dimensions that give as much information as possible. The rest V − K dimen-
sions are discarded. If it is computationally feasible to evaluate a large number
of subsets of features, feature selection can be done systematically with sub-
set selection methods (Alpaydin, 2004, p. 106). In vector space models, it is
common to apply heuristic preprocessing, such as stemming, exclusion of too
frequent and too rare words, or removal of non-alphabet characters, although

132

Representation learning

more sophisticated methods have also been applied (Sebastiani, 2002). In the
global framework discussed in this thesis, feature selection can be considered to
be part of the unit selection problem.

5.1.3.2 Feature extraction

In feature extraction, or reparametrization, the task is to find a new set of K
dimensions that are combinations of the original V dimensions. Usually, this
is accomplished by finding a linear projection X̂ = RX, where R ∈ RK×V is a
projection matrix.

A computationally light way to reduce the dimensionality is to project the data
with random vectors that are nearly orthogonal. If the randomly selected sub-
space has a sufficiently high dimension, the distances between the data points
are approximately preserved (Johnson and Lindenstrauss, 1984). This approach
has been addressed by several names: random projection (Ritter and Kohonen,
1989), random mapping (Kaski, 1998), and random indexing (Kanerva et al.,
2000).

Random projection is computationally efficient especially with sparse projec-
tion matrices (Achlioptas, 2001; Bingham and Mannila, 2001). However, if also
the original data is sparse—as in the case of bag-of-words—a sparse projection
matrix will distort the data. This can be prevented by the Fourier transform of
the data (Ailon and Chazelle, 2006). A recent paradigm that exploit sparsity
and random projection matrices is compressed sensing or sampling (Donoho, 2006;
Candès et al., 2006; Candès and Wakin, 2008). However, it seems that these new
findings are not yet tested on text data.

Principal components analysis (PCA, see Section 2.8.2) can be used to find K
features that encode the maximal amount of variance in the original data set X.
A simple way to calculate PCA is to use singular value decomposition (SVD,
Section 2.8.1) on a centered data set. As centering removes the inherent sparsity
in text data, it is common to use SVD directly on X. The difference between SVD
and PCA is often minor because the mean is in any case close to zero because
of the data sparsity. SVD can also be motivated directly by the optimality of
the solution in the least-squares sense (see, e.g., Manning and Schütze, 1999, p.
559). The use of SVD on text document data dates back to Benzécri (1973), but
was made widely known by the names of latent semantic analysis (LSA) and latent
semantic indexing (LSI) (Deerwester et al., 1990).

SVD, as well as probabilistic topic models discussed later in Section 5.2, exploit
second-order statistics and generalize the data besides reducing the dimension-
ality. For instance, the latent space found for documents using LSA often com-
bines the individual terms into more general topics. The methods can also ad-
dress the problems of polysemy and synonymy (Deerwester et al., 1990).

Also independent component analysis (ICA) has been used for feature extrac-
tion. For example, Isbell and Viola (1999) apply ICA for document represen-
tations and Honkela et al. (2010) for word representations. ICA uses higher-
order statistics to find components that are as independent as possible. Typi-
cally, this provides sparse components (Hyvärinen et al., 2001). Compared with
LSA, Honkela et al. (2010) find that the ICA components better reflect linguistic
categories and are easier to interpret by humans.

The self-organizing map (SOM) performs non-linear dimensionality reduction
to two dimensions. While very precise similarities cannot be stored by using
only two dimensions, the result is very suitable for visualization and exploration

133

Representation learning

of the similarities of words (Honkela et al., 1995) or documents (Kaski et al., 1998;
Kohonen et al., 2000; Lagus et al., 2004).

5.2 Probabilistic topic models

An alternative to the heuristics used in vector space models is to create a prob-
abilistic model for generation of the documents. The first approaches to this
direction (e.g. Bookstein and Swanson, 1974) were based on the Poisson distri-
bution:

p(k | λi) = e−λi
λi

k

k!
, (5.3)

where k is the number of occurrences for an event and λi is the single parame-
ter of the distribution. By setting λi = g(i)/N, the distribution can be used to
estimate the probability of k occurrences of a word wi in a document. The Pois-
son distribution assumes that occurrences are independent of the documents.
In consequence, most function words follow the Poisson distribution quite well,
while many content words do not, as they tend to be concentrated on certain
documents. This observation has provided some approaches for term weight-
ing (Manning and Schütze, 1999, Sec. 15.3).

More recent probabilistic models for documents are based on the categorical
or multinomial distribution. Ponte and Croft (1998) were the first to propose a
statistical language modeling approach to IR: Each document dj is presented by
a categorical distribution p(W = wi |π j) (see Section 2.1), also called a unigram
model. The relevance of the document to the query q is then obtained by the
probability that the document model would generate the query:

p(q |π j) = ∏
w∈q

p(w |π j). (5.4)

Ponte and Croft (1998) used ML estimates πij = c(i, j)/ ∑i c(i, j) for the doc-
ument distributions, but replaced zero probabilities with collection-wide esti-
mates g(i)/ ∑i g(i). An alternative way is to interpolate document models with
a background model estimated from the collection, resulting in a global weight-
ing effect similar to idf (Westerweld et al., 2007).

Assuming a separate unigram model for each document requires a large num-
ber of parameters: N × V for N documents and V index terms. Evidently, for a
large enough collection, the number of topics in the documents is smaller than
the number of documents. Thus it is useful to assume that the documents are
generated by latent topics z ∈ Z. Assuming a single topic per document gives a
mixture of unigrams model (Nigam et al., 2000). For a mixture of unigrams, the
probability of a document that consists of words w = w1 . . . wn is

p(w) = ∑
z∈Z

p(z)p(w | z) = ∑
z∈Z

p(z)
n

∏
i=1

p(wi | z). (5.5)

The parameters of the model—topic priors and unigram parameters—can be
estimated with the EM algorithm. Nigam et al. (2000) use the model for semi-
supervised text classification. In the basic approach, each z is a class label in the
labeled training data, and classes of the unlabeled documents are assigned by
EM. They also extend the model to the case of multiple latent topics per class.

134

Representation learning

d z w
n

N

(a) PLSA

α θ z w

β

n

N

(b) LDA

Figure 5.2. Graphical representations for PLSA and LDA topic models. N is the number of docu-
ments and n is the number of words generated for a document.

In an unsupervised setting, a reasonable assumption is that each document d
is generated by a weighted sum of latent topics z, and documents and words are
independent when conditioned on z (Hofmann, 1999a, 2001). The joint distribu-
tion of documents and words can then be written as

p(d, w) = ∑
z∈Z

p(z)p(d | z)p(w | z). (5.6)

Let K = |Z| and collect the above probabilities to matrices P ∈ RV×N , U ∈
RV×K, V ∈ RN×K, and D ∈ RK×K, such that pij = p(wi, dj), uik = p(wi | zk),
vjk = p(dj | zk), and dkl = δkl × p(zk), where δjk is the Kronecker delta function
(i.e., δij = 1 if i = j and otherwise zero). Now the model can be written as a non-
negative matrix factorization by P = UDVT. Due to the evident similarity to
LSA, Hofmann (2001) calls this probabilistic latent semantic analysis (PLSA). The
parameters of the model can be estimated with the EM algorithm. Hofmann
(1999b) shows that it outperforms LSA in information retrieval tasks.

PLSA represents each document dj by the mixing weights p(zk | dj) of the top-
ics. In consequence, the number of parameters grows linearly with the number
of documents. Moreover, while the mixing weights for documents outside the
training set can be determined by so-called folding (Hofmann, 1999b), it is not
clear how to assign a probability to such a document. To improve on these is-
sues, Blei et al. (2003) have proposed a three-level hierarchical Bayesian model
called latent Dirichlet allocation (LDA). In LDA, a global parameter β defines the
unigram distributions of the topics zk. Similarly to PLSA, each word in a docu-
ment is generated by a randomly chosen topic. In LDA, this topic is drawn from
p(zk | θ), where θ is drawn once per document from a Dirichlet distribution (Sec-
tion 2.1) with parameter α. Figure 5.2 shows graphical representations for PLSA
and LDA models. Blei et al. (2003) show that both a mixture of unigrams and
PLSA suffer from overfitting avoided by LDA.

Both PLSA and LDA models can be used for representation learning by set-
ting the conditional topic distributions p(zk | dj) or p(zk | θj) as new features for
the documents. A benefit compared with LSA is that the features have a clear
interpretation, as each zk corresponds to a word distribution p(wi | zk).

A drawback of the probabilistic models is the computational complexity of the
training. The word-document matrix is a sparse V × N matrix; let the average
number of non-zero entries per column be c < V and the target dimension-
ality K. According to Papadimitriou et al. (2000), full SVD can be computed
in O(VcN) and random projection in O(KcN) operations. However, truncated
SVD can be approximated significantly faster (Menon and Elkan, 2011). Accord-

135

Representation learning

ing to Hofmann (1999b), PLSA requires 40–60 iterations of complexity O(KcN)

for K latent topics. Finally, the variational inference algorithm used by Blei et al.
(2003) for LDA requires around V iterations of complexity O(KV), which is usu-
ally worse than the complexity of the other methods. For example, if the vocab-
ulary size was V = 105, there were N = 103 documents that on average have
c = 103 word types, K = 102, and the number of iterations for PLSA and LDA
taken into account, the number of operations would be 108 for random projec-
tion, from 109 to 1010 for PLSA, and 1012 for LDA. Full SVD would require 1011

operations, but Menon and Elkan (2011) suggest that truncated SVD may be
closer to the complexity of the random projection, even without approximative
methods.

5.3 Evaluation of representation learning

Using the general division in this thesis, the evaluations for representation learn-
ing methods include application-oriented indirect evaluations and application
independent direct evaluations. The choice of the evaluation depends on the
type of linguistic units for which the representations are obtained. Typically the
units are either full documents or individual word types, but they can as well
be single sentences or even phrases. Application evaluations are more common
for document representations, but include some settings for evaluating word
representations. In contrast, the direct evaluations proposed so far have been
exclusively for word representations.

5.3.1 Application evaluations

The most common evaluation for representation learning of documents is its
most common application: information retrieval. The resources required for a
typical IR evaluation are a set of documents, set of queries, and the manually
determined relevance of each document for each query. Cross-language infor-
mation retrieval (CLIR) is a multilingual extension to the IR framework: a query
can be in a different language than the retrieved document. There are three
major evaluation campaigns and conferences for IR and CLIR systems: TREC
(first overview by Harman, 1992), NTCIR (Kando et al., 1999), and CLEF (Pe-
ters, 2001).

The classical IR task is called ad-hoc retrieval: a user enters a query that de-
scribes the desired information, and the system returns a list of documents. In
exact matching, the documents that precisely satisfy the query are returned. In
ranked retrieval, the documents are returned by their relevance, and the number
of documents to return is fixed or selected by the user.

For evaluating exact matching, there are two sets of documents to consider:
retrieved documents P and relevant documents R. The intersection of the sets,
P ∩ R, tells which of the retrieved documents were correct. Normalizing |P ∩ R|
with the number of retrieved documents gives the precision (Pre) and normaliz-
ing it with the number of relevant documents gives the recall (Rec):

Pre =
|P ∩ R|
|P| ; Rec =

|P ∩ R|
|R| , (5.7)

That is, precision measures the proportion of the retrieved documents that are
correct, whereas recall measures the proportion of the relevant documents are

136

Representation learning

retrieved. To get a single measure that includes the aspects of both precision
and recall, they are often combined using harmonic mean, resulting in F-score or
F-measure:

F =
2

1
Pre +

1
Rec

=
2 × Pre × Rec

Pre + Rec
(5.8)

A generalization of the balanced F-score is Fβ-score:

Fβ =
(1 + β2)× Pre × Rec

β2 × Pre + Rec
, (5.9)

where β > 1 gives more weight to recall and β < 1 gives more weight to preci-
sion.

In ranked retrieval, the order of the retrieved documents has to be taken into
account. A common measure for this is the average precision (AP). For calculating
AP, the ranked list of retrieved documents P = (d1, d2, . . . , dK) is compared with
the set of relevant documents R. Precision Pre(k) at rank k is the proportion of
relevant documents among the k topmost documents:

Pre(k) =
1
k

k

∑
i=1

I(di ∈ R). (5.10)

AP is then the average of precisions at ranks that have a relevant document:

AP =
1
|R|

K

∑
i=1

I(di ∈ R)Pre(i). (5.11)

The mean average precision (MAP) is the mean of this value over a set of queries.
Apart from ad-hoc retrieval, vector representations can be used for visualiza-

tion and exploration of document collections, as in the WEBSOM system (Kaski
et al., 1998; Kohonen et al., 2000; Lagus et al., 2004). From the evaluation per-
spective, the evaluation of an explorative task is problematic as it requires user
studies (see, e.g., Chen et al., 1998).

In addition, there are IR-related tasks that use annotated training data. In text
categorization (e.g. Lewis, 1992), the documents are assigned to two or more pre-
defined categories. The obtained categories can naturally be used as a part of
an information retrieval system. Text filtering (e.g. Lewis and Tong, 1992) and
text routing (e.g. Schütze et al., 1995) are categorization tasks with only two cate-
gories: relevant and non-relevant. Routing provides a ranking of the input doc-
uments according to their estimated relevance, while filtering assesses whether
each given document is relevant or not. Another type of categorization task
is sentiment analysis, where the goal is to determine whether documents (e.g.
product reviews) are positive or negative (Turney, 2002; Pang et al., 2002).

A multilingual corpus can be used to evaluate an alignment task, where the
goal is to match each text entry with its translation. The entries may be docu-
ments (e.g. Besançon and Rajman, 2002) or sentences (e.g. Tripathi et al., 2010).
Both tasks have practical use for collecting and processing training data for ma-
chine translation.

In addition to document or sentence representations, there are many uses for
representations of individual words. Vector space models of words have been
used at least in word sense disambiguation (e.g. Schütze, 1992; Florian and Wi-
centowski, 2002; Lindén and Lagus, 2002), part-of-speech tagging (e.g. Schütze,
1995; Lamar et al., 2010), cross-document co-referencing (Bagga and Baldwin,
1998), bilingual lexicon extraction (Gaussier et al., 2004; Sahlgren and Karlgren,
2005), and phrase-break prediction in speech synthesis (Watts et al., 2011).

137

Representation learning

5.3.2 Direct evaluations

A direct evaluation of a vector space model is a non-trivial task. In contrast
to statistical language modeling, there is no intrinsic measure of success such
as cross-entropy. In contrast to statistical parsing or morphological analysis,
there is no foreseeable way to manually define “linguistically correct” vectors
for direct comparison.

The goal of vector space models is to find and store semantic (or otherwise rele-
vant) similarities between the data samples. Thus any direct evaluation method
has to be based on measuring the similarities and dissimilarities between the
samples and comparing the results with external data. As the external data, the
evaluations often utilize data either intended for human use or collected from
humans. Such data sets are available only for representations of single words.

One type of evaluation data is obtained from language tests designed for hu-
mans. The language test that have been applied include Test for English as a
Foreign Language (TOEFL) (Landauer and Dumais, 1997), test of English as a
Second Language (ESL) (Turney, 2001) and the SAT college entrance exam (Tur-
ney, 2005). The questions typically ask for synonyms or the semantically closest
alternative word for a certain word in a given sentence. Interestingly, the best
automatic methods perform better than non-native speakers of English on the
TOEFL test (Rapp, 2004). The drawbacks of evaluations based on a language test
are that they consider only limited aspects of word similarity (e.g., synonymy)
and that the amount of test data is often small.

A second type of external data is available from thesauri. Thesauri typically
define synonyms, antonyms, or free association similarities for a list of head
terms. Steyvers et al. (2005) has used the University of South Florida free associ-
ations by Nelson et al. (1998), and at least Curran and Moens (2002), Väyrynen
et al. (2007), and Sahlgren (2006b) have used the Moby synonym data by Ward
(2002). Also more structured lexical databases are available, including the cur-
rently widely used WordNet (Miller, 1995; Fellbaum, 1998) and other ontologies
of different areas and languages. The number of terms in the thesauri range
from a few thousand to hundreds of thousands, and thus the evaluation sets
are larger than those obtained from language tests. However, availability for
particular domains and languages is often limited.

A third way of evaluation is to have human evaluators judge the similarity
of the items close to each other in the vector space (Mitchell and Lapata, 2008;
Zesch and Gurevych, 2009). Human judgement is a sensible way of evaluation
from the cognitive point of view. It can also deal with the variation among the
language users given a large enough number of evaluators. However, such ex-
tensive use of human labor is expensive to arrange.

Finally, vector space models can be evaluated using data from psycholinguis-
tic experiments of human language processing. For example, Lund and Burgess
(1996) show that the semantic distances between words in a vector space corre-
late with human reaction times in a lexical priming study.

5.4 Vector space model evaluation using CCA

The direct and indirect evaluation methods discussed in the previous section
have their own advantages and drawbacks. Direct evaluation methods often fo-

138

Representation learning

cus on a specific phenomenon, which means that the results may not generalize
to real applications: the fact that a vector space encodes a particular type of se-
mantic relation, such as synonymy, does not tell how well it encodes meaning in
general (Sahlgren, 2006a). They are usually straightforward and quick to apply,
but suffer from limited and expensive evaluation data. Indirect evaluations, in
turn, are often time-consuming and require additional components or resources
besides the vector space model. However, they evaluate exactly the aspects of
VSM that are required for the application, and there are often data sets available
in various domains and languages.

Publication III proposes a direct evaluation method that combines the advan-
tages of indirect and direct methods. As a direct method, it is straightforward to
apply and does not require any additional components. Although it evaluates
the VSM independently from applications, it does not concentrate on a specific
linguistic phenomenon and in this aspect resembles indirect evaluation meth-
ods. Moreover, compared with other direct methods, it has no serious problems
of data availability. The only required resource is a parallel corpus, and such are
readily available for several languages and domains.

The essential idea of the evaluation method is as follows. Recall that the stan-
dard task for a VSM is to encode the semantic information in a set of documents
S. Now consider a document-aligned parallel corpus: the parallel documents in
two languages S and T can be seen as two views of the same underlying seman-
tics (Mihalcea and Simard, 2005). If the evaluated VSM captures the language
independent semantic intention that is common to the aligned documents, the
generated features F(s; S) and F(t; T) should have a high dependence across the
document pairs (s, t). In order to measure the dependence, the proposed eval-
uation method relies on canonical correlation analysis (CCA). CCA finds the
maximally correlated subspaces for the two sets of features (Section 2.8.3). In
the simplest case, a correlated feature may be a certain word in the first language
and its translation in the second language. However, if the dimensionality of the
representation is limited, each feature has to incorporate broader concepts than
single words. The higher the cross-correlations are, the better are the features
generated by the VSM.

The rest of this section gives an overview of the evaluation method, experi-
ments, and discussion presented in Publication III.

5.4.1 Mathematical foundation

The proposed evaluation method assumes the bilingual document generation
model illustrated in Figure 5.3. The documents s and t are generated from se-
mantic features zs ∈ RDs and zt ∈ RDt , respectively. The generating processes,
denoted Gs and Gt, are stochastic and unknown but independent of each other.
However, the language-dependent semantic features zs and zt are linearly de-
pendent on z ∈ RDz . Thus, given a global meaning representation z, documents
s and t are produced as

s = Gs(zs) = Gs(Wsz); t = Gt(zt) = Gt(Wtz), (5.12)

where Ws ∈ RDs×Dz and Wt ∈ RDt×Dz . Moreover, s and t are conditionally
independent given the meaning z.

Next, consider a VSM with a feature generator F. Let us denote the generators
trained with document sets S0 and T0 as Fs(s) := F(s; S0) and Ft(t) := F(t; T0),
respectively. For simplicity, assume ES[Fs(s)] = ET[Ft(t)] = 0. Let (S, T) be a

139

Representation learning

z

zs

zt

s

t

Figure 5.3. The bilingual document generation model assumed by the evaluation method pro-
posed in Publication III.

new, aligned data set of N documents, in which each pair (si, ti) is sampled from
p(s | zi) and p(t | zi). Feature generators transform the documents si and ti into
vectors xi and yi:

xi := Fs(si) ∈ RDx ; yi := Ft(ti) ∈ RDy . (5.13)

Let X =
(
x1, . . . , xN

)
= Fs(S), Y =

(
y1, . . . , yN

)
= Ft(T), and D = min(Dx,

Dy). Applying CCA to X and Y will provide matrices A and B that project
X and Y to a common vector space as U = ATX and V = BTY, respectively,
where U, V ∈ RD×N are orthogonal (UUT = VVT = I) and have the highest
correlations ρi = corr(ui, vi). The empirical correlation estimates are then in the
diagonal of UVT.

Using the assumed model of document generation with the original semantic
document representations Z ∈ RDz×N ,

UVT = ATFs(Gs(WsZ))Ft(Gt(WtZ))TB. (5.14)

Evidently, any feature generated by F that does not originate from Z will de-
crease the correlations of the row vectors of U and V. If Z is non-singular,
Ds = Dt = Dz, and the matrices Ws and Wt are invertible, it is simple to
show that the highest possible correlations are given by the feature generator
that gives F(Gs(Zs)) = Zs and F(Gt(Zt)) = Zt (Appendix A.1). Even if Ws and
Wt are not square or full rank matrices, CCA provides the optimal linear projec-
tions. Thus it is able to give insight on how well the evaluated VSM generates
features that correspond to the shared meaning of the document pairs.

5.4.2 Evaluation setup

The evaluation method proposed in Publication III evaluates the feature genera-
tor F of a vector space model. As most of the feature generators require learning,
the training sets (S0 and T0 above) have to be separate from the evaluation data
in order to deal with overfitting.

In the present evaluation method, however, the separation of training and
evaluation sets is not alone sufficient: also the empirical correlation estimates
returned by CCA may be overfitted. Especially if the number of samples N is
small compared with the dimensionalities of x and y, the sample estimates of
the covariance matrices Cxx, Cyy and Cxy are not robust. In order to get more
reliable estimates of the final correlations, the evaluation set is divided into two
distinct sets: namely, an evaluation training set (evaltrain) and an evaluation test
set (evaltest). An overview of the evaluation setup is shown in Figure 5.4.

The evaltrain set (S, T) is used for training the parameters of CCA as described
in Section 2.8.3. As regularization, a small positive value ε proportional to the

140

Representation learning

ρ̃

corr()

corr()

ρ

U

V

Ũ

Ṽ

CCA

B

A
3

2
Fs

Ft

Fs

Ft

Train Ft

Train Fs

T

S

T0

S0

Evaluation training
data (aligned)

data (aligned)
Evaluation test

1

Ỹ

X̃

Y

X

T̃

S̃

Training data

Figure 5.4. Diagram of the evaluation setup proposed in Publication III. (1) The feature generator
F is trained on monolingual corpora S0 and T0, and then applied to transform the
evaluation data sets into vectorial form. (2) CCA is trained on the evaluation training
data to find the canonical variates U and V and the respective projection matrices A
and B. (3) The evaluation test data is then projected into the same space, and finally
the test set correlations ρ̃ are computed.

variances of X = Fs(S) and Y = Ft(T) is added to the diagonals of the respective
covariance matrices Cxx and Cyy.

The evaltest set (S̃, T̃) is used for estimating the correlations for the evaluation
score. For zero-mean X̃ = Fs(S̃) and Ỹ = Ft(T̃), the test set correlations ρ̃i are

ρ̃i =
aT

i X̃ỸTbi√
aT

i X̃X̃Tai

√
bT

i ỸỸTbi

, (5.15)

where ai and bi are the projection vectors for the ith canonical variate.
Instead of a vector of correlations ρ̃, it is often preferable to have a scalar eval-

uation score. An intuitive score for comparing two feature generators that have
the same output dimensionality D is the sum of the correlations:

R(X̃, Ỹ) =
D

∑
i=1

ρ̃i. (5.16)

For perfectly correlated sets, R = D, and for uncorrelated sets, R = 0. The
experiments of Publication III show that this works in general better than, for
example, assuming normally distributed data and calculating a “Gaussian mu-
tual information” score based on Equation 2.85 (page 64).

In the case that the feature generators return different numbers of features, the
comparison of the vector representations is not as straightforward. Uncorrelated
canonical variates should be penalized, but even a dimension that has a very
small positive correlation can be useful if it is weighted according to the strength
of the correlation (Tripathi et al., 2008).

141

Representation learning

5.4.3 Validation experiments

Publication III validates the proposed vector space evaluation method in three
different ways: First, it was shown that the results based on the evaluation
method agree generally well with previous findings on VSMs. Second, the re-
sults were compared with two indirect evaluations that were based on sentence
matching tasks. Third, the results were compared against a quantitative manual
evaluation of the factor loadings of the bilingual features found by CCA.

The experiments were performed using Europarl (Koehn, 2005), a parallel cor-
pus consisting of the proceedings of the European Parliament meetings in 11
European languages. The sentences of the corpus were used as documents.
Among the language pairs, English–Finnish data was used except for a study
of the effect of language similarities that included several language pairs.

The first set of validation experiments considered five different aspects of vec-
tor space construction. The hypotheses based the previous research and their
agreements with the proposed evaluation method were the following:

1. Dimensionality reduction

Hypothesis: SVD outperforms simple feature selection methods and random
projection if the target dimensionality is relatively low.

Confirmed by: Deerwester et al. (1990); Kaski (1998); Bingham and Mannila
(2001)

Result: Agreed; SVD showed significantly higher scores than any other tested
method for dimensionalities between 20 and 500.

2. Global weighting

Hypothesis: Among the different global weighting schemes, entropy weight-
ing and logarithmic idf should give the best improvements when using
SVD.

Confirmed by: Dumais (1991); Nakov et al. (2001)

Result: Agreed; entropy weighting and logarithmic idf outperformed other
tested global weighting schemes up to 500-dimensional representations.

3. Amount of data

Hypothesis: More training data should improve the results whenever a rea-
sonable dimensionality reduction method is applied.

Confirmed by: Zelikovitz and Hirsh (2001); Yarowsky and Florian (2002)

Result: Agreed; using SVD as feature extraction, increasing (decreasing) the
amount of training data showed significant increase (decrease) in the
scores.

4. Phrases as features

Hypothesis: The results are not improved by including common n-grams from
the training data as features, unless the n-grams are selected very care-
fully.

Confirmed by: Lewis (1992); Scott and Matwin (1999); Caropreso et al. (2001);
Sebastiani (2002); Koster and Seutter (2003); Coenen et al. (2007)

Result: Not agreed; adding 2-grams that occurred at least twice outperformed
bag-of-words significantly for dimensionalities between 50 and 500. How-

142

Representation learning

ever, increasing the n-gram lengths up to five did not show clear improve-
ments to 2-grams.

5. Language similarity

Hypothesis: Due to morphological and syntactic similarities, closely related
languages should have higher correlations than, for example, languages
that belong to different language families.

Confirmed by: Besançon and Rajman (2002); Chew and Abdelali (2007); Sade-
niemi et al. (2008)

Result: Agreed; among the tested language pairs the highest scores were ob-
tained for Danish–Swedish corpus (same language family, sub-family,
and branch), and lowest scores were obtained for Finnish–English and
Finnish–German corpora (different language families).

Thus the only case in which the result disagreed with the hypothesis was the
use of phrase features. This mismatch may be due to using vector representa-
tions of sentences: information on word order, disregarded in bag-of-words and
partially encoded in bag-of-phrases, is likely to be more important for sentence
representations than for document representations that were evaluated in the
previous studies.

In the second validation approach, several different VSMs were evaluated by
the proposed method and two bilingual sentences matching tasks. The general
idea was to check how well the sentences that are translations of each other
could be matched based on the vector space model and the projections learned
via CCA. The first task was finding the translation of the sentence among a sub-
set of other sentences. It was similar to the the nearest translation test used by
Besançon and Rajman (2002) for VSM evaluation. The second task was one-
to-one alignment of sentences and similar to the one studied by Tripathi et al.
(2010). The evaluation scores and the matching accuracies were compared us-
ing Spearman’s rank correlation coefficient (Section 2.5.4). Using a set of twelve
different 100-dimensional representations, the correlation between translation
accuracies and evaluation scores was 1.0, and the correlation between alignment
accuracies and evaluation scores was 0.888. As the correlation between transla-
tion and alignment accuracies was also 0.888, indirect evaluations based on two
very similar tasks could not predict each other’s performance any better than
the proposed direct evaluation.

The third validation exploited the canonical factor loadings of the generated
features. The factor loadings measure which original variable is involved in
which canonical variate and to what extent, and are obtained by

lx(ij) = corr(ui, xj); ly(ij) = corr(vi, yj). (5.17)

For a bag-of-words model, the original variables are words. As an example from
a model that used SVD, there was a variate that strongly correlated with En-
glish words vote, place, take, tomorrow, and noon and Finnish words äänestys
(vote), toimitetaan (takes place), klo (at [time]), huomenna (tomorrow), and 12.00
(noon). While these are not direct translations, it is easy to see that they come
from the same sentences in each language. A good feature generator should
provide this kind of translation pairs. Thus the correctness of the translations,
scored manually for the five most positively and negatively correlated words
of each dimension, was compared with the evaluation scores. As a result for a

143

Representation learning

set of six 100-dimensional representations, the rank correlation between the two
scores was 0.977.

5.4.4 Discussion

CCA and its variations had already been utilized in many applications of natural
language processing prior to Publication III. The tasks include cross-language
information retrieval (e.g. Vinokourov et al., 2003; Li and Shawe-Taylor, 2007;
Hardoon and Shawe-Taylor, 2007), text categorization (Minier et al., 2007), bilin-
gual lexicon learning (Haghighi et al., 2008), and sentence alignment (Tripathi
et al., 2010). The novel idea of Publication III was to use CCA not as a part of
some indirect evaluation but for directly measuring the dependence of the rep-
resentations of data sets that should be highly dependent.

There are two restrictions in the proposed evaluation method. First, it uses
linear dependence calculation, which, although very robust and fast, may not
always find the true dependence. A solution would be to use kernel CCA to ex-
tend the evaluation approach for non-linear dependences. However, selecting
the kernel function and its parameters would require a more complicated eval-
uation setup. It is also difficult to interpret the canonical variates in the kernel
space. Second, the evaluation method works for monolingual feature extraction
methods only. The evaluation setup encompasses cross-language feature extrac-
tion comparable to Vinokourov et al. (2003) or Zhang et al. (2010). Thus, if the
features were extracted from a bilingual corpus, the evaluation scores would
only measure how similar the generated features are to those found by CCA.

Finally, the evaluation method can be extended at least in two different di-
rections. One is to consider a situation where the underlying features are not
semantic. For example, in a genre identification task, the features are typi-
cally statistics on part-of-speech tags, word lengths, and punctuations (Finn
and Kushmerick, 2006). Given a data set where paired documents were of the
same genre but otherwise different content, a feature extraction that finds genre-
related features would get high correlations. Second direction is to consider an
asymmetric evaluation. The two views of the data set may have different types
of text (e.g., full text and summarized text, professional and layperson language)
or even different type of data (e.g., images and their captions), as long as it is
mainly the semantics that is shared by the data sets. Moreover, if there already
is a feature generator known to perform well for the first view of data, feature
generators for the second view can be evaluated simply by measuring the cor-
relations with the features of the first view. For example, consider the case that
the first language is isolating and the second is synthetic. If some standard bag-
of-words representation was considered good enough for the first language but
not for the second, one could evaluate a morphologically-aware feature genera-
tor for the synthetic language.

144

6. Selecting lexical units

In this chapter, the problem of lexical unit selection, highlighted in the middle of
Figure 5.1, is considered in more detail. As the problem has rarely been consid-
ered as a whole, the concepts of the problem are not well established. Thus this
chapter starts by giving an extensive overview of the problem, including termi-
nology, criteria for useful lexical units, and evaluation approaches (Section 6.1).
Next, Section 6.2 compares different types of linguistic units regarding the crite-
ria and the common applications of the units, and also gives an overview on the
most popular approaches for identifying the units.

Section 6.3 goes deeper in the question of evaluation for one particular unit
selection problem: morphological analysis. Among indirect evaluations, this
thesis concentrates on statistical machine translation (Publications IV and V),
but also speech recognition and information retrieval tasks are considered. For
direct evaluation using linguistic resources, a central contribution of this thesis
is the introduction and experimental comparison of various evaluation methods
for unsupervised morphological analysis (Publication VI). Also direct evalua-
tion with psycholinguistic data is considered. In particular, the contributions of
this thesis include experiments for evaluating statistical models of morphology
via reaction time data (Publication VII).

The last substantial contributions of this thesis, extensions for the Morfessor
method for selecting lexical units, are described in Section 6.4. These exten-
sions include a model for allomorphy (Publication VIII), a weighting method
to deal with the effect of varying size of training data (Publication IX), a semi-
supervised training algorithm (Publication X), and a method for learning phrasal
constructions (Publication XI).

6.1 Problem definition

The low-level representation of a sample of written text, t, is a string of a se-
quence of characters from a character set Σ: t ∈ Σ∗. The length of the string may
vary from a few characters in a single word to trillions of characters in a large
corpus. Using the characters directly as the lexical units may work for some
specific tasks. However, in many cases, it is useful to have a set of units that
individually refer to particular meanings (cf. Section 3.1.4).

Adopting the basic framework and notation from Goldsmith (2010), the unit
selection can be defined as encoding the samples t using a new lexicon L. The
units w ∈ L may have arbitrary features, but are often represented by finite-
length substrings of some subset of Σ∗. For example, L can contain all lower-

145

Selecting lexical units

Automatic
speech
recognition

Text prediction
- cross-entropy
- perplexity
...

- correlation to reaction times
in lexical decision task

- language acquisition patterns
...

Psycholinguistic evaluation

- segmentation boundary
evaluations

- isomorphic evaluations
Automatic linguistic evaluation

Information
retrieval

Text
categorization

Text
summarization

Speech
synthesis

Statistical
machine
translation

...

LEARNING
PROBLEMS

...

Representation learning

Statistical language modeling

...

Selecting lexical units

DIRECT
EVALUATIONS

...

Language tests

Behavioral tests

Manual evaluation

EVALUATIONS
INDIRECTAPPLICATIONS

WER

F-measure
...

MAP
...

Human ratings

Human ratings

User studies

BLEU

LER

...

...

User studies

Human ratings

...
ROUGE

Accuracy

F-measure

...

...

...

- whole sentence models
- probabilistic CFGs

- n-gram models

- vector space models

- probabilistic topic models

- shallow parsing

- word segmentation

- morphological analysis

- phrasal constructions

- canonical correlation
between matched samples

Multilingual evaluations

Figure 6.1. Unit selection in the overview diagram.

cased words observed in the samples (thus making uppercase letters as well as
whitespace and punctuation characters in Σ unnecessary).

Goldsmith (2010) considers the problem of word segmentation and identifies
two subtasks: learning the word lexicon L from a stripped corpus (i.e., such that
there is no marking of word breaks), and finding the original segmentations
given the lexicon and a stripped corpus. In the more general unit selection prob-
lem considered here, these will be called unit learning and tokenization tasks. In
contrast to the word segmentation problem, no information is removed from the
training corpus. If the target units, for example words, are already marked in the
text, this makes both problems much easier (but not always trivial). Specifically,
if the tokenization problem is easy to solve by devising a small set of manual
rules, there is no need for unit learning.

Given a sample t ∈ Σ∗, a tokenization function φ(·) provides a parse

s := φ(t) = (w1, w2, . . . , wn) ∈ L∗. (6.1)

The units wi in the parse may overlap in the sample string or over-represent
the sample. Examples of such approaches include combined index phrases and
words in an IR system (Fagan, 1988) and using both words and morphemes in
factored models (Bilmes and Kirchhoff, 2003; Koehn and Hoang, 2007). Using
the terminology from Section 3.2.7, if there is a combination operator ⊕ and
w ∈ L such that w = u ⊕ v for some u, v ∈ L, the lexicon is redundant. If no such
w exists, the lexicon is minimal.

Having several possible parses for single t is common and sometimes even
desired due to the inherent ambiguity of language. In this case, the output of
tokenization is a set of parses:

S := Φ(t) = {s1, s2, . . . , sM}, (6.2)

146

Selecting lexical units

where si = φi(t). However, usually the tokenization algorithm should provide a
single best parse φbest(t) ∈ S, either using probabilities p(si | t) or in some other
well-defined manner.

Sometimes a parse s may have to be transformed back into a string t ∈ Σ∗. This
is called the detokenization problem. In many cases, detokenization is performed
via the combination operator ⊕ and post-processing function ψ(·): t = φ−1(s) =
ψ(w1 ⊕ w2 ⊕ . . . ⊕ wn). For example, if the tokenized sample is a sequence of
lowercased word forms, combination includes adding word break characters be-
tween the words before concatenation, and post-processing includes predicting
the correct capitalization and punctuation marks. Detokenization is necessary
only for those applications that have to generate text from the tokenized sam-
ples. If tokenization is followed by representation learning—as in information
retrieval—detokenization is rarely necessary.

6.1.1 Qualitative criteria for unit selection

In contrast to representation learning and statistical language modeling, unit
selection does not have specific goals. Instead, the first step in the unit selection
is to make the choice of the target units.

There are several questions to consider related to the application: Does it re-
quire density estimation or just calculation of similarities of parts of text? Is it
enough to study orthographical features, or does the application need to assess
semantic similarities? What kind of information is it acceptable to lose? For
example, is syntax or morphology relevant for the application?

In addition, the choice of the units depends also on the language. With respect
to the language, there are two main questions: What are the graphemes of the
language, and what type of morphology does the language have?

Taking both the application and the language into account, there are four main
criteria to consider in the unit selection problem:

• Relevance: The selected units have to be relevant to the next stage of process-
ing, usually density estimation or representation learning. In most cases, the
units should carry meanings that are as fixed and context-independent as pos-
sible. Any information relevant for the next stage should not be lost.

• Coverage: The set of units has to be able to model as large part of the data as
possible. Especially, the number of out-of-vocabulary (OOV) units for any new
data should be low. Moreover, units that have low frequency in the training
data should be avoided, as their statistical properties are hard to estimate.

• Compactness: The number and complexity of the units may have to be limited
due to memory and computation time constraints.

• Ease of extraction: The easier the tasks of unit learning, tokenization, and deto-
kenization are, the better.

Even for a single target application and language, there rarely is a single choice
of units that would clearly be the best for all of these criteria. Instead, one has to
make a trade-off between the different aspects.

147

Selecting lexical units

6.1.2 Evaluating unit selection

The above defined criteria are useful for considering what kind of units should
be best suited for different tasks in NLP. However, some automatic way to mea-
sure the quality of the results is essential for developing an efficient method for
unit selection.

6.1.2.1 Indirect evaluations

Again, usefulness of a method should eventually be evaluated by how it im-
proves the performance of the target application, but the indirect evaluations in
applications are often complicated and expensive in terms of time and manual
work. Because unit selection is the first step in NLP, there are often additional
layers of components (such as models for representation learning or statistical
language modeling) before the actual application. For example, comparing dif-
ferent unit selection methods in automatic speech recognition requires a statisti-
cal language model based on the extracted units in addition to the application-
specific components such as a pronunciation dictionary, acoustic models, and a
decoder. Of course, the possibility to use the same methods in different tasks
provides many additional indirect evaluations. For example, calculating cross-
entropy of a text, which is a direct evaluation for a language model, is an indirect
evaluation for the selected lexical units.

Different types of units are likely to be useful in different applications. On one
hand, units that do not carry independent meaning, such as letters, are unlikely
to be useful in information retrieval. On the other hand, complex units such as
phrases might be hard to apply in language identification because of the prob-
lems of coverage. The most common applications for different types of linguistic
units are discussed in the Section 6.2.

6.1.2.2 Direct evaluations

Direct evaluation for a unit selection method is usually based on a manually
annotated corpora. Sometimes automatic rule-based annotation tools can be
applied, if they are known to be reliable enough. The type of the annotations
that are needed depend on the target units. For many unit selections tasks, to-
kenization is simply segmentation, and thus the annotations should determine
the correct segmentation points.

Another type of annotations include single labels per word (e.g., POS tags,
named-entity tags), multiple labels per word (morphological analysis), and parse
trees from different types of grammars (e.g., CFGs, lexicalized CFGs, or depen-
dency grammars). In some cases, the evaluation is simple enough. For example,
in supervised POS tagging, the goal is to map a sequence of words to a sequence
of tags. The performance of a tagger can be assessed simply by counting how
many of the predicted tags xi are the same as the reference tags yi for a set of
held-out data.

However, evaluation of labeling is not as straightforward for unsupervised
learning. In unsupervised POS tagging, there is no way to tell whether a certain
predicted tag xi (say, “tag number 23”) matches the reference tag yi (say, “adjec-
tive”). More generally, we have the predicted output x and some reference data
y, but there is no direct way to assess whether a single output xi is correct or not.
This problem is considered in more detail in Section 6.3.2.

148

Selecting lexical units

Similarly to vector space evaluation, an alternative to linguistic annotations is
to use some type of psycholinguistic data. The recorded data may be, for exam-
ple, reaction times or eye movements. The advantage of this type of evaluation
is the independence from traditional linguistic theories and their concepts. For
example, as mentioned in Section 3.1.5, existence of part-of-speech categories of
words in the human mind is controversial. If humans unconsciously apply an-
other kind of categories, such categories may also be more useful for NLP than
the traditional ones.

6.2 Comparison of linguistic units

The usual approach to unit selection is to select a linguistically well-defined unit
type, such as syllables or words, and design suitable tokenization and learning
algorithms for it. In this section, the criteria defined in the previous section (rel-
evance, coverage, compactness, and ease of extraction) as well as other practical
issues are considered for different types of linguistic units.

6.2.1 Letters and syllables

Letters are the smallest unit type available for languages with a phonemic writ-
ing system.1 The correspondence of letters and phonemes varies among dif-
ferent languages. Finnish has almost one-to-one mapping between letters and
phonemes (with the exception of velar nasal [N] that is spelled with two letters).
In contrast, English orthography does not reflect phonemes in such a direct man-
ner, and phonemes are often spelled differently in different contexts. This is be-
cause of the long history of written English: the pronunciation has changed over
time and spelling has not been reformed to reflect the discrepancy. Moreover,
there are writing systems called abjads that exclude vowels (e.g., Arabic and He-
brew) and abugidas (e.g. Hindi and Thai) that mark vowels with diacritics or
other systematic changes to consonants.

As lexical units, the obvious advantages of letters are that (1) the units are
trivial to find, tokenize, and detokenize, and (2) the set of units is very small
and closed. That the set is closed means that no new units will appear and the
coverage is perfect if all letters occur in the training data. Thus there is no OOV
problem for letter-based models.

The drawback is that a single letter does not have much semantic content. To
estimate any phenomena based on syntactic or semantic regularities, the mod-
els will have to store long contexts. If the average word length was five let-
ters, letter n-gram models would need contexts of over 20 letters to store as
much information as a word 5-gram. Storing all letter 20-grams in a training
corpus is impractical, but sophisticated model selection alleviates the problem
(Section 4.2.4). Even then the final model may not be as small as the size of
the alphabet would indicate. Due to the lack of semantic relevance, letter-based
features are not likely to be useful in maximum-entropy or continuous-space
language modeling.2 Nor are they useful for most of the representation learning

1 For those languages that are usually written with logographs, there is the option of
using universal phonetic alphabets such as IPA. However, this limits both applications
and resources such as corpora.
2 A possible solution would be a hybrid model that is conditioned the probability of the
next letter based on whole words in the history.

149

Selecting lexical units

problems.
Automatic speech recognition, optical character recognition, as well as hand-

writing recognition systems apply models that transfer the observations (sound
or image signals) to letters. However, language modeling is usually based on
words, and there are only few reported results (e.g., Magdy and Darwish, 2006)
on letter-based models for optical character recognition. Such results are even
harder to find for ASR.

A more common application for letter-based models is language identification
(e.g., Beesley, 1988; Dunning, 1994; Vatanen et al., 2010). In contrast to word-
based identification, the input for letter-based models may be only few words
or even a fraction of a word, which makes them a more general solution.

Letter-based models are also useful for studying morphology. For example,
the classic letter successor variety method for unsupervised morphological seg-
mentation can be improved by calculating entropy with letter-based models
(Hafer and Weiss, 1974). In this thesis, Publication VII demonstrates that letter
n-gram models are also good predictors of word recognition times in a lexical
decision task.

Syllables are units that are based on phoneme sequences. They form the al-
phabet in syllabic writing such as Japanese Kana, but are often simple to find
from phonemic writing, too. The number of syllables is larger than the number
of letters—but still relatively low compared with longer units—and the need for
context length is slightly smaller. Still, the advantages and drawbacks of using
syllables as units are likely to be very similar to those of using letters.

6.2.2 Words

The word is the default choice for the unit selection problem. Words encode
semantic information by themselves, they are usually easy to extract from text,
and a lexicon of some tens or hundreds of thousands words are often enough to
provide reasonable coverage. However, the particular language that is modeled
has a large impact on all the criteria.

The main problem in word-based modeling is that the set of potential units
is not closed. New lexemes and word forms emerge over time. In addition,
there are foreign words and spelling mistakes that have to be considered. The
vocabulary size required for a reasonable coverage depends heavily on the mor-
phology of the language. A relevant statistic to consider is the index of synthesis
(Section 3.1.7) that gives the average number of morphemes per word in a par-
ticular language. For a high index of synthesis, the out-of-vocabulary rates are
always high (Section 3.1.1).

While words are semantically very relevant units, they still suffer from prob-
lems with semantic ambiguity (cf. Section 3.1.9). There are many homonymous
words, and polysemy is even more common. Moreover, the correct interpreta-
tion for idiomatic and metaphoric use of words requires that the context is taken
into use.

In word n-gram models trained for ASR or SMT, the typical length of the n-
grams was three, ten years ago, and currently ranging between four and six.
Evidently, the applied context lengths are likely to increase along with the in-
crease of available data and computational resources. N-gram growing tech-
niques make it possible to leave n to be decided based on the training corpus.

Because of the semantic relevance and easy detokenization, words are useful

150

Selecting lexical units

units in almost all NLP applications. Their usage is restricted mostly by the
high OOV rates or tokenization problems in certain languages. The latter issue
is considered next.

6.2.2.1 Learning and tokenization

The problems in word learning and tokenization depend on the language. In
Western writing systems, where whitespace already separates the word forms,
tokenization requires only dealing with different punctuations. Abbreviations
(Ph.D.), numeric expressions ($2,499.90) and some other cases (dot.com, :-)) that
include punctuation marks and thus require special attention. Another com-
plication is introduced by hyphenation practices. For example, finite and state
should be separated in finite-state machines, but co and operate should not
be separated in co-operate. However, if some mistakes are allowed, word tok-
enization requires only a list of the most common irregularities in the usage of
the punctuation marks.

An important exception are the languages in which the word breaks are not
marked in the text. In this case, the problem is often called word segmentation.
Especially Chinese word segmentation has been studied since the 1980s. The
first approaches to word segmentation were those of dictionary-based tokeniza-
tion (see, e.g., Wu and Tseng, 1993). In dictionary-based approaches, all known
words were first stored in the lexicon. Then the texts could be tokenized by
greedily finding the longest substrings found in the lexicon (maximum matching),
or by combining single characters to words using linguistic or non-linguistic
techniques.

Later development has concentrated on supervised probabilistic models that
predict the positions of the word boundaries. One early work is by Teahan et al.
(2000), who proposes an approach that predicts the word breaks using an adap-
tive n-gram model trained on presegmented text. Currently the methods are
compared in annual “bake-off” competitions started by Sproat and Emerson
(2003). Many current state-of-the-art methods are based on discriminative struc-
tured models such as CRFs (see, e.g., Sun and Xu, 2011).

