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1. Introduction to the electronic
structure calculation methods

First half of the twentieth century gave birth to one of the greatest revolu-

tions in the history of science. At the end of nineteenth century and begin-

ning of twentieth, there were many experiments, in the atomic scale, that

were in obvious conflict with the classical theories of mechanics and elec-

trodynamics. The increasing discrepancies between these theories and

experiments forced scientists to rethink the basic concepts and laws of

physics, and led to the revolutionary theory of quantum physics or quan-

tum mechanics. This was also called wave mechanics at the beginning

since as one of the main concepts, it describes particles as waves and

therefore all characteristics of an entire physical system can be explained

by a wave function. Schrödinger found that the wave function changes ac-

cording to a partial differential equation which is now called Schrödinger

equation. It reads

ih̵ ∂tΦ(r1 . . . rN , t) = Ĥ Φ(r1 . . . rN , t), (1.1)

where Φ is the wave function, Ĥ is the Hamiltonian of the system, h̵ is

the reduced Plank constant, and N is the number of particles in the sys-

tem. Although the Schrödinger equation contains all information about a

physical system, it is practically impossible to solve for more than a few

particles, and therefore we should find some approaches to simplify the

equation. The effort in this direction can be categorized in the field of

computational physics. Computational physics works as a link between

theory and experiment because it provides a better understanding of the

physical phenomena happening in an experiment by simulating similar

systems and analyzing the outcomes, and it enhances both theory and

experiment.

In the present dissertation, we deal with two approaches for calculating

the electronic structures of materials, namely, density-functional theory

(DFT) and density-matrix theory. They are both among the most powerful,
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Introduction to the electronic structure calculation methods

and widely used techniques to handle systems with a few to a few hundred

atoms. In this chapter we briefly introduce these two techniques.

First, we will talk about density-functional theory, and then we will in-

troduce the concept of a density matrix and discuss density-matrix-based

methods for electronic structure calculations. In the rest of this chapter,

we employ atomic units (a.u.), 1/(4πε0) = e2 = h̵ = me = 1, unless stated

otherwise.

1.1 Density-functional theory

One of the most popular quantum physical methods to calculate the elec-

tronic structure of a system is density-functional theory (DFT). The core

idea of DFT is that all time-independent observables of a many-body sys-

tem can, in principle, be written as some functional of its ground-state

electronic density, and therefore, the density alone is sufficient to calcu-

late all the electronic properties of the system.

Let us consider a systemwithN identical particles. The time-independent

Schrödinger equation for such a system reads

[ N

∑
i=1

( − 1
2
∇2 + v(ri)) + 1

2

N

∑
i≠j

Uij]Φ(r1 . . . rN) = EΦ(r1 . . . rN), (1.2)

where the energy operators are separately shown as

T̂ = −∑N
i=1

1
2∇2,

V̂ = ∑N
i=1 v(ri),

Û = 1
2 ∑N

i≠j Uij . (1.3)

Here, v(r) is the time-independent external potential, and Uij ≡ U(rirj)
is the two-particle interaction which is usually spin independent and has

the form U(ri rj) = w(∣ri − rj ∣).
In 1964 Hohenberg and Kohn [1] proved that if the ground-state den-

sity n0(r) of a system is known, in principle, we can obtain its ground-

state wave function Φ0; that is to say, Φ0 ≡ Φ0[n0]. As a result, all the

ground-state expectation values become also some functionals of n0(r).
While already this is a profound statement, they extended the theorem

and showed that we can find uniquely the external potential v(r) of the
system from the density n0(r), and determine the total Hamiltonian of

the system (assuming we know the form of U(r1r2)). On the other hand,

all the properties of the system are determined once the Hamiltonian is

2
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specified. This implies that n0(r) characterizes in principle all properties
of the system, and every observable of the system is some functional of

the ground-state density.

There is also an important variational principle associated with the

Hohenberg-Kohn theorem. Since the expectation value of any observ-

able of a system is a unique functional of the ground-state density, we

can certainly apply it to the ground-state energy. We can construct this

functional as

E [n] ≡ ⟨Φ0[n]∣T + V +U ∣Φ0[n]⟩, (1.4)

where V is the specific external potential of a system with ground-state

density n0(r) and ground-state energy E0. For the case where the density

n(r) equals the ground-state density n0(r) corresponding to the external
potential V , the functional E[n] then takes on the value E0. Since the

ground-state energy is determined uniquely by n0(r), the Rayleigh-Ritz
principle establishes that

E0 < E[n] for n ≠ n0. (1.5)

This property means that we can vary the density to minimize the en-

ergy, provided we know the form of the functional ε[n], or at least have a
good approximation for it. In fact, we can write the ground-state energy

functional in Eq. (1.4) as

E
HK

[n] = F
HK

[n] + ∫ v(r)n(r)dr, (1.6)

where F
HK

[n] = ⟨Φ0[n]∣T + U ∣Φ0[n]⟩ is a unique functional. By that we

mean that F
HK

[n] is the same functional of the density n(r) for all inter-

acting systems of these N -identical particles. We thus need to determine

it only once, and can then apply it to all systems.

Despite such an attractive possibility, it is important to emphasize that

the Hohenberg-Kohn theorem only proves the existence of these function-

als, but it does not show us a way to find the form of the functionals. In

order to bypass this problem, later Kohn and Sham [2] showed that there

exists a fictitious system of non-interacting electrons with the exact same

ground-state density as the actual physical system. For this auxiliary sys-

tem, we must solve a set of single-particle equations, called Kohn-Sham

(KS) equations [2], which compare to the original interacting system, is

enormously easier to solve. The Schrödinger equation for this auxiliary

system reads

[ − 1
2
∇2 + veff(r)]φi(r) = εi φi(r), (1.7)

3
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where

veff(r) = v(r) + v
H
(r) + vxc(r), (1.8)

v
H
(r) = ∫ dr′

n(r′)
∣r − r′∣ , (1.9)

vxc(r) = δExc[n(r)]
δn(r) , (1.10)

and φi are single-particle Kohn-Sham orbitals that reproduce the single-

particle density ns(r), which by definition is equal to the actual density of
the system,

n(r) ≡ ns(r) =
N

∑
i=1

∣φi(r)∣2. (1.11)

Equation 1.8 tells that the effective potential of the KS system veff(r)
consists of the external potential v(r), the Hartree potential v

H
(r), and

the exchange-correlation potential vxc(r).
All the information about many-body effects of the actual physical sys-

tem is encapsulated in the vxc(r), but the exact functional form of the

exchange-correlation energy is not known and therefore we need to ap-

proximate it. There are many different approximation for the Exc[n(r)],
but the two most popular sets of approximations are local density approxi-

mation (LDA) and generalized gradient approximation (GGA) which have

the general form of

ELDA
xc = ∫ d(r)n(r)εxc(r), (1.12)

EGGA
xc = ∫ d(r)f(n(r),∇n(r)), (1.13)

where εxc(r) an xc-energy density.
In this dissertation, we only use the GGA form of the xc-energy which

was proposed by Perdew, Burke, and Ernzerhof (PBE) [3].

1.2 Density-matrix theory

Another approach to the electronic structure calculations has the concept

of density matrix in its core. The density matrix of a quantum system

is a matrix which describes the system as probability distribution of an

ensemble of quantum states. The full density matrix is an alternative to

the many-body wave function of the system and carries all the information

hidden in it, however, reduced density matrices (RDMs) encapsulate the

information by integrating over a number of spin-state coordinates and,

of course, in this process some of the informations will be lost.

4
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Before we get to the mathematical description of above-mentioned con-

cepts, and in order to have a compact notation, we introduce two collec-

tions of space-spin coordinates as

Xn ≡ (x1 . . .xn) ; X̆n ≡ (xn+1 . . .xN). (1.14)

In this notation, Φ(XN , t) denotes the normalized wave function of the

system.

For the N -particle system the time-dependent Hamiltonian is

Ĥ1...N(t) =
N

∑
i=1

ĥi + 1
2

N

∑
i≠j

Uij , (1.15)

where x includes both space coordinates r and spin coordinates σ of the

particles. The one-body part, ĥi ≡ ĥ(xi, t), will be time-dependent and of
the form

h(x, t) = −1
2
∇2 + v(x, t), (1.16)

where v is a general time-dependent external field.

Now, we can define the density matrix for such a system as

Γ(N)(XN ,X ′
N , t) = N ! Φ(XN , t)Φ∗(X ′

N , t). (1.17)

This matrix contains exactly the same information as the full wave func-

tion of the system. However, as we will show shortly, for most of the ob-

servables we deal with, e.g. the total energy, we only need a part of the

embedded information in the density matrix. This reduced information

can be restored in the reduced density matrices. We define an n-body

reduced density matrix, Γ(n), as

Γ(n)(Xn,X
′
n, t) = N !

(N − n)! ∫ dX̆n Φ(Xn, X̆n, t)Φ∗(X ′
n, X̆n, t), (1.18)

where dX̆n ≡ dxn+1 . . . dxN and ∫ dx = ∑σ ∫ dr.

This object contains the full information of (up to) n-body interactions

in the system. Based on above definitions, several important properties of

RDMs follow.