Unsupervised word segmentation has been mainly studied as a problem of
language acquisition. The first known approach, letter successor variety (LSV)
by Harris (1955) was mentioned in Section 3.1.3. A major problem in LSV is that
it easily produces inconsistent units, as the segmentation decisions are based
only on the local context and not on the lexicon constructed so far. Another
approach is to search for a lexicon that gives a compact representation for the
input data. For example, de Marcken (1996) and Brent (1999) have proposed
segmentation models based on the MDL principle discussed in Section 2.6.8.

6.2.3 Lexemes and stems

An alternative to the use of all individual word forms is to reduce them to lex-
emes represented by lemmas (see Section 3.1.4). Lemmatization means that the
information encoded in the inflections is lost, so that information should not be
relevant for the application. Because of the lost information, ambiguity is often
slightly increased, but lemmatization may also disambiguate some word forms
(e.g., building to verb BUILD or noun BUILDING). Detokenization is very hard
if not impossible. The advantages are that the vocabulary size is decreased and
coverage improved.

151

Selecting lexical units

Given the above restrictions and advantages, lexemes are naturally suited for
IR type of tasks (Järvelin and Pirkola, 2005). Better coverage improves recall,
although precision may be degraded because of the increased ambiguity. The
benefit is usually larger for highly-inflecting languages.

Outside IR tasks, lexemes and stems are frequently used as extra features in
language modeling and machine translation. This includes both factored models
(Bilmes and Kirchhoff, 2003; Koehn and Hoang, 2007) and hierarchical lexicons
(Nießen and Ney, 2004).

Lemmatization is, in principle, a clustering task for the inflected word forms.
It is a complicated problem that may require disambiguation based on the word
context. For well-resourced languages, there are often rule-based morphologi-
cal analyzers that provide lemmas for the inflected forms. They are discussed
further in Section 6.2.4.

If the language has a low index of fusion, stems can approximate the lexemes.
Stemmers (e.g., Porter, 1980) are often relatively easy to develop. In the simplest
case, all that is required is a list of suffixes of the language. The main differ-
ence to lemmas is that stems do not usually include derivational suffixes. Thus
stemming can improve recall and degrade precision more than lemmatization.
In the mono- and cross-lingual IR experiments of Järvelin and Pirkola (2005),
lemmatization worked better than stemming for Finnish, Swedish, and German
languages. However, for English, stemming outperformed lemmatization.

Unsupervised lemmatization may be based on stemming—first identify all
suffixes and then strip them off—or direct clustering of the word forms. This
topic has been studied by Schone and Jurafsky (2000, 2001), Baroni et al. (2002),
Snover et al. (2002), Hammarström (2006), and many others. Also unsupervised
methods for learning morphology (see Section 6.2.4) can be applied to stemming
or lemmatization. If the goal is lemmatization and not only stemming, there are
major issues in how to distinguish between derivational and inflectional suffixes
and how to disambiguate based on the context. Fusional processes, found for
example in irregular verbs of English, are problematic both for lemmatization
and stemming. Including some supervision, for example by providing a list of
the canonical suffixes for different parts-of-speech (Yarowsky and Wicentowski,
2000), makes the task more feasible.

6.2.4 Morphemes and morphs

Morphemes are an attractive choice for unit selection: the coverage is the best
and the vocabulary size is the smallest that can be obtained without including
units that do not bear any meaning of their own (and thus hurt relevance). Com-
pared with words, ambiguity is often higher and longer contexts are required for
language modeling, but overall there should be few theoretical drawbacks.

Comparing morphs and morphemes, the usage of morphs increases both vo-
cabulary size due to allomorphy and ambiguity due to syncretism. In an IR
setting, this means both lower recall and lower precision. Obviously, the dis-
advantage is larger for languages with high index of fusion. Morphemes might
be preferred in machine translation due to the lower semantic ambiguity of the
units. However, if the translation model outputs morpheme sequences, there
is the problem of detokenization. The advantage of morphs is that detokeniza-
tion is possible by simple concatenation and prediction of word breaks, whereas
morphemes require a more complicated model of word generation. Similarly

152

Selecting lexical units

in ASR, morphs are directly observable in the input signal, whereas using mor-
phemes would require additional processing.

Among the applications, morphemes and morphs have been tested thoroughly
at least in IR, ASR, and SMT. The test settings and results are discussed in more
detail in Section 6.3.1.

6.2.4.1 Learning and tokenization

The main drawback of morpheme and morph tokenization is that separate tools
are required to extract them. The extraction is trivial only in isolating languages
with an index of synthesis of almost one: in that case there is no essential differ-
ence between morphemes and words. Otherwise there is a need for either mor-
phological analyzers or machine learning algorithms. As they usually require
word forms as input, word tokenization may have to be done as preprocessing.

Morphological analyzers. As mentioned in Section 2.3.5, finite-state machines
have been successful for computational modeling of phonology and morphol-
ogy. The finite-state morphology started to develop already in early 1980s (see
Karttunen and Beesley, 2005), and even very recent analyzers are based on the
same methodology (e.g. Çöltekin, 2010).

The first approaches in computational morphology used context-sensitive re-
write rules that, when applied sequentially, produced surface forms of the words
from abstract phonological representations stored in the lexicon. While the rules
where context-sensitive, they were not applied recursively to the same position,
and actually implemented only regular relations that can be described with FSTs
(Karttunen and Beesley, 2005).

With respect to morphological analysis, the problem of the rewrite rules was
that while one lexical form generates one surface form, a surface form can typ-
ically be generated from more than one lexical form. Using the rewrite rules in
reverse direction, starting from the surface form, could in the worst case produce
a huge number of potential lexical forms.

Before the computational problems of the rewrite rules were solved, an alter-
native approach was introduced by Koskenniemi (1983). His two-level morphol-
ogy (TWOL) paradigm was powerful enough that he could build a complete
morphological analyzer of Finnish already in the 1980s. “Two-level” means that
the model considers only the phonological or orthographical surface level and
the underlying, abstract lexical level. This is in contrast to the earlier generative
models of phonology, introduced by Chomsky and Halle (1968), that use many
intermediate levels during the generation or analysis. The rules of TWOL are
sensitive to both the surface and lexical context, and they are applied in paral-
lel rather than sequentially. Moreover, lexical lookup and analysis is performed
in tandem. The lexicon was first implemented as a trie-based structure. Later,
Karttunen et al. (1992) noticed that it could be modeled as well with a finite-
state transducer. Then the lexicon could be combined with the finite-state rules
to produce a single FST that maps between lexical and surface forms.

Machine learning. The obvious drawback in morphological analyzers is the
human effort required to construct the analyzer and make it cover enough of
the real-world data. Machine learning methods provide approximate solutions
with less cost.

The research on morphology learning includes many types of setups and goals.
Excluding morphological clustering (i.e., lemmatization and stemming that were

153

Selecting lexical units

discussed above), at least the following problems have been studied:

• Learning of inflectional processes: Given a list of lemmas and their inflected
forms, learn to generalize the regular and irregular inflections present in the
data. Rumelhart and McClelland (1986) used this task to demonstrate how
artificial neural networks could acquire linguistic knowledge. The setup can
also be used for learning two-level rules for morphological analyzers (Theron
and Cloete, 1997).

• Out-of-vocabulary generalization: Given a morphological analyzer or a large set
of data annotated by an analyzer, predict the lemma and/or paradigm for pre-
viously unknown word forms (e.g. Bharati et al., 2001; Lindén, 2008, 2009).

• Supervised analyzer: Given a large set of annotated data, learn a model that per-
forms morphological analysis (e.g. Wicentowski, 2004; Chrupała et al., 2008).
Instead of using annotated data, one can also resort to direct human super-
vision and let the machine learning algorithms solve only some part of the
problem (e.g, Oflazer et al., 2001).

• Partially supervised analyzer: Given partially annotated data, learn a model that
performs morphological analysis. The partial information can be, for exam-
ple, suffixes (Yarowsky and Wicentowski, 2000), pairs of lemmas and their
inflected forms (Shalonova et al., 2009), or hand-written rewrite rules (Tepper
and Xia, 2008).

• Semi-supervised analyzer: Given a small amount of annotated data and large
amount of unannotated data, learn a model that performs morphological anal-
ysis. A simpler case is semi-supervised segmentation, in which case both the
annotations and output are morphs. This is studied in Publication X.

• Unsupervised analyzer: Given large amounts of unannotated text, learn a model
that performs morphological analysis. This is studied in Publication VIII.
Again, a simpler task is unsupervised segmentation of words into morphs.

The approaches for unsupervised learning have been recently reviewed by Ham-
marström and Borin (2011). Similar to word segmentation, many models are in-
spired either by the letter successor variety (LSV; Section 3.1.3) or the minimum
description length (MDL; Section 2.6.8) principle.

6.2.5 Phrases and phrasal constructions

Finally, there is the possibility to use units longer than single words. This in-
cludes both simple word sequences and more complex hierarchical units. The
former will be called “phrases” and the latter “phrasal constructions”. The term
“phrase” is used in a broad sense, similarly to its use in statistical phrase-based
machine translation (Koehn et al., 2003), including everything from collocations
to complete clauses.

The main advantage of using phrases (or phrasal constructions) in the lexicon
is the ability to represent a larger part of the semantic information more accu-
rately than with individual words. This can happen in two manners: nearby
words can disambiguate their meaning, or a phrase can have a non-composi-
tional meaning (Section 3.1.9).

The cost of phrase tokenization is the increased size of the lexicon. The growth
is exponential with respect to the length of the phrases, which means that some

154

Selecting lexical units

linguistic or non-linguistic criteria are needed to decide which phrases are stored.
Coverage does not diminish if all individual word forms are also retained in the
lexicon. In consequence, phrase lexicons are often redundant. This is in contrast
to letter, word, or morpheme lexicons, which are minimal. While the redun-
dancy further increases the size of the lexicon, the possibility of using tree struc-
tures for the nested sequences can alleviate the problem (cf. varigram models in
Section 4.2.4).

Probably the most important application for phrase tokenization is statistical
machine translation. The first SMT models, developed by Brown et al. (1993),
define probabilities and alignments between individual words. The problem
that there is no one-to-one mapping between the words of two languages was
recognized, but they had no means to deal with the combinatorial explosion of
multi-word units. The modern phrase-based systems (e.g. Koehn et al., 2007)
often still use the IBM models by Brown et al. (1993) for the word alignment
problem. However, the actual translation model consists of conditional proba-
bilities p(wt |ws) over a fixed set of phrase pairs (ws, wt). Note that the prob-
ability of a phrase wt is conditioned only on the corresponding phrase ws in
the other language, and not the other phrases in the language t. This demon-
strates how phrases make it possible to deal with both ambiguity and non-
compositionality. Hierarchical phrasal constructions have been used, for exam-
ple, in data-oriented translation (Poutsma, 2000; Hearne and Way, 2006) and
hierarchical phrase-based translation (Chiang, 2007).

In information retrieval and text categorization tasks, it would similarly seem
useful to use phrases as index terms. However, the studies of “bag-of-phrases”
in vector space models have shown that including multi-word units does not im-
prove the results unless the phrases are selected carefully (Fagan, 1988; Lewis,
1992; Scott and Matwin, 1999; Caropreso et al., 2001; Sebastiani, 2002; Koster and
Seutter, 2003; Coenen et al., 2007). In contrast, Shen et al. (2006) uses the multi-
gram model by Deligne and Bimbot (1997) for text categorization, and obtain
the best results with maximum length of three words. Also Koster et al. (2011)
obtain improvements over bag-of-words, this time using triplets of two words
and their relation extracted by a dependency parser. This question is certainly
not settled, and the results of Publication III indicate that phrases are useful at
least for sentence-level information (Section 5.4.3).

In ASR, ambiguity and non-compositionality are problems mainly for the lan-
guage model component. In n-gram models, the probabilities are naturally con-
ditioned on some kind of phrases, but using phrases as lexical units means that
also the predictions are made over multi-word units. This kind of phrase-based
language models has been studied, for example, by Deligne and Bimbot (1995),
Ries et al. (1995), Giachin (1995), Klakow (1998), Kuo and Reichl (1999), and Ya-
mamoto et al. (2003). The main benefits are that longer contexts are incorporated
in the language model and ability to use different pronunciations for the phrases
(e.g., “going to” pronounced as “gonna”). While this approach has been shown
to outperform word-based n-gram models, there seems to be no comparison to
modern variable-length n-gram models. In fact, Heeman and Damnati (1997)
argue that it is more useful to keep words as the basic lexical entries for the
language model, and add phrases just to help the speech recognizer with the
acoustic models.

Identification of phrases is also important for speech synthesis, where the in-
tonation patterns should be affected by the phrase boundaries (see, e.g., Wang
and Hirschberg, 1992).

155

Selecting lexical units

6.2.5.1 Learning and tokenization

Considering the extraction of phrasal units, there are various tasks to pursue.
The most typical are the following:

• Learning of collocations: Find pairs of words that form collocations or idioms.

• Named-entity recognition: In named-entity recognition, the task is to find groups
of words that together form a single proper name (e.g. person, location, or
organization). In named-entity classification, the found entities are tagged ac-
cording to the type of the name (Nadeau and Sekine, 2007).

• Chunking and shallow parsing: In chunking or shallow parsing, the task is to
segment the text into syntactically related non-overlapping groups of words
(Sang and Buchholz, 2000). Usually the task includes also identifying the type,
for example noun or verb phrase, of each chunk.

• Parsing: Parsing generally outputs a hierarchical structure over the whole sen-
tence, which is evidently too large a unit. However, the subtrees can be used
as smaller units. In some lexicalized grammars such as tree-adjoining gram-
mars, the lexical elements are already trees. In contrast to shallow parsing,
these units can be discontiguous and contain open “slots” for new words or
subtrees.

Collocations can be found in an unsupervised manner using rather simple statis-
tical tests or information-theoretic measures on co-occurrences of words (Man-
ning and Schütze, 1999, Ch. 5). In most cases, one can restrict the study to
consecutive words. However, this may not work well for languages of relatively
free word order (Pirkola, 2001; see Section 3.1.8.3). Even in English, the same
dependency as in strong coffee occurs in the sentence “The coffee was very
strong”. Partially filled idioms include a modifiable part, as in “jog X’s mem-
ory”.

Methods for chunking include CFG parsers (Abney, 1991) and supervised
learning (Ramshaw and Marcus, 1995), and more recently also unsupervised
learning (Ponvert et al., 2010, 2011). The methods for named-entity recognition
are predominantly supervised; Nadeau and Sekine (2007) give a survey of the
topic.

As discussed in Section 3.2, parsers are usually trained on treebanks, but can
be learned also in an unsupervised manner (e.g., Clark, 2001; Klein and Man-
ning, 2002, 2004; Solan et al., 2005; Bod, 2006). In the contributions of this thesis,
Publication XI considers an intermediate task between shallow parsing and full-
tree parsing: learning of phrasal constructions that are otherwise contiguous but
may contain open slots for a restricted set of words.

6.3 Evaluations for learning morphology

In this section, the problem of automatically evaluating one specific case of unit
selection—learning of morphology—is considered in more detail. Section 6.3.1
discusses indirect evaluations, including evaluation via statistical language mod-
eling and evaluation in the actual applications. The contributions of this thesis
are related to using morphemes in statistical machine translation (Publication IV
and Publication V).

156

Selecting lexical units

For direct evaluations, two types of reference data is discussed: Section 6.3.2
considers linguistic gold standard analyses (usually derived by rule-based mor-
phological analyzers) and Section 6.3.3 considers psycholinguistic data. The
new contributions for these two topics are from Publication VI and Publication
VII, respectively.

6.3.1 Indirect evaluations

The most well studied applications for morphology learning are speech recog-
nition, information retrieval, and machine translation.3 In addition, morpho-
logical units have been studied in statistical language modeling. In principle,
evaluation via some direct evaluation method of representation learning would
also be possible, but there seems to be no published results for that direction.

This section gives an overview of the prior studies on using morphemes in
these tasks and describes the indirect evaluation setups used in Morpho Chal-
lenges (Kurimo et al., 2010a). The statistical machine translation evaluation
setup has been developed in Publications IV and V. The results of these two
Publications are explained in more detail.

6.3.1.1 Statistical language modeling

Statistical language modeling provides a very quick way to evaluate lexical units
in the case that they are segments of the text. There are some pitfalls that have
to be avoided: First, the cross-entropies or perplexities have to be normalized
correctly per word (see Section 4.1). Second, the number of OOV words have to
be the same. The OOV problem is avoided if the models can segment every pos-
sible word to the units in the lexicon—for example, by adding each individual
letter as a unit. Third, the language model itself should not bias results because
of different unit lengths: shorter units require a higher number of units in the
context. Moreover, there has to be a way to compare the complexities (sizes) of
two models that utilize different units.

Hirsimäki et al. (2006) compare gold standard morphs extracted from a two-
level morphological analyzer (Creutz and Lindén, 2004) and statistical morphs
from Morfessor Baseline (Creutz and Lagus, 2005b) using n-gram models of or-
ders 2–7. They find that the statistical morphs work better for small language
model sizes (in megabytes, models stored in a tree structure), but for larger mod-
els and higher n, the results even out.

6.3.1.2 Speech recognition

Hirsimäki et al. (2009) give an overview of speech recognition studies that com-
pare word and morph-based systems. The studied languages have included
Arabic, Czech, Dutch, Estonian, Finnish, German, Hungarian, Slovenian, and
Turkish. Both morphological analyzers and unsupervised methods have been
tested. In most of the cases, morphs have outperformed words.

The main benefit of morph-based speech recognition is the better handling
of out-of-vocabulary words (Creutz et al., 2007). For a fair comparison, it is
essential that the lexicon can be large enough for word-based models and that

3 Other applications are not discussed here, but include, for example, grapheme-to-
phoneme conversion (Demberg, 2007).

157

Selecting lexical units

the order of the language model can be high enough for morph-based models.
Hirsimäki et al. (2009) report extensive recognition experiments using various
word and morph vocabularies and varigram models for Finnish and Estonian.
They find, for example, that a recognizer using a lexicon of 500,000 words is
outperformed by a recognizer using a lexicon of 2,000 morphs, when both use a
varigram model of a similar size.

Different types of morphological segmentations have been tested also by Mi-
hajlik et al. (2010). They compare Morfessor Baseline and Categories-MAP (see
Section 6.4.1), Hungarian morphological analyzer Hunmorph (Tron et al., 2005),
as well as a combined approach, where Morfessor Baseline is used to select a
concise set of morphs from the multiple analyses provided by Hunmorph. All
morph-based approaches outperform the word-based baseline. The best results
are obtained with the combined approach, but those using Hunmorph or Mor-
fessor Categories-MAP are not significantly worse.

Instead of using language models based on morphs, it is possible to combine
morph and word lexicons with factored language models (e.g. Kirchhoff et al.,
2006) or maximum-entropy models (Sarikaya et al., 2008). However, different al-
gorithms for morphological analysis have not been compared in these combined
approaches.

ASR experiments in Morpho Challenge 2005. Automatic speech recognition
was used as an indirect evaluation for morphological segmentation in Mor-
pho Challenge 2005 (Kurimo et al., 2006a). The tested languages were Finnish
and Turkish. The best performing algorithms—including Morfessor Categories-
MAP and algorithms by Bernhard (2006) and Bordag (2006)—yielded signifi-
cantly lower error rates than the worst, but there were no statistical significance
between the best algorithms.

6.3.1.3 Information retrieval

In IR type of tasks, where inflectional suffixes clearly have insignificant rele-
vance, a lexicon of morphemes (morphs) is often reduced to lemmas (stems). A
major part of the suffixes (and prefixes) can often be removed by using a max-
imum frequency threshold for the morphemes. Also global weighting schemes
such as idf (see Section 5.1.1.2) reduce the effect of the non-content morphemes.

For morphological segmentation, the main aspect related to IR performance is
how aggressively the words are segmented: oversegmentation (having too short
stems) conflate semantically distinct forms and undersegmentation (having too
long stems) keep semantically related forms distinct. The former is problematic
for recall and the latter for precision. Compared with the ASR and language
modeling task, IR evaluation is better in the sense that also non-concatenative
processes of the language matter: modeling allomorphy should improve the
recall of the retrieval system, and modeling syncretism should improve the pre-
cision.

Information retrieval experiments were performed already by Hafer and Weiss
(1974). They used segmentation based on the letter successor varieties (LSV) and
some heuristics to remove suffixes and prefixes. This simple automatic stem-
mer outperformed the word-based approach and yielded results similar to a
traditional rule-based stemmer in two English tasks. To mention some of the
more recent studies, Hull (1996) report extensive experiments regarding differ-
ent stemming algorithms for English. They found that in most of the cases,

158

Selecting lexical units

some sort of stemming is useful, and simple plural removal is less effective than
more complex algorithms. However, they found no difference between the aver-
age performance of the more complex algorithms. Alkula (2001) use rule-based
morphological analyzers to compare stem expansion (inflected words in index),
lemmatization (lemmas in index), and lemmatization and compound splitting
in a Finnish IR task. She achieved the best average recall using the index con-
taining the lemmas and components of the compound words.

As in speech recognition, combining morphological units and words may be a
practical approach for improving the results. For example, Turunen and Kurimo
(2011) are able to improve spoken document retrieval by combining lemmas
(from a morphological analyzer) and statistical morphs (from Morfessor).

Again, the need for morphological processing depends on the language. De-
tailed discussion is provided by Pirkola (2001), who classifies languages from
the IR point of view. He considers both the index of synthesis and the index of
fusion separately for inflections, derivations and compounding, as well as fre-
quencies of semantic phenomena such as homonymy, polysemy, and synonymy.
He proposes that different linguistic variables would be useful, for example, for
predicting the effectiveness of a certain type of morphological processing. How-
ever, he does not consider any empirical results.

IR experiments in Morpho Challenges. Information retrieval evaluations
were introduced in Morpho Challenge 2007 (Kurimo et al., 2008) in order to
have an application that would benefit from morphological analysis of the in-
put words more than from segmentation only. The same IR tests were applied
also in the three subsequent Morpho Challenges (Kurimo et al., 2009, 2010c,b).
The test languages have included English, Finnish and German.

In order to measure the effect of the morphological analysis in use, the other
parameters of the system, such as weighting, have to be impartial. In the Mor-
pho Challenge experiments, a modern tf-idf-style weighting called Okapi BM25
(Robertson and Zaragoza, 2009) was applied. One problem with the BM25 is
that compared with the standard tf-idf, it suffers from terms that have a very
high document frequency (Kurimo et al., 2008). As a solution, automatic “stop
morph lists” were collected based on the corpus frequency of the morphs. With
the stop lists, Okapi BM25 outperformed tf-idf regardless of the particular anal-
ysis, and has been used in the subsequent evaluations.

With the limited number of queries in the tested data sets, it has been hard
to find statistically significant differences between the results. The 1–17 best
performing algorithms have belonged to the top group that have no significant
differences between their results (Kurimo et al., 2010a). However, some conclu-
sions have been made. First, the language specific reference methods—stemmer
by Porter (1980) for English and morphological analyzers based on the two-level
morphology by Koskenniemi (1983) for Finnish and German—have yielded the
best results. However, the best unsupervised algorithms—such as Morfessor
Baseline, Monson et al. (2008), Bernhard (2006), McNamee (2008)—are almost at
par, and the differences are not statistically significant.

6.3.1.4 Statistical machine translation

Processing morphologically complex languages is still an open problem in the
statistical machine translation research. The standard word-based approach is
evidently not good enough. For example, Koehn and Monz (2005), who built

159

Selecting lexical units

110 translation systems between European languages, found that the most dif-
ficult language to translate both to and from was Finnish, known for its rich
morphology.4

Using morphemes or morphs in SMT has been studied for example by Corston-
Oliver and Gamon (2004), Lee (2004), Nießen and Ney (2004), Goldwater and
McClosky (2005), Zollmann et al. (2006), Yang and Kirchhoff (2006), and Oflazer
and El-Kahlout (2007). A common setup in these studies is that the translation
is from a morphologically rich language (such as Arabic, Czech, German, or
Finnish) to English, and morphological analysis is applied only to the former.

Moreover, apart from the Master’s Thesis by Sereewattana (2003), all of the
studies prior to Publication IV have used language-specific resources for the
analysis: annotated data (Lee, 2004; Goldwater and McClosky, 2005), morpho-
logical analyzers (Zollmann et al., 2006; Oflazer and El-Kahlout, 2007), or stem-
mers (Yang and Kirchhoff, 2006; Oflazer and El-Kahlout, 2007).

As in speech recognition, the main benefit of morpheme-based machine trans-
lation is to decrease the number of OOV units. Larger improvements to eval-
uation scores have been obtained especially for small training corpora (Nießen
and Ney, 2004; Sereewattana, 2003; Lee, 2004; Yang and Kirchhoff, 2006).

Statistical machine translation using unsupervised morphology induction.
Publication IV describes a language-independent, morphologically aware trans-
lation system that uses Morfessor Categories-MAP (see Section 6.4.1) as a pre-
processing tool, and studies models trained for a relatively large corpus, Eu-
roparl (Koehn, 2005). As Morfessor is an unsupervised method, no further lin-
guistic resources are needed than in the standard, word-based approach.

The statistical machine translation system applied in Publication IV is based
on Moses (Koehn et al., 2007), an open-source toolkit for phrase-based statistical
machine translation. Moses is constantly developed, and provides very com-
petitive results in shared tasks (Callison-Burch et al., 2011). The current version
includes also tree-based translation models.

Prior to training the translation and language models, the source and target
language sentences are tokenized by Morfessor Categories-MAP. Apart from
segmentation, Categories-MAP tags each morph as a stem (STM), suffix (SUF), or
prefix (PRE). The morphs that are not the last morphs of a word are marked with
an additional symbol (+) in order to make detokenization easy.5 Then the phrase
pairs extracted during training consist of sequences of morphs, not words. Lan-
guage models are trained on the morph sequences. The decoder outputs a se-
quence of morphs, which are then concatenated whenever marked with the cor-
rect symbol. The translation process is illustrated by Figure 6.2.

The translation system was tested on the Danish, Finnish and Swedish parts
of the Europarl (v2) corpus (Koehn, 2005). BLEU by Papineni et al. (2002) was
used as the evaluation score. The quantitative results of the translation experi-
ments are shown in Table 6.1. On one hand, the morph-based models obtained
lower BLEU scores, but the differences were statistically significant only for two
tasks (Finnish–Swedish translations). On the other hand, morph-based transla-
tions had remarkably lower numbers of translations that included untranslated

4 Apart from the out-of-vocabulary problem, further challenge with morphologically
complex languages is that they tend to have a relatively free word order.
5 Another option, used in the speech recognition experiments of the thesis, is to add
a separate word boundary symbol to the lexicon. That approach did not work well
in the translation experiments. In particular, the alignment tools of Moses had severe
problems with the boundary symbols.

160

Selecting lexical units

a flera reglerande åtgärder behöver införas .
b flera reglerande åtgärder behöver införas .
c eräitä sääntelytoimia on toteutettava .
d eräitä sääntelytoimia on toteutettava .

e flera reglerande åtgärder behöver införas .
f fleraSTM reglera+STM ndeSUF åtgärd+

STM erSUF behöv+
STM erSUF in+

PRE föra+STM sSUF .STM
g fleraSTM reglera+STM ndeSUF åtgärd+

STM erSUF behöv+
STM erSUF in+

PRE föra+STM sSUF .STM
h erä+STM itäSUF sääntely+

STM toimi+STM aSUF onSTM toteute+STM tta+SUF vaSUF .STM
i erä+STM itäSUF sääntely+

STM toimi+STM aSUF onSTM toteute+STM tta+SUF vaSUF .STM
j eräitä sääntelytoimia on toteutettava .

Figure 6.2. Example of translating the Swedish sentence “Flera reglerande åtgärder behöver in-
föras.” (Several regulations need to be implemented.) into Finnish (from Publication IV).
The top figure shows the word-based translation process: the source sentence (a), the
applied phrases (b), their corresponding translations (c), and the final hypothesis (d).
The bottom figure illustrates the morph-based translation process of Publication IV:
the source sentence as words (e), as morphs (f), the applied morph phrases (g), their
corresponding translations (h), and the final hypothesis with morphs (i) and words (j).

words.

Table 6.1. Statistical machine translation results for word and morph based models in Publication
IV. Statistically significant differences in BLEU scores are marked with an asterisk. The
test set has 1,000 sentences.

BLEU score (%) OOV sentences (%)
word / morph word / morph

Danish → Swedish 33.16 / 32.64 7.4 / 1.2
Swedish → Danish 35.95 / 35.49 7.6 / 2.1
Danish → Finnish 18.26 / 17.66 12.8 / 3.1
Finnish → Danish 23.63 / 22.40 18.9 / 4.1
Finnish → Swedish 22.85 / 20.71∗ 19.5 / 4.4
Swedish → Finnish 18.19 / 17.05∗ 13.2 / 4.2

The translation results were also studied qualitatively. In particular, the rel-
evant question is whether the morph-based system can learn sensible phrase
pairs that would not be possible for a word-based model. The answer was pos-
itive: Figure 6.3 shows phrase pairs that use the morphological segmentations
in a productive manner. All examples are taken from the actual translations.
The first three pairs show a similar structure across the languages, while the last
four examples show how different languages prefer different linguistic struc-
tures. For example, in the fifth example, mood and person expressed by mor-
phological markings of the verb in Finnish are translated to separate words in
Danish. In the sixth example, a noun phrase in Finnish is translated to a verb in
the infinitive form in Swedish.

Minimum Bayes risk combination of alternative morphological analyses.
Publication IV showed that unsupervised morphological segmentation does not
yield similar improvements in SMT as it has done in ASR. A particular problem
might be the increased complexity of the morph alignment compared with the
word alignment, as there are more morphs than words per sentence.

If morph-based models have problems improving the quality as such, but they
still alleviate the out-of-vocabulary problems, one practical way to proceed is to
combine word and morph-based approaches. This can be done either by devis-
ing a single model that use both kind of lexical units, or combining two different
translation models as post-processing. The former option includes, for example,
phrase-based back-off models (Yang and Kirchhoff, 2006) and factored transla-
tion models (Koehn and Hoang, 2007), and training the model with lattices gen-

161

Selecting lexical units

Swedish: Köpenhamn+ s+ kriterier+ na Copenhagen+|’s | criteria | the
Danish: København+ s+ kriterier+ ne

Swedish: risk+kapital+ marknad+er risk + capital | market+s
Finnish: riski+pääoma+ markkina+t

Finnish: he herja+ sivat they | insult+|ed
Swedish: de förolämpa+ de

Swedish: Litauen för+fogar över en Lithuania | has_at_its_disposal a
Finnish: Liettua+ lla on käytös+sä+ä+n Lithuania | by there_is at_its_disposal

Finnish: reagoi+ si+mme react | would + we
Danish: vil vi reagere på will we | react on

Finnish: etu+matkan kiinni kuro+ minen advantage + distance’s clos+|ing
Swedish: att komma i fatt to | catch up

Finnish: standard+i+en nosta+ misessa standard+s’ | rais+|ing_in
Danish: med en for+høje+lse af standard+er with | a raise | of standard+s

Figure 6.3. Examples of productive morphology used by the morph-based translation model of
Publication IV. Literal translations of the phrases are shown on the right.

erated by combining different source text analyses (Dyer et al., 2008). The latter
option is studied in Publication V. The major benefit of integrating the results of
multiple systems is its simplicity: standard, existing translation systems can be
applied. Moreover, as the systems are independent until the combination, the
burden of the training, tuning, and decoding is easy to divide.

In particular, Publication V applies the minimum Bayes risk (MBR) system
combination proposed by Sim et al. (2007). Next, a short overview of the tech-
nique is given (based on Kurimo et al., 2010c).

In minimum Bayes risk decoding (Kumar and Byrne, 2004), the idea is to select
the translation hypothesis t ∈ T that has the lowest risk according to the applied
probabilistic model p(t, s | θ) of target sentences t and source sentences s. The
risk means the expected value of the cost L(t, tref) for selecting t instead of the
correct answer tref. Note that the correct answer tref is not known. Instead, it is
assumed that the probability that the hypothesis t is correct is proportional to
p(t, s | θ).

Equivalently to the minimal cost L(t, tref), one can look for the maximal gain
G(t, tref) = Lmax − L(t, tref), where Lmax is the maximal cost. Using the gain
function, MBR yields the decision rule

t̂ = arg max
t∈T

∑
tref∈T

G(t, tref)p(tref | s, θ). (6.3)

In SMT, an appropriate gain function is the sentence-level BLEU score. For effi-
cient processing, the scores can be approximated by the following gain function
(Tromble et al., 2008):

G(t, tref) = α0|t|+ ∑
w∈N

αwc(w, t) I(w ∈ tref), (6.4)

where N is the set of n-grams, α0 and αw are constants (with approximations
derived by Tromble et al., 2008), and c(w, s) is the number of times the n-gram
w occurs in sentence s. The decision rule is then

t̂ = arg max
t∈T

{
α0|t|+ ∑

w∈N
αwc(w, t)p(w | s, θ)

}
, (6.5)

162

Selecting lexical units

where the posterior probability of an n-gram is computed by

p(w | s, θ) = ∑
t∈T

I(w ∈ t)p(t | s, θ). (6.6)

In the MBR system combination (Sim et al., 2007), the N-best lists (or lattices)
T1 and T2 produced by the translation systems are combined to form the final
set of hypotheses, and the probability of the n-gram w is calculated by linear
interpolation between the two systems:

p(w |T1∪T2, θ) = λp(w |T1, θ1) + (1 − λ)p(w |T2, θ2), (6.7)

where λ is the weight associated with each system. It is optimized using a de-
velopment set.

In Publication V, the MBR combination approach was tested on two tasks:
Arabic to English translation using two different morphological segmentations
for Arabic, and Finnish to English translation using words and morphs induced
by Morfessor Categories-MAP. In both cases, the combination provided a statis-
tically significant improvement to the BLEU scores. For Arabic-to-English trans-
lation, the increase was from 52.7% and 52.8% to 54.6% for one test data set, and
from 43.7% and 43.3% to 45.6% for the other data set. For Finnish-to-English
translation, the increase was from 27.9% (word-based) and 27.4% (morph-based)
to 28.9%.

SMT experiments in Morpho Challenges. Statistical machine translation ex-
periments have been used in Morpho Challenge 2009 and 2010 (Kurimo et al.,
2010c,b). They have included Finnish-to-English and German-to-English tasks,
in which morphological analyses for Finnish and German are considered. The
benefit of this setup is that the target language can be modeled based on words,
so that there is no need for detokenization and the language model can be shared.

The translation system follows the setup of Publication V. First, two transla-
tion models are trained: one uses word lexicons for both source and target sen-
tences, and other uses a morpheme lexicon for source sentences and a word lex-
icon for target sentences. The translation models are trained with Moses (Koehn
et al., 2007). The weights of the different components (translation model, lan-
guage model, reordering model, generation model) are tuned by maximizing
the BLEU score for the development set.

Second, the translation results of the two models are combined by MBR system
combination. At most 200 distinct hypotheses were generated for each sentence
from both models; less if the decoder could not find as many. The best over-
all translation is found with the MBR decoding, and BLEU is used as the final
evaluation metric.

As there are more morphemes than words in a sentence, two limitations af-
fected the results: First, the alignment tool of Moses could not align sentences
longer than 100 tokens. This means that algorithms that predict many mor-
phemes per word may have reduced amount of training data for the translation
models. To make the evaluation more fair in this aspect, all sentences that had
more than 100 letters were discarded from the training data in Challenge 2010.
(The algorithms of Morpho Challenge 2009 were re-evaluated in the modified
setup for Publication VI.) Second, there is a freely selectable limit for how many
units there can be in a phrase. The default value is 7. For the morpheme-based
models, the limit was increased to 10.

The top performing algorithms for the tasks have been Morfessor Baseline and
Categories-MAP (Section 6.4.1), Allomorfessor (Section 6.4.2), and MetaMorph

163

Selecting lexical units

(Tchoukalov et al., 2010). They and a few other algorithms have yielded statis-
tically significant improvements over the word-based baseline, while about half
of the evaluated algorithms have not. Thus also the SMT evaluation is able to
identify useful (and less useful) algorithms for the morphological unit selection,
but finding significant differences between the best results is again difficult.

6.3.1.5 Conclusions

While indirect evaluations are essential for studying the problem of morphology
induction, they are not very easy to design. The evaluation is quite straightfor-
ward in statistical language modeling, but it is essential that the language model
is able to use long contexts whenever needed. The varigram models developed
in Publication I should be suitable for this. In principle, one should select the
best model of a fixed size for all different units, and then measure the normal-
ized cross-entropies of these models. The only published comparison that we
are aware of indicates that significant differences are found only for small model
sizes, where morpheme-like units outperformed words (Hirsimäki et al., 2006).

Application evaluations provide more informative results, but require more
work and resources. Regardless of the particular application, a common prob-
lem seems to be that very large test sets are required to see whether a difference
between the results of two reasonably good methods is statistically significant.

The information retrieval experiments have so far given the most useful re-
sults in the Morpho Challenge evaluations. The standard models for IR are
also relatively quick to train. However, an IR setting considers only usefulness
of the morphological clustering indicated by a particular algorithm—suffixes
and other grammatical morphemes are not relevant. An application that has
to model individual sentences instead of documents should be meaningful for
evaluating the results of a full morphological analysis. One example is machine
translation. The SMT framework developed in this thesis has proven to be use-
ful: statistically significant differences can be found between the results of differ-
ent learning algorithms, and the best algorithms improve the translation results
over word-based models.

6.3.2 Automatic linguistic evaluation

Most work on unsupervised learning of morphology is evaluated either by man-
ual inspection or by comparing the predicted analyses with gold standard anal-
yses produced by linguists, either manually or by rule-based methods. Manual
evaluation is often essential during the development of the learning method,
but too burdensome to use for large amounts of data. Manual inspections, such
as the one by Goldsmith (2001), reveal that the decisions on correct and incor-
rect answers can be subjective, and usually a binary categorization to correct
and incorrect is too coarse. For example, Goldsmith (2001) uses four categories:
“good”, “wrong analysis”, “failed to analyze”, and “spurious analysis”. Thus
also the automatic evaluations should consider similarities between the analy-
ses, not only whether the result is exactly the same or not.

Most of the work on unsupervised learning of morphology concentrates on
segmentation (Hammarström and Borin, 2011). It is a reasonable simplification
for languages that are mostly agglutinative. Moreover, evaluation of morpho-
logical segmentations is simple: segmentation is equivalent to binary classifica-
tion of each potential segmentation point either as a morph boundary or not a

164

Selecting lexical units

morph boundary. It is straightforward to calculate precision and recall for the
predicted boundaries given the reference segmentations. However, some con-
sideration is needed if a word form has multiple alternative analyses. If only
the reference has alternative analyses, it is sensible to select the one that gives
the maximal score. Otherwise, the alternatives in the predicted and reference
analyses can be optimally matched with the Hungarian algorithm (Kuhn, 1955;
Munkres, 1957). This approach is used as a baseline evaluation method in Pub-
lication VI and called boundary precision and recall (BPR).

Evaluation methods for unsupervised morphological analyzers have not been
considered until recently. The first method we are aware of was developed for
Morpho Challenge 2007 and slightly refined for the subsequent Morpho Chal-
lenges. The limitations of these methods were analyzed by Spiegler and Monson
(2010), who also proposed a more robust method. The first large-scale compar-
ison of the methods is provided in Publication VI. This section first discusses
different approaches to the evaluation problem and then summarizes the meth-
ods and results of Publication VI.

6.3.2.1 Information-theoretic measures

Consider the predicted morphological analysis of a word as a random variable
X and the reference analysis as Y. In item-and-arrangement morphology, they
would be sequences of morphemes from the disjoint sets of morpheme labels,
Mx and My, respectively. Let Mx = |Mx| and My = |My|. If the ordering of
the morphemes inside a word is disregarded, X and Y can be encoded as non-
negative vectors x ∈ Z

Mx∗ and y ∈ Z
My
∗ , where xi (yi) is the number of occur-

rences of morpheme mi ∈ Mx (My) and Z∗ = {0} ∪Z+. A further simplification
is to consider them as binary vectors.6

A theoretically motivated way to define how similar the predicted analyses
are to the reference analyses is to measure the mutual information

I(X; Y) = EX,Y

[
log

p(x, y)
p(x)p(y)

]
. (6.8)

As a single measure of similarity that is bounded only by the entropies H(X)

and H(Y), mutual information is not a very informative measure. However,
Rosenberg and Hirschberg (2007) have proposed a mutual information based
V-measure, which resembles the standard F-measure. It is the harmonic mean of
homogeneity h, which is analogous to precision, and completeness c, which is
analogous to recall (cf. Figure 2.6):

h =
I(X, Y)
H(X)

; c =
I(X, Y)
H(Y)

. (6.9)

If the variables are discrete and one-dimensional, both entropy and mutual in-
formation can be computed over the clustering that they define over the data
samples (Meila, 2003). Such clustering tasks include document clustering (Rosen-
berg and Hirschberg, 2007), morphological clustering, and part-of-speech tag-
ging. Christodoulopoulos et al. (2010) compare several evaluation measures for
unsupervised POS tagging, and find the V-measure to be the most stable one.

6 The binary assumption may be a problem for languages where the same morpheme
can occur more than once in a word because of reduplication or compounding. For
example, Finnish word maa+n+kuore+n (“of earth’s crust”) contains two genitives
marked by the suffix n.

165

Selecting lexical units

Apart from morphological clustering and POS tagging, there are also other
subtasks of morphology induction where information-theoretic measures can
be useful. For example, Chan (2006) applies entropy-based measures to evaluate
paradigmatic signatures using POS tags as reference data.

However, mutual information is infeasible to estimate even in the simplest
representation of a morphological analysis discussed above, binary vectors. The
first problem is how to estimate p(X) and p(Y): it is unrealistic to assume that
the morphemes are independent, but there is hardly enough data to do anything
else.7 The second problem is that in order to calculate the expectations, one
has to sum over 2Mx and 2My possible configurations of morphemes, which is
practically impossible for any reasonable-sized morpheme lexicons. In fact, the
situation is very similar to that of the VSM evaluation presented in Section 5.4,
but now the feature vectors are discrete.

6.3.2.2 Graph and matrix representations

All the evaluation methods that are considered later in this section disregard the
order of the morphemes. In this case, there are two equivalent representations
for the analyses of a set of V words W. The first is a matrix X ∈ ZM×V∗ , where
xij indicates the number of times morph mi occurs in word wj. The second, as
proposed by Spiegler and Monson (2010), is a bipartite graph G = (M, W; E).
The graph has two disjoint sets of vertices, morphemes M = {m1, . . . , mn} and
words W = {w1, . . . , wm}, and edges e(mi, wj) ∈ E that connect vertices in M
to vertices in W. The edges can have weights that indicate how many times the
morpheme mi occurs in the word wj.

Considering predicted and reference analyses for the same set of words, the
two respective bipartite graphs have the same word vertices but different mor-
pheme vertices. For example, Figure 6.4 shows graphs for a linguistic reference
analysis and a predicted analysis based on segmentations app+ly, app+lie+s,
applied, application, application+s, expir+ing, expir+ed, explain, expla+na-
tion, expla+nation+s, and explain+ing for the same set of words.

Evidently, the set of word vertices can be used as the common ground for
comparing two analyses X and Y. The analyses are equivalent if and only if
Mx = My = M and there exists a permutation π : {1, . . . , M} �→ {1, . . . , M}
such that xij = yπ(i)j for all i and j. Then the corresponding graphs are iso-
morphic. Because of this notion, the graph-based evaluation methods are called
isomorphic evaluations (Spiegler and Monson, 2010). However, the methods
should determine how similar the analyses are, not whether they are equivalent.

The isomorphic evaluation methods suggested so far can be divided into two
types. The methods of the first approach, called here morpheme assignment, ex-
plicitly match the reference morphemes and the predicted morphemes. The
methods of the second approach, called co-occurrence analysis, study if the same
number of morphemes are shared in X and Y by each pair of words.

6.3.2.3 Co-occurrence analysis

In co-occurrence analysis, a bipartite morpheme-word graph is transformed into
a word graph by removing the morpheme vertices and replacing each pair of

7 And estimating a dependency structure between morphemes is likely to be as hard as
solving the problem of morphology induction in the first place.

166

Selecting lexical units

+3SG

APPLY_V

+PAST

ATION_S

EXPIRE_V

+PCP1

+PL

EXPLAIN_V

apply

applies

applied

application

applications

expiring

expired

explain

explanation

explanations

explaining

+ly

app

lie

applied

application

+s

+ing

expir

+ed

expla

nation

explain

Reference Predicted

Figure 6.4. Example of a bipartite morpheme-word graph for a set of morphological gold stan-
dard analyses (left side) and segmentations (right side) of English words. An edge
between a morpheme and a word indicates that the word contains the morpheme.
Edges to suffixes are drawn with dashed lines.

edges
(
e(mi, wj), e(mi, wk)

)
by edge e(wj, wk). For a binary morpheme-word

matrix X, a word matrix equivalent to this is obtained by the product XTX. Fig-
ure 6.5 illustrates the word graphs corresponding to the analyses in the bipartite
graph of Figure 6.4. After this transform, the set of the vertices of the graphs are
equivalent regardless of the original analysis. For studying the isomorphism of
the graphs, it is enough to compare the edges E between the vertices.

The precision and recall of the word graph Gx = (W; Ex) against the reference
word graph Gy = (W; Ey) can be calculated by taking the averages of precisions
and recalls for single words:

Pre =
1
V

V

∑
i=1

|{wj ∈ W : ex(wi, wj) ∧ ey(wi, wj)}|
|{wj ∈ W : ex(wi, wj)}| (6.10)

Rec =
1
V

V

∑
i=1

|{wj ∈ W : ex(wi, wj) ∧ ey(wi, wj)}|
|{wj ∈ W : ey(wi, wj)}| (6.11)

Note that the definitions are symmetric: precision of X against Y is the recall of
Y against X. A low recall in co-occurrence based metrics indicates missed co-
occurrences (undersegmentation, allomorphs not identified), and a low preci-
sion indicates spurious co-occurrences (oversegmentation, syncretism not iden-
tified). For example, for the predicted analysis in Figure 6.5, Pre(applies) = 2/3
and Rec(applies) = 2/4. The precision is penalized because the plural s and
3rd person singular s are not separated. The recall is penalized because of the
undersegmentation of applied, application, and applications.

Co-occurrence analysis has been used by Schone and Jurafsky (2000, 2001),
Baroni et al. (2002), and Snover et al. (2002) for evaluating morphological clus-
tering, but the first known method for evaluating full morphological analysis
was developed for Morpho Challenge 2007 (Kurimo et al., 2008) and slightly re-

167

Selecting lexical units

apply

applies

applied

application applications

explain

explanationsexplanation

explaining

expiring

expired

(a) Word graph for the reference analysis

apply

applies

applied

application applications

explain

explanationsexplanation

explaining

expiring

expired

(b) Word graph for the predicted analysis

Figure 6.5. Example of a word graph for a set of morphological analyses of English words. An
edge between two words indicates a co-occurring morpheme. Edges corresponding
to suffixes are drawn with dashed lines.

vised for Morpho Challenge 2009 (Kurimo et al., 2010c). The Morpho Challenge
evaluation (called briefly MC) assumes that there is a large set of words with
reference analysis available, and does not try to consider all the edges between
the words. Instead, it first samples randomly a number of focus words. Then for
each morpheme of each focus word, another word that has the same morpheme
is sampled. The result is a set of edges—that is, word pairs that have at least one
morpheme in common. For precision, the edges are sampled from the predicted
analysis and compared with the reference analysis. For recall, the edges are sam-
pled from the reference analysis and compared with the predictions. The scores
are normalized so that each focus word has the same weight on the overall score.