1. One can easily show from Eq. (1.18) that for an n-body operator, Â(n),

the expectation value can be calculated as

< Â(n) >= Tr(A(n)Γ(n)) (1.19)

and therefore it is enough to have access to the Γ(n) instead of full den-

sity matrix or many-body wave function.

5
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2. Different levels of RDMs are connected to each other by the equation

∫ dxn+1 Γ
(n+1)(Xnxn+1,X

′
nxn+1, t) = (N − n)Γ(n)(Xn,X

′
n, t), (1.20)

which we refer to it as partial trace relation. Consequently, if Γ(n)

is available, all RDMs with lower order can be calculated straightfor-

wardly.

3. Equation (1.18) implies that all RDMs are positive-semidefinite which

refers to the fact that all eigenvalues of RDMs are always equal to or

greater than zero. For a given order RDM, these eigenvalues and their

corresponding eigenvectors can be calculated as

∫ dX ′
n Γ

(n)(Xn,X
′
n, t) gi(X ′

n, t) = λi(t) gi(Xn, t), λi(t) ≥ 0. (1.21)

Conventionally, the eigenvectors and eigenvalues of Γ(1) are called nat-

ural orbitals and natural orbital occupation numbers, and of Γ(2) are

called geminals and geminal occupation numbers, respectively.

4. In the case of fermionic particles, the Pauli exclusion principle enforces

natural orbital occupation numbers to be less than or equal to one [4].

Thus, they have to remain between zero and one. This is what we call

the fermionic inequality in this work.

5. The diagonal of Γ(1) is the electronic density, and therefore, its trace

will add up to the number of particles N .

The later property suggests that we can use Γ(1) as a central variable

to calculate the physical quantities of a quantum system. That leads to

what is known as reduced density matrix functional theory (RDMFT). As

an advantage in RDMFT, by having Γ(1), we immediately can calculate

all one-body observables (Eq. 1.19), while in DFT, the density functional

form of observables are not generally known.

Nevertheless, for other n-body observables (n ≥ 2), we need to approxi-
mate Γ(n) as a functional of Γ(1).

1.2.1 Ground-state method: RDMFT*

As we stated in the previous section, Hohenberg and Kohn proved that,

apart from the one to one relation between n0(r) and Φ0, we can determine
*In this section we ignore the spin coordinates for simplicity.
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uniquely v(r) from the ground-state density n0(r), and this means that

we can calculate all the time-independent properties of the system with

knowledge of the ground-state density alone. However, when the exter-

nal potential is spin dependent [5] or nonlocal, many external potentials

yield the same ground state, and thus, the relation between v(r) and Φ0

is not one to one any longer. Although this implies that for these systems,

the density does not determine (even in principle) all the properties of the

system, what we need in practice from the Hohenberg-Kohn theorem is

only the existence of the one to one relation between Φ0 and the density,

which permits us to write the functional relation E[n] and define a uni-

versal functional. Thus, we must investigate how the presence of nonlocal

external potentials affects the one to one relation between Φ0 and n0(r).
This analysis was done initially by Gilbert [6], and is usually referred to

as the Gilbert theorem. The theorem states that there exists a one to one

mapping between the ground-state wave function Φ0 and the one-body re-

duced density matrix Γ
(1)
0 (r, r′), and therefore the ground-state density

n0(r) .
The Gilbert theorem also suggests that we can use Γ(1)0 (r, r′) for calcu-

lating the ground-state properties of a physical system. As and advantage

to DFT, here we know the exact functional form of single-particle energy

terms, which is very encouraging. This is a direct outcome of the relation

(1.19); in fact, this also enables us to calculate all one-body observables

once Γ(1) is given. In a similar fashion to E
HK

[n], we can define the en-

ergy functional

E[Γ(1)] = ∫ [−1
2
δ(r − r′)∇2

r′ + v(r, r′)]Γ(1)(r, r′)drdr′ +U[Γ(1)], (1.22)

where

U[Γ(1)] = ⟨Ψ[Γ(1)]∣U ∣Ψ[Γ(1)]⟩ = 1
2
Tr(U Γ(2)[Γ(1)]). (1.23)

As in DFT, here we can also minimize this energy functional to find

the ground-state energy and one-body RDM Γ
(1)
0 . In order to do that, we

must approximate the two-body RDM in Eq. (1.23). Over the last decade,

many approximations have been developed [7–22, 22–24] where one can

employ for the minimization. However, we drop the discussion about their

qualities and refer to [25] for more information.

1.2.2 Time evolution: The BBGKY Hierarchy

Having the equation of motion for n-RDMs enables us to study the dynam-

ical properties of all n-body operator. Such an equation can be derived by

7
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combining the time-dependent Schrödinger equation and time-derivative

of Eq. (1.18) so that we have

i∂tΓ
(n)(Xn,X

′
n, t) = N !

(N − n)! ∫ dX̆n([Ĥ1...NΦ(Xn, X̆n, t)]Φ∗(X ′
n, X̆n, t)

−Φ(Xn, X̆n, t)[Ĥ1′...n′,n+1...NΦ
∗(X ′

n, X̆n, t)]). (1.24)

Now, we split Ĥ1...N into three parts. A part depending only on coordi-

nates 1 . . . n, an other part depending only on coordinates n + 1 . . .N and a

coupling term between the coordinates of these two parts, i.e.

Ĥ1...N = Ĥ1...n + Ĥn+1...N + n

∑
i=1

N

∑
j=n+1

Uij . (1.25)

Replacing Ĥ1...N and Ĥ1′...n′,n+1...N , in the Eq. (1.24), by Eq. (1.25) we

have

i∂tΓ
(n)(Xn,X

′
n, t) = (Ĥ1...n − Ĥ1′...n′)Γ(n)

+ N !

(N − n)! ∫ dX̆n([Ĥn+1...NΦ(Xn, X̆n, t)]Φ∗(X ′
n, X̆n, t)

−Φ(Xn, X̆n, t)[Ĥn+1...NΦ
∗(X ′

n, X̆n, t)])
+ N !

(N − n)!
n

∑
i=1

N

∑
j=n+1

∫ dX̆n([U(xixn+1) −U(x′ixn+1)]
Φ(Xn, X̆n, t)Φ∗(X ′

n, X̆n, t)), (1.26)

where the second term on the righthand side is zero due to the Hermicity

of Ĥn+1...N . Furthermore, the last term yields (N − n) identical terms due
to permutation symmetry of the wave function. We thus obtain

i∂tΓ
(n) = (Ĥ1...n − Ĥ1′...n′)Γ(n)

+ N !

(N − n − 1)!
n

∑
i=1

∫ dxn+1([U(xixn+1) −U(x′ixn+1)]
Φ(Xn, X̆n, t)Φ∗(X ′

n, X̆n, t)). (1.27)

Using the definition of Γ(n+1) we can rewrite this as

(i ∂t − Ĥ1...n + Ĥ1′...n′)Γ(n)(Xn,X
′
n, t) =

n

∑
i=1

∫ dxn+1(U(xixn+1) −U(x′ixn+1))Γ(n+1)(Xnxn+1,X
′
nxn+1, t).

(1.28)

As we can see from this equation, the equation of motion for each RDM

contains the corresponding and one order higher RDM. The whole set

of these interrelated equations form the so-called BBGKY hierarchy

since a basically similar hierarchy was initially invented and developed

8
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by Born, Bogoliubov, Green, Kirkwood and Yvon [26–29] in classical sta-

tistical mechanics. In fact, one can perform the Wigner transform on this

hierarchy to get the Wigner representation of it. Then, after some algebra

one can easily show that the classical limit of this hierarchy, i.e. h̵→ 0, re-

duces to the classical BBGKY hierarchy, as it should. These calculations

have been performed in detail in Sec. 2.3.2 in Ref. [30].

However, it would not be practical to propagate the highest order of

the hierarchy and in order to propagate the lower order equations, we

need to truncate them. There are many theories in which the hierarchy

is truncated at the level of the first equation by approximating Γ(2) as a

functional of Γ(1); but in this thesis we will truncate the hierarchy at the

second level. The methods of the truncation and detailed discussion of the

results are presented in Chapter 3.

9





2. Electrons on the move

In this chapter, first, we provide a short introduction to the concept of

electronic transport in mesoscopic systems where the conductor does not

show Ohmic behavior and quantum mechanical effects start to play a role

in the transport properties of the system. We also introduce the Landauer

formula as a widely used method to calculate the conductivity in such

systems.

Next, we apply this method to study the electronic transport in different

nanoscale systems containing carbon nanotubes.

2.1 Landauer approach to electronic transport

If size of the conducting medium gets smaller than the phase-relaxation or

coherent length of the system, we enter the coherent regime of electronic

transport where the probability of phase destroying, inelastic scattering,

e.g. by phonons, is negligible. Electronic transport through mesoscopic

systems, like carbon nanotube based systems particularly at low temper-

atures, are categorized in this regime.

Themost popular approach to the electronic transport in mesoscopic sys-

tems is the Landauer approach which relates the conductance of a sample

Figure 2.1. Schematic view of the ideal system used in Landauer formalism. A central
mesoscopic medium (C), between two semi-infinite reflectionless leads in its
left (L) and right (R).

11
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to transmission probabilities of propagating electrons at the Fermi level.