While the sampling approach of MC is well-motivated for large graphs that
cannot be compared as a whole, it has two drawbacks: First, the word pairs that
are sampled for calculating precision are dependent on the predicted analyses.
Then two different algorithms will have different word pairs in the evaluation.
Second, the approach is inconvenient if the reference set has only a small number
of words, as it does not use all the information in the known analyses.

To account for ambiguous word forms, the MC evaluation is designed to give
full precision if any of the reference analyses matches the predicted analysis.
That is, the one that gives the highest precision is selected. If there are multiple
predicted analyses, precision is calculated as the average over them. When recall
is calculated analogously, it means that predicting multiple analyses provides
the best recall and the average precision over them (Kurimo et al., 2010a). This
is the third, and probably the most serious problem of the method: recall can be
artificially boosted by adding alternative analyses for the predictions (Spiegler
and Monson, 2010). The limitations of the MC evaluation have been analyzed in
more detail by Spiegler (2011).

168

Selecting lexical units

+3SG

APPLY_V

+PAST

ATION_S

EXPIRE_V

+PCP1

+PL

EXPLAIN_V

+ly

app

lie

applied

application

+s

+ing

expir

+ed

expla

nation

explain

Figure 6.6. Example of a bipartite morpheme graph for reference (left) and predicted (right) mor-
phemes of English words. An edge between two morphemes indicates that there is
one (thin lines) or two (thick lines) words that have the left morpheme in the refer-
ence analysis and the right morpheme in the predicted analysis. Black lines show one
possible assignment that maximizes the target criterion in EMMA.

6.3.2.4 Morpheme assignment

The evaluations based on morpheme assignment find a one-to-one or one-to-
many assignments between the predicted and reference morphemes. Given an
assignment, it is trivial to calculate precision and recall for the set of morphemes
predicted for each word. The main problem is thus determining the assignment.

The problem can be illustrated by constructing another bipartite graph, where
one set of vertices correspond to the reference morphemes and another set of
vertices to the predicted morphemes. That is, given morpheme-word graphs for
the reference and the predictions, the morpheme graph can be formed by remov-
ing the word vertices and replacing each pair of edges

(
ex(mi, wk), ey(mj, wk)

)
by

e(mi, mj). The weight cij of the new edge is the number of replaced edges:

cij = |{wk ∈ W : ex(mi, wk) ∧ ey(mj, wk)}|. (6.12)

For binary X and Y, the matrix C is obtained also by XYT. Figure 6.6 shows the
morpheme graph for the analyses of Figure 6.4.

The evaluation method proposed by Spiegler and Monson (2010), EMMA, uses
a one-to-one assignment. That is, each predicted morpheme is matched to at
most one morpheme in the reference and vice versa. Matching two morphemes
that have an edge increases both precision and recall. The larger the weight of
the edge is, the larger the increase. Thus the task is to select such an assignment
that maximizes the sum of the weights of the selected edges. Mathematically,
the problem is defined by:

arg max
B

∑
i,j
(cij × bij) s.t. ∑

i
bij ≤ 1, ∑

j
bij ≤ 1, bij ∈ {0, 1}, (6.13)

where B is a binary assignment matrix. Each bij = 1 indicates that morpheme
mi in the predicted analysis is matched to morpheme mj in the reference anal-
ysis. The black edges in Figure 6.6 indicate one of the several assignments that
maximizes the criterion for the example graph.

169

Selecting lexical units

To account for several alternative analyses per word, cij is redefined as the av-
erage over all the combinations of the alternative analyses. After obtaining B
from Equation 6.13, the best one-to-one match between the alternatives is opti-
mized.

The main drawback in EMMA is the time complexity required for solving
Equation 6.13. Using the Hungarian algorithm, the complexity is O(M3), where
M = max(Mx, My). This limits the usage of the evaluation method for large
data sets.

6.3.2.5 New methods for linguistic evaluation

The evaluation methods considered above have their own strengths and weak-
nesses: the MC evaluation is quick but prone to gaming, while EMMA is robust
but slow to run. Publication VI presents two new methods that overcome the
problems: CoMMA (or Co-occurrence-based Metric for Morphological Analysis) is
designed to be reliable and suitable for both small and large data sets, while
EMMA-2 is a assignment-based method that is considerably faster than EMMA.

CoMMA. There are two main differences between the MC and CoMMA eval-
uations. First, CoMMA considers all vertices and edges in a given word graph.
Second, it treats the alternative analyses of words in a manner that cannot be
exploited as easily as in MC. Actually, Publication VI presents two different ver-
sions, CoMMA-B and CoMMA-S, that differ in how the alternative analyses are
processed.

Let X and Y be the morpheme-word matrices of the predicted and reference
analyses, respectively. In essence, CoMMA compares the similarity of the word
matrices P = XTX and R = YTY. Each pij give the number of morphemes that
co-occur in the predicted analyses of the words wi and wj. For non-binary X,
pij can be defined as |Pj ∩ Pi|, where Pj and Pi are the morphemes of wi and wj,
respectively. The construction of R is analogous.

For the error in P, one could consider any matrix norm, for example the �1-
distance |P−R|1 = ∑i ∑j|pij − rij|. However, the standard measures of precision
and recall are often more informative. Let the number of words with at least one
common morpheme with word i be ni = |{j : pij > 0}| and mi = |{j : rij > 0}|,
and the number of words that have at least one common morpheme with any
word vp = |{i : ni > 0}| and vr = |{i : mi > 0}|. The overall precision and recall
are then

Pre =
1
vp

∑
i:ni>0

1
ni

∑
j:pij>0

min(pij, rij)

pij
; (6.14)

Rec =
1
vr

∑
i:mi>0

1
mi

∑
j:rij>0

min(rij, pij)

rij
. (6.15)

For example, if there are two morphemes that are shared between words i and j
in the predicted analyses (pij = 2) and one morpheme in the reference analyses
(rij = 1), the precision increases 0.5 point per vp × ni and the recall increases one
point per vr × mi. One option is to set the diagonals of the matrices P and R
to zeros, that is, pii = rii = 0 for all i. This excludes words that do not have a
common morpheme with any other words from the evaluation.

If there are alternative analyses of words, the simplest option is to take the
union of the edges of the analyses when determining P and R. That is, if Pik is

170

Selecting lexical units

the kth alternative for the ith word in the predicted analyses, and Ril similarly for
the reference analyses:

pij = max
k

max
l

|Pik ∩ Pjl |, rij = max
k

max
l

|Rik ∩ Rjl | (6.16)

This ensures that adding more alternatives in the prediction will increase some
pij values, thus generally improving recall but degrading precision. This method
is called CoMMA-B0 (if the diagonals of P and R are set to zeros) or CoMMA-B1
(otherwise).

Another approach is to enforce one-to-one match between the alternatives sim-
ilarly to BPR and EMMA. In this case, P and R are expanded so that there is one
row for each analysis of each word. In order to keep the matrices easily compa-
rable, the columns are not expanded. Instead, the number of edges between the
kth analysis of word i and the word j is set to be the maximum number of edges
over the analyses of word j:

p(ik)j = max
l

|Pik ∩ Pjl |, r(ik)j = max
l

|Rik ∩ Rjl |, (6.17)

where (ik) denotes the index for the kth analysis of the ith word. The numbers
of words with shared morphemes are nik = |{j : p(ik)j > 0}| for the predicted
analyses and mik = |{j : r(ik)j > 0}| for the reference analyses. Let oi = |{k :
nik > 0}| and qi = |{k : mik > 0}| be the number of alternative analyses for
word i in predicted and reference analyses, respectively. Now vp and vr are
defined as vp = |{i : oi > 0}| and vr = |{i : qi > 0}| and the overall precision
and recall are

Pre =
1
vp

∑
i:oi>0

1
oi

max
Ai

∑
k:nik>0

1
nik

∑
j:pikj>0

aikl ×
min(p(ik)j, r(il)j)

p(ik)j
; (6.18)

Rec =
1
vr

∑
i:qi>0

1
qi

max
Ai

∑
k:mik>0

1
mik

∑
j:rikj>0

aikl ×
min(r(ik)j, p(il)j)

r(ik)j
. (6.19)

Ai is an assignment matrix between predicted and reference alternatives of the
ith word. That is, we want ∑k aikl ≤ 1, ∑l aikl ≤ 1, and aikl ∈ {0, 1} for all i,
k, and l. The assignments can again be solved using the Hungarian algorithm.
This method is called CoMMA-S0 or CoMMA-S1, depending on whether the
diagonals of P and R are set to zero or not.

EMMA-2. EMMA-2 solves the assignment problem by replacing the single
one-to-one assignment problem of EMMA with two many-to-one assignment
problems. When calculating precision, several predicted morphemes may be
assigned to one reference morpheme (many-to-one mapping). When calculat-
ing recall, several reference morphemes may be assigned to one predicted mor-
pheme (one-to-many mapping). The intuition behind this approach is that fail-
ing to conflate two allomorphs (e.g., plural suffixes -s and -es in English) should
not degrade precision—as it would not in an IR task. Similarly, failing to distin-
guish between homographs (e.g., plural -s and 3rd person singular -s in English)
should not degrade recall.

The modified assignment problems in EMMA-2 are

BPre = arg max
B

∑
i,j
(cij × bij) s.t. ∑

j
bij ≤ 1, bij ∈ {0, 1}; (6.20)

BRec = arg max
B

∑
i,j
(cij × bij) s.t. ∑

i
bij ≤ 1, bij ∈ {0, 1}, (6.21)

171

Selecting lexical units

where BPre and BRec contain the assignments for calculating precision and recall,
respectively. Because the best match for each reference or predicted morpheme
can be selected independently of the others, solving these two problems is very
simple. For precision, bij = 1 only if j = arg maxj cij. For recall, bij = 1 only
if i = arg maxi cij. The time complexity is O(Mx My) for Mx predicted and My

reference morphemes.

6.3.2.6 Experiments

One important aspect of the direct evaluation methods is that their results should
correlate with the results of indirect evaluations. Studying this aspect requires
a large database of results based on different algorithms. Such a database has
been collected in the Morpho Challenge competitions.

While the results of the Morpho Challenges include already about fifty algo-
rithms, five languages, and three applications, unfortunately not every algo-
rithm has been evaluated on every language and task. For example, the data
sets of Morpho Challenge 2005 differed significantly from those in the following
Challenges and thus the results had to be excluded. The same goes for Arabic
results: while Arabic data was provided in two Challenges, the only task was
the linguistic evaluation and the two data sets were different. Table 6.2 shows
the number of evaluated methods for the remaining languages and tasks.

Table 6.2. The number of methods evaluated in different tasks and languages. Boundary evalua-
tion gives the number of methods that could be evaluated by measuring the precision
and recall of the morph boundaries (BPR). No reference segmentations for German
were available, so boundary evaluations could not be applied to it.

Evaluation Number of methods
English Finnish German Turkish

Linguistic evaluations:
• Isomorphic evaluations 49 42 39 45
• Boundary evaluation 20 18 − 20
Information retrieval 36 31 25 −
Statistical machine translation − 22 13 −

Apart from the correlations between the results of different evaluations, Pub-
lication VI considers four other aspects of the evaluation methods: (1) how ro-
bust they are with respect to gaming, (2) how useful they are for identifying the
strengths and weaknesses of the evaluated algorithm, (3) how quickly they can
be computed, and (4) how stable they are with respect to the size of the evalua-
tion data.

Correlations with application evaluations. Figure 6.7 shows Spearman’s rank
correlations between the F-score of the isomorphic evaluations and the scores
(MAP or BLEU) of the IR and SMT evaluations. Among the IR tasks, EMMA
and EMMA-2 have the best overall correlations, while CoMMA-B0 and B1 have
trouble with the Finnish and German tasks. For the two SMT tasks, only EMMA
provides positive correlations—all CoMMA methods actually give moderate
negative correlations for the German task.

However, the situation is not as problematic if weighted Fβ-scores are consid-
ered instead of balanced F1-scores. Evidently different applications may prefer
different balance for precision and recall. In other words, some types of errors
may be more serious than other types of errors.

The rank correlations with different values of β are shown in Figure 6.8. With

172

Selecting lexical units

Figure 6.7. Spearman’s rank correlations between the F-scores of the linguistic evaluation meth-
ods and the scores of information retrieval and statistical machine translation evalua-
tions (Publication VI).

the optimal Fβ, EMMA still yields the highest correlations for the IR tasks, but
the best correlations for the co-occurrence-based metrics are much closer. For
SMT, all the evaluations have the highest correlations for a low β, to the extent
that simply the precision is sometimes the best predictor. It appears that none of
the evaluated algorithms has too low a recall for this application.

Finding the weight β that maximizes the correlation between Fβ and the ap-
plication scores can be considered as tuning the evaluation metric. Then a rel-
evant question is how general the found value is for the given language and
application. That is, if the β is optimized for one set of algorithms, and then
utilized for a second set of algorithms, are the correlations better than for the
balanced score? This was tested for the English and Finnish IR tasks, for which
the largest number of data points were available. All segmentation algorithms
(17 for English and 15 for Finnish) were used to optimize the weights and then
all non-segmentation algorithms (18 for English and 15 for Finnish) were used as
a test set. The obtained β and correlations are shown in Table 6.3. The optimized
Fβ usually yields higher correlations also for non-segmentation algorithms than
the balanced F1-score. In the cases that it does not, Fβ and F1 are either equal or
very close. Moreover, in half of the cases, the correlation of Fβ tuned for the non-
segmentation algorithms (shown in last column) is only slightly (≤ 0.05) higher
than the one tuned for the segmentation algorithms. Thus using Fβ-scores is
clearly a feasible approach for the direct evaluations.

Correlations with the boundary evaluation. In many cases, a linguistic refer-
ence does not include a segmentation but only morpheme labels, while the eval-
uated algorithm does only segmentation. If there is a high correlation between
an isomorphic evaluation and a boundary evaluation, it is possible to substitute
the isomorphic evaluation for the boundary evaluation.

Figure 6.9 shows correlations between the F-scores of BPR and the isomorphic
evaluations. All the correlations are reasonable, but there is clear variation over
the languages. Only EMMA and EMMA-2 provide high correlations in all of

173

Selecting lexical units

Figure 6.8. Spearman’s rank correlations between the results of the application evaluations and
weighted Fβ-scores with varying β (Publication VI).

them. CoMMA-B1 and CoMMA-S1 have the best correlations in English, and
MC in Turkish, but all of them have only moderate correlation in Finnish.

Robustness. The robustness of the evaluation methods with respect to gam-
ing were addressed by two tests introduced by Spiegler and Monson (2010).
The ambiguity hijacking test addresses if the evaluation method is robust in how
it deals with alternative analyses: providing two alternative analyses for a non-
ambiguous word should not give higher score than providing a reasonable com-
bined analysis or just the better one. For example, ParaMor-Morfessor, which
simply lists the analyses of ParaMor (Monson et al., 2008) and Morfessor Cate-
gories-MAP as two alternatives for each word, should not outperform ParaMor-
Morfessor Union (Monson et al., 2010), which combines the morpheme boundary
predictions as a single analysis. Figure 6.10 shows that MC and CoMMA-B give
higher F-scores to ParaMor-Morfessor than to ParaMor-Morfessor Union, while
EMMA, EMMA-2, and CoMMA-S are robust in this respect.

The shared morpheme padding test addresses the vulnerability of the evaluations
to an artificial modification of the analysis. A unique bogus morpheme is added

174

Selecting lexical units

Table 6.3. Correlations between IR results and Fβ tuned for segmentation algorithms, calculated
on non-segmentation algorithms. For comparison, the fifth column shows the correla-
tion of balanced F-score for non-segmentation algorithms and the last column shows
the correlation of the Fβ-score optimized using the non-segmentation algorithms. The
highest of each F1 and Fβ is marked with an asterisk.

Language Method Segmentation Non-segmentation

β Fβ F1 Fβ best Fβ

English MC 0.6 0.62 0.43 0.56∗ 0.70
English EMMA 1.25 0.87 0.73∗ 0.71 0.73
English EMMA-2 1.1 0.86 0.74∗ 0.74∗ 0.75
English CoMMA-B0 0.6 0.69 0.44 0.60∗ 0.72
English CoMMA-B1 0.9 0.66 0.69 0.74∗ 0.76
English CoMMA-S0 0.6 0.70 0.67∗ 0.65 0.82
English CoMMA-S1 1.0 0.70 0.79∗ 0.79∗ 0.84

Finnish MC 0.3 0.76 0.35 0.73∗ 0.73
Finnish EMMA 1.25 0.91 0.59 0.61∗ 0.76
Finnish EMMA-2 0.8 0.90 0.55∗ 0.53 0.67
Finnish CoMMA-B0 0.3 0.65 0.18 0.47∗ 0.60
Finnish CoMMA-B1 0.4 0.71 0.29 0.52∗ 0.52
Finnish CoMMA-S0 0.3 0.74 0.44 0.61∗ 0.69
Finnish CoMMA-S1 0.5 0.76 0.44 0.62∗ 0.66

Figure 6.9. Spearman’s rank correlations between the F-scores of the isomorphic evaluation meth-
ods and the BPR boundary evaluation (Publication VI).

to each predicted analysis. This would have no effect for a measure based on
mutual information, but for methods based on co-occurrence analysis, it adds
an additional edge between each word. In consequence, the recall scores are
increased and the precision scores decreased.

In Publication VI, the shared morpheme padding was tested on 18 different
algorithms. The average ratio of scores with and without padding was calcu-
lated. The increase of recall and decrease of precision was confirmed for the MC
and CoMMA methods. For Finnish and Turkish, where high recall was hard to
obtain, it improved the F-score (ratios between 1.19 and 1.76), while for English
and German, where the recall was initially high, the F-score decreases (ratios
between 0.23 and 0.84). EMMA-2 shows only small changes in the scores (ratios
between 0.96 and 1.29), and EMMA even smaller (ratios between 0.76–0.86).

Interpretability. As defined by Spiegler and Monson (2010), interpretability
of an evaluation method concerns how the evaluation results can be used for
identifying the strengths and weaknesses of the predicted analyses. EMMA has
the advantage of providing a mapping between the predicted and the reference
morphemes. This is useful especially for human inspection of the results as it

175

Selecting lexical units

Figure 6.10. The results of Publication VI for gaming with ambiguity hijacking on English and
Finnish data sets: ParaMor-Morfessor returns ParaMor and Morfessor Categories-
MAP as two alternatives, whereas ParaMor-Morfessor Union combines the two pre-
dictions into a single analysis. The number above ParaMor-Morfessor 2008 shows
the absolute difference to ParaMor-Morfessor Union. CoMMA-B0 provides similar
results to B1 and S0 similar results to S1.

helps qualitative evaluation. The many-to-one assignments in EMMA-2 are not
as easy to utilize. For example, they tend to have some obscure links for the
morphemes that occur only once in the data.

Another aspect is whether the precision and recall of the evaluation method
can provide useful information. As explained in Section 6.3.2.3, low recall in co-
occurrence based metrics should be a indicator of not segmenting enough or not
joining allomorphs, and low precision should be a indicator of segmenting too
much or having the same label for different morphemes that are homographs.
In contrast, one-to-one matching returns neither good precision nor recall if the
number of predicted morphemes is wrong.

To study the behavior of precision and recall experimentally, Morfessor Base-
line was trained with different likelihood weights, thus controlling the amount
of segmentation (see Section 6.4.3). Then precision and recall was calculated for
each evaluation method. This experiment showed that all co-occurrence-based
methods, boundary evaluations, and EMMA-2 have recall and precision that
consistently decrease and increase, respectively, when the words are segmented
more. However, with EMMA, recall starts to decrease after a certain point, ob-
structing the interpretability.

Computational complexity. The average computation times of the evaluation
methods for test sets of varying sizes are shown in Figure 6.11. As the sampling
approach of the MC evaluation differs from the others, it was excluded from this
experiment. The boundary evaluation (BPR), included for reference, is very fast
and has in practice a linear complexity. All CoMMA variants show polynomial
growth of the same order (linear growth and the same slope in the log-log scale).
The largest evaluation set that could be used with EMMA with 16 gigabytes of
memory was 2,000 words. The growth of the computation time is faster than
with CoMMA, potentially exponential. EMMA-2 was very fast for the tested
evaluation sets, but the super-linear trend in the log-log scale indicates expo-
nential growth for it, too. The exponential growth in EMMA and EMMA-2 is an
implementation issue, related to using the integer linear programming for mor-

176

Selecting lexical units

pheme assignment (only in EMMA) and for matching the alternatives (in both).
Using the Hungarian algorithm instead should provide a polynomial growth.

Figure 6.11. Computation times of different evaluation methods with respect to the size of the
evaluation data (100-10,000 words) for English and Finnish. Both the time and the
number of words are shown in logarithmic scale. The evaluated method is Morfessor
Baseline. The computation times of CoMMA-B0 are comparable to B1 and S0 to S1.

Stability. A stable evaluation method should provide similar results for dif-
ferent random samples of evaluation data. In particular, it should not badly
underestimate or overestimate the scores even if the evaluation set is small. In
order to study the stability of the evaluation methods with respect to the size of
the evaluation data, the evaluation scores were calculated for Morfessor Baseline
using random sets of words, their size varying from 100 to 10,000. Figure 6.12
shows the mean and standard deviation for the precision, recall, and F-measure.
The most stable method is, unsurprisingly, BPR. The MC evaluation shows more
variation: for Finnish, all scores are underestimated with small data sets, while
for English, they are first overestimated and then underestimated. EMMA and
EMMA-2 give smaller standard deviations than the other methods, but they
clearly overestimate the scores with small data sets. For CoMMA, the S0 and
B0 variants that exclude isolated words show a similar pattern as the MC eval-
uation, but the changes are smaller especially for the recall in Finnish. Variants
that include isolated words overestimate the scores with small data sets, but in
contrast to EMMA and EMMA-2, the changes seem to get smaller as the size of
the data grows.

6.3.2.7 Conclusions

Table 6.4 shows an indicative overview of the advantages and drawbacks of the
studied evaluation methods. Based on the results, the new evaluation methods
are clearly useful alternatives or replacements for their predecessors.

EMMA-2 maintains the strengths of EMMA—robustness and high correlation
with application evaluations—while having substantially shorter computation
times. The use of soft (many-to-one) assignments instead of the hard (one-to-
one) assignment of EMMA reduces the interpretability of the morpheme assign-
ments, but increases the interpretability of precision and recall. The combination
of robustness and efficiency makes EMMA-2 a strong candidate for any large-
scale experiments and competitions.

CoMMA, especially the CoMMA-S versions, fix the two main problems in the
MC evaluation. First, they remove the need of sampling and are thus more
suitable to use with small evaluation sets. Second, they deal with alternative
analyses in a robust manner. Compared with EMMA and EMMA-2, CoMMA-S

177

Selecting lexical units

Figure 6.12. The mean and standard deviation for precision, recall, and F-score of different eval-
uation methods with respect to the size of the evaluation data (100-10,000 words)
for English and Finnish. The evaluated method is Morfessor Baseline. CoMMA-B0
and CoMMA-B1 are not shown, as they give very similar results to CoMMA-S0 and
CoMMA-S1, respectively.

Table 6.4. Overview of the advantages and drawbacks of the evaluation methods. Two plusses
may be interpreted as an excellent result and two minuses as a serious weakness.
CoMMA-B1 and CoMMA-S1 have slightly better correlations but not as good stabil-
ity as CoMMA-B0 and CoMMA-S0, respectively.

MC CoMMA-B0 CoMMA-S0 EMMA EMMA-2

Correlations + + + ++ ++
Robustness, ambiguity – – – ++ ++ ++
Robustness, padding – – – + +
Time complexity ++ + + – – +
Stability + + + – –
Interpretable Pre and Rec + + + – +
Provides label assignment – – – ++ +

loses in the strength of the correlations with application evaluations, in partic-
ular with balanced F-scores and morphologically rich languages. However, it
can still be recommended for English (and probably other mostly analytic lan-
guages), where it works as well as the assignment-based methods in practically
all aspects. The advantage of CoMMA-S0 over EMMA or EMMA-2 is a better
stability with respect to the size of the evaluation set, which helps comparing
the results from a small development set with those of the final test set.

A part of the evaluation results used in Publication VI are shown in Appendix
A.2. The full result tables are available from http://research.ics.tkk.fi/
events/morphochallenge/.

6.3.3 Psycholinguistic evaluation

Apart from the computational linguistics, the questions of processing morpho-
logically complex words has been considered in cognitive sciences. Psycholin-
guists are intrigued by how we are able to recognize and produce words and

178

Selecting lexical units

how they are stored in our mind in the so-called mental lexicon (Baayen, 2007).
The debate between the proponents of the symbolic models and the connection-
ist models has prevailed also within this topic (see, e.g., Pinker and Ullman,
2002; McClelland and Patterson, 2002; Albright and Hayes, 2003).

One important manner in which psycholinguistics is related to the field of
computational linguistics is that both build models that are experimentally tested
on data sets. However, the models differ in their purposes and the data sets
in their type and size. While psycholinguists use behavioral measures such as
response times and error rates, computational linguists use large amounts of
raw or annotated text. For NLP research, the goal is engineering-oriented: it
is important that the model works in the NLP applications, not whether it can
say anything about language in the human mind. In contrast, psycholinguistic
models should do exactly the latter (cf. Norris, 2005).

While the two lines of research, NLP and cognitive science, have been quite
distinct, there is a clear motivation for bridging the gap. For cognitive scientists,
explicit, machine-implemented models yield quantitative predictions that may
be tested against measured values of performance and brain activation. For
NLP research, psycholinguistic data provide new ways to evaluate the learning
algorithms. As humans evidently are efficient users of their own languages,
psycholinguistic evaluations should be at least as relevant for the development
of the models as the linguistic evaluations are.

Psycholinguistic evaluations can be considered as direct evaluations, although
the external “reference” is not an analysis by linguists but something recorded
from human test subjects. As mentioned in Section 5.3, such evaluations have
been used also for vector space models (e.g., Lund and Burgess, 1996; Jones et al.,
2006).

There are at least three type of psycholinguistic data that have been applied
to evaluate models of morphological processing or learning. The first type of
data comes from the studies of the learning process in child language acquisi-
tion. In the famous work, Rumelhart and McClelland (1986) find a similar stage
of learning observed in human children, where irregular verbs are regularized,
from the learning curves of their neural network model. As in most work of
this type, Rumelhart and McClelland (1986) use supervised learning. Recently,
Lignos et al. (2010b) have used a similar approach for studying their unsuper-
vised model of morphological acquisition. In particular, they consider whether
the order in which different inflectional rules are acquired is similar.

The second type of data comes from how adults generalize the morphologi-
cal processes to novel word-like utterances. For example, Albright and Hayes
(2003) use so called “wug tests”, where new words (e.g., spling) is presented
to test subjects, and they have to either produce or rate suitable inflected tenses
(e.g., splinged or splung).

A third option, considered in Publication VII, is to use the model to predict
quantitative measurements from behavioral studies. As discussed in Section
3.1.7.6, a typical measurement is the processing latency in some task. For exam-
ple, in a lexical decision task, test subjects have to decide as quickly and accu-
rately as possible whether the letter string appearing on the screen is a real word
or not, and to press a corresponding button. The time between the appearance of
the string and the press is an indirect measure of the underlying mental process-
ing. In general, longer reaction times reflect more effortful cognitive processing.

Such reaction time data has been applied to evaluate various types of com-
putational models. For example, Norris (2006) proposes a stochastic model, the

179

Selecting lexical units

Bayesian Reader, that is based on the assumption that human readers behave as
optimal Bayesian decision-makers. The model is shown to explain with a high
accuracy the effects of word frequency and orthographic neighborhood in word
identification, lexical decision, and semantic classification tasks. However, the
model was not intended to explain any other effects, such as those related to
morphology. Moreover, it was tested on fixed-length words only.

As a second example, Lim et al. (2005) study a trie data structure for storing
Korean words. They found that the search times correlated with three prop-
erties of words and non-words (word frequency, word length, and the simi-
larity of non-words to a correct word) in a similar manner as human reaction
times. Although the trie structure has some connections to LSV type of segmen-
tation, their model does not perform any morphological analysis—it just stores
the word strings.

As a third example, Baayen et al. (2011) have reported a large set of experi-
ments using a two-layer neural network model called naive discriminative reader.
It is based on the equilibrium equations of the Rescorla-Wagner model (see, e.g.,
Rescorla, 2007). The model does not try to find morphemes of the words, but di-
rectly ties the orthographic cues to given abstract meaning labels. Baayen et al.
(2011) show that the activations of the correct abstract meanings for a given in-
put correlate with the reaction times in lexical decision. As most of the models
tested for reaction time data, the naive discriminative reader is trained in a su-
pervised manner.

Publication VII presents, to our knowledge, the first attempt to evaluate an un-
supervised model of morphological analysis using reaction time data. As mod-
els, it considers Morfessor Baseline and Categories-MAP (see Section 6.4.1), and
compares their predictions with those of single psycholinguistic factors known
to affect reaction times as well as to the predictions of letter-based n-gram model.

6.3.3.1 Evaluation framework

The experimental setup of Publication VII can be described in three steps: data
recording, model estimation, and model evaluation.

Data recording. The data are human reaction times to individual inflected and
non-inflected Finnish nouns in a lexical decision task, recorded by Lehtonen
et al. (2007). The participants were 16 Finnish-speaking adults. The stimuli in-
cluded 320 real Finnish nouns, extracted from an unpublished Turun Sanomat
newspaper corpus of 22.7 million word tokens by using a search program by
Laine and Virtanen (1996), and the same number of pseudowords. The words
included 80 high-frequency monomorphemic, 80 high-frequency inflected, 80
low-frequency monomorphemic and 80 low-frequency inflected words. The
lengths and bigram frequencies (average frequency of letter bigrams) were sim-
ilar for words and pseudowords. The length of the strings in letters varied be-
tween 4 and 11, with mean 6 and standard deviation 1.2. As preprocessing,
all incorrect responses and reaction times of three standard deviations longer
or shorter than each subject’s mean were excluded. Then a logarithmic func-
tion was applied to the remaining data points and they were normalized to zero
mean for each subject. Finally, the average across the test subjects was calculated
for each word.

Model estimation. The unsupervised models were trained on the Finnish cor-
pus from Morpho Challenge 2007 competition (Kurimo et al., 2008). Because

180

Selecting lexical units

the word frequencies were known to have a large effect on the models (Sec-
tion 6.4.3), three different models were trained for each model type: one trained
on word types, one trained on word tokens, and one trained on word types,
but weighting each type by its frequency dampened by the logarithmic function
f (x) = ln(1 + x).

For comparison, psycholinguistic factors that are known to affect the reaction
times were collected (see Section 3.1.7.6). These factors included word length,
cumulative base frequency, surface frequency, and morphological family size.

Model evaluation. Morfessor and the n-gram models examined here estimate
a probability distribution p(W) over the words. To predict the reaction time
of the word w, the self-information − log p(w) is used. Self-information from a
word-based unigram model corresponds to logarithmic surface frequency of the
word.

The models are evaluated by comparing how well the model output x corre-
lates with the reaction times y obtained from humans. Pearson product-moment
correlation coefficient ρXY ∈ [−1,+1] is used as a measure of the correlation. For
uncorrelated variables ρXY = 0, and high absolute values of ρXY indicate high
predictive power. In addition to calculating the empirical estimate of the corre-
lation coefficient (rXY), the probability of the null hypothesis that X and Y are
uncorrelated (ρX,Y = 0) is estimated by using the z-test on the Fisher transfor-
mation of rXY.

For additional baseline result, the reaction times of individual test subjects
were treated as a model, and thus correlated with those of the rest of the subjects.

6.3.3.2 Results

Table 6.5 shows the statistical models and psycholinguistic factors that had the
highest correlations, all of them statistically significant (p(ρXY = 0) < 0.01).
Among the factors, logarithmic frequencies yielded higher correlations than lin-
ear frequencies, and the highest ones were obtained for the number of mor-
phemes in the word and the surface frequency. Among the models, the n-grams
were best trained with word types, while training with the logarithmic frequen-
cies yielded the highest correlations for Morfessor. The highest correlations were
obtained for the letter 9-gram model trained with word types—increasing the
n-gram length above 9 did not improve the results—and Morfessor Categories-
MAP trained with dampened frequencies. Morfessor Baseline did only slightly
worse. All of them had markedly higher correlations than the maximum corre-
lation obtained for a single test subject to the average reaction times of the others
as well as all individual psycholinguistic factors.

Whereas n-gram models simply estimate how probable the seen letter fre-
quency is, Morfessor estimates a lexicon of sub-word units, morphs, that effi-
ciently encode the observed data. Both model types yield similar correlations,
but the models of Morfessor require fewer parameters (about 178 000 transition
and emission probabilities in Categories-MAP) than the n-gram models (almost
6 million n-gram probabilities).

A scatter plot of the logarithmic reaction times and the log-probabilities given
by the best Morfessor Categories-MAP model is shown in Figure 6.13. Observ-
ing the words that have poor match between the predicted processing cost and
reaction time indicates that some of the unexplained variance is caused by a
training corpus that does not match the material that humans are exposed to.

181

Selecting lexical units

Table 6.5. The correlation coefficients r of different word statistics and models to average human
reaction times estimated in Publication VII. The surface frequency is from the Morpho
Challenge corpus used for training the models, and other statistics are from the Tu-
run Sanomat newspaper corpus. The last row shows correlations between the reaction
times of individual subjects and the average reaction times.

Psycholinguistic factors Logarithmic Linear

Surface frequency −0.535* −0.238
Base frequency −0.445* −0.190
Morphological family size −0.423* −0.292
Length (letters) +0.218* +0.216
Length (morphemes) +0.542* +0.542*

Statistical models Types Log-frequencies Tokens

Letter 1-gram model +0.182* +0.182* +0.180
Letter 3-gram model +0.302 +0.303 +0.307*
Letter 5-gram model +0.539* +0.538 +0.516
Letter 9-gram model +0.695* +0.692 +0.636
Morfessor Baseline +0.661 +0.677* +0.582
Morfessor Categories-MAP +0.662 +0.695* +0.547

Other Minimum Median Maximum

Reaction times of a single subject +0.203 +0.477 +0.568*

For example, words that have faster reaction times than predicted are often very
concrete and related to family, nature, or stories: tyttö (girl), äiti (mother), haamu
(ghost), etanaa (snail + partitive case), norsulla (elephant + adessive case). Sim-
ilarly, words that have slower reaction times than predicted are often more ab-
stract or professional: ohjelma (program), tieto (knowledge), hankkeen (project +
genitive case), käytön (usage + genitive case), hiippa (miter), kapselin (capsule +
genitive case).

A few additional models were trained to study the effect of the training cor-
pus. To study the effect of the corpus size, models were trained on 30 000,
100 000, 300 000 and one million sentence random subsets of the Morpho Chal-
lenge corpus. In addition, models were trained on three smaller corpora that
have different type of material: books (4.4 million words) and periodicals (2.1
million words) from the Finnish Parole corpus8, subtitles of movies (3.0 million
words) from the OpenSubtitles corpus9 (Tiedemann, 2009), and their combina-
tion. Figure 6.14 shows that increasing the number of word types in the corpus
clearly improves the correlation between model predictions and measured reac-
tion times. However, the data from books, periodicals and subtitles usually give
higher correlations than the same amount of the Morpho Challenge data.

6.3.3.3 Discussion

The experiments showed that the probabilistic model of Morfessor Categories-
MAP is able to accurately predict reaction times for Finnish nouns. Moreover,
the results of the experiments indicate that even higher correlations would be
obtained if there were a data set more similar to what human observe in the
course of their life. While such data is hard to obtain, an unsupervised algorithm
makes it also possible to study, for example, acquisition of an artificial language
so that the input is the same for both the learning method and the test subjects.

8 By Department of General Linguistics, University of Helsinki and Research Institute
for the Languages of Finland (gatherers), 1998.
9 Data extracted from http://www.opensubtitles.org/.

182

Selecting lexical units

Figure 6.13. Scatter plot of reaction times and log-probabilities from Morfessor Categories-MAP
(Publication VII). The words are divided into four groups: low-frequency monomor-
phemic (LM), low-frequency inflected (LI), high-frequency monomorphemic (HM),
and high-frequency inflected (HI).

Figure 6.14. The effect of training corpus on correlations of Morfessor Baseline (blue circles),
Categories-MAP (red squares), and logarithmic surface frequencies (black crosses)
found in Publication VII. The dotted lines show the results on subsets of the Morpho
Challenge 2007 corpus. Unconnected points show the results using different types of
corpora (books, periodicals, subtitles, and their combination).

183

Selecting lexical units

Another observation was that a letter-based 9-gram model yielded correla-
tions equally high to those of Morfessor, although with much larger number
of model parameters. As the n-gram models provide very precise estimates on
how probable a certain sequence is in the language, they may be good predictors
especially for early visual processing stages. While the different stages of word
processing cannot be identified from behavioral reaction times, brain activation
measures could provide insight on where the predictive power of the models
stems from.

6.4 MDL-inspired models for learning constructions

This section describes the contributions of Publications VIII, IX, X, and XI. These
four publications are based on Morfessor (Creutz and Lagus, 2002; Creutz, 2003;
Creutz and Lagus, 2004, 2005b,a; Creutz, 2006; Creutz and Lagus, 2007), a fam-
ily of methods for unsupervised morpheme induction. Thus, before going into
the new contributions, an overview of Morfessor is given. The overview and
the mathematical notation used in this section is based on Publications IX and
X, and it is slightly different from the one used in the original Morfessor arti-
cles. In particular, Morfessor is described within a more general framework of
probabilistic generative models for item-and-arrangement (IA) morphology.10

6.4.1 Morfessor

Morfessor is a family of methods for unsupervised learning of morphology de-
signed for agglutinative languages. As a parametric learning method, it can be
characterized by three components: model, cost function, and training and de-
coding algorithms. While all of them depend on the particular version of Mor-
fessor, some basic assumptions are shared across the Morfessor family. Among
the different versions of Morfessor, this section concentrates on the two most
popular: Morfessor Baseline (Creutz and Lagus, 2002, 2005b) and Morfessor
Categories-MAP (Creutz and Lagus, 2005a, 2007).

6.4.1.1 Model

The models of the Morfessor family are generative probabilistic models that pre-
dict words W and their morphological analyses A given model parameters θ.
That is, they define the joint probability distribution p(A, W | θ).11,12 In an item-
and-arrangement type of approach (Section 3.2.3), an analysis can be considered
as a list of morpheme labels: a = (m1, . . . , mn). In the case of Morfessor, the
labels are morphs, non-overlapping segments of the words.

The probability of an analysis a for a given word w is obtained by

p(a |w, θ) =
p(w | a, θ)× p(a | θ)

p(w | θ)
. (6.22)

10 IA and other linguistic models of morphology are discussed in Section 3.2.3.
11 A discriminative model would define only p(A |W, θ), for example by predicting
whether there is a morph boundary between each letter of the word. Such a model
provides analysis for any given word, but is not able to generate new words.
12 However, only some Morfessor versions define the joint distribution p(A, W, θ) that
is required in Bayesian approaches.

184

Selecting lexical units

It is sensible to assume that for fixed parameters θ, a certain analysis a produces
only one word form. This is marked with the detokenization function φ−1(a, θ).
For Morfessor, φ−1(a, θ) is simply the concatenation of the morphs in a. Then

p(a |w, θ) ∝ p(w | a, θ)× p(a | θ)

= I(φ−1(a, θ) = w)× p(a | θ)

= I(m1 . . . mn = w)× p(m1, . . . , mn | θ), (6.23)

and the model is defined simply by the choice of p(m1, . . . , mn | θ) and the pa-
rameter space Θ. In Morfessor Baseline, morphs mi are assumed to be inde-
pendent, whereas in Morfessor Categories-MAP, the probability of m1, . . . , mn is
estimated by a hidden Markov model.

6.4.1.2 Cost function

Morfessor tries to find a single point estimate for the model parameters θ. In
Baseline and Categories-MAP, the cost function is based on the MAP estimate
(Equation 2.49, page 53). However, as the prior probability p(θ) is defined by a
coding scheme inspired by the MDL principle, the cost function is equivalently
that of the two-part MDL (Equation 2.58, page 55).

In the latest formulation of Morfessor (Creutz and Lagus, 2007), the model
parameters θ are divided into a morph lexicon L and grammar G: p(θ) = p(L)×
p(G | L). The lexicon includes the properties of the morphs and the grammar
determines how the morphs can be combined to form words.

The priors of Morfessor assign a higher probability to lexicons that store fewer
morphs, where the morph mi is considered stored if p(mi | θ) > 0. Let the num-
ber of stored morphs—that is, size of the lexicon—be μ. The probability of the
lexicon is then

p(L) = p(μ)× p(properties(m1), . . . , properties(mμ))× μ!, (6.24)

where the factorial term is explained by the fact that there are μ! possible ways
to order a set of μ items and the lexicon is equivalent for different orders of the
same set of morphs. The properties of the morphs are further divided into those
related to form—such as the string representations of the morphs—and usage—
such as their frequencies. The priors for the morph properties and the grammar
depend on the particular version of the model.

The second part of the cost function is likelihood of the training data. The
training data DW consists of word forms—either tokens of a corpus or only dif-
ferent word types. Assuming that the probabilities of the words are indepen-
dent, the likelihood of the data is

p(DW | θ) =
|DW |
∏
j=1

p(W = wj | θ)

=
|DW |
∏
j=1

∑
a

p(W = wj | A = a, θ)p(A = a | θ)

=
|DW |
∏
j=1

∑
m1...mn∈L∗

I(m1 . . . mn = wj)p(m1, . . . , mn | θ). (6.25)

185

Selecting lexical units

6.4.1.3 Training and decoding algorithms

Expectation-Maximization algorithm. In theory, Morfessor type of models can
be trained with the EM algorithm. Given the old parameters θ(t−1), a new esti-
mate of the parameters are obtained by:

θ(t) = arg max
θ

Q(θ, θ(t−1))

= arg min
θ

EY
[
L(θ, DW , Y) | DW , θ(t−1)]

= arg min
θ

∑
Y

p(Y | DW , θ(t−1))L(θ, DW , Y), (6.26)

where Y is a hidden variable that gives the assignments of the words w in the
training data to their possible analyses Φ(w) = {a : φ−1(a) = w}, and the
MAP/MDL cost function is

L(θ, DW , Y) = − log p(θ)− log p(DW |Y, θ)

= − log p(θ)− log
|DW |
∏
j=1

p(yj | θ). (6.27)

There are two problems in this approach. First, in the E-step, taking the expec-
tation over all possible assignments Y in Equation 6.26 is generally infeasible.
However, for some models, Y will yield to a simpler form. For example, if the
morphs are assumed independent, the assignments will be to all substrings in
the training data. For Markov or hidden Markov models, the Baum-Welch algo-
rithm is applicable. The second problem is that there is no closed form solution
to the M-step if the value of the cost function changes discontinuously with the
number of non-zero morph probabilities. Testing all possible morph lexicons is
clearly infeasible.

In consequence, the EM algorithm is straightforward to apply only with maxi-
mum-likelihood cost function and particular model types. For example, Deligne
and Bimbot (1995) use Baum-Welch for their multigram model for word segmen-
tation. Also maximum-likelihood versions of Morfessor, such as Categories-ML
(Creutz and Lagus, 2004), which uses an HMM, can be trained with the Baum-
Welch algorithm (Creutz, 2006, page 57). However, ML estimation requires
heuristics to prevent overfitting. Moreover, maximum-likelihood EM cannot
change the number of morphs stored in the lexicon: If p(mi | θ(t−1)) = 0, any y
that contains mi will have a zero probability. If p(mi | θ(t−1)) > 0, mi is present in
some y, and the maximum-likelihood cost requires that also p(mi | θ(t)) > 0. In
consequence, non-sparse initialization of the parameters is necessary—Deligne
and Bimbot (1995) take all word sequences that have occurred at least four
times—and the parameter vectors will also stay non-sparse.

Viterbi algorithm. A simple approximation to EM is to first take the most
probable analysis φbest(w, θ(t−1)) for each word and then update the parame-
ters to minimize the cost function:

θ(t) = arg min
θ

{
− log p(θ)− log

|DW |
∏
j=1

p
(
φbest(wj, θ(t−1)) | θ

)}
(6.28)

The relation between this approximation and EM is analogous to that of K-
means and EM for Gaussian mixture models (see Sections 2.8.4 and 2.8.5). Using

186

Selecting lexical units

Equation 6.23,

φbest(w, θ) = arg max
a

p(a |w, θ) = arg max
m1,...,mn :

w=m1...mn

p(m1, . . . , mn | θ). (6.29)

The best segmentation can be solved by a generalization of the Viterbi algorithm
for hidden Markov models (Section 2.3.3). Here, the observation is the sequence
of |w| letters that form the word w, and the hidden states are the morphs of the
word. In contrast to the standard Viterbi, one state (morph) can overlap several
observations (letters). This adds to the time complexity of the algorithm by a
factor of |w|. For example, the complexity is O(|w|2) for a zero-order model
and O(|w|2K2) for a first-order model that has K morph categories.

The problem of the Viterbi approach is that the algorithm cannot assign a non-
zero probability to any morph that was not stored in the previous lexicon. As
the morph lexicon can only be reduced, the initialization has a huge impact on
the results.13 However, the Viterbi search of Equation 6.29 is useful also as a tok-
enization (decoding) algorithm. That is, it finds the most likely analyses for new
words after the model parameters have been set in the actual training phase.

Publications VIII, IX, and X introduce an augmented Viterbi algorithm that can
deal with out-of-vocabulary morphs. In the augmented version, the probability
of a morph m that is not in the lexicon is set to

pnew(m | θ) ≈ p(θ̃)p(DW | θ̃)

p(θ)p(DW | θ)
, (6.30)

where p(θ̃) and p(DW | θ̃) are approximated prior and likelihood probabilities in
the case that m is added to the lexicon. For example, if the proper noun matthew
was never observed in the training data, it would likely to be oversegmented by
the standard Viterbi (e.g. m+at+the+w). If pnew(matthew | θ) was higher than
the likelihood of the segmentation, the augmented Viterbi would leave the word
intact.

For a maximum-likelihood cost function, the augmented Viterbi is equivalent
to smoothing of the probability distribution of morphs. The grammar induction
results of Spitkovsky et al. (2010b) indicate that smoothing may help in Viterbi
training. If the augmented Viterbi was applied to train Morfessor, the new
morphs would be added to the lexicon after determining the new tokenization
φbest(wj, θ(t−1)) for all j. However, while being able to introduce new morphs,
it would still be a very conservative algorithm, as it does not take into account
that adding a new morph to the lexicon is likely to increase likelihoods of many
word forms, not just the current wj.

Especially for tokenization, it may sometimes be useful to get the N-best list of
parses instead of the single best parse. For example, Turunen and Kurimo (2011)
found that using the second best segmentation of Morfessor in addition to the
best segmentation improved spoken document retrieval. The N-best decoding
algorithms are rather straightforward extensions of the standard Viterbi (see,
e.g., Soong and Huang, 1991; Seshadri and Sundberg, 1994).

13 Interestingly, Deligne and Bimbot (1995) find that the Viterbi training with a simple
non-sparse initialization provides as good results as the EM algorithm. More recently,
Spitkovsky et al. (2010b, 2011) have compared the Viterbi and EM algorithms for gram-
mar induction and found that both using only Viterbi or alternating between the Viterbi
and EM objectives outperforms using only the EM algorithm.

187

Selecting lexical units

Local optimization algorithms. Because of the problems of the global EM and
Viterbi algorithms, Morfessor instead relies on local, greedy search algorithms.
That is, at each step, changes that modify only a small part of the parameters are
considered, and the change that returns the minimal cost is selected.

Similar to the Viterbi approach, only one potential analysis yj ∈ Φ(wj) is set to
be active at a time. In consequence, a zero probability will be assigned to a large
part of the potential morphs. As they do not have to be stored in the lexicon,
this type of an algorithm is very memory-efficient.