Consider a conducting sample (C), which is attached to two reflectionless

leads, say left lead (L), and right lead (R) as depicted in Fig. 2.1. Further

we assume that each lead has many scattering states (sometimes called

propagating modes or channels) from which we choose N state with N

being a large enough cut-off value. Then the Landauer formula for the

conductance reads,

G(ε) = 2e2
h

N

∑
n=1

Tn(ε), (2.1)

where ε is the energy and Tn is the transmission probability for the scat-

tering state n, and is defined as Tn = (t†t)nn. Here, t is the transmission
matrix which its element tnn′ is the probability that an incoming wave

from the state n′ in the left lead transmits into the state n in the right

lead.

Conceptually, the Landauer formula suggests that the ballistic conduc-

tance is quantized in 2e2/h units, but it only can be seen clearly if the

transmission probability is either 0 or 1. For example, armchair single

wall nanotubes have two different channels at the Fermi level which are

fully open (transmission probability of 1) and therefore the conductance is

4e2/h. Reference [31] provides the derivation of Landauer formula with a
detailed discussion on the subject of transport in mesoscopic systems.

A standard way to implement the Landauer approach is to express the

scattering matrix in terms of Green’s function which is approximated by

ground-state Kohn-Sham Green’s function. This DFT-based transport ap-

proach is what we use in our calculations. However, one should be aware

of the limitations of this method, in order to apply it correctly. First of all,

the DFT-based formulation of the Landauer approach, make it vulnerable

to the DFT limitations as well. For instance, the accuracy of the ground-

state functionals is one of the issues of concern particularly since the cur-

rent flow is a nonequilibrium phenomenon in nature. On the other hand,

the Landauer formalism itself is based on some assumptions that limits

its applicability; for example, it assumes electrons to be non-interacting

and it neglects inelastic scattering, e.g., by phonons, that can have consid-

erable effect in some systems specially at higher temperatures. All these

deficiencies, and many more [32, 33], tell us to apply this method with

open eyes. As an example, this single-electron-based Landauer approach

tends to overestimate the conductance in many cases, or it is not able to

capture some important many-body effects such as Coulomb blockade or

Kondo effect.

12
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More advanced transport formalisms, e.g., based on master equation

or nonequilibrium Green’s function (NEGF), were developed to overcome

some of these problems. To treat the nonequilibrium situations more ac-

curately, NEGF formalism was combined with the time-dependent DFT

[34, 35] or GW formalism [36, 37] as well. However for finite bias calcu-

lations, where the leads have different electrochemical potential, we use

DFT-based NEGF [38] formalism in the present dissertation.

2.2 Electronic transport in defective carbon nanotubes

Since their discovery [39], carbon nanotubes (CNT) have been subjected

to exhaustive studies both theoretically and experimentally. They are

also listed among the main candidates for post-CMOS (Complementary

metal–oxide–semiconductor) nanoelectronic devices because of their high

carrier mobility as well as their structural stability. The electronic, opti-

cal, and transport properties of CNTs depend strongly on their geometry,

offering great versatility, but at the same time posing a huge challenge

because of difficulties in growing and isolating CNT’s of a predetermined

type. Defects, impurities and imperfections, as an inevitable but not nec-

essarily an unfavorable feature of a real-world nanotube, have also at-

tracted intense attention [40], because they can modify the electronic

properties of nanotubes to some extent, perhaps even in a controllable

way.

Sidewall chemical functionalization is a way to control or affect the prop-

erties of CNTs in order to extend their area of application, and it is already

a well-established branch of research [41–44]. However, the low reactivity

of the sidewall of CNTs make their functionalization process difficult. On

the other hand, defects and imperfections are an inevitable part of real

life CNTs and they also might be a favorable point for the attachment

of functional groups. Nevertheless, functionalization only will be useful

if we can do it in a controllable manner, for instance, by controlling the

density of the functional groups.

A possible good host for the functional groups has been introduced by the

discovery of a hybrid carbon nanostructure, the carbon nanobud (CNB)

[45] that consists of an imperfect fullerene covalently bonded to a single-

wall carbon nanotube (SWCNT) (see Fig. 2.2). Carbon nanobuds open a

new way of functionalizing CNTs, in particular, because of the high reac-
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Figure 2.2. Typical carbon nanobud (CNB) structures studied in this work. The left
leads (L), central regions (C) and, right leads (R) are shown in the figure. The
CNB consists of an imperfect C60 attached to an armchair (8,8) single-wall
carbon nanotube (SWCNT) via a neck region, made of a (6,0) SWCNT. The
number of unit cells in the neck region can vary; panel (a) shows a zero-unit
cell neck (CNB0), while (b) shows a two-unit cell neck (CNB2).

tivity of fullerenes [46,47].

As one of the most important properties of the structure, we studied the

electronic transport properties of CNBs in our first work [I].

Although the actual atomic structures of experimentally realized CNBs

are not yet known, they can generally be categorized in two different

groups, depending on how the fullerene is attached to the sidewall of

the SWCNT [45, 48]. In the first type, a complete fullerene is covalently

bonded to a SWCNT via sp3-hybridization of carbon atoms e.g. [2+2] cy-

cloaddition, while in the second type, all carbon atoms are sp2-hybridized

and the fullerene can be considered as a part of the SWCNT. In our work

we focused on the second type of CNBs.

Based on the density-functional calculations of the structural stability

reported in Ref. [45], we have chosen to model the CNB structures in the

second group as follows (see Fig. 2.2). The dome of the CNB is an imper-

fect fullerene, C60, with six atoms removed at the apex. The fullerene

is then attached to a (8,8) SWCNT via a connecting region ("neck") made

of a varying number of unit cells of a (6,0) SWCNT. This construction al-

lows a relatively smooth joining of the C60 to the underlying SWCNT,

even though for the shortest neck regions the curvature for the connect-

ing bonds is relatively high (see Fig. 2.2a). We use the notation CNBn,

where n is the number of unit cells of the (6,0) SWCNT forming the neck,

to describe the structures studied in this work.

As a general feature in all computed structures the transmission is re-

duced at the Fermi energy, Ef and above it. Moreover, there is a plateau

region, with an almost perfect transmission, below the Fermi energy. Al-
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Figure 2.3. Transmission as a function of energy for nanobuds CNB0, CNB1, CNB2
(upper panels) and the PDOS for the bud and neck regions (lower panels).

though the details of these features differs, depending on the exact struc-

ture and the size of the neck, the overall features can be attributed to the

vacancies in the structure and the localized states in the neck and bud

regions.

The upper panel of Fig. 2.3, shows the transmission function for the

CNB0-2 and the lower panel shows the projected density of state, PDOS,

for the neck and bud regions. As it is shown, all of the dips in transmission

have a direct correspondence with a peak in PDOS arising from the states

that are (quasi)localized in the neck and bud regions. Also in the plateau

��������	
 ����	�����	


��
 �



Figure 2.4. Local density of states, LDOS, of CNB0 for (a) the least perturbed energy
window (−1,−0.75) and (b) the most reduced energy window (−0.5,−0.25).
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part of the transmission, the bud and neck regions have a very low PDOS

and the transmission is essentially the same as for a pristine SWCNT.

The effect of localized states in the neck and bud regions can be seen

more clearly by calculating the local density of states, LDOS, which is

spatial distribution of density of states (DOS) for a certain energy win-

dow. We calculated that LDOS for the CNB0 in two different energy win-

dows; the almost unperturbed one, (−1,−0.75), and the most reduced one,
(−0.5,−0.25), and they are both depicted in Fig. 2.4.
In the unperturbed window, DOS is distributed in the nanotube region

of the CNB, as well as in the bud region (2.4a) and thus electrons transmit

through the device as if the nanotube is perfect. On the other hand, in the

most reduced energy window, the states are mostly localized in the bud

region and they are distributed much less in the body of the CNB (2.4b)

and hence in that energy window the transmission is almost suppressed.

Such analysis provides an insight for further manipulation of the CNB,

e.g. gating it by chemical modification [49], in order to engineer nanode-

vices.

2.3 Effect of periodic bi-site perturbations

As continuation of the previous work, more studies were done on the effect

of multiple buds on the electronic properties of CNTs, since the density of

the buds can be modified experimentally. These studies have led us to the

more general understanding of how periodic cluster perturbations, that

include several neighboring carbon atoms in each cluster, affect the elec-

tronic structure of nanotubes. For example we performed calculations on

different numbers of neighboring vacancies, hydrogen adsorbate clusters

and nanobuds and the results showed the same pattern in all of them. Our

next paper is devoted to explain that pattern. Hydrogen clusters are re-

alistic defect candidates, because calculations and experiments show that

adsorbed hydrogen atoms tend to cluster on SWCNTs’ sidewalls [50–52]

and hence we are demonstrating our analysis with these defect clusters.

Our detailed studies showed that [II], if the relative distance of perturb-

ing clusters, i.e., bi-site defects which are extending over both A and B car-

bon sites, satisfies a certain condition, the metallic armchair SWCNT will

turn semiconducting. We choose the (8,8) nanotube, on which four hydro-

gen atoms were adsorbed on neighboring carbon atoms, and we perform
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Figure 2.5. Three different hydrogen clusters -H2, H4 and H6 (blue circles)- used in the
calculations. They are shown on a piece of an armchair SWCNT’s surface.
The unit vectors of the graphene sheet (a⃗ and b⃗), the A and B sublattices,
the Fermi wavelength (λF = 3a), and a vector connecting the adjacent hy-
drogen clusters are also given. The unit cell (UC) of the pristine tube with
the width “a“, as well as superlattice unit cells corresponding to two different
periodicity of the hydrogenated SWCNTs (SC5H4 and SC6H4) are shown.

band structure calculations for different supercell size of it. We adopt,

for example, the notation SC5H4 for the supercell comprising five (8,8)

SWCNT unit cells (SC5) and an adsorbed cluster of four hydrogen atoms

(H4), as depicted in Fig.2.5. The essential criterion for these clusters is

that they have to perturb both the A and B sublattices in a plane perpen-

dicular to the tube axis.

Figure 2.6 shows the band structure for different supercell sizes, i.e.,

SC1H0, SC4H4, SC5H4, and SC6H4. Figure 2.6(a) depicts the band struc-

ture of the pristine single-unit-cell nanotube. Moreover, we know that

multiplying the supercell length folds the band lines of the single-unit-cell

nanotube. In Figs. 2.6(b)–2.6(d), the band structure of pristine nanotube

for different supercell size is shown with dotted lines.

Nonetheless, the effect of H-clusters are different on different supercell

sizes. For instance, in the cases of SC4H4 and SC5H4, the band lines

are just slightly deviated from those of the pristine supercells of the same

sizes, while for SC6H4, the differences are qualitative since a gap has

been opened at the Fermi level and the metallic nanotube became semi-

conducting. The size of this gap increases with the strength of the pertur-

bation. We found out that the gap opening only occurs for the supercell

sizes in which the band crossing point at the Fermi energy falls near the
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Figure 2.6. Effect of the periodically-repeated H4 clusters on the band structure of the
(8,8) SWCNT. The band structure of (a) the pristine nanotube SC1H0 is com-
pared to those for nanotubes with H-atom clusters and different supercell
lengths, i.e., for (b) SC4H4, (c) SC5H4, and (d) SC6H4 (For the notation see
the text and Fig. 2.5). “a” - on the wave vector axis - is the width of CNT unit
cell as shown in Fig. 2.5. The dotted lines in (b) - (d) denote the band struc-
ture of the pristine nanotube folded according to the length of the supercell.

Γ point. With a simple band folding argument we can predict when this

is happening; The (blue) dashed lines in Fig. 2.6(a) are band or Brillouin

zone folding lines for SC3H0. similarly, for any SC(3M) with an integer

M, these lines are two of the 3M − 1 folding lines. Therefore in all these

cases, the Fermi point is placed, after the folding, near the Γ-point.

More general calculations with supercells containing several H-atom

clusters show that such a band gap opening happens for all supercells

in which the relative positions of the adjacent adsorbate clusters, or more

generally bi-site perturbations, fulfill the condition

R⃗ = pa⃗ + qb⃗, p − q = 3M, ∣M ∈ Z, (2.2)

where a⃗ and b⃗ are the unit vectors given in Fig. 2.5.

To investigate the role of relative distance of the H-clusters more, we

calculated the transmission function of several nanotubes with a varying

number of perturbed supercells in the central region. For these calcula-

tions we employed a simple nearest neighbor tight-binding methods which

is bench marked against the DFT results. The upper and lower panels of

Fig. 2.7 show the transmission functions for theN (SC5H4) andN (SC6H4)

central region systems, respectively, where N stands for number of peri-

odically repeated H-clusters in the central region.

As it is clear, for SC5H4 cases (upper panels) the transmission around

the Fermi energy remains very close to that of the pristine armchair

SWCNT even when the number of scatterers increases. In contrast, in
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Figure 2.7. Effect of the relative positions and the number of bi-site perturbations on
the transmission coefficient of armchair SWCNTs. The (red) solid curves in
the upper and lower rows show the tight-binding results for central regions
N(SC5H4) and N(SC6H4), respectively. From left to right, N=1, 2, 5 and 10.
The dotted black lines give the pristine transmission function. The dashed
(green) curve in the lower left panel gives the DFT result calculated by the
TRANSIESTA program.

the case of SC6H4, multiple scatterers have a suppressive effect on the

Fermi energy transmission so that the transmission drops nearly expo-

nentially to zero with the number of scatterers. The rate of the decay

depends on the strength of the scatterers [II].

Such a dependence on the relative distance can be described as fol-

lows. When the periodic perturbations occur with the separation of nλF /2,
where n is an integer, all the backscattered electron waves at the Fermi

level interfere constructively suppressing the transmission. As depicted

in Fig. 2.5 the Fermi wavelength of an armchair SWCNT is 3a and there-

fore, the constructive interference of the backscattering waves takes place

for periodic central regions constructed, for example, from the SC6H4 su-

percells but not for those containing, for example, SC5H4 supercells (See

Fig. 2.5).

It is worth mentioning that the qualitative feature of this phenomenon

is generally valid regardless of the type of perturbations and their position

around the circumference perpendicular to the tube axis.

2.4 Intertube transport and formation of Schottky barrier

What we have been discussing so far, concerned with the effects of defects,

imperfections, add atoms, and manipulated structures on the transport

through single tubes. However, in real life devices, we also deal with bun-

dles or networks of nanotubes. In order to understand the behavior of

a CNT network or bundle, it is essential to capture the properties of the
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junctions between nanotubes. In our third paper [III] we center our atten-

tion on crossed nanotube junctions and report the formation of Schottky

barrier in special cases.

Typically, in production of CNTs their chiralities are distributed ran-

domly, so that one third of the tubes are metallic, while the rest are semi-

conducting [53]. This leads to three different types of intertube (between

two tubes) junctions, metallic-metallic (MM), semiconducting-semiconduct-

ing (SS) and metallic-semiconducting (MS).

In the CNT literature, ranging from experimental to ab-initio studies,

many papers concentrate on carbon nanotube junctions (CNJs), especially

on electron transport and conductance properties between two tubes [54–

62]. Experiments show a finite junction resistance for the single wall nan-

otubes between 100 kΩ and 32 MΩ [57–59]. The numerical studies using

density functional theory, and tight-binding (TB) methods give similar

junction resistances, depending on the applied surface pressure over the

junction [60]. The theory also predicts that the tunneling current depends

strongly on the relative positions of atoms at the junction region [61] as

well as on the angle between the crossed nanotubes [62].

In our paper, we present electronic transport properties of the MM, SS,

and MS crossed junctions of single wall carbon nanotubes based on den-

sity functional theory with van der Waals (vdW) interactions included

[63]. In addition, effect of n- and p-type doping, which can be thought to

simulate the effect of a gate voltage, on the intertube transmission have

been studied. It is shown that an MS junction forms a Schottky contact in

the junction area, and a depletion region plays a dominant role at a par-

ticular doping. Moreover, we show the formation of deep bonding states

between carbon atoms in different tubes. This causes charge accumula-

tion in the junction area and has a considerable effect when the tubes are

under pressure. This is called here, the bonding charge effect.

Two CNTs are set to form a crossed junction, as shown in the insets of

figure 2.8. We choose nanotubes with (8,8) and (14,0) chiralities for metal-

lic and semiconducting tubes, respectively. In order to perform transport

calculations, the supercell has to be large enough for the four ends of the

tubes to be close to the bulk structure. Therefore, we include 12 unit cells

of armchair nanotubes and eight unit cells of zigzag nanotubes in the su-

percell. The distance between the nanotubes is defined by

dc = dtc − rt1 − rt2, (2.3)

where dtc is the distance between the centers of mass of fixed atoms of the
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Figure 2.8. Intratube (upper panels) and intertube (lower panels) transmission functions
T (E) for (a) MM, (b) SS, and (c) MS junctions. The tubes are at their relaxed
minimum energy distance from each other with the van der Waals correction.
The values of the intertube transmissions near the Fermi level are plotted in
on a larger scale for improved visibility. In (c) the leads 1 and 2 belong to the
metallic tube, and the leads 3 and 4 to the semiconducting tube.

tubes and rt1 and rt2 are the radii of the nanotubes. Figure 2.8 shows the

intratube and intertube transmission probabilities across different CNJs

at the minimum energy configurations in the upper and lower panels re-

spectively. The intratube transmission in the upper panels are very close

to the one of pristine nanotubes and the small deformation of the tubes

did not have a considerable effect on them.

The intertube transmissions are shown in the lower panels and they are

magnified at the energies close the Fermi level. One can see that there is

a slight transmission in the case of MM junction and no transmission for

SS and MS junctions close to the Fermi level. These transmission gaps

around the Fermi level can be attributed to the existing gap in the semi-

conducting tubes. Therefore, in order to get a nonzero transmission at the

small bias limit, the nanotube needs to be doped or a gate voltage must

be applied. We studied the effect of doping/gate voltage by adding extra

positive or negative charges to the system, which are then compensated

by a uniform background charge.