In the simplest case, the local optimization algorithm considers one word wj
at a time. First, the analysis that minimizes the cost function with the optimal
model parameters is selected:

y(t)
j = arg min

yj∈Yj

{
min

θ
L(θ, Y(t−1), DW)

}
. (6.31)

Then the parameters are updated:

θ(t) = arg min
θ

{
L(θ, Y(t), DW)

}
. (6.32)

As neither of the two steps can increase the cost function, the algorithm will
converge to a local optimum. Depending on the particular model, the possi-
ble choices Yj may be restricted to a small number of options. Moreover, the
analysis may be optimized for particular substrings shared by multiple words.

6.4.1.4 Morfessor Baseline

Morfessor Baseline (Creutz and Lagus, 2002, 2005b) is the simplest method of
the Morfessor family that uses a MAP estimate. It assumes that the morphs of a
word occur independently. The cost function is simply

L(θ, DW , Y) = − log p(θ)−
|DW |
∑
j=1

|yj|
∑
i=1

log p(mji | θ). (6.33)

The above likelihood is actually deficient, as it does not encode when a sequence
of morphs is followed by a word boundary. Omitting the word boundaries does
not affect the results in the case that the they are encoded with a fixed number
of bits, as also their number is fixed (|DW |). One way to do this is to predict
the number of morphs in a word from a uniform prior distribution with a fixed
upper limit. However, if the upper limit was a valid parameter of the model, it
would still affect the likelihood.

Morfessor Baseline has no grammar parameters, so that part of the prior is
omitted and p(θ) = p(L). The prior for the lexicon size μ has negligible effect
and can be omitted.14 The properties of the morphs in Equation 6.24 contain
strings σi ∈ Σ∗ (form properties), and counts τi ∈ {1, . . . ν}, where ν = ∑i τi is
the token count of morphs (usage properties). The morph string prior is based
on length distribution p(L)—Creutz (2003) proposes a Gamma distribution—
and categorical distribution p(C) of characters over the character set Σ, both
assumed to be known:

p(σi) = p(L = |σi|)
|σi |
∏
j=1

p(C = σij) (6.34)

14 For a complete code, Creutz and Lagus (2007) propose using Rissanen’s universal
prior for positive integers. Hirsimäki et al. (2006) describe an alternative approach in
which μ is determined during the generation of the lexicon.

188

Selecting lexical units

un+matched match+boxes

match+edun box+es

match ed box es

Figure 6.15. Example of an analysis graph for words unmatched and matchboxes used in Mor-
fessor Baseline.

The character distribution is assumed to be known; in practice, it is estimated
from the training data. An implicit exponential length prior is obtained by re-
moving p(L) and using an end-of-word marker as an additional character in
p(C) (Creutz and Lagus, 2005b). Given μ and ν, a non-informative prior for the
morph counts is

p(τ1, . . . , τμ | μ, ν) = 1/
(

ν − 1
μ − 1

)
. (6.35)

The prior for ν can be omitted for its negligible effect.15 The counts provide ML
estimates for the probabilities of the morphs: p(M = mi | θ) = τi/ν.

The training algorithm of Morfessor Baseline is described by Creutz and La-
gus (2005b). It exploits the assumption that the morphs occur independently.
Thus the optimal analysis of a segment is context-independent. The analyses Y
are stored in a binary directed acyclic graph, in which the top nodes are words
and the leaf nodes are morphs.16 Such a graph is illustrated in Figure 6.15. The
initial parameters are obtained by adding all the words into the morph lexicon
(and thus as root nodes of the graph). In one training epoch, all words are pro-
cessed once in random order. The local optimization step (Equations 6.31–6.32)
modifies the word nodes: for the current node, it considers every possible split
into two morphs, as well as no split. If the node is split, the search is applied re-
cursively to its child nodes. The algorithm stops when the overall cost decrease
of a training epoch is less than a given threshold.

6.4.1.5 Morfessor Categories-MAP

Categories-MAP (Creutz and Lagus, 2005a, 2007) is the latest publicly available
version of Morfessor. It estimates the probability of a morph sequence with an
HMM. The states c include four categories for morphs—prefix (PRE), stem (STM),
suffix (SUF), and non-morpheme (NON)—and a word boundary state (#). Given
the analyses Y, the data likelihood is

p(DW | θ, Y) =
|DW |
∏
j=1

[
p(cj1 | #)

|yj|
∏
i=1

[
p(mji | cji)p(cj(i+1) | cji)

]
p(# | cj|yj|)

]
. (6.36)

15 Most of the Morfessor publications do not mention the prior on the token count ν.
Any non-informative prior would do; Hirsimäki et al. (2006) use Rissanen’s universal
prior.
16 Note that the graph structure is applied only during training. It is not stored by the
model parameters.

189

Selecting lexical units

A few transition probabilities are restricted to zeros: prefixes cannot end a word
(p(# | PRE) = 0) and suffixes cannot start a word or directly follow a prefix
(p(SUF | #) = p(SUF | PRE) = 0). The non-zero transition probabilities are max-
imum-likelihood estimates from the data. The emission probabilities are esti-
mated by

p(mi | ck, θ) =
p(mi | θ)p(ck |mi, θ)

∑
μ
j=1 p(mj | θ)p(ck |mj, θ)

. (6.37)

The category-independent probabilities p(mi | θ) are provided by the morph
counts τi as in Morfessor Baseline. The probability of morph belonging to a par-
ticular category, p(ck |mi, θ), depends on three properties of the morph: length,
right perplexity, and left perplexity. Right perplexity is calculated by

right-perp(mi) =

(
∏

mj∈right-of(mi)

p(mj |mi)

)− 1
τi

, (6.38)

where product is over context morphs mj that immediately follow mi in the seg-
mented corpus. Left perplexity is calculated analogously.17 Then a logistic func-
tion f (x) = (1+ e−a(x−t))−1 is used to obtain measures of prefix-likeness, suffix-
likeness, and stem-likeness from right perplexity, left perplexity, and length, re-
spectively. The function implements graded thresholding, where t controls the
threshold point and a steepness of the function. Finally, the likeness-measures
are used to obtain the probability values for each of the four categories (for de-
tails, see Creutz and Lagus, 2007).

Another feature in Categories-MAP, inspired by de Marcken (1996), is that it
applies a hierarchical lexicon (Creutz and Lagus, 2005a). That is, a morph can
either consist of a string of letters (as in Baseline), or of two submorphs that are
defined elsewhere in the lexicon. The probability of a form is then

p(form(mi)) ={
p(sub)p(ci1 | sub)p(mi1 | ci1)p(ci2 | ci1)p(mi2 | ci2) if mi has substructure
(1 − p(sub))p(|σi|)∏|σi |

j=1 p(σij) otherwise
,

(6.39)

where p(sub) is the probability that a morph has substructure, mi1 and mi2 are
the two submorphs of mi and ci1 and ci2 their categories, respectively. The prob-
abilities p(sub) and p(ci1 | sub) are estimated from the current lexicon, and tran-
sition and emission probabilities are the same as in Equation 6.36.

An advantage of the hierarchical lexicon is that it reduces the cost of storing
a new form if a large part of it is already in the lexicon. For example, consider
storing matchboxes in the lexicon with the correct segmentation if matchbox
is already stored. The cost function would include two more emission prob-
abilities, p(matchbox) and p(es). In contrast, Baseline or Categories-ML, that
do not use a hierarchical lexicon, would add three more emission probabilities
(p(match), p(box), p(es)). If matchbox was not in the lexicon, a strictly hierar-
chical model (i.e., a PCFG or some context-sensitive equivalent) would require
adding it and thus also one more emission probability than a non-hierarchical

17 Note that the perplexity measures applied in Morfessor Categories-MAP are similar
to the measures used in the LSV method by Harris (1955) and Hafer and Weiss (1974).
However, in Morfessor, they affect the segmentation points only indirectly.

190

Selecting lexical units

swings/STM

swing/STM s/SUF

wing/STMs/NON

Figure 6.16. Example of a hierarchical segmentation in Morfessor Categories-MAP. Morphs are
tagged with their most likely categories in the context. Because the first s is tagged
as a non-morpheme, the output analysis is swing/STM + s/SUF.

model, but Categories-MAP is more likely to use the “surface” HMM of Equa-
tion 6.36 to segment matchbox.

The output of Categories-MAP is not the fully segmented form, but the sub-
structures are expanded only up to the level in which there is no morphs of
the non-morpheme category. For example, the stem swing in swings may be
analyzed as having submorphs s and wing, but because s starts the word and
has small length and right perplexity, it is likely to be categorized as a non-
morpheme in this context (Figure 6.16).

Because of the various complex dependencies between the properties of the
morphs (forms, lengths, left and right perplexities, and counts), probabilities of
the HMM, and finally the segmented data, it is not clear how a proper prior
should be designed for the Categories-MAP model. Creutz and Lagus (2007)
use the following scheme: The prior for the grammar is omitted, as it has a fixed
number of parameters (transition probabilities). The lexicon again stores the
form and usage properties of the morphs. The frequency and length priors are
set similarly to Morfessor Baseline, and priors for the left and right perplexities
are taken from Rissanen’s universal prior for integers.

The training of the Categories-MAP model includes several phases (Creutz
and Lagus, 2005a): First, the segmentation is initialized with the Baseline method.
Then the morphs are tagged with the four categories using the emission proba-
bilities. The analyses in Y contain both the segmentation and the categories of
the segments. Three phases are repeated once: (1) local splitting of morphs into
submorphs, (2) local joining of two adjacent morphs either by direct concatena-
tion or by adding a higher level morph that has the focus morphs as submorphs,
and (3) the Viterbi algorithm of Equation 6.28. Finally, the substructures are ex-
panded to the finest level without non-morphemes.

6.4.2 Learning of allomorphy

Most of the work on unsupervised learning of morphology concentrates either
on morphological segmentation or clustering of related word forms (i.e., lemma-
tization). There is much less work on how to train an actual morphological an-
alyzer in an unsupervised manner. From the viewpoint of the IA approach to
morphology, the analyzer has to model the phenomena of allomorphy and syn-
cretism that separate the abstract morphemes from their surface forms, morphs.

The possible sources of information for this task include the context distri-
bution of the morpheme (especially the restriction on complementary distribu-
tions of allomorphs), the context distribution of the word (Schone and Jurafsky,
2001; Baroni et al., 2002), the frequency of the word (Yarowsky and Wicentowski,
2000), and—relevant only for allomorphy—phonetic and orthographic similar-

191

Selecting lexical units

ity.
There are at least two approaches for solving the problem: (1) extending a seg-

mentation based method by clustering related morphs and disambiguating oth-
ers, or (2) extending a clustering based method by identifying inflectional and
derivational affixes that are shared among the clusters. The latter has been stud-
ied by Bernhard (2010b,a). Bernhard’s MorphoNet algorithm first finds transfor-
mation rules, encoded as regular expressions, between orthographically similar
words. Then it constructs a graph where the nodes are words and the edges
are the extracted rules. Groups of related word forms are found by a commu-
nity detection method. Finally, the shortest word within each group is selected
as a lemma, and fixed parts of the transformation rules are mapped to strings
representing affixes.

Extending a method based on segmentation has been a more popular ap-
proach. Already Morfessor Categories-MAP can deal with some cases of syn-
cretism (i.e., if the two morphemes with the same surface form have different
categories). The same applies also to other algorithms that identify suffixes from
stems (e.g. Bernhard, 2008). However, excluding lemmatization (Schone and Ju-
rafsky, 2001; Baroni et al., 2002) and partially supervised learning (Yarowsky and
Wicentowski, 2000; Shalonova et al., 2009), there is very little work on modeling
allomorphic variations of a single morpheme. Two exceptions are Dasgupta and
Ng (2007) and Demberg (2007), who independently extend the segmentation al-
gorithm by Keshava and Pitler (2006). In contrast to the original algorithm, both
extensions allow segmentation to many morphemes per word. In addition, the
former extension detects incorrect analyses using word frequency information,
and learns stem allomorphs using context-sensitive orthographic rules that may
replace, insert, or delete a single letter in a stem. The latter extension removes
the restriction that stems should be valid words in the training lexicon, applies a
probabilistic segmentation by a bigram language model (bootstrapped with the
original segmentation algorithm), and finally identify allomorphs produced by
regular processes such as ablauting and alternations in morpheme boundaries.
However, the modeled alterations are quite specific to German, and not even
tested on other languages.

Most of the previous attempts to learn allomorphy have been limited in their
treatment of agglutinative languages: For example, Yarowsky and Wicentowski
(2000) consider only stem-suffix pairs. Bernhard (2010b) allows multiple suf-
fixes, but only one stem per word. The approach of Dasgupta and Ng (2007) is
more general and allows multiple stems, but cannot find, for example, affixes be-
tween stems. The probabilistic segmentation by Demberg (2007) does not have
any limitations in this regard.

Publication VIII presents a method called Allomorfessor Baseline that attempts
to deal with stem allomorphy within a flexible agglutinative morphology. As
indicated by the name, it belongs to the Morfessor family. In particular, it ex-
tends the Morfessor Baseline method by including a sub-model for allomorphic
variations.

6.4.2.1 A simple model of stem allomorphy

The orthographic changes in the allomorphs of the same stem are often small.
Typically one or two letters are deleted, inserted, or substituted. However, edit
distance is too general a measure for selecting candidates for allomorphs. Espe-
cially for short words, there may be a larger number of valid word forms already

192

Selecting lexical units

Table 6.6. The edit operations of the transformations used in Allomorfessor and some English
and Finnish examples.

Operation Notation∗ Description

substitution kx|y Change kth x to y
deletion -kx Remove kth x
∗k is omitted if one

Source Transformation Target

wife (f|v) wive (e.g. wive+s)
try (y|i) tri (e.g. tri+es)
invite (-e) invit (e.g. invit+ed)
sing (i|a) sang
bring (-g -n i|o) bro (bro+ught)
fight (-t -h -g i|o) fo (fo+ught)
kenkä (shoe) (k|g) kengä (e.g. kengä+ssä, in shoe)
tanko (pole) (k|g) tango (e.g. tango+t, poles)
ranta (shore) (-a t|n) rann (e.g. rann+oi+lla, on shores)
ranta (a|o t|n) ranno (e.g. ranno+i+lla)
ihminen (human) (2n|s) ihmisen (human’s)
ihminen (-n n|s) ihmise (e.g. ihmise+n)

within an edit distance of one. For example, silk has edit distance one to (at
least) ilk, milk, sulk, sink, sick, silo, and silt. Fortunately, the modifications are
typically very regular, so that there is possibility to capture many allomorphs
with the same modification.

Publication VIII attempts to model the orthographic changes with transforma-
tions that consist of short sequences of edit operations.18 Transformations make
minor modifications to the surface forms of the morphemes. The main problem
in this setting is to find a suitable balance for expressiveness of the transforma-
tions. The transformations should be general enough so that similar variations
in different stems can be modeled with the same transformation, but they should
also be restricted so that the number of spurious analyses becomes as small as
possible.

The transformations applied in Publication VIII are presented in Table 6.6.
They consist of a sequence of deletion and substitution operations. Insertions
are not allowed, because they would make it possible to model entire suffixes
via transformations. The operations are applied in order and the current posi-
tion in the string is stored. Each operation modifies the kth target letter in the
left side of the current position. A dynamic programming algorithm similar to
those in normal edit distances can be applied to find the shortest transformation
between two arbitrary strings.

As indicated by the examples in Table 6.6, transformations work well enough
for allomorphic variations caused by many regular inflections, but, for exam-
ple, irregular English verbs cause problems. The ablaut in sing-sang can be
modeled with a single operation. There will not be any morpheme that would
correspond to the past tense, but at least the two stems could be combined. In
contrast, bring-brought cannot be modeled in the same manner, as insertions
are not allowed. It is possible to find a suffix that fits multiple verbs, such as
+ught, but then the transformations are very long and distinct.

To ensure that suffixes would still be correctly segmented and not modified by

18 In Publication VIII, the transformations were called mutations. Here we use the more
standard term.

193

Selecting lexical units

Table 6.7. The proportion of morphs with allomorphic variation and how many variants can be
modeled with the transformations described in Publication VIII for English, Finnish,
and Turkish.

English Finnish Turkish

Morph types 21173 68743 23376
• Is allomorph? 10858 (51%) 56653 (82%) 646 (2.8%)
• Transformation possible? 9812 (82%) 36210 (64%) 102 (16%)

Morph tokens (×103) 76968 73512 23289
• Is allomorph? 42283 (55%) 61583 (84%) 18751 (51%)
• Transformation possible? 14707 (35%) 11978 (30%) 226 (1.9%)

the transformations, the use of transformations was ruled out for morphemes
shorter than four characters and last morphemes of the words regardless of
their length. Publication VIII includes an estimate of how many allomorphs
in linguistic gold standards could be described by the applied transformations.
Table 6.7 shows the estimates for morph types and morph tokens in the training
data. For example, the English gold standard has 21 thousand morphs, of which
about 11 thousand have other allomorphic variants. Of these, 9800 (85%) could
be transformed to the canonical form of the morph, lemma.19 The training cor-
pus had 77 million morph tokens, 55% of them had other allomorphs, and 35%
of the allomorphs could be transformed to the lemma. Allomorphy is even more
prevalent in Finnish. In Turkish, the number of morph types that have other al-
lomorphs is much lower, but they are still frequent in the corpus. Most of them
are likely to be suffixes and thus outside the scope of the transformations used
here.

6.4.2.2 Allomorfessor Baseline

In Allomorfessor, an analysis a of a word is no longer a simple list of morphs.
Instead, it is a list of pairs of morphemes mi and transformations di:

a =
(
(d1, m1), . . . , (dn, mn)

)
. (6.40)

Each transformation di is applied to the string representation of the previous
morpheme to obtain the corresponding surface form si−1: di(σi−1) = si−1. Any
of the transformations can be empty, so that dε(σ) = σ. The first transformation
d1 as well as the (non-existing) morpheme before it are always empty. Thus the
detokenization function is

φ−1(a, θ) = d1(ε)d2(σ1)d3(σ2) . . . dn(σn−1)σn. (6.41)

For example, if w = wives, a possible analysis is a =
(
(ε, wife), (d(f|v), s)

)
and

φ−1(a, θ) = dε(ε)d(f|v)(wife)s = wives.
The above notation, which groups the transformations and morphemes to-

gether into pairs (di, mi), indicates the independence assumptions of the model.
Theoretically, the probability of di should depend on the morpheme mi−1 that it
is applied to: if they are independent, the model can generate invalid combina-
tions of morphemes and transformations (e.g., d(-e) for a morpheme that does
not have letter e). However, the probability of di should also depend on the

19 The most frequent allomorph that occurred alone as a word was selected as the
lemma. If none did, the morph was considered as a suffix or prefix and skipped.

194

Selecting lexical units

following suffix mi, as adding the suffix is exactly what triggers the transforma-
tion. For example, d(f|v) should be applied to wife only if the next morpheme is
the plural suffix. Moreover, p(di, mi) is often easier to estimate than p(di, mi−1)

because of the higher frequency of suffixes.
Making both of the pairs (di, mi) and (di, mi−1) dependent would give a first-

order Markov model even if morphemes were assumed to be independent given
di. Because of the increased computational burden of finding the transforma-
tions, Allomorfessor Baseline keeps the independence assumption of Morfessor
Baseline. That is, each pair (di, mi) is assumed to be independent, but di depends
on mi. The conditional likelihood is then

p(DW |Y, θ) =
|DW |
∏
j=1

|yj|
∏
i=1

p(mji)p(dji |mji). (6.42)

While allowed by the probabilities, a transformation incompatible with the pre-
vious morpheme is never selected during the training or when new analyses or
words are generated.

6.4.2.3 Model prior

The prior of Allomorfessor Baseline is otherwise similar to Morfessor Baseline,
but the set of transformations is added to the grammar G. Similarly to the mor-
pheme lexicons,

p(G | L) = p(ξ | L)× p(properties(d1) . . . properties(dξ) | L)× ξ!, (6.43)

where ξ is the number of distinct transformations, including the empty transfor-
mation d1 = dε. Usage properties of the transformations include the frequencies
of the transformations (υi) and their co-occurrences with the suffix morphs (ωij),
and form properties of the transformations encode their edit operations.

Assuming that each morpheme has at least one co-occurrence with the empty
transformation, the count υ1 of the empty transformation is at most ν (mor-
pheme tokens) and at least μ (morpheme types). Sampling from a uniform dis-
tribution gives

p(υ1 | μ, ν) =
1

ν − μ + 1
. (6.44)

There are as many transformation tokens as there are morph tokens in the data,
so the other ξ − 1 transformations have ν − υ1 occurrences in total. A non-
informative prior similar to Equation 6.35 is then

p(υ2, . . . , υξ | μ, ν, υ1) = 1/
(

ν − υ1 − 1
μ − 2

)
. (6.45)

Next, there are priors for the co-occurrence counts ωij of transformations di
and morphemes mj. The co-occurrences form a ξ × μ sparse matrix Ω. As

∑ξ
i=1 ωij = τj, co-occurrence counts can be determined for one of the transfor-

mations given all the rest. A good choice for this is the empty transformation,
because it is likely to have the largest number of occurrences. For each non-
empty transformation di, the υi occurrences has to be divided into μ possible
morphemes. A non-informative prior is

p(Ω | μ, ν, υ1 . . . υξ) =
ξ

∏
i=2

[(
υi + μ − 1

μ − 1

)]−1

. (6.46)

195

Selecting lexical units

(dε, un) + (dε, invited)

(dε, invite) + (d(-e), ed)(dε, un)

(dε, invite) (d(-e), ed)

Figure 6.17. Example of an analysis graph for uninvited for Allomorfessor Baseline.

Finally, there is a prior for the forms of the transformations. The forms are
assumed to be independent. Let oi = (oi1, . . . oin) be the operations in di. Each
operation oij includes the position indicator k, type of the operation, and 1–2
letters from the alphabet Σ (depending on the operation type). The prior is set
to:

p(oi) = p(|oi|)
|oi |
∏
j=1

p(oij) (6.47)

p(oij) =

{
p(kij)p(del) 1

|Σ| if oij is a deletion
p(kij)(1 − p(del)) 1

|Σ|2 if oij is a substitution.
(6.48)

The probabilities p(|oi|) and p(kij) can be taken from any suitable distribution
that prefers small values; Gamma distributions with scale and shape parameters
equal to one are used in Publication VIII. The probabilities of the two operations
are set to be equal (p(del) = 0.5).

6.4.2.4 Training algorithm

Also the training algorithm of Allomorfessor is a direct extension of the Mor-
fessor Baseline. A similar analysis graph, illustrated in Figure 6.17, is applied
during the training. The only difference is that if a segment w is split, both
parts include a transformation. The transformation of the left segment is always
empty, while the transformation of the right segment may be non-empty. The
first (left-most) transformation of a child node is inherited from its parent node.

Partial pseudocode for the training algorithm is shown in Figure 6.18. OPTI-
MIZESINGLE implements the standard local training of Morfessor Baseline, with
the exception that analyses with non-empty transformations are included if the
length of the current strings is at least four (line 4). In one training epoch, it is
run once for each word form in the training data. As the potential number of
analyses may be very large, the algorithm actually tests at most K = 50 options
(line 6). The K first options always include no split and splits with empty trans-
formations (if n ≤ K). GETALLOMORPHANALYSES shows some more heuristic
restrictions for the search. The suffix s can be at most five letters long, and it has
to already exist in the lexicon (line 8). At line 9, candidate lemmas are selected
from the training data. The first n− d letters of the surface form w and candidate
lemma v has to be equal; for short words, d = 3, and for longer words, d = 4.
Moreover, the candidate lemma can be at most two letters longer than the sur-
face form. GETSHORTESTTRANSFORMATION at line 10 returns the shortest list
of operations that transform the first argument to the second argument.

196

Selecting lexical units

OPTIMIZESINGLE(wj)
1 n ← |wj|
2 A ← [(wj, dε, ε)] + [(wj(1...i), dε, wj((i+1)...n)) : i ∈ (1, . . . , n − 1)]
3 if n ≥ 4
4 A ← A + GETALLOMORPHANALYSES(wj)
5 bestcost ← ∞
6 for k ∈ (1, . . . , min(K, |A|)) do
7 yj ← ak

8 θ ← arg minθ∗ L(θ∗, Y, DW)
9 cost ← L(θ, Y, DW)

10 if cost < bestcost
11 bestcost ← cost
12 k∗ ← k
13 yj ← ak∗

14 θ ← arg minθ∗ L(θ∗, Y, DW)
15 if yj involves a split
16 OPTIMIZESINGLE(left morpheme of yj)

17 OPTIMIZESINGLE(right morpheme of yj)

GETALLOMORPHANALYSES(wj)
1 n ← |wj|
2 d ← 3
3 if n ≥ 6
4 d ← 4
5 A ← []
6 for i ∈ (1, . . . , n − 1) do
7 s ← wj((i+1)...n)
8 if |s| ≤ 5 ∧ s ∈ L
9 for vj ∈ {v ∈ DW : i ≤ |v| ≤ i + 2 ∧ v1...(n−d) = wj(1...(n−d))} do

10 A ← A + [(vj, GETSHORTESTTRANSFORMATION(vj, wj(1...i)), s)]
11 Sort A by ascending suffix length |s| and descending lemma length |vj|
12 return A

Figure 6.18. Local search algorithm for Allomorfessor. A is a list of possible analyses and + in-
dicates list concatenation. Each analysis is stored as a triple consisting of a prefix
morpheme, a transformation, and a suffix morpheme. The second subscripts of wj
indicate substrings. Empty morphemes and transformations are denoted by ε and dε,
respectively. DW is the training data, θ = (L,G) model parameters, and Y contains
the current analyses of the word segments.

Let the number of word forms in the training data be W. For each w ∈ DW ,
there can be at most 2|w| recursions of OPTIMIZESINGLE, but assuming the
word lengths are bounded, that can be considered a constant. Assuming that the
words are sorted (in O(W log W) time), finding candidate lemmas that match the
first letters of w can be done with range search (time complexity O(log W)). The
complexity of finding the shortest transformation is again limited by the maxi-
mum word length. Thus, as the number of analyses is limited to K, one epoch
of the algorithm has a time complexity of O(KW log W).

Also the Viterbi algorithm is slightly more complicated for Allomorfessor. The
states are morphemes, and the observed sequence of |w| letters are emitted
via the transformations of the morphemes. The worst case time complexity is
O(μξ|w|2) for μ morphemes and ξ transformations. In practice, however, the
numbers of morphemes and transformations that have to be considered in a
certain step are much more limited.

197

Selecting lexical units

6.4.2.5 Experiments

In Publication VIII, Allomorfessor Baseline was evaluated in the Morpho Chal-
lenge 2009 competition (Kurimo et al., 2010c). Morpho Challenge 2009 included
three types of evaluations: (1) direct comparison to a linguistic gold standard
analysis for Arabic, English, Finnish, German, and Turkish, (2) indirect eval-
uation in information retrieval tasks for English, Finnish, and German, and
(3) indirect evaluation in a machine translation task for Finnish and German.
Compared with other algorithms evaluated in the Challenge, Allomorfessor per-
formed fairly well, winning the linguistic evaluation for English and both ma-
chine translation evaluations. However, it is more revealing to compare it with
other versions of Morfessor, especially to Morfessor Baseline.

A further complication is that Allomorfessor was trained on data sets for which
all word forms that occurred only once were discarded. While this was origi-
nally done just to speed up the training, it was quickly noticed that removing
the singletons improved the results of the linguistic evaluations considerably.
(The reasons for this are discussed in Section 6.4.3 and Publication IX.) In or-
der to make a fair comparison, also Morfessor Baseline was trained on the same
data set. After training, the augmented Viterbi algorithm (Section 6.4.1.3) was
applied to obtain analyses for all words in the data sets.

The results of Morfessor and Allomorfessor for English, Finnish, German, and
Turkish are compared in Table 6.8.20 The linguistic evaluation of Morpho Chal-
lenges (called the MC evaluation) estimates precision and recall of the result by
sampling pairs of words that share the same morphemes (see Section 6.3.2.3). In
theory, finding the allomorphs should improve recall of the evaluation. How-
ever, Table 6.8 shows improved recall only for English. In contrast, recall is
decreased for Finnish, German, and Turkish, and precision is increased for all
languages. In the IR evaluation, there is no statistically significant difference
between the mean average precisions of Morfessor and Allomorfessor.

Table 6.8. Comparison of Morfessor Baseline (Morf.) and Allomorfessor Baseline (Allom.) in
Morpho Challenge 2009 evaluations. Precision (Pre), recall (Rec), and F-measure (F) are
for linguistic MC evaluation and mean average precision (MAP) for IR evaluation. The
superscripts + and − indicate statistically significant increase or decrease, respectively.
The differences of the IR results are not statistically significant. The last three rows
give the number of morpheme tokens, morpheme types, and the average number of
morphemes in an analysis a.

English Finnish German Turkish
Morf. / Allom. Morf. / Allom. Morf. / Allom. Morf. / Allom.

Pre (%) 68.43 / 68.98+ 86.07 / 86.51+ 76.47 / 77.78+ 85.43 / 85.89+

Rec (%) 56.19 / 56.82+ 20.33 / 19.96− 30.49 / 28.83− 20.03 / 19.53−
F (%) 61.71 / 62.31+ 32.88 / 32.44− 43.60 / 42.07− 32.45 / 31.82−
MAP (%) 38.73 / 38.52 44.75 / 46.01 47.28 / 43.88 -

Types 23673 / 23741 69638 / 70228 43324 / 43609 29178 / 29193
Tokens (×106) 1.001 / 0.997 5.519 / 5.423 3.386 / 3.327 1.488 / 1.460
Mean |a| 2.60 / 2.59 2.50 / 2.46 2.67 / 2.63 2.41 / 2.37

The slight increase in precision and decrease of recall in most languages is ex-
plained by the fact that Allomorfessor uses somewhat larger lexicons and less
morphemes per word than Morfessor does (see last rows in Table 6.8). Thus Al-

20 The Arabic results are omitted here, because the evaluation method proved to be
problematic for the Arabic reference analysis: none of the algorithms submitted to the
Challenge could outperform splitting to individual letters (Kurimo et al., 2010c).

198

Selecting lexical units

lomorfessor seems to have a different optimum in the trade-off between prior
and likelihood with respect to these numbers. On one hand, both increasing the
morpheme type count μ and the token count ν increase the cost − log p(θ) more
in Allomorfessor than in Morfessor (given that non-empty transformation are
included), and it is not evident which has a larger effect. On the other hand, at
least the data cost − log p(Dw | θ) will often be larger in Allomorfessor because
of the new probabilities p(di|mi). Adding the dependency between mi and di+1

should reduce the difference, but at the expense of making the likelihood calcu-
lations less trivial.

The number of the transformations used by the model are shown in Table 6.9.
For English, Finnish, and Turkish, they can be compared with the approximate
upper bound from the gold standard analyses. For English and Finnish, the
actual usage is only one hundredth of what might be possible. For Turkish, the
usage is closer to what would be achievable in theory, but also the upper bound
is much lower.

Table 6.9. The number of non-empty transformations in Viterbi analysis of the full training data.
Transformation usage is the number of non-empty transformation tokens divided by
the number of morpheme tokens. Gold standard usage is the equivalent proportion
from the linguistic gold standard when transformations are applied whenever possible.
For Arabic, “v” indicates vowelized script.

Language Arabic Arabic (v) English Finnish German Turkish

Transformation types 0 69 15 66 26 55
Transformation usage 0.0% 4.61% 0.18% 0.44% 0.17% 0.12%
Gold standard usage n/a n/a 21.15% 31.06% n/a 0.86%

Interestingly, for Arabic, Allomorfessor applied no transformations for the
standard non-vowelized script, but quite many for the vowelized script. It
seems that the model started encoding some of the vowel patters of Arabic using
the transformations. In any case, this demonstrates how the method can select
the encoding that gives the most compact representations without any supervi-
sion.

The quality of the analyses with transformations was studied manually. Tables
A.11 and A.12 (pages 232–233) in Appendices show the most frequently applied
transformations for English and Finnish. Many of the frequent transformations
make sense from a linguistic viewpoint. Especially for Finnish words, the se-
lected lemma of the stem is often something else than the linguistically moti-
vated lemma, but this is only a minor problem: the labels are arbitrary in any
case. For English, transformations are frequently used to fix misspelled word
forms or modify proper names. While this outcome was not intended, it is still
likely to be useful in practice.

Overall, the main reason that Allomorfessor outperformed Morfessor Baseline
only for English seems to be that the undersegmentation of many word forms
made it unnecessary to use transformations: if a stem and the following suffix
are stored as a whole by the model, there is no need to transform the stem.
Comparing the balance between precision and recall in Table 6.8, the precision
and recall are indeed closest to each other for the English data, indicating that
the words are least undersegmented for English.

199

Selecting lexical units

6.4.3 The effect of corpus size and word frequencies

As defined at the beginning of Section 6.4, probabilistic generative models of
morphology define a joint distribution for the words and their analyses. Regard-
less of whether model selection and parameter estimation are based on maxi-
mum likelihood, maximum a posteriori, the MDL principle, or a full Bayesian
approach, one has to define the likelihood of the training data. Then a funda-
mental question is what the training data should be: a set of words in the train-
ing corpus (i.e., observed word types), the corpus itself (observed word tokens),
the set of possible words in the language (as suggested by Hammarström, 2006),
or something else?

In practice, of course, there is no way to describe all possible words in a lan-
guage, and training has to be based on a corpus of a limited size and quality.
Then the questions include how to deal with the word frequency information,
what is the effect of the corpus size, and finally, what is the effect of those words
in the corpus that are not correct words of the language. Especially for methods
that use an MDL-style prior and look for the optimal balance between the prior
and the likelihood, the size and type of the training data has a drastic effect on
the results.

6.4.3.1 Types and tokens

Creutz and Lagus (2004, 2005b, 2007) have observed that for Morfessor Base-
line, training on word types provided large improvement in performance over
word tokens, when evaluating against a linguistic gold standard segmentation.
A similar effect has been observed at least for the Bayesian two-stage models of
Goldwater et al. (2006, 2011) and for the log-linear model by Poon et al. (2009).

The two-stage models (see Section 2.7.4) provide further insight into the ques-
tion. Using a Pitman-Yor process adaptor, the discount parameter d actually
controls the effect of word frequencies: d = 0 uses a type-based distribution,
whereas d = 1 uses a token-based distribution. Using a simple stem-and-suffix
model, Goldwater et al. (2006, 2011) get the best experimental results for mor-
phological segmentation when 0 ≤ d ≤ 0.7. If the parameter is increased to
emphasize frequent words more than that, the model starts to undersegment.

Another approach that provides something between between word types and
tokens is to collect the word frequencies over a set of unique fragments of lan-
guage longer than a word, but shorter than the full corpus. For example, training
on unique phrases means that the common words will have more weight, but
not as much as their direct corpus frequency would indicate. In particular, this
kind of approach has been applied by Snyder and Barzilay (2008b), who train a
bilingual morphological model on aligned phrases that consist up to 4–6 words.
However, they did not study the effect of the frequencies.

6.4.3.2 Size of the training data

Creutz and Lagus (2005b, 2007) have tested the various Morfessor models with
different sizes of the training data. Especially for the Baseline models, increase
of the data drastically improves precision but degrades recall. If the precision
was better to start with, balanced F-measure will degrade. Thus, in contrast to
intuition, increasing the amount of training data will degrade the results.

In Morfessor Categories-MAP, the hierarchical lexicon alleviates the problem

200

Selecting lexical units

partially, but does not eliminate it. For example, Figure 8 by Creutz and Lagus
(2007) shows that the recall of Categories-MAP clearly decreased for English
when the training data is increased from 250 000 words to 1.2 million words. Of
course, a substantial increase in corpus size may also add a large number of for-
eign words and misspelled words, and thus impede the task. Creutz and Lagus
(2007) note an increase of the patterns that do not belong to contemporary En-
glish morphology with the 1.2 million word data. However, if the problem with
the very large data sets is the number of non-standard word forms, it should cer-
tainly be better to prune all low-frequency words from training than to restrict
the amount of data.

6.4.3.3 Experiments with weighted log-likelihood

Publication IX presents new experimental results for the effect of word frequen-
cies in probabilistic generative models of morphology. It considers the following
questions: If the goal is to get a segmentation as similar to the linguistic gold
standard as possible, (1) should the model be trained on word types, word to-
kens, or something in between? (2) is it useful to exclude very low-frequency
words from the training data?

In order to study these questions, a simple, deterministic function is applied
to the word counts. First, note that if the training corpus has |DW | word types
wj with their respective counts cj, the logarithm of the corpus likelihood is

log p(DW |Y, θ) =
|DW |
∏
j=1

cj log p(yj | θ). (6.49)

This can be changed to a type-based likelihood simply by setting cj = 1 for all j.
More generally, a weighted log-likelihood

log p(DW |Y, θ) =
|DW |
∑
j=1

f (cj) log p(yj | θ) (6.50)

makes it easy to test various settings with different functions f : Z+ �→ R+ ∪
{0}. This can be done as preprocessing for most existing algorithms. In Publica-
tion IX, the following family of functions is considered:

f (x) =
{

0 if x < T
αg(x) otherwise

(6.51)

Standard type-based training is given by α = 1 and constant function g(x) = 1,
and token-based learning by α = 1 and linear function g(x) = x. An interme-
diate approach is to use a logarithmic function g(x) = ln(1 + x). Note that this
corresponds to the logarithmic term frequency component in vector space mod-
els (Section 5.1.1). The frequency threshold T can be used to exclude rare word
forms. The parameter α can be taken outside the sum and considered as a global
weight for the likelihood. In Section 4.5, a similar weight was used to modify
the balance between the size and the accuracy of the proposed context-cluster
language model. Here, it modifies the amount of segmentation: When α → ∞,
it reduces the effect of the prior until the cost function is based only on the like-
lihood, and the highest likelihood is obtained for a word lexicon. When α → 0,
only the prior affects the cost function, and the highest prior is obtained for a
character lexicon.

201

Selecting lexical units

The free parameters of f (·) can be optimized for a given development data
set and a target measure. As this discriminative learning may result in models
that overfit the development data, the final results have to be calculated for a
separate test set.

In Publication IX, the effect of the word frequency weighting was tested for
two languages, English and Finnish. The training sets, evaluation metric, and
test sets were taken from Morpho Challenge 2009 (Kurimo et al., 2010c). The
development data sets consisted of 2,000 word forms in English and 10,000 word
forms in Finnish, selected randomly from the unannotated training set. To avoid
extensive amounts of computation time, the parameters T and α were varied
within manually selected ranges. Still, dozens of models had to be trained for
each function type. Thus the quickest available algorithm, Morfessor Baseline,
was applied in the experiments.

Prior to finding the optimal T and α for each function type, the effect of keep-
ing another at one and varying the other was studied. The results on the devel-
opment set scores are shown in Figure 6.19. Regardless of the function type and
language, precision was much higher than recall for the default values T = 1
and α = 1, and either increasing T or decreasing α balances the situation. How-
ever, increasing the threshold T was a poor option both with linear counts and
logarithmic counts: it degraded precision without improving recall. For En-
glish, the linear function seemed inferior to constant and logarithmic functions
also with a decreased α.

The final test set results for optimized α and T are shown in Table 6.10. Set-
ting a frequency threshold was useful only for the English data with types or
logarithmic counts. For Finnish, precision and recall were balanced by only by
decreasing the weight parameter. As some of the differences between precision
and recall are still quite high, the optimizations succeeded only approximately.
For English, the logarithmic function yielded the highest F-measure, but the dif-
ference to the constant function was not statistically significant. For Finnish, all
optimized F-measures were very close to each other, but the differences were
statistically significant, and constant function provided the best result.

Table 6.10. The precision, recall and F-measure of Morfessor Baseline on the final test set with dif-
ferent weighted log-likelihoods. In optimized cases, T and α were selected according
to the best F-measure for the development set. In the default case, both are one.

Constant f (·) Log. f (·) Linear f (·)
default optimized default optimized default optimized

En
gl

is
h

T 1 10 1 20 1 1
α 1 1.1 1 0.2 1 0.01

Pre 76.13 62.04 87.76 57.85 84.93 53.96
Rec 48.97 62.27 31.77 67.62 12.00 56.42

F 59.60 62.16∗ 46.65 62.35∗ 21.03 55.16

Fi
nn

is
h

T 1 1 1 1 1 1
α 1 0.01 1 0.01 1 0.001

Pre 89.50 53.77 91.24 57.87 91.82 48.86
Rec 15.70 45.16 11.95 42.06 6.75 47.37

F 26.72 49.09∗ 21.13 48.72 12.57 48.10

202

Selecting lexical units

(a) English

(b) Finnish

Figure 6.19. The precision and recall scores of Morfessor Baseline on the development set with
constant (const), logarithmic (log), and linear frequency function types and varying
function parameter α or T (Publication IX).

6.4.3.4 Discussion

Overall, the experiments of Publication IX confirmed that if the goal is to get
results close to the linguistic gold standard, using word types as training data
is usually the best choice. However, because using the logarithmic frequency
yielded as good or almost as good results, it should not be ruled out, either.
Moreover, the effect has not yet been studied for indirect evaluations. It may
well be useful to leave many frequent words undersegmented in, for example,
the machine translation task. Later, in Section 6.3.3, it is shown that both Mor-
fessor Baseline and Categories-MAP yield better results in a psycholinguistic
prediction task when trained with logarithmically weighted counts.

Whether the words should be pruned using a frequency threshold seems to

203

Selecting lexical units

depend, unsurprisingly, on the training data. Especially if the frequencies are
also used to weight the likelihood, thresholding should be tested with caution.
In any case, it is likely to be a better option than limiting the amount of training
data.

The effect of the training data can also be considered from the theoretical point
of view. Let us consider the case that the model is trained on a corpus. Goldwa-
ter (2006, Sec. 4.3) argues that for any segmentation model in which (a) there
exists a solution with no boundaries that matches the empirical distribution
in the corpus exactly, and (b) independence assumptions cause an imperfect
match between the empirical distribution and any solution containing bound-
aries, the maximum-likelihood solution corresponds to the empirical word dis-
tribution (i.e, θML applies a unigram distribution of words). While this would
hold true for Morfessor Baseline in theory, it actually does not hold true for the
current implementation because of the deficiency of the likelihood function (see
Sec. 6.4.1.4, p. 188).21 However, the experimental results still indicate that word
lexicon is often close to the ML parameters even with the deficient likelihood
function. Morfessor Categories-MAP does not make as crude independence as-
sumptions as Baseline, but there are certainly more dependencies between the
morphs than modeled by its four-state HMM, so the ML parameters are again
likely to be close to those of the word unigram model.

If the maximum-likelihood parameters would match a word lexicon, how does
the prior of the model affect this? The concept of universal coding from Sec-
tion 2.6.8 provides some answers. If the coding is universal, the regret (dif-
ference to the ML parameters for the current data) increases sublinearly in the
number of training samples n = |DW |. Then the effect of the prior will di-
minish and the optimal parameters approach θ̂ML(DW) as n approaches infinity.
Whether the Morfessor priors have this property is not evident. However, for
Morfessor (and Allomorfessor) Baseline, it is easy enough to show that the de-
scription length of the model increases sublinearly with the morph token count
ν and linearly with the morph type count μ. The token count, in turn, grows lin-
early with the number of training samples n. Thus, at least if the training data
contains a finite number of word forms so that new morphs will not emerge,
the ML parameters will be reached as n grows. The situation is less clear if the
training data contains only word types.

6.4.4 Semi-supervised learning of morphology

If the goal of unit selection is to improve the performance of NLP applications
or help linguists in language documentation, a relevant question is how much
linguistic supervision can improve the unsupervised methods. In the case of
morphology, small amounts of annotated data may be relatively easy to obtain.
For example, morphological segmentation of an agglutinative language does
not require much linguistic expertise, only a well-educated native speaker.

Moreover, as noted by Hammarström and Borin (2011), most of the so-called
unsupervised methods for learning morphology actually use at least few thresh-
olds and parameters set by humans. Even in a method as simple as Morfessor
Baseline, one has to define at least the parameters of the morph length prior. As

21 This is easy to see from a trivial training data such as DW = (a, b, c, ab). With-
out segmentation, − log2(DW | θ) = −4 log2(1/4) = 8 bits. Segmenting ab will give
− log2(DW | θ) = −4 log2(2/5)− log2(1/5) ≈ 7.61 bits.

204

Selecting lexical units

it is difficult to avoid biases toward certain kinds of languages and analyses, it
should in many cases be preferable to base the thresholds and parameters on
annotated data.

While there are some work for partially supervised learning (Yarowsky and
Wicentowski, 2000; Shalonova et al., 2009), actual semi-supervised learning of
morphology has been considered in surprisingly few studies. Two recent ex-
ceptions are Snyder and Barzilay (2008a) and Poon et al. (2009). However, they
use a small corpus of 6,139 short phrases, and significant proportions (at least
25%) of it is annotated in the semi-supervised task. This contrasts with the very
common setting, in which there are plenty of unannotated data and only a tiny
annotated corpus.

Semi-supervised learning is more common in other sequential labeling tasks,
such as word segmentation, POS tagging, shallow parsing, and named-entity
recognition. Especially word segmentation is very similar to morphological seg-
mentation. However, the annotated data sets in popular tasks such as Chinese
word segmentation are large, and unannotated data is used just as an additional
source of information. For example, Li and McCallum (2005) use an unanno-
tated corpus to obtain clusters of words, which are then used as features for a
supervised classifier.

Publication X is the first systematic study of a semi-supervised setting where
only a small annotated data set is available. It applies a semi-supervised exten-
sion of Morfessor Baseline and evaluates it against a linguistic gold standard
analysis using data from Morpho Challenge 2009. With annotated segmenta-
tions for one thousand word forms, the algorithm outperforms practically all
unsupervised algorithms tested in Morpho Challenges for English and Finnish.
Later, a similar semi-supervised evaluation setting was added to Morpho Chal-
lenge 2010 (Kurimo et al., 2010b).

6.4.4.1 Semi-supervised Morfessor

In a semi-supervised setup, there are two training data sets. As before, the unan-
notated data will be denoted DW . The annotated data will be denoted DW �→A,
as it provides analyses for the word forms in the sets. A slight complication is
that DW �→A may include alternative analyses for some of the words. The known
analyses for word wj will be denoted as A(wj) = {aj1, . . . , ajk}.

Considering the training algorithm of Morfessor Baseline, a straightforward
extension to semi-supervised learning is to fix the analyses Y for the annotated
word forms. Assuming the training samples are independent, and giving equal
weight for each alternative analysis, the likelihood of the annotated data would
be

p(DW �→A | θ) =
|DW �→A|

∏
j=1

∏
ajk∈A(wj)

|ajk |
∏
i=1

p(mjki | θ). (6.52)

However, the training algorithm assumes that the analyses of the words are
fixed to a single choice when calculating the likelihood. Then the product over
alternative analyses in A(wj) is problematic, because some of them might get
a zero probability. A sum over A(wj) would avoid this problem, but then the
logarithm of the likelihood function becomes non-trivial (i.e., logarithm of sum
of products) and slow to calculate during the training.

A feasible solution is to use the hidden variable Y to select only one analysis

205

Selecting lexical units

among A(wj) for each sample in the annotated data. The cost function is then

L(θ, Y, DW , DW �→A) = − log p(θ)− log p(DW |Y, θ)− log p(DW �→A |Y, θ),
(6.53)

and the likelihoods are defined as in the unsupervised case. Because the local
search algorithm assumes that a substring is segmented in the same way inde-
pendent of its context, some morphs in the annotated data may still get a zero
probability. In practice, zero probabilities in the likelihood can be treated as large
but finite costs.

The above algorithm is simple to implement and it does not add any compu-
tational costs compared with the unsupervised algorithm. However, if DW �→A
is small, it will have little effect on the results: a larger DW and the prior of
the model will dominate the outcome. For example, with unannotated data of
2.2 million Finnish word types, 10,000 annotated word types had practically no
effect to the segmentation results.

Given the discussion in Section 6.4.3, the solution should be clear enough: use
weight parameters to modify the balance of the likelihoods and the prior. The
weighted likelihood is

L(θ, Y, DW , DW �→A) =

− log p(θ)− α log p(DW |Y, θ)− β log p(DW �→A |Y, θ), (6.54)

where α controls the effect of the unannotated data and β the effect of the an-
notated data. Another parametrization would be α = α̂(1 − β̂) and β = α̂β̂, in
which α̂ > 0 controls the amount of segmentation and 0 ≤ β̂ ≤ 1 the balance be-
tween annotated and unannotated data. Regardless of the parametrization, the
weights have to be optimized on a separate held-out set, adding another layer
of supervision.

A similar weighting approach has been used, for example, by Nigam et al.
(2000) for semi-supervised text classification. They call the modified algorithm
as EM-λ, and select the weight parameter λ by leave-one-out cross-validation.

6.4.4.2 Experiments on semi-supervised segmentation

The main experiments of Publication X compare six different variants of the
Morfessor Baseline algorithm:

• Unsupervised: The standard unsupervised Morfessor baseline.

• Unsupervised + weighting: A held-out set is used for adjusting the weight
of the likelihood α. When α = 1 the method is equivalent to the unsupervised
baseline.

• Supervised: The semi-supervised method trained with the annotated data
only. That is, Morfessor just selects which of the alternative analyses of the
gold standard segmentation to use. A similar procedure has been indepen-
dently proposed by Mihajlik et al. (2010).

• Supervised + weighting: As above, but the weight of the likelihood β is op-
timized on the held-out set. The weight can only affect which segmentations
are selected from the possible alternative segmentations in the labeled data.

• Semi-supervised: The semi-supervised method trained with both annotated
and unannotated data but without likelihood weighting.

206

Selecting lexical units

• Semi-supervised + weighting: As above, but the parameters α and β are op-
timized using the the held-out set.

The models are trained for English and Finnish data and evaluated using the
linguistic gold standard evaluation of Morpho Challenge 2009 (Kurimo et al.,
2010c). For supervised and semi-supervised methods, the amount of annotated
(segmented) data is varied between 100 and 10,000 words. The held-out set has
gold standard analyses for 500 words. After training the model, the augmented
Viterbi algorithm was applied to find the optimal segmentation of each word in
the final test data.

The results are shown in Figure 6.20. For English, the baseline F-measure of
60% is increased to 65–73% depending on the amount of annotated data. 1,000
samples are enough to outperform the best unsupervised approaches such as
66.24% by Bernhard (2008). For Finnish, the baseline F-measure 27% is increased
to 53–60%, outperforming the 52.45% by Bernhard (2008) already with 100 an-
notated samples.

(a) English (b) Finnish

Figure 6.20. The F-measure for unsupervised, supervised, and semi-supervised Morfessor Base-
line as a function of the number of annotated training samples (Publication X).

Supervised learning starts to work reasonably well on both languages if more
than one thousand annotated samples are available. The main difference be-
tween English and Finnish results is the effect of the likelihood weighting for
the unsupervised results. For English, the balance of likelihood and prior is al-
most optimal without weighting, but for Finnish, the weight of the likelihood
has to be decreased in order to obtain balanced precision and recall.

Table 6.11 shows the weight parameters α and β and the results for weighted
semi-supervised algorithm. The optimal β decreases with the increase in an-
notated data, with the exception of 100 samples for Finnish. For English, the
optimal α is always close to one, while for Finnish, it varies between 0.005 and
0.1. Both precision and recall of the English results improve with the amount of
data, while the recall of the Finnish results ceases to increase already after the
first 100 samples. Thus it seems that for Finnish, the recall of the MC evaluation
cannot be increased solely by improving the segmentation.

While the main task in Publication X is morphological segmentation, it also
considers using the annotated data to tag the morphs to the morpheme labels
defined by the gold standard analysis. This would be a very practical solution
for dealing with allomorphy in the affix morphemes, which is, as discussed in
Section 6.4.2, a hard task for any unsupervised algorithm. The preliminary ex-

207

Selecting lexical units

Table 6.11. Precision, recall, F-measure and the values for the weights α and β that the semi-
supervised algorithm chose for different amounts of labeled data when optimizing the
F-measure. The last row shows the results of context-free morpheme labeling made
after the segmentation.

English Finnish

|DW �→A| α β Pre Rec F α β Pre Rec F

0 0.75 - 68.48 55.07 61.05 0.01 - 53.72 45.16 49.07
100 0.75 750 67.82 62.74 65.18 0.01 500 50.67 54.81 52.66
300 1 500 71.38 60.73 65.63 0.005 5000 55.65 54.21 54.92

1000 1 500 69.72 66.92 68.29 0.05 2500 61.03 52.38 56.38
3000 1.75 350 76.85 62.82 69.13 0.1 1000 65.39 52.45 58.21

10000 1.75 175 77.35 68.85 72.85 0.1 500 69.14 53.40 60.26

+labeling 1.75 175 77.07 77.78 77.42 0.1 500 66.90 74.08 70.31

periment in Publication X applied a simple context-free tagging: each segment
in the test data was replaced by the most common label it had in the annotated
training data whenever such was available. As shown in the last row of Ta-
ble 6.11, labeling provided high increase in the recall of the evaluation metric.
With the 10,000 word annotated data, F-measure increased to 77.42% for English
and to 70.31% for Finnish. The labeling approach has been developed further by
Kohonen et al. (2010) and evaluated in Morpho Challenge 2010.

6.4.5 Learning of phrasal constructions

As the previous sections have shown, the Morfessor method is relatively easy
to extend to various problems in morphological unit selection, at least as long
as they can be mainly solved by segmentation. Related MDL-based approaches
have been applied also to unsupervised word segmentation (de Marcken, 1996;
Brent, 1999). A natural question is then whether a similar approach would be
useful also for extracting units that encompass several words.

The most similar problem to the morphological segmentation in the level of
sentences would be shallow parsing (chunking). Instead of using completely flat
chunks, Publication XI considers a model that encodes sentences with a slightly
more complex phrasal constructions. The applied generalization is that each
construction may have a slot for a word that is not fixed but selected from a
particular construction-specific category. Figure 6.21 illustrates this type of a
model.

s

writingI am a [X]

book

s

cannot [X] let alonehe write

read

Figure 6.21. Two examples of the type of sentence parses enabled by the construction model of
Publication XI.

208

Selecting lexical units

6.4.5.1 Related work

On one hand, the task of unsupervised learning phrasal constructions can con-
sidered as a part of grammar induction. Most work on this topic has focused
on learning context-free grammars, either from a theoretical (Clark, 2001; Clark
et al., 2008, 2010) or practical (Chen, 1995; de Marcken, 1996; Adriaans et al.,
2000; van Zaanen, 2000; Klein and Manning, 2002; Seginer, 2007) point of view.
As noted in Section 3.2.4, parsing with a CFG is equivalent to hierarchical seg-
mentation of the word sequences, bracketing. Unsupervised grammar learning,
if evaluated against a treebank, is a difficult task: Klein and Manning (2002)
were the first to outperform a simple right-branching heuristic. Most methods
rely on that the input corpus is part-of-speech tagged, and using induced tags
often degrades the results (Klein and Manning, 2002; Cramer, 2007). Moreover,
while the results of the well-known methods are acceptable for commonly used
English evaluation corpora, they fail for more complicated data sets (Cramer,
2007).

On the other hand, the task of Publication XI is similar to shallow parsing,
that is, segmenting words to their low-level constituents. An early example of
unsupervised shallow parsing is the multigram model by Deligne and Bimbot
(1995, 1997). Their model is actually very similar to Morfessor Baseline, but
they use ML estimation with heuristic complexity control instead of MDL, and
train the model with EM and Viterbi algorithms (with similar results for both).
Apparently, their model has never been evaluated as a shallow parser.

Recently, Ponvert et al. (2010) have shown that a state-of-the-art unsupervised
parser by Seginer (2007), CCL, is actually outperformed by taking only the low-
level constituents and building a right-branching tree based on them, indicating
that simply solving the unsupervised shallow parsing can help with the deep
parsing. Ponvert et al. (2011) show that HMM and PRLG22 trained with the EM
algorithm can outperform CCL in shallow parsing. Moreover, they show that a
cascade of shallow parsers can be used to get state-of-the-art results also in deep
parsing.

Regarding other types of grammars, dependency grammar induction has been
studied, for example, by Chen (1995) and Klein and Manning (2004). However,
more interesting from the point of construction learning is the unsupervised
data-oriented parsing (U-DOP) model by Bod (2006, 2007, 2009b). In DOP, sen-
tences are created by combining tree structures from previously seen trees, and it
is compatible with several linguistic grammar formalisms, including unification
grammars and tree-adjoining grammars (Bod, 2009b). Similarly to the (shallow)
constructions that are learned in Publication XI, the trees can be discontiguous.
Bod (2009b) has evaluated U-DOP both against treebanks and in a psycholin-
guistic setting, where it is shown to mimic children’s language development.

6.4.5.2 Model and priors

As illustrated by Figure 6.21, the model considered here is defined to learn two
types of constructions:

• Word sequences of different lengths: went to, red car, and

22 PRLG or probabilistic right linear grammar is a extension of HMM, in which the
emission xi is dependent both the current state yi and the previous state yi−1.

209

Selecting lexical units

• Sequences that contain one slot for words of a specific category, where a cate-
gory refers simply to a group of words that is expected to be used within this
sequence: went to buy [X], [X] was.

If only the former kind of structure is allowed, the model is equivalent to the
Morfessor Baseline model, but for sentences consisting of words instead of words
consisting of letters. Initial experiments with such a model showed that while
the algorithm finds sensible structure, the constructions found are very redun-
dant and therefore impractical and difficult to interpret. The latter construction
type was included to get more interesting results. Only one free slot per con-
struction is allowed in order to make the training fast.

The likelihood of the training data DS is

p(DS |Y, θ) =
|DS|
∏
j=1

p(sj |Y, θ)

=
|DS|
∏
j=1

|yj|
∏
i=1

p(xji | θ)p(wji | xji, θ), (6.55)

where Y contains the analyses of the sentences sj: constructions xji and their
category words wji.

Following Morfessor, the prior of the model with μ constructions is set to

p(L) = p(μ)× p(properties(x1), . . . , properties(xμ))× μ!. (6.56)

The properties of the constructions xi include:

• Lengths of the construction: p(|xi|) = 1/lmax, where lmax is the maximum
length (for example, the length of the longest sentence in the training data).

• Indicator βi that tells whether the construction has a category slot:
p(βi = 0) = p(βi = 1) = 1

2 .

• Fixed words of the constructions ωi:

p(ωi) =
|ωi |
∏
j=1

p(ωij), (6.57)

where p(ωij) is the probability of the jth word of the construction (here based
on ML estimates from the training data).

• Counts of the constructions τi:

p(τ1, . . . , τμ | μ, ν) = 1/
(

ν − 1
μ − 1

)
, (6.58)

where ν is the token count of the constructions.

• If the construction has a category slot: the number of words in the category
(bounded by the total number of words), a list of the category words (sim-
ilarly to Equation 6.57), and the counts of the category words (similarly to
Equation 6.58).

6.4.5.3 Search algorithm

Training the model with the EM algorithm has the same problem of sparse, dis-
continuous prior as in other MDL-based models. Moreover, the standard local

210

Selecting lexical units

training algorithm of Morfessor Baseline is not applicable because of the word
categories. Instead, the local optimization procedure applied in Publication XI
is the following:

1. Initialize the analysis so that each word is a construction by itself and there
exist no other constructions.

2. Generate all possible constructions of length ≤ tL and frequency ≥ tF from
the corpus.

3. Sort the candidate constructions by likelihood ratio

r(x) =
p(DS |Y+x, θ+x)

p(DS |Y, θ)
, (6.59)

where θ+x includes the construction x in the lexicon and Y+x uses it wherever
possible.

4. In the descending order of likelihood ratios:

(a) Store the current value of the cost function L(θ, DS, Y).

(b) Apply the construction to all sentences where applicable and calculate the
value of the cost function L(θ+x, DS, Y+x). If the construction improves the
cost, accept the changes, otherwise discard them.

(c) Proceed from (a) with the next construction.

As each construction is tested only once, the training is relatively fast. The
thresholds were set to tL = 6 and tF = 11.

6.4.5.4 Experiments

There is no evident quantitative evaluation methods for the kind of construc-
tions induced by the method. To make the manual inspection of the results inter-
esting, the method was applied to a corpus consisting of stories told by Finnish
children. Compared with data observed by children, as in the commonly (e.g.
Berant et al., 2007; Bod, 2009b) applied Childes corpus by MacWhinney (2000),
data produced by children provides a better look at the representations that are
actually used by a cognitive system in the middle of its development. Moreover,
such a corpus should have many frequent and simple constructions to observe.

The corpus contains 2,642 stories told by children to an adult, typically a mem-
ber of day care personnel or a parent. The adults were instructed to write the
story down exactly as it was told, without changing or correcting anything. A
minority of the stories were told together by a pair or by a group of children.
The age of the children varied from 1 to 7 years. The story mark-up contains the
age and the first name(s) of the storyteller(s). The stories contain a lot of spoken-
language words and even some non-grammatical forms. For example, a story
told by a three year old girl, is the following:

Mun ∗äitin nimi on äiti. Mun iskän nimi on iskä. Iskä tuli mun kanssa tänne. Mun
nimi on Oona. Jannen nimi on Janne.23

(My mommy’s name is mommy. My daddy’s name is daddy. Daddy came here with me. My
name is Oona. Janne’s name is Janne.)

23 Correct genitive inflection of äiti (mother) would be äidin instead of ∗äitin. Mun (my)
and iskä (daddy) are colloquial words.

211

Selecting lexical units

Another story, told by a boy of 5 year and 11 months, is as follows:

Dinosaurus meni kauppaan osti sieltä karkkia sitten se meni kotiin ja söi juuston.
Sitten se meni lenkille ja se tappoi pupujussin iltapalaksi ja sitten se meni uud-
estaan kauppaan ja se ei ∗näkenyt mitään siellä kun kauppa oli kiinni.24

(A dinosaur went to a shop and bought there candy then it went home and ate a cheese. Then
it went for a walk and it killed a bunny for an evening snack and then it went again to the shop
and it didn’t see anything there because the shop was closed.)

A more extensive description of the corpus is given by Klami (2005).
The stories were preprocessed by removing the headers and replacing punctu-

ation marks with a single symbol #. Then each story was divided into sentences.
After preprocessing, the total number of sentences in the corpus was 36,542. The
number of word tokens was 244,274 and word types 24,242.

Table 6.12 shows the most frequent constructions that the algorithm has dis-
covered. The algorithm was successful in that the frequent constructions can
often be considered meaningful. For example, “olipa kerran [X]” (once upon a
time there was a [X]) is the archetypical way to start a fairy tale in Finnish. The
prominence of “ja sitten” (and then) is caused by many stories following a pat-
tern where the child explains some event, then uses “ja sitten” to move on to
the next event, and so on. The method has also found several variants of this
construction: sit, sitt, and sitte are all spoken language forms of sitten.

Table 6.12. The most frequent two- and three word constructions with their five most frequent
category words.

Count Form Category words (count)

891 hän [X] meni (68), oli (50), lähti (32), löysi (29), otti (19)
he [X] went, was, left, found, took

885 ja sitten
and then

798 [X] on se (82), hän (24), täällä (20), tässä (20), nyt (17)
[X] is it, he/she, here, here, now

768 meni [X] metsään (33), ulos (33), sinne (30), # (25), nukkumaan (18)
went [X] (into the) forest, outside, there, #, (to) sleep

694 sit [X] se (302), ne (81), kun (20), hän (17), # (12)
then [X] it, they, when, he/she, #

632 ja [X] se sitten (303), sit (155), sitte (109), sitt (18), kun (5)
and [X] it then, then, then, then, when

337 [X] se meni sitten (125), sit (66), sitte (58), ja (35), kun (14)
[X] it went then, then, then, and, when

245 olipa kerran [X] pieni (8), tyttö (7), yksi (6), koira (6), hiiri (5)
once (upon a time) little, girl, one, dog, mouse
there was (a) [X]

235 ja [X] ne sitten (129), sit (37), sitte (28), kun (6), niin (5)
and [X] they then, then, then, when, so

197 ja [X] tuli sitten (91), se (9), sinne (6), ne (4), niistä (3)
and [X] came then, it, there, they, (of) them (be-)

Many of the categories found by the method appear to consist of one or a few
semantic or syntactic (POS) categories. For example, söi [X] # (ate [X] #) contains
mostly edible arguments: banaania (banana), mansikkaa (strawberry), jäniksen
(a rabbit) or a pronoun hänet (him/her), ne (them). However, some categories are
too general. For example, “meni metsään” and “meni #” are analyzed as “meni

24 Punctuation is missing between the first two clauses (probably a mistake of the
writer). The correct inflection of nähdä (see) would be nähnyt instead of ∗näkenyt.

212

Selecting lexical units

[X]”, although in the former case the free slot is the argument of the verb, and
in the latter case the verb takes no arguments, but happens to be at the end of a
sentence.

Whereas the frequent constructions found by the method are fairly reasonable,
the analyses of individual sentences generally leave much of the structure un-
analyzed. Consider, for example, the following analysis:

että hirveä hai tuli niitten [perään {X → ja}] [söi {X → ne}] #
that terrible shark came them [after {X → and}] [ate {X → them}] #

A large part of the sentence is not analyzed as any abstract construction. There
are a lot of possible constructions that might be expected, but that the algorithm
does not discover: for example, constructions such as [X] hai, where the category
contains adjectives or hai [X], where the category contains an action verb. Note
also that both of these two constructions could not currently be used at the same
time, but one would have to choose one or the other.

6.4.5.5 Discussion

In contrast to the related work discussed in the beginning of this subsection,
Publication XI does not present a full-fledged method for unsupervised parsing
or grammar induction. It is rather a proof of concept for demonstrating that
non-trivial constructions, that are neither complete shallow nor fully hierarchi-
cal (i.e., equivalent to CFG rules), can be found with an MDL-inspired model
similar to Morfessor. Prior to quantitative evaluations, improvements would be
required at least to the training algorithm to make it possible to train the model
on larger data sets. However, as shown by Spitkovsky et al. (2010a), a useful
approach is to first concentrate on training samples that are not too complex.

Direct evaluations for grammar inference are based on comparisons to tree-
banks. It is not clear what should be considered as the low-level constituents in
the case of the open-slot constructions. However, the same algorithm could also
be used for induction of complete parse trees using cascaded models similarly
to Ponvert et al. (2011). That is, each item of a construction ω (either fixed or
category-specific) could be a construction found by the previous model of the
cascade.

As the model defines a probability distribution over sentences, one simple way
to evaluate the results would be a statistical language modeling evaluation along
the lines of Deligne and Bimbot (1995). They obtain improved perplexity over
standard n-gram models for a small telephone conversation data set, but it is un-
likely that such a “phrase unigram” model would outperform modern varigram
models for predicting open domain data.

A more suitable application for a phrase-learning algorithm would be statisti-
cal machine translation. The process of extracting the phrase pairs is often quite
heuristic in the current SMT systems, and the phrases do not commonly include
any abstract categories. Finding more abstract constructions should help to al-
leviate the data sparsity problems.

Another potential evaluation and application domain is in document model-
ing for IR and text categorization tasks. Intuitively, vector space models based
on bag-of-constructions should be able to outperform bag-of-words. The con-
structions could also be used in probabilistic topic modeling similarly to Shen
et al. (2006).

213

Selecting lexical units

214

7. Conclusions and future directions

This thesis has centered around the question of lexical unit selection and its eval-
uation: how text strings—in any written language—should be processed to get
discrete units suitable for statistical language modeling or representation learn-
ing, and how the results of the unit selection should be evaluated.

The main hypothesis was that machine learning is useful for the unit selection
problem. Especially unsupervised and minimally supervised learning should
help in adapting the models for different languages and domains. The machine
learning approach for unit selection can also be called the task of learning con-
structions, form-meaning pairs of language considered in the construction gram-
mars.1

The work discussed in this thesis, including both the publications of the thesis
and the reviewed research, demonstrates that minimally supervised learning of
constructions is indeed useful for many purposes. This chapter summarizes the
main results and discusses their implications as well as promising directions for
future research.

7.1 Models for learning constructions

The minimal, non-complex constructions are morphemes. Assuming the exis-
tence of morphemes in a language is one of the most universal, language in-
dependent assumptions that can be made. Thus the first step in learning the
constructions of a language is identifying its morphemes.

Regarding the algorithms for morphology induction, this thesis has provided
two new contributions: Allomorfessor is still one of very few unsupervised al-
gorithms that do not consider only segmentation, but also non-concatenative
processes that produce allomorphs. The semi-supervised Morfessor is, to the
best of our knowledge, the first semi-supervised algorithm shown to get signif-
icant improvements from small amounts of annotated training data.

These two algorithms for morphology induction have been evaluated in the
original Morpho Challenge evaluations. As a part of this thesis, they have been
re-evaluated along with all other algorithms submitted to Morpho Challenges
2007–2010 using the new evaluation methods. Thus their performance can now
be reconsidered. Appendix A.2 shows complete results of the direct and indirect
evaluations, using EMMA (Spiegler and Monson, 2010) as the direct evaluation

1 To be precise, the algorithms discussed in this thesis consider only learning of the
forms of the constructions, not their meanings.

215

Conclusions and future directions

method.
Allomorfessor fares moderately in the linguistic evaluations, being in the top

half of the methods for all languages and in the top third for most languages (En-
glish rank 14 of 49, Finnish 14/42, German 7/39, and Turkish 20/45). The same
holds for application evaluation in information retrieval tasks (English 11/42,
Finnish 10/37, German 13/31). However, in the machine translation tasks, Al-
lomorfessor yields the top results both for Finnish and German.

The semi-supervised Morfessor algorithm, especially when combined with
morpheme labeling, outperforms unsupervised Morfessor by a large margin
and gets the top results among all algorithms for all tested languages (English,
Finnish, and Turkish). And this is albeit the fact that the weight parameter of
the model was optimized on the F1-score of the MC evaluation method, not the
newer EMMA method that is considered here.2 The results of the application
evaluations are only moderate, but also they might improve significantly if the
weight parameter was optimized for a direct measure that has a high correla-
tion with the application evaluations (such as F-score of EMMA or optimized
Fβ-score of any other isomorphic evaluation method).

A combination of the presented methods—Allomorfessor and semi-supervised
Morfessor—is likely to be a significant step towards a high-accuracy probabilis-
tic morphological analyzer. On one hand, Allomorfessor is well-suited for learn-
ing regular transformations of the stems. On the other hand, frequent and irreg-
ular words and their transformations can be easily learned in a semi-supervised
manner. This line of research will certainly be pursued in the future.

While the MDL-inspired prior of Morfessor is an essential part of its success,
the study of the effects of a training corpus reveals a drawback that calls for fur-
ther discussion: increasing the amount of training data decreases the amount of
segmentation and increases the size of the morpheme lexicon. From the theo-
retical side, using a universal coding (in which the regret increases sublinearly
in the number of samples; see Section 2.6.8) for a model family means that the
optimal hypothesis will be the one that gives the maximum likelihood when the
number of training samples approaches infinity. This is not a desired property
for Morfessor Baseline, for which the maximum-likelihood parameters are—at
least approximately—equivalent to using a word lexicon. Known solutions to
this problem include training the model with word types (or using dampened
word frequencies), using more realistic model dependencies between the mor-
phemes or a hierarchical lexicon (as in Morfessor Categories-MAP), or decreas-
ing the likelihood weight (as proposed in the semi-supervised extensions). Yet
another solution would be gradually forgetting (i.e., removing it from the likeli-
hood term) the past data while processing new data.

The example of phrasal construction learning presented in this thesis is rather
a proof of concept than a practical unit selection method. As such, it has not
been evaluated in a quantitative manner, but the initial experiments show that
it has potential for finding constructions useful also for practical applications if
the model and the training algorithm are developed further.

2 Using the wrong optimization criterion shows in the Turkish results of Morfessor U+W
algorithm, which has an optimized likelihood weight but does not otherwise use labeled
training data: it severely oversegments the words.

216

Conclusions and future directions

7.2 Direct evaluations

The goal for learning constructions of a language is usually to improve the per-
formance of the NLP applications. While some general criteria for useful con-
structions can be identified (see Section 6.1.1), different applications require dif-
ferent types of constructions. As the indirect evaluations in applications are
often complicated and expensive in terms of time and manual work required, it
may still be useful to rely on direct evaluations if such are available.

Direct evaluations that utilize available linguistic resources provide the most
straightforward goal for unit selection. For example, the first goal for a morphol-
ogy induction algorithm should be to get something that resembles the morpho-
logical analyses provided by experts on linguistics. This thesis includes the first
major study of evaluation methods for comparing the results of unsupervised
algorithms with linguistic analyses. Hopefully the results and the new evalua-
tion methods will help researchers working on this area.

As optimizing the score of a linguistic evaluation is not the main goal, a rele-
vant question is how well they can predict the performance in application eval-
uations. The experiments of this thesis have shown that with a suitable direct
measure with optimized parameters, the scores are likely to have high correla-
tions with application evaluation scores also for novel sets of algorithms. How-
ever, this does not indicate that application evaluations would be unnecessary. A
simple reason is that the best unsupervised algorithms may actually outperform
the grammatical gold standard analyses for the applications. In other words,
the grammatically correct analysis is not necessarily the optimal solution for the
applications. The results of this thesis show that if the weight parameter be-
tween precision and recall in Fβ-scores of the direct evaluations is optimized to
maximize the correlation between the Fβ-score and the scores of the application
evaluations, precision is weighted over recall. This is particularly visible for the
agglutinative Finnish and German languages, and indicates that undersegmen-
tation is sometimes useful for the applications. It is possible that this tendency
originates from application-specific biases, as the systems are developed usu-
ally for English. However, the phenomenon can also be considered in the con-
text of the psycholinguistic discussion on whether inflected words are stored as
full-forms or inferred from their morphological parts in the human mind (e.g.,
Pinker and Ullman, 2002; Baayen, 2007). That is, the mental lexicon is not nec-
essarily minimal, but may incorporate redundant forms whenever they make
the processing efficient enough compared with the additional cost of memory
resources.

It is well possible that the same (unconscious) language processing strategies
applied by humans would be useful also for computational methods. This raises
the question on whether psycholinguistic studies can be used to evaluate tasks
such as morphology induction. In this thesis, it is shown that one promising type
of evaluation is the prediction of reaction times in a lexical decision task. While
behavioral reaction time studies are very common in psycholinguistic research,
this is apparently the first time that an unsupervised method for morphology
induction has been evaluated in this type of a task.

The results were promising in that the probability estimates from the Mor-
fessor models had high correlations with the human reaction times of Finnish
nouns: Spearman’s correlation coefficient was almost 0.7. Equally high correla-
tions were provided by a letter-based n-gram model, although with much larger

217

Conclusions and future directions

number of model parameters. It seems that even higher correlations could be
easily obtained if there was a data set more similar to what humans observe
in the course of their life. This is clear evidence for that probabilities are rele-
vant in human language processing. However, any further conclusions are hard
to draw, as behavioral reaction times do not provide information on different
stages of visual word processing. Neurolinguistic experiments would be a next
step towards the cognitive evaluation of the probabilistic models.

The direct evaluations are applicable only if there are suitable linguistic (or
psycholinguistic) resources available. They are not possible for many other
types of constructions, including the phrasal constructions considered in Pub-
lication XI. In fact, the development of the direct evaluation method for vector
representations of documents presented in Publication III was partially moti-
vated by the lack of simple evaluation methods for learning this kind of con-
structions.

The CCA-based evaluation method is apparently the first direct evaluation
method proposed for document representations. It passed all except one of
the validation experiments, and seems to work very well for evaluating differ-
ent weighting schemes and dimensionality reduction methods. The only unex-
pected result was that the evaluation yielded higher scores when simple n-gram
features were appended to the standard bag-of-words features. While this may
be explained by the short documents (individual sentences) used in the exper-
iments, further study is required to confirm how selecting partially redundant
features affects the canonical correlations.

7.3 Applications

The general goal stated in the beginning of this thesis was to use machine learn-
ing to solve the fundamental learning problems encountered in the NLP appli-
cations. Thus it is appropriate to conclude this overview by discussing the three
applications that the thesis has mainly concentrated on: automatic speech recog-
nition, information retrieval, and machine translation.

For ASR, both the studies reviewed and included in this thesis suggest a sim-
ple approach for the unit selection problem. First, one should predict as small
units as it is possible to do without increasing acoustic confusability. Morphs
are good candidates for agglutinative languages, as demonstrated in various
studies (see Hirsimäki et al., 2009). Even smaller units may be useful in order
to construct unseen morphs in the case that there is enough information from
the acoustic model. For phonemic writing systems, the units may simply be let-
ters. As argued by Heeman and Damnati (1997), larger units are useful only if
they help in acoustic modeling. An interesting direction is parallel learning of
morphological segmentation and acoustic units (Deligne and Bimbot, 1997).

Second, while there seems to be no reason to use complex units in the target
distribution, the situation is different for context units. In fact, the language
model should base its predictions on as large context units as possible, as long
as they are frequent enough for reliable estimates. The methods for growing,
pruning, and clustering the histories of the n-gram models introduced in this
thesis provide practical tools for this task. As such, they are especially suitable
for morph-based models—there is no sense in growing the n-gram model one
letter at a time—but they could as well be extended to have different predictive

218

Conclusions and future directions

units and predicted units.
While the n-gram models and their simple extensions, such as varigram mod-

els, are still de facto standard in any application that requires statistical lan-
guage modeling, it seems that new methods are gradually outperforming them
by larger and larger margins. The review on state-of-the-art language mod-
eling techniques reveals two promising approaches: hierarchical Pitman-Yor
(HPY) language models (Teh, 2006)—especially if extended to infinite Markov
models (Mochihashi and Sumita, 2008) and domain adaptation (Wood and Teh,
2009)—and recurrent neural network (RNN) language models (Mikolov et al.,
2010).3 While especially the RNN model differs substantially from the standard
n-gram model, the unit selection approach sketched above should still work
fine. An additional benefit for the neural network models would be that pre-
dicting units from a smaller lexicon would make the normalization of the prob-
abilities quicker.

In spite of the promising results, it is worth noticing that the payback from the
sophisticated models and smoothing techniques depends on the size of the train-
ing data. Brants et al. (2007) have compared interpolated Kneser-Ney smoothing
with “stupid back-off”, a very simple smoothing scheme that uses no discount-
ing, fixed back-off weight, and unnormalized scores. Their task was re-scoring
the output of a machine translation system. The size of the language model
training data was up to 2 trillion (2× 1012) tokens. For 5-gram models trained on
1010 words and above, there was no statistically significant difference between
KN smoothing and stupid back-off. For 1011 words and above, KN models were
too expensive to train, while the BLEU scores of the “stupid back-off” models
continued to grow.

As both the amount of data and the computational power grows, it is not clear
whether the best approach will be to use as much data as possible with very sim-
ple models, or moderate amounts of in-domain data with sophisticated model-
ing techniques. Maybe the answer is still in between—using models that are
simple and quick to train but that use clever approximations from theoretically
well-grounded models. Such approximations include the Kneser-Ney smooth-
ing (Kneser and Ney, 1995) as well as the power law discounting (Huang and
Renals, 2010b) techniques. The revised Kneser pruning and growing algorithms
of Publication I should be relatively simple to extend to apply the power law
discounting that has given as good results as the HPY language models.

While coverage of the lexical units seems to be the essential criterion for speech
recognition, the problem of unit selection is more intricate for information re-
trieval and machine translation. In these applications, the semantic relevance of
the units is more crucial.

While IR has not been in the center of this thesis, there are a few points to be
made. First, the Morpho Challenge evaluations show that traditional rule-based
stemmers and analyzers may already be replaced by unsupervised learning of
morphological segmentation or clustering without essentially hurting the per-
formance. While it seems to be hard to obtain improvements from constructions
that encompass several words, some recent studies (e.g., Shen et al., 2006; Koster
et al., 2011) have shown that it is still possible. This is one clear application for
unsupervised learning of phrasal constructions.

In statistical machine translation, the processing of morphologically complex

3 Apparently, HPY and RNN language models have not so far been experimentally com-
pared.

219

Conclusions and future directions

languages is still an unsolved problem. This thesis has proposed using mor-
pheme-like units induced in an unsupervised manner instead of words as a gen-
eral and language-independent solution. Even if the current machine translation
systems are not particularly developed for morpheme-like units, significant im-
provements could be obtained using the MBR system combination for word and
morpheme based models. As illustrated by the Morpho Challenge experiments,
the methods of the Morfessor family seem to be well-suited for this application.

Also the learning of phrasal constructions is relevant for SMT. For example,
a recent study by Turchi et al. (2012) suggests that the factor limiting the per-
formance of an SMT system is not in the numeric parameters, but the entries of
the phrase translation table. The current phrase extraction algorithms are often
based only on the word alignments. An algorithm for learning phrases from
monolingual corpora may provide additional information for the extraction.

As statistical machine translation anyway requires a bilingual corpus, a promis-
ing approach is to learn suitable constructions from bilingual data. Bilingual
unit selection for SMT has already been tested for both morphological segmen-
tation (e.g., Fishel, 2009; Mermer and Akın, 2010) and word segmentation (e.g.,
Chung and Gildea, 2009; Paul et al., 2010).

While the use of multilingual data is especially relevant for machine transla-
tion, it is likely to be useful for the learning problems of NLP in general. Parallel
sentences or documents, as different views for the same underlying semantics,
provide an indirect way to take the meanings of the constructions into account.
For example, if a particular construction is used in one language, another con-
struction with a similar meaning (but potentially a very different form) should
be observed in the other language. Different learning settings can be consid-
ered depending on whether there is annotated data available in one language
(e.g., Yarowsky et al., 2001) or not (e.g., Snyder and Barzilay, 2010). Essential
prerequisites for this very promising line of research are efficient monolingual
models and evaluations suitable for a wide variety of languages—such as those
developed in this thesis.

220

A. Appendices

A.1 Proof for optimal feature generators in linear bilingual
document model

This appendix gives the proof that justifies the CCA-based evaluation method
presented in Section 5.4 for the bilingual document model in the case of full-
rank and non-singular projections. This is a slightly elaborated version of the
argumentation presented in Publication III.

From Section 5.4.1, recall that U and V are matrices containing the canonical
variates found by the canonical correlation analysis, and A and B the respective
projections. For generating processes Gs and Gt and feature generators Fs and
Ft,

UVT = ATFs(Gs(WsZ))Ft(Gt(WtZ))TB. (A.1)

By definition, CCA finds A and B that maximize the correlations of the canonical
variates with orthogonality constraints. Let Z ∈ RDz×N , Ws ∈ RDz×Dz and
Wt ∈ RDz×Dz be non-singular. Our claim is that the highest possible correlations
are obtained in the case that Fs(Gs(Zs)) = Zs and Ft(Gt(Zt)) = Zt.

Proof. Consider the choice of A and B in

UVT = ATWsZZTWt
TB. (A.2)

Because Cz = ZZT is non-singular and symmetric, there exists an eigenvalue de-
composition Cz = QΛQT, where Λ is a diagonal matrix of eigenvalues λ1, . . . , λDz

and Q is an orthogonal matrix of eigenvectors. Thus Z = QΛ
1
2 . Setting A =

(Ws
−1)TQΛ− 1

2 and B = (Wt
−1)TQΛ− 1

2 gives:

UVT = Λ− 1
2 QTWs

−1WsQΛQTWt
T(Wt

−1)TQΛ− 1
2 = I. (A.3)

This choice of A and B also fulfills the orthogonality constraints of U and V:

U = ATWsZ = Λ− 1
2 QTWs

−1WsQΛ
1
2 = I; (A.4)

V = BTWtZ = Λ− 1
2 QTWt

−1WtQΛ
1
2 = I. (A.5)

Thus ρi = corr(ui, vi) = 1 for all i = 1, . . . , Dz and there exists no feature gener-
ator that could give higher correlations.

221

Appendices

A.2 Morpho Challenge evaluation results

The tables of this section show part of the results calculated for the algorithms
submitted to Morpho Challenge and used in the meta-evaluation of Publica-
tion VI. The full result tables are available from http://research.ics.tkk.fi/
events/morphochallenge/.

Table A.1 shows all algorithms submitted to Morpho Challenges 2007–2010
and some statistics of their analysis for the English data set. The algorithms are
categorized to three types: unsupervised (U), semi-supervised (S), and unsu-
pervised with supervised parameter tuning (P). The difference between the last
two is that the algorithms marked as semi-supervised used the provided anno-
tated training data directly, not only for optimizing (few) free parameters for the
evaluation metric in use.

Tables A.2–A.5 show the results of linguistic evaluation using the EMMA eval-
uation method by Spiegler and Monson (2010). Tables A.6–A.8 show the results
of the information retrieval experiments, and Tables A.9 and A.10 show the re-
sults of the statistical machine translation experiments.

The application evaluations include some reference methods (Kurimo et al.,
2010b). For IR, “dummy” means that no segmentation or analysis was per-
formed and words were used as index terms as such. Hyphens were replaced by
spaces so that hyphenated words were indexed as separate words. In “grammat-
ical morphemes”, the words were analyzed using the reference analyses of the
linguistic evaluation. For ambiguous analyses, either only the first analysis was
used (first), all of them were used (all), or the analysis with least number of mor-
phemes was used (min). Words that were not in the gold standard were used as
such. The IR experiments included also two language-specific methods: “Snow-
ball” means that the words were stemmed by language specific stemming al-
gorithms provided by Snowball libstemmer library 3. Hyphenated words were
first split to parts and then stemmed separately. In “TWOL” the two-level mor-
phological analyzer TWOL from Lingsoft was used to find the lemmas of the
words. Some words may have several alternative interpretations and either all
alternatives were used (“TWOL all”) or only the first one (“TWOL first”). Com-
pound words were split to parts. Words not recognized by the analyzer were
indexed as such.

Morfessor Categories-MAP occur in the tables several times, because if was
trained (on slightly different data sets) both by Monson et al. (2008, 2009) and the
Challenge organizers. Algorithms developed in this thesis (Publications VIII, IX,
and X) are highlighted.

222

Appendices

Table A.1. Algorithms submitted to Morpho Challenges and their statistics for English. The type
of the algorithm is either semi-supervised (S), unsupervised (U), or unsupervised with
supervised parameter tuning (P). #a/w is the average number of analyses per word,
#m/w is the the average number of morphemes per word, and #lexicon is the size of
the morpheme lexicon.

Method Author Type #a/w #m/w #lexicon

Allomorfessor 2008 Kohonen et al. (2009a) U 1.00 1.62 180813
Allomorfessor 2009 Publication VIII U 1.00 2.59 23741
Bernhard 1 2007 Bernhard (2008) U 1.00 2.61 55490
Bernhard 2 2007 Bernhard (2008) U 1.00 2.90 52582
Bordag 5 2007 Bordag (2008) U 1.00 1.97 190094
Bordag 5a 2007 Bordag (2008) U 1.00 1.97 189568
Can 2009 Can and Manandhar (2010) U 1.00 2.09 150097
DEAP MDL-CAT 2010 Spiegler et al. (2010a) S 4.20 3.41 418915
DEAP MDL-NOCAT 2010 Spiegler et al. (2010a) S 1.71 3.42 216528
DEAP PROB-CAT 2010 Spiegler et al. (2010a) S 4.63 2.79 790355
DEAP PROB-NOCAT 2010 Spiegler et al. (2010a) S 1.69 2.91 301086
Lignos Aggressive Comp. 2010 Lignos (2010) U 1.00 2.10 153688
Lignos Base Inference 2010 Lignos (2010) U 1.00 1.92 168208
Lignos Iterative Comp. 2010 Lignos (2010) U 1.00 1.91 171964
Lignos 2009 Lignos et al. (2010a) U 1.00 1.74 198546
MAGIP 2010 Golénia et al. (2010a) S 1.00 3.76 93086
McNamee 3 2007 McNamee (2008) U 1.00 1.00 15212
McNamee 4 2007 McNamee (2008) U 1.00 1.00 98475
McNamee 5 2007 McNamee (2008) U 1.00 1.00 243578
MetaMorph 2009 Tchoukalov et al. (2010) U 1.00 1.44 330990
Morfessor Baseline 2010 Creutz and Lagus (2005b) U 1.00 2.17 61508
Morfessor Categories-MAP 2007 Monson et al. (2008) U 1.00 2.07 137973
Morfessor Categories-MAP 2008 Monson et al. (2009) U 1.00 2.07 137973
Morfessor Categories-MAP 2010 Creutz and Lagus (2007) U 1.00 2.01 166078
Morfessor S+W 2010 Kohonen et al. (2010) S 1.00 2.65 32196
Morfessor S+W+L 2010 Kohonen et al. (2010) S 1.00 2.59 45427
Morfessor U+W 2010 Kohonen et al. (2010) P 1.00 2.80 14555
MorphAcq 2010 Nicolas et al. (2010) U 1.00 1.72 227131
MorphoNet 2009 Bernhard (2010b) U 1.00 1.75 211439
ParaMor 2007 Monson et al. (2008) U 2.42 1.88 233981
ParaMor 2008 Monson et al. (2009) U 1.27 1.75 252997
ParaMor-Morfessor 2007 Monson et al. (2008) U 3.42 1.93 386257
ParaMor-Morfessor 2008 Monson et al. (2009) U 2.27 1.89 378364
ParaMor Mimic 2009 Monson et al. (2010) P 1.00 3.04 188716
ParaMor-Morfessor Mimic 2009 Monson et al. (2010) P 1.00 2.96 166310
ParaMor-Morfessor Union 2009 Monson et al. (2010) P 1.00 2.87 120148
Promodes 2 2009 Spiegler et al. (2010b) U 1.00 3.63 47456
Promodes 2009 Spiegler et al. (2010b) U 1.00 3.28 107111
Promodes 2010 Spiegler et al. (2010c) P 1.00 3.80 72811
Promodes committee 2009 Spiegler et al. (2010b) U 1.00 3.63 47456
Promodes-E 2010 Spiegler et al. (2010c) P 1.00 3.09 109050
Promodes-H 2010 Spiegler et al. (2010c) P 1.00 4.39 45043
RALI-ANA 2009 Lavallée and Langlais (2010) U 1.00 2.10 166826
RALI-COF 2009 Lavallée and Langlais (2010) U 1.00 1.91 145733
RePortS 2007 Keshava and Pitler (2006) U 1.00 1.57 211475
UNGRADE 2009 Golénia et al. (2010b) U 1.00 3.87 123634
Zeman 1 2008 Zeman (2009) U 3.18 1.74 905251
Zeman 2007 Zeman (2008) U 3.18 1.74 905251
Zeman 3 2008 Zeman (2009) U 1.08 1.37 319982

223

Appendices

Table A.2. Precision, recall, and F-measure for the linguistic evaluation with EMMA for English.

Rank Method Type Precision Recall F-measure

1 Morfessor S+W+L 2010 S 82.08 84.50 83.27
2 Lignos Base Inference 2010 U 87.44 76.82 81.78
3 Lignos 2009 U 92.40 73.33 81.77
4 Lignos Iterative Comp. 2010 U 87.36 76.41 81.52
5 Bernhard 1 2007 U 83.67 79.32 81.44
6 Morfessor S+W 2010 S 79.39 81.76 80.56
7 Bernhard 2 2007 U 79.09 80.93 80.00
8 Lignos Aggressive Comp. 2010 U 82.17 75.88 78.90
9 Morfessor Baseline 2010 U 86.86 72.26 78.89
10 Morfessor Categories-MAP 2010 U 92.09 68.15 78.33
11 MorphAcq 2010 U 78.51 77.59 78.04
12 Morfessor Categories-MAP 2007 U 86.55 70.62 77.78
13 Morfessor Categories-MAP 2008 U 86.55 70.62 77.78
14 Allomorfessor 2009 U 79.01 76.48 77.72
15 RALI-COF 2009 U 79.31 73.28 76.17
16 Bordag 5a 2007 U 82.78 70.11 75.91
17 Bordag 5 2007 U 82.72 70.09 75.88
18 MetaMorph 2009 U 84.48 68.05 75.38
19 ParaMor-Morfessor Mimic 2009 P 69.62 81.05 74.90
20 Morfessor U+W 2010 P 73.13 76.73 74.89
21 ParaMor-Morfessor Union 2009 P 69.62 80.95 74.86
22 ParaMor 2008 U 73.93 75.63 74.77
23 MorphoNet 2009 U 72.03 74.30 73.15
24 Allomorfessor 2008 U 87.22 62.38 72.74
25 ParaMor Mimic 2009 P 67.93 78.27 72.73
26 Can 2009 U 72.10 73.35 72.72
27 RALI-ANA 2009 U 76.94 67.92 72.15
28 Zeman 3 2008 U 88.39 58.28 70.24
29 RePortS 2007 U 76.83 64.13 69.90
30 McNamee 5 2007 U 98.81 51.92 68.07
31 Promodes-E 2010 P 65.73 69.77 67.69
32 Promodes 2009 U 61.18 75.61 67.64
33 McNamee 4 2007 U 97.73 51.27 67.26
34 Promodes 2010 P 56.58 73.82 64.06
35 DEAP MDL-NOCAT 2010 S 52.33 81.59 63.76
36 DEAP PROB-NOCAT 2010 S 56.18 73.14 63.55
37 McNamee 3 2007 U 87.05 45.77 59.99
38 MAGIP 2010 S 48.76 70.83 57.75
39 UNGRADE 2009 U 44.55 68.94 54.12
40 Promodes 2 2009 U 47.79 61.82 53.91
41 Promodes committee 2009 U 47.79 61.82 53.91
42 Zeman 2007 U 45.56 61.37 52.29
43 Zeman 1 2008 U 45.56 61.37 52.29
44 ParaMor-Morfessor 2008 U 40.08 68.24 50.40
45 Promodes-H 2010 P 40.16 62.98 49.04
46 ParaMor 2007 U 38.40 67.82 49.03
47 DEAP MDL-CAT 2010 S 25.79 85.03 39.57
48 ParaMor-Morfessor 2007 U 24.28 61.80 34.85
49 DEAP PROB-CAT 2010 S 22.29 77.30 34.60

224

Appendices

Table A.3. Precision, recall, and F-measure for the linguistic evaluation with EMMA for Finnish.