The intertube conductance of different CNJs at their Fermi level are

shown in Fig. 2.9 for different doping ratios. The MM junction conduc-

tance stays approximately constant for all doping ratios in agreement

with experiments [58]. In contrast, the SS junction shows a small and
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Figure 2.9. Intertube transmission of MM, SS, and MS junctions at Fermi level for dif-
ferent doping ratios. The tubes are at their relaxed minimum energy distance
with the van der Waals correction.

highly asymmetrical behavior for positively and negatively doped struc-

tures. This behavior can be linked to the intertube transmission for the

neutral case in Fig. 2.8(b), where the peaks close to 0.25 eV and -0.25 eV

are not equal size.

As an important phenomenon, in addition to the potential barrier be-

tween the nanotubes, a Schottky barrier is formed in the MS junction

originating from the different work functions of the doped tubes. The bar-

rier can be seen in Fig. 2.10 where the charge distributions of the tubes

are illustrated. In the junction area, the charge is transferred from the

semiconducting to the metallic tube and a depletion region is formed. We

define the depletion region as the area where the atoms have an opposite

charge compared to the initially doped charge. In these calculations the

size dependence of the depletion region on the doping ratio is not as strong

as in an earlier work with a single nanotube and a Schottky barrier [64].

On the other hand, also here the depletion region shrinks fast with in-

creasing doping ratio. The region size is 5 Å for 2⋅10−3 e/atom doping ratio

and it has already vanished for 4⋅10−3 e/atom of both positive and negative

doping ratios.

Besides the depletion region one can see a negative charge accumula-

tion on a few atoms which have the shortest distance to the atoms in

the other tube (pointed by arrows in Fig. 2.10). The amount of this ex-

tra charge is practically independent of the doping ratio. Our explana-

tion for this charge accumulation follows. When the intertube distance

becomes shorter, the pz orbitals of those carbon atoms, which are close
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Figure 2.10. The Hirshfeld charges [65] for the MS junction with (a) negative and (b)
positive doping ratios of 2⋅10−3e/atom at the minimum energy geometries.
The semiconducting tube shows a charge depletion region close to the junc-
tion. A local negative charge (pointed with an arrow) is visible as a blue
atom inside a positively charged (red) depletion region (a) and as a darker
blue atom in the negatively charged depletion region (b).

enough across the junction, start to overlap and form a weak bond with

accumulating charges; these are what we referred as bonding charges.

In the paper [III] we showed that the bonding charge effect is muchmore

pronounced in the CNJs under pressure when atoms are getting closer

over the junction. The bonding states have also been seen by others [66]

as states close to the energy gap of the semiconducting tube. However,

the bonding charges do not contribute to the conductance since they are

trapped at energies below the Fermi level.

While the bonding charges affect all the junctions MM, SS, and MS,

the conductance behavior of an MS junction is affected also the Schottky

depletion region: in the case of negative doping, when the depletion re-

gion is positively charged (Fig. 2.10(a)) , the bonding charges increase the

size of the depletion region by pulling the electrons from nearby atoms,

while concurrently the positive depletion region reduces the potential wall

caused by the negative bonding charge. On the other hand, in the case

of positively charged CNJs, the depletion region is negatively charged

(Fig. 2.10(b)), and thus while the bonding charges reduce the depletion

region they also increase the tunneling barrier. These effects describe the

asymmetric transmission for the doped MS junction.

More detailed studies are performed in our paper [III] on the CNJs un-

der pressure. That can mimic the real experimental environment and the

effect of bending of nanotube networks on the transmission of single CNJ.

We conclude that there are many phenomena that influence the transmis-

sion in CNJs and sometimes it becomes very complicated to explain their

23



Electrons on the move

effects separately.

All in all, in this chapter we provided a review of what we have done

in the area of electronic transport in defective nanotubes and nanotube

junctions. Moreover we explained how some of these studies might be

used in engineering different electronic nanodevices. The next chapter

will be attributed to the method development part of the thesis.
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3. Truncation of BBGKY hierarchy

In Sec. 1.2.2 we described how the equation of motion for reduced den-

sity matrices led to a hierarchy or equation that is called BBGKY hierar-

chy. We also mentioned that in order to make the hierarchy practical, we

must truncate it at some level, n, by reconstructing the Γ(n+1) as a func-

tional of lower-order RDMs. For instance, if one approximates two-body

RDM in terms of one-body RDM in the first equation, one arrives at the

time-dependent version of reduced density matrix functional theory (TD-

RDMFT). Similar to the TDDFT, most of the approximations used in TD-

RDMFT are adiabatic extensions of the existing ground-state ones [7–9];

and even though they can successfully describe the ground state of some

strongly correlated systems, they suffer from flaws such as lack of memory

and time independent occupation numbers [67]. Furthermore, majority of

these approximations do not necessarily conserve total energy of a system.

Some of these deficiencies will be cured if we consider propagating the

first two equations of the hierarchy by approximating the three-body RDM.

This is also useful since Γ(1) and Γ(2) are sufficient to calculate the dy-

namics of all one- and two-body observables. However, this prove to be a

nontrivial task and in fact there are earlier attempts in nuclear dynam-

ics [68, 69] which show that the fermionic inequality has been violated,

indicating the non-fermionic nature of the corresponding RDM. Such be-

haviors were unexpected and it was claimed to be related to the viola-

tion of the relations between different orders of reduced density matrices,

namely, the partial trace relation.

In this part of the thesis and in the paper [IV], we study the performance

of such an approach for different truncation schemes in detail and show

that the truncated set of equations may lead to instability and in many

cases even divergence (in electronic density, occupation numbers, etc.).

We mention the specific properties of approximations that are responsible
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for these unphysical results. We will show that lack of properties such

as positive-semidefiniteness also plays a crucial role in this failure. In

addition, this study prompts one to be aware of the same issues which

may arise in building approximations in TD-RDMFT.

3.1 Propagation methods and truncation scheme

As we mentioned, here we will only propagate Γ(1) and Γ(2) and therefore

the first two equations of the hierarchy. The explicit form of these two

equations are

(i ∂t−ĥ1+ĥ1′)γ(x1,x
′
1, t) = ∫ dx2 (U(x1x2)−U(x′1x2))Γ(x1x2,x

′
1x2, t) (3.1)

and

(i ∂t − Ĥ12 + Ĥ1′2′)Γ(x1x2,x
′
1x

′
2, t) =

∫ dx3 (U(x1x3) +U(x2x3) −U(x′1x3) −U(x′2x3))Γ(3)(x1x2x3,x
′
1x

′
2x3, t),

(3.2)

where, here and throughout the rest of the text, γ ≡ Γ(1) and Γ ≡ Γ(2). As
is customary in the literature [30], we call the right-hand side of Eq. (3.2)

the three-body collision integral and use S to refer to it.

At this point we highlight an important property of the BBGKY hierar-

chy and the effect of truncation on it. As a direct outcome of Eq. (1.20),

different levels of the hierarchy are compatible; namely, equations in the

higher levels of the hierarchy are reducible to the lower-level ones. We

refer to this link between equations as compatibility condition that prefer-

ably should be fulfilled by a good approximation. Thus, compatibility sig-

nifies that the highest equation is equivalent to the whole BBGKY hier-

archy. This is not surprising since the highest equation is basically the

original Schrödinger equation. However, when we truncate the hierarchy

by introducing an approximation for Γ(3), the partial trace relation be-

tween Γ(3) and Γ does not necessarily hold and thus it generally breaks

the compatibility between Eqs. (3.1) and (3.2). Consequently, when we

truncate the BBGKY hierarchy, we have two generally distinct options

to propagate the equations which should be equivalent if the truncation

approximation satisfies compatibility.

1. Propagating two coupled equations. We can evolve both γ and Γ by

solving Eqs. (3.1) and (3.2) together as coupled equations since the two
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equations most likely are not compatible anymore after approximating

Γ(3) in Eq. (3.2).

2. Propagating only the second equation. To avoid the problem of compat-

ibility between two equations, we can evolve only Eq. (3.2). Then we

assign γ to be the partial trace of Γ and denote it as γ
Γ
to distinguish it

from general γ. It mathematically reads

γ
Γ
(x1,x

′
1, t) = 1

N − 1 ∫ dx2 Γ(x1x2,x
′
1x2, t). (3.3)

In this way, we prevent the complication of dealing with two coupled

equations.

In the paper [IV], we rigorously showed that regardless of the approx-

imations we use, the first approach always keeps the total energy of the

system conserved, while this happens only for some of the approxima-

tions in the second approach, Therefore, in general the first approach is

preferred.

Now, we are ready to truncate the Eq. (3.2) by approximating Γ(3) in

terms of γ and Γ. One systematic way of building these approximations is

called cluster expansion which is a method of reconstructing higher-order

RDMs as anti-symmetrized products of lower-order ones plus a residual

correlation function [70–74]. To have a compact notation, first we de-

fine the wedge product as the anti-symmetrized product of p- andm-point

functions by

a(Xp,X
′
p) ∧ b(X̆p, X̆

′
p) = (3.4)

( 1

N !
)2 ∑

α,β

ε(α) ε(β)a(xα1 . . .xαp ,x
′
β1 . . .x

′
βp
) b(xαp+1 . . .xαN

,x′βp+1
. . .x′βN

).