Rank Method Type Precision Recall F-measure

1 Morfessor S+W+L 2010 S 67.17 75.73 71.19
2 Lignos Base Inference 2010 U 79.90 56.05 65.88
3 Lignos Iterative Comp. 2010 U 77.33 56.92 65.57
4 RALI-COF 2009 U 74.61 55.96 63.94
5 Lignos Aggressive Comp. 2010 U 66.91 60.04 63.29
6 Morfessor S+W 2010 S 59.14 65.33 62.08
7 Morfessor Categories-MAP 2010 U 70.05 54.25 61.14
8 Bernhard 2 2007 U 61.74 60.51 61.11
9 Bernhard 1 2007 U 66.14 55.00 60.06
10 Morfessor Categories-MAP 2008 U 67.13 52.09 58.66
11 Morfessor Baseline 2010 U 76.14 47.42 58.44
12 Bordag 5a 2007 U 66.21 52.25 58.41
13 Bordag 5 2007 U 66.09 52.17 58.31
14 Allomorfessor 2009 U 71.69 49.05 58.25
15 ParaMor-Morfessor Mimic 2009 P 53.01 63.27 57.69
16 Allomorfessor 2008 U 79.78 43.87 56.61
17 MorphoNet 2009 U 59.53 53.27 56.22
18 ParaMor-Morfessor Union 2009 P 49.76 63.49 55.79
19 ParaMor 2008 U 56.24 54.95 55.58
20 ParaMor Mimic 2009 P 55.21 55.73 55.46
21 RALI-ANA 2009 U 69.56 45.24 54.82
22 Zeman 3 2008 U 82.19 41.10 54.80
23 Morfessor U+W 2010 P 53.58 55.71 54.62
24 Promodes 2010 P 44.93 59.47 51.18
25 MetaMorph 2009 U 69.59 40.27 51.02
26 McNamee 5 2007 U 99.77 33.97 50.68
27 McNamee 4 2007 U 98.41 33.51 50.00
28 Promodes 2009 U 43.37 58.69 49.88
29 Promodes-E 2010 P 44.23 55.55 49.25
30 MAGIP 2010 S 43.49 53.64 48.03
31 Promodes committee 2009 U 42.45 51.87 46.69
32 DEAP PROB-NOCAT 2010 S 39.36 56.22 46.29
33 UNGRADE 2009 U 41.48 51.64 46.00
34 Promodes 2 2009 U 37.91 53.17 44.26
35 McNamee 3 2007 U 86.21 29.45 43.90
36 Zeman 1 2008 U 45.24 41.57 43.32
37 Zeman 2007 U 44.52 41.51 42.96
38 Promodes-H 2010 P 35.89 52.73 42.71
39 DEAP MDL-NOCAT 2010 S 29.60 66.45 40.95
40 ParaMor-Morfessor 2008 U 30.56 48.71 37.53
41 DEAP MDL-CAT 2010 S 21.01 64.26 31.66
42 DEAP PROB-CAT 2010 S 21.06 50.95 29.79

225

Appendices

Table A.4. Precision, recall, and F-measure for the linguistic evaluation with EMMA for German.

Rank Method Type Precision Recall F-measure

1 Morfessor Categories-MAP 2007 U 76.51 57.00 65.33
2 Morfessor Categories-MAP 2008 U 76.51 57.00 65.33
3 Morfessor Categories-MAP 2010 U 78.26 55.83 65.17
4 Bordag 5a 2007 U 71.96 57.34 63.82
5 Bordag 5 2007 U 71.80 57.32 63.74
6 Bernhard 1 2007 U 71.64 54.68 62.02
7 Allomorfessor 2009 U 77.24 51.57 61.84
8 ParaMor-Morfessor Union 2009 P 62.75 60.30 61.50
9 ParaMor-Morfessor Mimic 2009 P 62.36 60.20 61.26
10 MorphAcq 2010 U 76.11 51.26 61.25
11 Bernhard 2 2007 U 64.27 57.65 60.78
12 Lignos Base Inference 2010 U 74.98 50.84 60.59
13 RALI-COF 2009 U 73.22 51.57 60.51
14 Morfessor Baseline 2010 U 81.28 48.06 60.40
15 MorphoNet 2009 U 71.95 51.93 60.32
16 Morfessor U+W 2010 P 65.71 55.60 60.23
17 Lignos 2009 U 85.88 45.45 59.44
18 Lignos Iterative Comp. 2010 U 71.55 50.35 59.10
19 Can 2 2009 U 63.56 55.01 58.97
20 Lignos Aggressive Comp. 2010 U 68.75 51.17 58.67
21 ParaMor 2008 U 68.34 49.69 57.54
22 Allomorfessor 2008 U 84.89 43.12 57.19
23 Promodes 2009 U 63.88 51.48 57.01
24 ParaMor Mimic 2009 P 65.21 50.24 56.75
25 Can 1 2009 U 71.92 46.68 56.61
26 RALI-ANA 2009 U 72.12 43.84 54.52
27 Promodes committee 2009 U 58.88 49.06 53.51
28 Zeman 3 2008 U 81.63 39.67 53.39
29 MetaMorph 2009 U 66.38 42.17 51.58
30 McNamee 5 2007 U 97.62 33.92 50.34
31 McNamee 4 2007 U 96.78 33.61 49.89
32 Promodes 2 2009 U 48.67 50.12 49.38
33 UNGRADE 2009 U 45.58 49.98 47.68
34 ParaMor 2007 U 48.24 46.60 47.40
35 McNamee 3 2007 U 87.60 30.39 45.12
36 ParaMor-Morfessor 2008 U 38.93 53.17 44.92
37 Zeman 2007 U 45.46 41.51 43.39
38 Zeman 1 2008 U 45.31 41.52 43.32
39 ParaMor-Morfessor 2007 U 28.68 49.59 36.34

226

Appendices

Table A.5. Precision, recall, and F-measure for the linguistic evaluation with EMMA for Turkish.

Rank Method Type Precision Recall F-measure

1 Morfessor S+W+L 2010 S 75.32 57.79 65.39
2 Morfessor S+W 2010 S 57.34 44.25 49.94
3 Morfessor Categories-MAP 2010 U 64.68 40.04 49.46
4 Morfessor Categories-MAP 2008 U 63.07 40.36 49.22
5 ParaMor 2008 U 54.04 43.55 48.23
6 ParaMor-Morfessor Mimic 2009 P 49.19 45.84 47.45
7 Lignos Base Inference 2010 U 71.31 35.30 47.22
8 ParaMor Mimic 2009 P 49.87 44.86 47.22
9 MorphAcq 2010 U 63.10 37.44 46.99
10 ParaMor-Morfessor Union 2009 P 48.19 45.21 46.65
11 Lignos Iterative Comp. 2010 U 66.07 36.02 46.62
12 Bernhard 2 2007 U 63.02 36.97 46.60
13 Bordag 5 2007 U 63.87 36.53 46.47
14 Bordag 5a 2007 U 63.66 36.40 46.31
15 RALI-ANA 2009 U 64.35 35.08 45.41
16 Lignos Aggressive Comp. 2010 U 57.09 37.33 45.13
17 Morfessor Baseline 2010 U 65.43 34.30 45.00
18 Bernhard 1 2007 U 63.16 34.76 44.84
19 Allomorfessor 2008 U 71.39 32.69 44.84
20 Allomorfessor 2009 U 63.07 34.63 44.71
21 RALI-COF 2009 U 46.93 42.50 44.61
22 Can 1 2009 U 70.05 32.36 44.27
23 Zeman 3 2008 U 76.95 30.72 43.91
24 MorphoNet 2009 U 45.46 42.46 43.90
25 DEAP MDL-NOCAT 2010 S 35.90 55.54 43.60
26 McNamee 5 2007 U 95.93 27.66 42.93
27 McNamee 4 2007 U 95.96 27.63 42.91
28 Promodes 2010 P 44.71 41.17 42.86
29 Promodes committee 2009 U 52.48 35.45 42.31
30 Zeman 2007 U 46.68 37.92 41.84
31 Zeman 1 2008 U 46.68 37.92 41.84
32 Can 2 2009 U 50.37 35.03 41.32
33 ParaMor-Morfessor 2008 U 36.23 47.06 40.93
34 McNamee 3 2007 U 88.91 25.77 39.95
35 DEAP PROB-NOCAT 2010 S 32.03 52.23 39.71
36 UNGRADE 2009 U 41.38 37.01 39.07
37 MetaMorph 2009 U 54.86 30.28 39.01
38 Promodes-H 2010 P 41.23 35.81 38.33
39 Promodes-E 2010 P 37.22 36.64 36.93
40 Promodes 2009 U 34.66 37.91 36.21
41 MAGIP 2010 S 34.79 35.41 35.09
42 Promodes 2 2009 U 33.96 33.74 33.84
43 DEAP MDL-CAT 2010 S 23.90 55.64 33.44
44 DEAP PROB-CAT 2010 S 24.17 52.06 33.01
45 Morfessor U+W 2010 P 29.59 26.27 27.83

227

Appendices

Table A.6. The mean average precision (MAP) in the information retrieval task for English.

Rank Method Type MAP

1 Snowball Porter - 40.92
2 ParaMor-Morfessor 2008 U 40.43
3 TWOL first - 40.20
4 TWOL all - 39.94
5 ParaMor 2008 U 39.42
6 Bernhard 2 2007 U 39.39
7 Bernhard 1 2007 U 38.88
8 ParaMor-Morfessor Union 2009 P 38.79
9 Morfessor Baseline 2010 U 38.35
10 Lignos Base Inference 2010 U 38.32
11 Allomorfessor 2009 U 38.31
12 ParaMor Mimic 2009 P 38.21
13 Morfessor S+W+L 2010 S 38.20
14 Lignos Aggressive Comp. 2010 U 37.84
15 Grammatical morphemes (first) - 37.77
16 Morfessor S+W 2010 S 37.76
17 Lignos Iterative Comp. 2010 U 37.76
18 Morfessor Categories-MAP 2010 U 37.54
19 Morfessor Categories-MAP 2007 U 37.50
20 ParaMor-Morfessor Mimic 2009 P 36.90
21 Morfessor U+W 2010 P 36.90
22 Morfessor Categories-MAP 2008 U 36.80
23 MorphAcq 2010 U 36.80
24 RePortS 2007 U 36.03
25 McNamee 4 2007 U 35.72
26 Grammatical morphemes (all) - 35.67
27 MorphoNet 2009 U 35.16
28 McNamee 5 2007 U 34.32
29 Bordag 5a 2007 U 34.20
30 Bordag 5 2007 U 34.11
31 Promodes-E 2010 P 33.79
32 dummy - 33.04
33 Promodes 2010 P 32.86
34 DEAP PROB-NOCAT 2010 S 31.41
35 McNamee 3 2007 U 30.35
36 DEAP MDL-NOCAT 2010 S 29.16
37 ParaMor 2007 U 28.19
38 ParaMor-Morfessor 2007 U 26.93
39 DEAP MDL-CAT 2010 S 24.09
40 MAGIP 2010 S 22.57
41 DEAP PROB-CAT 2010 S 21.86
42 Promodes-H 2010 P 20.34

228

Appendices

Table A.7. The mean average precision (MAP) in the information retrieval task for Finnish.

Rank Method Type MAP

1 TWOL first - 49.73
2 Lignos Aggressive Comp. 2010 U 49.14
3 Bernhard 2 2007 U 49.07
4 TWOL all - 48.01
5 Bernhard 1 2007 U 47.99
6 Morfessor Categories-MAP 2010 U 47.54
7 Morfessor S+W 2010 S 47.50
8 ParaMor-Morfessor Union 2009 P 47.13
9 Morfessor Categories-MAP 2008 U 46.74
10 Allomorfessor 2009 U 45.68
11 ParaMor-Morfessor 2008 U 45.42
12 Morfessor S+W+L 2010 S 44.65
13 ParaMor-Morfessor Mimic 2009 P 44.46
14 Grammatical morphemes (first) - 43.17
15 Bordag 5 2007 U 43.10
16 Bordag 5a 2007 U 42.83
17 Snowball Finnish - 42.75
18 Morfessor Baseline 2010 U 42.35
19 Lignos Iterative Comp. 2010 U 42.29
20 DEAP MDL-NOCAT 2010 S 41.60
21 Lignos Base Inference 2010 U 41.51
22 Grammatical morphemes (all) - 40.93
23 Morfessor U+W 2010 P 40.42
24 ParaMor Mimic 2009 P 39.05
25 MorphoNet 2009 U 38.75
26 MAGIP 2010 S 38.71
27 ParaMor 2008 U 38.28
28 DEAP MDL-CAT 2010 S 37.25
29 Promodes 2010 P 37.21
30 McNamee 5 2007 U 37.00
31 McNamee 4 2007 U 36.04
32 dummy - 35.29
33 McNamee 3 2007 U 32.48
34 Promodes-E 2010 P 32.13
35 DEAP PROB-NOCAT 2010 S 31.74
36 Promodes-H 2010 P 31.09
37 DEAP PROB-CAT 2010 S 28.43

229

Appendices

Table A.8. The mean average precision (MAP) in the information retrieval task for German.

Rank Method Type MAP

1 TWOL first - 48.36
2 TWOL all - 47.45
3 ParaMor-Morfessor 2008 U 46.90
4 Morfessor U+W 2010 P 46.66
5 Morfessor Categories-MAP 2010 U 46.57
6 Morfessor Categories-MAP 2008 U 46.50
7 Bernhard 1 2007 U 45.01
8 ParaMor-Morfessor Mimic 2009 P 44.97
9 Bernhard 2 2007 U 44.93
10 Lignos Base Inference 2010 U 44.34
11 Morfessor Categories-MAP 2007 U 44.25
12 ParaMor-Morfessor Union 2009 P 44.02
13 Allomorfessor 2009 U 43.93
14 Morfessor Baseline 2010 U 43.91
15 Lignos Aggressive Comp. 2010 U 43.79
16 Lignos Iterative Comp. 2010 U 42.00
17 Bordag 5 2007 U 41.87
18 Bordag 5a 2007 U 41.47
19 ParaMor-Morfessor 2007 U 38.98
20 MorphAcq 2010 U 38.62
21 Snowball German - 38.59
22 ParaMor Mimic 2009 P 37.45
23 ParaMor 2008 U 36.24
24 dummy - 35.08
25 McNamee 5 2007 U 33.97
26 Grammatical morphemes (first) - 33.50
27 MorphoNet 2009 U 33.12
28 McNamee 4 2007 U 32.60
29 ParaMor 2007 U 31.42
30 Grammatical morphemes (all) - 30.08
31 McNamee 3 2007 U 27.82

Table A.9. BLEU scores of the minimum Bayes risk combination for the Finnish-to-English ma-
chine translation task.

Rank Method Type BLEU

1 Allomorfessor 2009 U 26.80
2 Morfessor Baseline 2010 U 26.65
3 Morfessor Categories-MAP 2010 U 26.34
4 Grammatical morphemes (min) - 26.23
5 Lignos Base Inference 2010 U 26.19
6 Lignos Iterative Comp. 2010 U 26.05
7 Lignos Aggressive Comp. 2010 U 25.97
8 Morfessor S+W 2010 S 25.94
9 DEAP MDL-CAT 2010 S 25.90
10 DEAP PROB-CAT 2010 S 25.89
11 Morfessor S+W+L 2010 S 25.82
12 Promodes-E 2010 P 25.79
13 MetaMorph 2009 U 25.72
14 Promodes 2010 P 25.64
15 DEAP MDL-NOCAT 2010 S 25.62
16 Morfessor U+W 2010 P 25.61
17 MorphoNet 2009 U 25.56
18 DEAP PROB-NOCAT 2010 S 25.55
19 ParaMor-Morfessor Mimic 2009 P 25.54
20 ParaMor Mimic 2009 P 25.53
21 ParaMor-Morfessor Union 2009 P 25.44
22 Promodes-H 2010 P 25.35
23 MAGIP 2010 S 25.33
24 words - 25.28

230

Appendices

Table A.10. BLEU scores of the minimum Bayes risk combination for the German-to-English ma-
chine translation task.

Rank Method Type BLEU

1 Allomorfessor 2009 U 30.09
2 Morfessor Categories-MAP 2010 U 30.08
3 Morfessor Baseline 2010 U 29.94
4 Morfessor U+W 2010 P 29.86
5 MorphAcq 2010 U 29.86
6 Lignos Iterative Comp. 2010 U 29.85
7 Lignos Aggressive Comp. 2010 U 29.80
8 ParaMor Mimic 2009 P 29.77
9 Grammatical morphemes (min) - 29.70
10 ParaMor-Morfessor Union 2009 P 29.64
11 Lignos Base Inference 2010 U 29.52
12 ParaMor-Morfessor Mimic 2009 P 29.48
13 MorphoNet 2009 U 29.46
14 MetaMorph 2009 U 29.44
15 words - 29.43

231

Appendices

A.3 Examples of transformations extracted by
Allomorfessor

Tables A.11 and A.12 show the analyses selected by Allomorfessor in the ex-
periments of Publication VIII for English and Finnish data sets. The examples
include both linguistically sensible and erroneous analyses. If there are no com-
ments, the use of transformation is considered very successful. For example, in
English, the transformation (-e) is applied correctly over almost all of its occur-
rences.

Table A.11. The 15 most frequent transformation extracted by Allomorfessor for English.

Count Transf. Example analyses Comment

1182 (-e) adhering adhere (-e) ing
300 (-y) vulnerabilities vulnerability (-y) ies

temporarily temporary (-y) ily
technologist technology (-y) ist

120 (-t) affluence affluent (-t) ce
bankrupcy bankrupt (-t) cy misspelled

66 (-a) encyclopedic encyclopedia (-a) c
diplomtic diplomat (-a) ic misspelled
hemophilic hemophilia (-a) c

41 (-i) publshed publish (-i) ed misspelled
35 (-s) euripidean euripides (-s) a () n

diocletian diocles (-s) tian
27 (-o) aspirating aspiration (-o) g -ing not segmented
27 (-n) proletariat proletarian (-n) t

restauration restaurant (-n) ion wrong lemma
superstitious superstition (-n) us

20 (-c) paraplegia paraplegic (-c) a
8 (t|c) excellencies excellent (t|c) ies adjective as lemma

inconveniencies in () convenient (t|c) ies adjective as lemma
2 (a|s) ljubljanska ljubljana (a|s) ka proper name
1 (-g) licensintorg licensing (-g) torg proper name
1 (s|n) sclerosing sclerosis (s|n) g -ing not segmented
1 (-h) thorougbred thorough (-h) bred misspelled
1 (-a -y) bulathkopitiya bulathkopitya (-a -y) iya proper name

232

Appendices

Table A.12. The 22 most frequent transformations extracted by Allomorfessor for Finnish.

Count Transf. Example analyses Comment

7771 (-n) ahdingolla ahdingon (-n) lla genitive as lemma
aikojemme aikojen (-n) mme plural genitive as lemma

4096 (-i) anakronismeille anakronismi (-i) e () ille (i|e) preferable
desibelejä desibeli (-i) ejä (i|e) preferable

2598 (-a) diakonissoja diakonissa (-a) oja (a|o) preferable
eufemismi eufemia (-a) smi

2507 (-t) fagotisti fagotti (-t) sti
haltuunoton haltuunotto (-t) n

1114 (-s) harvennuksen harvennus (-s) ksen
yliherkkyydet yliherkkyys (-s) det

939 (-e) vuosituhantista vuosituhantiset (-e) a plural as lemma
viikattein viikate (-e) tein

675 (i|e) videoprojektoreina video () projektori (i|e) ina
transistoreita transistori (i|e) ita

532 (-ä) tulennielijöitä tulennielijä (-ä) öitä
tulokertymien tulokertymä (-ä) ien

430 (a|i) kaavailemia kaavailema (a|i) a
juurevia juureva (a|i) a

428 (n|s) hankkeeseesi hankkeeseen (n|s) i undersegmented
diabeteksesi diabeteksen (n|s) i undersegmented

322 (a|e) emigranttien emigranttia (a|e) n partitive as lemma
hajuharhojen haju () harhoja (a|e) n plural partitive as lemma

311 (-k) agnostikoksi agnostikko (-k) ksi
haaksirikossa haaksirikko (-k) ssa

232 (-a -t) murhissa murhista (-a -t) sa elative as lemma
varainhankinnalla varainhankinta (-a -t) na () lla (t|n) preferable

183 (-n -i) barrikadeja barrikadin (-n -i) eja genitive as lemma
kursseihen kursseihin (-n -i) en misspelled

143 (n|i -e) aivotärähdyksiä aivo () tärähdyksen (n|i -e) ä genitive as lemma
hoplofoobisia hoplofoobisen (n|i -e) a genitive as lemma

138 (-n n|s) aivokurkiaisen aivokurkiainen (-n n|s) n
mustapukuiset mustapukuinen (-n n|s) t

97 (t|d) häädöt häätö (t|d) t
kursivoidun kursivoitu (t|d) n

83 (a|s -t) amppeleissa amppeleita (a|s -t) sa plural partitive as lemma
elintarvikkeissa elintarvikkeita (a|s -t) sa plural partitive as lemma

82 (ä|t -l) näöltään näöllä (ä|t -l) ään adessive as lemma
piirtoheittimeltä piirtoheittimellä (ä|t -l) ä adessive as lemma

77 (-e -s) esoteerinen esoteerisen (-e -s) en genitive as lemma
teksasilainen teksasilaisen (-e -s) en

75 (t|n) abstrahoinnin abstrahointi (t|n) n
vektorikvantisoinnin vektori () kvantisointi (t|n) n

75 (a|t -l) matkapuhelimeltaan matka () puhelimella (a|t -l) aan adessive as lemma
pankkiautomaateilta pankki () automaateilla (a|t -l) a adessive as lemma

233

Appendices

234

Bibliography

Abney, S. P. (1991). Parsing by chunks. In Berwick, R., Abney, S., and Tenny, C., editors,
Principle-Based Parsing, pages 257–278. Kluwer Academic Publishers, Dordrecht, The
Netherlands.

Achlioptas, D. (2001). Database-friendly random projections. In Aref, W. G., editor, Pro-
ceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Data-
base Systems (PODS), pages 274–281, Santa Barbara, California, USA. ACM.

Adriaans, P., Trautwein, M., and Vervoort, M. (2000). Towards high speed grammar
induction on large text corpora. In SOFSEM 2000: Theory and practice of Informatics,
volume 1963 of Lecture Notes in Computer Science, pages 173–186. Springer Verlag,
Berlin, Germany.

Ailon, N. and Chazelle, B. (2006). Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. In Kleinberg, J. M., editor, The 38th ACM Symposium on
Theory of Computing (STOC 2006), pages 557–563, Seattle, WA, USA. ACM.

Akaho, S. (2001). A kernel method for canonical correlation analysis. In Yanai, H.,
Okada, A., Shigemasu, K., Kano, Y., and Meulman, J. J., editors, Proceedings of the
International Meeting of the Psychometric Society (IMPS2001), Osaka, Japan. Springer-
Verlag.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19(6):716–723.

Albright, A. and Hayes, B. (2003). Rules vs. analogy in English past tenses: A computa-
tional/experimental study. Cognition, 90:119–161.

Alegre, M. and Gordon, P. (1999). Frequency effects and the representational status of
regular inflections. Journal of Memory and Language, 40:41–61.

Alexandrescu, A. and Kirchhoff, K. (2006). Factored neural language models. In Moore,
R. C., Bilmes, J., Chu-Carroll, J., and Sanderson, M., editors, Proceedings of the Human
Language Technology Conference of the NAACL, Companion Volume: Short Papers, pages
1–4, New York, NY, USA. Association for Computational Linguistics.

Alkula, R. (2001). From plain character strings to meaningful words: Producing better
full text databases for inflectional and compounding languages with morphological
analysis software. Information Retrieval, 4(3):195–208.

Alpaydin, E. (2004). Introduction to Machine Learning. The MIT Press, Cambridge, MA,
USA.

Alumäe, T. and Kurimo, M. (2010). Domain adaptation of maximum entropy language
models. In Hajič, J., Carberry, S., Clark, S., and Nivre, J., editors, Proceedings of the
ACL 2010 Conference Short Papers, pages 301–306, Uppsala, Sweden. Association for
Computational Linguistics.

Alumäe, T. and Kurimo, M. (2010). Efficient estimation of maximum entropy language
models with n-gram features: an SRILM extension. In Kobayashi, T., Hirose, K.,
and Nakamura, S., editors, Proceedings of the 11th Annual Conference of the International
Speech Communication Association (INTERSPEECH 2010), pages 1820–1823, Makuhari,
Chiba, Japan. ISCA.

235

Bibliography

Arthur, D. and Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding.
In Bansal, N., Pruhs, K., and Stein, C., editors, SODA ’07: Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1027–1035, New Orleans,
LA, USA. Society for Industrial and Applied Mathematics.

Baayen, R. H. (2007). Storage and computation in the mental lexicon. In Jarema, G.
and Libben, G., editors, The Mental Lexicon: Core Perspectives, pages 81–104. Elsevier,
Oxford, UK.

Baayen, R. H., Dijkstra, T., and Schreuder, R. (1997). Singulars and plurals in Dutch:
Evidence for a parallel dual route model. Journal of Memory and Language, 37:94–117.

Baayen, R. H., Milin, P., Filipović Ðurd̄ević, D., Hendrix, P., and Marelli, M. (2011). An
amorphous model for morphological processing in visual comprehension based on
naive discriminative learning. Psychological Review, 118:438–482.

Bacchiani, M. and Roark, B. (2003). Unsupervised language model adaptation. In Pro-
ceedings of the 2003 IEEE International Conference on Acoustics Speech and Signal Process-
ing (ICASSP), pages 224–227, Hong Kong, China. IEEE.

Bach, F. R. and Jordan, M. I. (2003). Kernel independent component analysis. Journal of
Machine Learning Research, 3:1–48.

Bagga, A. and Baldwin, B. (1998). Entity-based cross-document coreferencing using the
vector space model. In Proceedings of the 17th International Conference on Computational
Linguistics (COLING’98), volume 1, pages 79–85, Montreal, Canada. Association for
Computational Linguistics / Morgan Kaufmann Publishers.

Bahl, L. R., Brown, P. F., de Souza, P. V., and Mercer, R. L. (1989). A tree-based statis-
tical language model for natural language speech recognition. IEEE Transactions on
Acoustics, Speech and Signal Processing, 37(7):1001–1008.

Baroni, M., Matiasek, J., and Trost, H. (2002). Unsupervised discovery of morphologi-
cally related words based on orthographic and semantic similarity. In Proceedings of
the ACL-02 Workshop on Morphological and Phonological Learning, pages 48–57, Philadel-
phia, PA, USA. Association for Computational Linguistics.

Barron, A., Rissanen, J., and Yu, B. (1998). The minimum description length principle in
coding and modeling. IEEE Transactions on Information Theory, 44(6):2743–2760.

Baum, L. E. (1972). An inequality and an associated maximization technique in statisti-
cal estimation of probabilistic functions of a Markov process. Inequalities, 3(1):1–8.

Beal, M. J., Ghahramani, Z., and Rasmussen, C. E. (2002). The infinite hidden Markov
model. In Advances in Neural Information Processing Systems 14, pages 577–584, Cam-
bridge, MA, USA. MIT Press.

Beesley, K. (1988). Language identifier: A computer program for automatic natural-
language identification of on-line text. In Hammond, D. L., editor, Proceedings of the
29th Annual Conference of the American Translators Association, pages 47–54, Seattle,
WA, USA. Information Today, Inc.

Bellegarda, J. R. (2000). Exploiting latent semantic information in statistical language
modeling. Proceedings of the IEEE, 88(8):1279–1296.

Bengio, Y., Ducharme, R., and Vincent, P. (2001). A neural probabilistic language model.
In Leen, T. K., Dietterich, T. G., and Tresp, V., editors, Advances in Neural Information
Processing Systems 13, pages 932–938. MIT Press, Cambridge, MA, USA.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic lan-
guage model. Journal of Machine Learning Research, 3:1137–1155.

Benzécri, J.-P. (1973). L’Analyse des Données. Volume II. L’Analyse des Correspondances.
Dunod, Paris, France.

Berant, J., Gross, Y., Mussel, M., Sandbank, B., Ruppin, E., and Edelman, S. (2007).
Boosting unsupervised grammar induction by splitting complex sentences on func-
tion words. In Caunt-Nulton, H., Kulatilake, S., and hao Woo, I., editors, Proceedings of
the 31st Annual Boston University Conference on Language Development (BUCLD), pages
93–104, Boston, MA, USA. Cascadilla Press.

236

Bibliography

Bernhard, D. (2006). Unsupervised morphological segmentation based on segment pre-
dictability and word segments alignment. In Kurimo, M., Creutz, M., and Lagus,
K., editors, Proceedings of the PASCAL Challenge Workshop on Unsupervised segmentation
of words into morphemes, pages 18–22, Venice, Italy. PASCAL European Network of
Excellence.

Bernhard, D. (2008). Simple morpheme labelling in unsupervised morpheme analy-
sis. In Advances in Multilingual and Multimodal Information Retrieval, 8th Workshop of
the Cross-Language Evaluation Forum, CLEF 2007, Budapest, Hungary, September 19–21,
2007, Revised Selected Papers, volume 5152 of Lecture Notes in Computer Science, pages
873–880. Springer, Berlin / Heidelberg, Germany.

Bernhard, D. (2010a). Apprentissage non supervisé de familles morphologiques : com-
paraison de méthodes et aspects multilingues. Traitement Automatique des Langues,
52(2):11–39.

Bernhard, D. (2010b). Morphonet: Exploring the use of community structure for unsu-
pervised morpheme analysis. In Multilingual Information Access Evaluation I. Text Re-
trieval Experiments: 10th Workshop of the Cross-Language Evaluation Forum, CLEF 2009,
Corfu, Greece, September 30 – October 2, 2009, Revised Selected Papers, volume 6241 of
Lecture Notes in Computer Science, pages 598–608. Springer, Berlin / Heidelberg, Ger-
many.

Bertram, R., Baayen, R. H., and Schreuder, R. (2000). Effects of family size for complex
words. Journal of Memory and Language, 42:390–405.

Besançon, R. and Rajman, M. (2002). Evaluation of a vector space similarity measure in a
multilingual framework. In Proceedings of the 3rd International Conference on Language
Resources and Evaluation (LREC 2002), volume 1252, pages 1537–1542, Las Palmas,
Spain. European Language Resources Association.

Bharati, A., Sangal, R., Bendre, S., Kumar, P., and Aishwarya (2001). Unsupervised im-
provement of morphological analyzer for inflectionally rich languages. In Proceedings
of the Sixth Natural Language Processing Pacific Rim Symposium, pages 685–692, Tokyo,
Japan. Asian Federation of Natural Language Processing.

Bilmes, J. A. (1998). A gentle tutorial of the EM algorithm and its application to param-
eter estimation for Gaussian mixture and hidden Markov models. Technical Report
TR-97-021, International Compute Science Institute, Berkeley, CA, USA.

Bilmes, J. A. and Kirchhoff, K. (2003). Factored language models and generalized paral-
lel backoff. In Companion Volume of the Proceedings of HLT-NAACL 2003 — Short Papers,
pages 4–6, Edmonton, Canada. Association for Computational Linguistics.

Bingham, E. and Mannila, H. (2001). Random projection in dimensionality reduction:
applications to image and text data. In Proceedings of the 7th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD-2001), pages 245–250,
San Francisco, CA, USA. ACM.

Bird, S. (2009). Natural language processing and linguistic fieldwork. Computational
Linguistics, 35(3):469–474.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer Science+Business
Media, New York, NY, USA.

Blanken, H. and Hiemstra, D. (2007). Searching for text documents. In Blanken, H. M.,
de Vries, A. P., Blok, H. E., and Feng, L., editors, Multimedia retrieval, pages 97–124.
Springer-Verlag, Berlin / Heidelberg, Germany.

Blasig, R. (1999). Combination of words and word categories in varigram histories. In
Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), volume 1, pages 529–532, Phoenix, AZ, USA. IEEE.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022.

Blitzer, J., Globerson, A., and Pereira, F. (2005). Distributed latent variable models of
lexical co-occurrences. In Cowell, R. G. and Ghahramani, Z., editors, Proceedings of
the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS 2005),
pages 25–32, Barbados. Society for Artificial Intelligence and Statistics.

Bloomfield, L. (1935). Language. George Allen & Unwin Ltd., London, UK.

237

Bibliography

Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data with co-
training. In Bartlett, P. L. and Mansour, Y., editors, Proceedings of the Eleventh Annual
Conference on Computational Learning Theory (COLT 1998), pages 92–100, Madison, WI,
USA. Morgan Kaufmann.

Bod, R. (2006). An all-subtrees approach to unsupervised parsing. In Calzolari, N.,
Cardie, C., and Isabelle, P., editors, Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics, pages 865–872, Sydney, Australia. Association for Computational Linguis-
tics.

Bod, R. (2007). Is the end of supervised parsing in sight? In Zaenen, A. and van den
Bosch, A., editors, Proceedings of the 45th Annual Meeting of the Association of Computa-
tional Linguistics, pages 400–407, Prague, Czech Republic. Association for Computa-
tional Linguistics.

Bod, R. (2009a). Constructions at work or at rest? Cognitive Linguistics, 20(1):129–134.

Bod, R. (2009b). From exemplar to grammar: A probabilistic analogy-based model of
language learning. Cognitive Science, 33(5):752–793.

Bonafonte, A. and Mariño, J. B. (1996). Language modeling using x-grams. In Bun-
nel, H. T. and Idsardi, W., editors, Proceedings of Fourth International Conference Spoken
Language Processing (ICSLP), pages 394–397, Philadelphia, PA, USA. ISCA.

Bookstein, A. and Swanson, D. R. (1974). Probabilistic models for automatic indexing.
Journal of the American Society for Information Science, 25(5):312–316.

Bordag, S. (2006). Two-step approach to unsupervised morpheme segmentation. In
Kurimo, M., Creutz, M., and Lagus, K., editors, Proceedings of the PASCAL Challenge
Workshop on Unsupervised segmentation of words into morphemes, pages 23–27, Venice,
Italy. PASCAL European Network of Excellence.

Bordag, S. (2008). Unsupervised and knowledge-free morpheme segmentation and
analysis. In Advances in Multilingual and Multimodal Information Retrieval, 8th Work-
shop of the Cross-Language Evaluation Forum, CLEF 2007, Budapest, Hungary, September
19–21, 2007, Revised Selected Papers, volume 5152 of Lecture Notes in Computer Science,
pages 881–891. Springer, Berlin / Heidelberg, Germany.

Borensztajn, G., Zuidema, W., and Bod, R. (2009). Children’s grammars grow more
abstract with age. Topics in Cognitive Science, 1:175–188.

Borga, M. (1998). Learning Multidimensional Signal Processing. PhD thesis, Linköping
University, Sweden.

Branavana, S., Chen, H., Zettlemoyer, S., and Barzilay, R. (2009). Reinforcement learning
for mapping instructions to actions. In Su, K.-Y., Su, J., Wiebe, J., and Li, H., editors,
Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP,
pages 82–90, Suntec, Singapore. Association for Computational Linguistics.

Brants, T. and Franz, A. (2006). Web 1T 5-gram Version 1. Linguistic Data Consortium,
Philadelphia, PA, USA.

Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J. (2007). Large language models
in machine translation. In Eisner, J., editor, Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 858–867, Prague, Czech Republic. Association for
Computational Linguistics.

Brent, M. (1999). An efficient, probabilistically sound algorithm for segmentation and
word discovery. Machine Learning, 34:71–105.

Broman, S. and Kurimo, M. (2005). Methods for combining language models in speech
recognition. In Proceedings of the 9th European Conference on Speech Communication and
Technology (Interspeech 2005), pages 1317–1320, Lisbon, Portugal. ISCA.

Brown, P. F., DellaPietra, V. J., deSouza, P. V., Lai, J. C., and Mercer, R. L. (1992). Class-
based n-gram models of natural language. Computational Linguistics, 18(4):467–479.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993). The mathematics
of statistical machine translation: Parameter estimation. Computational Linguistics,
19(2):263–311.

238

Bibliography

Callison-Burch, C., Koehn, P., Monz, C., and Zaidan, O. (2011). Findings of the 2011
workshop on statistical machine translation. In Callison-Burch, C., Koehn, P., Monz,
C., and Zaidan, O. F., editors, Proceedings of the Sixth Workshop on Statistical Machine
Translation, pages 22–64, Edinburgh, Scotland. Association for Computational Lin-
guistics.

Callison-Burch, C., Osborne, M., and Koehn, P. (2006). Re-evaluating the role of BLEU
in machine translation research. In Proceedings of the 11th Conference of the European
Chapter of the Association for Computational Linguistics (EACL 2006), pages 249–256,
Trento, Italy. Association for Computational Linguistics.

Can, B. and Manandhar, S. (2010). Clustering morphological paradigms using syntac-
tic categories. In Multilingual Information Access Evaluation I. Text Retrieval Experi-
ments: 10th Workshop of the Cross-Language Evaluation Forum, CLEF 2009, Corfu, Greece,
September 30 – October 2, 2009, Revised Selected Papers, volume 6241 of Lecture Notes in
Computer Science, pages 641–648. Springer, Berlin / Heidelberg, Germany.

Candès, E. J., Romberg, J., and Tao, T. (2006). Robust uncertainty principles: Exact
signal reconstruction from highly incomplete Fourier information. IEEE Transactions
on Information Theory, 52(2):489–509.

Candès, E. J. and Wakin, M. B. (2008). An introduction to compressive sampling. IEEE
Signal Processing Magazine, 21(2):21–30.

Cardoso, J.-F. (1998). Blind signal separation: statistical principles. Proceedings of the
IEEE, 86(10):2009–2025.

Caropreso, M. F., Matwin, S., and Sebastiani, F. (2001). A learner-independent evalua-
tion of the usefulness of statistical phrases for automated text categorization. In Chin,
A. G., editor, Text Databases & Document Management: Theory & Practice, pages 78–102.
IGI Publishing, Hershey, PA, USA.

Caruana, R. (1997). Multitask learning. Machine Learning, 28:41–75.

Chaitin, G. J. (1969). On the length of programs for computing finite binary sequences:
statistical considerations. Journal of the ACM, 16:145–159.

Chan, E. (2006). Learning probabilistic paradigms for morphology in a latent class
model. In Wicentowski, R. and Kondrak, G., editors, Proceedings of the Eighth Meeting
of the ACL Special Interest Group on Computational Phonology and Morphology at HLT-
NAACL 2006, pages 69–78, New York, NY, USA. Association for Computational Lin-
guistics.

Charniak, E. (2001). Immediate-head parsing for language models. In Proceedings of
39th Annual Meeting of the Association for Computational Linguistics, pages 124–131,
Toulouse, France. Association for Computational Linguistics.

Chelba, C. and Acero, A. (2004). Adaptation of maximum entropy capitalizer: Little
data can help a lot. In Lin, D. and Wu, D., editors, Proceedings of the 2004 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 285–292, Barcelona,
Spain. Association for Computational Linguistics.

Chelba, C. and Jelinek, F. (2000). Structured language modeling. Computer Speech and
Language, 14(4):283–332.

Chen, H., Houston, A. L., Sewell, R. R., and Schatz, B. R. (1998). Internet browsing and
searching: User evaluations of category map and concept space techniques. Journal of
the American Society for Information Science, 49(7):582–603.

Chen, S. F. (1995). Bayesian grammar induction for language modeling. In Uszkoreit, H.,
editor, Proceedings of the 33rd Annual Meeting of the Association for Computational Lin-
guistics, pages 228–235, Cambridge, MA, USA. Association for Computational Lin-
guistics.

Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for
language modeling. Computer Speech and Language, 13(4):359–393.

Chen, S. F. and Rosenfeld, R. (2000). A survey of smoothing techniques for me models.
IEEE Transactions on Speech and Audio Processing, 8(1):37–50.

239

Bibliography

Chew, P. and Abdelali, A. (2007). Benefits of the ‘massively parallel Rosetta stone’:
Cross-language information retrieval with over 30 languages. In Carroll, J. A.,
van den Bosch, A., and Zaenen, A., editors, Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics (ACL 2007), pages 872–879, Prague, Czech
Republic. Association for Computational Linguistics.

Chiang, D. (2007). Hierarchical phrase-based translation. Computational Linguistics,
33(2):201–228.

Chiang, D., Graehl, J., Knight, K., Pauls, A., and Ravi, S. (2010). Bayesian inference for
finite-state transducers. In Kaplan, R., Burstein, J., Harper, M., and Penn, G., editors,
Human Language Technologies: The 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics, pages 447–455, Los Angeles, California.
Association for Computational Linguistics.

Chomsky, N. (1957). Syntactic Structures. Mouton, The Hague / Paris.

Chomsky, N. (1959). Review of B.F. Skinner’s Verbal Behavior. Language, 35(1):26–58.

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press, Cambridge, MA, USA.

Chomsky, N. and Halle, M. (1968). The Sound Pattern of English. Harper & Row, New
York, NY, USA.

Christodoulopoulos, C., Goldwater, S., and Steedman, M. (2010). Two decades of unsu-
pervised POS induction: How far have we come? In Li, H. and M‘arquez, L., editors,
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing,
pages 575–584, Cambridge, MA. Association for Computational Linguistics.

Chrupała, G., Dinu, G., and van Genabith, J. (2008). Learning morphology with Mor-
fette. In Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odjik, J., Piperidis, S.,
and Tapias, D., editors, Proceedings of the Sixth International Conference on Language
Resources and Evaluation (LREC’08), Marrakech, Morocco. European Language Re-
sources Association.

Chueh, C.-H. and Chien, J.-T. (2010). Topic cache language model for speech recogni-
tion. In Proceedings of the 2010 IEEE International Conference on Acoustics Speech and
Signal Processing (ICASSP), pages 5194–5197, Dallas, TX, USA. IEEE.

Chung, T. and Gildea, D. (2009). Unsupervised tokenization for machine translation. In
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing,
pages 718–726, Singapore. Association for Computational Linguistics.

Clark, A. (2001). Unsupervised Language Acquisition: Theory and Practice. PhD thesis,
School of Cognitive and Computing Sciences, Brighton, UK.

Clark, A. (2002). Memory-based learning of morphology with stochastic transducers. In
Proceedings of 40th Annual Meeting of the Association for Computational Linguistics, pages
513–520, Philadelphia, PA, USA. Association for Computational Linguistics.

Clark, A., Eyraud, R., and Habrard, A. (2008). A polynomial algorithm for the inference
of context free languages. In Clark, A., Coste, F., and Miclet, L., editors, Grammati-
cal Inference: Algorithms and Applications, 9th International Colloquium on Grammatical
Inference (ICGI 2008), Saint-Malo, France, September 22–24, 2008, Proceedings, volume
5278 of Lecture Notes in Computer Science, pages 29–42. Springer.

Clark, A., Eyraud, R., and Habrard, A. (2010). Using contextual representations to ef-
ficiently learn context-free languages. Journal of Machine Learning Research, 11:2707–
2744.

Clarkson, P. and Robinson, A. (1997). Language model adaptation using mixtures and
an exponentially decaying cache. In Proceedings of the 1997 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), volume 2, pages 799–802,
Munich, Germany. IEEE.

Coccaro, N. and Jurafsky, D. (1998). Towards better integration of semantic predictors
in statistical language modeling. In Mannell, R. H. and Robert-Ribes, J., editors, Pro-
ceedings of the 5th International Conference on Spoken Language Processing (ICSLP-1998),
volume 6, pages 2403–2406, Sydney, Australia. Australian Speech Science and Tech-
nology Association.

240

Bibliography

Coenen, F., Leng, P., Sanderson, R., and Wang, Y. J. (2007). Statistical identification of key
phrases for text classification. In Perner, P., editor, Proceedings of the 5th International
Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM ’07),
Leipzig, Germany, July 18–20, 2007, volume 4571 of Lecture Notes in Computer Science,
pages 838–853. Springer-Verlag, Berlin / Heidelberg, Germany.

Çöltekin, Ç. (2010). A freely available morphological analyzer for Turkish. In Calzo-
lari, N., Choukri, K., Maegaard, B., Mariani, J., Odjik, J., Piperidis, S., Rosner, M.,
and Tapias, D., editors, Proceedings of the 7th International Conference on Language Re-
sources and Evaluation (LREC’10), pages 280–287, Valletta, Malta. European Language
Resources Association.

Corston-Oliver, S. and Gamon, M. (2004). Normalizing German and English inflectional
morphology to improve statistical word alignment. In Frederking, R. E. and Taylor,
K., editors, Machine Translation: From Real Users to Research, 6th Conference of the As-
sociation for Machine Translation in the Americas (AMTA 2004), Washington, DC, USA,
September 28–October 2, 2004, Proceedings, volume 3265 of Lecture Notes in Computer
Science, pages 48–57, Berlin / Heidelberg, Germany. Springer.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273–
297.

Cover, T. M. and Thomas, J. A. (2006). Elements of information theory. John Wiley & Sons,
Inc., Hoboken, NJ, USA, 2nd edition.

Cramer, B. (2007). Limitations of current grammar induction algorithms. In Biemann,
C., Seretan, V., and Riloff, E., editors, Proceedings of the ACL 2007 Student Research
Workshop, pages 43–48, Prague, Czech Republic. Association for Computational Lin-
guistics.

Creutz, M. (2003). Unsupervised segmentation of words using prior distributions of
morph length and frequency. In Hinrichs, E. W. and Roth, D., editors, Proceedings of
the 41st Annual Meeting of the Association for Computational Linguistics, pages 280–287,
Sapporo, Japan. Association for Computational Linguistics.

Creutz, M. (2006). Induction of the Morphology of Natural Language: Unsupervised Mor-
pheme Segmentation with Application to Automatic Speech Recognition. PhD thesis,
Helsinki University of Technology.

Creutz, M., Hirsimäki, T., Kurimo, M., Puurula, A., Pylkkönen, J., Siivola, V., Varjokallio,
M., Arisoy, E., Saraçlar, M., and Stolcke, A. (2007). Morph-based speech recognition
and modeling of out-of-vocabulary words across languages. ACM Transactions on
Speech and Language Processing, 5(1):3:1–3:29.

Creutz, M. and Lagus, K. (2002). Unsupervised discovery of morphemes. In Maxwell,
M., editor, Proceedings of the ACL-02 Workshop on Morphological and Phonological Learn-
ing, pages 21–30, Philadelphia, PA, USA. Association for Computational Linguistics.

Creutz, M. and Lagus, K. (2004). Induction of a simple morphology for highly-inflecting
languages. In Proceedings of the Seventh Meeting of the ACL Special Interest Group in Com-
putational Phonology, pages 43–51, Barcelona, Spain. Association for Computational
Linguistics.

Creutz, M. and Lagus, K. (2005a). Inducing the morphological lexicon of a natural lan-
guage from unannotated text. In Honkela, T., Könönen, V., Pöllä, M., and Simula, O.,
editors, Proceedings of AKRR’05, International and Interdisciplinary Conference on Adap-
tive Knowledge Representation and Reasoning, pages 106–113, Espoo, Finland. Helsinki
University of Technology, Laboratory of Computer and Information Science.

Creutz, M. and Lagus, K. (2005b). Unsupervised morpheme segmentation and morphol-
ogy induction from text corpora using Morfessor 1.0. Technical Report A81, Publica-
tions in Computer and Information Science, Helsinki University of Technology.

Creutz, M. and Lagus, K. (2007). Unsupervised models for morpheme segmentation and
morphology learning. ACM Transactions on Speech and Language Processing, 4(1):3:1–
3:34.

Creutz, M. and Lindén, K. (2004). Morpheme segmentation gold standards for Finnish
and English. Technical Report A77, Publications in Computer and Information Sci-
ence, Helsinki University of Technology.

241

Bibliography

Croft, W. (2001). Radical Construction Grammar — Syntactic theory in typological perspective.
Oxford University Press, Oxford, UK.

Croft, W. and Cruse, D. A. (2004). Cognitive Linguistics. Cambridge Textbooks in Lin-
guistics. Cambridge University Press, Cambridge, UK.

Culy, C. and Riehemann, S. Z. (2003). The limits of n-gram translation evaluation met-
rics. In Proceedings of the Machine Translation Summit IX, New Orleans, LA, USA. As-
sociation for Machine Translation in the Americas.

Curran, J. R. and Moens, M. (2002). Scaling context space. In Proceedings of the 40th An-
nual Meeting of the Association for Computational Linguistics, pages 231–238, Philadel-
phia, PA, USA. Association for Computational Linguistics.

Daelemans, W. and van den Bosch, A. (2005). Memory-Based Language Processing. Cam-
bridge University Press, Cambridge, UK.

Daelemans, W., van den Bosch, A., and Zavrel, J. (1999). Forgetting exceptions is harm-
ful in language learning. Machine Learning, 34(1):11–43.

Darroch, J. N. and Ratcliff, D. (1972). Generalized iterative scaling for log-linear models.
Annals of Mathematical Statistics, 43(5):1470–1480.

Dasgupta, S., Littman, M. L., and McAllester, D. A. (2001). PAC generalization bounds
for co-training. In Dietterich, T. G., Becker, S., and Ghahramani, Z., editors, Advances
in Neural Information Processing Systems 14, pages 375–382, Cambridge, MA, USA. MIT
Press.

Dasgupta, S. and Ng, V. (2007). High-performance, language-independent morpholog-
ical segmentation. In Sidner, C., Schultz, T., Stone, M., and Zhai, C., editors, Human
Language Technologies 2007: The Conference of the North American Chapter of the Associ-
ation for Computational Linguistics; Proceedings of the Main Conference, pages 155–163,
Rochester, NY, USA. Association for Computational Linguistics.

Daumé III, H. (2007). Frustratingly easy domain adaptation. In Zaenen, A. and van den
Bosch, A., editors, Proceedings of the 45th Annual Meeting of the Association of Computa-
tional Linguistics, pages 256–263, Prague, Czech Republic. Association for Computa-
tional Linguistics.

De Bie, T. and De Moor, B. (2003). On the regularization of canonical correlation anal-
ysis. In Proceedings of the Fourth International Symposium on Independent Component
Analysis and Blind Source Separation (ICA2003), pages 785–790, Nara, Japan. NTT Com-
munication Science Laboratories.

de Marcken, C. G. (1996). Unsupervised Language Acquisition. PhD thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., and Harshman, R. A.
(1990). Indexing by latent semantic analysis. Journal of the American Society of Informa-
tion Science, 41(6):391–407.

Deligne, S. and Bimbot, F. (1995). Language modeling by variable length sequences:
Theoretical formulation and evaluation of multigrams. In Proceedings of the 1995 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), volume 1,
pages 169–172, Detroit, MI, USA. IEEE.

Deligne, S. and Bimbot, F. (1997). Inference of variable-length linguistic and acoustic
units by multigrams. Speech Communication, 23(3):223–241.

Demberg, V. (2007). A language-independent unsupervised model for morphological
segmentation. In Zaenen, A. and van den Bosch, A., editors, Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, pages 920–927, Prague,
Czech Republic. Association for Computational Linguistics.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38.

Department of General Linguistics, University of Helsinki and Research Institute for
the Languages of Finland (gatherers) (1996–1998). Finnish Parole Corpus. Available
through CSC, http://www.csc.fi/.

242

Bibliography

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306.

Duh, K. and Kirchhoff, K. (2004). Automatic learning of language model structure. In
Proceedings of the 20th International Conference on Computational Linguistics (COLING
2004), pages 148–154, Geneva, Switzerland. COLING.

Dumais, S. T. (1991). Improving the retrieval of information from external sources. Be-
havior Research Methods, Instruments, & Computers, 23(2):229–236.

Dunning, T. (1994). Statistical identification of language. Technical Report MCCS-94-
273, Computing Research Lab, New Mexico State University.

Dyer, C., Muresan, S., and Resnik, P. (2008). Generalizing word lattice translation. In
Moore, J. D., Teufel, S., Allan, J., and Furui, S., editors, Proceedings of ACL-08: HLT,
pages 1012–1020, Columbus, OH, USA. Association for Computational Linguistics.

Emami, A., Xu, P., and Jelinek, F. (2003). Using a connectionist model in a syntacti-
cal based language model. In Proceedings of the 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pages 372–375, Hong Kong, China.
IEEE.

Fagan, J. L. (1988). The effectiveness of a nonsyntactic approach to automatic phrase
indexing for document retrieval. Journal of the American Society for Information Science,
40(2):115–132.

Feldman, J. A. (2006). From Molecule to Metaphor: A Neural Theory of Language. MIT Press,
Cambridge, MA, USA.

Fellbaum, C., editor (1998). WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge, MA, USA.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of
Statistics, 1(2):209–230.

Fillmore, C., Kay, P., and O’Connor, C. (1988). Regularity and idiomaticity in grammat-
ical constructions: The case of let alone. Language, 64:501–538.

Finkel, J. R. and Manning, C. D. (2009). Hierarchical Bayesian domain adaptation. In
Ostendorf, M., Collins, M., Narayanan, S., Oard, D. W., and Vanderwende, L., ed-
itors, Proceedings of Human Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pages 602–610,
Boulder, Colorado. Association for Computational Linguistics.

Finn, A. and Kushmerick, N. (2006). Learning to classify documents according to genre.
Journal of the American Society for Information Science and Technology, 57(11):1506–1518.

Fishel, M. (2009). Deeper than words: Morph-based alignment for statistical machine
translation. In Proceedings of the Conference of the Pacific Association for Computational
Linguistics (PacLing 2009), Sapporo, Japan.

Florian, R. and Wicentowski, R. (2002). Unsupervised italian word sense disambigua-
tion using wordnets and unlabeled corpora. In Edmonds, P., Mihalcea, R., and Saint-
Dizier, P., editors, Proceedings of the ACL-02 Workshop on Word Sense Disambiguation:
Recent Successes and Future Directions, pages 67–73. Association for Computational
Linguistics.

Forney, Jr., G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE, 61(3):268–278.

Fried, M. and Östman, J.-O., editors (2004). Construction Grammar in a cross-language
perspective, volume 2 of Constructional Approaches to Language. John Benjamins, Ams-
terdam, Netherlands & Philadelphia, PA, USA.

Gale, W. A. and Sampson, G. (1995). Good-turing frequency estimation without tears.
Journal of Quantitative Linguistics, 2:217–237.

Gao, J., Goodman, J. T., Cao, G., and Li, H. (2002). Exploring asymmetric clustering for
statistical language modeling. In Proceedings of 40th Annual Meeting of the Association
for Computational Linguistics, pages 183–190, Philadelphia, PA, USA. Association for
Computational Linguistics.

243

Bibliography

Gärdenfors, P. (2000). Conceptual Spaces — The Geometry of Thought. MIT Press, Cam-
bridge, MA, USA.

Gaussier, É., Renders, J.-M., Matveeva, I., Goutte, C., and Déjean, H. (2004). A geo-
metric view on bilingual lexicon extraction from comparable corpora. In Scott, D.,
Daelemans, W., and Walker, M. A., editors, Proceedings of the 42nd Annual Meeting
of the Association for Computational Linguistics (ACL 2004), pages 526–533, Barcelona,
Spain. Association for Computational Linguistics.

Ghahramani, Z. (2004). Unsupervised learning. In Bousquet, O., von Luxburg, U., and
Rätsch, G., editors, Advanced Lectures on Machine Learning, volume 3176 of Lecture
Notes in Computer Science, pages 72–112. Springer, Berlin / Heidelberg, Germany.

Giachin, E. (1995). Phrase bigrams for continuous speech recognition. In Proceed-
ings of the 1995 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 1, pages 225–228, Detroit, MI, USA. IEEE.

Gildea, D. and Hofmann, T. (1999). Topic based language models using EM. In Proceed-
ings of 6th European Conference on Speech Communication and Technology (Eurospeech’99),
pages 2167–2170, Budapest, Hungary. ISCA.

Gold, E. M. (1967). Language identification in the limit. Information and Control,
10(5):447–474.

Goldberg, A. E. (1995). Constructions — A Construction Grammar Approach to Argument
Structure. The Chigago University Press, Chigago, IL, USA.

Goldberg, A. E. (2003). Constructions: A new theoretical approach to language. Trends
in Cognitive Sciences, 7(5):219–224.

Goldberg, A. E. (2006). Constructions at Work — The nature of generalization in language.
Oxford University Press, Oxford, UK.

Goldsmith, J. (2001). Unsupervised learning of the morphology of a natural language.
Computational Linguistics, 27(2):153–189.

Goldsmith, J. A. (2010). Segmentation and morphology. In Clark, A., Fox, C., and
Lappin, S., editors, The Handbook of Computational Linguistics and Natural Language
Processing, pages 364–393. Wiley-Blackwell, West Sussex, UK.

Goldwater, S. (2006). Nonparametric Bayesian Models of Lexical Acquisition. PhD thesis,
Brown University, Providence, RI, USA.

Goldwater, S., Griffiths, T., and Johnson, M. (2006). Interpolating between types and
tokens by estimating power-law generators. In Weiss, Y., Schölkopf, B., and Platt,
J., editors, Advances in Neural Information Processing Systems 18, pages 459–466. MIT
Press, Cambridge, MA, USA.

Goldwater, S., Griffiths, T. L., and Johnson, M. (2011). Producing power-law distri-
butions and damping word frequencies with two-stage language models. Journal of
Machine Learning Research, 12:2335–2382.

Goldwater, S. and McClosky, D. (2005). Improving statistical MT through morphological
analysis. In Mooney, R., Brew, C., Chien, L.-F., and Kirchhoff, K., editors, Proceedings of
the Human Language Technology Conference / Conference on Empirical Methods in Natural
Language Processing (HLT/EMNLP 2005), pages 676–683, Vancouver, British Columbia,
Canada. Association for Computational Linguistics.

Golénia, B., Spiegler, S., and Flach, P. A. (2010a). Unsupervised morpheme discovery
with ungrade. In Multilingual Information Access Evaluation I. Text Retrieval Experi-
ments: 10th Workshop of the Cross-Language Evaluation Forum, CLEF 2009, Corfu, Greece,
September 30 – October 2, 2009, Revised Selected Papers, volume 6241 of Lecture Notes in
Computer Science, pages 633–640. Springer, Berlin / Heidelberg, Germany.

Golénia, B., Spiegler, S., Ray, O., and Flach, P. (2010b). Morphological analysis using
morpheme graph and mixed-integer computation of stable models. In Kurimo, M.,
Virpioja, S., and Turunen, V. T., editors, Proceedings of the Morpho Challenge 2010 Work-
shop, pages 25–29, Espoo, Finland. Aalto University School of Science and Technology,
Department of Information and Computer Science. Technical Report TKK-ICS-R37.

Good, I. J. (1953). The population frequencies of species and the estimation of popula-
tion parameters. Biometrika, 40(3/4):237–264.

244

Bibliography

Goodman, J. (2001a). Classes for fast maximum entropy training. In Proceedings of the
2001 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 561–564, Salt Lake City, UT, USA. IEEE.

Goodman, J. (2004). Exponential priors for maximum entropy models. In Susan Dumais,
D. M. and Roukos, S., editors, HLT-NAACL 2004: Main Proceedings, pages 305–312,
Boston, Massachusetts, USA. Association for Computational Linguistics.

Goodman, J. and Gao, J. (2000). Language model size reduction by pruning and clus-
tering. In Proceedings of the Sixth International Conference on Spoken Language Processing
(ICSLP 2000), volume 3, pages 110–113, Beijing, China. ISCA.

Goodman, J. T. (2001b). A bit of progress in language modeling — extended version.
Technical Report MSR-TR-2001-72, Microsoft Research.

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., and Schölkopf, B. (2005). Kernel
methods for measuring independence. Journal of Machine Learning Research, 6:2075–
2129.

Grünwald, P. (2005). A tutorial introduction to the Minimum Description Length prin-
ciple. In Advances in Minimum Description Length: Theory and Applications. MIT Press.

Hafer, M. A. and Weiss, S. F. (1974). Word segmentation by letter successor varieties.
Information Storage and Retrieval, 10(11–12):371–385.

Haghighi, A., Liang, P., Berg-Kirkpatrick, T., and Klein, D. (2008). Learning bilingual
lexicons from monolingual corpora. In Moore, J. D., Teufel, S., Allan, J., and Furui,
S., editors, Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies (ACL-08: HLT), pages 771–779, Columbus,
OH, USA. Association for Computational Linguistics.

Hammarström, H. (2006). A naive theory of morphology and an algorithm for extrac-
tion. In Wicentowski, R. and Kondrak, G., editors, Proceedings of the Eighth Meeting
of the ACL Special Interest Group on Computational Phonology (SIGPHON), pages 79–88,
New York, NY, USA. Association for Computational Linguistics.

Hammarström, H. (2006). Poor man’s stemming: Unsupervised recognition of same-
stem words. In Ng, H., Leong, M.-K., Kan, M.-Y., and Ji, D., editors, Information
Retrieval Technology, volume 4182 of Lecture Notes in Computer Science, pages 323–337.
Springer, Berlin / Heidelberg, Germany.

Hammarström, H. and Borin, L. (2011). Unsupervised learning of morphology. Compu-
tational Linguistics, 37(2):309–350.

Hardoon, D. R. and Shawe-Taylor, J. (2007). Sparse canonical correlation analysis. Tech-
nical report, University College London, London, UK.

Hardoon, D. R., Szedmak, S., and Shawe-Taylor, J. (2004). Canonical correlation
analysis: An overview with application to learning methods. Neural Computation,
16(12):2639–2664.

Harley, T. A. (1995). The Psychology of Language. Psychology Press Ltd., East Sussex, UK.

Harman, D. (1992). Overview of the first text retrieval conference (trec-1). In The First
Text REtrieval Conference (TREC-1), pages 1–20. National Institute of Standards and
Technology. NIST Special Publication 500-207.

Harris, Z. S. (1955). From phoneme to morpheme. Language, 31(2):190–222. Reprinted
1970 in Papers in Structural and Transformational Linguistics, Reidel Publishing
Company, Dordrecht, Holland.

Hearne, M. and Way, A. (2006). Disambiguation strategies for data-oriented translation.
In Hansen, V. and Maegaard, B., editors, Proceedings of the 11th Conference of the Eu-
ropean Association for Machine Translation (EAMT-2006), pages 59–68, Oslo, Norway.
European Association for Machine Translation.

Heeman, P. A. and Damnati, G. (1997). Deriving phrase-based language models. In Pro-
ceedings of the 1997 IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU), pages 41–48, Waikoloa, HI, USA. IEEE.

Hinton, G. and Salakhutdinov, R. (2011). Discovering binary codes for documents by
learning deep generative models. Topics in Cognitive Science, 3(1):74–91.

245

Bibliography

Hinton, G. E. (2009). Deep belief networks. Scholarpedia, 4(5):5947.

Hirsimäki, T., Creutz, M., Siivola, V., Kurimo, M., Virpioja, S., and Pylkkönen, J. (2006).
Unlimited vocabulary speech recognition with morph language models applied to
Finnish. Computer Speech & Language, 20(4):515–541.

Hirsimäki, T., Pylkkönen, J., and Kurimo, M. (2009). Importance of high-order n-gram
models in morph-based speech recognition. IEEE Transactions on Audio, Speech and
Language Processing, 17(4):724–732.

Hockett, C. F. (1954). Two models of grammatical description. Word, 10:210–234.

Hoeting, J. A., Madigan, D., Raftery, A., and Volinsky, C. T. (1999). Bayesian model
averaging: A tutorial. Statistical Science, 14(4):382–417.

Hofmann, T. (1999a). Probabilistic latent semantic analysis. In Laskey, K. B. and Prade,
H., editors, Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
(UAI’99), pages 289–296. Morgan Kaufmann.

Hofmann, T. (1999b). Probabilistic latent semantic indexing. In Proceedings of the 22nd
Annual International ACM-SIGIR Conference on Research and Development in Information
Retrieval, pages 50–57, Berkeley, CA, USA. ACM.

Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis.
Machine Learning Journal, 42(1):177–196.

Honkela, T. (1997). Self-Organizing Maps in Natural Language Processing. PhD thesis,
Helsinki University of Technology, Espoo, Finland.

Honkela, T., Hyvärinen, A., and Väyrynen, J. J. (2010). WordICA — emergence of lin-
guistic representations for words by independent component analysis. Natural Lan-
guage Engineering, 16:277–308.

Honkela, T., Pulkki, V., and Kohonen, T. (1995). Contextual relations of words in Grimm
tales, analyzed by self-organizing map. In Fogelman-Soulié, F. and Gallinari, P., ed-
itors, Proceedings of ICANN’95, International Conference on Artificial Neural Networks,
volume 2, pages 3–7, Paris, France. EC2 & Cie.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural networks, 2:359–366.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3):321–377.

Hsu, A. S., Chater, N., and Vitanyi, P. M. B. (2011). The probabilistic analysis of lan-
guage acquisition: Theoretical, computational, and experimental analysis. Cognition,
120:380–390.

Huang, S. and Renals, S. (2010a). Hierarchical Bayesian language models for conversa-
tional speech recognition. IEEE Transactions on Audio, Speech and Language Processing,
18(8):1941–1954.

Huang, S. and Renals, S. (2010b). Power law discounting for n-gram language mod-
els. In Proceedings of the IEEE International Conference on Acoustic, Speech, and Signal
Processing (ICASSP), pages 5178–5181, Dallas, Texas, USA. IEEE.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101.

Hull, D. A. (1996). Stemming algorithms: A case study for detailed evaluation. Journal
of the American Society for Information Science, 47(1):70–84.

Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis. John
Wiley & Sons, New York, NY, USA.

Hyvärinen, A. and Oja, E. (1996). Simple neuron models for independent component
analysis. International Journal of Neural Systems, 7:671–687.

Hyvärinen, A. and Oja, E. (1997). A fast fixed-point algorithm for independent compo-
nent analysis. Neural Computation, 9:1483–1492.

246

Bibliography

Isbell, C. L. and Viola, P. (1999). Restructuring sparse high dimensional data for effective
information retrieval. In Kearns, M. S., Solla, S. A., and Cohn, D. A., editors, Advances
in Neural Information Processing Systems 11, pages 480–486. The MIT Press, Cambridge,
MA, USA.

Iyer, R. M. and Ostendorf, M. (1999). Modeling long distance dependence in language:
topic mixtures versus dynamic cache models. IEEE Transactions on Speech and Audio
Processing, 7(1):30–39.

Järvelin, K. and Pirkola, A. (2005). Morphological processing in mono- and cross-lingual
information retrieval. In Arppe, A., Carlson, L., Lindén, K., Piitulainen, J., Suomi-
nen, M., Vainio, M., Westerlund, H., and Yli-Jyrä, A., editors, Inquiries into Words,
Constraints and Contexts. Festschrift for Kimmo Koskenniemi on his 60th Birthday, CSLI
Studies in Computational Linguistics ONLINE, pages 214–226. CSLI Publications.

Jaynes, E. T. (1957). Information theory and statistical mechanics. The Physical Review,
106(4):260–630.

Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of Lipschitz maps into a Hilbert
space. Contemporary Mathematics, 26:189–206.

Jones, M. N., Kintsch, W., and Mewhort, D. J. (2006). High-dimensional semantic space
accounts of priming. Journal of Memory and Language, 55(4):534–552.

Jurafsky, D. and Martin, J. H. (2008). Speech and Language Processing. Prentice Hall,
Upper Saddle River, New Jersey 07458, USA, 2nd edition.

Jurafsky, D., Wooters, C., Segal, J., Stolcke, A., Fosler, E., Tajchaman, G., and Morgan,
N. (1995). Using a stochastic context-free grammar as a language model for speech
recognition. In Proceedings of the 1995 International Conference on Acoustics, Speech, and
Signal Processing (ICASSP-95), volume 1, pages 189–192, Detroit, MI, USA. IEEE.

Kando, N., Kuriyama, K., Nozue, T., Eguchi, K., Kato, H., and Hidaka, S. (1999).
Overview of IR tasks at the first NTCIR workshop. In Kando, N., editor, Proceedings
of the First NTCIR Workshop on Research in Japanese Text Retrieval and Term Recognition,
pages 11–44, Tokyo, Japan. National Center for Science Information Systems.

Kanerva, P., Kristoferson, J., and Holst, A. (2000). Random indexing of text samples
for latent semantic analysis. In Gleitman, L. R. and Joshi, A. K., editors, Proceed-
ings of the 22nd Annual Conference of the Cognitive Science Society (CogSci 2000), page
1036, Philadelphia, PA, USA. Institute for Research in Cognitive Science, University
of Pennsylvania.

Kaplan, R. M. and Kay, M. (1994). Regular models of phonological rule systems. Com-
putational Linguistics, 20(3):331–378.

Karlsson, F. (2007). Constraints on multiple center-embedding of clauses. Journal of
Linguistics, 43(2):365–392.

Karlsson, F. (2008). Yleinen kielitiede. Gaudeamus Helsinki University Press, Helsinki,
Finland, 3rd edition.

Karttunen, L. (1998). The proper treatment of optimality in computational phonology:
plenary talk. In Karttunen, L. and Oflazer, K., editors, Proceedings of the International
Workshop on Finite State Methods in Natural Language Processing (FSMNLP), pages 1–12,
Ankara, Turkey. Association for Computational Linguistics.

Karttunen, L. and Beesley, K. R. (2005). Twenty-five years of finite-state morphology.
In Arppe, A., Carlson, L., Lindén, K., Piitulainen, J., Suominen, M., Vainio, M., West-
erlund, H., and Yli-Jyrä, A., editors, Inquiries into Words, Constraints and Contexts.
Festschrift for Kimmo Koskenniemi on his 60th Birthday, CSLI Studies in Computational
Linguistics ONLINE, pages 71–83. CSLI Publications.

Karttunen, L., Kaplan, R. M., and Zaenen, A. (1992). Two-level morphology with com-
position. In Boitet, C., editor, The 15th International Conference on Computational Lin-
guistics (COLING 1992), volume 1, pages 141–148, Nantes, France. International Com-
mittee on Computational Linguistics.

Kasami, T. (1965). An efficient recognition and syntax-analysis algorithm for context-
free languages. Technical Report AFCRL-65-758, Air Force Cambridge Research Lab,
Bedford, MA, USA.

247

Bibliography

Kaski, S. (1998). Dimensionality reduction by random mapping: Fast similarity compu-
tation for clustering. In Proceedings of 1998 IEEE International Joint Conference on Neural
Networks (IJCNN), volume 1, pages 413–418, Anchorage, AK, USA. IEEE.

Kaski, S., Honkela, T., Lagus, K., and Kohonen, T. (1998). WEBSOM—self-organizing
maps of document collections. Neurocomputing, 21:101–117.

Kay, J. (1992). Feature discovery under contextual supervision using mutual informa-
tion. In Proceedings of the International Joint Conference on Neural Networks (IJCNN 1992),
volume 4, pages 79–84. IEEE, Baltimore, MD, USA.

Keshava, S. and Pitler, E. (2006). A simpler, intuitive approach to morpheme induction.
In Kurimo, M., Creutz, M., and Lagus, K., editors, Proceedings of the PASCAL Challenge
Workshop on Unsupervised Segmentation of Words into Morphemes, pages 28–32, Venice,
Italy. PASCAL European Network of Excellence.

Kirchhoff, K., Vergyri, D., Bilmes, J., Duh, K., and Stolcke, A. (2006). Morphology-based
language modeling for conversational Arabic speech recognition. Computer Speech &
Language, 20(4):589–608.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated an-
nealing. Science, 220(4598):671–680.

Klakow, D. (1998). Language-model optimization by mapping of corpora. In Proceed-
ings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 2, pages 701–704, Seattle, WA, USA. IEEE.

Klami, M. (2005). Unsupervised discovery of morphs in children’s stories and their
use in self-organizing map -based analysis. Master’s thesis, University of Helsinki,
Department of General Linguistics, Helsinki, Finland.

Klein, D. and Manning, C. (2004). Corpus-based induction of syntactic structure: Mod-
els of dependency and constituency. In Scott, D., Daelemans, W., and Walker, M. A.,
editors, Proceedings of the 42nd Meeting of the Association for Computational Linguistics
(ACL’04), Main Volume, pages 478–485, Barcelona, Spain. Association for Computa-
tional Linguistics.

Klein, D. and Manning, C. D. (2002). A generative constituent-context model for im-
proved grammar induction. In Proceedings of 40th Annual Meeting of the Association
for Computational Linguistics, pages 128–135, Philadelphia, PA, USA. Association for
Computational Linguistics.

Kneser, R. (1996). Statistical language modeling using a variable context length. In
Proceedings of Fourth International Conference Spoken Language Processing (ICSLP), vol-
ume 1, pages 494–497, Philadelphia, PA, USA. ISCA.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 1:181–184.

Knight, K. and Graehl, J. (1998). Machine transliteration. Computational Linguistics,
24(4):599–612.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In Pro-
ceedings of the 10th Machine Translation Summit, pages 79–86, Phuket, Thailand. Asia-
Pacific Association for Machine Translation.

Koehn, P. and Hoang, H. (2007). Factored translation models. In Eisner, J., editor, Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 868–876, Prague, Czech Republic. Association for Computational Linguistics.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan,
B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E.
(2007). Moses: Open source toolkit for statistical machine translation. In Ananiadou,
S., editor, Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics Companion Volume, Proceedings of the Demo and Poster Sessions, pages 177–
180, Prague, Czech Republic. Association for Computational Linguistics.

Koehn, P. and Monz, C. (2005). Shared task: Statistical machine translation between
European languages. In Koehn, P., Martin, J., Mihalcea, R., Monz, C., and Pedersen,
T., editors, Proceedings of the ACL Workshop on Building and Using Parallel Texts, pages
119–124, Ann Arbor, MI, USA. Association for Computational Linguistics.

248

Bibliography

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In Hearst,
M. and Ostendorf, M., editors, Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language Technology
(HLT-NAACL), pages 48–54, Edmonton, Canada. Association for Computational Lin-
guistics.

Kohonen, O., Virpioja, S., and Klami, M. (2009a). Allomorfessor: Towards unsupervised
morpheme analysis. In Evaluating Systems for Multilingual and Multimodal Information
Access: 9th Workshop of the Cross-Language Evaluation Forum, CLEF 2008, Aarhus, Den-
mark, September 17–19, 2008, Revised Selected Papers, volume 5706 of Lecture Notes in
Computer Science, pages 975–982. Springer, Berlin / Heidelberg, Germany.

Kohonen, O., Virpioja, S., and Lagus, K. (2009b). A constructionist approach to grammar
inference. In NIPS Workshop on Grammar Induction, Representation of Language and
Language Learning, Whistler, Canada. On-line: http://www.cs.ucl.ac.uk/staff/
rmartin/grll09/. Retrieved 2012-06-01.

Kohonen, O., Virpioja, S., Leppänen, L., and Lagus, K. (2010). Semi-supervised exten-
sions to Morfessor Baseline. In Kurimo, M., Virpioja, S., and Turunen, V. T., editors,
Proceedings of the Morpho Challenge 2010 Workshop, pages 30–34, Espoo, Finland. Aalto
University School of Science and Technology, Department of Information and Com-
puter Science. Technical Report TKK-ICS-R37.

Kohonen, T. (1982). Self-organizing formation of topologically correct features maps.
Biological Cybernetics, 43(1):59–69.

Kohonen, T. (1995). Self-Organizing Maps. Springer.

Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paatero, V., and Saarela,
A. (2000). Self organization of a massive document collection. IEEE Transactions on
Neural Networks, 11(3):574–585.

Kolmogorov, A. (1965). Three approaches to the quantitative definition of information.
Problems of Information Transmission, 1(1):1–7.

Koskenniemi, K. (1983). Two-level morphology: A general computational model for word-form
recognition and production. PhD thesis, University of Helsinki.

Koster, C. H. A., Beney, J., Verberne, S., and Vogel, M. (2011). Phrase-based document
categorization. In Lupu, M., Mayer, K., Tait, J., and Trippe, A. J., editors, Current
Challenges in Patent Information Retrieval, volume 29 of The Information Retrieval Series,
pages 263–286. Springer-Verlag, Berlin / Heidelberg, Germany.

Koster, C. H. A. and Seutter, M. (2003). Taming wild phrases. In Sebastiani, F., editor,
Proceedings of the 25th European Conference on Information Retrieval Research (ECIR 2003),
Pisa, Italy, April 14–16, 2003, volume 2633 of Lecture Notes in Computer Science, pages
161–176. Springer-Verlag, Berlin / Heidelberg, Germany.

Kostić, A. (1991). Informational approach to processing inflected morphology: Standard
data reconsidered. Psychological Research, 53(1):62–70.

Kraft, L. G. (1949). A device for quantizing, grouping, and coding amplitude modulated
pulses. Master’s thesis, Electrical Engineering Department, Massachusetts Institute
of Technology, Cambridge, MA, USA.

Kübler, S., McDonald, R., and Nivre, J. (2009). Dependency Parsing. Synthesis Lectures
on Human Language Technologies. Morgan & Claypool.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97.

Kuhn, R. and De Mori, R. (1990). A cache-based natural language model for speech
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(6):570–
583.

Kukich, K. (1992). Techniques for automatically correcting words in text. ACM Comput-
ing Surveys, 24(4):377–439.

Kumar, S. and Byrne, W. (2004). Minimum Bayes-Risk decoding for statistical machine
translation. In Dumais, S., Marcu, D., and Roukos, S., editors, HLT-NAACL 2004:
Human Language Technology Conference of the North American Chapter of the Association
for Computational Linguistics, Proceedings of the Main Conference, pages 169–176, Boston,
MA, USA. Association for Computational Linguistics.

249

Bibliography

Kumar, S., Deng, Y., and Byrne, W. (2006). A weighted finite state transducer transla-
tion template model for statistical machine translation. Journal of Natural Language
Engineering, 12(1):35–75.

Kuo, H.-K. J. and Reichl, W. (1999). Phrase-based language models for speech recogni-
tion. In Proceedings of 6th European Conference on Speech Communication and Technology
(Eurospeech’99), pages 1595–1598, Budapest, Hungary. ISCA.

Kurimo, M. (1997). Training mixture density HMMs with SOM and LVQ. Computer
Speech and Language, 11(4):321–343.

Kurimo, M. (2002). Thematic indexing of spoken documents by using self-organizing
maps. Speech Communication, 38(1-2):29–44.

Kurimo, M., Creutz, M., and Lagus, K. (2006a). Unsupervised segmentation of words
into morphemes — Challenge 2005, an introduction and evaluation report. In Ku-
rimo, M., Creutz, M., and Lagus, K., editors, Proceedings of the PASCAL Challenge
Workshop on Unsupervised segmentation of words into morphemes, pages 1–11, Venice,
Italy. PASCAL European Network of Excellence.

Kurimo, M., Creutz, M., and Varjokallio, M. (2008). Morpho Challenge evaluation using
a linguistic Gold Standard. In Advances in Multilingual and Multimodal Information
Retrieval, 8th Workshop of the Cross-Language Evaluation Forum, CLEF 2007, Budapest,
Hungary, September 19–21, 2007, Revised Selected Papers, volume 5152 of Lecture Notes
in Computer Science, pages 864–873. Springer, Berlin / Heidelberg, Germany.

Kurimo, M. and Lagus, K. (2002). An efficiently focusing large vocabulary language
model. In International Conference on Artificial Neural Networks (ICANN’02), pages
1068–1073, Madrid, Spain.

Kurimo, M., Puurula, A., Arisoy, E., Siivola, V., Hirsimäki, T., Pylkkönen, J., Alumäe, T.,
and Saraçlar, M. (2006b). Unlimited vocabulary speech recognition for agglutinative
languages. In Moore, R. C., Bilmes, J., Chu-Carroll, J., and Sanderson, M., editors, Pro-
ceedings of the Human Language Technology Conference of the NAACL, Main Conference,
pages 487–494, New York, NY, USA. Association for Computational Linguistics.

Kurimo, M., Turunen, V., and Varjokallio, M. (2009). Overview of Morpho Challenge
2008. In Evaluating Systems for Multilingual and Multimodal Information Access, 9th
Workshop of the Cross-Language Evaluation Forum, CLEF 2008, Aarhus, Denmark, Septem-
ber 17–19, 2008, Revised Selected Papers, volume 5706 of Lecture Notes in Computer Sci-
ence, pages 951–966. Springer, Berlin / Heidelberg, Germany.

Kurimo, M., Virpioja, S., Turunen, V., and Lagus, K. (2010a). Morpho challenge 2005-
2010: Evaluations and results. In Heinz, J., Cahill, L., and Wicentowski, R., editors,
Proceedings of the 11th Meeting of the ACL Special Interest Group on Computational Mor-
phology and Phonology, pages 87–95, Uppsala, Sweden. Association for Computational
Linguistics.

Kurimo, M., Virpioja, S., and Turunen, V. T. (2010b). Overview and results of Morpho
Challenge 2010. In Proceedings of the Morpho Challenge 2010 Workshop, pages 7–24,
Espoo, Finland. Aalto University School of Science and Technology, Department of
Information and Computer Science. Technical Report TKK-ICS-R37.

Kurimo, M., Virpioja, S., Turunen, V. T., Blackwood, G. W., and Byrne, W. (2010c).
Overview and results of Morpho Challenge 2009. In Multilingual Information Access
Evaluation I. Text Retrieval Experiments: 10th Workshop of the Cross-Language Evaluation
Forum, CLEF 2009, Corfu, Greece, September 30 – October 2, 2009, Revised Selected Papers,
volume 6241 of Lecture Notes in Computer Science, pages 578–597. Springer, Berlin /
Heidelberg, Germany.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data. In Brodley, C. E. and Danyluk,
A. P., editors, Proceedings of the Eighteenth International Conference on Machine Learning
(ICML 2001), pages 282–289, Williamstown, MA, USA. Morgan Kaufmann.

Lagus, K. (2000). Text mining with the WEBSOM. Acta Polytechnica Scandinavica, Math-
ematics and Computing Series, No. 110. D.Sc. (Tech.) Thesis, Helsinki University of
Technology, Finland.

Lagus, K., Kaski, S., and Kohonen, T. (2004). Mining massive document collections by
the WEBSOM method. Information Sciences, 163(1–3):135–156.

250

Bibliography

Lagus, K. and Kurimo, M. (2002). Language model adaptation in speech recognition
using document maps. In IEEE Workshop on Neural Networks for Signal Processing
(NNSP’02), pages 627–636, Martigny, Switzerland. IEEE.

Lai, P. L. and Fyfe, C. (2000). Kernel and nonlinear canonical correlation analysis. Inter-
national Journal of Neural Systems, 10(5):365–377.

Laine, M., Niemi, J., Koivuselkä-Sallinen, P., and Hyönä, J. (1995). Morphological pro-
cessing of polymorphemic words in a highly inflecting language. Cognitive Neuropsy-
chology, 12:457–502.

Laine, M. and Virtanen, P. (1996). WordMill Lexical Search Program. Centre for Cognitive
Neuroscience, University of Turku.

Lakoff, G. (1987). Women, Fire, and Dangerous Things: What Categories Reveal about the
Mind. University of Chicago Press, Chicago, IL, USA.

Lakoff, G. and Johnson, M. (2003). Metaphors We Live By. Chigago University Press,
Chigago, IL, USA.

Lamar, M., Maron, Y., Johnson, M., and Bienenstock, E. (2010). SVD and clustering for
unsupervised POS tagging. In Hajič, J., Carberry, S., Clark, S., and Nivre, J., editors,
Proceedings of the ACL 2010 Conference Short Papers, pages 215–219, Uppsala, Sweden.
Association for Computational Linguistics.

Landauer, T. K. and Dumais, S. T. (1997). A solution to Plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of knowledge.
Psychological Review, 104(2):211–240.

Langacker, R. W. (1987). Theoretical Prerequisites, volume 1 of Foundations of Construction
Grammar. Stanford University Press, Stanford, CA, USA.

Langacker, R. W. (1991). Descriptive Application, volume 2 of Foundations of Construction
Grammar. Stanford University Press, Stanford, CA, USA.

Lappin, S. and Shieber, S. M. (2007). Machine learning theory and practice as a source
of insight into universal grammar. Journal of Linguistics, 43:393–427.

Lavallée, J.-F. and Langlais, P. (2010). Unsupervised morphological analysis by formal
analogy. In Multilingual Information Access Evaluation I. Text Retrieval Experiments: 10th
Workshop of the Cross-Language Evaluation Forum, CLEF 2009, Corfu, Greece, September
30 - October 2, 2009, Revised Selected Papers, volume 6241 of Lecture Notes in Computer
Science, pages 617–624. Springer, Berlin / Heidelberg, Germany.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791.

Lee, Y.-S. (2004). Morphological analysis for statistical machine translation. In Proceed-
ings of the HLT-NAACL 2004, pages 57–60, Boston, USA.

Lehtonen, M., Cunillera, T., Rodríguez-Fornells, A., Hultén, A., Tuomainen, J., and
Laine, M. (2007). Recognition of morphologically complex words in Finnish: evi-
dence from event-related potentials. Brain Research, 1148:123–137.

Lehtonen, M. and Laine, M. (2003). How word frequency affects morphological process-
ing in monolinguals and bilinguals. Bilingualism: Language and Cognition, 6:213–225.

Leino, P. (1999). Suomen kielen kognitiivista kielioppia. 1, Polysemia - kielen moniselitteisyys.
Helsingin yliopiston suomen kielen laitos, Helsinki, Finland, 2nd edition.

Leurgans, S. E., Moyeed, R. A., and Silverman, B. W. (1993). Canonical correlation anal-
ysis when the data are curves. Journal of the Royal Statistical Society. Series B (Method-
ological), 55(3):725–740.

Levinson, S. C. (1983). Pragmatics. Cambridge Textbooks in Linguistics. Cambridge
University Press, Cambridge, UK.

Lewis, D. D. (1992). An evaluation of phrasal and clustered representations on a text cat-
egorization task. In Belkin, N. J., Ingwersen, P., and Pejtersen, A. M., editors, Proceed-
ings of the 15th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’92), pages 37–50, Copenhagen, Denmark. ACM.

251

Bibliography

Lewis, D. D. and Tong, R. M. (1992). Text filtering in MUC-3 and MUC-4. In Proceedings
of the 4th Conference on Message Understanding (MUC-4), pages 51–66, McLean, VA,
USA. Morgan Kaufmann Publishers.

Li, M., Chen, X., Li, X., Ma, B., and Vitanyi, P. (2004). The similarity metric. IEEE
Transactions on Information Theory, 50(12):3250–3264.

Li, W. and McCallum, A. (2005). Semi-supervised sequence modeling with syntactic
topic models. In Veloso, M. M. and Kambhampati, S., editors, Proceedings of the 20th
National Conference on Artificial Intelligence (AAAI-05), pages 813–818, Pittsburgh, PA,
USA. AAAI Press.

Li, Y. and Shawe-Taylor, J. (2007). Advanced learning algorithms for cross-language
patent retrieval and classification. Information Processing and Management, 43(5):1183–
1199.

Lignos, C. (2010). Learning from unseen data. In Kurimo, M., Virpioja, S., and Tu-
runen, V. T., editors, Proceedings of the Morpho Challenge 2010 Workshop, pages 35–38,
Espoo, Finland. Aalto University School of Science and Technology, Department of
Information and Computer Science. Technical Report TKK-ICS-R37.

Lignos, C., Chan, E., Marcus, M. P., and Yang, C. (2010a). A rule-based acquisition model
adapted for morphological analysis. In Multilingual Information Access Evaluation I.
Text Retrieval Experiments: 10th Workshop of the Cross-Language Evaluation Forum, CLEF
2009, Corfu, Greece, September 30 – October 2, 2009, Revised Selected Papers, volume 6241
of Lecture Notes in Computer Science, pages 658–665. Springer, Berlin / Heidelberg,
Germany.

Lignos, C., Chan, E., Yang, C., and Marcus, M. P. (2010b). Evidence for a morphological
acquisition model from development data. In Franich, K., Iserman, K. M., and Keil,
L. L., editors, Proceedings of the 34th Annual Boston University Conference on Language
Development (BUCLD 34), volume 2, pages 269–280. Cascadilla Press.

Lim, H. S., Nam, K., and Hwang, Y. (2005). A computational model of korean men-
tal lexicon. In Gervasi, O., Gavrilova, M., Kumar, V., Laganà, A., Lee, H., Mun, Y.,
Taniar, D., and Tan, C., editors, Computational Science and Its Applications — ICCSA
2005, volume 3480 of Lecture Notes in Computer Science, pages 17–26. Springer, Berlin
/ Heidelberg, Germany.

Lindén, K. (2003). Word sense disambiguation with THESSOM. In Intelligent Systems
and Innovational Computing — Proceedings of the Workshop on Self-Organizing Networks
(WSOM 2003), Kitakuyshu, Japan. Kyushu Institute of Technology.

Lindén, K. (2008). A probabilistic model for guessing base forms of new words by
analogy. In Gelbukh, A. F., editor, Proceedings of the 9th international conference on
Computational Linguistics and Intelligent Text Processing (CICLing 2008), Haifa, Israel,
February 17–23, 2008, volume 4919 of Lecture Notes on Computer Science, pages 106–
116. Springer-Verlag, Berlin / Heidelberg, Germany.

Lindén, K. (2009). Guessers for finite-state transducer lexicons. In Gelbukh, A. F., editor,
Proceedings of the 10th International Conference on Computational Linguistics and Intelli-
gent Text Processing (CICLing 2009), Mexico City, Mexico, March 1–7, 2009, volume 5449
of Lecture Notes in Computer Science, pages 158–169. Springer-Verlag, Berlin / Heidel-
berg, Germany.

Lindén, K. and Lagus, K. (2002). Word sense disambiguation in document space. In
Proceedings of the 2002 IEEE International Conference on Systems, Man and Cybernetics,
Hammamet, Tunisia. IEEE.

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–136.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. (2002). Text
classification using string kernels. Journal of Machine Learning Research, 2:419–444.

Lund, K. and Burgess, C. (1996). Producing high-dimensional semantic spaces from
lexical co-occurrence. Behavior Research Methods, Instruments & Computers, 28(2):203–
208.

MacKay, D. J. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, Cambridge, UK.

252

Bibliography

MacQueen, J. (1967). Some methods for classification and analysis of multivariate ob-
servations. In Le Cam, L. M. and Neyman, J., editors, Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability. Volume I: Statistics, pages 281–297,
Berkeley and Los Angeles, CA, USA. University of California Press.

MacWhinney, B. (2000). The CHILDES Project: Tools for analyzing talk. Lawrence Erlbaum
Associates, Mahwah, NJ, USA, 3rd edition.

Magdy, W. and Darwish, K. (2006). Arabic OCR error correction using character seg-
ment correction, language modeling, and shallow morphology. In Jurafsky, D. and
Gaussier, E., editors, Proceedings of the 2006 Conference on Empirical Methods in Natu-
ral Language Processing, pages 408–414, Sydney, Australia. Association for Computa-
tional Linguistics.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Re-
trieval. Cambridge University Press, New York, NY, USA.

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Language Pro-
cessing. The MIT Press, Cambridge, MA, USA.

Mathias, L. and Byrne, W. (2006). Statistical phrase-based speech translation. In Proceed-
ings of the 31st IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Toulouse, France. IEEE.

Matthews, P. H. (1991). Morphology. Cambridge Textbooks in Linguistics. Cambridge
University Press, Cambridge, UK, 2nd edition.

McCallum, A., Freitag, D., and Pereira, F. (2000). Maximum entropy Markov models
for information extraction and segmentation. In Langley, P., editor, Proceedings of the
Seventeenth International Conference on Machine Learning (ICML 2000), pages 591–598,
Stanford, CA, USA. Morgan Kaufmann.

McClelland, J. L. and Patterson, K. (2002). Rules or connections in past-tense inflections:
what does the evidence rule out? Trends in cognitive sciences, 6(11):465–472.

McNamee, P. (2008). Retrieval experiments at Morpho Challenge 2008. In Peters, C.,
editor, Working Notes for the CLEF 2008 Workshop, Aarhus, Denmark. Cross-Language
Evaluation Forum.

Meila, M. (2003). Comparing clusterings by the variation of information. In Schölkopf,
B. and Warmuth, M. K., editors, Learning Theory and Kernel Machines, volume 2777 of
Lecture Notes in Computer Science, pages 173–187. Springer Berlin / Heidelberg.

Melzer, T., Reiter, M., and Bischof, H. (2001). Nonlinear feature extraction using gen-
eralized canonical correlation analysis. In Dorffner, G., Bischof, H., and Hornik, K.,
editors, Proceedings of the International Conference on Artificial Neural Networks (ICANN
’01), volume 2130 of Lecture Notes in Computer Science, pages 353–360. Springer-Verlag,
Berlin / Heidelberg, Germany.

Menon, A. K. and Elkan, C. (2011). Fast algorithms for approximating the singular value
decomposition. ACM Transactions on Knowledge Discovery from Data, 5(2):13:1–13:36.

Mermer, C. and Akın, A. A. (2010). Unsupervised search for the optimal segmentation
for statistical machine translation. In Proceedings of the ACL 2010 Student Research
Workshop, pages 31–36, Uppsala, Sweden. Association for Computational Linguistics.

Mihajlik, P., Tüske, Z., Tarján, B., Németh, B., and Fegyó, T. (2010). Improved recog-
nition of spontaneous Hungarian speech — morphological and acoustic modeling
techniques for a less resourced task. IEEE Transactions on Audio, Speech, and Language
Processing, 18(6):1588–1600.

Mihalcea, R. and Simard, M. (2005). Parallel texts. Natural Language Engineering,
11(3):239–246.

Mikolov, T., Deoras, A., Kombrink, S., Burget, L., and Černocký, J. (2011). Empirical
evaluation and combination of advanced language modeling techniques. In Proceed-
ings of the 12th Annual Conference of the International Speech Communication Association
(INTERSPEECH 2011), pages 605–608, Florence, Italy. ISCA.

253

Bibliography

Mikolov, T., Karafiát, M., Burget, L., Černocký, J., and Khudanpur, S. (2010). Recurrent
neural network based language model. In Kobayashi, T., Hirose, K., and Nakamura,
S., editors, Proceedings of the 11th Annual Conference of the International Speech Com-
munication Association (INTERSPEECH 2010), pages 1045–1048, Makuhari, Chiba, JP.
ISCA.

Milin, P., Kuperman, V., Kostic, A., and Baayen, R. H. (2009). Paradigms bit by bit: an
information theoretic approach to the processing of paradigmatic structure in inflec-
tion and derivation. In Blevins, J. and Blevins, J., editors, Analogy in grammar: Form
and acquisition, pages 214–252. Oxford University Press, Oxford, UK.

Miller, G. A. (1995). WordNet: A lexical database for English. Communications of the
ACM, 38(11):39–41.

Minier, Z., Bodó, Z., and Csató, L. (2007). Wikipedia-based kernels for text categoriza-
tion. In Negru, V., Jebelean, T., Petcu, D., and Zaharie, D., editors, Proceedings of the
9th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC’07), pages 157–164, Timisoara, Romania. IEEE Computer Society.

Mitchell, J. and Lapata, M. (2008). Vector-based models of semantic composition. In
Moore, J. D., Teufel, S., Allan, J., and Furui, S., editors, Proceedings of the 46th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies
(ACL-08:HLT), pages 236–244, Columbus, OH, USA. Association for Computational
Linguistics.

Mitchell, T. M. (1997). Machine Learning. McGraw Hill, New York, NY, USA.

Mnih, A. and Hinton, G. (2007). Three new graphical models for statistical language
modelling. In Ghahramani, Z., editor, Proceedings of the Twenty-Fourth International
Conference on Machine Learning (ICML 2007), Corvallis, Oregon, USA, June 20–24, 2007,
volume 227 of ACM International Conference Proceeding Series, pages 641–648. ACM,
New York, NY, USA.

Mnih, A. and Hinton, G. (2008). A scalable hierarchical distributed language model.
In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, Advances in Neural
Information Processing Systems 21, pages 1081–1088. MIT Press, Cambridge, MA, USA.

Mnih, A., Yuecheng, Z., and Hinton, G. ((2009). Improving a statistical language model
through non-linear prediction. Neurocomputing, 72(7–9):1414–1418.

Mochihashi, D. and Sumita, E. (2008). The infinite Markov model. In Platt, J., Koller, D.,
Singer, Y., and Roweis, S., editors, Advances in Neural Information Processing Systems
20, pages 1017–1024. MIT Press, Cambridge, MA, USA.