Here, N = p +m, α represents all permutations of the unprimed coordi-

nates, β represents all permutations of the primed ones, and the func-

tion ε(α) returns +1 when the permutation α contains an even number

of transpositions and −1 for an odd number of transpositions [75]. For

instance, the wedge product of two general one-particle matrices is

a(x1,x
′
1) ∧ b(x2,x

′
2) = 1

4
{a(x1,x

′
1)b(x2,x

′
2) − a(x1,x

′
2)b(x2,x

′
1) (3.5)

+ a(x2,x
′
2)b(x1,x

′
1) − a(x2,x

′
1)b(x1,x

′
2)}.

Now, we illustrate the cluster expansion by some examples. The first

term of the expansion of Γ(n) has the same form as in the noninteracting-

particle picture, namely, it is an n-dimensional determinant of γ, with
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γ(xi,x
′
j , t) placed in row i and column j. For instance, for Γ(2), the first

term reads
�������������
γ(x1,x

′
1, t) γ(x1,x

′
2, t)

γ(x2,x
′
1, t) γ(x2,x

′
2, t)

�������������
≡ 2γ ∧ γ. (3.6)

Now, we define a two-body correlation function, Δ(2), as a means of the

deviation of Γ from the noninteracting form such that

Γ(X2,X
′
2, t) = 2γ ∧ γ +Δ(2)(X2,X

′
2, t). (3.7)

If we, for instance, approximate Γapp = 2γ ∧ γ and replace it in the first

equation of the BBGKY hierarchy (3.1), we recover immediately the well-

known TDHF equation.

For Γ(3) accordingly, we use a noninteracting particle form and add anti-

symmetrized products of γ with the correlation functionΔ(2) – that partly

describe the 3-body correlation – plus a remainder, Δ(3), i.e.

Γ(3)(X3,X
′
3, t) =

��������������������

γ(x1,x
′
1, t) γ(x1,x

′
2, t) γ(x1,x

′
3, t)

γ(x2,x
′
1, t) γ(x2,x

′
2, t) γ(x2,x

′
3, t)

γ(x3,x
′
1, t) γ(x3,x

′
2, t) γ(x3,x

′
3, t)

��������������������
(3.8)

+ 3

∑
i,j=1

(−1)i+j γ(xi,x
′
j , t)Δ(2)(x̆i, x̆

′
j , t) +Δ(3)(X3,X

′
3, t).

In the second term on the right-hand side, x̆j denotes the pair of vari-

ables in the set (x1x2x3) complementary to xj keeping the order of the

arguments fixed; the same goes for the primed coordinates. For example,

x̆2 = (x1x3). Using the wedge product notation, we can rewrite Eq. (3.8)

as

Γ(3) = 6γ ∧ γ ∧ γ + 9γ ∧Δ(2) +Δ(3) = −12γ ∧ γ ∧ γ + 9γ ∧ Γ +Δ(3) (3.9)

in which we replaced the Δ(2) = Γ−2γ ∧γ from Eq. (3.7). Similarly, we can

write the expansion for higher-order RDMs.

The same method has been used in the Contracted Schrödinger Equa-

tion formalism (the hierarchical set of equations for density matrices de-

rived from the time independent Schrödinger equation) and referred to

as cumulant expansion [76–79]. Nakatsuji and Yasuda made the expan-

sion more grounded by deriving it using the relation between RDMs and

Green’s functions [77]. Based on these, we are now ready to discuss a

number of approximations for Γ(3):

1. Three-body collision-integral-free (3b-CIF) approximation. The simplest

one rises from the assumption of Γ(3) = 0, which removes the whole right-
hand-side of Eq. (3.1).
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2. Three-body-noninteracting approximation (3b-NIA). This is obtained only

by considering the noninteracting term of Eq. (3.9)

Γ
(3)
3b−NIA = 6γ ∧ γ ∧ γ. (3.10)

This gives Γ(3) as a functional of γ.

3. WC approximation. We can, of course, climb to the next level and take

also the second term of Eq. (3.9) into account which leads us to

Γ
(3)
WC = −12γ ∧ γ ∧ γ + 9γ ∧ Γ, (3.11)

where the index stands for Wang and Cassing who introduced this ap-

proximation in 1985 [70]. This properly reduces to Eq. (3.10) when we

assume Γ = 2γ ∧ γ.

Although these are the main approximations that we study, they are not

the only ones. Some other approximations have been used in the paper

for analysis purposes and a list of more approximations is provided in

Tables 3.2 and 3.3.

3.2 Matrix representation of the equations

In order to implement and solve the equations, we need to represent them

in a suitable basis set. Assuming an orthonormal basis set {ϕi}, we can
rewrite the γ and Γ as

γ(x,x′, t) = ∑ij γij(t)ϕ∗i (x′)ϕj(x) (3.12)

Γ(x1x2;x
′
1x

′
2, t) = ∑ijkl Γijkl(t) ϕ∗i (x′1)ϕ∗j (x′2)ϕk(x1)ϕl(x2) (3.13)

and we will further define

hij(t) = ∫ ϕ∗i (x1)ĥ(x1, t)ϕj(x1)dx1 (3.14)

Uijkl = ∫ ϕ∗i (x1)ϕ∗j (x2)U(x1x2)ϕk(x1)ϕl(x2)dx1dx2, (3.15)

where due to hermicity of the matrices we have

γji = γ∗ij Γklij = Γ∗ijkl
hji = h∗ij Uklij = U∗

ijkl. (3.16)

Also, the antisymmetry of Γ(x1x2;x
′
1x

′
2) leads to

Γjikl = Γijlk = −Γijkl. (3.17)
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Then, Eq. (3.1) reads

∑
kl

[i∂tγkl(t)] ϕ∗k(x′1)ϕl(x1) = ∑
kl

γkl(t) [ĥ(x1, t) − ĥ(x′1, t)]ϕ∗k(x′1)ϕl(x1)

+ ∑
klmn

Γklmn(t) (∫ ϕ∗l (x2)[U(x1x2) −U(x′1x2)]ϕn(x2)dx2)ϕ∗k(x′1)ϕm(x1).
(3.18)

Now we multiply this equation by ϕi(x′1)ϕ∗j (x1) and integrate over x1,x
′
1

that results in

i∂tγij(t) =
∑
k

[γik(t)hjk(t) − γkj(t)hki(t)] + ∑
klm

[Γiklm(t)Ujklm − Γkljm(t)Uklim] . (3.19)

For transforming the second equation (3.2) the same method can be ap-

plied where the final result depends on the employed approximation for

Γ(3). For instance, for 3b-NIA approximation in Eq. (3.10), we arrive at

i∂tΓijkl = ∑
m

[Γijml(t)hkm(t) + Γijkm(t)hlm(t) − Γmjkl(t)hmi(t)
−Γimkl(t)hmj(t)] +∑

rs

[Γijrs(t)Uklrs − Γrskl(t)Ursij] (3.20)

+∑
qrs

[(γiq(t)γjs(t)γrl(t) − γjl(t)γiq(t)γrs(t)) (Ukrsq −Ukrqs)]
+∑

qrs

[(γiq(t)γjs(t)γrk(t) − γjk(t)γiq(t)γrs(t)) (Ulrqs −Ulrsq)]
+∑

qrs

[(γqk(t)γsl(t)γjr(t) − γjl(t)γqk(t)γsr(t)) (Uqsir −Usqir)]
+∑

qrs

[(γqk(t)γsl(t)γir(t) − γil(t)γqk(t)γsr(t)) (Usqjr −Uqsjr)]
+∑

qrs

γrs(t)γjq(t) [γil(t)(Urkqs −Ukrqs) + γik(t)(Ulrqs −Urlqs)]
+∑

qrs

γsr(t)γql(t) [γjk(t)(Uqsir −Uqsri) + γik(t)(Uqsrj −Uqsjr)] .
In the case of spin compensated systems, there are many symmetries

that simplify the equations further and increase efficiency of the calcula-

tions.

3.3 Test model implementation

Now, we have to choose a model system which is appropriate for test-

ing different approximations. The linear-chain Hubbard model fits very

well here since first of all we can solve it exactly for a few sites; and sec-

ondly, since the number of single-particle orbitals that build the many-

body Hilbert space is limited, we can retain the full single-particle basis

set and avoid basis-set truncation errors.
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On the other hand, to study the quality of the approximations, we must

go beyond two-particle systems since they can be treated exactly in our

formalism. Thus, we will avoid the practical complications introduced by

spin in odd-number-electron systems (that does not affect the generality of

our results), and perform all our calculations in a four-site Hubbard chain

with four electrons and without periodic boundary conditions. There, we

only consider the nearest neighbor hopping and on-site Coulomb interac-

tion, and then the Hubbard Hamiltonian in second quantization notation

reads

Ĥ = ∑
σ,i

t (a†i+1,σai,σ + a†i,σai+1,σ) +∑
i

U ni↑ni↓, (3.21)

where σ is a spin index, i is the site index and t and U denote hopping and

on-site Coulomb potential energy, respectively. Here, t is set to unity and

U gets different values to simulate different correlation strengths.

In our code, we only propagate the lower triangular part of γ and Γ

since they should be Hermitian matrices. For solving the differential

equations, we use the fourth-order Runge-Kutta method. However, to

ensure the accuracy and stability of our results, we also implemented

more accurate time-propagation schemes such as the fourth-order Adams-

Bashforth-Moulton method (for a detailed discussion of these methods

see [80]). We also performed many tests, with γ, Γ and Γ(3) extracted

and replaced from the exact calculations, to guarantee a flawless imple-

mentation.