Mohri, M., Pereira, F., and Riley, M. (2002). Weighted finite-state transducers in speech
recognition. Computer Speech & Language, 16(1):69–88.

Monson, C., Carbonell, J., Lavie, A., and Levin, L. (2008). ParaMor: Finding paradigms
across morphology. In Advances in Multilingual and Multimodal Information Retrieval,
8th Workshop of the Cross-Language Evaluation Forum, CLEF 2007, Budapest, Hungary,
September 19–21, 2007, Revised Selected Papers, volume 5152 of Lecture Notes in Computer
Science, pages 900–907. Springer, Berlin / Heidelberg, Germany.

Monson, C., Carbonell, J., Lavie, A., and Levin, L. (2009). ParaMor and Morpho Chal-
lenge 2008. In Evaluating Systems for Multilingual and Multimodal Information Access,
9th Workshop of the Cross-Language Evaluation Forum, CLEF 2008, Aarhus, Denmark,
September 17–19, 2008, Revised Selected Papers, volume 5706 of Lecture Notes in Com-
puter Science, pages 967–974. Springer, Berlin / Heidelberg, Germany.

Monson, C., Hollingshead, K., and Roark, B. (2010). Simulating morphological ana-
lyzers with stochastic taggers for confidence estimation. In Multilingual Information
Access Evaluation I. Text Retrieval Experiments: 10th Workshop of the Cross-Language Eval-
uation Forum, CLEF 2009, Corfu, Greece, September 30 – October 2, 2009, Revised Selected
Papers, volume 6241 of Lecture Notes in Computer Science, pages 649–657. Springer,
Berlin / Heidelberg, Germany.

Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural network language
model. In Cowell, R. G. and Ghahramani, Z., editors, Proceedings of the Tenth Interna-
tional Workshop on Artificial Intelligence and Statistics (AISTATS 2005), pages 246–252,
Barbados. Society for Artificial Intelligence and Statistics.

254

Bibliography

Moscoso del Prado Martín, F., Kostić, A., and Baayen, R. H. (2004). Putting the bits
together: An information theoretical perspective on morphological processing. Cog-
nition, 94:1–18.

Müller, P. and Quintana, F. A. (2004). Nonparametric Bayesian data analysis. Statistical
science, 19(1):95–110.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics, 5(1):32–38.

Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition and classifica-
tion. Linguisticae Investigationes, 30(1):3–26.

Nakov, P., Popova, A., and Mateev, P. (2001). Weight functions impact on LSA per-
formance. In Proceedings of the EuroConference on Recent Advances in Natural Language
Processing (RANLP 2001), pages 187–193, Tzigov Chark, Bulgaria. Bulgarian Academy
of Sciences.

Nelson, D. L., McEvoy, C. L., and Schreiber, T. A. (1998). The University of South Florida
word association, rhyme, and word fragment norms. On-line: http://web.usf.edu/
FreeAssociation/. Retrieved 2010-10-07. University of South Florida, Tampa, FL,
USA.

New, B., Brysbaert, M., Segui, J., Ferrand, L., and Rastle, K. (2004). The processing of
singular and plural nouns in French and English. Journal of Memory and Language,
51:568–585.

Ney, H., Essen, U., and Kneser, R. (1994). On structuring probabilistic dependencies in
stochastic language modeling. Computer Speech and Language, 8:1–28.

Nicolas, L., Farré, J., and Molinero, M. A. (2010). Unsupervised learning of concatena-
tive morphology based on frequency-related form occurrence. In Kurimo, M., Virpi-
oja, S., and Turunen, V. T., editors, Proceedings of the Morpho Challenge 2010 Workshop,
pages 39–43, Espoo, Finland. Aalto University School of Science and Technology, De-
partment of Information and Computer Science. Technical Report TKK-ICS-R37.

Niemi, J., Laine, M., and Tuominen, J. (1994). Cognitive morphology in Finnish: foun-
dations of a new model. Language and Cognitive Processes, 9:423–446.

Niesler, T. R., Whittaker, E. W. D., and Woodland, P. C. (1998). Comparison of part-of-
speech and automatically derived category-based language models for speech recog-
nition. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), volume 1, pages 177–180, Seattle, WA, USA. IEEE.

Niesler, T. R. and Woodland, P. C. (1996a). Combination of word-based and category-
based language models. In Proceedings of Fourth International Conference Spoken Lan-
guage Processing (ICSLP), volume 1, pages 220–223, Philadelphia, PA, USA. ISCA.

Niesler, T. R. and Woodland, P. C. (1996b). A variable-length category-based n-gram
language model. In Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), volume 1, pages 164–167, Atlanta, GA, USA. IEEE.

Niesler, T. R. and Woodland, P. C. (1999). Variable-length category n-gram language
models. Computer Speech and Language, 13(1):99–124.

Nießen, S. and Ney, H. (2004). Statistical machine translation with scarce resources using
morpho-syntactic information. Computational Linguistics, 30(2):181–204.

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. (2000). Text classification from
labeled and unlabeled documents using em. Machine Learning, 39(2–3):103–134.

Norris, D. (2005). How do computational models help us build better theories? In
Cutler, A., editor, Twenty-First Century Psycholinguistics: Four Cornerstones, pages 331–
346. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA.

Norris, D. (2006). The Bayesian reader: Explaining word recognition as an optimal
Bayesian decision process. Psychological Review, 113(2):327–357.

Novak, M. and Mammone, R. (2001). Use of non-negative matrix factorization for lan-
guage model adaptation in a lecture transcription task. In Proceedings of 2001 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 541–
544, Salt Lake City, UT, USA. IEEE.

255

Bibliography

Oflazer, K. and El-Kahlout, İ. D. (2007). Exploring different representational units in
English-to-Turkish statistical machine translation. In Callison-Burch, C., Koehn, P.,
Fordyce, C. S., and Monz, C., editors, Proceedings of the Statistical Machine Translation
Workshop at ACL 2007, pages 25–32, Prague, Czech Republic. Association for Compu-
tational Linguistics.

Oflazer, K., McShane, M., and Nirenburg, S. (2001). Bootstrapping morphological ana-
lyzers by combining human elicitation and machine learning. Computational Linguis-
tics, 27(1):59–85.

Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of
Mathematical Biology, 15:267–273.

Paatero, P. and Tapper, U. (1994). Positive matrix factorization: A non-negative fac-
tor model with optimal utilization of error estimates of data values. Environmetrics,
5:111–126.

Palmer, A., Moon, T., and Baldridge, J. (2009). Evaluating automation strategies in lan-
guage documentation. In Ringger, E., Haertel, R., and Tomanek, K., editors, Proceed-
ings of the NAACL HLT 2009 Workshop on Active Learning for Natural Language Process-
ing, pages 36–44, Boulder, CO, USA. Association for Computational Linguistics.

Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up? Sentiment classification
using machine learning techniques. In Hajič, J. and Matsumoto, Y., editors, Proceed-
ings of the 2002 Conference on Empirical Methods in Natural Language Processing, pages
79–86, Philadelphia, PA, USA. Association for Computational Linguistics.

Papadimitriou, C. H., Raghavan, P., Tamaki, H., and Vempala, S. (2000). Latent semantic
indexing: A probabilistic analysis. Journal of Computer and System Sciences, 61(2):217–
235.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic
evaluation of machine translation. In Proceedings of 40th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 311–318, Philadelphia, PA, USA. Association
for Computational Linguistics.

Paul, M., Finch, A., and Sumita, E. (2010). Integration of multiple bilingually-learned
segmentation schemes into statistical machine translation. In Proceedings of the Joint
Fifth Workshop on Statistical Machine Translation and MetricsMATR, pages 400–408, Up-
psala, Sweden. Association for Computational Linguistics.

Pearson, K. (1896). Mathematical contributions to the theory of evolution. iii. regression,
heredity and panmixia. Philosophical Transactions of the Royal Society A, 187:253–318.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.
Philosophical Magazine 2, pages 559–572.

Peng, F., Feng, F., and McCallum, A. (2004). Chinese segmentation and new word de-
tection using conditional random fields. In Proceedings of the 20th International Con-
ference on Computational Linguistics (COLING 2004), pages 562–568, Geneva, Switzer-
land. COLING.

Peters, C., editor (2001). Cross-Language Information Retrieval and Evaluation, Workshop of
Cross-Language Evaluation Forum, CLEF 2000, Lisbon, Portugal, September 21-22, 2000,
Revised Papers, volume 2069 of Lecture Notes in Computer Science. Springer, Berling /
Heidelberg, Germany.

Pinker, S. and Ullman, M. T. (2002). The past and future of the past tense. Trends in
Cognitive Sciences, 6(11):456–463.

Pirkola, A. (2001). Morphological typology of language for IR. Journal of Documentation,
57(3):330–348.

Pitman, J. and Yor, M. (1997). The two-parameter Poisson–Dirichlet distribution derived
from a stable subordinator. Annals of Probability, 25(2):855–900.

Ponte, J. M. and Croft, W. B. (1998). A language modeling approach to information
retrieval. In Croft, W. B., Moffat, A., Rijsbergen, C. J. V., Wilkinson, R., and Zobel, J.,
editors, Proceedings of the 21st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 275–281, Melbourne, Australia. ACM.

256

Bibliography

Ponvert, E., Baldridge, J., and Erk, K. (2010). Simple unsupervised identification of
low-level constituents. In Proceedings of the Fourth International Conference on Semantic
Computing (ICSC 2010), pages 24–31, Pittsburgh, PA, USA. IEEE.

Ponvert, E., Baldridge, J., and Erk, K. (2011). Simple unsupervised grammar induction
from raw text with cascaded finite state models. In Matsumoto, Y. and Mihalcea,
R., editors, Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 1077–1086, Portland, OR, USA. Asso-
ciation for Computational Linguistics.

Poon, H., Cherry, C., and Toutanova, K. (2009). Unsupervised morphological segmen-
tation with log-linear models. In Ostendorf, M., Collins, M., Narayanan, S., Oard,
D. W., and Vanderwende, L., editors, Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL ’09), pages 209–217, Boulder, CO, USA. Association for Compu-
tational Linguistics.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3):130–137.

Potamianos, G. and Jelinek, F. (1998). A study of n-gram and decision tree letter lan-
guage modeling methods. Speech Communication, 24(3):171–192.

Poutsma, A. (2000). Data-oriented translation. In Proceedings of the 18th International Con-
ference on Computational Linguistics (COLING 2000), volume 2, pages 635–641, Saar-
brücken, Germany. Morgan Kaufmann.

Prince, A. and Smolensky, P. (1993). Optimality theory: Constraint interaction in genera-
tive grammar. Technical Report RuCCS-TR-2, Rutgers Cognitive Science Center, Rut-
gers University. ROA Version, 8/2002, on-line: roa.rutgers.edu/files/537-0802/
537-0802-PRINCE-0-0.PDF. Retrieved 2011-12-12.

Pullum, G. and Rawlins, K. (2007). Argument or no argument? Linguistics and Philoso-
phy, 30(2):277–287.

Pullum, G. K. and Gazdar, G. (1982). Natural languages and context-free languages.
Linguistics and Philosophy, 4(4):471–504.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1):81–106.

Ramshaw, L. A. and Marcus, M. P. (1995). Text chunking using transformation-based
learning. In Proceedings of the Third ACL Workshop on Very Large Corpora, pages 82–94,
Cambridge, MA, USA. Association for Computational Linguistics.

Rapp, R. (2002). The computation of word associations: Comparing syntagmatic and
paradigmatic approaches. In Proceedings of the COLING 2002: The 19th International
Conference on Computational Linguistics, Taipei, Taiwan. Association for Computa-
tional Linguistics.

Rapp, R. (2004). A freely available automatically generated thesaurus of related words.
In Proceedings of the 4th International Conference on Language Resources and Evaluation
(LREC 2004), pages 395–398, Lisbon, Portugal. European Language Resources Asso-
ciation.

Rasmussen, C. (2000). The infinite Gaussian mixture model. In Solla, S. A., Leen, T. K.,
and Müller, K.-R., editors, Advances in Neural Information Processing Systems 12, pages
554–560. MIT Press, Cambridge, MA, USA.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In Brill,
E. and Church, K., editors, Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP-96), pages 133–142, Philadelphia, PA, USA. Association
for Computational Linguistics.

Rescorla, R. (2007). Rescorla–Wagner model. Scholarpedia, 2(3):2237.

Ries, K., Buo, F. D., and Wang, Y.-Y. (1995). Improved language modelling by unsuper-
vised acquisition of structure. In Proceedings of the 1995 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), volume 1, pages 193–196, Detroit,
MI, USA. IEEE.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14:465–471.

257

Bibliography

Rissanen, J. (1983). Universal prior for integers and estimation by minimum description
length. The Annals of Statistics, 11:416–431.

Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry. World Scientific Publish-
ing, New Jersey.

Rissanen, J. (1996). Fisher information and stochastic complexity. IEEE Transactions on
Information Theory, 42:40–47.

Ristad, E. S. and Thomas, R. G. (1995). New techniques for context modeling. In Uszkor-
eit, H., editor, Proceedings of the 33rd Annual Meeting of the Association for Computational
Linguistics, pages 220–227, Cambridge, MA, USA. Morgan Kaufmann Publishers /
Association for Computational Linguistics.

Ritter, H. and Kohonen, T. (1989). Self-organizing semantic maps. Biological Cybernetics,
61:241–254.

Roark, B. (2001). Probabilistic top-down parsing and language modeling. Computational
Linguistics, 27(2):249–276.

Roark, B., Saraçlar, M., and Collins, M. (2007). Discriminative n-gram language model-
ing. Computer Speech and Language, 21(2):373–392.

Roark, B., Saraçlar, M., Collins, M., and Johnson, M. (2004). Discriminative language
modeling with conditional random fields and the perceptron algorithm. In Scott, D.,
Daelemans, W., and Walker, M. A., editors, Proceedings of the 42nd Meeting of the As-
sociation for Computational Linguistics (ACL’04), Main Volume, pages 47–54, Barcelona,
Spain.

Roark, B. and Sproat, R. (2007). Computational approaches to morphology and syntax. Ox-
ford surveys in syntax and morphology. Oxford University Press, New York, NY,
USA.

Robertson, S. and Zaragoza, H. (2009). The probabilistic relevance framework: BM25
and beyond. Foundations and Trends in Information Retrieval, 3(4):333–389.

Rosch, E. (1973). Natural categories. Cognitive Psychology, 4:328–350.

Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimen-
tal Psychology: General, 104(3):192–233.

Rosenberg, A. and Hirschberg, J. (2007). V-measure: A conditional entropy-based exter-
nal cluster evaluation measure. In Eisner, J., editor, Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 410–420, Prague, Czech Republic. Associ-
ation for Computational Linguistics.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408.

Rosenfeld, R. (1994). A hybrid approach to adaptive statistical language modeling. In
Proceedings of the ARPA workshop on human language technology, pages 76–81.

Rosenfeld, R. (1996). A maximum entropy approach to adaptive statistical language
modelling. Computer Speech and Language, 10(3):187–228.

Rosenfeld, R., Chen, S. F., and Zhu, X. (2001). Whole-sentence exponential language
models: a vechile for linguistic-statistical integration. Computer Speech and Language,
15:55–73.

Rumelhart, D. E. and McClelland, J. H. (1986). On learning past tenses of English verbs.
In Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol-
ume 2, pages 216–271. MIT Press, Cambridge, CA, USA.

Sadeniemi, M., Kettunen, K., Lindh-Knuutila, T., and Honkela, T. (2008). Complexity of
European Union languages: A comparative approach. Journal of Quantitative Linguis-
tics, 15(2):185–211.

Saeed, J. I. (1997). Semantics. Blackwell Publishers Ltd, Oxford, UK.

258

Bibliography

Sahlgren, M. (2006a). Towards pertinent evaluation methodologies for word-space
models. In Proceedings of the 5th International Conference on Language Resources and
Evaluation (LREC 2006), pages 821–824, Genoa, Italy. European Language Resources
Association.

Sahlgren, M. (2006b). The Word-Space Model. PhD thesis, Department of Linguistics,
Stockholm University, Stockholm, Sweden.

Sahlgren, M. and Karlgren, J. (2005). Automatic bilingual lexicon acquisition using ran-
dom indexing of parallel corpora. Natural Language Engineering, 11(3):327–341.

Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic text re-
trieval. Information Prosessing and Management, 24(5):513–523.

Sang, E. F. T. K. and Buchholz, S. (2000). Introduction to the CoNLL-2000 shared task.
In Cardie, C., Daelemans, W., Nédellec, C., and Sang, E. T. K., editors, Proceedings of
the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational
Natural Language Learning, pages 127–132, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Sapir, E. (1921). Language: an introduction to the study of speech. Harcourt, Brace;
Bartleby.com (2000), New York, NY, USA. On-line: www.bartleby.com/186/. Re-
trieved 2011-07-08.

Sarikaya, R., Afify, M., Deng, Y., Erdoǧan, H., and Gao, Y. (2008). Joint morphological-
lexical language modeling for processing morphologically rich languages with appli-
cation to dialectal Arabic. IEEE Transactions on Audio Speech and Language Processing,
16(7):1330–1340.

Saul, L. and Pereira, F. (1997). Aggregate and mixed-order markov models for statistical
language processing. In Cardie, C. and Weischedel, R., editors, Proceedings of the
Second Conference on Empirical Methods in Natural Language Processing (EMNLP-97),
pages 81–89, New Providence, RI, USA. Association for Computational Linguistics.

Schone, P. and Jurafsky, D. (2000). Knowledge-free induction of morphology using la-
tent semantic analysis. In Cardie, C., Daelemans, W., Nédellec, C., and Sang, E. T. K.,
editors, Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Con-
ference on Computational Natural Language Learning, pages 67–72, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Schone, P. and Jurafsky, D. (2001). Knowledge-free induction of inflectional morpholo-
gies. In Proceedings of the Second Meeting of the North American Chapter of the Associa-
tion for Computational Linguistics, Pittsburgh, PA, USA. Association for Computational
Linguistics.

Schönefeld, D. (2006). Constructions. Constructions, SV1(1):39.

Schütze, H. (1992). Dimensions of meaning. In Proceedings of the 1992 ACM/IEEE Con-
ference on Supercomputing (SC 1992), pages 787–796, Minneapolis, MN, USA. IEEE
Computer Society.

Schütze, H. (1995). Distributional part-of-speech tagging. In Proceedings of the 7th Con-
ference of the European Chapter of the Association for Computational Linguistics (EACL),
pages 141–148, Dublin, Ireland. Association for Computational Linguistics.

Schütze, H., Hull, D. A., and Pedersen, J. O. (1995). A comparison of classifiers and
document representations for the routing problem. In Fox, E. A., Ingwersen, P., and
Fidel, R., editors, Proceedings of the 18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’95), pages 229–237, Seattle,
WA, USA. ACM.

Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2):461–
464.

Schwenk, H. (2007). Continuous space language models. Computer Speech and Language,
21:492–518.

Schwenk, H. and Gauvain, J.-L. (2002). Connectionist language modeling for large vo-
cabulary continuous speech recognition. In Proceedings of the 2002 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 765–768, Or-
lando, FL, USA. IEEE.

259

Bibliography

Scott, S. and Matwin, S. (1999). Feature engineering for text classification. In Bratko, I.
and Dzeroski, S., editors, Proceedings of the Sixteenth International Conference on Machine
Learning (ICML 1999), pages 379–388, Bled, Slovenia. Morgan Kaufmann Publishers.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Comput-
ing Surveys, 34(1):1–47.

Seginer, Y. (2007). Fast unsupervised incremental parsing. In Zaenen, A. and van den
Bosch, A., editors, Proceedings of the 45th Annual Meeting of the Association of Computa-
tional Linguistics, pages 384–391, Prague, Czech Republic. Association for Computa-
tional Linguistics.

Sereewattana, S. (2003). Unsupervised segmentation for statistical machine translation.
Master’s thesis, University of Edinburgh, Edinburgh, UK.

Sereno, J. A. and Jongman, A. (1997). Processing of English inflectional morphology.
Memory & Cognition, 25:425–437.

Seshadri, N. and Sundberg, C.-E. W. (1994). List Viterbi decoding algorithms with ap-
plications. IEEE Transactions on Communications, 42(234):313 –323.

Seymore, K. and Rosenfeld, R. (1996). Scalable backoff language models. In Proceedings
of Fourth International Conference Spoken Language Processing (ICSLP), volume 1, pages
232–235, Philadelphia, PA, USA. ISCA.

Sha, F. and Pereira, F. (2003). Shallow parsing with conditional random fields. In Hearst,
M. and Ostendorf, M., editors, Proceedings of the 2003 Human Language Technology
Conference of the North American Chapter of the Association for Computational Linguistics
(HLT-NAACL 2003), pages 134–141, Edmonton, Canada. Association for Computa-
tional Linguistics.

Shalonova, K., Golenia, B., and Flach, P. (2009). Towards learning morphology for
under-resourced fusional and agglutinating languages. IEEE Transactions on Audio,
Speech, and Language Processing, 17(5):956–965.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–656.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cam-
bridge University Press.

Shen, D., Sun, J.-T., Yang, Q., and Chen, Z. (2006). Text classification improved through
multigram models. In Yu, P. S., Tsotras, V. J., Fox, E. A., and Liu, B., editors, Proceed-
ings of the 15th ACM International Conference on Information and Knowledge Management
(CIKM 2006), pages 672–681, Arlington, VA, USA. ACM.

Shieber, S. (1985). Evidence against the context-freeness of human language. Linguistics
and Philosophy, 8:333–343.

Shtarkov, Y. M. (1987). Universal sequential coding of single messages. Problemy
Peredachi Informatsii, 23(3):3–17. English translation: Problems of Information Trans-
mission, 23(3):175–186.

Siivola, V. and Honkela, A. (2003). A state-space method for language modeling. In IEEE
Workshop on Automatic Speech Recognition and Understanding (ASRU), pages 548–553,
Cancun, Mexico. IEEE.

Siivola, V. and Pellom, B. L. (2005). Growing an n-gram language model. In Proceed-
ings of the 9th European Conference on Speech Communication and Technology (INTER-
SPEECH’05), pages 1309–1312, Lisbon, Portugal. ISCA.

Sim, K. C., Byrne, W. J., Gales, M. J. F., Sahbi, H., and Woodland, P. C. (2007). Consensus
network decoding for statistical machine translation. In Proceesdings of the 2007 IEEE
Conference on Acoustics, Speech and Signal Processing (ICASSP), volume 4, pages 105–
108, Honolulu, HI, USA. IEEE.

Singh, S. P., Kearns, M. J., Litman, D. J., and Walker, M. A. (1999). Reinforcement learn-
ing for spoken dialogue systems. In Tolla, S. A., Leen, T. K., and Müller, K.-R., editors,
Advances in Neural Information Processing Systems 12, pages 956–962. The MIT Press,
Cambridge, MA, USA.

260

Bibliography

Siu, M. and Ostendorf, M. (2000). Variable n-grams and extensions for conversational
speech language modeling. IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, 8(1):63–75.

Snover, M. G., Jarosz, G. E., and Brent, M. R. (2002). Unsupervised learning of morphol-
ogy using a novel directed search algorithm: Taking the first step. In Maxwell, M.,
editor, Proceedings of the ACL-02 Workshop on Morphological and Phonological Learning,
pages 11–20, Philadelphia, PA, USA. Association for Computational Linguistics.

Snyder, B. and Barzilay, R. (2008a). Cross-lingual propagation for morphological anal-
ysis. In Fox, D. and Gomes, C. P., editors, Proceedings of the 23rd AAAI Conference on
Artificial Intelligence (AAAI 2008), pages 848–854, Chicago, IL, USA. AAAI Press.

Snyder, B. and Barzilay, R. (2008b). Unsupervised multilingual learning for morphologi-
cal segmentation. In Moore, J. D., Teufel, S., Allan, J., and Furui, S., editors, Proceedings
of ACL-08: HLT, pages 737–745, Columbus, OH, USA. Association for Computational
Linguistics.

Snyder, B. and Barzilay, R. (2010). Climbing the Tower of Babel: Unsupervised multi-
lingual learning. In Fürnkranz, J. and Joachims, T., editors, Proceedings of the 27th In-
ternational Conference on Machine Learning (ICML-10), pages 29–36, Haifa, Israel. Om-
nipress.

Solan, Z., Horn, D., Ruppin, E., and Edelman, S. (2005). Unsupervised learning of natu-
ral languages. Proceedings of the National Academy of Sciences, 102(33):11639–11634.

Solomonoff, R. (1964a). A formal theory of inductive inference part i. Information and
Control, 7(1):1–22.

Solomonoff, R. (1964b). A formal theory of inductive inference part ii. Information and
Control, 7(2):224–254.

Soong, F. K. and Huang, E.-F. (1991). A tree-trellis based fast search for finding the
N-best sentence hypotheses in continuous speech recognition. In Proceedings of the
1991 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
volume 1, pages 705–708, Toronto, Canada.

Soveri, A., Lehtonen, M., and Laine, M. (2007). Word frequency and morphological
processing revisited. The Mental Lexicon, 2:359–385.

Spärck Jones, K. (1972). A statistical interpretation of term specifity and its application
in retrieval. Journal of Documentation, 28(1):11–21.

Spearman, C. (1904). The proof and measurement of association between two things.
The American Journal of Psychology, 15:72–101.

Spiegler, S. (2011). Machine Learning for the Analysis of Morphologically Complex Languages.
PhD thesis, Merchant Venturers School of Engineering, University of Bristol.

Spiegler, S., Golénia, B., and Flach, P. A. (2010a). Deap: Deductive-abductive parsing
for morphological analysis. In Kurimo, M., Virpioja, S., and Turunen, V. T., editors,
Proceedings of the Morpho Challenge 2010 Workshop, pages 44–48, Espoo, Finland. Aalto
University School of Science and Technology, Department of Information and Com-
puter Science. Technical Report TKK-ICS-R37.

Spiegler, S., Golénia, B., and Flach, P. A. (2010b). Unsupervised word decomposition
with the promodes algorithm. In Multilingual Information Access Evaluation I. Text Re-
trieval Experiments: 10th Workshop of the Cross-Language Evaluation Forum, CLEF 2009,
Corfu, Greece, September 30 – October 2, 2009, Revised Selected Papers, volume 6241 of
Lecture Notes in Computer Science, pages 625–632. Springer, Berlin / Heidelberg, Ger-
many.

Spiegler, S., Golénia, B., and Flach, P. A. (2010c). Word decomposition with the pro-
modes algorithm family bootstrapped on a small labelled dataset. In Kurimo, M.,
Virpioja, S., and Turunen, V. T., editors, Proceedings of the Morpho Challenge 2010 Work-
shop, pages 49–52, Espoo, Finland. Aalto University School of Science and Technology,
Department of Information and Computer Science. Technical Report TKK-ICS-R37.

Spiegler, S. and Monson, C. (2010). EMMA: A novel evaluation metric for morphological
analysis. In Huang, C.-R. and Jurafsky, D., editors, Proceedings of the 23rd International
Conference on Computational Linguistics (COLING), pages 1029–1037, Beijing, China.
Coling 2010 Organizing Committee.

261

Bibliography

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. (2010a). From baby steps to leapfrog:
How “less is more” in unsupervised dependency parsing. In Kaplan, R., Burstein,
J., Harper, M., and Penn, G., editors, Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational Linguistics,
pages 751–759, Los Angeles, CA, USA. Association for Computational Linguistics.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. (2011). Lateen em: Unsupervised training
with multiple objectives, applied to dependency grammar induction. In Barzilay, R.
and Johnson, M., editors, Proceedings of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 1269–1280, Edinburgh, Scotland, UK. Association
for Computational Linguistics.

Spitkovsky, V. I., Alshawi, H., Jurafsky, D., and Manning, C. D. (2010b). Viterbi training
improves unsupervised dependency parsing. In Lapata, M. and Sarkar, A., editors,
Proceedings of the Fourteenth Conference on Computational Natural Language Learning,
pages 9–17, Uppsala, Sweden. Association for Computational Linguistics.

Sproat, R. and Emerson, T. (2003). The first international Chinese word segmentation
bakeoff. In Ma, Q. and Xia, F., editors, Proceedings of the Second SIGHAN Workshop on
Chinese Language Processing, volume 17, pages 133–143, Sapporo, Japan. Association
for Computational Linguistics.

Sproat, R., Gales, W., Shih, C., and Chang, N. (1996). A stochastic finite-state word-
segmentation algorithm for Chinese. Computational Linguistics, 22(3):377–404.

Steels, L. (2004). Constructivist development of grounded construction grammar. In
Scott, D., Daelemans, W., and Walker, M. A., editors, Proceedings of the 42nd Meet-
ing of the Association for Computational Linguistics (ACL’04), Main Volume, pages 9–16,
Barcelona, Spain. Association for Computational Linguistics.

Steyvers, M., Shiffrin, R. M., and Nelson, D. L. (2005). Word association spaces for
predicting semantic similarity effects in episodic memory. In Healy, A. F., editor,
Experimental Cognitive Psychology and Its Applications, pages 237–249. American Psy-
chological Association, Washington, DC, USA.

Stolcke, A. (1995). An efficient probabilistic context-free parsing algorithm that com-
putes prefix probabilities. Computational Linguistics, 21(2):165–201.

Stolcke, A. (1998). Entropy-based pruning of backoff language models. In Proceedings of
the DARPA Broadcast News Transcription and Understanding Workshop, pages 270–274.

Stolcke, A. and Segal, J. (1994). Precise n-gram probabilities from stochastic context-free
grammars. In Pustejovsky, J., editor, Proceedings of the 32nd Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 74–79, Las Cruces, NM, USA. Association
for Computational Linguistics.

Stump, G. T. (2001). Inflectional Morphology: A Theory of Paradigm Structure. Cambridge
University Press, Cambridge, UK.

Sun, W. and Xu, J. (2011). Enhancing Chinese word segmentation using unlabeled data.
In Barzilay, R. and Johnson, M., editors, Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pages 970–979, Edinburgh, Scotland, UK.
Association for Computational Linguistics.

Sutton, C. and McCallum, A. (2005). Composition of conditional random fields for
transfer learning. In Mooney, R., Brew, C., Chien, L.-F., and Kirchhoff, K., editors, Pro-
ceedings of Human Language Technology Conference and Conference on Empirical Methods
in Natural Language Processing, pages 748–754, Vancouver, British Columbia, Canada.
Association for Computational Linguistics.

Taft, M. (1979). Recognition of affixed words and the word frequency effect. Memory
and Cognition, 7:263–272.

Tam, Y.-C. and Schultz, T. (2005). Dynamic language model adaptation using variational
Bayes inference. In Proceedings of the 9th European Conference on Speech Communication
and Technology (Interspeech 2005), pages 5–8, Lisbon, Portugal. ISCA.

Tchoukalov, T., Monson, C., and Roark, B. (2010). Morphological analysis by multi-
ple sequence alignment. In Multilingual Information Access Evaluation I. Text Retrieval
Experiments: 10th Workshop of the Cross-Language Evaluation Forum, CLEF 2009, Corfu,
Greece, September 30 – October 2, 2009, Revised Selected Papers, volume 6241 of Lecture
Notes in Computer Science, pages 666–673. Springer, Berlin / Heidelberg, Germany.

262

Bibliography

Teahan, W. J., McNab, R., Wen, Y., and Witten, I. H. (2000). A compression-based algo-
rithm for Chinese word segmentation. Computational Linguistics, 26(3):375–393.

Teh, Y. W. (2006). A hierarchical Bayesian language model based on Pitman-Yor pro-
cesses. In Calzolari, N., Cardie, C., and Isabelle, P., editors, Proceedings of the 21st
International Conference on Computational Linguistics and 44th Annual Meeting of the As-
sociation for Computational Linguistics, pages 985–992, Sydney, Australia. Association
for Computational Linguistics.

Tepper, M. and Xia, F. (2008). A hybrid approach to the induction of underlying mor-
phology. In Lee, J.-H., Copestake, A., and Matsumoto, Y., editors, Proceedings of the
Third International Joint Conference on Natural Language Processing (IJCNLP 2008), vol-
ume 1, Hyderabad, India. Asian Federation of Natural Language Processing.

Theron, P. and Cloete, I. (1997). Automatic acquisition of two-level morphological rules.
In Proceedings of the Fifth Conference on Applied Natural Language Processing, pages 103–
110, Washington, DC, USA. Association for Computational Linguistics.

Thrun, S. (1995). Is learning the n-th thing any easier than learning the first? In Touret-
zky, D. S., Mozer, M., and Hasselmo, M. E., editors, Advances in Neural Information
Processing Systems 8, pages 640–646. MIT Press, Cambridge, MA, USA.

Tiedemann, J. (2009). News from OPUS — A collection of multilingual parallel corpora
with tools and interfaces. In Nicolov, N., Bontcheva, K., Angelova, G., and Mitkov, R.,
editors, Recent Advances in Natural Language Processing V, Selected papers from RANLP
2007, pages 237–248. John Benjamins, Amsterdam / Philadelphia.

Tripathi, A. (2011). Data fusion and matching by maximizing statistical dependencies. PhD
thesis, University of Helsinki, Helsinki, Finland.

Tripathi, A., Klami, A., and Kaski, S. (2008). Using dependencies to pair samples for
multi-view learning. TKK Reports in Information and Computer Science TKK-ICS-
R8, Helsinki University of Technology, Espoo, Finland.

Tripathi, A., Klami, A., and Virpioja, S. (2010). Bilingual sentence matching using kernel
CCA. In Proceedings of the 2010 IEEE International Workshop on Machine Learning for
Signal Processing (MLSP 2010), pages 130–135, Kittilä, Finland. IEEE.

Tromble, R., Kumar, S., Och, F., and Macherey, W. (2008). Lattice Minimum Bayes-Risk
decoding for statistical machine translation. In Lapata, M. and Ng, H. T., editors,
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing,
pages 620–629, Honolulu, HI, USA. Association for Computational Linguistics.

Tron, V., Gyepesi, G., Halácsky, P., Kornai, A., Németh, L., and Varga, D. (2005). Hun-
morph: Open source word analysis. In Jansche, M., editor, Proceedings of the ACL
Workshop on Software, pages 77–85, Ann Arbor, MI, USA. Association for Computa-
tional Linguistics.

Turchi, M., Bie, T. D., Goutte, C., and Cristianini, N. (2012). Learning to translate: A sta-
tistical and computational analysis. Advances in Artificial Intelligence, 2012(484580):15.

Turing, A. M. (1936). On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society. Second Series, 42:230–
265.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59:433–460.

Turney, P. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsu-
pervised classification of reviews. In Proceedings of 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 417–424, Philadelphia, PA, USA. Association
for Computational Linguistics.

Turney, P. D. (2001). Mining the Web for synonyms: PMI-IR versus LSA on TOEFL.
In Raedt, L. D. and Flach, P. A., editors, Proceedings of the Twelth European Conference
on Machine Learning (ECML-2001), volume 2167 of Lecture Notes in Computer Science,
pages 491–502. Springer-Verlag, Berlin / Heidelberg, Germany.

Turney, P. D. (2005). Measuring semantic similarity by latent relational analysis. In
Kaelbling, L. P. and Saffiotti, A., editors, Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI-05), pages 1136–1141, Edinburgh, UK. Inter-
national Joint Conferences on Artificial Intelligence.

263

Bibliography

Turunen, V. T. and Kurimo, M. (2011). Speech retrieval from unsegmented Finnish au-
dio using statistical morpheme-like units for segmentation, recognition, and retrieval.
ACM Transactions on Speech and Language Processing, 8(1):1–25.

van den Bosch, A., Stroppa, N., and Way, A. (2007). A memory-based classification
approach to marker-based ebmt. In Eynde, F. V., Vandeghinste, V., and Schuurman, I.,
editors, Proceedings of the METIS-II Workshop on New Approaches to Machine Translation,
pages 63–72, Leuven, Belgium. Katholieke Universiteit Leuven. On-line: http://
www.ccl.kuleuven.be/ws-metis/program.php. Retrieved 2012-06-01.

van Zaanen, M. (2000). ABL: Alignment-based learning. In Proceedings of the 18th In-
ternational Conference on Computational Linguistics (COLING 2000), volume 1, pages
961–967, Saarbrücken, Germany. DFKI GmbH.

Vapnik, V. N. (1999). The nature of statistical learning theory. Springer, New York, NY,
USA, 2nd edition.

Vatanen, T., Väyrynen, J. J., and Virpioja, S. (2010). Language identification of short text
segments with n-gram models. In Calzolari, N., Choukri, K., Maegaard, B., Mariani,
J., Odjik, J., Piperidis, S., Rosner, M., and Tapias, D., editors, Proceedings of the Sev-
enth Conference on International Language Resources and Evaluation (LREC’10), Valletta,
Malta. European Language Resources Association.

Väyrynen, J. J., Lindqvist, L., and Honkela, T. (2007). Sparse distributed representa-
tions for words with thresholded independent component analysis. In Si, J. and Sun,
R., editors, Proceedings of the International Joint Conference on Neural Networks (IJCNN
2007), pages 1031–1036, Orlando, FL, USA. IEEE.

Vigliocco, G., Vinson, D. P., Druks, J., Barber, H., and Cappa, S. F. (2011). Nouns and
verbs in the brain: A review of behavioural, electrophysiological, neuropsychological
and imaging studies. Neuroscience and Biobehavioral Reviews, 35:407–426.

Vinokourov, A., Shawe-Taylor, J., and Cristianini, N. (2003). Inferring a semantic repre-
sentation of text via cross-language correlation analysis. In Becker, S., Thrun, S., and
Obermayer, K., editors, Advances in Neural Information Processing Systems 15, pages
1497–1504. MIT Press, Cambridge, MA, USA.

Vitanyi, P. M. B. and Li, M. (2000). Minimum description length induction, Bayesianism,
and Kolmogorov complexity. IEEE Transactions on Information Theory, 46(2):446–464.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269.

Wallace, C. S. and Boulton, D. M. (1968). An information measure for classification.
Computer Journal, 11(2):185–194.

Wallace, C. S. and Dowe, D. L. (1999). Minimum message length and kolmogorov com-
plexity. Computer Journal, 42(4):270–283.

Wallace, C. S. and Freeman, P. R. (1987). Estimation and inference by compact coding.
Journal of the Royal Statistical Society. Series B (Methodological), 49(3):240–265.

Wang, M. Q. and Hirschberg, J. (1992). Automatic classification of intonational phrase
boundaries. Computer Speech and Language, 6:175–196.

Ward, G. (2002). Moby thesaurus list. On-line: http://www.gutenberg.org/ebooks/
3202. Retrieved 2012-02-02.

Watts, O., Yamagishi, J., and King, S. (2011). Unsupervised continuous-valued word
features for phrase-break prediction without a part-of-speech tagger. In Proceedings
of the 12th Annual Conference of the International Speech Communication Association (IN-
TERSPEECH 2011), pages 2157–2160, Florence, Italy. ISCA.

Wells, R. S. (1947). Immediate constituents. Language, 23(2):81–117.

Westerweld, T., de Vries, A., and de Jong, F. (2007). Generative probabilistic models. In
Blanken, H. M., de Vries, A. P., Blok, H. E., and Feng, L., editors, Multimedia retrieval,
pages 177–198. Springer-Verlag, Berlin / Heidelberg, Germany.

264

Bibliography

Wicentowski, R. (2004). Multilingual noise-robust supervised morphological analysis
using the wordframe model. In Current Themes in Computational Phonology and Mor-
phology: Proceedings of Seventh Meeting of the ACL Special Interest Group on Computa-
tional Phonology (SIGPHON), pages 70–77, Barcelona, Spain. Association for Compu-
tational Linguistics.

Wilcox, B. (2011). Beyond façade: Pattern matching for natural language applica-
tions. On-line: http://www.gamasutra.com/view/feature/6305/beyond_fa%C3%
A7ade_pattern_matching_.php. Retrieved 2011-06-21.

Wintner, S. (2009). What science underlies natural language engineering? Computational
Linguistics, 35(4):641–644.

Witten, I. H. and Bell, T. C. (1991). The zero-frequency problem: Estimating the proba-
bilities of novel events in adaptive text compression. IEEE Transactions on Information
Theory, 37(4):1085–1094.

Wood, F. and Teh, Y. W. (2009). A hierarchical nonparametric Bayesian approach to
statistical language model domain adaptation. In van Dyk, D. and Welling, M., edi-
tors, Proceedings of the 20th International Conference on Artificial Intelligence and Statistics
(AISTATS 2009), volume 5 of JMLR: Workshop and Conference Proceedings, pages 607–
614. Journal of Machine Learning Research.

Wu, J. and Khudanpur, S. (2002). Building a topic-dependent maximum entropy model
for very large corpora. In Proceedings of the 2002 IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), volume 1, pages 777–780, Orlando, FL,
USA. IEEE.

Wu, Z. and Tseng, G. (1993). Chinese text segmentation for text retrieval: Achievements
and problems. Journal of the American Society for Information Science, 44(9):532–542.

Xu, P. and Jelinek, F. (2004). Random forests in language modeling. In Lin, D. and Wu,
D., editors, Proceedings of the 2004 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 325–332, Barcelona, Spain. Association for Computational
Linguistics.

Yamamoto, H., Isogai, S., and Sagisaka, Y. (2003). Multi-class composite n-gram lan-
guage model. Speech Communication, 41(2–3):369–379.

Yang, M. and Kirchhoff, K. (2006). Phrase-based backoff models for machine translation
of highly inflected languages. In McCarthy, D. and Wintner, S., editors, 11th Confer-
ence of the European Chapter of the Association for Computational Linguistics (EACL 2006),
pages 41–48, Trento, Italy. Association for Computational Linguistics.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised
methods. In Uszkoreit, H., editor, Proceedings of the 33rd Annual Meeting of the Associ-
ation for Computational Linguistics, pages 189–196, Cambridge, MA, USA. Association
for Computational Linguistics.

Yarowsky, D. and Florian, R. (2002). Evaluating sense disambiguation across diverse
parameter spaces. Natural Language Engineering, 8(4):293–310.

Yarowsky, D., Ngai, G., and Wicentowski, R. (2001). Inducing multilingual text analysis
tools via robust projection across aligned corpora. In Allan, J., editor, Proceedings of
the First International Conference on Human Language Technology Research (HLT 2001),
pages 161–168, San Diego, CA, USA. Morgan Kaufmann.

Yarowsky, D. and Wicentowski, R. (2000). Minimally supervised morphological analysis
by multimodal alignment. In Proceedings of the 38th Meeting of the ACL, pages 207–216,
Hong Kong, China. Association for Computational Linguistics.

Younger, D. H. (1967). Recognition and parsing of context-free languages in time n3.
Information and Control, 10(2):189–208.

Zelikovitz, S. and Hirsh, H. (2001). Improving text classification with LSI using back-
ground knowledge. In Nebel, B., editor, Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI01), pages 113–118, Seattle, WA, USA.
International Joint Conferences on Artificial Intelligence Organization, Morgan Kauf-
mann Publishers.

265

Bibliography

Zeman, D. (2008). Unsupervised acquiring of morphological paradigms from tokenized
text. In Advances in Multilingual and Multimodal Information Retrieval, 8th Workshop of
the Cross-Language Evaluation Forum, CLEF 2007, Budapest, Hungary, September 19–21,
2007, Revised Selected Papers, volume 5152 of Lecture Notes in Computer Science, pages
892–899. Springer, Berlin / Heidelberg, Germany.

Zeman, D. (2009). Using unsupervised paradigm acquisition for prefixes. In Evaluating
Systems for Multilingual and Multimodal Information Access, 9th Workshop of the Cross-
Language Evaluation Forum, CLEF 2008, Aarhus, Denmark, September 17–19, 2008, Re-
vised Selected Papers, volume 5706 of Lecture Notes in Computer Science, pages 983–990.
Springer, Berlin / Heidelberg, Germany.

Zesch, T. and Gurevych, I. (2009). Wisdom of crowds versus wisdom of linguists —
measuring the semantic relatedness of words. Natural Language Engineering, 16(1):25–
59.

Zhang, D., Mei, Q., and Zhai, C. (2010). Cross-lingual latent topic extraction. In Hajič,
J., Carberry, S., Clark, S., and Nivre, J., editors, Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics, pages 1128–1137, Uppsala, Sweden.
Association for Computational Linguistics.

Zhu, X. (2005). Semi-supervised learning literature survey. Technical Report 1530, Com-
puter Sciences, University of Wisconsin-Madison.

Zipf, G. K. (1932). Selective Studies and the Principle of Relative Frequency in Language.
Harvard University Press, Cambridge, MA.

Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort. Addison-Wesley,
Boston, MA, USA.

Zollmann, A., Venugopal, A., and Vogel, S. (2006). Bridging the inflection morphology
gap for Arabic statistical machine translation. In Moore, R. C., Bilmes, J., Chu-Carroll,
J., and Sanderson, M., editors, Proceedings of the Human Language Technology Conference
of the NAACL, Companion Volume: Short Papers, pages 201–204, New York, NY, USA.
Association for Computational Linguistics.

266

����������	
���
��
�	����	
��
���	����������
��

��������������� ������������� �

	!�"#$��$�%�$�������"������&�$��'��$�#���(���)������$��(*�����*

��������++����� ����)�(����(,

-"�. $&����)��(�#�"�/$&��(��"$�%���)���#�"0��$������"$�!���$��-����

�1."�(($�������*�����*

��������23����� �4$$���$�0$��4$���

4$(��������%�"5�����&�$��'�����1.�"$0��������"(.�&�$!�*�����*

��������3������ �6�� $78"!$����0$

���$.���65.�� �($(���(�$�%�$�������$�$�%*�����*

��������39����� ���0:�0�"����!��

�)!��&�(�$���)��$�%���)�� �"�&��"$;��$����#�6�0���
��"�0�%���$&�

	(&$����$��(*�����*

���������<����� ���"������4$�����*

�". �/�(�)��.��& ����"$�!��'���)�1$�%��� �)(���)��!�����$��(��#�

��(�.�"!$(�)��". ���%$&�������5($(*�����*

����������3�������4$�"$������� �

	��(���$(�$&���� ��"5��#�"�)�"�0��(�"�0���(*�����*

����������<�������6��.��$�0$����::�

���$!�"$�������$�=�5��)���$�%��#����$.���6$% ��$0��($����������

���"&�(*�����*

���������+<����� ����::�"$���"$������

>��%��%�����)�)�0�$��$�)�.��)������1��0$�$�%*�����*

���������++�������� �"�� ��>��"$

	��$�����%�"$� 0(�$����(��"&�����%�0������)����(�"�$���

���$(#�&�$��*�����*

9HSTFMG*aeiicg+

ISBN 978-952-60-4882-6
ISBN 978-952-60-4883-3 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Information and Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 15

8
/2

012

The digital revolution means that there are
increasing amounts of text and speech
material in electronic format. This calls for
adaptive and data-driven approaches to
automatically process the continuously
accumulating data. A particular problem in
language processing is how to select the
lexical units (such as words, morphemes,
and phrases) for further modeling in
information retrieval, speech recognition,
and machine translation systems. The
systems themselves rely more and more on
machine learning techniques. However, the
unit selection problem is still commonly
solved by traditional rule-based approaches
that are limited in languages and domains.
Building on statistical machine learning
methods and the linguistic theory of
construction grammars, this thesis presents
new unsupervised and semi-supervised
algorithms for selecting lexical units. It also
presents new evaluation methods for the
units learned and examines various
approaches for utilizing them in speech
recognition and statistical machine
translation.

Sam
i V

irpioja
L

earning C
onstructions of N

atural L
anguage: Statistical M

odels and E
valuations

A
alto

 U
n
ive

rsity

Department of Information and Computer Science

Learning Constructions
of Natural Language:
Statistical Models and
Evaluations

Sami Virpioja

DOCTORAL
DISSERTATIONS