3.4 Results and discussion

In this part, we mainly investigate three different approximations of Γ(3),

namely the three-body collision integral free, the three-body non-interact-

ing, and the WC approximations and compare them with the exact and

the TDHF results. With these approximations, we have now a closed set of

equations and as for any differential equation, we need an initial state of

the system to propagate them. To study the initial state dependence of the

phenomena, we choose two extreme regimes of initial states to perform

our calculations: far from equilibrium and close to equilibrium.

At first, we choose a far from equilibrium state as our initial state since

it helps us to show the problem more clearly. We build such an initial

state by putting four electrons in the two leftmost sites, i.e.

∣Ψ0⟩ = a†1,↑a
†
1,↓a

†
2,↑a

†
2,↓∣0⟩, (3.22)
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Figure 3.1. Time evolution of electronic density in the leftmost site of a 4-site Hubbard
model with (a) TDHF (b) 3b-CIF (c) 3b-NIA and, (d) WC approximations. The
exact result is also given for comparison. Here, m, h̵ are set to unity and
Hubbard parameters are U = 0.1 and t = 1. The four electrons filled the two
leftmost sites initially.

where 1 and 2 refer to two neighboring sites at the beginning of the chain.

Here, since this initial state is a Slater determinant formed by two site-

orbitals, Γ has the exact form of Eq. (3.6), but this is not the case for all

the initial states. The time evolution of electronic density in the leftmost

site, n(1,t), is plotted in Fig. 3.1 for a weak on-site Coulomb energy, U =
0.1, and for (a) TDHF, (b) 3b-CIF, (c) 3b-NIA and, (d) WC approximation.

The plots also contain the exact result for comparison. In a short-time

scale, we can see that all three approximations improve the quality of the

results considerably, compared to the TDHF. However, comparing with

each other, the approximations do not exhibit large differences.

Figure 3.2 shows the time evolution of the highest and lowest natural

orbital occupation numbers. For TDHF, as in many other TD-DMFT ap-

proximations, the occupation numbers are time independent, which is a

challenge in that community as we mentioned [67]. Here, we can see that

the WC approximation, despite its amplitude, follows the trend of the ex-

act result more closely as one might expect.

Surprises show up when we propagate the equations further. Figure 3.3

shows essentially the same results as in 3.1, for a longer propagation

time. It also shows how the highest and lowest geminal occupation num-

bers, λmax and λmin, behave in time. For the 3b-CIF in panel (a) we can
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Figure 3.2. Highest and lowest natural orbital occupation number in a 4-site Hubbard
model with (a) TDHF (b) 3b-CIF (c) 3b-NIA and, (d) WC approximations. The
exact result is also given for comparison. Here, m, h̵ are set to unity and
Hubbard parameters are U = 0.1 and t = 1. The four electrons filled the two
leftmost sites initially.

see unphysical behaviour around t ≈ 240a.u, where the density acquires
negative values or rises beyond two electrons in a site. The problem is

more serious for the two other approximations since for longer propa-

gation times, the electronic density starts to oscillate with amplitudes

much beyond physically allowed boundaries, and eventually diverges as

is shown in Fig. 3.3 (b and c). The divergence time depends on the corre-

lation strength, namely on the value of U in our model, and it is inversely

proportional to a power of U . For example, for WC approximation, the di-

vergence time changes from t ≈ 532a.u for U = 0.1 to t ≈ 3.7a.u for U = 5. We

depict the U-dependency of the divergence time, for WC approximation,

in Fig. 3.4. It is important to note that in 3b-NIA and WC approxima-

tions, λmax and λmin start to diverge much earlier, although we can not

immediately see the effect in neither natural orbital occupation numbers

nor on-site electronic densities.

It is well-known that the time-evolution of a far from equilibrium state

is generally very difficult to handle with any approximation, and particu-

larly with the ground-state-tuned ones; hence, we change the initial states

to be closer to the system’s ground state in order to investigate the gen-

erality of this phenomenon. We start the simulation with the initial γ

and Γ extracted from the ground state of i) the exact solution and ii) the
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Figure 3.3. Time evolution of electronic density in the leftmost site of a 4-site Hubbard
model in a longer time scale for (a) 3b-CIF (b) 3b-NIA, (c) WC approximations.
Blue lines show the highest and lowest geminal occupation number in time.
Here, m, h̵ are set to unity and Hubbard parameters are U = 0.1 and t = 1.
The four electrons filled the two leftmost sites initially.
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Figure 3.4. Divergence time of electronic density in a 4-site Hubbard model for WC ap-

proximation versus on-site Coulomb energy U (both in logarithmic scale).
Blue line is the fitted line. Here, m, h̵ are set to unity and Hubbard parame-
ter t = 1. The four electrons filled the two leftmost sites initially.

Hartree-Fock approximation; and let it propagate with all three different

approximations.

For the initial state being the ground state of HF, we again use the

Eq. (3.6) to build the Γ from γ since this state is also made of a Slater

determinant of two site-orbitals. In the case that we start from the ex-

act ground state, we extract the exact γ and Γ and feed them into the

equations.

Although in these cases the electronic density for the 3b-CIF does not

violate physical bounds, we still see the divergence for other two approxi-

mations. Figure 3.5 shows the time propagation for the three mentioned

approximation when the initial state is the ground state of Hartree-Fock

approximation. In the case of WC approximation, the divergence occurs

much later than the far from equilibrium initial state, while for 3b-NIA,

it occurs a bit earlier. This shows that we cannot claim any particular

dependence on the initial state in our models.

Moreover, we used the method introduced by Mazziotti [81] to find the

ground state associated with 3b-NIA and WC approximations and then

used it as the initial state. However, since the method [81] is not totally

convergent, the result is not a truly stationary state and even starting

from such state does not bring stability to the equations and divergence
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Figure 3.5. Time evolution of electronic density in the leftmost site of a 4-site Hub-
bard model (a) 3b-CIF (b) 3b-NIA, (c) WC approximations when we used the
ground state of Hartree-Fock approximation as the initial state. Blue lines
show the highest and lowest geminal occupation number in time. Here, m, h̵
are set to unity and Hubbard parameters are U = 0.1 and t = 1.
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appears again.

These tests show that the divergence problem is independent of the ini-

tial state and has to do with the nature of the approximated equations. It

is worth emphasizing again that in all of these approximations the con-

tinuity condition has not been violated and the total number of particles

is always conserved. Nevertheless, the continuity equation does not guar-

antee that the electronic density in each state does not go below zero or

beyond two.

As we mentioned in the introduction, the violation of fermionic inequal-

ity has also been observed for a different system in nuclear physics [68,

69]. In fact, there are earlier works in the classical BBGKY theory in

which they studied the effect of nonlinearity introduced by truncation

of the hierarchy, and showed the existence of instability in these cou-

pled equations depending on the initial conditions of the system [82, 83].

Other studies also indicated that the classical collision integral can di-

verge [84, 85]. Such catastrophic behaviors of these coupled equations

pose a valid question that, why these highly advanced approximations

based on the Green’s function expansion fail to follow fundamental phys-

ical principles, and even lead to divergence, even though the total energy

and number of particles are conserved.

The instability of the propagations is not limited to these two equations,

and it can be seen even in TDHF where we only keep the first equation

Eq. (3.1). Although it is known that TDHF never diverges, the nonlinear-

ity introduced into the equation can give rise to chaotic and unphysical

behaviors as Schmitt et al. showed in their work [86, 87]. We can il-

lustrate such a unphysical behavior in the context of our four-particle in

four-site Hubbard model when U = 10. We choose our initial RDM, γinit , to

be an ensemble of the ground state, γ0 , and the second excited state, γ2 , of

Hartree-Fock. Namely,

γinit(x,x′) = (1 − ε)γ0(x,x′) + ε γ2(x,x′), (3.23)

where ε is an infinitesimally small coefficient (10−12 in our calculation)

whichmakes γinit extremely close to γ0 . Using the time-dependent Schrödinger

equation we can easily show that the combination of the ensemble should

stay the same over the time, i.e,

γinit(x,x′, t) = (1 − ε)γ0(x,x′, t) + ε γ2(x,x′, t). (3.24)

Therefore, we expect the time evolution of the γinit to stay nearly steady.

However, as we show in Fig. 3.6, its TDHF propagation shows very large
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Figure 3.6. Emergence of chaotic behaviour in electronic density in the leftmost site of a
4-site Hubbard model for TDHF approximation. Here, m, h̵ are set to unity
and Hubbard parameters are U = 10 and t = 1. The initial γ(0) is chosen from
Eq. (3.23) with ε = 10−12 .

irregular fluctuations which are characteristic for chaotic behaviors. This

happens due to the nonlinearity that was introduced by approximation of

Γ.

To analyze the divergent behavior of the equations, we center our at-

tention to the basic properties of the BBGKY hierarchy and density ma-

trices to find out how they are affected by different approximations. As

we already showed, the employed approximations break the compatibil-

ity between Eq. (3.1) and the approximated version of Eq. (3.2) and the

partial trace relation (Eq. (1.20)) between Γ and γ does not hold any more.

Schmitt et al. [68] and Gherega et al. [69] claimed this to be the main

source of the problem. On the other hand, it is obvious that the positive-

semidefiniteness of density matrices has also been violated. This problem

may arise for one of the following reasons.

1. If in Eq. (3.2) the approximation functional of Γ(3) is built in a way that

Γ does not necessarily stay positive semidefinite, even though the initial

γ and Γ are positive semidefinite. Therefore, regardless of whether the

partial trace relation between γ and Γ holds or not, there is no guarantee

for γ to be positive semidefinite.
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2. If the approximation functional of Γ(3) is built in a way that the propa-

gated Γ does stay positive semidefinite (provided the initial γ and Γ are

positive semidefinite), but since the Eqs. (3.1) and (3.2) are not com-

patible and the relation between Γ and γ is ill-defined, the positive-

semidefiniteness will not necessarily pass to the γ.

It is not easy to impose positive semidefiniteness on Γ(3) and even if we

succeed to do that, since its trace relation with γ and Γ is broken this does

not lead to the positive semidefiniteness of γ and Γ. In the paper [IV],

we used different test approximations to analyze the role of compatibility

and positive semidefiniteness in these unphysical results. For example

we introduced several approximations which fix the compatibility link be-

tween the two equations. That solved the divergence problem only if the

approximation was retaining the positive-semidefiniteness as well, and in

other cases, the divergence problem still existed.

Γ(3) approximations Compatibility Positive-Semidefiniteness Violating ⌢̈
of Equations of Approximations Diverging #̈

3b −CIF × × ⌢̈
3b −NIA × × #̈
WC × × #̈

Compatible (1) ✓ ✓ ⌢̈
Compatible (2) ✓ × #̈

(N−2
N

)γ Γ × × ⌢̈
3b −NIA, WC Does not

only second equation Matter × #̈
(N−2

N
)γ Γ Does not

only second equation Matter ✓ ⌢̈
Table 3.1. Properties and performance of different Γ(3) approximations. The test system

is a four-electron four-site Hubbard model with fixed Hopping (t = 1) and on-
site Coulomb energies (U = 0.1). Here, m and h̵ are set equal to one. The four
electrons filled the two leftmost sites initially.

On the other hand, if we only propagate the second equation (sec. 3.1),

even though the compatibility will not be a problem anymore, we can still

see diverging results for some of the approximations. Table 3.1 shows an

overview of what have been presented in the paper.
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3.5 Further truncation schemes

In our paper, we only discussed a few approximations that served our

analyses, but what we tried are not limited to those and in fact, there

are many other approximations that we tested as a potential cure for the

divergence problem but they did not turn out successful. In the following,

we provide a list of some of those approximations and their performances

in weakly, medium and strongly correlated systems (U = 0.1,1 and 10) in
Tables 3.2 and 3.3.

Γ(3) approximation

Violating × Diverging ×
Non-violating ✓ Non-diverging ✓

U = 0.1 U = 1 U = 10 U = 0.1 U = 1 U = 10
3b −CIF × × × ✓ ✓ ✓
3b −NIA × × × × × ×

WC × × × × × ×
3γ∧Γ × × × × × ×

6γ
Γ
∧γ

Γ
∧γ

Γ
× × × ✓ × ×

−12γ
Γ
∧γ

Γ
∧γ

Γ
+ 9γ

Γ
∧ Γ × × × × × ×

3γ
Γ
∧ Γ × × × × × ×

6γ
HF

∧γ
HF

∧γ
HF

× × × ✓ ✓ ✓
(N−2

N
)γ

Γ
(x3,x

′
3)Γ(x1x2;x

′
1x
′
2) ✓ × × ✓ ✓ ✓

Table 3.2. Quality of different Γ(3) approximations using both Eqs. (3.1) and (3.2). The
test system is a four-electron four-site Hubbard model with fixed Hopping (t =
1) and various on-site Coulomb energies (U ). γΓ in these approximation is
given by Eq. (3.3). Here,m and h̵ are set equal to one. The four electrons filled
the two leftmost sites initially.

Table 3.2 summarizes different approximations when we propagate both

Eq. (3.1) and Eq. (3.2) together. Here, the lack of compatibility between

γ and Γ offers another way to use a particular approximation; that is to

say, instead of using γ in a Γ(3) approximation, we can use γ
Γ
defined in

Eq. (3.3) and create a distinct but similar approximation. Nevertheless,

we still calculate one-body observables from γ and not γ
Γ
.

In one of these approximations we used

Γ(3) = 6γ
HF

∧ γ
HF

∧ γ
HF

(3.25)

in which we extract the γ
HF

from the time dependent Hartree-Fockmethod

and feed it here in each time step, namely for this method we need to run

the TDHF and BBGKY together and related them in every time step. This

approximation is non-diverging for all initial states. Although it violates
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the fermionic inequality here, it turned out to be well-behaved for near

equilibrium initial states, such as HF ground state or the exact ground

state. We are still investigating the quality of the approximation in the

linear response regime and for the real systems. Notice that the approx-

imation in the last row of the table is not antisymmetrised with respect

to interchange of every two primed or unprimed coordinates separately;

however this approximation maintains the essential antisymmetry of Γ.

Γ(3) approximation

Violating × Diverging ×
Non-violating ✓ Non-diverging ✓

U = 0.1 U = 1 U = 10 U = 0.1 U = 1 U = 10
3b −CIF ✓ ✓ ✓ ✓ ✓ ✓
3b −NIA ✓ × × ✓ × ×

WC × × × × × ×
3γ

Γ
∧ Γ × × × × × ×

(N−2
N

)γ
Γ
(x3,x

′
3)Γ(x1x2;x

′
1x
′
2) ✓ ✓ ✓ ✓ ✓ ✓

Table 3.3. Quality of different Γ(3) approximations using only Eq. (3.2). The test system
is a four-site Hubbard model with fixed Hopping (t = 1) and various on-site
Coulomb energies (U ) and four electrons. Here, γΓ (Eq. (3.3)) will be the same
as γ. m and h̵ are set equal to one. The four electrons filled the two leftmost
sites initially.

In Table 3.3, however, we show the results for the same approximations

using only Eq. (3.2) for propagation. This means, as it mentioned in the

previous section, γ is the same as γ
Γ
even for calculating one-body observ-

ables. One should bear in mind that as we showed earlier, the total energy

is not constant in any of the approximations used in Table 3.3. Neverthe-

less, there are two approximations in this table that neither violate the

fermionic inequality nor have the divergence problem. We already dis-

cussed the quality of the 3b-CIF approximation in the previous section.

For other case, i.e. the last-row approximation, we will not go to the detail

and only mention that the results are not satisfactory, and they do not

describe the system qualitatively.

In short, we provided many test approximations fulfilling different con-

strains to show that neither compatibility between equations nor positive

semidefiniteness of the approximations by itself can keep the propagation

of the RDMs inside the fermionic boundaries. In fact, although the nonlin-

earity introduced by most of the approximations to Eq. (3.2) might be the

cause of the divergence, the violation of fermionic inequality might exist

even in the case of linear approximations as we saw in the 3b-CIF approx-

imation. Therefore, it indeed takes both of these constraints to tame such
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coupled equations.
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4. Conclusion

The dissertation was divided into two general parts. First, we applied the

DFT-based transport on defective carbon nanotubes, and next, we tried to

develop a method for time dependent reduced density matrices.

The first part of the dissertation consists of 3 papers. In the first paper

[I] we studied the transmission spectrum of carbon NanoBuds for various

geometries and found two common features: the transmission is signif-

icantly reduced at EF and above it, and high-transmission bands exist

for energies below EF . We also showed that the neck region atoms play

an important role in the conductance of the system, and suggest that the

conductance can be modified by a further manipulation of this region.

Next paper dealt with the effect of multiple bi-site perturbations on elec-

tronic and transport properties of armchair nanotubes [II]. Our calcula-

tions showed that following a certain relative-position condition, a natu-

rally metallic nanotube can turn into semiconducting. The phenomenon

showed robustness against variations in the types of perturbing species

and also to some extent in their positions.

In the third work [III] we turned to the nanotube junctions and stud-

ied the electronic transport properties of metallic– metallic, semiconduct-

ing–semiconducting, and metallic– semiconducting junctions. Our results

demonstrated that in the metallic–semiconducting junction a Schottky

barrier is formed, affecting the transport. Moreover, when the tubes were

close to each other, a charge accumulation effect occurred in the junction

area since the pz orbitals of the carbon atoms start to overlap. We also

studied the effect of pressure and doping on the transport properties.

The second part of the dissertation was concerned with the time evolu-

tion of reduced density matrices. We focused on the first two equations of

the BBGKY hierarchy as our main framework and employed the cluster

expansion to approximate the three-body RDM in the second equation.
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We showed that by using the first two equations, the total energy of the

system is conserved. However, maintaining quantities such as energy and

number of particles did not help in obtaining sound results, and in fact us-

ing the existing approximation has led to very unphysical (in most cases

diverging) behavior. Our thorough analysis and tests also revealed the

important role of positive semidefiniteness which a good approximations

must maintain.
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